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Abstract
Altered disturbance regimes in the context of global change are likely to have profound consequences
for ecosystems. Interactions betweenfire and vegetation are of particular interest, asfire is amajor
driver of vegetation change, and vegetation properties (e.g., amount,flammability) alterfire regimes.
Mediterranean-type ecosystems (MTEs) constitute a paradigmatic example of temperate fire-prone
vegetation. Although these ecosystemsmay be heavily impacted by global change, disturbance regime
shifts and the implications offire-vegetation feedbacks in the dynamics of such biomes are still poorly
characterized.We developed aminimalmodeling framework incorporating key aspects offire ecology
and successional processes to evaluate the relative influence of extrinsic and intrinsic factors on
disturbance and vegetation dynamics in systems composed of grassland, shrubland, andwoodland
mosaics, which characterizemanyMTEs. In this theoretical investigation, we performed extensive
simulations representing different background rates of vegetation succession and disturbance regime
(fire frequency and severity) processes that reflect a broad range ofMTE environmental conditions.
Varying fire-vegetation feedbacks can lead to different critical points in underlying processes of
disturbance and sudden shifts in the vegetation state of grassland–shrubland–woodland systems,
despite gradual changes in ecosystemdrivers as defined by the environment. Vegetation flammability
and disturbance stochasticity effectivelymodify systembehavior, determining its heterogeneity and
the existence of alternative stable states inMTEs. Small variations in systemflammability andfire
recurrence induced by climate or vegetation changesmay trigger sudden shifts in the state of such
ecosystems. The existence of threshold dynamics, alternative stable states, and contrasting system
responses to environmental change has broad implications forMTEmanagement.

Introduction

Understanding and predicting ecological responses to
environmental change, which can be modulated by
stochastic processes such as disturbances, are key
challenges in environmental research.Mediterranean-
type ecosystems (MTEs) are a prime example of
temperate vegetation where climate and the regular
occurrence of fire as a natural disturbance have
influenced plant traits and the structure, composition,

and diversity of vegetation (Callaway and Davis 1993,
Keeley et al 2012). Nevertheless, climates ofMTEsmay
change dramatically over the century (Klausmeyer and
Shaw 2009), and it is unclear how alterations in fire
activity (e.g., Batllori et al 2013) will affect their
composition and function.

Models of varying complexity have been devel-
oped for prediction of MTE vegetation dynamics,
many of which include fire as a key process. Except for
a few physiological process-based and dynamic
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vegetation models (e.g., Mouillot et al 2002, Kelley
et al 2014), most recent approaches use landscape fire-
successionmodels (e.g., Syphard et al 2007,Millington
et al 2009, Loepfe et al 2011, Brotons et al 2013). Land-
scape models emphasize spatially explicit dynamics
and allow for simulation of realistic landscape patterns
induced from past fire regimes (i.e., area burned and
fire recurrence). However, such detailed and highly
parameterized approaches are not designed to identify
general fire ecology principles and predictions related
to environmental change (Zinck andGrimm2009).

Simple and generalized fire models capture key
processes that explain properties and patterns
observed in real ecosystems on large spatial and tem-
poral scales (e.g., Zinck and Grimm 2009, Pueyo
et al 2010). In semi-arid, fire-prone ecosystems such as
savannas, minimal models have been used to examine
the stability of tree/grass dominance as a result of sto-
chastic fire–vegetation interactions (D’Odorico
et al 2006) or associated with percolation dynamics
and fire spread (Staver and Levin 2012); fire has been
suggested to promote alternative stable states and eco-
system shifts due to crossing of critical thresholds or
altered system feedbacks (Hoffmann et al 2012).
Although fire can strongly influence the distribution
of grass and woody cover in MTEs (e.g., Callaway and
Davis 1993, Vilà et al 2001, Koniak and Noy-
Meir 2009), the study of regime shifts and system feed-
backs and their implications in these ecosystems is still
very limited. Characterizing ecosystem behavior to
identify sensitive thresholds and their causes in MTEs
is an indispensable first step towards the specification
ofmanagement and conservation scenarios.

Conceptual models such as state-and-transition
modeling frameworks (STMs) reflect our under-
standing of ecosystem dynamics and can be easily
adjusted to include new knowledge and/or specific
landscape and climate conditions (Westoby et al 1989,
Bestelmeyer et al 2004). Such approaches have been
widely used to analyze restoration actions and man-
agement benchmarks. Our objective was to develop a
minimal STM incorporating key aspects offire ecology
to evaluate the relative influence of environment, dis-
turbance stochasticity, and plant traits on the dynam-
ics of ecosystem types dominated by grassland–
shrubland–woodland (G–S–W) mosaics, character-
istic of many MTEs. The model incorporates: (i) the
rate of vegetation succession in the absence of dis-
turbance; (ii) the probability of fire and the severity of
fire, including feedback effects of vegetation on
flammability; and (iii) stochasticity infire return inter-
vals. The influence of both environment and vegeta-
tion on fire and the inclusion of disturbance
stochasticity make our STM framework a novel
approach towards better understanding basic ecologi-
cal mechanisms constraining G–S–W dynamics in
fire-prone vegetation such as MTEs, and lays the
groundwork for investigations of global change
influences.

We used coastal California ecosystems dominated
by three vegetation types (mosaics of woodlands,
shrublands, and grasslands) as an example of MTE
vegetation and as a reference system formodel develop-
ment and to define the parameter space used in this the-
oretical study. We assess: (a) whether gradual variation
in succession rates, disturbance frequency or dis-
turbance severity (e.g., due to external ecosystem dri-
vers such as climate) can promote threshold changes in
MTE vegetation composition; (b) whether alternative
stable states exist, andwhat factors drive systembifurca-
tions; and (c) how disturbance stochasticity and fire-
vegetation feedbacks influence system responses.

Material andmethods

Model and simulation runs overview
Our STM framework (figure 1) corresponds to a semi-
Markov model based on discrete-time theory (Scan-
lan 1994). The systemmoves fromone vegetation state
to another in a successional sequence and fire sets back
vegetation to earlier succession stages as defined by fire
severity. Fire is incorporated as a stochastic process
influenced by vegetation flammability, and the succes-
sion rate of vegetation is temporally constrained on
the basis of time since disturbance (Hobbs 1994;
figure 1). The rate of succession among vegetation
types and the strength of fire-vegetation feedbacks
capture the importance of productivity and fuel
structure, respectively, for fire activity in fire-prone
ecosystems (e.g., Krawchuk and Moritz 2011, Pausas
and Paula 2012), whereas altered fire probabilities and
fire severities across changing conditions reflect cli-
mate–fire interactions (e.g., Marlon et al 2008, van
Mantgem et al 2013).

The model was built in R (R Development Core
Team 2013) and implemented as a bi-dimensional lat-
tice. Each cell in the lattice presents a state defined by
the proportion of three vegetation types: grassland
(G), shrubland (S), and woodland (W), and by a time
since fire (TSF). By defining the cells’ vegetation as G–
S–Wfractions, flammability effects and different levels
of fire severity (e.g., proportion of W and S set back to
G) can be easily implemented. Fire spread is implicitly
captured by assuming that cells burn entirely when
ignition occurs, impacting all vegetation types, but
among-cell connectivity is not incorporated in the
model. Therefore, each cell in this implementation is
assumed to experience independent fire probability,
successional dynamics, and state transitions. This sim-
plified framework allows us to keep the number of
model parameters and associated uncertainty at a
minimum, while also retaining the capacity for simu-
lating underlying spatial gradients in a STM frame-
work (Bestelmeyer et al 2011).

For this theoretical study, we defined a simulation
domain of 300 vegetated cells (i.e., no empty spaces).
Geographic cell size is not fixed, but following
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ecological site descriptions (ESDs; Brown 2010), cor-
responds to an area of homogeneous climatic and
edaphic conditions large enough (e.g., 2 × 2 km2) to
encompass patches of multiple vegetation types (e.g.,
G–S–W) with shared capabilities to respond to man-
agement or disturbance. Coastal California ecological
and fire literature (table S1 in the supplementary data,
available at stacks.iop.org/ERL/10/034018/mmedia),
descriptions of ecosystem processes in ESDs, and
LANDFIRE National Vegetation Dynamics Models
(LANDFIRE 2010) were used to infer parameter ran-
ges for succession rate, fire probability, and fire sever-
ity. The parameters required for the simulations
presented here, however, are not available from any
one site and we thus used general rates representative
of ecosystem types where fire defines the extent of G–
S–W (e.g., California blue oak or coastal live oak
woodlands and savannas; Brown 2010, Landfire 2010,
Keeley et al 2012). Consequently, model results cannot
be directly compared to specific historical dynamics or
landscape patterns but to general ecosystem features
and trends.

In this initial investigation, the environment was
set as spatially homogeneous and initial model para-
meters were thus the same across the system. The lat-
tice of 300 cells thus provided multiple realizations of
the model’s processes at the same time, allowing us to
determine whether all cells follow similar dynamics
for a given set of model parameters, or whether diver-
gent vegetation trajectories occur due to stochastic
dynamics or local feedbacks.

We performed a set of simulations representative of
ecosystem processes in Mediterranean-climate Cali-
fornia; grasslands are primarily annual grasses, which

are highly flammable in the summer dry season of the
Mediterranean-type climate. Dense and continuous
shrub cover characterizes the shrublands, which are
comprised offire-resilient, chaparral dominated species
that both resprout after fire and have fire-stimulated
seed germination. Woodlands are primarily oak wood-
lands dominated by fire resistant species that present a
thick bark and ability for basal and epicormic resprout-
ing. Throughout the simulations, the broad range of
parameter’ values evaluated reflect different environ-
mental conditions. Higher fire probabilities would cor-
respond to climatic conditions associated with higher
fire risk (e.g., warmer-drier conditions), and/or could
be regarded as a function of ignition probability (e.g.,
reflecting human-induced fires, or conversely, fire sup-
pression). Low and high succession rates of vegetation
would represent productivity gradients (e.g., linked to
precipitation or soil fertility) translating into slow or
fast successional changes towards woodlands, respec-
tively, and higher fire severities would reflect more
extreme climatic conditions (e.g., extended periods of
drought) which increase fire intensity and the prob-
ability that burned vegetation is unable to regenerate, or
alternatively can represent plant communities com-
posed of less resilient taxa. Variation of vegetation
flammability and persistence following fire incorpo-
rates the varying importance of feedbacks from vegeta-
tion indriving systemdynamics.

Model processes
The state of each cell is modified in discrete time steps
(i.e., one year) following a probability β of changing
state due to succession (change from G–S and S–W)
and a probability F for a cell to be struck by an ignition

Figure 1.Representation of themain processes of the state and transitionmodeling (STM) framework reproducing the dynamics of
grassland–shrubland–woodland systems (G–S–W). Themodel incorporates a coupled set of three vegetation STM sub-systems
describing vegetation succession on the basis of time since fire (TSF−top row−), the effects offire on vegetation (fire severity−upper
right−), and differential flammability among the three vegetation types (flammability frameworks−bottom right−). Flammability
incorporates the influence of strong (left) ormoderate (right) fire-vegetation feedbacks in themodel: ternary plots depict the effective
fire probability of a cell after accounting for theflammability of each vegetation type in a scenariowhereG burnsmore than S, which in
turn burnsmore thanW (see text for details). The green-red-yellow ternary plot at the bottom left shows the color scale used in
subsequent figures to represent a given proportion of G–S–W.
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source. When fire occurs, the entire cell is considered
effective fuel (i.e., it burns when ignited), but fire
severity α defines state transitions to earlier succes-
sional states (proportion changing from W to S or G,
or from S to G). Parameters β, F, and α are jointly
determined by the environmental conditions and cell
vegetation characteristics and thus themodel incorpo-
rates fire-vegetation feedbacks.

The successional process at the cell-level is expres-
sed as Ci(t+1) = βI ·Ci(t), where Ci(t+1) and Ci(t) are vec-
tors whose elements are proportions of G–S–Wwithin
cells, which are also characterized by a state i of 3 pos-
sible TSF: TSF⩽ 5 years, TSF from 6 to⩽ 15 years, and
TSF> 15 years (figure 1; Landfire 2010). Sensitivity
analyses of themodel using accelerated or delayed TSF
intervals exhibit qualitatively similar results (see sup-
plementary data). Parameter βi corresponds to a
square matrix composed of probabilities representing
the proportion of vegetation in one state (e.g., G)
changing to another (e.g., S) at a given time step;
values of such succession probabilities depend on TSF.
Therefore, βi incorporates time lags and different rates
of vegetation change after disturbance. Cell-level suc-
cessional dynamics are thus described by

β
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where βg,i and βs,i define the rate of succession from G
to S and from S toW, respectively, contingent on cells’
TSF state i (figure 1). Direct succession of G to W and
additional factors (e.g., shallow soils) constraining
succession from S to W are not considered in this
study; S are thus a transient state between G and W
(table S1, Landfire 2010), though they could persist for
many years prior to succession to W (e.g.,
Keeley 1992).

Changes in vegetation are also influenced by fire.
At each time step it is determined whether each cell
burns or not on the basis of its fire probability F, which
is defined by both baseline fire probability f (capturing
environmental or human influence) and vegetation
flammability v (see below). Because in this para-
meterization the fire season peaks in late summer and
early fall (Davis and Borchert 2006), fire was computa-
tionally implemented after the successional change of
vegetation at each time step. Cells cannot burn more
than once in a given time step.

Cells burn entirely but this does not cause state
transitions of all the vegetation. Fire severity α, which
is jointly modulated by environmental conditions and
vegetation type, determines the proportion of a cell’s
vegetation to be set back to earlier successional
states by burning (figure 1). Vegetation remaining in
the same state captures the capacity of many

Mediterranean-climate plant species of California to
regenerate and persist through fire events (Keeley
et al 2012).

The flammability v of each vegetation type influ-
ences fire occurrence which, together with the differ-
ing capacity of each vegetation type to persist through
fire, defines fire-vegetation feedbacks in the model.
This is implemented by modifying the baseline fire
probability (f) and fire severity (α) factors of each cell
on the basis of its G–S–W abundance. The dynamic
role of vegetation in fire-vegetation feedbacks was
incorporated through two alternative flammability
frameworks (figure 1): a) the dominant vegetation rule
where the cell’s baseline fire probability is modulated
by the flammability of the dominant vegetation type
(strong or nonlinear feedbacks) and b) the weighted
average rule where the baseline fire probability is
weighted in accordance to the relative abundance of
each vegetation type (moderate or linear feedbacks).

The dominant vegetation rule represents a sce-
nario in which changes in the abundance of the non-
dominant vegetation types may have little impact on
the resulting fire probability until a threshold is
reached (i.e., change in vegetation dominance), when
fire probability changes abruptly (e.g., Staver and
Levin 2012). On the other hand, the weighted average
rule represents a scenario where small changes in the
abundance of vegetation types have a proportional
impact on the resulting fire probability (e.g., D’Anto-
nio and Vitousek 1992). We considered G the most
flammable vegetation type and expressed S and W
flammability as a percentage of G flammability and
independent from each other.

Implementation of the STM framework
The simulation loop forming the core of the model
consists of the following rules:

Rule 1—successional process
The TSF in all cells within the system (lattice of 300
cells) is increased by one year. Vegetation dynamics
due to succession at the system-level is described as:

∑β=+
=

L
N

C
1

, (2)t

j

N

i ij t( 1)

1

( )

where Cij(t) corresponds to cell j (of N= 300) in TSF
state i (of three possible TSF states) at a given time t,
and βi is the succession matrix as defined by each TSF
state (see equation (1)). L is thus a vector whose
elements are system-level proportions of G–S–W; the
parameter 1/N is introduced so that vegetation pro-
portions in L sum to one.

Rule 2—vegetation flammability feedbacks
Selection of the flammability framework (i.e., strong
or moderate feedbacks) and modification of cells’
baseline fire probability. Feedbacks are implemented
at the cell-level as:
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∑=
=

F p f v , (3)
k

N

k k

1

where F is the effective fire probability of a cell, f
corresponds to the baseline fire probability defined by
the environment, and pk and vk are the proportion and
flammability of vegetation type k (of N= 3; G, S, and
W), respectively. When strong feedbacks operate, vk of
the non-dominant vegetation types is set to 0. Note
that v is a unitless modifier of f that is always smaller
than or equal to 1.

Rule 3—ignition
Random ignitions based on each cell’s effective fire
probability (F) at each time step; TSF for burned cells
is reset to 0. Ignitions are implemented at the cell-level
using the beta andBernoulli probability distributions:

r F

r

~ Beta (2, )

Ignition ~ Bernoulli ( ). (4)

j t

j t j t

,

, ,

In temperate fire-prone vegetation, many tree and
shrub species have the ability to resprout and grass
biomass approaches pre-burn levels quickly following
fire. Additionally, much of the area burned in this
California implementation exhibitsminimal influence
of vegetation age on fire probabilities (e.g., Mor-
itz 2003). Therefore, for our initial investigation we
approximate fire as a stochastic process in which the
probability of burning is independent of the time since
last burn. This is a simplifying assumption that can be
explored in more detail in future versions of the
model. Note, however, that due to the influence of
vegetation types on F, the observed time elapsed
between fires will vary among cells for a given f (e.g.,
cells dominated by grasslands will experience more
frequent fire under either flammability feedback rule).

Rule 4—fire severity effects
In cells that burn, fire severity determines vegetation
transitions to earlier successional states. Severity
effects at the system-level are described as:

∑α α=
=

p , (5)
j k

N

jk k

, 1

where α is the amount of vegetation set back to earlier
states due to burning, pjk corresponds to the propor-
tion of vegetation type k (of N= 2; W and S) of cell j
(see equation (2)), and αk is the severity of fire on
vegetation type k; αk can vary from 0 (no change in W
and S proportion due to fire) to 1 (all W and S
experiencing state type-conversion as a result of
burning). In this study, G is not type-converted by fire
and, for simplification to avoid the inclusion of
another model parameter, type-conversion for W is
equally split to S and G; this has no qualitative impact
on themodel, though itmay influence the quantitative
behavior of the systemunder some parameterizations.

The complete functioning of the model (figure 1)
is formalized as:
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where G, S, W corresponds to frequency distribution
of grasslands, shrublands, and woodlands across the
simulation domain at each time step (t), respectively.
The coefficients β, which define succession rates from
one vegetation type to another, are contingent on
vegetation type (βg and βs) andTSF (subscripts 2 and 3
—from 6 to⩽ 15 years, and > 15 years, respectively;
equation (1)). Vegetation type does not change due to
succession during the first 5 years following fire (all
β= 0). Effective fire probability (the likelihood of
burning at each time step; equation (3)) is defined by
F, and α defines fire severity (the amount of type-
conversion to earlier successional stateswhen burning;
equation (5)). Fire-vegetation feedbacks are incorpo-
rated through the influence of vegetation on both F
and α. All model parameters are independent among
cells and thus there can be spatial heterogeneity at the
system-level. Each cell is characterized by a TSF and a
G–S–W proportion, so full characterization of the
system’s vegetation state is represented by a 9-cell
matrix including proportions of G–S–W in three age
classes (defined by TSF).

Simulation experiments
We conducted a comprehensive set of simulation
experiments (parameter scenarios) to evaluate how
the coupled effects of environmental conditions
(influencing β, α, and F) and fire-vegetation feedbacks
(influencing α and F) determine the dynamics of G–S–
W systems (table 1). In each simulation run, we
assumed homogeneous and constant (i.e., no tem-
poral change) conditions over the simulation domain:
there were no spatial differences in succession rate, fire
probability, fire severity, and vegetation flammability
across the system. These background model para-
meters were therefore reduced to a common set of
initial values for all cells, though their effective values
could change in time and space due to within-cells
fire-vegetation feedbacks. Through the simulation
experiments, model processes were systematically
modified two at a time while setting the rest at baseline
levels to evaluate system behavior and the implications
of such processes in G–S–Wdynamics. The parameter
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Table 1.Parameter settings of themodel (see figure 1) for the simulation experiments (parameter scenarios) conducted to evaluate the effects of succession rate of vegetation (β),fire probability (f), vegetation flammability (v), andfire
severity (α) on the dynamics of grassland–shrubland–woodland systems. Each scenario consisted in themodification of two of themodel processes at a time (highlighted in bold) whilefixing the others at baseline values: scenario 1—
variation offire probability and succession rate (number of simulationsN= 2240); scenario 2—variation offire probability and fire severity (number of simulationsN= 2240); scenario 3—variation offire severity onwoodlands and
shrublands (number of simulationsN=1092); scenario 4—variation of vegetation flammability (number of simulationsN= 14 112). In each scenario,model parameterizationwas homogeneous among cells, and an initial random time
sincefire between 1 and 100 years,fixed across all simulations, was used for each cell.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Succession rate (β) (proportion/year)

βg2 (Grass→ shrub 6–15 yr after fire) 0.5 βg3 0.5 βg3 0.5 βg3 0.5 βg3
βs2 (Shrub→wood 6–15 yr after fire) 0.05 βg3 0.05 βg3 0.05 βg3 0.05 βg3
βg3 (Grass→ shrub>15 yr afterfire) 0.01–0.2 (by +0.01; n= 20) 0.05 0.05 0.05

βs3 (Shrub→wood>15 yr afterfire) 0.1 βg3 0.1 βg3 0.1 βg3 0.1 βg3

Baselinefire probability (f) (1/fire frequency)

0.01–0.685 (by + 0.025; n= 28) 0.01–0.685 (by + 0.025; n= 28) 0.1 0.05, 0.1, 0.2, 0.3 (n= 4)

Vegetationflammability (v) (unitlessmodifier offire

probability)

vg(Grasslandflammability) 1 1 1 1

vs (Shrublandflammability) 1*vg 1*vg 1*vg 0.01*vg–1*vg(by + 0.05; n= 21)

vw (Woodland flammability) 1*vg 1*vg 1*vg 0.01*vg–1*vg(by + 0.05; n= 21)

Fire severity (α) (proportion set back to earlier vegetation stages)

αS (Fire severity on shrubland) 0.25 0.05–0.5 (by + 0.05; n= 20) 0.05–0.55 (by + 0.02;n= 21) 0.25

αW (Fire severity onwoodland) 0.1αS 0.1αS 0.005–0.125 (by + 0.02; n= 13) 0.1αS

Initial cells composition 100%W, 100%S, 100%G,mixed 100%W, 100%S, 100%G,mixed 100%W, 100%S, 100%G,mixed 100%W, 100%S, 100%G,mixed

Flammability rule — — — Weighted/ dominant

Total number of parameter combinations 2240 2240 1092 14 112
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space evaluated in this theoretical study encompasses a
wide range of empirical observations (table S1) and
reference conditions (e.g., ESDs) on vegetation succes-
sion and fire occurrence in Mediterranean-climate
California; within this range, a total of 19684 different
combinations of model parameters were evaluated
(table 1).

Model runs
Simulation runs on each background set of parameters
were performed on four initial, spatially homogeneous
vegetation conditions: 100% dominance of each
vegetation type in all cells (i.e., G, S, W), plus a system
where all cells were initiated with equal proportion of
G–S–W. Cells were assigned an initial random TSF
between 1 and 100 years fixed through all model runs.
Each individual simulation comprised 10 000 model
steps to ensure the system reached a stable state or
equilibrium, which was defined as a de-trended
proportion of G–S–W over time. That is, even if the
system is dynamic because the proportion of each
vegetation type may fluctuate through time, at equili-
brium such fluctuations are centered on a certain level
and the long-term proportions of G–S–W do not
increase or decrease.

During the simulations, the proportion covered by
each vegetation type and the age (i.e., TSF) of each cell
were reported at each time step and integrated across
the entire system (i.e., frequency distribution of G, S,
and W across all cells). System-level stability (propor-
tion of area not exhibiting vegetation transitions due
to fire or succession) and heterogeneity (Shannon
diversity index on the proportion of G–S–W) were
computed at each time step. Results for each simula-
tion were then expressed as 1000-year averages (under
equilibrium conditions). Variation in the frequency
distribution of vegetation types at the cell-level was
also examined to test for internal bifurcations into
alternative states that would bemasked by considering
only system-level statistics.

Results

Vegetation dynamics across parameter space
When different vegetation types have the same prob-
ability of burning (i.e., no vegetation feedbacks that
alter fire probabilities; parameter scenarios 1–3), the
system exhibits a single stable state for a given set of
model parameters irrespective of its initial vegetation
state (figure 2 and S1). As expected, fire probability
exerts a strong influence on vegetation composition,
determining major patterns of G, S, andW abundance
at the system-level. Regardless of the succession rate of
vegetation orfire severity,Wdominates at low levels of
fire (static system), whereas G dominate under high
fire occurrence (dynamic system). At intermediate fire
frequencies S are most abundant, and they are

associated with higher system-level vegetation hetero-
geneity (figure 2 and S2).

Drastic changes in G–S–W dominance can occur
over narrow ranges of the parameter space (figure 2),
especially with changes in fire probability. Similarly,
over a limited range of fire probability values, the suc-
cession rate of vegetation and fire severity strongly
influence the abundance of W, S, and G at equili-
brium: faster succession rates and lower fire severity
lead to increased W dominance. Given the transient
nature of S in this study, shrublands only become
dominant when fire severity is higher on W than on S
(figure 2). The dominance or relatively high presence
of S is generally associated with higher temporal varia-
tion in within-cell vegetation proportions that result
in larger system-level fluctuations of G–S–W abun-
dancewhen equilibrium is reached (figure S3).

Alternative stable states
WhenG, S, andWexperience a different probability of
burning because of their flammability, the system
exhibits two alternative stable states (bistability) under
certain parameter combinations (figure 3). The nature
of fire-vegetation feedbacks induced by vegetation
flammability determines whether alternative stable
states exist or not. Bistability in system behavior arises
when the flammability of G> S>W and the effective
fire probability of a cell is determined by strong
feedbacks (figure 1). In this case, given a baseline fire
probability, fire severity, and flammability of G andW,
increasing the flammability of S leads to high G
dominance when the initial cell vegetation is not
dominated by W (figure 4(A)). However, increased S
flammability does not result in G dominance when the
flammability of W is low and cells are initially
dominated by W. When moderate fire-vegetation
feedbacks operate (figure 1) the system still shows
nonlinear changes in G–S–W dominance, but only
one stable equilibrium exists for any given condition,
irrespective of initial vegetation composition
(figure S4).

Regardless of the existence of one or two stable
states, the abundance of G, S, and W vegetation states
can respond in different ways to changing conditions
and thus to altered levels of system processes (succes-
sion rate, flammability, fire probability, and fire sever-
ity; figures 2, 3, and S1). Changes in the abundance of
G andW are coupled (with opposite trends) and exhi-
bit both gradual and threshold-type responses
depending on the process that is governing such chan-
ges. However, S shows in some cases a differential
response fromW and G, and it displays hump-shaped
relationships with fire probability and severity
(figures 2 and 3). The high sensitivity of G–S–Wdom-
inance to changes in fire probability is related to
threshold-type responses of G and W abundance to
this process. In addition, for a limited range of condi-
tions andwhen strong fire-vegetation feedbacks occur,
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vegetation proportions can be insensitive to parameter
change (figure 3).

Divergent vegetation trajectories
To better characterize alternative stable states in the
dynamics of the system, we performed additional
simulations to evaluate whether the entire system (i.e.,
all 300 cells) settles eventually to the same vegetation
state irrespective of the initial vegetation composition.
We tested different model parameterizations (homo-
geneous among cells) defined by different combina-
tions of G–S–W flammability and strong fire-
vegetation feedbacks; in each case 441 initial condi-
tions defined by cells’ G–S–W proportion were
evaluated (N= 7056 simulations). Results corroborate
the existence of two major basins of attraction at the
system-level where vegetation in all cells is either
dominated by W or G, but also the presence of
intermediate stability attractors between them
(figures 4(B) and S6). Such intermediate attractors are
determined by high levels of among-cell vegetation
heterogeneity (figure 4(C)): combinations of contrast-
ing vegetation states among individual cells average
out to define the stable vegetation state at the system-
level.

The mechanisms that determine the dynamics of
G–S–W vegetation and which basin of attraction the
system will follow depend both on factors extrinsic
and intrinsic to the system (figure 5). System-level
transitions to different stable states can be driven by
extrinsic factors such as the environment (e.g., differ-
ent fire probability; figure 5(A)), but also by intrinsic

fire-vegetation feedbacks under a given environment
(e.g., different vegetation composition; figures 5(B)
and (C)). On the other hand, under some parameter
combinations, stochastically driven transitions in the
vegetation state of some cells, together with the effects
of post-disturbance dynamics, result in contrasting
stable states at the cell-level and thus increased system
heterogeneity (figures 5(D)–(F)).

Discussion

High rates of vegetation succession, low flammability,
and low severity (or high capacity of vegetation to
persist through fire) promote rather static systems
dominated by woodlands. However, because of the
relatively slow dynamics of vegetation successional
change (years to decades), high fire frequencies
inevitably lead to a single stable state dominated by
grasslands. The interplay of factors extrinsic and
intrinsic to the system determines the nature of
transitions between vegetation states. As evidenced by
the dynamics of ecosystems representative ofMediter-
ranean-climate California, transitions between grass-
lands and woodlands in G–S–W systems can
encompass a continuum of possible behavior, includ-
ing continuous responses (gradual or threshold-like)
and catastrophic shifts (alternative stable states).

Dynamics of california ecosystems
Although a direct quantitative model validation was
not possible, the modeling framework presented here
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Figure 2.Equilibriumproportion of grassland, shrubland, andwoodland in relation tofire probability, succession rate, and fire
severity; A, B, andC correspond to parameter scenarios 1, 2, and 3, respectively−see table 1. The lower panels (line plots) illustrate the
modeled response of the system to changes inmodel parameters across the selected conditions (1)–(7), which aremarked by dotted
lines and the same number in the upper plots; solid gray lines represent the equilibriumproportion of each vegetation type. All
depicted cases represent stable states at the system-level.
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Figure 3.Equilibriumproportion of grassland, shrubland, andwoodland in relation to differential vegetation flammability
(parameter scenario 4; see table 1) and initial system conditions: A—cells dominated by equal proportions of each vegetation type, and
B—cells dominated bywoodlands. The lower panels (line plots) illustrate themodeled response of the system to changes inmodel
parameters across the selected conditions (1)–(6), which aremarked by dotted lines and the samenumber in the upper plots; solid
gray lines represent the equilibriumproportion of each vegetation type.Note that the systempresents two alternative stable states
under the same conditions—(1) and (4)—which are contingent on vegetation flammability and the initial vegetation state of the
system. All depicted cases represent stable states at the system-level.

Figure 4.Modeled response of woodland vegetation to increasing shrubland flammability (A) and example of alternative stable states
induced by fire-vegetation feedbacks (B) in grassland–shrubland–woodland (G–S–W) systems. In (A) the dashed line represents
unstable equlibria points and corresponds to the border between basins of attraction of the two alternative states (solid lines)
representing woodland or grassland dominance. Over the range of shrubland flammability where these alternative stable states exist,
the initial vegetation composition of the systemdetermines towardswhich alternative stable state the system settles as shown in (B). In
(B) the initial vegetation conditions of the system,which are homogeneous among all cells, aremarked by the origin of each gray line
in the ternary plot; the black dots depict the equilibrium state reached in each case. Equilibrium states are characterized by aG–S–W
proportion at the system-level, but as shown in (C), the among-cell variability in vegetation composition in thefinal equilibria varies
substantially in each case. Therefore, contrasted vegetation states among cells average out to define the intermediate stability attractors
at the system-level illustrated in (B).
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successfully captures major ecosystem features and
trends observed in recent decades over California
landscapes. For instance, the model can reproduce the
dominance of oak woodlands reported under fire
frequencies of ∼10 years associated with ground fires
before the implementation of fire suppression policies
in the 1930s (Sugihara et al 2006). This can bemodeled

by implementing low fire severities thus reducing the
rate of vegetation conversion driven by fire. In
contrast, the dynamics of forests of fire-sensitive
species (e.g., Douglas-fir, Lazzeri-Aerts and Rus-
sell 2014) are captured over a range of fire frequencies
when high fire severities are implemented. On the
other hand, landscapes dominated by shrublands

Figure 5. Summary of themechanisms that determine the equilibriumproportions of each vegetation type in grassland–shrubland–
woodland systems (G–S–W). Panels A, B–C,D, and E–F represent four different sets of simulations related to 4major processes in
fire-prone ecosystems. In each ternary plot, the gray and colored big-dots correspond to the initial and final system-level vegetation
state, respectively. System-level states are characterized by aG–S–Wproportion, which depends on theG–S–Wproportion of the cells
integrating the system. In all cases (A through F), the initial vegetation state of all cells coincide with the system initial state (i.e., gray
big-dot), whereas cells’final vegetation state is represented by the black small-dots. In panel A simulations, the four ternary plots
represent four environments with their corresponding baseline fire probability f; the rest ofmodel parameters are the same across
environments (succession rate of vegetation, time since disturbance –TSF–, vegetation flammability, and fire severity). Similarly,
initial G–S–Wproportion differs between simulations B andC,whereas the initial TSF is the only parameter that differ between E and
F.
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under a fire return interval of∼30–40 years, character-
istic of chaparral (Sugihara et al 2006, table S1), were
observed under relatively high fire severity consistent
with the crown-fire regime of such communities.

Despite the often assumed high fire resilience of
MTE vegetation, our approach reinforces that such
ecosystems can be very sensitive to altered fire fre-
quency and severity. Our results show that fire return
intervals under five years result in grass-dominated
systems irrespective of the succession rate of vegeta-
tion. This is consistent with trends observed in recent
decades over Mediterranean-climate California (e.g.,
Minnich and Dezzani 1998, Sugihara et al 2006) and
with anthropological knowledge regarding Native
American burning practices over central coastal Cali-
fornia (e.g., Lightfoot et al 2013). On the other hand,
reduced ignition rates allow buildup of fuels and suc-
cession from grassland to shrubland or from shrub-
land to woodland, as observed over California after
implementation of fire suppression policies (e.g., Rus-
sell and McBride 2003, Meentemeyer et al 2008). Our
model does not have fuel buildup effects on severity,
so we do not address the question of whether suppres-
sion will contribute to extreme or uncharacteristic
fires (see Keeley et al 1999), nor do we model extreme
fire weather effects that can overwhelm inherent vege-
tationflammability characteristics (Moritz 2003).

Feedbacks, bistability and disturbance stochasticity
Switches between contrasting stable vegetation states
in G–S–W systems may occur as a result of small
variations in extrinsic ecosystemdrivers of disturbance
(climate) or in fire-vegetation feedbacks (e.g., invasive
species). Such switches are triggered by the existence
of critical points in underlying processes of distur-
bance linked to external drivers (Beisner et al 2003).
Phase transitions may also result, however, from
variation in processes that are not dependent on or
induced by disturbance such as succession rate of
vegetation. In these cases, system behavior is not
determined by feedbacks, and state dynamics are
governed by gradual or threshold changes (Suding and
Hobbs 2009).

In our model, the inclusion of moderate fire-vege-
tation feedbacks successfully reproduce the observed
self-reinforcing grass-fire cycle (D’Antonio and
Vitousek 1992), whereas alternative stable states (bist-
ability) and hysteresis emerge when strong fire-vegeta-
tion feedbacks operate (Scheffer et al 2001). In both
cases, feedbacks induced by differential vegetation
flammability drive the behavior of the system by effec-
tively modifying environmental drivers (e.g., fire
probability). Plant traits that modulate fire-vegetation
feedbacks are thus key in determining the nature and
location of critical thresholds in the dynamics of fire-
prone G–S–W systems. Other studies point to the
importance of plant life history strategies (e.g., Saura-
Mas et al 2010), self-reinforcing combustion

properties (e.g., Odion et al 2010), and vegetation
traits related to flammability (e.g., Hoffmann
et al 2012) in generating feedbacks and conditions that
allow long-termpersistence of vegetation states.

The analysis presented in this theoretical study
indicates that threshold responses in the probability of
fire (induced by fire-vegetation feedbacks) and dis-
turbance stochasticity may be strong enough mechan-
isms to generate system bistability in fire-prone G–S–
Wsystems such asMTEs. Suchmechanisms have been
associated with alternative stable states in other fire-
prone ecosystems (D’Odorico et al 2006). Our frame-
work, however, emphasizes that these mechanisms
operate at different scales; disturbance stochasticity
can generate spatial heterogeneity (i.e., state change
only at local scales) as opposed to system-wide shifts
modulated by strong fire-vegetation feedbacks. When
strong feedbacks operate, system-level alteration in
the abundance of one ecosystem component (e.g.,
grass) can be expected to permanently change the nat-
ure of system interactions and the dynamics of vegeta-
tion towards a different stable state (Suding and
Hobbs 2009, Staver and Levin 2012). However, if such
changes occur when the state of the system is close to
bifurcation points (Scheffer 2009), then disturbance
stochasticity can effectively modulate shifts across the
bifurcation threshold. For instance, locally delayed (or
expedited) fire occurrence may allow (or prevent)
vegetation successional changes that can override sys-
tem-level feedback switches and thus determine tra-
jectory towards one state or the other at the local scale.
Overall, our findings suggest that, under some condi-
tions, disturbance stochasticity may translate into
more gradual responses of the system as a whole to
altered conditions even when strong feedbacks
operate.

Framework limitations and implications
Clearly, extrinsic ecosystem drivers such as climate are
not spatially homogeneous, and extreme events and
climate fluctuations can be particularly important in
modulating system dynamics and stability through
time. Similarly, additional spatially heterogeneous
drivers (e.g., herbivory, nutrient cycling, hydrology,
edaphic factors or humans) might prevent some sites
from vegetation succession during disturbance-free
intervals (e.g., Callaway and Davis 1993, Land-
fire 2010). Even though our model can incorporate
environmental gradients and other spatially explicit
ecosystem drivers (figure S7), these factors are not
implemented in the simulations presented here, which
aim to evaluate basic fire-vegetation mechanisms
underlying the behavior of G–S–W systems. The
future inclusion of climate fluctuations into a spatially
informed STM (e.g., incorporating patterns of soil
typology and climate gradients; Bestelmeyer
et al 2011) will allow a more sophisticated predictive
approach for characterizing dynamics and
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understanding general pattern-process relationships
across scales infire-prone communities.

It is encouraging that a simple STMmodel like the
one presented here can approximate some of the
human and environmental influences in the dynamics
ofMTE fire regimes. Refinedmodels representing spe-
cific ecosystems are needed to be able to assess if,
when, and where drastic shifts may occur in reality.
The possibility of abrupt and non-reversible state
changes in such ecosystems, however, evidences the
uncertainty and unpredictability that can be associated
with their management. Comprehensive under-
standing of system behavior is needed to infer feed-
back mechanisms, identify system thresholds, and
determine biotic and abiotic factors that affect the resi-
lience of ecosystems (e.g., van de Koppel et al 2002,
Suding and Hobbs 2009). Identifying thresholds rela-
ted to collapse and recovery is a first step that can help
prioritize adaptive management efforts to sustain
desired states and associated ecosystem services (Folke
et al 2004, Bestelmeyer 2006). We believe our con-
ceptual framework could thus represent a useful start-
ing point for specifying management scenarios based
on refined predictive local models and assessing
threshold responses and disequilibrium dynamics
derived from ongoing land-use and climate changes.
This may help resolve under which fire modeling or
scales of analysis the inclusion of feedback effects is
critical to capture MTEs dynamics, and to assess when
and where drastic ecosystem shifts may occur under
future MTE climates so that conditions resulting in
state changes can be attenuated via resilience-based
management.

Conclusion

Our minimal dynamic framework provides deeper
mechanistic understanding of how certain aspects of a
disturbance regime (fire recurrence, severity, and
stochasticity), vegetation characteristics (succession
rate and flammability), and fire-vegetation feedbacks
determine system composition and dynamics in G–S–
W systems, which characterize many temperate fire-
prone vegetation. Our findings strongly suggest that
vegetation alteration inMTEsmay not only occur after
extreme fire events (e.g., Rodrigo et al 2004), contrast-
ing states in such ecosystems may be driven by small
variation in ecosystem processes such as fire recur-
rence and system flammability. Plant traits that
modulate system feedbacks effectively modify the
behavior of MTEs and determine the nature and
location of critical thresholds in their dynamics. The
existence of alternative stable states and of contrasted
MTEs response to environmental change has broad
implications for theirmanagement.
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