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Evaluation of space-time point process models using

super-thinning

Robert Alan Clements1, Frederic Paik Schoenberg1, and Alejandro

Veen2

1UCLA Department of Statistics, 8125 Math Sciences Building, Los Angeles, CA 90095-1554

2IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

Rescaling, thinning and superposition are useful methods for the residual

analysis of spatial-temporal point processes. These techniques involve trans-

forming the original point process into a new process that should be a homoge-

neous Poisson process if and only if the fitted model is correct, so that one may

inspect the residual process for homogeneity using standard tests for homogene-

ity as a means of assessing the goodness-of-fit of the model. Unfortunately, tests

of homogeneity performed on residuals based on these three residual methods

tend to have low power when the modeled conditional intensity of the original

process is volatile. For such purposes, we propose the method of super-thinning,

which combines thinned residuals and superposition. This technique involves

the use of a tuning parameter, k, which controls how much thinning and super-

position are performed to homogenize the process. The method is applied to

the assessment of a parametric space-time point process model for the origin

times and epicentral locations of recent major California earthquakes.
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1 Introduction

Residual analysis methods for spatial point process models, such as thinning, rescal-

ing, and superposition, involve transforming the point process using a model for the

conditional intensity λ and then inspecting the uniformity of the result. The difficult

problem of evaluating the agreement between a possibly complex spatial-temporal

point process model and data thus boils down to the apparently simpler problem

of assessing the homogeneity of the residual point process, a task for which many

standard tests are available.

The method of randomly thinning a point process is based on the works of Lewis

and Shedler (1979); Ogata (1981), who used random thinning as a means of sim-

ulating a spatial-temporal point process, and was used for evaluating models for

earthquake occurrences in Schoenberg (2003). The points that remain after thin-

ning, called thinned residual points, form a homogeneous Poisson process if and only

if the model for λ used to perform the thinning is correct. A completely opposite

approach was proposed by Brémaud (1981), who suggested superposing a simulated

point process onto an observed point process realization so as to yield a homoge-

neous Poisson process. Meyer (1971) investigated rescaling point processes according

to their conditional intensities, moving each point to a new time (or location), cre-

ating a transformed space in which the rescaled points are homogeneous Poisson of

unit rate. This method was used in Ogata (1988) to assess models for earthquake

times and magnitudes and extended in Merzbach and Nualart (1986), Nair (1990),

Schoenberg (1999), and Vere-Jones and Schoenberg (2004) to the spatial-temporal

case.

Unfortunately, tests based on the residuals formed from each of these methods tend

2



to have low power when the model λ̂ for the conditional intensity of the original point

process is volatile. Thinning a point process will lead to very few points remaining

if the infimum of λ̂ over the observed space is small (see Schoenberg (2003) for an

example), while in superposition, the simulated points, which are by construction

approximately homogeneous, will form the vast majority of residual points if the

supremum of λ̂ is large. Rescaling may result in a transformed space that is difficult

to inspect if λ̂ varies widely over the observation region, and in such cases standard

tests of homogeneity such as Ripley’s K-function (Ripley (1981)) may be dominated

by boundary effects, as in Schoenberg (2003).

A more powerful approach is super-thinning, which is a combination of thinning

observed points and superimposing simulated points, leading to a homogeneous resid-

ual point process if and only if the estimate of the conditional intensity λ of the original

point process is correct. With super-thinning, the relative amount of thinning and

superposition can be controlled through the choice of a tuning parameter, k. With

a prudent choice of k, the method can be substantially more powerful than either

thinning or superposition alone.

In Section 2 we briefly review thinning and superposition and discuss their lim-

itations. The proposed method of super-thinning is described in Section 3 and the

proof that the resulting residual process is Poisson if and only if the estimated condi-

tional intensity is correct almost everywhere is provided, along with some criteria for

choosing the value of the tuning parameter, k. We illustrate the three methods with

several simulated examples, and apply super-thinning to test the goodness-of-fit of a

California earthquake forecast model in Section 4.
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2 Thinning and Superposition

2.1 Preliminaries

Assume throughout that N is a σ-finite spatial-temporal point process on a compact

set S ⊂ Rd, adapted to a filtration F equipped with probability measure P . Let

{(xi, ti); i = 1, 2, ..., n} denote the collection of observed points of N . Let µ denote

Lebesgue measure on S, and let π = µ × P denote the product measure on P × S.

The compensator A of N is the unique non-negative F -predictable process such that

N −A is an F -martingale, and the Radon-Nikodym derivative of A, if it exists, is the

F -conditional intensity of N . We assume in what follows that N has F -conditional

intensity λ(x, t) <∞.

Suppose throughout that N has simple ground process, i.e. that N has at most

one point at any time, with probability one. Let λ̂(x, t) be an F -predictable estimate

(either parametric or nonparametric) of the conditional intensity λ(x, t). For brevity,

we refer to F -predictability in what follows simply as predictability. Note that a

variety of different types of conditional intensity corresponding to different types of

conditioning may be available. We assume in what follows that F(x, t) contains in-

formation on N for all previous times, i.e. F(x1, t) ⊆ F(x2, u) for t < u. For a review

of basic definitions related to spatial-temporal point processes and conditional inten-

sities, see Daley and Vere-Jones (2003), Brillinger and Guttorp (2002), or Schoenberg

(1999).

2.2 Thinned residuals

In residual thinning, each observed point is retained independently with probability

b/λ̂(xi, ti), where b = inf
(x,t)∈S

{λ̂(x, t)}. The points that remain are called thinned
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residual points, and if the estimate λ̂(x, t) = λ(x, t) almost everywhere, then the

residual process, Z, will be homogeneous Poisson with rate b (Schoenberg (2003)). To

detect clustering or inhibition in the residual point pattern, two widely used statistics

are Ripley’s K-function (see Ripley (1981)), and the variance stabilized version of the

K-function called the L-function (see Besag (1977)). In practice, one may generate

several realizations of thinned residuals and analyze each of them to get an overall

assessment of the goodness-of-fit, as in Schoenberg (2003).

The power of thinned residuals may suffer in part due to the variability and

lack of independence in the thinned residual points and especially due to the loss of

information when removing observed points. Indeed, if b is small, as is often the case

when modeling spatially inhomogeneous phenomena such as earthquakes or wildfires,

then thinning may result in very few residual points, so that tests, both formal and

informal, will have little power to detect inhomogeneity. One may increase the number

of residual points retained by instead keeping each point with probability c/λ̂(xi, ti)

as in (Peng (2003)), where c > b is some constant selected by the user. Provided that

c is small relative to the mean of λ, the resulting point process will be approximately

homogeneous Poisson if the model for the conditional intensity λ is correct. However,

if c is large, the thinned residuals may exhibit substantial inhomogeneity even if λ̂ = λ,

and distinct thinnings will be highly correlated (Schoenberg (2003)).

2.3 Superposition

Residual superposition involves transforming the point process N into a homogeneous

Poisson process by simulating points rather than removing points. A residual point

process is created by simulating a Poisson process with intensity d − λ̂(x, t), where

d = sup
(x,t)∈S

{λ̂(x, t)}, i.e. a Cox process directed by d − λ̂(x, t) if λ̂ is random. The

simulated process is then superposed onto N , creating a homogeneous Poisson point
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process of rate d iff. λ̂ = λ almost everywhere. Any significant clustering, inhibition,

or inhomogeneity in the superposed residuals indicates a lack of fit of the model λ̂,

and as with thinning, several realizations of superposed residuals may be generated

and assessed for uniformity.

Residual analysis using superposition has limited power when the supremum of

λ̂ is much larger than the mean of λ̂ over the observation region S, as is often the

case with models of highly inhomogeneous or clustered phenomena. In such cases,

the simulated points are by construction Poisson and approximately homogeneous

in regions where d >> λ̂, and since the number of such simulated points is large,

their inclusion in the residuals tends to overwhelm any information provided by N

in standard tests of homogeneity, resulting in little power to detect inhomogeneity in

the residuals as a whole.

3 Super-thinning

We propose a hybrid approach, involving both thinning and superposition. Suppose

that one desires to transform the point process N into a residual Poisson process

with rate k, where inf{λ̂(xi, ti)} ≤ k ≤ sup{λ̂(xi, ti)}. One may first thin N , keep-

ing each point (xi, ti) independently with probability min{k/λ̂(xi, ti), 1} to obtain

a thinned residual process Z1. Next, one simulates a Cox process Z2 directed by

max{k−λ̂(x, t), 0}. That is, conditional on k and λ̂, Z2 is a Poisson process whose rate

at location (x, t) is max{k− λ̂(x, t), 0}. Note that this second step can easily be per-

formed by simulating a homogeneous Poisson process with rate k and independently

keeping each simulated point (x̃j, t̃j) with probability max{(k − λ̂(x̃j, t̃j))/k, 0}. The

points of the residual point process Z = Z1 +Z2, obtained by superposing the thinned

residuals and the simulated Poisson process, are called super-thinned residual points.

Because Z is homogeneous Poisson with rate k if and only if λ̂ = λ almost everywhere,
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as shown below, one may inspect the points in Z for uniformity as a way of assessing

the goodness-of-fit of the estimate λ̂.

The super-thinned residual process, Z, may be formally defined as follows. Let

Wt be a Uniform(0, 1) white noise process adapted to F and independent of N . Let

Q be a Poisson process with rate k adapted to F and independent of N and W .

Let λ̂ > 0 denote an estimate of λ, and define Z1(x, t) = N(x, t)1(Wt<k/λ̂(x,t))

and Z2(x, t) = Q(x, t)1(Wt<(k−λ̂(x,t))/k). The superposition Z = Z1 + Z2 defines the

super-thinned residual process.

Theorem 3.1. Z is a Poisson process with rate k iff. λ̂ = λ π-a.e.

Proof. Note that if we can show that Z has simple ground process and has com-

pensator kµ, then Z is a Poisson process with rate k by Proposition 4.2 of Nair (1990).

Since N has simple ground process, and since Q is a Poisson process independent of

N , it is trivially true that the superposition N + Q has simple ground process, and

therefore the same is true of Z.

We now show that if λ̂ = λ a.e., then Z has compensator kµ. Fix t and x and

let F be any event in Fx,t. Let C denote a set of the form (t, u) ×X, where X is a
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measurable subset of the spatial domain. Observe that, since 0 ≤ W (y) ≤ 1,

E[Z(C)|F ] = E

∫
C

1(λ̂(y)≥k)1(W (y)< k

λ̂(y)
)dN(y)|F


+E

∫
C

1(λ̂(y)<k)dN(y)|F


+E

∫
C

1(λ̂(y)<k)1(W (y)<
k−λ̂(y)

k
)
dQ(y)|F



= E

∫
C

E

[
1(λ̂(y)≥k)1(W (y)< k

λ̂(y)
)|Fy

]
dN(y)|F


+E

∫
C

1(λ̂(y)<k)dN(y)|F


+E

∫
C

E
[
1(λ̂(y)<k)1(W (y)<

k−λ̂(y)
k

)
|Fy
]
dQ(y)|F



= E

∫
C

1(λ̂(y)≥k)
k

λ̂(y)
dN(y)|F


+E

∫
C

1(λ̂(y)<k)dN(y)|F


+E

∫
C

1(λ̂(y)<k)

k − λ̂(y)

k
dQ(y)|F
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Thus by the martingale property (see e.g. equation (1) of Nair (1990)),

E[Z(C)|F ] = E

∫
C

1(λ̂(y)≥k)
k

λ̂(y)
λ(y)dµ|F


+E

∫
C

1(λ̂(y)<k)λ(y)dµ|F

 (1)

+E

∫
C

1(λ̂(y)<k)

(k − λ̂(y))

k
(k)dµ|F

 .
If λ̂ = λ π-a.e., then equation (1) reduces immediately to

E[Z(C)|F ] = (k)E

[∫
C

1(λ(y)≥k) +
∫
C

1(λ(y)<k)dµ|F
]

= kµ(C),

so that kµ is the compensator of Z and thus Z is a Poisson process with rate k.

The converse may be shown as in the proof of Theorem 3.2 of Schoenberg (1999).

Indeed, if λ̂ is not equal to λ π-a.e., then at least one of the four sets B1 = {λ̂ >

λ} ∪ {λ̂ ≥ k}, B2 = {λ̂ < λ} ∪ {λ̂ ≥ k}, B3 = {λ̂ > λ} ∪ {λ̂ < k}, or B4 = {λ̂ <

λ} ∪ {λ̂ < k} must have π-measure greater than zero. Without loss of generality,

suppose that π(B1) > 0. Then the indicator 1B1 is predictable, since λ̂ and λ are

predictable, so as in (1),

E

∫
1B1dZ = E

∫
1B1

k

λ̂(y)
λ(y)dµ < kE

∫
1B1dµ,

so Z is not a Poisson process with rate k, since for a Poisson process with rate k, one

would have equality in the above relation by the martingale property.
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3.1 The tuning parameter

Note that in super-thinning, the tuning parameter k allows the user to control the

rate of thinning and superposition. As a result, superthinning is potentially much

more powerful than either thinning or superposition alone. The parameter k should

be chosen in a way that optimizes the power of formal tests of homogeneity of the

residuals, and is an ongoing problem that requires further study. Here, we introduce

two practical methods for choosing k.

One suggested approach is to super-thin a point process by thinning out and

superposing as few points as possible in order to retain as much of the original data

as possible. This suggests choosing the value of k minimizing the sum of the absolute

deviations of the estimated conditional intensity from k, i.e. solving

argmin
k

∫ ∫
S

∫
t

|λ̂(x, t)− k|dtdxdy,

i.e. letting k equal the median of λ̂. Note that in some cases a unique median might

not exist, however.

Alternatively, one may choose the value of k minimizing the sum of the squared

deviations of the estimated conditional intensity from k, letting k equal the mean of

λ̂,

k =
1

|S|

∫ ∫
S

∫
t

λ̂(x, t)dtdxdy,

where |S| is the volume of the observation region. In this case, the expected number

of points in the resulting residual process is equal to the number of points as N .

Depending on one’s choice of test statistic performed on the residual process, it may

be possible to choose k so that the resulting residual test has optimal power.

10



4 Examples

4.1 Inhomogeneous Poisson processes

Figure 1 illustrates super-thinning a point process on a space-time observation region

S = [0, 2]× [0, 2]× [0, 1] divided into four equal bins, so that each bin is [1× 1× 1],

with constant conditional intensity in each bin, where

λ(x, t) =

 80 for 1 ≤ y ≤ 2 and 0 ≤ x ≤ 1;

20 else.

Figure 1 shows the super-thinning of the simulated process N . The clustering in N is

confirmed using a nonparametric estimate of the variance stabilized version of Ripley’s

K-function called the L-function, estimated by L̂(r) =

√
K̂(r)/π, where r represents

distance. Figure 1(b) shows the estimated centered L-function, L̂(r) − r, and 95%

confidence bounds based on 1000 simulations of homogeneous Poisson processes with

the same rate as N . For a homogeneous Poisson process, L(r)− r = 0, so departures

from 0 indicate inhomogeneity. The super-thinned residuals in Figure 1(c), using the

median k = 20 as the tuning parameter, are evidently homogeneous, as seen in Figure

1(d) by the estimated centered L-function, which is entirely within the 95% bounds.

The next example uses the same observation region, but with

λ(x, t) =

 20 for 1 ≤ y ≤ 2 and 0 ≤ x ≤ 1;

80 else.

As seen in Figure 2(a), N clearly requires more superposition than thinning, and using

the median k = 80, points are only superposed in the upper-left quadrant. Again,

the super-thinned residuals are homogeneous, as shown in Figures 2(c) and (d).
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Figures 3 and 4 are useful for comparing super-thinning to either thinning or su-

perposition individually. In this illustration, S = [0, 1]× [0, 1]× [0, 1] with conditional

intensity λ(x, t) = 3000 exp(3x− 4y). Figure 3(a) is a realization of N , and points

are highly clustered in the lower-left region, while being very sparse elsewhere. It is

obvious that thinning or superposition alone would have low power in this example.

Figure 3(c) and (d) show a typical result of thinned residuals and superposition, re-

spectively, both of which reveal the primary weaknesses of both methods. Setting the

tuning parameter to the mean k = 233.2023, one may perform super-thinning on this

process, and Figure 4(a) shows the resulting residual process Z, whose homogeneity

is confirmed by the centered L-function in Figure 4(b).
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Figure 1: Super-thinning of a simulated inhomogeneous Poisson process with grid-based
conditional intensity of

(
80 20 20 20

)
in upper-left, upper-right, lower-left

and lower-right bin, respectively. Top-left panel (a): simulated inhomogeneous
Poisson process, N . Top-right panel (b): estimated centered L-function for N
with 95% bounds for a homogeneous Poisson process based on 1000 simulations
of a homogeneous Poisson process with the same rate as N . Bottom-left panel
(c): residual process, Z, obtained from super-thinning with k = 20. Bottom-
right panel (d): estimated centered L-function for Z with 95% bounds for a ho-
mogeneous Poisson process based on 1000 simulations of a homogeneous Poisson
process with the same rate as Z.
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Figure 2: Super-thinning of a simulated inhomogeneous Poisson process with grid-based
conditional intensity of

(
20 80 80 80

)
in upper-left, upper-right, lower-left

and lower-right bin, respectively. Top-left panel (a): simulated inhomogeneous
Poisson process, N . Top-right panel (b): estimated centered L-function for N
with 95% bounds for a homogeneous Poisson process based on 1000 simulations
of a homogeneous Poisson process with the same rate as N . Bottom-left panel
(c): residual process, Z, obtained from super-thinning with k = 80. Bottom-
right panel (d): estimated centered L-function for Z with 95% bounds for a ho-
mogeneous Poisson process based on 1000 simulations of a homogeneous Poisson
process with the same rate as Z.
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Figure 3: Thinned residuals and superposition of a simulated inhomogeneous Poisson pro-
cess with conditional intensity function λ(x, t) = 3000e(−3x−4y). Top-left panel
(a): simulated inhomogeneous Poisson process, N . Top-right panel (b): esti-
mated centered L-function for N with 95% bounds for a homogeneous Poisson
process based on 1000 simulations of a homogeneous Poisson process with the
same rate as N . Bottom-left panel (c): residual process, Z, obtained from stan-
dard thinned residuals. Bottom-right panel (d): residual process, Z obtained
from standard superposition.
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Figure 4: Super-thinning of a simulated inhomogeneous Poisson process with conditional
intensity function λ(x, t) = 3000e(−3x−4y). Left panel (a): residual process, Z
obtained from super-thinning with k = 233.2023 (circles = observed points, plus
signs = superposed points). Right panel (b): estimated centered L-function for
Z with 95% bounds for a homogeneous Poisson process based on 1000 simula-
tions of a homogeneous Poisson process with the same rate as Z.
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