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ARTICLE OPEN

The breast pre-cancer atlas illustrates the molecular and micro-
environmental diversity of ductal carcinoma in situ
Daniela Nachmanson1, Adam Officer1,2, Hidetoshi Mori3, Jonathan Gordon4,5, Mark F. Evans4,6, Joseph Steward7, Huazhen Yao8,
Thomas O’Keefe9, Farnaz Hasteh7,10, Gary S. Stein4,5, Kristen Jepsen8, Donald L. Weaver4,6, Gillian L. Hirst 11, Brian L. Sprague4,12,
Laura J. Esserman 11, Alexander D. Borowsky 3, Janet L. Stein 4,5 and Olivier Harismendy 2,7✉

Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well
understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed
methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across
85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but
genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with
underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the
inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state
located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently
from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion
studies and build finer models of outcomes and progression risk.

npj Breast Cancer             (2022) 8:6 ; https://doi.org/10.1038/s41523-021-00365-y

INTRODUCTION
Increasing adoption of breast cancer screening and advances in
imaging capabilities have improved our ability to identify breast
ductal carcinoma in situ (DCIS). Rarely diagnosed 40 years ago,
DCIS now comprises nearly 20% of all breast cancer-related
diagnoses1,2. Unfortunately, this progress has not resulted in
decreased breast cancer mortality. Standard treatment, involving
surgical excision often complemented with radiation therapy (in
the setting of breast-conserving surgery) and endocrine recur-
rence risk reduction (particularly with ER+ DCIS), therefore
constitutes overtreatment, and not without treatment-related
consequences for many2,3. DCIS progression is particularly difficult
to study longitudinally due to the current standard of surgical
excision of the lesion and the infrequent progression and/or
occurrence of new primary lesions over a long timespan (5–10%
after 10 years)4. Clinicopathological risk factors such as large size,
dense breast, younger age, high pathological grade, presence of
comedo necrosis, or Her2 positivity have been associated with
increased risk of recurrence, but the resulting predictive models,
or those relying on gene expression signatures, are currently
insufficient to safely distinguish patients to watch from patients to
treat5.
Contrary to models of progression in other tissue types, there is

little evidence for the sequential accumulation of somatic
alterations during progression from in situ to invasive breast
cancer (IBC), but rather all IBC intrinsic subtypes and known driver

mutations have been identified in DCIS, albeit at variable
prevalence6–12. Moreover, both single-cell and bulk studies have
shown similar clonal make-up of synchronous invasive and in situ
lesions, convoluting the idea that clonal selection drives
invasion11,13. The role of the immune environment has also been
investigated, highlighting the higher lymphocyte infiltration in
Her2+ or Triple Negative DCIS, or specific immunological make-up
of samples at higher risk of progression12,14–19. Similarly, the role
of the basal layer, fibroblasts, adipocytes, other stromal cells, or
overall extracellular matrix has identified features that are different
between DCIS and IBC, likely mediated by chemokine signaling,
and can be associated with known progression risk factors20–23.
Their active participation in the malignant transformation of the
breast epithelium remains to be established as similar mechan-
isms are typically involved in normal development, activity, and
aging of the mammary gland24,12.
Progress in our understanding of the processes mediating DCIS

onset and progression has been considerably hindered by
technical and logistical limitations. Indeed, pure DCIS lesions are
commonly small in size, formalin and paraffin embedded (which
damages nucleic acids), and can display significant histological
heterogeneity25. As a consequence, comprehensive molecular and
cellular assays and their integrated analysis have seldom been
performed in pure DCIS cohorts. Capturing evidence of pheno-
typic, genetic, and cellular heterogeneity, and how they relate to
each other is necessary to develop a better spatial, temporal, and
functional understanding of the mechanisms at play. Recent
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advances in genome-wide assays, becoming compatible with ever
more challenging samples26–29, have improved our ability to
connect histological and molecular observations and enabled
such application even to individual microbiopsies from a
histological slide of pure DCIS.
Here we describe the combined, parallel histological, molecular,

and immunological profiling of premalignant lesions from 39
patients diagnosed with DCIS, including multiple epithelial
microbiopsies within a subset of samples. The dissection of
specific epithelial lesions provided a detailed assessment of the
association of their histological architecture with intrinsic sub-
types, mutational landscape, driver mutations, and immunological
states. Multi-region profiling resulted in the inference of clonal
relationships, illustrating how genotypes related to phenotypes
within a specimen. We, therefore, report multi-modal and sub-
histological profiling of a cohort of pure DCIS, illustrating spatial
heterogeneity and placing diverse states of immune activity
observed in their specific molecular and histological context.

RESULTS
Histological and molecular characterization
We collected a total of 43 specimens (referred to as samples) from
39 patients diagnosed with pure DCIS, including three samples
from subsequent DCIS diagnosed between 14 and 70 months
after the index DCIS (Fig. 1a, b, Table 1, Supplementary Table 1).
Sixty-nine percent (29/42) of the samples were positive for
estrogen receptor (ER) expression and 40% (16/40) had ERBB2

gene overexpression or amplification (Supplementary Fig. 1a).
Each sample was further annotated for grade and histological
architecture and the annotations were used to identify regions of
interest, guide the microbiopsies of the epithelial areas and the
immuno-histological analysis. On the basis of their studied
regions, the cohort consisted of 32 high or intermediate grade
DCIS (HG-DCIS), nine low-grade DCIS (LG-DCIS), and two low-grade
atypical ductal hyperplasia (ADH). The DCIS regions could be
further annotated according to their dominant histological
architecture (17 cribriform, 19 solid, three mixed, two micro-
papillary) and the presence of necrosis (ten comedo necrosis, 17
other). LG-DCIS were more frequently of cribriform architecture (8/
9), while HG-DCIS were frequently necrotic (25/32). The relative
area of adipose tissue in each sample varied between four and
91% as estimated by segmental classification of the whole slide
digital image (Fig. 1c, Methods). The lower adipose fraction was
associated with higher mammographic breast density (p= 0.0067)
suggesting the sample histology was representative of the whole
breast texture. Interestingly, solid DCIS were associated with a
higher adipose fraction (median 69% vs 40%, p= 0.008), suggest-
ing a contribution of the breast microenvironment to the growth
architecture. Overall, the cohort represents a diverse set of pure
in situ lesions identified in absence of any detectable invasive
component. The studied samples are enriched for DCIS lesions
and specifically annotated for their histological architecture. Each
sample was profiled using multiple assays, performed on
sequential histological sections (4–7 µm) used for whole tran-
scriptome, whole exome, and spatial immune profiling. Whenever
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possible, the investigated regions were matched across assays to
preserve the spatial information in the analysis and limit the
variation due to spatial heterogeneity. Spatial heterogeneity was
further addressed in 21 samples for which multiple sub-regions
were profiled independently.
The expression of genes was measured using high-throughput

sequencing of RNA-seq libraries directly prepared from the
microbiopsied regions27 (Supplementary Table 2). The samples

were classified according to the PAM50 intrinsic subtypes used for
invasive breast cancer (IBC), which identified Basal (N= 5), Luminal
A (N= 10), Luminal B (N= 6), Her2-like (N= 7), and Normal-like
(N= 10) samples (Fig. 1d). Consistent with IBC classification,
Luminal A and B were enriched for samples from ER+ cases, while
Her2-like were enriched for Her2+ cases. Similarly, Luminal B and
Her2-like were enriched in HG-DCIS, while Luminal A was almost
exclusively composed of cribriform LG-DCIS. Luminal A and

Table 1. Clinical and pathological features of the patient and specimen studied.

Patient ID Block ID Age at Index Size (cm) Laterality Grade Architecture ER HER2a N. of Regions Diagnosis Orderb

MCL76_044 12800 56 0.9 Left Low Cribriform + - 1 Index

MCL76_049 18100 50 6 Left Low Cribriform + - 1 Index

MCL76_060 16100 47 17 Left Low Cribriform + - 3 Index

MCL76_061 16200 34 8 Left Low Cribriform + - 4 Index

MCL76_064 15200 78 0.4 Left Low Cribriform + - 3 Recur. (+18 mos.)

MCL76_066 14400 70 1.1 Right Low Cribriform + - 3 Index

16500 70 0.3 Right Low ADH + - 1 Recur. (+14 mos.)

MCL76_076 15700 45 4.1 Right Low Cribriform + - 5 Index

MCL76_078 15500 68 1.4 Left Low Solid + - 3 Index

MCL76_080 15800 59 3.7 Left Low ADH + - 3 Index

MCL78_020 10001 59 0.3 Right Low Cribriform + + 1 Index

MCL76_012 11600 50 3.6 Right Inter. Solid + - 2 Index

MCL76_048 13100 51 3.8 Right Inter. Cribriform + - 3 Index

MCL76_064 14600 78 NA Left Inter. Solid + NA 1 Index

MCL76_067 16600 54 6 Left Inter. Solid + + 3 Index

MCL76_070 16400 69 8 Right Inter. Solid + - 3 Index

MCL76_071 14800 68 5.8 Right Inter. Micropapillary - - 3 Index

MCL76_074 14700 45 14 Right Inter. Cribriform + - 3 Index

MCL76_077 15300 70 1.2 Left Inter. Cribriform - + 2 Index

MCL76_079 15400 62 3.4 Right Inter. Cribriform - + 3 Index

MCL78_001 10001 50 2.5 Right Inter. Cribriform NA - 1 Index

MCL78_002 10001 48 2 Left Inter. Solid + - 1 Index

MCL78_006 10001 75 4 Left Inter. Cribriform + + 1 Index

MCL78_007 10001 43 1.6 Right Inter. Cribriform + + 1 Index

MCL78_008 10001 66 1.5 Right Inter. Solid + + 1 Index

MCL78_009 10001 78 2.4 Right Inter. Solid + - 1 Index

MCL78_010 10001 67 1.1 Left Inter. Cribriform - + 1 Index

MCL78_011 10001 59 0.6 Right Inter. Solid + + 1 Index

MCL78_013 10001 63 2.2 Right Inter. Mixed - + 1 Index

MCL78_016 10001 65 4.5 Left Inter. Solid - + 1 Index

MCL78_017 10001 52 2.5 Left Inter. Solid + + 1 Index

MCL78_018 10001 65 2 Right Inter. Mixed + equ 2 Index

MCL76_007 11000 78 3.5 Left High Solid - - 3 Index

11100 78 2.6 Right High Solid - - 4 Recur. (+39 mos.)

MCL76_016 11800 35 5 Left High Mixed + + 4 Index

MCL76_025 16800 75 1.2 Right High Solid - NA 2 Index

MCL76_068 14900 59 9.5 Left High Cribriform - + 3 Index

MCL78_003 10001 43 5 Left High Solid + equ 1 Index

MCL78_005 10001 81 0.5 Right High Solid + - 1 Index

MCL78_012 10001 54 4 Right High Solid - + 1 Index

10014 54 3 Right High Solid - NA 1 Synchronous

MCL78_015 10001 57 0.5 Left High Micropapillary + + 1 Index

MCL78_019 10001 57 1.9 Left High Solid - equ 1 Index

aInferred from ERBB2 copy number and expression (Fig. S1), equ equivocal.
bRecur. Recurrence, mos. months. All recurrence DCIS were in different quadrants than the index.
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Normal-like represented closely related classes and together
comprised the majority of the samples (20/38), which is not
unexpected given the higher fraction of low-grade and pure
in situ lesions in the cohort, in contrast with IBC and previous DCIS
expression profiling studies18,30. The PAM50 subtype of two
independent sub-regions with matching histology and grade was
determined in ten samples and observed to be discordant in five
samples (Supplementary Table 2B), which was associated with
larger distances between the regions (Mann–Whitney, p= 0.005,
Supplementary Fig. 1b). Interestingly, matched index and
recurrent samples from two patients had at least one region with
a concordant subtype. Across all samples, the distribution of
probabilities for each PAM50 subtype likely captures such
heterogeneity. Normal-like were truly a mix of Normal and
Luminal A, while Her2-like tended to have two main subsets:
Her2/Basal and Her2/Luminal B. This suggests that subtypes

inferred from bulk analysis, even after epithelial microdissection,
are frequently the result of a variable mixture of pure subtypes.

Subtype differences in the mutational landscape
To determine whether any of the histological or molecular
subtypes described above were associated with specific genetic
alterations, we characterized their mutational landscape. Whole
exome sequencing was carried out on microbiopsies from
30 samples using a procedure specifically optimized for a low
amount of damaged DNA26. Mutations and copy number
alterations (CNA) were identified in 27 and 30 samples, respec-
tively (Supplementary Table 3). The median copy number burden
—or fraction of the genome involved in CNA—was 0.14 and was
2.5 fold higher in HG-DCIS (Mann–Whitney, p= 0.017, Fig. 2a, b).
Whole-genome doubling (WGD) events were detected in 3/8
eligible samples, all of which were low or intermediate grade
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cribriform DCIS consistent with its early timing in breast
carcinogenesis31 (Supplementary Table 3). Consistent with pre-
vious studies, loss of 16q (13/30) and 17p (12/30) or gain of 1q (12/
30) were among the most frequent chromosomal alterations and,
while many events were more frequent in HG-DCIS (Fig. 2c,
Supplementary Table 4), these hallmarks were also observed in
low-grade or benign lesions, including ADH: (1q gain: 1/9, 16q loss:
7/9, 17p loss: 3/9).
We identified between 74 and 207 coding mutations per

sample. The mutational burden was higher in HG-DCIS
(Mann–Whitney, p= 0.003) and Her2-like subtypes
(Mann–Whitney, p= 0.025), recognizing that these categories
are overlapping. The HG-DCIS burden (4.4 mut/Mb) was higher
than previous reports, possibly due to residual germline variants in
our study11,13. We identified aging-associated mutational signa-
tures (SBS1 and SBS5) in all samples eligible for analysis (N= 13),
APOBEC signature (SBS2 and SBS13) on one intermediate grade
solid DCIS and mismatch repair signature (SBS15 or SBS21) in
three DCIS of variable grade and architecture (Supplementary
Table 5). The APOBEC signature is, therefore, rarer in DCIS than IBC
(~8% vs >75%), but can be present in premalignant lesions.
Interestingly, this sample also displayed clustered mutations (N=
3 within 1,416 bp) in chromosome 17q (Supplementary Fig. 2), an
APOBEC-driven kataegis site frequently seen in IBC32. The most
recurrently mutated genes were PIK3CA (44%), TP53 (31%), and
GATA3 (20%), and were all affected by known somatic mutations
in breast cancer at similar rates to previous studies of pure
DCIS6,7,9–11 (Fig. 2d and Table 2). TP53 mutations were only found
in HG-DCIS and associated with high CNA burden (Mann–Whitney,
p= 0.018), while GATA3 mutations were only found in cribriform
or ADH histologies and associated with LG-DCIS (Fisher Exact, p=
0.005). Interestingly, GATA3 mutations were identified in larger
lesions (Mann–Whitney, p= 0.038), consistent with a similar
observation in invasive cancer and the larger tumor size of GATA3
mutated xenograft models33,34. Another nine selected genes
known to be mutated in IBC were recurrently affected by 18
mutations predicted to be deleterious, four of which are known
somatic mutations7. The result suggests that oncogenic driver
mutations are already present at the premalignant stage,
including in LG-DCIS (e.g. SF3B1 c.2098 A > G) or ADH (GATA3
c.925-3_925-2del). This is consistent with previous reports and
reports of field-effect mutations in normal ducts or benign
lesions35,36, though the contribution of these mutations to the
lesion progression remains to be determined.

Genetic heterogeneity and clonal diversity
The histologic assessment and expression profiling have revealed
variable levels of phenotypic heterogeneity across the samples. In
order to determine whether such heterogeneity is present at the
genetic level, we measured genetic heterogeneity in two distinct
ways: (1) divergence, which measures the genetic distance
between regions of a sample and, (2) clonal relationships, which
uses phylogenetic tree construction to establish evolutionary

order to genetic alterations (Supplementary Table 3). We
measured divergence by computing a CNA-based score on 19
pairs of histologically matching regions in 11 samples (Supple-
mentary Table 3, Methods). With no pairs completely indepen-
dent, the spatial distance separating dissected DCIS regions was
correlated with the extent of their genetic divergence (R2= 0.65,
p= 0.00017, Supplementary Fig. 3), while this could simply be a
result of local proliferation, it could also be a consequence of
selective pressures of the microenvironment, migratory capacity
or genomic instability of particular clones. Interestingly, one ADH
had the lowest divergence despite a large distance, suggesting
either a different pattern in ADH or a distance threshold for the
extent of the correlation. Divergence was not associated with
grade, Her2/ER status, or adipose fraction suggesting that local
genetic heterogeneity is not associated with progression risk
factors.
More precise clonal relationships between regions were

evaluated using phylogenetic analysis in 12 samples, comparing
CNA, and mutations when available (Fig. 3, Supplementary Fig. 4,
Methods). While the majority (88.4%) of CNA were shared across
all regions of a sample, 11.6% were private to some regions, as
observed in 7/12 samples. Multiple samples (3/12) contained
mutations in putative cancer driver genes that were private to one
region only. These included known and likely pathogenic
mutations in ATR, PIK3CA, MET, KDM5C, suggesting that not all
driver mutations are acquired early. Interestingly, the three
samples with the most private CNA displayed discordant
histological architecture or discordant PAM50 subtypes between
regions, suggesting that within a sample, genetic and phenotypic
differences are linked. Furthermore, in 4/5 samples containing
regions with discordant histology and 3/4 with discordant
PAM50 subtypes, features historically associated with low-risk of
progression (benign histology, Normal or LumA subtype),
appeared earlier than regions with high-risk features (Her2 or
Basal subtype, presence of necrosis). Overall, these results
illustrate that in these samples, regions evolved to acquire distinct
histological and molecular features, and in particular, regions with
low-risk features can precede regions with high-risk features.
Substantial heterogeneity and evolutionary patterns are evident

in samples like MCL76_061_16200 (Fig. 3a–c), where a region of
benign columnar alterations preceded two cribriform regions.
While all regions shared a WGD event as well as several arm-level
CNA and pathogenic mutations in GATA3 and SF3B1, the cribriform
region A acquired private 5q and 8q gains and necrotic features.
While this example shows tandem genetic and histological
changes as seen across the cohort, it also illustrates that despite
occurring earlier, the benign region shares many “driver-like”
alterations with both cribriform regions. Furthermore, in another
example, despite homogeneous cribriform histologies in regions
of MCL76_077_15300 (Fig. 3d–f) only one cribriform region lost a
copy number of chromosome 8 and presented with Her2
PAM50 subtype as opposed to its Luminal A predecessor. Notably,
bulk studies have shown chromosome 8 loss to be more frequent
in Her2 vs Luminal A breast cancers37. Taken all together we

Table 2. Frequency of PIK3CA, TP53, and GATA3 driver mutations in previously reported DCIS studies and pure DCIS in this study.

Gene Pang et al.
2017
(N= 20)

Lin et al.
2019
(N= 65)

Nagasawa et al.
2021 (N= 72)

Pareja et al.
2020 (N= 7)

This study

Alla Grade Histology

Low Inter.-high Cribriform Solid Other

PIK3CA 55% 40% 50% 0% 43% (10/23) 29% (2/7) 50% (8/16) 55% (6/11) 40% (4/10) 0% (0/2)

TP53 30% 13.8% 21% 14.3% 31.3% (5/16) 0% (0/4) 41.7% (5/12) 33.3% (3/9) 40% (2/5) 0% (0/2)

GATA3 45% 13.8% 56% 28.6% 20% (3/15) 75% (3/4) 0% (0/13) 33.3% (2/6) 0% (0/9) 50% (1/2)

aThe denominator represents samples with at least 20x coverage across the targeted regions.
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illustrate abundant genetic heterogeneity in pure DCIS of all
histologies and grades that parallels the levels of phenotypic
heterogeneity and often accompanies it, even in regions that are
millimeters apart.

Regional differences in the immune microenvironment
To measure the diversity of the immune landscape and to
investigate its potential association with molecular or histological
features, we used multiplex immunohistochemistry (mIHC) to
measure the number and density of four cell types—T-cells (CD3
+), B-cells (CD20+), T-regs (CD3+/FOXP3+) and epithelial cells
(PanCK+)—according to their proliferative status (Ki67+). Both
epithelial (PanCK+) and adjacent stromal (PanCK- proximal to
epithelium) areas from premalignant (N= 36 regions across
32 samples) or normal (N= 21 across 21 samples) histologies
were evaluated. Among premalignant regions, the high-grade
epithelial areas had lower cell density due to larger cell sizes and
frequent central necrosis (median 3.8 vs 6.4 103 cells/mm2 p < 0.03
—Mann–Whitney). Solid lesions had the highest fraction of

proliferating epithelial cells (median 11.5% vs 2.8% p < 0.02—
Mann–Whitney, Supplementary Fig. 5a), and interestingly 3/10
HG-DCIS cribriform lesions (two Her2-like, one Luminal B) had
markedly higher proliferation. Consistent with previous findings,
we observed higher lymphocyte infiltration in ER- and Her2+
samples compared to ER+ ones (Supplementary Fig. 5b,
Mann–Whitney, p < 0.001). We next classified all regions using
non-negative matrix factorization of the stromal and epithelial cell
densities, resulting in three immune states characterized by their
dominant meta-markers (MM; Fig. 4a, b Supplementary Table
7a–c): (1) “Active”—ubiquitous high T-cells (high MM2), including
a subset with elevated T-cell proliferation (high MM1), (2)
“Suppressed”—ubiquitous low T-cells (low MM1 and MM2), high
B-cells and T-regs (high MM3), and (3) “Excluded”—high stromal,
low epithelial densities (high MM4). To further confirm differences
between immune states, we compared the total T-cell, B-cell and
T-regs densities in epithelial and stromal compartments. While
overall lymphocyte densities were much higher in stroma than in
epithelium across all examined regions (median ratio 9.8,
Supplementary Table 7a), the skew was a distinguishing feature

+0.1 (5q, 8q +)
+1

+0.05 (10q, 16q -
WGD, 15q +)

+75 (
) +0.07

+1

+0
+0

+0
+1

A B
D

Low Grade N: Necrosis

N

B

C
3
2
1
0
-1
-2
-3
3
2
1
0
-1
-2
-3

C
op
y
R
at
io
(lo
g2
)

Genomic Coordinate
21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817 20 22 X

B

C

Intermediate Grade

a

b

c

d

e

+0.2 (1p, 2, 3q, 5, 6, 7, 9, 10, 11, 12p, 13, 14, 15, 16, 17, 18, 19, 21q, 22 -
WGD, 3p +)

+196 ( )

+0
+8

+0.04(8-)
+21

+ CNA distance (Loss, Gain)
+ Somatic mutations (Driver gene)

PAM50

Histology

LumA

Cribriform
Benign

Her2

f

C
op
y
R
at
io
(lo
g2
)

3
2
1
0
-1
-2
-3
3
2
1
0
-1
-2
-3
3
2
1
0
-1
-2
-3

D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817 20 22 X
Genomic Coordinate

B

A

Fig. 3 Clonal relationships of multi-region DCIS. Multi-region phylogenetic reconstruction using both CNA and somatic mutations for
MCL76_061_16200 (a–c) and MCL76_077_15300 (d–f). For each case, the spatial annotation of the microdissected regions on the H&E images
(a, d), corresponding copy number profiles (b, e), and phylogenetic trees (c, f) are displayed. Copy number profile plots show bins (gray dots)
and segment (orange) log2 copy number ratio (y-axis). The phylogenetic tree leaves (single dissected region) are colored according to
histological type and the branches (hamming distances based on CNA segments) are annotated with corresponding specific somatic
alterations or their total number (CNA: regular, genes: italic font). The tree root corresponds to an inferred normal diploid ancestor.
PAM50 subtype of the region is indicated when available. Annotations and trees are available for ten additional samples in Supplementary
Fig. 4. The scale bars in panels a and b correspond to a size of 3mm.

D. Nachmanson et al.

6

npj Breast Cancer (2022)     6 Published in partnership with the Breast Cancer Research Foundation



in regions in Excluded state for all three cell types (Fig. 4c,
Supplementary Fig. 6 and Supplementary Table 7b). Furthermore,
regions in Active states had the highest epithelial T-cell density
(120 cells/mm2) while regions in Suppressed state had the highest
T-regs and B-cells epithelial densities (10.4 and 8.1 cells/mm2

respectively). A larger fraction of the normal regions were found in
Active (7/21) or Suppressed state (9/21) rather than in Excluded
state (4/21) and premalignant regions in Excluded state were
more likely to be high grade (7/15 vs 2/17 p= 0.049). Interestingly,
the immune states of normal and premalignant regions were
concordant in 12/19 matched cases and discordant in seven
whose lesions were specifically in the Excluded state (Fig. 4d). This
suggests that the eExcluded state may be acquired in response to
premalignant growth, while other states may be intrinsic to
various breast microenvironments. Furthermore, premalignant
regions in Suppressed state were more likely identified in cases

younger than 55 (5/8 vs 4/24 OR= 7.6 p= 0.02), consistent with
the younger age of DCIS patients with infiltrating PD-L1+
lymphocytes38. We did not observe any associations between
immune states and intrinsic subtype, ER or Her2 status, tumor size,
breast density, adipose fraction, or DCIS architecture suggesting
that they may be independent from traditional histopathological
progression risk factors.
In order to identify functional differences between immune

states, we evaluated the differential activity of Hallmark and
Reactome processes among the 29 DCIS regions with available
gene expression information (Supplementary Fig. 7). Compared to
Active and Suppressed states, the Excluded state was associated
with upregulation of Type 1 and 2 Interferon response,
PD1 signaling, and proliferation-related processes as well as the
repression of Calreticulin-Calnexin cycle (Supplementary Fig. 7).
Noting that the epithelium of DCIS in Excluded state were not
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Fig. 4 Characterization of the immune landscape. Decomposition of immune cell density scores by non-negative matrix factorization (NMF)
into a W-matrix which shows the composition of the Meta-Markers (columns MM1-4) according to the densities scores (red scale) of each cell
type (BC: B-cells, TC: T-cells, TREG: regulatory T-cells), proliferative state (p: Ki67+, np: KI67−, t: total) and regional location (Epi: Epithelium, Str:
Stroma) and b H-matrix which classifies normal and DCIS regions into three immune states according to Meta-Markers. c Fraction of stromal
and epithelial regions from samples in each immune state with high, low or no T-cells (T), B-cells (B) and regulatory T-cells (Treg) densities.
d Immune-state comparison in 20 samples (rows) with matching normal (left column) and DCIS (right column) regions. e Expression of
immune checkpoint receptors genes, PDCD1 and CTLA4 in each immune state. f GSEA normalized enrichment score (NES) for a Reactome gene
set across immune states. g Distribution of the expression of the MHC-I complex scored by immunohistochemical staining in DCIS and normal
adjacent regions. The median scores of the adjacent and DCIS region in each immune state are connected with a dotted line. Error bars in the
box and whiskers plot represent 1.5 fold the interquartile range above (resp. below) the first (resp third) quartile of the distribution.
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completely depleted of infiltrating lymphocytes, the upregulated
processes were consistent with the higher expression of PCDC1 or
CTLA4 genes in DCIS in Excluded state (Fig. 4e), albeit not
significant, and suggesting a likely continuum of increasing
immuno-suppression from Suppressed to Excluded states. More
interestingly, the repression of the Calreticulin-Calnexin cycle was
confirmed via single-sample enrichment analysis and showed a
progressive repression from Active, to Suppressed, to Excluded
states (p= 0.022, ANOVA, Fig. 4f). This suggests that the export of
glycoproteins—including components of MHC1 complex—via the
endoplasmic reticulum, impacts immune-surveillance. To verify
this hypothesis, we measured the in situ expression of MHC1
complex in 15 samples (Supplementary Table 8 and Supplemen-
tary Fig. 8) and compared its levels in adjacent normal and DCIS in
each immune state. While the level of MHC1 expression in DCIS
region were not significantly different between Excluded and non-
Excluded samples, the change between normal and DCIS was
different, with the non-Excluded samples displaying increased
expression between normal and DCIS, while the Excluded samples
remained constant (p= 0.0009, Mann–Whitney, N= 15, Fig. 4g).
This therefore suggests that the Excluded immune state may be
mediated by both intrinsic expression level of MHC1 and ability to
increase it in DCIS.

DISCUSSION
There is a compelling requirement for a DCIS atlas that delivers a
relatively unbiased, multi-modal perspective of pre-invasive breast
cancer. Here, we report the multi-modal profiling of a diverse set
of pure DCIS. This comprehensive atlas both confirms previous
molecular findings and provides a higher resolution histological
and spatial context to interpret them. However, with only three
known recurrences, the significance of our observations for
progression prognosis could not be formally established. Our
findings provide a landscape of representative pure DCIS
identified in absence of invasive lesions. While some lesions were
small, others were quite extended (N= 14 >4 cm), which should
capture factors that may be associated with robust containment.
The cohort therefore spans a variety of clinical, histological,
phenotypic, and genotypic features. Such variety and contrast are
critical to ensure this atlas’ utility in designing larger studies, or
perhaps providing more cautionary interpretation of observations
from cohorts enriched for specific risk factors.
At the heart of our study’s innovation was the ability to

generate molecular profiles from limited amounts of dissected
archival tissue specimen. Similar approaches are used to study
clonal expansion in normal tissues28,29, but generally not
performed in parallel for RNA and DNA. Importantly some
limitations remain and not all assays were successful. The large
variability in success rate was not easy to predict. Likely the age of
the specimen, its size, fixation conditions and storage conditions
all contribute to success variability which cannot be controlled in a
retrospective investigation. Additional limitations are analytical,
such as the absence of a matched source of normal DNA from
every sample which can result in residual germline variants,
perhaps inflating the overall mutation rate observed. The use of
adjacent normal tissue can also be problematic and there is ample
evidence that they also accumulate somatic mutations39. In our
study, we clearly identified known breast cancer driver mutations
in samples from ADH or other benign alterations. Overall, while
some samples are unlikely to ever contain sufficient material for
profiling or dissection of adjacent normal, as methodologies
evolve and advance, the success rate and data quality will improve
to make molecular pre-malignant profiling more accessible and as
routine as is the case in invasive cancer.
Our report contributes to two major advances for under-

standing pre-malignant lesions. First, we characterized most
samples across four important modalities all within a maximum

of 50 µm sequentially sectioned tissue. Such advances were
enabled by pre-analytical improvements allowing us to reduce the
tissue requirement, to include small lesions, and to precisely
match regions of interest across each modality: histology,
epithelial gene expression, DNA mutations, and immune land-
scape. As a result, we could isolate regions with different
histological features that may coexist within a specimen and
more confidently establish their association with expression
subtypes, clonal heterogeneity, or immune state. For example,
the integration of histology and expression subtypes showed a
clear correlation between cribriform architecture and the Luminal
A subtype. By integrating histology, expression subtype, and
immune state we showed that some immune states are found in
normal areas and that there is no clear association between
immune state and expression subtype. Hence, the depth and
interpretability of the analysis are considerably increased by
integrating all modalities at the regional level. This has been
clearly the case in large cancer studies such as the TCGA, or, more
recently through the integrated analysis of histological and
somatic features in normal, aging tissues28,29,40. While most
studies do not typically include immunohistochemical or other
multiplexed spatial analysis, other important advancements in this
field in the past year include spatial proteomics used to evaluate
the structure of the myoepithelium in DCIS, and spatial
transcriptomics used to identify the transcriptional effect of driver
mutations in DCIS, representing the emerging frontier of pre-
malignant tissue characterization10,41. It is therefore likely that
additional spatial profiling compatible with FFPE specimens will
bring additional prognostic and mechanistic insights in future
DCIS studies.
The other important contribution of our study is the sub-

histological analysis to compare regions of interest from the same
sample and infer phylogenetic relationships between them. While
we determined that the majority of the DCIS samples were
classified as Normal-like and Luminal A subtype, typically
considered less-aggressive subtypes in breast cancer and reflec-
tive of the known precursor stage that DCIS represents, we
showed evidence for intrinsic heterogeneity in the PAM50
probabilities, either from the distribution of probabilities within
a region or from physically separated regions. This is not entirely
surprising as bulk expression subtypes are the result of averaging
heterogeneity, similar to glioblastoma subtypes42 or IBC sub-
types43 from single-cell analysis. Such heterogeneity, especially in
DCIS, had been proposed before on the basis of marker staining44

and our results confirm that it may be rather common. Similarly to
the frequency of heterogeneity between region subtypes, we
identified evidence of genetic heterogeneity in 7/12 cases,
including the presence of private putative driver mutations. This
fraction may be an underestimate given the close proximity of
many selected pairs. However, the majority of putative genetic
drivers, copy number hallmarks and even WGD were clonal,
shared by all regions investigated, including a few normal regions.
This observation supports evolutionary models derived from
invasive cancer, including multi-sample studies, that suggest that
most driver mutations occur early followed by a phase of clonal
expansion. Similar observations were also made in early multi-
regional studies in DCIS44–46 and studies comparing synchronous
DCIS-IBC cases using single-cell sequencing13, providing further
evidence that breast cancer genetic evolution starts in the pre-
invasive stage and possibly in normal regions. It is likely that driver
alterations may even be present in adjacent histologically normal
tissue as observed in field effects studies in normal ducts39,47.
Such effects support an important contribution of host factors to
the initial genetic injury. Hence, unlike previous attempts which
were focused on histopathological features, including grade,
surgical margins48,49, future DCIS prognostic models will likely
need to be derived from lifetime cancer risk models like GAIL50 or
BOADICEA51 and incorporate host-specific factors, such as
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polygenic risk scores and reproductive factors, that likely
contribute to the DCIS initiation and trajectory.
The immune microenvironment of DCIS has been previously

investigated, using both quantification of tumor infiltrating
lymphocytes (TIL) and more specific immunohistochemical
approaches and revealed clear quantitative and qualitative
variation in lymphocyte infiltration, including higher TIL number
and more immunosuppressive features in high-risk lesions19.
Importantly, previous studies in pure DCIS did not quantify
stromal and epithelial TILs separately12,19. This distinction may be
hard to make in IBC, where both compartments interact at the
invasive front and pathologist subjectivity can have a major
impact52,53. However, this separation can be more clearly
established in the analysis of DCIS and was critical in the
identification of the Excluded immune state in our atlas. While
the Active and Suppressed states have been observed before and
could readily be identified in our data, the identification of the
Excluded state required the use of an analytical method (NMF) to
account for the strong correlations that can exist between TILs
type and compartments. The inclusion of adjacent normal areas
was also important to interpret the significance of the immune
states, as the Excluded state appeared more likely in reaction to
the DCIS growth and increased grade. The Excluded state
exhibited features of immune evasion and could represent a
more advanced level of immuno-suppression than the Suppressed
state, with the consequence of a topological exclusion from the
duct. The downregulation of components of the Calreticulin-
Calnexin cycle in the epithelium in Excluded state could impact
MHC-I export or maturation, as suggested by the lack of MHC-I
expression induction in DCIS of the eExcluded state, hence
providing an evasion mechanism, and contrasting with evasion
mediated by MHC-I genetic loss observed in IBC54,55. It would be
interesting to determine whether the immune states identified
can explain the variability of response to local injection of anti-PD1
antibody in DCIS patients and whether any of the states would
elicit, or prevent, the desired ductal infiltration by T-cells56.
As illustrated by our study and recent advances in the profiling

of normal tissues28,29, histopathology, and molecular pathology
are becoming more integrated fields, generating deeper and
broader datasets at increased cellular and spatial resolution, from
the most challenging human samples. Future studies of early
transformation and pre-cancer biology such as the one presented
here will likely benefit the most from such approaches which
capture heterogeneity at scale and can help reconcile analog
(optical) and digital (genomics and multiplex) observations. As a
result, such multi-dimensional integration may help identify
common factors mediating epithelial transformation and progres-
sion across multiple glands and organs.

METHODS
Sample collection and preparation
FFPE blocks were obtained from UCSD or UVM Pathology Departments
after surgical biopsy, excision or mastectomy. The study was reviewed and
approved by each institutional review board and they granted a waiver of
consent. Eligibility criteria were: (1) adult female, (2) pure DCIS diagnosis
(without evidence of invasive disease), and (3) with available pathology
blocks. Few cases also had bilateral disease or were matching index and
recurrent lesion (ipsilateral or contralateral—Table 1 and Supplementary
Table 1). Importantly there was no attempt to enrich high-risk cases or
investigate specifically the role of certain candidate risk factors. Factors
such as age, grade, race, ER, or Her2 status were not part of the selection
criteria and the cohort was designed to reflect patients seen in a regular
DCIS clinic. All specimen blocks were de-identified and sectioned
sequentially for the following purpose: Hematoxylin-Eosin (H&E) staining
(N= 1; 4 µM glass slide), Laser Capture Microdissection (LCM; N= 3; 7 µM
glass slide coated with polyethylene naphthalate—ThermoFisher
#LCM0522), multiplex or regular immunohistochemistry (N ≥ 3 4 µM glass
slide) and a final H&E staining (N= 1; 4 µM glass slide). The H&E slides were

scanned at high resolution and reviewed and annotated by the study
pathologist. The LCM slides were stored at −20 °C in an airtight container
with desiccant until ready for dissection (1 day to 3 months). H&E sections
were diagnosed according to the standard of care criteria (AJCC TNM 8th
ed./CAP Breast DCIS Reporting Protocol v4.3). DCIS features recorded
included lesion grade: Grade I (low), Grade II (intermediate), or Grade III
(high), and associated histology: e.g., papillary, cribriform, solid, comedo
necrosis. DCIS lesion, normal glands (and in some cases hyperplasia) were
delineated on H&E images to assist LCM. DCIS laterality and size, patient
age, and menopausal status, and lesion mode of detection were obtained
from the original pathology reports or from the Vermont Breast Cancer
Surveillance System (UVM specimen) or local cancer registry and chart
review (UCSD specimen). Hormone receptor and Her2 statuses (where
available) were gathered from the patient reports and/or by de novo IHC
staining. The LCM sections were thawed and stained with eosin, sections
were kept in xylene and dissected within 2 h of staining. LCM was
performed using the ArcturusXM Laser Capture Microdissection System
(ThermoFisher). Matching regions from six adjacent sections were
collected on CapSure Macro Cap (for DNA, N= 3 slides) or HS caps (for
RNA, N= 3 slides), region size, and unambiguous match permitting. Post-
dissection, all caps were covered and stored at −20 °C with desiccant.

DNA extraction and QC
The membrane and adhering tissue were peeled off the caps using a razor
blade and the peeled membrane was incubated in proteinase K digestion
reaction overnight for 16 h at 56 °C to maximize DNA yield after cell lysis
The DNA was extracted using the QIAamp DNA Micro Kit (Qiagen) and the
elution was done in 20 µL. The extracted DNA was quantified by
fluorometry (HS dsDNA kit Qbit—Thermofisher).

RNA sequencing and analysis
Library Preparation. RNA sequencing was performed using SMART-3Seq, a
3' tagging strategy specifically designed for degraded RNA directly from
FFPE LCM specimen27. LCM dissected SMART-3Seq libraries were prepared
using the standard protocol for FFPE tissue on Arcturus HS LCM Cap and
the individual library SPRI purification option. All FFPE LCM dissected
libraries were amplified using 19 PCR cycles during indexing to minimize
over-amplification of high abundance mRNAs in each library. Libraries
were individually analyzed for size distribution on an Agilent 2200
TapeStation with High Sensitivity D1000 reagent kits to verify average
library size of 190 bp and stored at −20 °C until sequencing. When all
libraries were ready for sequencing, 1 µL of each library was then used to
create two library pools used for sequencing and quantified by Qubit 2.0
Fluorometer HS DNA assay. Library pools were sequenced with a 1% PhiX
spike-in control library and sequenced on an Illumina HiSeq 4000, a run
type of single read 75 (SR75), and dual index sequencing.

Transcriptome analysis. Read count data was obtained using a dedicated
analysis workflow https://github.com/danielanach/SMART-3SEQ-smk.
Briefly, sequencing reads were trimmed using cutadapt 1.18, UMIs were
processed using the umi_homopolymer.py script in the SMART-3SEQ tools
(https://github.com/jwfoley/3SEQtools), aligned using STAR 2.6.1a, dedu-
plicated using the dedup.py script from https://github.com/jwfoley/umi-
dedup and read counts were calculated using featureCounts 1.6.357,58.
Count data were then merged and filtered to remove samples with
<55,000 counts and genes with <10 read counts across all samples. Filtered
count data was then loaded into Seurat version 3.2.3 and processed using
the SCTransform() function version 0.3.2 to regress out the high
mitochondrial content variability across the samples59. Batch correction
was then performed using ComBat to remove variation attributable to the
sequencing center (UCSD vs UVM)60. PAM50 subtype probabilities were
calculated from the SCTransform and batch normalized data using the
genefu package61. Gene set enrichment analysis (GSEA) was performed as
in62 and single-sample GSEA as in63. Gene sets from the REACTOME and
Hallmark collections in MSigDB were used to compare the Excluded to the
non-Excluded groups, a permutation test was performed to assess the
significance of the GSEA results64,65. ANOVA was used to compare the
ssGSEA results between the three mIHC groups. FDR of <0.1 and p-values
of <0.05 were considered significant.

Whole exome sequencing and primary analysis
Library preparation. DNA was sheared down to 200 base pairs (bp) using
Adaptive Focused Acoustics on the Covaris E220 (Covaris Inc) following

D. Nachmanson et al.

9

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)     6 

https://github.com/danielanach/SMART-3SEQ-smk
https://github.com/jwfoley/3SEQtools
https://github.com/jwfoley/umi-dedup
https://github.com/jwfoley/umi-dedup


manufacturer recommendations with 10 μL Low EDTA TE buffer supple-
mented with 5 μL of truSHEAR buffer using a microTUBE-15. Libraries were
prepared using the Accel-NGS 2 S PCR-Free DNA Library Kit (Swift
Biosciences). Ligated and purified libraries were amplified using KAPA
HiFi HotStart Real-time PCR 2X Master Mix (KAPA Biosystems). Samples
were amplified with 5 μL of KAPA P5 and KAPA P7 primers. The reactions
were denatured for 45 seconds (sec) at 98 °C and amplified 13–15 cycles
for 15 sec at 98 °C, for 30 sec at 65 °C, and for 30 sec at 72 °C, followed by
final extension for 1 min at 72 °C. Samples were amplified until they
reached Fluorescent Standard 3, cycles being dependent on input DNA
quantity and quality. PCR reactions were then purified using 1x AMPure XP
bead clean-up and eluted into 20 μL of nuclease-free water. The resulting
libraries were analyzed using the Agilent 4200 Tapestation (D1000
ScreenTape) and quantified by fluorescence (Qubit dsDNA HS assay).

Capture and sequencing. Samples were paired and combined (12 μL total)
to yield a capture “pond” of at least 350 ng, and supplemented with 5 μL of
SureSelect XT HS and XT Low Input Blocker Mix. The hybridization and
capture were performed using the Human All Exon V7 panel (S31285117)
paired with the Agilent SureSelect XT HS Target Enrichment Kit following
the manufacturer’s recommendations. Post-capture amplification was
performed on the beads in a 25 μL reaction: 12.5 μL of nuclease-free
water, 10 μL 5x Herculase II Reaction Buffer, 1 μL Herculase II Fusion DNA
Polymerase, 0.5 μL 100 millimolar (mM) dNTP Mix and 1 μL SureSelect Post-
Capture Primer Mix. The reaction was denatured for 30 sec at 98 °C, then
amplified for 12 cycles of 98 °C for 30 sec, 60 °C for 30 sec and 72 °C for
1 min, followed by an extension at 72 °C for 5 min and a final hold at 4 °C.
Libraries were purified with a 1x AMPure XP bead clean-up and eluted into
20 μL nuclease-free water in preparation for sequencing. The resulting
libraries were analyzed using the Agilent 4200 Tapestation (D1000
ScreenTape) and quantified by fluorescence (Qbit−ThermoFisher). All
libraries were sequenced using the HiSeq 4000 sequencer (Illumina) for
100 cycles in Paired-End mode. Libraries with distinct indexes were pooled
in equimolar amounts. The sequencing and capture pools were later
deconvoluted using program bcl2fastq [19].

Sequencing reads processing and coverage quality control. Sequencing
data were analyzed using bcbio-nextgen (v1.1.6) as a workflow manager
[20]. Adapter sequences were trimmed using Atropos (v1.1.22), the
trimmed reads were subsequently aligned with BWA-MEM (v0.7.17) to
reference genome hg19, then PCR duplicates were removed using
biobambam2 (v2.0.87)66–68. Additional BAM file manipulation and collec-
tion of QC metrics were performed with Picard (v2.20.4) and Samtools
(v1.9)69. The summary statistics of the sequencing and coverage results are
presented in Supplementary Table 9.

Identification of somatic mutation and copy number
alterations
Variant calling. Single nucleotide variants (SNVs) and short insertions and
deletions (indels) were called with VarDictJava (v1.6.0), and Mutect2
(v2.2)70,71. Variants were required to fall within a 10 bp boundary of
targeted regions that overlapped with RefSeq genes (v 109.20190905). A
pool of normal DNA was created using whole exome sequencing data of
blood of 18 unrelated individuals and was used to eliminate artifacts and
common germline variants. Only variants called by both algorithms were
considered. These variants were then subjected to an initial filtering step
with default bcbio-nextgen tumor-only variant calling filters and the
following parameters were used: position covered by at least five reads,
mapping quality > 45, mean position in read >15, number of average read
mismatches < 2.5, microsatellite length < 5, tumor log odds threshold > 10,
Fisher strand bias Phred-scaled probability < 10 and VAF > 0.172. Functional
effects were predicted using SnpEff (v4.3.1)73. All samples were re-
evaluated for the presence of COSMIC (v91) database mutations which
have been previously observed in at least 15 patients and fall within 137
known breast cancer driver genes (Supplementary Table 10)7.

Germline variant filtering. In absence of matched normal tissue for DCIS
samples, somatic mutations were prioritized computationally using the
approach from the bcbio-nextgen tumor-only configuration then addi-
tionally subjected to more stringent filtering72. Briefly, common variants
(MAF > 10−3 or >9 individuals) present in population databases - 1000
genomes (v2.8), ExAC (v0.3), or gnomAD exome (v2.1)—were removed
unless in a tier 1 gene from the cancer gene consensus and present in
either COSMIC (v91) or clinvar (20190513)7,74–77. Variants were removed as

likely germline if found at a variant allelic fraction (VAF) greater or equal to
0.9 in non-LOH genomic segments—as determined by CNA analysis
(below). Lastly, variants were also removed as potential germline (or
artifact) if found in >2 patients in the pool of normal (described above).

Single-sample CNA calling. CNVkit78 was used for calling somatic copy
number alterations (CNA) to measure both overall CNA burden, arm and
gene level CNA, and identify LOH as previously described in26. Allele-
specific copy number calling algorithm, ASCAT, was used on a select
number of samples for which there was sufficient coverage and the
algorithm converged on a solution, in order to identify whole-genome
doubling events as well as confirm CNA identified by CNVkit79. Default
parameters were used with ASCAT with the exception of a segmentation
penalty of 100 and a gamma of 1.

Multi-region CNA segmentation. To generate harmonized segmentation
breakpoints between regions belonging to the same sample, multi-region
segmentation was performed with the R CopyNumber (v1.26.0) package80.
Outliers in CNVkit bin-level log2 copy ratios were detected and modified
using Median Absolute Deviation Winsorization with the winsorize()
function, segments were then called using the multipcf() function with a
gamma of 40.

Mutational signatures. Mutational signatures were called on merged
region samples using a single-sample variation of SigProfiler with default
parameters to decompose into known single-base substitutions (SBS)
reported in COSMIC81,82.

Analysis of the clonal evolution and genetic heterogeneity
Measurement of genetic divergence. Divergence was measured on each
pair of related regions, a and b, using Eq. (1):

Divergencea;b ¼
Xn

k¼0
copy ratio ak � copy ratio bkj j � binsk

total bins

� �
(1)

Where k is the copy number segment, n is the total segments, and bins is
the number of bins covered by a segment from the CNVkit input file. The
binsk

total bins term was used as a weighted correction factor for the number of
bins contributing to a segment. For samples with >2 regions, the
maximum divergence between any two regions was used to represent
the sample.

CNA-based phylogenetic reconstruction. Construction of phylogenetic
trees was performed similarly to the methodology outlined in83. Briefly,
for each sample the log2 copy ratios from multi-sample copy number
segments with at least 12 probes (see above), were translated into a matrix
containing −1 for loss (log2 copy ratio <−0.6), 0 for neutral (−0.4 ≤ log2
copy ratio ≤ 0.3) and undetermined for anything else. This matrix was then
used to generate Maximum Parsimony trees using phangorn using default
parameters84.

Mutation-based phylogenetic reconstruction. To allow the analysis of
clonal relationships between regions of the same sample, the coverage
depth of each allele at any remaining mutated position in any region was
extracted using Mutect2 joint variant caller on the sets of aligned reads
from each region. In order to call a mutation either absent or present in a
region, we used a Bayesian inference model specifically designed for multi-
region variant calling85. Treeomics (v1.7.10) was run with the default
parameters except for e= 0.02. The tree solution which matched the CNA-
based reconstruction was then integrated into a single tree for Fig. 3 and
S4.

Multiplex immunohistochemistry
Staining. Tissue sections were prepared from formalin-fixed paraffin
embedded tissue blocks and cut to 4 μm serial sections and mounted on
Superfrost Plus (VWR). The procedure for multiplex immunohistochemistry
(mIHC) was followed by a manufacturer’s protocol for Opal7-color
automation IHC kit (Akoya Bioscience), and the staining was performed
with Autostainer DISCOVERY ULTRA (Ventana). Antibodies used in mIHC
are anti-CD3 (clone 2GV6, Ventana), anti-CD20 (clone L26, Ventana), anti-
Ki67 (clone 30-9, Ventana), anti-FOXP3 (clone SP97, Spring), anti-pan
cytokeratin (CK; clone AE1/AE3, DAKO), anti-CD117 (clone c-kit, DAKO). The
molecular markers of immune panel (CD3, CD20, Ki67, CKs, FOXP3, and
CD117) were visualized with Opal520, Opal540, Opal570, Opal620,
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Opal650, and Opal690, respectively. DAPI counterstaining was performed
with Discovery QD DAPI (Roche). ProLong Diamond Antifade Mounting
(ThermoScientific) was used for mounting the coverslip. Detailed staining
conditions and autostainer’s protocols are reported in our recent report86.

Visualization and analysis. Tissue samples stained with mIHC were
scanned with multispectral imaging microscopy (Vectra 3, Akoya
Bioscience). Scanned multispectral images were unmixed on inForm
software (ver.2.4.0, Akoya Bioscience) to acquire the fluorescence signal
from each marker86. Imaging analysis was performed on inForm software
by identifying tumor (CK+ area) and stroma (CK- area proximal to the
epithelium), each nucleated cell, and its cell type. Alternatively, QuPath
software 2.3.187 was also used to perform similar imaging analysis on
unmixed images converted to multi-layered TIFF format by inForm
software86. The images of the regions of the same type (DCIS or normal)
from the same case, were typically stitched together and stored and
shared as one single larger multi-layered TIFF image (data availability
below). Scanned image areas were aggregated into up to three histological
regions per sample: main pre-invasive lesion, alternate pre-invasive lesion,
normal epithelium. In each region, the stromal and epithelial densities of
each cell type and state were calculated, including when cells were not
present (density= 0). Regularized marker densities into distribution deciles
were then used to classify samples using non-negative matrix factorization
(Supplementary Table 7c). The immune states were assigned and named
after the hierarchical clustering of the H-matrix (meta-marker values).

MHC1 immunostaining and analysis
Four-micron sections were baked at 60 ° for 1 h, followed by deparaffiniza-
tion through three successive changes of xylene. Tissue was then
rehydrated in decreasing grades of alcohol, with two changes of 100%,
95%, and then 70% EtOH, followed by diH20. Antigen retrieval was
performed using Antigen Unmasking Solution Citrate Based pH6, H-3300
(Vector) at 95 °C for 30min. Staining was performed using the intelliPATH
Automated IHC stainer (Biocare). Endogenous peroxidase was blocked
using Bloxall blocking solution, SP-6000 (Vector) for 10 min, followed by
two washes in TBST. Afterward, tissue was blocked with a 3% Donkey
Serum for 10min, followed by blocking with Anti-HLA Class I ABC Primary
Mouse Antibody, ab70328m (Abcam) at 1:1000 for 1 h and subsequently
washed twice with TBST. Tissues were then blocked with Anti-Mouse HRP
UltraPolymer IgG, 2MH-100 (Cell IDx) for 30min, and washed twice with
TBST. The reaction was then developed with 3,3'-Diaminobenzidine
Chromogen, 95041-478 (VWR) for 5 min, and then stopped with two
washes in diH20. Counterstaining was performed with Mayer’s Hematox-
ylin Solution, 51275 (Sigma) for 5 min. Lastly tissues were washed twice in
TBST, and once in diH20, dehydrated in increasing grades of EtOH, then
cleared and mounted with xylene based mountant. MHC1 expression was
scored from 0 to 3 separately for DCIS and normal epithelium throughout
the entire section, away from possible biopsied areas. The scores were
established as follows: 0: no staining or weak staining in <50% of cells; 1:
weak staining in >50% of cells; 2: intermediate staining in >50% of cells; 3:
strong staining in >50% of cells.

Whole slide image digital analysis
High resolution whole slide images of H&E stains were loaded into a
QuPath (v2.3) project87. One analysis area was defined for each specimen,
avoiding the location of biopsies as well as dust or marked areas. The
analysis areas were segmented into superpixels (sigma= 5 µm, spacing=
50 µm, maxIterations= 10, regularization= 0.25) and each superpixel was
annotated with both Hematoxylin and Eosin Intensity features (size=
2 µm, tile size= 25 µm). The mean, median, min, max, and standard
deviation values were then smoothed (Haralick distance= 1, Haralick bins
= 32). Multiple training areas were annotated from each of the following
classes: adipose, stroma, inflammation, epithelium (normal and atypical),
void, necrosis, blood vessels. Multiple areas across 2–4 samples were used
to train a Random Tree classifier. The classifier was then applied to all
superpixels included in the analysis area. The accuracy of the classifier was
assessed both visually and with multiple test areas for each class.
Superpixels of the same class were merged into single annotations and the
resulting areas were recorded. Separate classifiers were used for images
from different institutions, to mitigate possible variation staining, scanning,
or image format. The fraction of adipose area was compared to breast
density using Mann–Whitney test comparing dense & heterogeneously

dense breast to other lower densities, or comparing solid DCIS to non-solid
DCIS lesions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The raw RNA and DNA sequencing data have been deposited in dbGAP phs002225.
High resolution whole slide images of the H&E stains and corresponding annotations
can be viewed on the JPL LabCAS portal (digital object identifiers included in
Supplementary Table 1). Images corresponding to the stitched field of views of the
region of interest in the multiplex immunohistochemistry are made available as
multi-layered tiff files on the JPL LabCAS portal https://doi.org/10.48577/rrry-pj94
(UVM) and https://doi.org/10.48577/3gns-rn74 (UCSD).
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