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ABSTRACT OF THE DISSERTATION 

Essays on Search Frictions in Financial Markets 

by 

Semih Uslu 

Doctor of Philosophy in Economics 

University of California, Los Angeles, 2016 

Professor Pierre-Olivier Weill, Chair 

This dissertation consists of three chapters about search frictions in financial markets. 

Chapter 1: “Pricing and Liquidity in Decentralized Asset Markets” 

I develop a search-and-bargaining model of liquidity provision in over-the-counter markets 

where investors differ in their search intensities. A distinguishing characteristic of my model is 

its tractability: it allows for heterogeneity, unrestricted asset positions, and fully decentralized 

trade. I find that investors with higher search intensities (i.e., fast investors) are less averse to 

holding inventories and more attracted to cash earnings, which makes the model corroborate a 
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number of stylized facts that do not emerge from existing models: (i) fast investors provide in-

termediation by charging a speed premium, and (ii) fast investors hold larger and more volatile 

inventories. I also calibrate the model, demonstrate that it produces realistic quantitative out-

comes, and use it to study the effect of trading frictions on the supply and price of liquidity. The 

results have policy implications concerning the Volcker rule.   

Chapter 2: “Price Dispersion and Trading Activity during Turbulent Times” 

I construct a dynamic model of crises in a decentralized asset market that operates via search and 

bargaining. The crisis is modeled as a one-time aggregate shock to uncertainty with a random 

recovery. The arrival of the crisis shock leads to an increase in both the volatility of asset payoff 

and the volatility of investors’ background risk. The equilibrium path for investors’ valuations, 

terms of trade, and the distribution of investors’ positions is characterized in closed form both 

during the crisis and during the recovery. Tractability of the model allows me to derive natural 

proxies for price dispersion and trading activity. I show that both volatility of asset payoff and 

volatility of background risk contribute to higher level of price dispersion during the crisis. Trad-

ing activity might be higher or lower depending on the increase in the volatility of background 

risk relative to the increase in the volatility of asset payoff, consistent with the “flight-to-quality” 

observations during extreme episodes. A flight to the asset market always starts with a “heating-

up” in trading activity but a flight from the market might start with a dry-up or heating-up during 

the onset of the crisis. If the relative increase in the volatility of asset payoff is too high, a period 

of fire sales is triggered leading to a short heating-up before the complete dry-up of the trading  
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activity. I calibrate the model according to the U.S. corporate bond market data and show that it 

captures the observations during the subprime crisis. 

Chapter 3: “Endogenous Liquidity and Cross-section of Returns in Dynamic Bargaining Mar-

kets” 

The empirical analysis of liquid/illiquid asset pairs reveals the existence of a return differential 

(liquidity premium) between those types of assets. The time variation in liquidity premia is de-

lineated by the term "flight-to-liquidity," meaning that liquidity premia are higher during extreme 

market episodes. In this paper, I extend the search-and-bargaining model of Weill (2008) by al-

lowing for risk aversion, to explain this observation. Risk-averse investors optimally allocate 

their limited budgets of search efforts to various assets. This extension allows me to examine the 

relationship between risk and liquidity of assets in the cross-section and over time. My model 

generates endogenous cross-sectional liquidity differentials corroborating much of the empirical 

evidence. Furthermore, I show that when asset payoffs are more volatile, trade surpluses are 

higher because idiosyncratic hedging quality differentials are wider. Higher trade surpluses lead 

to higher value of search, and in turn, higher opportunity cost of committing to a particular asset, 

especially to an illiquid one. Therefore, periods of high volatility are associated with a flight-to-

liquidity. 
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CHAPTER 1

Pricing and Liquidity in
Decentralized Asset Markets

1 Introduction

Recent empirical analyses of over-the-counter (OTC) markets point to a high level of het-

erogeneity among intermediaries with respect to transaction frequency, terms of trade, and

inventories.1 Some intermediaries appear to be central in the network of trades: They trade

very often, and hold large and volatile inventories. Moreover, they face systematically dif-

ferent terms of trade. In the municipal bond market, for example, central intermediaries

earn higher markups compared to peripheral intermediaries.2 On the other hand, central

intermediaries in the market for asset-backed securities earn lower markups.3 In this paper,

I provide a theoretical model that captures the economic incentives of intermediaries which

give rise to these empirical trading patterns.

More precisely, I consider an infinite horizon dynamic model in which investors meet in

pairs to trade an asset. I go beyond the literature by considering investors who can differ in

their search intensities, time-varying hedging needs, and asset holdings. I provide an analyt-

ical characterization of the steady state equilibrium that includes the distribution of asset

holdings, bilateral trade quantities, and prices. The rich heterogeneity in the model allows

me to reproduce the observed trading patterns in OTC markets, and, therefore, provides a

natural laboratory for policy analysis. In a calibrated example of my model, I show that,

1The heterogeneity among intermediaries is documented for the municipal bond market (Li & Schürhoff,
2012), the fed funds market (Bech & Atalay, 2010), the overnight interbank lending market (Afonso, Kovner
& Schoar, 2014), the market for asset-backed securities (Hollifield, Neklyudov & Spatt, 2014), and the market
for credit default swaps (Siriwardane, 2015).

2See Li and Schürhoff (2012).
3See Hollifield et al. (2014).
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in markets where central intermediaries earn higher markups, the further concentration of

intermediation activity in the hands of these central intermediaries is beneficial for social

welfare, while it is harmful in markets where central intermediaries earn lower markups.

This suggests that the empirical relationship between markups and centrality helps predict

the potential effects of regulatory actions, such as the Volcker rule and MiFID I/II, which

aim at reducing the concentration of intermediation activity.

In my model, intermediation arises endogenously as a result of the interaction of investor

heterogeneity and search frictions. I model heterogeneity in search intensity among investors

as heterogeneity in the number of trading specialists with whom the investors are endowed.

Specialists randomly contact each other to trade a risky asset on behalf of investors. Thus, in

effect, investors with higher number of specialists have higher search intensities. Conditional

on a contact, both price and quantity are determined endogenously by bilateral bargain-

ing. Importantly, the quantity traded is endogenous since I do not impose the usual {0, 1}

holding restriction of the literature. This generalization allows me to analyze how financial

intermediaries optimally manage their inventories’sizes and facilitate trading.

The model can rationalize the trading patterns observed in OTC markets: namely, the

heterogeneity across intermediaries in transaction frequency, terms of trade, and invento-

ries. I show that "fast investors" (who have higher search intensities) have relatively stable

marginal valuations that are close to the average marginal valuation of the market, so they

become endogenously central. Therefore, as observed in the data, fast investors hold larger

and more volatile inventories to provide intermediation to slow investors. In return, these

fast investors charge a speed premium as the price of the liquidity they provide. I show that

the relationship between the centrality of an investor and the intermediation markups she

earns arises as a result of two competing effects: stable marginal valuations and speed pre-

mium. Her stable marginal valuations tend to reduce the markups she charges, by making

inventory-holding less risky. If this is the dominant effect, we observe a negative relationship
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between centrality and markups. When the speed premium is dominant, we observe a posi-

tive relationship between centrality and markups. I find that the speed premium is dominant

when search frictions are severe or investors experience liquidity shocks very frequently.

The main analytical diffi culty posed by this model is keeping track of the endogenous

joint distribution of asset holdings, hedging needs, and search intensities. However, using

convolution methods, I show that marginal valuations, terms of trade, and the first condi-

tional moment of equilibrium distribution can be found in closed form up to effective discount

rates that solve a functional equation, so that the analysis remains relatively tractable. I also

provide a recursive characterization of higher order conditional moments of the equilibrium

distribution. Therefore, one contribution of this paper to the literature is methodological:

It drops the restrictions on asset positions, without forgoing the investor heterogeneity or

fully decentralized trading structure. With this level of generality, my model offers a unified

framework to address positive and normative issues surrounding OTC markets.

The main mechanism behind different trading behaviors of fast and slow investors is

that heterogeneity in search intensities leads to heterogeneous effective discount rates at

which investors discount their current utility flow. The effective discount rate is higher

for fast investors because they are able to rebalance their holdings faster. This increases

the importance of the option value of search, and decreases the importance of the current

utility flow from holding the asset. In other words, high effective discount rates lead to the

lower sensitivity of marginal valuations to asset holdings. Therefore, fast investors put less

weight on their asset positions and more weight on their cash earnings when bargaining with

counterparties. Each bilateral negotiation results in a trade size that is more in line with the

slower counterparty’s hedging need and a trade price that contains a premium benefitting

the faster counterparty. Controlling for the level of marginal valuation, fast investors provide

more intermediation due to this effective discount rate channel. In addition, fast investors

engage in higher simultaneous buying and selling activity due to the higher intensity of
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matching with counterparties. However, the effective discount rate channel leads to an

increase in the intermediation level above and beyond that direct effect. As in the data, not

only do fast investors trade more often, but they also trade larger quantities on average, in

each match.

Another important result of my model is that investor heterogeneity makes the equilib-

rium constrained ineffi cient due to a hold-up problem typical of ex post bargaining envi-

ronments. The root cause of ineffi ciency is the price impact. When negotiating for a trade

quantity, investors recognize the fact that their trades will create a price impact in the fu-

ture and that the price impact is increasing in the surplus that those future trades generate.

Consequently, at the margin, investors tend to take more cautious positions than is socially

optimal which would lead to larger price impacts in future trades. In a calibrated example, I

show that the welfare loss caused by OTC market frictions can be as large as 4% of the con-

strained effi cient welfare in consumption equivalent terms.4 This result reveals that there is

room for beneficial intervention in markets with ex post bargaining and investor heterogene-

ity, which are virtually all OTC markets. For the ineffi ciency result, investor heterogeneity in

hedging need or speed is essential. Afonso and Lagos (2015) show that if there is no investor

heterogeneity, the equilibrium of a fully decentralized market with unrestricted holdings is

constrained effi cient, even though there is a hold-up problem. Because all investors are iden-

tical in their exogenous characteristics, their marginal valuations are distorted in exactly the

same way, so the negotiated trade quantities coincide with the planner’s quantities.

Finally, I present a calibrated numerical example that demonstrates that my model can

produce quantitatively meaningful results in terms of distribution of trade sizes and the rela-

tionship between degree centrality and intermediation markups. I, then, use this calibrated

model to conduct comparative statics analysis. Specifically, I analyze how a change in the

4The welfare notion I use is ex ante welfare, which is defined as the sum of all investors’ certainty
equivalents at date 0.
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central intermediaries’search intensities affects the welfare. Investors trade off between the

benefit of hedging and the cost of risk-bearing when they invest in the asset. An increase in

the main intermediaries’search intensities causes the further concentration of intermediation

activity in the hands of those main intermediaries and, in turn, leads to a higher hedging

benefit and a higher cost of risk-bearing at the same time. If search frictions are severe

or investors experience liquidity shocks very often, the increase in hedging benefit becomes

dominant, and we observe an increase in welfare. Otherwise, the cost of risk-bearing be-

comes dominant, and we observe a decline in welfare. This result relates the welfare impact

of concentration to the sign of the relationship between centrality and markups. In markets

with a positive relationship between centrality and markups (e.g. municipal bond market)

the impact of an increase in fast investors’search intensities on social welfare turns out to

be positive, while it is negative in markets with a negative relationship between centrality

and markups (e.g. the market for asset-backed securities).

These results inform the debate on the effects of a section of the Dodd-Frank Act, often

referred as "the Volcker rule," which bans proprietary trading by banks and their affi liates.

It is commonly agreed that the Volcker rule effectively reduces the ability of intermediaries to

provide liquidity.5 Accordingly, in my model, I capture this in a stylized way by decreasing

the number of specialists the central intermediaries have. My model predicts different welfare

impacts for different markets. While it would be beneficial for markets with negative relation

between centrality and markups, it would be harmful for markets with positive relation

between centrality and markups.

1.1 Related Literature

A fast-growing body of literature, spurred by Duffi e, Gârleanu, and Pedersen (2005), has re-

cently applied search-theoretic methods to asset pricing. The early models in this literature,

5See Duffi e (2012b).

5



such as Duffi e, Gârleanu and Pedersen (2007), Weill (2008), and Vayanos and Weill (2008),6

studied theories of fully decentralized markets in a random search and bilateral bargaining

environment and used these theories to present a better understanding of the individual and

aggregate implications of distinctively non-Walrasian features of those markets. These mod-

els maintain tractability by limiting the investors to two asset positions, 0 or 1. Another part

of this body of literature, with papers by Gârleanu (2009) and Lagos and Rocheteau (2007,

2009), eliminates the {0, 1} restriction on holdings by introducing a partially centralized

market structure.7 In their framework, investors are able to trade in a centralized market

but only infrequently and by paying an intermediation fee to exogenously designated dealers

who have continuous access to the centralized market. These models show that investors’

decisions at the intensive margin provide them with the flexibility to respond to changes in

market conditions.

My model is the first model that combines unrestricted asset holdings, fully decentralized

market structure and heterogeneity in search intensities. The combination of unrestricted

holdings and fully decentralized trade is essential for the analysis I conduct because fully

decentralized trade is necessary for endogenous intermediation, and unrestricted holdings are

necessary for the study of optimal inventory holding behavior. To the best of my knowledge,

there are two papers with this combination. Afonso and Lagos (2015) study trading dynam-

ics in the Fed Funds market. In their model, banks are homogeneous in terms of preferences

and search intensities. The basic insight from their model on "endogenous intermediation"

applies to my model as well. They show that banks with average asset holdings endogenously

become "middlemen" of the market by buying from banks with excess reserves and selling

6The framework of Duffi e et al. (2005) has also been adopted to analyze a number of issues, such as
market fragmentation (Miao, 2006), clientele effects (Vayanos & Wang, 2007), the congestion effect (Afonso,
2011), commercial aircraft leasing (Gavazza, 2011a), and the co-existence of illiquid and liquid markets (Praz,
2014).

7Other papers that use the same trading framework include Lagos, Rocheteau, and Weill (2011), Lester,
Rocheteau, and Weill (2015), Pagnotta and Philippon (2015), and Randall (2015).

6



to banks with low reserves. Relative to Afonso and Lagos (2015), my contribution is to

solve for a stochastic steady-state with two new dimensions of heterogeneity: hedging need

and search intensity. As I explain above, these are important for explaining stylized OTC

market facts and obtaining new normative results. Cujean and Praz (2015) study the impact

of information asymmetry between counterparties. Although their model also features unre-

stricted asset holdings and a fully decentralized market structure, my work is different from

theirs in that they assume all investors have the same search intensity. In order to analyze

the microstructure of OTC markets, I introduce search heterogeneity but keep the usual

symmetric information assumption of the literature. Then, I study the resulting topology of

trading relations.

My paper is also related to the literature on the trading networks of financial markets.

Recent works include Babus and Kondor (2012), Farboodi (2014), Gofman (2011), and

Malamud and Rostek (2012). Atkeson, Eisfeldt, and Weill (2015), Chang and Zhang (2015),

Colliard and Demange (2014), Farboodi, Jarosch, and Shimer (2015), Hugonnier, Lester,

and Weill (2014), Neklyudov (2015), and Shen, Wei, and Yan (2015) develop hybrid models,

which are at the intersection of the search and the network literatures. The special case of

my model with a homogeneous search intensity can be considered an extension of Hugonnier

et al. (2014) with risk-averse investors and unrestricted asset holdings. They show that

investors with average exogenous valuations specialize as intermediaries. In my setup with

unrestricted holdings, investors with the "correct" amount of assets become intermediaries

rather than the ones who have the average exogenous valuation. In other words, in my setup,

intermediaries might be "low valuation-low holding," "average valuation-average holding," or

"high valuation-high holding" investors. To my knowledge, in the literature, there are only

two other papers with heterogeneity in search intensity: Neklyudov (2015) and Farboodi,

Jarosch, and Shimer (2015). Both restrict the asset positions so that they lie in {0, 1}.

Relative to these models, an important additional insight of my model is that fast investors
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can differentiate themselves from slow investors by offering more attractive trade quantities

to their counterparties. In this way, they can charge a speed premium, and earn higher

markups depending on the level of frictions. In the {0, 1} models, fast investors typically

earn lower markups because of the lower variability of their reservation values.

The remainder of the paper is organized as follows: Section 2 describes the model. Section

3 studies the equilibrium of the model, while Section 4 assesses the empirical implications of

the endogenous asset positions in OTC markets given by the equilibrium. Section 5 is the

conclusion.

2 Environment

Time is continuous and runs forever. I fix a probability space (Ω,F ,Pr) and a filtration

{Ft, t ≥ 0} of sub-σ-algebras satisying the usual conditions (see Protter, 2004). There is a

continuum of investors with a total measure normalized to 1. There is one long-lived asset

in fixed supply denoted by A. This asset is traded over the counter, and pays an expected

dividend flow denoted by mD. There is also a perishable good, called the numéraire, which

all investors produce and consume.

2.1 Preferences

I borrow the specification of preferences and trading motives from Duffi e et al. (2007).

Investors’level of risk aversion and time preference rate are denoted by γ and r respectively.

The instantaneous utility function of an investor is u(ρ, a) + c, where

u(ρ, a) ≡ amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

(1)
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is the instantaneous mean-variance benefit to the investor from holding a ∈ R units of the

asset when of type ρ ∈ [−1,+1], and c ∈ R denotes the net consumption of the numéraire

good. An investor’s net consumption becomes negative when she produces the numéraire to

make side payments.

This utility specification is interpreted in terms of risk aversion. Since the parameter

mD is an expected rather than actual dividend flow, this cash flow needs to be adjusted

for risk. The term a2σ2
D represents the instantaneous variance of the asset payoff where

σD is the volatility of the asset payoff. The term 2ρaσDση captures the instantaneous

covariance between the asset payoff and some background risk with volatility ση. Therefore,

the investor’s type ρ captures the instantaneous correlation between the asset payoff and the

background risk. In Appendix A, I derive this mean-variance utility specification from first

principles.8 I leave the microfoundation of this specification to the Appendix because the

reduced-form imparts the main intuitions without the burden of derivations.

Importantly, the correlation between the asset payoff and the background risk is hetero-

geneous across investors, creating the gains from trade. In the context of different markets,

this heterogeneity can be interpreted in different ways such as hedging demands or liquidity

needs. In the case of a credit derivatives market, for example, the correlation captures the

exposure to credit risk. If a bank’s exposure to the credit risk of a certain bond or loan is

high, the correlation between the bank’s income and the payoff of the derivative written on

that specific bond or loan will be negative, implying that the derivative provides hedging to

the bank. Therefore, that bank will have a high valuation for the derivative. Another bank

with a short position in the bond will have a positive correlation and, consequently, a low

valuation for the derivative.
8I assume that investors have CARA preferences over the numéraire good, and they can invest in a riskless

asset traded in a Walrasian market, and in a risky asset traded over the counter. Moreover, the investor
receives a random income whose correlation with the payoff of risky asset is ρ. These assumptions give rise to
my reduced-form specification, up to a suitable first-order approximation. See Duffi e et al. (2007), Vayanos
and Weill (2008), and Gârleanu (2009) for a similar derivation.
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I assume that each investor’s type itself is stochastic. Namely, an investor receives idio-

syncratic correlation shocks at Poisson arrival times with intensity α > 0. Arrival of these

shocks is independent from other stochastic processes and across investors. For simplicity,

I assume that types are not persistent, and upon the arrival of an idiosyncratic shock, the

investor’s new type is drawn according to the cdf F on [−1,+1].

2.2 Trade

All trades are fully bilateral. I assume that investors with different search effi ciencies co-exist

in a sense that will now be described.

Following Weill (2008), I assume that investor i is endowed with a measure λi of "trading

specialists," who search for other investors’trading specialists for trade opportunities. The

measure of an investor’s trading specialists determine how effi ciently she searches. A given

specialist finds a counterparty with an intensity µ > 0, reflecting the overall search effi ciency

of the market. Therefore, investor i finds a counterparty at total instantaneous rate µλi.

Conditional on contact, the counterparty is chosen randomly from the pool of all trading

specialists.

The cross-sectional distribution of the measure of trading specialists is given by cdf Ψ (λ)

on [0, 1].9 The parameter λ is distributed independently from the correlation type ρ in

the cross-section, and from all the stochastic processes in the model. Each contact between

investor (ρ, a, λ) and investor (ρ′, a′, λ′) is followed by a symmetric Nash bargaining game over

quantity q [(ρ, a, λ) , (ρ′, a′, λ′)] and unit price P [(ρ, a, λ) , (ρ′, a′, λ′)]. The number of assets,

the investor (ρ, a, λ) purchases, is denoted by q [(ρ, a, λ) , (ρ′, a′, λ′)]. Thus, she will become

an investor of type (ρ, a + q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ) after this trade, while her counterparty

will become type (ρ′, a′− q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′). The per unit price, the investor (ρ, a, λ)

9Because scaling µ and all λs up and down, respectively, by the same factor has no effect, I normalize the
upper bound of the support to 1.
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will pay, is denoted by P [(ρ, a, λ) , (ρ′, a′, λ′)].

3 Equilibrium

In this section, I define a stationary equilibrium for this economy. Then, as a benchmark

case, I solve the Walrasian counterpart of this economy. Finally, I characterize the stationary

decentralized market equilibrium.

3.1 Definition

First, I will define the investors’value functions, taking as given the equilibrium joint distri-

bution of investor types, asset holdings, and the measure of trading specialists. Then, I will

write down the conditions that the equilibrium distribution satisfies.

3.1.1 Investors

Let J(ρ, a, λ) be the maximum attainable utility of an investor of type (ρ, a, λ). In steady

state, the Bellman principle implies that the growth rate of any investor’s continuation utility

must be the discount rate r (see Duffi e, 2012a). Thus, it satisfies

rJ(ρ, a, λ) = u(ρ, a) + α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ
{J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

−q [(ρ, a, λ) , (ρ′, a′, λ′)]P [(ρ, a, λ) , (ρ′, a′, λ′)]}Φ(dρ′, da′, dλ′), (2)
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where

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= arg max
q,P

[J(ρ, a+ q, λ)− J(ρ, a, λ)− Pq] 1
2 [J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′) + Pq]

1
2 , (3)

s.t.

J(ρ, a+ q, λ)− J(ρ, a, λ)− Pq ≥ 0,

J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′) + Pq ≥ 0.

The first term on the RHS of the equation (2) is the investor’s utility flow; the second term

is the expected change in the investor’s continuation utility, conditional on switching types,

which occurs with Poisson intensity α; and the third term is the expected change in the

continuation utility, conditional on trade, which occurs with Poisson intensity 2µλ. The

potential counterparty is drawn randomly from the population, with the likelihood, λ
′

Λ
, that

is proportional to her measure of trading specialists, where Λ =
1∫
0

λ′dΨ (λ′).10 The joint cdf

of the stationary distribution of types, asset holdings, and search intensities is Φ(ρ′, a′, λ′).

Terms of trade, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], maximize the symmetric

Nash product (3) subject to the usual individual rationality constraints.

3.1.2 Market clearing and the distribution of investors’states

Let Φ(ρ∗, a∗, λ∗) denote the joint cumulative distribution of correlations, asset holdings, and

the measure of specialists in the stationary equilibrium. Since Φ(ρ∗, a∗, λ∗) is a joint cdf, it

10The total matching rate is 2µλ because the investor finds a counterparty at rate
1∫
0

µλλ
′

Λ dΨ
(
λ′
)
, and

another investor finds her at rate
1∫
0

µλ′ λΛdΨ
(
λ′
)
. This matching function is a variant of the CRS matching

function of Shimer and Smith (2001).
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should satisfy
1∫
0

∞∫
−∞

1∫
−1

Φ(dρ∗, da∗, dλ∗) = 1. (4)

The clearing of the market for the asset requires that

1∫
0

∞∫
−∞

1∫
−1

a∗Φ(dρ∗, da∗, dλ∗) = A. (5)

Since the heterogeneity in search intensity is ex ante, I impose

λ∗∫
0

∞∫
−∞

1∫
−1

Φ(dρ, da, dλ) = Ψ (λ∗) (6)

for all λ∗ ∈ supp(Ψ) to ensure that the equilibrium distribution is consistent with the cross-

sectional distribution of λs.

Finally, the conditions for stationarity are

−αΦ(ρ∗, a∗, λ∗)(1− F (ρ∗)) + α

λ∗∫
0

a∗∫
−∞

1∫
ρ∗

Φ(dρ, da, dλ)F (ρ∗) (7)

−
λ∗∫
0

a∗∫
−∞

ρ∗∫
−1

 1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ
I{q[(ρ,a,λ),(ρ′,a′,λ′)]≥a∗−a}Φ(dρ′, da′, dλ)

Φ(dρ, da, dλ)

+

λ∗∫
0

∞∫
a∗

ρ∗∫
−1

 1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ
I{q[(ρ,a,λ),(ρ′,a′,λ′)]<a∗−a}Φ(dρ′, da′, dλ)

Φ(dρ, da, dλ) = 0

for all (ρ∗, a∗, λ∗) ∈ supp(Φ).

The first term of the first line is the outflow due to idiosyncratic shocks. Investors who

belong to Φ(ρ∗, a∗, λ∗) receive correlation shocks at rate α, and they leave Φ(ρ∗, a∗, λ∗) with

probability 1 − F (ρ∗), i.e., if their new type is higher than ρ∗. Similarly, the second term

of the first line is the inflow due to idiosyncratic shocks. Investors, who do not belong to
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Φ(ρ∗, a∗, λ∗) but have an asset holding less than a∗ and a total measure of specialists less

than λ∗, receive correlation shocks at rate α, and they enter Φ(ρ∗, a∗, λ∗) with probability

F (ρ∗), i.e., if their new type is less than ρ∗.

The second line represents the outflow due to trade. Conditional on a contact, investors,

who belong to Φ(ρ∗, a∗, λ∗), leave Φ(ρ∗, a∗, λ∗) if they buy a suffi ciently high number of

assets, i.e., if they buy at least a∗ − a units where a is the number of assets before trade.

Similarly, the third line represents the inflow due to trade. Investors, who do not belong to

Φ(ρ∗, a∗, λ∗) but have a correlation less than ρ∗ and a total measure of specialists less than λ∗

enter Φ(ρ∗, a∗) if they sell a suffi ciently high number of assets, i.e., if they sell at least a− a∗

units, where a is the number of assets before trade. Note that selling at least a− a∗ units is

equivalent to buying at most a∗− a units, and, hence, I write q [(ρ, a, λ) , (ρ′, a′, λ′)] < a∗− a

inside the indicator function.

A stationary equilibrium is defined as follows:

Definition 1 A stationary equilibrium is (i) a pricing function P [(ρ, a, λ) , (ρ′, a′, λ′)], (ii)

a trade size function q [(ρ, a, λ) , (ρ′, a′, λ′)], (iii) a function J(ρ, a, λ) for continuation

utilities, and (iv) a joint distribution Φ(ρ, a, λ) of types, asset holdings, and the measure

of specialists, such that

• Steady-state: Given ii), iv) solves the system (4)-(7).

• Optimality: Given i), ii), and iv), iii) solves the investor’s problem (2) subject to

(3).

• Nash bargaining: Given iii), i) and ii) satisfy (3).
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3.2 The Walrasian benchmark

I solve the stationary equilibrium of a continuous frictionless Walrasian market as a bench-

mark. Then, I use the outcome of this benchmark to better understand the effect of trading

frictions on market outcomes. Since, in this market, every investor can trade instantly, there

is one market-clearing price and all investors with the same correlation type hold the same

number of assets. The flow Bellman equation of investors in this Walrasian market is

rJW (ρ, a) = u (ρ, a) + α

1∫
−1

max
a′

{
JW (ρ′, a′)− JW (ρ, a)− PW (a′ − a)

}
dF (ρ′),

where PW is the market-clearing price. The first term is the investor’s utility flow. The

second term is the expected change in the investor’s continuation utility, conditional on

switching types, which occurs with Poisson intensity α. Since investors have continuous

access to the market, they rebalance their holding as soon as they receive an idiosyncratic

shock. The FOC for the asset position and the envelope condition11 are

JW2 (ρ′, a′) = PW

and

rJW2 (ρ, a) = u2 (ρ, a) + α
(
−JW2 (ρ, a) + PW

)
,

where u2 (., .) represents the partial derivative with respect to the second argument. Com-

bining these two conditions, I get the optimal demand of the investor with ρ:

aW (ρ;P ) =
1

γσ2
D

(mD

r
− PW

)
− ση
σD

ρ.

11To write down these conditions, I assume that JW (ρ, .) is stricly concave and continuosly differentiable.
This assumption is verified ex post.
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The market-clearing condition

1∫
−1

aW (ρ;P )dF (ρ) = A

implies that the equilibrium objects are:

aW (ρ) = A− ση
σD

(ρ− ρ)

for all ρ ∈ supp(F ); and

PW =
u2 (ρ,A)

r
=
mD

r
− γσ2

DA− γσDσηρ,

where

ρ ≡
1∫
−1

ρ′dF (ρ′) .

The implication of the equilibrium is intuitive: The equilibrium holding is a decreasing

function of correlation ρ. As ρ increases, the hedging benefit of the asset decreases and

investors hold less of it. The investor with the average correlation holds the per capita supply.

The coeffi cient of the current correlation in the optimal holding is ση
σD
. The volatility of the

background risk, ση, has a positive impact on the dispersion of investors’holdings because

they have a higher incentive to hold or stay away from the asset when their background is

more volatile. On the other hand, the volatility of the asset payoff, σD, has a negative impact

on the dispersion of investors’holdings because the importance of the cost of risk-bearing

relative to the hedging demand rises when the asset payoff is more volatile. Thus, investors’

positions become closer to each other as required by effi cient risk-sharing.
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The instantaneous trading volume in the Walrasian market is

VW = α

1∫
−1

1∫
−1

∣∣aW (ρ′)− aW (ρ)
∣∣ dF (ρ) dF (ρ′) = α

ση
σD

1∫
−1

1∫
−1

|ρ′ − ρ| dF (ρ) dF (ρ′) .

This is basically the multiplication of the flow of investors who receive idiosyncratic shock,

α, and the change in the optimal holding of those investors. When I characterize the OTC

market equilibrium, I will show that the Walrasian market outcomes differ markedly from the

OTC outcomes. As a preview, in the Walrasian equilibrium, (i) there is no price dispersion,

(ii) no one provides intermediation (apart from the Walrasian auctioneer), and, therefore,

(iii) net and gross trade volume coincide.

Finally, I calculate the sum of all investors’continuation utilities as a measure of welfare,

following Gârleanu (2009):

WW =
mD

r
A− γσ2

D

2
A2 − γσDσηρA+

γσ2
η

2
var [ρ] .

The last term of the welfare exclusively captures the hedging benefit from being able to

access the centralized market instantly following an idiosyncratic shock. The frictions of the

OTC market will affect the welfare through this term.

3.3 Characterization

3.3.1 Individual trades

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], are determined

by a Nash bargaining game with the solution given by the optimization problem (3). I guess

and verify that J(ρ, ., λ) is continuously differentiable and strictly concave for all ρ and λ.

This allows me to set up the Lagrangian of this problem, and find the first-order necessary

and suffi cient conditions (see Theorem M.K.2., p. 959, and Theorem M.K.3., p. 961, in
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Mas-Colell, Whinston & Green, 1995) for optimality by differentiating the Lagrangian. The

trade size, q [(ρ, a, λ) , (ρ′, a′, λ′)], solves

J2(ρ, a+ q, λ) = J2(ρ′, a′ − q, λ′), (8)

where J2 represents the partial derivative with respect to the second argument. Notice that

the quantity which solves the equation (8) is also the maximizer of the total trade surplus,

i.e.,

q [(ρ, a, λ) , (ρ′, a′, λ′)] = arg max
q

J(ρ, a+ q, λ)− J(ρ, a, λ) + J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′).

The continuous differentiability and strict concavity of J(ρ, ., λ) guarantees the existence and

uniqueness of q [(ρ, a, λ) , (ρ′, a′, λ′)]. Then, the transaction price, P [(ρ, a, λ) , (ρ′, a′, λ′)], is

determined such that the total trade surplus is split equally between the parties:

P =
J(ρ, a+ q, λ)− J(ρ, a, λ)− (J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′))

2q
(9)

if J2(ρ, a, λ) 6= J2(ρ′, a′, λ′); and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ′, a′, λ′). Substituting the

trade quantity and price into (2), I get

rJ(ρ, a, λ) = u (ρ, a) + α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ

1

2

[
max
q
{J(ρ, a+ q, λ)− J(ρ, a, λ)

+J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)}] Φ(dρ′, da′, dλ′). (10)
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In order to solve for J(ρ, a, λ), I follow a guess-and-verify approach. The complete solution

is given in the Appendix. In the models with {0, 1} holding, investors’trading behavior is

determined by their reservation value, which is the difference between the value of holding

the asset and that of not holding the asset. The counterpart of the reservation value in

my model with unrestricted holdings is the marginal continuation utility or the marginal

valuation in short. To find the marginal valuation, I differentiate the equation (10) with

respect to a, applying the envelope theorem:

rJ2(ρ, a, λ) = u2 (ρ, a) + α

1∫
−1

[J2(ρ′, a, λ)− J2(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

µλ
λ′

Λ
{J2(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J2(ρ, a, λ)}Φ(dρ′, da′, dλ′), (11)

where

u2(ρ, a) = mD − rγσ2
Da− rγσDσηρ.

Since the utility function is quadratic, the marginal utility flow is linear. The equation

(11) is basically a flow Bellman equation that has a linear return function with a slope

coeffi cient independent of ρ. Therefore, the solution J2(ρ, a, λ) is linear in a if and only if

q [(ρ, a, λ) , (ρ′, a′, λ′)] is linear in a. Conjecturing that q [(ρ, a, λ) , (ρ′, a′, λ′)] is linear in a,

and that the slope coeffi cient of a in the marginal valuation is − rγσ2
D

r̃(λ)
for r̃ (λ) > 0,12 the

FOC (8) implies that

J2(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ) =
r̃ (λ) J2(ρ, a, λ) + r̃ (λ′) J2(ρ′, a′, λ′)

r̃ (λ) + r̃ (λ′)
, (12)

i.e., the post-trade marginal valuation of both investors is equal to the weighted average of

their initial marginal valuations with the weights being the reciprocal of the slope coeffi cient

12These conjectures are verified in the proof of Theorem 1.
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of a in the marginal valuation. Note that the post-trade marginal valuation will be equal to

the midpoint of the investors’initial marginal valuations if they are endowed with the same

measure of specialists.

In principle, optimal trading rules, interacting in complex ways with the equilibrium dis-

tribution, make a fully bilateral trade model with unrestricted holdings diffi cult to solve. So

far, the literature has side-stepped this diffi culty by considering models with value functions

that can be characterized before solving for the endogenous distribution. This is not the

case in my model. As can be seen from (11) and (12), search intensity interacts with corre-

lation and asset holding in the Bellman equation for the marginal valuation. The problem

becomes relatively easy because (i) correlation and asset holding are in separate terms in

the marginal utility, and (ii) the distribution of correlations and the distribution of search

intensities are independent. Thanks to these assumptions, search intensity interacts only

with asset holding. As a result, I need to solve for the average asset holding conditional on

λ. This creates a fixed point problem which requires solving a linear system for the average

asset holding conditional on λ and the average marginal valuation conditional on λ. The

equations of the system come from optimality conditions, steady-state conditions and the

market clearing. Its unique solution implies that the average asset holding conditional on λ

is the supply A, which is independent of λ, i.e., the primary effect of heterogeneity in λ will

be to affect the variance and the higher order moments of the distribution. This allows me

to obtain the following theorem from the equation (11):

Theorem 1 In any stationary equilibrium, investors’marginal valuations satisfy

J2 (ρ, a, λ) =
mD − rγσ2

Da− rγσDση
r̃(λ)ρ+αρ
r̃(λ)+α

+ (r̃ (λ)− r) u2(ρ,A)
r

r̃ (λ)
, (13)
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where

r̃ (λ) = r +

1∫
0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′). (14)

And, the average marginal valuation of the market is

1∫
0

∞∫
−∞

1∫
−1

J2 (ρ, a, λ) Φ (dρ, da, dλ) =
u2(ρ,A)

r
. (15)

Equation (13) shows that an investor’s marginal valuation equals the combination of

her current expected marginal utility flow until the next trade opportunity (the first three

terms) and the expected contribution of the market to her post-trade marginal valuation

(the last term). In this characterization, r̃ (λ) has a natural interpretation as the effective

discount rate of an investor with λ as it is the actual rate at which the investor discounts

the current marginal utility flow associated with her current asset holding. Therefore, the

effective discount rate is an important determinant of the sensitivity of an investor’s marginal

valuation to her asset holding. In addition, an alternative environment where investors have

access to a centralized market at Poisson arrival times with intensity r̃ (λ) − r would lead

to the same marginal valuation in (13). After every trade, the trading investor’s marginal

valuation would be equal to the average marginal valuation of the market. In this sense,

the effective discount rate (14) can be understood as the sum of discount rate, r, and the

(effective) transition rate to the post-trade state.

Although the effective discount rates are not available in closed form for an arbitrary

distribution of the measure of specialists, most of the important qualitative implications of

heterogeneity in the measure of specialists come from the properties stated in Lemma 1.

In particular, it states that the effective discount rate is an increasing function of λ. An

important implication of this combined with (13) is that the marginal valuation of investors

with high λ is closer to the average marginal valuation of the market, controlling for asset
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holding and hedging need. Therefore, investors with high λ become the natural counterparty

for investors with high marginal valuations and those with low marginal valuations. They

buy the assets from investors with low marginal valuations and sell to investors with high

marginal valuations, thus, become endogenous "middlemen".

Lemma 1 Suppose the support of the distribution, Ψ, is finite. Then, an effective discount

rate function, r̃ (λ), which is consistent with the optimality of the investors’problem,

exists, is unique, strictly increasing and strictly concave, and satisfies

1∫
0

r̃ (λ) dΨ(λ) = r +
µΛ

2
,

where

Λ ≡
1∫
0

λ′dΨ(λ′).

The functional equation (14) shows two key properties of the effective discount rate:

being increasing and concave. On the one hand, the measure of trading specialists has a

direct linear positive impact on the effective discount rate. If an investor is able to find

counterparties very often, she does not expect to spend much time with her current holding,

and her marginal valuation should depend less on her current marginal utility flow. Hence,

she should discount her current marginal utility at a higher rate. This makes the effective

discount rate an increasing function. On the other hand, equation (12) shows that the post-

trade marginal valuation is closer to the initial marginal valuation of the party with higher

effective discount rate. Because of this, a high search intensity dampens the effect of trade

on post-trade marginal valuation. Thus, an indirect negative impact of λ on the effective

discount rate arises. Consequently, the effective discount rate turns out to be an increasing

but concave function of λ.

Again, using the fact that J(ρ, a, λ) is quadratic in a, an exact second-order Taylor
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expansion shows that:

J(ρ, a+ q, λ)− J(ρ, a, λ) = J2(ρ, a+ q, λ)q +
rγσ2

D

2r̃ (λ)
q2.

Next, Equation (9) implies

P [(ρ, a, λ) , (ρ′, a′, λ′)] = J2(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)

+
rγσ2

D

4
q [(ρ, a, λ) , (ρ′, a′, λ′)]

(
1

r̃ (λ)
− 1

r̃ (λ′)

)
. (16)

i.e., the transaction price is given by the post-trade marginal valuation plus an adjustment

term. I call the adjustment term the "speed premium" because it always benefits the investor

who is able to find counterparties faster. Note that the transaction price will be equal to the

post-trade marginal valuation if the trading parties have the same speed. This formula for

the price explains the main mechanism behind the relation between λ and intermediation

markups. Due to the first term, investors with high λ tend to earn lower markups since they

have stable marginal valuations that do not fluctuate much in response to changes in asset

holding and hedging need. On the other hand, they earn a premium that is increasing in

trade size. Thus, in equilibrium, if trade sizes are large enough, the second term dominates

and fast investors earn higher markups. If trade sizes are small enough, the first term

dominates and fast investors earn lower markups. Consequently, my model rationalizes both

the centrality premium and the centrality discount in intermediation markups, which are

empirically documented in distinct works.13

In equilibrium, investors who trade in high quantities are the ones who have received an

idiosyncratic shock recently. After the arrival of an idiosyncratic shock, the investor’s first

few trades mostly reflect her effort to get close to her new ideal asset position. During this

13Li and Schürhoff (2012) and Bech and Atalay (2010) find that central dealers earn higher markups in
the municipal bond market and the fed funds market, respectively. Hollifield et al. (2014) find that central
dealers earn lower markups in the market for asset-backed securities.
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period, she trades in higher quantities than she does when she is close to her ideal position.

Hence, if investors spend too much time following an idiosyncratic shock until they become

close to their new ideal position, fast investors have the opportunity to earn substantial

speed premia. Given a distribution of search intensities and a distribution of correlations,

this is determined by the aggregate level of frictions in the market. More specifically, if the

intensity of idiosyncratic shocks, α, is high, and the aggregate search effi ciency, µ, is low, this

becomes the case. Therefore, in markets with a high level of frictions, the speed premium

dominates and we observe a centrality premium in intermediation markups. In markets with

a low level of frictions, we observe a centrality discount in intermediation markups.

The next proposition shows analytically how terms of trade depend on investors’current

state.

Proposition 1 Let

θ(ρ, a, λ) = A− a+
ση
σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

denote the effective type of the investor with (ρ, a, λ). In any stationary equilibrium,

investors’marginal valuations, individual trade sizes, and transaction prices are given

by:

J2(ρ, a, λ) =
u2(ρ,A)

r
+
rγσ2

D

r̃ (λ)
θ(ρ, a, λ), (17)

q [(ρ, a, λ) , (ρ′, a′, λ′)] =

1
r̃(λ)

θ(ρ, a, λ)− 1
r̃(λ′)θ(ρ

′, a′, λ′)
1

r̃(λ)
+ 1

r̃(λ′)

(18)

and

P [(ρ, a, λ) , (ρ′, a′, λ′)] =
u2(ρ,A)

r
+ rγσ2

D

3r̃(λ)+r̃(λ′)
4r̃(λ)

θ(ρ, a, λ) + r̃(λ)+3r̃(λ′)
4r̃(λ′) θ(ρ′, a′, λ′)

r̃ (λ) + r̃ (λ′)
.

(19)

If there were no heterogeneity in ρ or in λ, the quantity traded in a bilateral meeting

would depend only on pre-trade asset positions as in Afonso and Lagos (2015). In this sense,
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my model generalizes the trading rule of Afonso and Lagos (2015) by showing that, in my

more general model, it depends also on preference parameters (r, ση, σD and α) and search

effi ciency parameters (µ, λ, λ′). This effect of the preference parameters on trading rules is a

key channel through which changes in the OTC market frictions affect trading volume, price

dispersion, and welfare, as I will show in Section 4 when I discuss the empirical implications

of the model.

The effective type of Proposition 1 is a suffi cient statistic for the effect of an investor’s

current state on her trading behavior. Indeed, the effective type of an investor is her ideal

trade quantity stemming from optimal hedging behavior. Given that investors are trying to

equalize their marginal valuations by correcting their holdings, θ represents the ideal trade

quantity. Investors would be able to trade in these quantities if their counterparties had a

constant marginal valuation of u2(ρ,A)
r
, i.e., θ(ρ, a, λ) satisfies

J2(ρ, a+ θ, λ) =
u2(ρ,A)

r
,

where u2(ρ,A)
r

is the average marginal valuation of the market. If the effective type is 0,

the investor’s marginal valuation is equal to the average marginal valuation of the market.

If she has a negative effective type, she has a lower than average marginal valuation of

the market, and vice-versa. In a bilateral match between investors (ρ, a, λ) and (ρ′, a′, λ′),

ideally the first party would want to buy θ(ρ, a, λ) units, and the second party would want

to sell −θ(ρ′, a′, λ′) units of the asset. Thus, the realized trade quantity (18) is a linear

combination of the parties’ideal trade quantities with weights being the reciprocal of their

effective discount rates. This is an important result because of its implications for the

supply of liquidity services. Because the effective discount rate is an increasing function,

the equation (18) reveals that the trade quantity reflects the trading need of the slower

counterparty to a greater extent. In this sense, fast investors provide immediacy by trading
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according to their counterparties’needs. For an investor with a very high λ, the weight

of her ideal trade quantity in the bilateral trade quantity is very small, so the disturbance

her hedging need creates for her counterparty is very small. Her counterparty is able to

buy from or sell to her in almost exactly the ideal amount. A speed premium in the price

arises because of this asymmetry in how the trade quantity reflects the trading need of the

counterparties. Having high λ increases the importance of the option value of search and

decreses the importance of the current utility flow from holding the asset. Therefore, fast

investors put less weight on their asset positions and more weight on their cash earnings

when bargaining with a counterparty. Each bilateral negotiation results in a trade size that

is more in line with the slower counterparty’s hedging need and a trade price that contains a

premium benefitting the faster counterparty. An investor can achieve the average marginal

valuation by trading with the right counterparty (or the right sequence of counterparties).

The key observation here is that if she trades with a fast counterparty, she will achieve the

average marginal valuation relatively quickly. The trade-off an investor faces is between the

fast correction of the asset position and paying a low price. That is how the speed premium

arises optimally. Figure 1 graphically presents an example of how trade quantity and price

arise as the result of a bilateral negotiation between two investors with different λs.

In Figure 1, each line represents the marginal valuation as a function of asset holding

given a certain level of correlation. The steeper line represents the marginal valuation of a

slow investor while the flatter line represents the marginal valuation of a fast investor. This

is the direct result of Equation (13). Since the effective discount rate is increasing in λ, the

slope of the marginal valuation line is lower for investors with high λ. Suppose that two

blue dots on the graph represent the inital positions of two investors. If they make contact,

the investor on top will be the buyer as she has a higher marginal valuation. Trade allows

investors to move horizontally. Green lines with arrows show the quantity and the direction

of the trade. The joint surplus of this trade is the sum of the shaded triangular areas. As
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can be seen, the impact of trade on the slow investor’s marginal valuation is higher than the

impact of trade on the fast investor’s marginal valuation. As a result, the triangle for the

fast investor (the seller) is smaller than the triangle for the slow investor (the buyer). If the

price were equal to the post-trade marginal valuation, the slow investor’s surplus would be

bigger than the fast investor’s surplus. That would violate the symmetric Nash bargaining.

For this reason, the fast investor charges a speed premium to equalize the individual trade

surpluses by extracting surplus from the slow investor. The other case, in which the fast

investor is the buyer, is symmetric. In this case, the price becomes lower than the post-trade

marginal valuation as a result of the speed premium the fast investor charges.

Figure 1. Sample trade between investors with different search intensities

An advantage of this setup is that the speed premium arises solely due to the differences

in search intensity. In reality, fast investors might be more sophisticated and have higher

bargaining power, and this might give rise to additional premia in prices. However, I show
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that the speed premium arises even when there is no asymmetry in terms of bargaining

power.

3.3.2 The joint distribution of types, holdings, and search intensities

For simplicity, I assume that the distribution of correlations has a continuous support. In

this case, the equilibrium conditional distributions of asset holdings have densities. This

assumption is actually not necessary for the full characterization of the equilibrium distribu-

tion, but it simplifies the presentation of Proposition 2 as an intermediate step. Since I have

an explicit expression for trade sizes, I can eliminate indicator functions in Equation (7).

Writing the system of steady-state equations in terms of conditional pdfs φρ,λ(a), I derive

the following proposition:

Proposition 2 In any stationary equilibrium, the conditional pdf φρ,λ(a) of asset holdings

satisfies the system

(α + 2µλ)φρ,λ (a) = α

1∫
−1

φρ′,λ (a) dF (ρ′)

+

1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
da′dF (ρ′) dΨ (λ′) , (20)

for all (ρ, a, λ) ∈ supp(Φ);
∞∫
−∞

φρ,λ(a)da = 1 (21)

for all λ ∈ supp(Ψ) and ρ ∈ supp(F ); and

1∫
0

1∫
−1

∞∫
−∞

aφρ,λ(a)dadF (ρ)dΨ (λ) = A, (22)
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where

C [(ρ, λ) , (ρ′, λ′)] ≡ r̃ (λ′)
ση
σD

(
ρ− ρ

r̃ (λ) + α
− ρ′ − ρ
r̃ (λ′) + α

)
−
[
r̃ (λ′)

r̃ (λ)
− 1

]
A. (23)

Equation (21) implies that φρ,λ(a) is a pdf. Equation (22) is the market-clearing condi-

tion. Equation (20) has the usual steady-state interpretation. The first term represents

the outflow due to idiosyncratic shocks and trade. The second and third terms repre-

sent the inflow due to idiosyncratic shocks and the inflow due to trade, respectively. The

last term is an "adjusted" convolution (i.e., a convolution after an appropriate change of

variable) since any investor of type (ρ, a′, λ) can become one of type (ρ, a, λ) if she meets

the right counterparty. The right counterparty in this context means an investor of type

(ρ′, a
(

1 + r̃(λ′)
r̃(λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)] , λ′). Proposition 1 immediately implies that the

post-trade type of the first investor will be (ρ, a, λ), and, hence, she will create inflow. Since

the convolution term complicates the computation of the distribution function, I will make

use of Fourier transform.14 I follow the definition of Bracewell (2000) for the Fourier trans-

form:

ĝ(z) =

∞∫
−∞

e−i2πxzg (x) dx,

where ĝ(.) is the Fourier transform of the function g (.).

Let φ̂ρ,λ(.) be the Fourier transform of the equilibrium conditional pdf φρ,λ(.). Then the

Fourier transform of the equations (20)-(22) are, respectively:

14Following Duffi e and Manso (2007); Duffi e, Malamud, and Manso (2009), Duffi e, Giroux, and Manso
(2010), Andrei and Cujean (2014), and Cujean and Praz (2015) also made use of convolution for distributions
in the context of search and matching models.
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0 = − (α + 2µλ) φ̂ρ,λ (z) + α

1∫
−1

φ̂ρ′,λ (z) dF (ρ′) (24)

+

1∫
0

1∫
−1

2µλ
λ′

Λ
e
i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)
r̃(λ) φ̂ρ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
dF (ρ′) dΨ (λ′)

for all λ ∈ supp(Ψ), ρ ∈ supp(F ) and for all z ∈ R;

φ̂ρ,λ(0) = 1 (25)

for all λ ∈ supp(Ψ) and ρ ∈ supp(F ); and

1∫
0

1∫
−1

φ̂
′
ρ,λ(0)dF (ρ) dΨ (λ) = −i2πA. (26)

The system (24)-(26) cannot be solved in closed form. However, it facilitates the calcu-

lation of the moments which are derivatives of the transform, with respect to z, at z = 0.

Thus, the system allows me to derive a recursive characterization of the moments of the

equilibrium conditional distribution.

Proposition 3 The following system characterizes all moments of the equilibrium condi-

tional distributions of asset holdings:
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(α + 2µλ)Eφ [an | ρ, λ] = αEφ [an|λ]

+
∑

j1+j2+j3=n

 n

j1, j2, j3

Eφ [aj2 | ρ, λ]


∑
k1+k2+k3=j1

 j1

k1, k2, k3

( ση
σD

)k1+k2

(
− ρ

r̃ (λ) + α

)k1

 1∫
0

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n (r̃ (λ′))

k1+k2

(
1

r̃ (λ′) + α

)k2

(D (λ, λ′))
k3 Eφ

[
aj3ρk2 | λ′

]
dΨ (λ′)

]}
(27)

for all λ ∈ supp(Ψ), ρ ∈ supp(F ) and for all z ∈ R; and

Eφ [a | λ] = A (28)

for all λ ∈ supp(Ψ); where

D (λ, λ′) ≡
(
r̃ (λ′)

r̃ (λ)
− 1

)[
A+

ση
σD

r̃ (λ′) r̃ (λ)

(r̃ (λ) + α) (r̃ (λ′) + α)
ρ

]
. (29)

I use this characterization to analyze various dimensions of aggregate market liquidity,

such as expected prices, average trade sizes, price dispersion, and welfare.

3.4 Constrained ineffi ciency

In this subsection, I investigate whether the fully decentralized market structure with unre-

stricted holdings is able to reallocate the assets effi cienctly. I take the frictions as given and

ask how a benevolent social planner would choose the quantity of assets transfered condi-

tional on a contact. I define social welfare as the discounted sum of the utility flows of all

investors,
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W =

∞∫
0

e−rt


1∫
0

∞∫
−∞

1∫
−1

u (ρ, a) Φt (dρ, da, dλ)

 dt. (30)

Any transfer of the numéraire good from one investor to another does not enter W because

of quasi-linear preferences. The planner maximizes W with respect to the time path for

the state variables, Φt (ρ, a, λ), and controls, q∗t [(ρ, a, λ) , (ρ′, a′, λ′)], subject to the laws of

motion for these state variables and to the feasibility condition of asset reallocation,

q∗t [(ρ, a, λ) , (ρ′, a′, λ′)] + q∗t [(ρ′, a′, λ′) , (ρ, a, λ)] = 0, (31)

which also results in the imposition that the solution does not depend on the identities or

"names" of investors. The planner’s current-value Hamiltonian can be written as

L =

1∫
0

∞∫
−∞

1∫
−1

u (ρ, a) Φ (dρ, da, dλ)

+ α

1∫
−1

1∫
0

∞∫
−∞

1∫
−1

(ϑ (ρ′, a, λ)− ϑ (ρ, a, λ)) Φ (dρ, da, dλ) dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ
{ϑ (ρ, a+ q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− ϑ (ρ, a, λ)

+ϑ (ρ′, a′ − q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− ϑ (ρ′, a′, λ′)}Φ (dρ, da, dλ) Φ (dρ′, da′, dλ′) ,

where ϑ (ρ, a, λ) denotes the current-value co-state variable associated with Φ (ρ, a, λ). In an

optimum, the ODEs for the co-state variables are
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rϑ (ρ, a, λ)−
.

ϑ (ρ, a, λ) = u (ρ, a) + α

1∫
−1

(ϑ (ρ′, a, λ)− ϑ (ρ, a, λ)) dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ
{ϑ (ρ, a+ q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− ϑ (ρ, a, λ)

+ϑ (ρ′, a′ − q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− ϑ (ρ′, a′, λ′)}Φ (dρ′, da′, dλ′)

s.t.

ϑ2 (ρ, a+ q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ) = ϑ2 (ρ′, a′ − q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′) .

It is easy to check that the planner’s optimality conditions do not coincide with the

equilibrium conditions. More specifically, the comparison with Equation (10) reveals that

the planner’s optimality conditions and the equilibrium conditions would be identical if there

was not 1/2 in front of the matching rate in the equilibrium condition. This difference is due

to a hold-up problem typical of ex post bargaining environments. This might seem surprising

at first glance because Nash bargaining chooses the effi cient trade for each bilateral match.

The root cause of ineffi ciency is the price impact. When negotiating for a trade quantity,

investors recognize the fact that their trades will also create a price impact in the future

and that the price impact is increasing in the surplus that those future trades generate.

Consequently, at the margin, investors tend to avoid taking extreme positions which would

probably lead to large price impacts on future trades.

The solution method for the planner’s problem is exactly the same as the solution method

I used for equilibrium. In the end, the difference between the planner’s solution and the

equilibrium solution boils down to the use of different effective discount rates. The effective

discount rate that the benevolent social planner would assign to investors with λ solves the
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functional equation

r̃∗ (λ) = r +

1∫
0

2µλ
λ′

Λ

r̃∗ (λ′)

r̃∗ (λ) + r̃∗ (λ′)
dΨ(λ′). (32)

In the Appendix, I show that r̃∗ (λ) /r̃ (λ) is increasing in λ, implying that fast investors’

effective discount rates are distorted to a greater extent. In other words, in equilibrium,

fast investors provide immediacy but not as much as the social planner would like them to

provide. The quantities chosen by the planner are given by

q∗ [(ρ, a, λ) , (ρ′, a′, λ′)] =

ση
σD

(
ρ′−ρ

r̃∗(λ′)+α −
ρ−ρ

r̃∗(λ)+α

)
+
(
a′−A
r̃∗(λ′) −

a−A
r̃∗(λ)

)
1

r̃∗(λ)
+ 1

r̃∗(λ′)

. (33)

Therefore, the allocation implied by the planner’s choices solves the following system of

Fourier transforms:

0 = − (α + 2µλ) φ̂
∗
ρ,λ (z) + α

1∫
−1

φ̂
∗
ρ′,λ (z) dF (ρ′) (34)

+

1∫
0

1∫
−1

2µλ
λ′

Λ
e
i2πC

∗
[(ρ,λ),(ρ′,λ′)] z

1+
r̃∗(λ′)
r̃∗(λ) φ̂

∗
ρ,λ

(
z

1 + r̃∗(λ′)
r̃∗(λ)

)
φ̂
∗
ρ′,λ′

(
z

1 + r̃∗(λ′)
r̃∗(λ)

)
dF (ρ′) dΨ (λ′)

for all λ ∈ supp(Ψ), ρ ∈ supp(F ) and for all z ∈ R;

φ̂
∗
ρ,λ(0) = 1 (35)

for all λ ∈ supp(Ψ) and ρ ∈ supp(F ); and

1∫
0

1∫
−1

(
φ̂
∗
ρ,λ

)′
(0)dF (ρ) dΨ (λ) = −i2πA, (36)
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where

C
∗

[(ρ, λ) , (ρ′, λ′)] ≡ r̃∗ (λ′)
ση
σD

(
ρ− ρ

r̃∗ (λ) + α
− ρ′ − ρ
r̃∗ (λ′) + α

)
−
[
r̃∗ (λ′)

r̃∗ (λ)
− 1

]
A. (37)

4 Assessing the model’s implications

4.1 Average holdings, trade sizes and prices

Using the result of Proposition 3, I derive the average asset holdings, trade sizes, and prices

of investors of type (ρ, λ). The results are summarized in the following corollary:

Corollary 1 The average asset holdings, trade sizes and prices of investors of type (ρ, λ)

are given by:

Eφ [a | ρ, λ] =
α

α + 2 (r̃ (λ)− r)A+
2 (r̃ (λ)− r)

α + 2 (r̃ (λ)− r)

[
A− ση

σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

]
, (38)

Eφ [q | ρ, λ] =
α

α + 2 (r̃ (λ)− r)

[
− r̃ (λ)− r

µλ

ση
σD

r̃ (λ)

r̃ (λ) + α
(ρ− ρ)

]
, (39)

Eφ [P | ρ, λ] = PW − α

α + 2 (r̃ (λ)− r)

[
(ρ− ρ)

rγσDση
r̃ (λ) + α

(
3

4
− r̃ (λ)− r

2µλ

)]
. (40)

The implication of equation (38) is intuitive: The average holding is a decreasing function

of correlation ρ. As ρ increases, the hedging benefit of the asset decreases and investors hold

less of it. The investor with average correlation holds the per capita supply on average. There

are two reasons behind the deviation of average OTC holdings from Walrasian holdings

which are derived in Section 3.2: Intensive and extensive margin effects. To understand

the intensive margin effect, I first define the "desired OTC holding" as the holding which

equates the investor’s marginal valuation to the average marginal valuation of the market.

The desired OTC holding of an investor of type (ρ, λ) is A − ση
σD

r̃(λ)
r̃(λ)+α

(ρ− ρ). This shows
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the distortion of investors’decisions on the intensive margin, i.e., the desired OTC holding

is different from the optimal Walrasian holding. More specifically, the coeffi cient of current

correlation in the desired holding is ση
σD

r̃(λ)
r̃(λ)+α

instead of ση
σD
. Investors put less weight on

their current correlation by scaling down the Walrasian weight as previously shown by the

partially centralized models of Gârleanu (2009) and Lagos and Rocheteau (2009). This is

because investors want to hedge against the risk of being stuck with undesirable positions for

long periods upon the arrival of an idiosyncratic shock. They achieve this specific hedging

by distorting their decisions on the intensive margin. To understand the extensive margin

effect, note that, in equilibrium, we observe investors who have recently become of type

(ρ, λ) but have not had the chance to interact with other investors. On average, these

investors hold A, due to the i.i.d. and non-persistence of correlation shocks. Equation (38)

shows that the average OTC holding is a linear combination of the desired OTC holding

and A. Using this interpretation, the fraction α
α+2(r̃(λ)−r) can be broadly considered to be a

measure of the distortion on the extensive margin. When µ is finite, this fraction is bigger

than 0, and this creates the second source of the deviation from Walrasian holding. Hence,

investors’average asset positions are less extreme than the Walrasian position because of

the intensive and extensive margin effects. This analysis also implies that fast investors hold

more extreme positions (exhibiting larger deviation from A) than slow investors on average

for two reasons. First, since they are able to trade often, their desired asset positions are

more extreme. Second, they are exposed to lower distortion on the extensive margin so that

their positions are relatively closer to the desired position.

From equation (39), we see that the average trade size is a decreasing function of corre-

lation ρ. The investor with average correlation has 0 net volume on average. Investors with

higher correlations are net sellers, and investors with lower correlations are net buyers on

average. Average individual trade sizes are also less extreme compared to Walrasian indi-

vidual trade sizes, since investors trade less aggressively by putting a lower weight on their
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current correlation.

Equation (40) reveals that the average price is a decreasing function of correlation ρ. The

investor with average correlation faces the Walrasian price on average. Investors with higher

correlations face lower prices than the Walrasian price, and investors with lower correlations

face higher prices than the Walrasian price. Expected sellers trade at lower prices, and

expected buyers trade at higher prices because their need to buy or sell is reflected in the

transaction price through the bargaining process. In other words, investors with a stronger

need to trade, i.e., with high |ρ|, trade at less favorable terms. This implication is consistent

with empirical evidence in Ashcraft and Duffi e (2007) in the federal funds market.

To sum up, the overall pricing implications of my model come from the decisions on the

intensive margin: Investors’average asset positions are less extreme as they put less weight

on their current valuation and more weight on their future expected valuation for the asset,

compared to the frictionless case. In other words, net suppliers of the asset supply less than

the Walrasian market, and net demanders of the asset demand less. However, the overall

effect on the aggregate demand is zero, and the mean of the equilibrium price distribution

is equal to the Walrasian price.15 Therefore, my model complements the results of the

existing purely decentralized markets model by showing that, once portfolio restrictions are

eliminated, the pricing impact of search frictions is low. This result is consistent with the

findings of illiquid market models such as Gârleanu (2009) and transaction cost models such

as Constantinides (1986). These papers show that infrequent trading and high transaction

costs have a first-order effect on investors’asset positions, but only a second-order effect on

prices, due to the investors’ability to adjust their asset positions. My model demonstrates

that a similar intuition carries over to decentralized markets when there are no restrictions
15This result is expected to depend on the quadratic specification of u(ρ, a). Indeed, the average price is

unaffected by frictions since the marginal utility flow is linear in type and asset position. On the other hand,
a more general intuition is highlighted here: The asset demands of different type of investors are affected
differently. Hence, the aggregate demand does not have to be affected significantly.
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on holdings.

4.2 Dispersion of marginal valuations and asset positions

Using the result of Proposition 3 evaluated at n = 2, I obtain a linear system which pins

down the conditional variance of asset positions, varφ [a|λ], for all λ ∈ {λ1, ..., λN}. I also

derive an equation which relates varφ [a|λ] to the conditional variance of marginal valuations,

varφ [J2 (ρ, a, λ) |λ]. This analysis leads to the following corollary:

Corollary 2 The conditional variance of marginal valuations, varφ [J2 (ρ, a, λ) |λ], is de-

creasing in λ. The conditional variance of asset holdings, varφ [a|λ], is increasing in

λ.

This corollary establishes the lower variability of marginal valuations for fast investors.

The dispersion of marginal valuations among the investors with the same λ stems from the

difference in the current hedging need or current asset position. In other words, it stems

from the effect of the current marginal utility flow on marginal valuations. As fast investors

discount their current marginal utility flow using a higher effective discount rate, we observe

lower dispersion in their marginal valuation. This is true even though dispersion created by

asset positions is bigger for fast investors. Therefore, for investors who are trying to correct

their holdings, fast investors become the natural counterparty since their marginal valuations

are always close to the average marginal valuation.

Proposition 1 implies that fast investors trade aggressively according to their counter-

parties’needs. When they meet a buyer, they sell a lot. When they meet a seller, they

buy a lot. This is optimal for fast investors: Deviating from the desired position is less of

a concern for them as they have higher effective discount rates. As a result of this, fast

investors’positions exhibit large volatility. Figure 2 shows it graphically. At time 0, a fast

and a slow investor start trading with the same correlation ρ = −0.19809 < ρ = −0.16, i.e.,
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both of them have higher taste for the asset than the market average. Thus, on average,

both of them maintain a position bigger than the supply A = 8, 740. We see that the average

position of the fast investor is more extereme, which is consistent with our discussion in the

last section. As time passes, the two investors bump into other investors randomly chosen

from the equilibrium distribution. As anticipated, the fast investor’s holding exhibits higher

volatility.

Figure 2. Sample path of asset holdings for two investors with different

search intensities

Figure 3 demonstrates the effect of fast investors’volatile inventories on the cross-sectional

distribution of asset holdings. The conditional distributions of asset positions for two classes

of investors are considered. Both classes have the same correlation type of −1. Thus, these

investors are the ones with highest exogenous valuation for the asset. The graph reveals

the bimodal structure of both distributions. This stems from the fact that investors with

holdings distorted on the extensive margin and investors with average correct holdings create
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different groups. In the example, investors with holdings distorted on the extensive margin

create a group around A = 8, 740. Slow investors’density is higher around A because the

expected period until a trade opportunity after an idiosyncratic shock is higher for them. The

second group reflects the fact that the desired holding is different for fast and slow investors.

Although both investors like the asset, fast investors hold a higher average position because

of the intensive margin effect of the frictions. In addition, we see that fast investors’positions

exhibit larger dispersion. This is due to the higher volatility in their positions.

Figure 3. Sample equilibrium conditional distribution of asset holdings

for two classes of investors with the same correlation but different

search intensities

These results about main intermediation providers holding large and volatile asset posi-

tions in equilibrium have important implications for the effects of a section of the Dodd-Frank

Act, often referred to as "the Volcker Rule," which disallows proprietary trading by banks
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and their affi liates. Some forms of proprietary trading are exempted from the Volcker rule,

such as those related to market making or hedging. As the equilibrium of my model reveals,

even in a stationary world without speculative trading, fast investors hold extreme positions

as a result of their optimal hedging behavior, and very volatile positions as a result of mar-

ket making. Detecting proprieatry trading, which is unrelated to hedging or market making,

based on the fluctuations in asset positions would be a very diffi cult and possibly infeasible

task for regulators. Consequently, banks would perceive that they might face a regulatory

sanction due to the imperfections of the criteria and metrics that were proposed to detect

non-market-making proprietary trading. This would possibly reduce their incentive to pro-

vide liquidity. Hence, the elimination of excessive risk-taking by fast investors might come

with a reduction in liquidity provision and in the overall quality of risk-sharing as well. In

Section 4.5, I will analyze possible scenarios regarding this issue.

4.3 Trading volume

Figure 4 shows the decomposition of individual instantaneous expected trading volume as-

suming that all investors have the same λ. As the net and gross trading volume, I report

2µλ |Eθ′ [q (θ, θ′) | θ]| and 2µλEθ′ [ |q (θ, θ′)| | θ], respectively.16 Note that, when everyone has

the same λ, the sole determinants of trade quantity are the effective types of the trading par-

ties. I label the difference between gross and net trading volume as intermediation volume as

it is caused by simultaneous buying and selling instead of fundamental trading. Consistent

with the findings of Afonso and Lagos (2015), Atkeson et al. (2015), and Hugonnier et al.

(2014), investors with average marginal valuations tend to specialize in intermediation. Their

incentive for rebalancing holdings is low. Thus, they engage mostly in simultaneous buying

and selling since it leads to profit due to equilibrium price dispersion. However, investors

16The characterization of the equilibrium distribution in Proposition 3 allows for the calculation of the
usual moments, but not the absolute moments. Due to this technical diffi culty, I calculate Eθ′ [

∣∣q (θ, θ′)∣∣ | θ]
numerically only.
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with very high or very low marginal valuations engage very little in intermediation as they

are mostly concerned with correcting their holding.

Figure 4. Individual expected instantaneous gross trading volume,

net trading volume, and intermediation volume

Since my model features investor heterogeneity together with the unrestricted holdings,

it offers a richer explanation of the relation between the investor heterogeneity and the

intermediation behavior. Endogenous intermediation models with {0, 1} holding such as

Hugonnier et al. (2014) and Shen et al. (2015) show that investors with average exogenous

valuations specialize as intermediaries. My model offers an alternative explanation with an

additional dimension as endogenous asset holding appears to be an important determinant

of the marginal valuations. When asset holding is endogenous, having the average marginal

valuation means holding the "correct" amount of assets, rather than having the average

exogenous valuation. Indeed, as can be seen in Figure 5, any investor with any exogenous
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valuation can be an intermediary if her holding is "correct". In other words, in my setup with

endogenous holdings, intermediaries might be “low valuation-low holding" (red), “average

valuation-average holding" (blue), or “high valuation-high holding" (orange) investors.

Figure 5. Individual expected instantaneous intermediation volume

as a function of asset holding

When I introduce heterogeneity in search intensities, heterogeneity is created in inter-

mediation activity, even controlling for the level of marginal valuation. Fast investors in-

termediate more due to the effective discount rate channel (see Figure 6). Each bilateral

negotiation results in a trade size that is more in line with the slower counterparty’s hedging

need, and a trade price that contains a speed premium benefitting the faster counterparty.

It is true that fast investors engage in higher simultaneous buying and selling activity due

to the higher intensity of matching with counterparties. However, the effective discount rate

channel leads to an increase in the intermediation level above that direct effect. Since fast
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investors trade according to their counterparties’hedging needs, they provide more interme-

diation per matching.

Figure 6. Individual expected instantaneous intermediation volume and intermediation

volume per matching rate for investors with different search intensities

4.4 An analytical example

In order to derive analytical comparative statics, I focus on a special case of the model with

a two-type distribution of search effi ciencies. The following lemma provides the closed-form

formula for the effective discount rates of the two types of investors.

Lemma 2 Suppose the support of the distribution, Ψ, is {λs, λf}, where λf > λs and ψf

denotes the fraction of investors with λf . Then

r̃ (λf ) =


−(r+µΛ

2 )+(1−ψf )
(
r+

µE[λ2]
4Λ

)
+(1−ψf )

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )

1−2ψf
if ψf 6= 1

2

lim
ψf →

1
2

∂
∂ψf

(r+µΛ
2 )−(1−ψf )

r+µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )


2

if ψf = 1
2
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and

r̃ (λs) =


r+µΛ

2
−ψf

(
r+

µE[λ2]
4Λ

)
−ψf

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )

1−2ψf
if ψf 6= 1

2

lim
ψf →

1
2

∂
∂ψf

−(r+µΛ
2 )+ψf

(
r+

µE[λ2]
4Λ

)
+ψf

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )


2

if ψf = 1
2
.

Plugging the effective discount rates given by Lemma 2 into the formulas in Corollary 1,

I obtain average equilibrium objects in closed form. Then, I plot some comparative statics

graphs.

Figure 7. Average net trade quantities as a function of the fraction of fast investors

When we analyze the average net trade quantity (39), we see that there are competing

forces. On the one hand, the fast investors with holdings distorted on the extensive margin

have high net trade quantities because of liquidity provision incentives and more aggressive

trading. The liquidity provision incentive stems from the difference in search intensities.17

When two buyers with the same correlation type but different search intensities meet, the

17For an arbitrary distribution of search intensities, the behavior of r̃(λ)−r
µλ is not clear. However, for the

two-type distribution, this object is higher for the fast investor.
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fast investor will provide liquidity to the slow investor by buying or selling the asset. The

more aggressive trading is due to the fact that the high search intensities make the investor

less afraid of being stuck with an undesirable position in the future. On the other hand,

high search intensity reduces the average net trade quantity by reducing the distortion on

the extensive margin. In the two-type case, the latter effect dominates and the average net

trade quantity of fast investors is lower. Figure 7 shows the comparative statics with respect

to the fraction of fast investors.

Figure 8. Average prices as a function of the fraction of fast investors

When we look at the average price (40), we see that it is a decreasing function of cor-

relation ρ. The group of investors with the correct holding on average faces the Walrasian

price on average. Investors with misallocated holdings face lower prices than the Walrasian

price if they have high correlation types, and face higher prices if they have low correlation

types. In other words, investors with a stronger need to trade, i.e., with high |ρ|, trade at

less favorable terms. We see that the investor’s λ affects the deviation term from the Wal-

rasian price through three channels. First, since the measure of distortion on the extensive

margin is lower for high λ investors, a high fraction of them trade at the Walrasian price
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on average. Second, since their marginal valuation does not depend much on their current

marginal utility flow, their need to trade is reflected by the price to a lesser extent. Finally,

there is the effect of the speed premium. Because of these three factors, high λ investors’

average trade price is closer to the Walrasian price, while the average trade price of low λ

investors deviates a lot. Figure 8 shows the comparative statics with respect to the fraction

of fast investors in the two-type case. In the example, the Walrasian price is 100. As the

fraction of fast investors increases, both buyers’and sellers’average price becomes closer

to the Walrasian price, reflecting the increase in liquidity. As overall liquidity increases,

the average speed premium, reflected by the difference between the slow and fast investors’

average price, decreases. This is intuitive because when there are more fast traders in the

market, slow traders’outside option is closer to the average marginal valuation of the market,

lowering the trade surplus, and, in turn the speed premium. In other words, fast investors

are able to charge higher speed premia when they only constitute a concentrated, small part

of the market.

4.5 A numerical example

In this section, I present a numerical example of my model to capture the heterogeneity

among intermediaries observed in the secondary market for municipal bonds, a typical ex-

ample of OTC markets. The purpose of this exercise is to illustrate that, once I calibrate the

model to match certain features of the municipal bond market, the model generates quan-

titatively meaningful results in terms of trade sizes and the relationship between centrality

and intermediation markups. Table 1 shows the parameter values chosen for the baseline

calibration.

Since the preference structure of my model is same as that of Duffi e et al. (2007), I follow

them in setting the discount rate to 5% and the risk aversion parameter to 0.01. I normalize
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the asset supply to A = 8, 740 so that the average equilibrium price is Eφ [P ] = 100.18 The

expected asset payoff, mD = 5.12, and the volatility of asset payoff, σD = 1.63, are chosen to

match the average yearly excess return ofmD/Eφ [P ]−r = 0.12% and the standard deviation

of yearly returns of σD/Eφ [P ] = 1.63% (Green, Hollifield & Schürhoff, 2007).

Table 1: Parameter values

Parameter Value

Discount rate r 0.05

Risk aversion γ 0.01

Expected asset payoff mD 5.12

Volatility of asset payoff σD 1.63

Volatility of background risk ση 88000

Asset supply A 8740

Aggregate search effi ciency µ 500

Number of search effi ciency types I 50

Search effi ciencies λi β−1
(0.0625,0.625)

(0.05 + 0.90 [i− 1] /I)

Intensity of idiosyncratic shocks α 0.125

Number of correlation types J 10

Correlation types ρj −1 + 2β−1
(2000,3000)

([j − 1] /J)

β−1
(α,β)

(x) refers to the inverse cumulative function of a beta distribution with

an alpha parameter of α and a beta parameter of β.

The aggregate search effi ciency, µ = 500, implies a transaction frequency µΛ
250

= 0.117

per day, which is in the range of 0.04 − 0.12 reported by Green et al. (2007). Since my

model features a continuum of investors, the expected number of links (degree centrality)

and the expected number of trades coincide. I target the size-weighted degree centralities

to capture the fact that the network of trade is not random although matching is random.

Hence, any given distribution Ψ of search intensities implies a certain distribution of degree

centralities. I choose Ψ to match roughly the empirical degree centrality distribution of

18When I scale up (down) mD and σD, and scale down (up) A by the same constant, all equilibrium
objects I calculate for my numerical exercise stay the same. That is, if {q, P,Φ (ρ, a, λ)} is an equilibrium
when the asset supply is A, the expected asset payoff is mD and the asset payoff volatility is σD, then, for
any k > 0,

{
q
k , kP,

1
kΦ (ρ, ka, λ)

}
is an equilibrium when the asset supply is A

k , the expected asset payoff is
kmD, and the asset payoff volatility is kσD.
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the municipal bonds market that Li and Schürhoff (2012) report. Figure 9a shows the

distribution of degree centralities implied by the calibrated distribution of search intensities,

and the empirical distribution of degree centralities.

Figure 9. (a) CDF of degree centralities (b) CDF of normalized interdealer trade sizes

In the calibration of the idiosyncratic shocks in my numerical example, I target the asset

turnover and the relative distribution of interdealer trade sizes observed in the municipal

bond market. In the model, to identify "dealers," I calculate, for any investor, the inter-

mediation volume as a fraction of her gross volume. I label as dealers the investors with

the highest intermediation share whose trade among themselves accounts for 21.5% of all

trades.19 The chosen intensity of idiosyncratic shocks, α = 0.125, leads to a turnover of

59.1% per year. The counterpart in the data is around 56% per year (Green et al., 2007).

The calibration target for the distribution of of correlation types, F , is the empirical distrib-

ution of relative interdealer trade sizes. Figure 9b shows the trade size distribution generated

by the calibrated distribution of correlation types, and the trade size distribution reported

19Li and Schürhoff (2012) document that around 21.5% of trades in the municipal bond market take place
between dealers.
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by the Fact Book of the Municipal Securities Rulemaking Board (2008).20

Finally, for the calibration of the volatility of background risk, ση, I target the average in-

termediation markup during the 1998-2012 period, which Li and Schürhoff (2012) measured.

Calculation of the theoretical counterpart of the markups and related moments is described

in Appendix D. In my numerical example, the average intermediation markup turns out to

be 2.41%, which is in the ballpark of the empirical range of 1.85%− 2.08%.

Figure 10. (a) CDF of normalized customer purchase sizes (b) CDF of normalized customer sale sizes

To test the quantitative success of the model, I look at the OLS beta of markup on

degree centrality and the distribution of relative trade sizes for trades between dealers and

customers. The regressions of Li and Schürhoff (2012) imply that the OLS beta of markup

on degree centrality would be between 0.01 − 0.012.21 The OLS beta of markup on degree

20The trade sizes are unbounded in my model. In the normalization, I choose the trade size that corre-
sponds to the 99th percentile as the maximum trade size.
21Li and Schürhoff (2012) run regressions of the markup on an aggregated network measure (the average

of various network measures, such as degree centrality, size-weighted degree centrality, cliquishness etc.) and
report a beta of about 0.5. Their aggregated network measure and degree centrality are almost perfectly
correlated. Their aggregated network measure ranges between −1.721 and 18.868, with a standard deviation
of 2.248, while the size-weighted degree centrality ranges between 0 and 4164, with a standard deviation of
93.79. Assuming perfect correlation between their aggregated network measure and the degree centrality,
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centrality in my numerical example is 0.0067, which is smaller than but comparable to the

counterpart measured in the data. Figure 10 compares the trade sizes generated by the

model and observed in the municipal bond market based on the Fact Book of the Municipal

Securities Rulemaking Board (2008).

Figure 11. Impact of the search intensity of the main intermediaries

on aggregate outcomes

a normalization based on range and standard deviation implies that the OLS beta of markup on degree
centrality should be between 0.01 and 0.012.
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I conclude this section with comparative statics concerning the dealer’s search intensity.

In this exercise, I multiply the dealers’search intensity by a scaling factor while I keep the

customers’search intensity fixed. I look at how various aggregate moments, welfare, and the

distribution of welfare among different investors change. Then I explain how this exercise

informs the debate on the Volcker rule. Figure 11 shows the related graphs of aggregate

outcomes.

When we look at Figure 11, we first notice that the asset turnover increses with dealers’

search intensity. This is a result of the interaction of three distinct effects. First, the

total matching rate of a fraction of market participants increases, and this leads to a direct

increase in the trading volume. Second, the effective discount rates increase, leading to less

cautious trading behavior on the intensive margin, and, hence, creating a positive impact

on trading volume. On the other hand, the higher matching rate decreases the distortion

on the extensive margin and reduces the need to trade in equilibrium. The first two effects

dominate, and the trading volume and, in turn, the asset turnover increase. When we look

at the intermediation volume as a fraction total volume, we see that the model predicts

an increase. Since the trading volume increases and the distortion on the extensive margin

decreases at the same, most of the trades take place for intermediation purposes. To examine

the effect of the increase in the dealers’ search intensity on the intermediation share of

different investors, I run the following regression:

intermediation sharei
average intermediation share

= βnsl (degree centralityi) + εnsli .

This measures the relative importance of fast investors as suppliers of liquidity. βnsl is

positive, implying that fast investors have higher intermediation shares. An increase in the

main intermediaries’search intensities widens the difference in the effective discount rates

between slow and fast investors. Then we observe the further concentration of intermediation
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activity in the hands of those main intermediaries. Thus, the model predicts an increase in

βnsl. On the other hand, the increase in the dealers’search intensity leads to a decline in

the intermediation markups due to lower price dispersion caused by higher effi ciency of asset

allocation. Again, to understand the effect of this change across investors, I run the following

regression:
markupi

average markup
= βnpl (degree centralityi) + εnpli .

This measures the centrality premium or discount in the intermediation markups. The pos-

itive βnpl demonstrates that fast investors earn higher markups. As dealers’search intensity

increases, the competition among dealers becomes stronger and reduces βnpl. When we look

at the percentage welfare loss graph, we see that the welfare loss caused by OTC market

frictions is around 4% of the constrained effi cient welfare in consumption equivalent terms.

The reduction in the welfare loss stems from the improvement in the effi ciency of asset allo-

cation. However, the impact on the distribution of welfare among different investors is not

trivial. Figure 12 shows that decomposition.

The fundamental sources of welfare in this environment are the allocation of dividend

risk and the hedging benefit. Therefore, by assuming that the alloaction of assets at date

0 is the steady-state equilibrium allocation, the welfare that an investor with λ creates by

participating in this market is defined as

W (λ) =

∞∫
0

e−rt


∞∫
−∞

1∫
−1

u (ρ, a) Φλ,t (dρ, da)

 dt =
1

r

∞∫
−∞

1∫
−1

u (ρ, a) Φλ (dρ, da) .

Derivations in Appendix E imply that
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W (λ) =
mD

r
A− γσ2

D

2
A2 − γσDσηρA
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ηvar [ρ]
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r̃ (λ) + α

(
2 (r̃ (λ)− r)

α + 2 (r̃ (λ)− r) −
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2

r̃ (λ)

r̃ (λ) + α

)
− γσ2

D

2

r

r̃ (λ)

(
varφ [θ|λ]− 2α

α + 2 (r̃ (λ)− r)

(
ση
σD

r̃ (λ)

r̃ (λ) + α

)2

var [ρ]

)
.

From this equation, we see that a change in the dealers’ search intensity affects the

welfare through the last two terms (terms on the last two lines). The first term captures the

hedging benefit net of the cost of fundamental risk-bearing. The second term captures the

discounted value of the additional cost of (or reduction in) risk-bearing due to heterogeneity

in search intensities. This second term stems from the expected deviation of an investor from

her desired asset position throughout her lifetime due to trades with investors with different

effective discount rates. In a market where every investor has the same λ, this term would

be 0. Numerical analysis (see Figure 12) shows that there exists a λ such that the second

term is negative (positive) for λ < λ (λ > λ). In other words, the second term creates a cost

for fast investors while it creates a benefit for slow investors.

As the dealers’search intensity increases, the effective discount rates increase. The in-

crease in the effective discount rates reduces the distortion on both the extensive and inten-

sive margins. When we look at the first term, we see that the improvement on the extensive

margin increases welfare due to an increased hedging benefit, while the improvement on the

intensive margin decreases welfare due to increased risk-taking. A simple first derivative

analysis implies that, for the first term, the extensive margin dominates and we observe an

increase in the first term. The impact on the second term is more complicated since different

forces dominate for different investors. A key observation is that the instantaneous matching

rate of slow investors stays the same while the dealers’matching rate increases. Therefore,
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the reduction in the distortion on the extensive margin for slow investors is not strong enough.

On the other hand, conditional on a matching, the probability of trading with a fast investor

increases. The widening of the difference between the effective discount rates of fast and slow

investors increases the extent to which the trade quantities reflect the slow investors’hedging

need. Therefore, for slow investors, the reduction in the distortion on the intensive margin

is substantial, and this is the dominant impact. In other words, although slow investors

get close to their desired position faster, their more aggressive trading behavior leaves them

with more undesirable positions after an idiosyncratic shock. Consequently, the increase in

dealers’search intensity leads to an increase in the risk-taking due to heterogeneity, and we

observe an increase in the second term for slow investors. For fast investors, the story is the

exact opposite. Since their instantaneous matching rate increases, there is a strong reduction

in the distortion on the extensive margin for fast investors. Therefore, this dominates the

effect of the reduction in the distortion on the intensive margin, and we observe a decrease

in the second term for fast investors. Therefore, slow investors’benefit from the second term

decreases, while fast investors’cost from the second term decreases, leading to a flattening

of the second term along the λ dimension. Combined with the first term, this results in a

welfare loss for suffi ciently slow investors and a welfare gain for others.22

Summing over the welfare created by all investors, the social welfare is

22Note that the welfare creation and the actual welfare received by an individual are not the same thing,
due to the transfer of the numéraire among investors when they trade. Accordingly, an additional reason why
slow investors’welfare decreases is that fast investors are able to extract higher surplus from slow investors
through the speed premium. This can be seen in Figure 12. Although we observe a reduction in welfare
creation for only a small fraction of slow investors, a higher fraction of investors have lower welfare as the
dealers’search intensity increases.
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The impact of the increase in the dealers’search intensity on the social welfare can also be

understood from the tension between the last two terms. The first term increases in response

to an increase in the dealers’search intensity, as it increases for all λs. My numerical analysis

shows that the second term also increases because the flatenning of the second term is higher

for slow investors. If the first term is dominant, the welfare increases. The relative sensitivity

of the first term to effective discount rates is higher when α is high and µ is low. Therefore,

in markets with a positive relationship between centrality and markups (i.e., in markets

with high α and low µ), the first term turns out to be dominant, while the second term is

dominant in markets with a negative relationship between centrality and markups.

These results have implications for the Volcker Rule. Duffi e (2012b) says that "the market

making is inherently a form of proprietary trading. A market maker acquires a position from

its client at one price and then lays off the position over time at an uncertain average price"

(p. 3). He continues by arguing that banning proprietary trading would effectively make

offering market making unattractively risky for banks. Following his arguments, I assume

that, under the Volcker Rule, the key intermediaries’incentive to act as intermediaries would

be reduced. Accordingly, in my model, I capture this in a stylized way by decreasing the

dealers’measure of specialists. As discussed above, my model predicts different welfare

impacts for different markets. While it would be beneficial for markets with a negative
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relation between centrality and markups (e.g. the market for asset-backed securities), it

would be harmful for markets with a positive relation between centrality and markups (e.g.

the municipal bond market).

Figure 12. Impact of the search intensity of the main intermediaries

on the distribution of welfare
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5 Conclusion

OTC markets played a significant role in the recent 2007-2008 financial crisis, as derivative

securities, collateralized debt obligations, repurchase agreements, and many other assets

are traded OTC. Accordingly, understanding the functioning of these markets, detecting

potential ineffi ciencies, and proposing regulatory action have become a focus of attention for

economists and policy makers. This paper contributes to a fast-growing body of literature

on OTC markets by presenting a search-and-bargaining model à la Duffi e et al. (2005). I

complement this literature by considering investors who can differ in their search intensities,

time-varying hedging needs, and asset holdings. By means of its rich heterogeneity, my model

accounts for many observed trading patterns in OTC markets. Investors with higher search

intensities (i.e., fast investors) arise endogenously as the main intermediation providers.

Then, as observed in the data, they hold large and volatile inventories. Depending on the

level of frictions, they can earn higher or lower markups than slow investors. Both are

observed in real-life OTC markets. The model’s insight into the relation between frictions

and the sign of the relation between centrality and markups has further implications in

terms of welfare. The consistency between the model outcomes and the positive facts gives

us confidence with regard to trusting these welfare implications. Using parametric examples

of my model, I show that the regulations that aim to limit the role of central intermediaries,

such as the Volcker rule, would have adverse welfare impact on markets with high levels of

frictions, while they would be beneficial in markets with low levels of frictions.

This paper leads to several avenues for future research. First, I consider a stationary

equilibrium in this paper. Intermediation becomes especially important at times of financial

distress. To this end, I plan to study the transitional dynamics of endogenous intermediation,

following an aggregate liquidity shock. The dynamics of the price and supply of liquidity

along the recovery path could inform the debate on optimal policy during crises. Second,
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this paper presents a single-asset model. I plan to analyze how endogenous intermediation

patterns change in a setup with multiple assets. This analysis could lead to interesting

dynamics of liquidity across markets, as maintaining high inventory in one market would

limit an intermediary’s ability to provide liquidity in other markets. Finally, this paper is

totally agnostic about why we observe an ex ante heterogeneity in search intensity. Given

that this search heterogeneity is an important source of intermediation, studying a model

with endogenous search intensities would be a worthwhile way to explore whether the size

of the intermediary sector is socially effi cient.
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Appendix A. Microfoundations for the mean-variance

utility flow

Assume that there are two assets. One asset is riskless and pays interest at an exogenously

given rate r. This asset is traded in a continuous frictionless market. The other asset is

risky, traded over the counter, and is in supply denoted by A. This asset pays a cumulative

dividend:

dDt = mDdt+ σDdBt, (A.1)

where Bt is a standard Brownian motion.

I borrow the specification of preferences and trading motives from Duffi e et al. (2007) and

Gârleanu (2009). Investors are subjective expected utility maximizers with CARA felicity

functions. Investors’coeffi cient of absolute risk aversion and time preference rate are denoted

by γ and r respectively.

Investor i has cumulative income process ηi:

dηit = mηdt+ σηdB
i
t, (A.2)

where

dBi
t = ρitdBt +

√
1− (ρit)

2
dZi

t . (A.3)

The standard Brownian motion Zi
t is independent of Bt, and ρit captures the instantaneous

correlation between the payoffof the risky asset and the income of investor i. This correlation

is time-varying and heterogeneous across investors. Thus, this heterogeneity creates the

gains from trade. In the context of different markets, this heterogeneity can be interpreted

in different ways such as hedging demands or liquidity needs.

I assume that the correlation between an investor’s income and the payoff of risky asset
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is itself stochastic. Stochastic processes that govern idiosyncratic shocks and trade are as

described in Section 2.

Let V (W, ρ, a, λ) be the maximum attainable continuation utility of investor of type

(ρ, a, λ) with current wealth W . It satisfies

V (W, ρ, a, λ) = sup
c
Et

−∞∫
t

e−r(s−t)e−γcsds | Wt = W , ρt = ρ, at = a

 , (A.4)

s.t. dWt = (rWt − ct)dt+ atdDt + dηt − P [(ρt, at, λ) , (ρ′t, a
′
t, λ
′
t)] dat

dat =

 q [(ρt, at, λ) , (ρ′t, a
′
t, λ
′
t)] if there is contact with investor (ρ′t, a

′
t, λ
′
t)

0 if no contact,
(A.5)

where {q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]} =

arg max
q,P

[V (W−qP, ρ, a+q, λ)−V (W, ρ, a, λ)]
1
2 [V (W ′+qP, ρ′, a′−q, λ′)−V (W ′, ρ′, a′, λ′)]

1
2 ,

(A.7)

s.t. V (W − qP, ρ, a+ q, λ) ≥ V (W, ρ, a, λ),

V (W ′ + qP, ρ′, a′ − q, λ′) ≥ V (W ′, ρ′, a′, λ′).

Since investors have CARA preferences, terms of trade are independent of wealth levels as I

will show later. To eliminate Ponzi-like schemes, I impose the transversality condition

lim
T→∞

e−r(T−t)Et
[
e−rγWT

]
= 0. (A.8)
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To derive the optimal rules, the technique of stochastic dynamic programming is used

following Merton (1971). Assuming suffi cient differentiability and applying Ito’s lemma for

jump-diffusion processes, the investor’s value function V (W, ρ, a, λ) satisfies the Hamilton-

Jacobi-Bellman (HJB) equation

0 = sup
c
{−e−γc + VW (W, ρ, a, λ)[rW − c+ amD +mη]

+
1

2
VWW (W, ρ, a, λ)[σ2

η + 2ρaσDση + a2σ2
D]

− rV (W, ρ, a, λ) + α

1∫
−1

[V (W, ρ′, a, λ)− V (W, ρ, a, λ)]dF (ρ′)

+

∞∫
−∞

1∫
−1

{V (W − q [(ρ, a, λ) , (ρ′, a′, λ′)]P [(ρ, a, λ) , (ρ′, a′, λ′)] , ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)

−V (W, ρ, a, λ)} 2µλ
λ′

Λ
Φ(dρ′, da′, dλ′)}. (A.9)

Following Duffi e et al. (2007), I guess that V (W, ρ, a, λ) takes the form

V (W, ρ, a) = −e−rγ(W+J(ρ,a,λ)+J) (A.10)

for some function J(ρ, a), where

J =
1

r

(
mη +

log r

γ
− 1

2
rγσ2

η

)
(A.11)

is a constant. Replacing into (A.9), I find that the optimal consumption is

c = − log r

γ
+ r(W + J(ρ, a, λ) + J).

After plugging c back into (A.9) and dividing by rγV (W, ρ, a, λ), I find that (A.9) is

62



satisfied iff

rJ(ρ, a, λ) = u(ρ, a) + α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ)]

rγ
dF (ρ′)

+

∞∫
−∞

1∫
−1

1− e−rγ{J(ρ,a+q[(ρ,a,λ),(ρ′,a′,λ′)],λ)−J(ρ,a,λ)−q[(ρ,a,λ),(ρ′,a′,λ′)]P [(ρ,a,λ),(ρ′,a′,λ′)]}

rγ

2µλ
λ′

Λ
Φ(dρ′, da′, dλ′). (A.12)

Terms of individual trades, q [(ρ, a, λ) , (ρ′, a′, λ′)] and P [(ρ, a, λ) , (ρ′, a′, λ′)], are deter-

mined by a Nash bargaining game with the solution given by the optimization problem (A.7).

Dividing by V (W, ρ, a, λ)
1
2V (W ′, ρ′, a′, λ′)

1
2 , (A.7) can be written as

{q [(ρ, a, λ) , (ρ′, a′, λ′)] , P [(ρ, a, λ) , (ρ′, a′, λ′)]}

= arg max
q,P

[1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ]]
1
2 [1− e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ]]

1
2 ,

s.t.

1− e−rγ[J(ρ,a+q,λ)−J(ρ,a,λ)−qP ] ≥ 0

1− e−rγ[J(ρ′,a′−q,λ′)−J(ρ′,a′,λ′)+qP ] ≥ 0.

As can be seen, terms of trade are independent of wealth levels. Solving this problem is

relatively straightforward: I set up the Lagrangian of this problem. Then using the first-order

and Kuhn-Tucker conditions, the trade size q [(ρ, a, λ) , (ρ′, a′, λ′)] solves the equation (8).

And, the transaction price P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by the equation (9) if J2(ρ, a, λ) 6=

J2(ρ′, a′, λ′); and P = J2(ρ, a, λ) if J2(ρ, a, λ) = J2(ρ′, a′, λ′). Substituting the transaction
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price into (A.12), I get

rJ(ρ, a, λ) = u(ρ, a) + α

1∫
−1

1− e−rγ[J(ρ′,a,λ)−J(ρ,a,λ′)]

rγ
dF (ρ′)

+

∞∫
−∞

1∫
−1

1− e− rγ2 {J(ρ,a+q[(ρ,a,λ),(ρ′,a′,λ′)],λ)−J(ρ,a,λ)+J(ρ′,a′−q[(ρ,a,λ),(ρ′,a′,λ′)],λ′)−J(ρ′,a′,λ′)}

rγ

2µλ
λ′

Λ
Φ(dρ′, da′, dλ′), (A.13)

subject to (8).

Equation (A.13) cannot be solved in closed-form. Consequently, following Gârleanu

(2009), I use the linearization 1−e−rγx
rγ

≈ x that ignores terms of order higher than 1 in

[J(ρ′, a, λ) − J(ρ, a, λ)]. The same approximation is also used by Biais (1993), Duffi e et

al. (2007), Vayanos and Weill (2008), Praz (2014) and Cujean and Praz (2015). Economic

meaning of this approximation is that I assume investors are risk averse towards diffusion

risks while they are risk neutral towards jump risks. The assumption does not suppress the

impact of risk aversion as investors’preferences feature the fundamental risk-return trade-off

associated with asset holdings. It only linearizes the preferences of investors over jumps in

the continuation values created by trade or idiosyncratic shocks. The approximation yields

the following lemma.

Lemma 3 Fix parameters γ, σD and ση, and let σD = σD
√
γ/γ and ση = ση

√
γ/γ. In any

stationary equilibrium, investors’value functions solve the following HJB equation in

the limit as γ goes to zero:
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rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

µλ
λ′

Λ
{J(ρ, a+ q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ)− J(ρ, a, λ)

+J(ρ′, a′ − q [(ρ, a, λ) , (ρ′, a′, λ′)] , λ′)− J(ρ′, a′, λ′)}Φ(dρ′, da′, dλ′), (A.14)

subject to (8).

Ignoring the bars on γ, σD and ση, the problem is equivalent to the one with the reduced-form

mean-variance utility flow.

Appendix B. Proofs

B.1 Proof of Theorem 1 and Proposition 2

After substituting the solution of Nash bargaining, the investors’problem is

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ

[
max
q

{
J(ρ, a+ q, λ)− J(ρ, a, λ)

2

+
J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)

2

}]
Φ(dρ′, da′, dλ′).

Conjecture that

J(ρ, a, λ) = D (λ) + E (λ) ρ+ F (λ) a+G (λ) a2 +H (λ) ρa+M (λ) ρ2, (B.1)
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implying

J2(ρ, a, λ) = F (λ) + 2G (λ) a+H (λ) ρ (B.2)

and

J22(ρ, a, λ) = 2G (λ) . (B.3)

Therefore, the value function can be written as

J(ρ, a, λ) = −G (λ) a2 + J2(ρ, a, λ)a+D (λ) + E (λ) ρ+M (λ) ρ2. (B.4)

q [(ρ, a, λ) , (ρ′, a′, λ′)] is given by (8). Using the conjecture,

F (λ) + 2G (λ) a+ 2G (λ) q +H (λ) ρ = F (λ′) + 2G (λ′) a′ − 2G (λ′) q +H (λ′) ρ′.

Therefore,

q =
J2(ρ′, a′, λ′)− J2(ρ, a, λ)

2 (G (λ) +G (λ′))
.

Substituting back inside the conjectured marginal valuation, the post-trade marginal valua-

tion is

J2(ρ, a+ q, λ) = J2(ρ′, a′ − q, λ′) = G (λ)
J2(ρ′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(ρ, a, λ)

G (λ) +G (λ′)
. (B.5)

P [(ρ, a, λ) , (ρ′, a′, λ′)] is given by (9). Using the fact that J(ρ, a, λ) is quadratic in a, a

second-order Taylor expansion shows that:

J(ρ, a+ q, λ)− J(ρ, a, λ) = J2(ρ, a+ q, λ)q −G (λ) q2.
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Then, Equation (9) implies

P =
q

2
(G (λ′)−G (λ)) + J2(ρ, a+ q, λ).

Hence, the terms of trade satisfy the system

q =
J2(ρ′, a′, λ′)− J2(ρ, a, λ)

2 (G (λ) +G (λ′))
, (B.6a)

P =
q

2
(G (λ′)−G (λ)) +G (λ)

J2(ρ′, a′, λ′)

G (λ) +G (λ′)
+G (λ′)

J2(ρ, a, λ)

G (λ) +G (λ′)
. (B.6b)

Using (B.5) and (B.6a), the implied trade surplus is

J(ρ, a+ q, λ)− J(ρ, a, λ) + J(ρ′, a′ − q, λ′)− J(ρ′, a′, λ′)

= −G (λ)
(
2aq + q2

)
+ J2(ρ, a+ q, λ) (a+ q)− J2(ρ, a, λ)a

−G (λ′)
(
−2a′q + q2

)
+ J2(ρ′, a′ − q, λ′) (a′ − q)− J2(ρ′, a′, λ′)a′

= −(J2(ρ′, a′, λ′)− J2(ρ, a, λ))
2

4 (G (λ) +G (λ′))
.

Rewrite the investors’problem by substituting the trade surplus implied by the Nash

bargaining solution:

rJ(ρ, a, λ) = amD −
1

2
rγ
(
a2σ2

D + 2ρaσDση
)

+ α

1∫
−1

[J(ρ′, a, λ)− J(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ

{
−(J2(ρ′, a′, λ′)− J2(ρ, a, λ))

2

8 (G (λ) +G (λ′))

}
Φ(dρ′, da′, dλ′). (B.7)

Therefore, my conjectured value function is verified after substituting the Nash bargaining
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solution. The marginal valuation satisfies the flow Bellman equation:

rJ2(ρ, a, λ) = mD − rγ
(
aσ2

D + ρσDση
)

+ α

1∫
−1

[J2(ρ′, a, λ)− J2(ρ, a, λ)]dF (ρ′)

+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ

{
J2(ρ′, a′, λ′)− J2(ρ, a, λ)

4 (G (λ) +G (λ′))
2G (λ)

}
Φ(dρ′, da′, dλ′). (B.8)

Taking all terms which contain J2(ρ, a, λ) to the LHS,

r + α +

1∫
0

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
dΨ(λ′)

 J2(ρ, a, λ) = mD − rγ
(
aσ2

D + ρσDση
)

+α

1∫
−1

J2(ρ′, a, λ)dF (ρ′) +

1∫
0

∞∫
−∞

1∫
−1

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
J2(ρ′, a′, λ′)Φ(dρ′, da′, dλ′).

Substitute the conjectured marginal valuation and match coeffi cients:

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) ρ)

= mD − rγ
(
aσ2

D + ρσDση
)

+α

1∫
−1

[F (λ) + 2G (λ) a+H (λ) ρ′] dF (ρ′) + (r̃ (λ)− r) J2 (λ) ,

where

r̃ (λ) ≡ r +

1∫
0

µλ
λ′

Λ

G (λ)

G (λ) +G (λ′)
dΨ(λ′),

J2 (λ) ≡

1∫
0

∞∫
−∞

1∫
−1

µλλ
′

Λ
G(λ)

G(λ)+G(λ′)J2(ρ′, a′, λ′)Φ(dρ′, da′, dλ′)

r̃ (λ)− r ,
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where r̃ (λ) is the effective discount rate of an investor with λ. Equivalently,

(α + r̃ (λ)) (F (λ) + 2G (λ) a+H (λ) ρ)

= mD − rγ
(
aσ2

D + ρσDση
)

+ α (F (λ) + 2G (λ) a+H (λ) ρ) + (r̃ (λ)− r) J2 (λ) .

Then, undetermined coeffi cients solve the system:

r̃ (λ)F (λ) = mD + αH (λ) ρ+ (r̃ (λ)− r) J2 (λ) , (B.9)

r̃ (λ) 2G (λ) = −rγσ2
D, (B.10)

(α + r̃ (λ))H (λ) = −rγσDση. (B.11)

Using the resulting G from the matched coeffi cients, the definition of r̃ (λ) implies

r̃ (λ) = r +

1∫
0

µλ
λ′

Λ

−rγσ2
D

2r̃(λ)

−rγσ2
D

2r̃(λ)
+
−rγσ2

D

2r̃(λ′)

dΨ(λ′).

Then, r̃ (λ) satisfies the recursive functional equation:

r̃ (λ) = r +

1∫
0

µλ
λ′

λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′). (B.13)

Using the matched coeffi cients,

J2 (ρ, a, λ) =
mD − rγσ2

Da− rγσDση
r̃(λ)ρ+αρ
r̃(λ)+α

+ (r̃ (λ)− r) J2 (λ)

r̃ (λ)
, (B.14)
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where

J2 (λ) =

1∫
0

∞∫
−∞

1∫
−1

µλλ
′

Λ
r̃(λ′)

r̃(λ)+r̃(λ′)J2(ρ′, a′, λ′)Φ(dρ′, da′, dλ′)

r̃ (λ)− r . (B.15)

To complete the proof of Theorem 1, I need to show that J2 (λ) = u2(ρ,A)
r
. Using (B.14):

J2 (λ) =

1∫
0

∞∫
−∞

1∫
−1

µλλ
′

Λ
r̃(λ′)

r̃(λ)+r̃(λ′)

[
mD−rγσ2

Da
′−rγσDση

r̃(λ′)ρ′+αρ
r̃(λ′)+α

+(r̃(λ′)−r)J2(λ′)

r̃(λ′)

]
Φ(dρ′, da′, dλ′)

r̃ (λ)− r .

After cancellations, and using the fact that measure of specialists is independent of idiosyn-

cratic correlation shocks,

(r̃ (λ)− r) J2 (λ) =

1∫
0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)

(
mD − rγσDσηρ− rγσ2

DEφ [a′ | λ′] + (r̃ (λ′)− r) J2 (λ′)
)
dΨ(λ′).

(B.16)

This equation reveals that the expected contribution of the market to an investor’s post-

trade marginal valuation depends on the mean of equilibrium holdings Eφ [a′ | λ′] conditional

on measure of trading specialists. It will be determined when I derive the first moment of

equilibrium distribution. Thus, the proof of Theorem 1 will be complete after the proof of

Proposition 2. The following lemma constitutes the starting point of the proof of Proposition

2.
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Lemma 4 Given J2 (λ), the conditional pdf φρλ (a) of asset holdings satisfies the system

(α + 2µλ)φρ,λ (a) = α

1∫
−1

φρ′,λ (a) dF (ρ′)

+

1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − m̃D (λ, λ′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′)

)
da′dF (ρ′) dΨ (λ′) ,

where

m̃D (λ, λ′) ≡ r̃ (λ′)− r̃ (λ)

rγσ2
Dr̃ (λ)

mD,

C̃ [(ρ, λ) , (ρ′, λ′)] ≡ ση
σD

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
− r̃ (λ′) ρ′ + αρ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡ r̃ (λ′)

rγσ2
Dr̃ (λ)

(r̃ (λ)− r) J2 (λ)− 1

rγσ2
D

(r̃ (λ′)− r) J2 (λ′) .

With further simplification,

(α + 2µλ)φρ,λ (a) = α

1∫
−1

φρ′,λ (a) dF (ρ′)

+

1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a′)

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
da′dF (ρ′) dΨ (λ′) ,

where

C [(ρ, λ) , (ρ′, λ′)] ≡ −m̃D (λ, λ′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′) .

Taking the Fourier transform of the steady-state condition above, the first equation of

71



the proposition 2 is proven. The second equation comes from the fact that φρ,λ (a) is a pdf.

And, the third equation is implied by market clearing. When I derive C̃ [(ρ, λ) , (ρ′, λ′)], the

proof will be complete.

The first derivative of the Fourier transform evaluated at z = 0 is

(α + 2µλ) φ̂
′
ρ,λ (0) = α

1∫
−1

φ̂
′
ρ′,λ (0) dF (ρ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

φ̂
′
ρ,λ (0) dF (ρ′) dΨ (λ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ
i2πC [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)
r̃(λ)

dF (ρ′) dΨ (λ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

φ̂
′
ρ′,λ′ (0) dF (ρ′) dΨ (λ′) .

Therefore, the first moments satisfy

(α + 2µλ)Eφ [a | ρ, λ] = α

1∫
−1

Eφ [a | ρ′, λ] dF (ρ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

Eφ [a | ρ, λ] dF (ρ′) dΨ (λ′)

−
1∫
0

1∫
−1

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)
r̃(λ)

dF (ρ′) dΨ (λ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

Eφ [a | ρ′, λ′] dF (ρ′) dΨ (λ′) ,
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(α + 2µλ)Eφ [a | ρ, λ] = αEφ [a | λ] + Eφ [a | ρ, λ] 2 (r + µλ− r̃ (λ))

−
1∫
0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)
r̃(λ)

dΨ (λ′)

+

1∫
0

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

Eφ [a | λ′] dΨ (λ′) ,

(α + 2 (r̃ (λ)− r))Eφ [a | ρ, λ] = αEφ [a | λ]

−
1∫
0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)
r̃(λ)

dΨ (λ′)

+

1∫
0

2µλ
λ′

Λ

1

1 + r̃(λ′)
r̃(λ)

Eφ [a | λ′] dΨ (λ′) ,

where the second term is

1∫
0

2µλ
λ′

Λ
C [(ρ, λ) , (ρ′, λ′)]

1

1 + r̃(λ′)
r̃(λ)

dΨ (λ′)

=

1∫
0

2µλ
λ′

Λ

1

rγσ2
D

[
−
(
r̃ (λ′)

r̃ (λ)
− 1

)
mD + rγσDση

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
− ρ
)

− r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ) + (r̃ (λ′)− r) J2 (λ′)

]
1

1 + r̃(λ′)
r̃(λ)

dΨ (λ′) .

Take expectation over ρ, and substitute out C [(ρ, λ) , (ρ′, λ′)]:

(r̃ (λ)− r)Eφ [a | λ] = −
1∫
0

µλ
λ′

Λ

1

rγσ2
D

[
−
(
r̃ (λ′)

r̃ (λ)
− 1

)
(mD − rγσDσηρ)

− r̃ (λ′)

r̃ (λ)
(r̃ (λ)− r) J2 (λ) + (r̃ (λ′)− r) J2 (λ′)

]
r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ (λ′)

+

1∫
0

µλ
λ′

Λ

r̃ (λ)

r̃ (λ) + r̃ (λ′)
Eφ [a | λ′] dΨ (λ′) .
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And note that the equation (B.16) also connects J2 (λ′) and Eφ [a | λ′] as a result of opti-

mality:

(r̃ (λ)− r) J2 (λ) = (mD − rγσDσηρ)

(
r + µλ

r̃ (λ)
− 1

)

+

1∫
0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)

(
−rγσ2

DEφ [a′ | λ′] + (r̃ (λ′)− r) J2 (λ′)
)
dΨ(λ′).

Thus, the last two equations combined with the market-clearing condition

1∫
0

Eφ [a′ | λ′] dΨ(λ′) = A

pin down Eφ [a | λ] and J2 (λ) for all λ ∈supp(Ψ). Since λ takes values on a finite set, it

is easy to verify that the conditions imply a non-singular linear system with the unique

solution:

Eφ [a | λ] = A,

J2 (λ) =
mD

r
− γσDσηρ− γσ2

DA.

This completes the proof of Theorem 1. Using this solution,

J̃ (λ, λ′) = − r̃ (λ′)− r̃ (λ)

γσ2
Dr̃ (λ)

(mD

r
− γσDσηρ− γσ2

DA
)
,

which implies

C [(ρ, λ) , (ρ′, λ′)] = r̃ (λ′)
ση
σD

(
ρ− ρ

r̃ (λ) + α
− ρ′ − ρ
r̃ (λ′) + α

)
−
(
r̃ (λ′)

r̃ (λ)
− 1

)
A,

and the proof Proposition 2 is also complete.
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Proposition 1 can be derived as a by-product of the steps in this proof. More precisely,

(17) is derived by substituting J2 (λ) into (B.14). Using the resulting formula for marginal

valuation and (B.10), equations (B.6a) and (B.6b) imply (18) and (19), respectively.

Using the marginal valuation in Proposition 1, application of the method of undetermined

coeffi cients to (B.7) pins down all the coeffi cients in (B.1):

(r + α)M (λ) =
rγσ2

η

2 (r̃ (λ) + α)2 r̃ (λ) (r̃ (λ)− r) ,

(r + α)E (λ) = H (λ)

1∫
0

2µλ
λ′

Λ

F (λ′) + 2G (λ′)A+H (λ′) ρ− F (λ)

4 (G (λ) +G (λ′))
dΨ (λ′) ,

rD (λ) = α
(
E (λ) ρ+M (λ) ρ2

)
+

1∫
0

∞∫
−∞

1∫
−1

2µλ
λ′

Λ

{
− [F (λ′) + 2G (λ′) a′ +H (λ′) ρ′ − F (λ)]

2

8 (G (λ) +G (λ′))

}
Φ(dρ′, da′, dλ′).

Therefore, the value function is available in closed form up to effective discount rates r̃ (λ).

B.2 Proof of Lemma 4

Assuming Φλ(ρ, a) is the joint cdf of correlations and asset holdings conditional on search

intensity, rearrangement of the equation (7) yields
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0 = −αΦλ∗(ρ
∗, a∗) + α

a∗∫
−∞

1∫
−1

Φλ∗(dρ, da)F (ρ∗)

− 2µλ∗

Λ

a∗∫
−∞

ρ∗∫
−1

 1∫
0

∞∫
−∞

1∫
−1

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]≥a∗−a}Φλ′(dρ
′, da′)dΨ

(
λ′
)Φλ∗(dρ, da)

+
2µλ∗

Λ

∞∫
a∗

ρ∗∫
−1

 1∫
0

∞∫
−∞

1∫
−1

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]<a∗−a}Φλ′(dρ
′, da′)dΨ

(
λ′
)Φλ∗(dρ, da)

for all λ∗ ∈supp(Ψ). For simplicity, I assume that the distribution of correlations and the

equilibrium conditional distribution of asset holdings have densities. This assumption is

actually never used but simplifies the presentation of the results. I write the above condition

in terms of conditional pdfs, by letting φρ,λ(a) denote the conditional pdf of asset holdings

by investors with correlation ρ and search intensity λ:

0 = −α
ρ∗∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ) + α

1∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ)F (ρ∗)

− 2µλ∗

Λ

ρ∗∫
−1

a∗∫
−∞

 1∫
0

1∫
−1

∞∫
−∞

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]≥a∗−a}φρ′,λ′(a′)da′dF (ρ′)dΨ
(
λ′
)φρ,λ∗(a)dadF (ρ)

+
2µλ∗

Λ

ρ∗∫
−1

∞∫
a∗

 1∫
0

1∫
−1

∞∫
−∞

λ′I{q[(ρ,a,λ∗),(ρ′,a′,λ′)]<a∗−a}φρ′,λ′(a′)da′dF (ρ′)dΨ
(
λ′
)φρ,λ∗(a)dadF (ρ).

Using the expression for trade sizes implied by (B.6a), I can get rid of indicator functions

inside the integrals, using appropriate bounds:
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0 = −α
ρ∗∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ) + αF (ρ∗)

1∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ)

− 2µλ∗

Λ

ρ∗∫
−1

a∗∫
−∞

 1∫
0

1∫
−1

∞∫
ξ[(ρ,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ,λ∗(a)dadF (ρ)

+
2µλ∗

Λ

ρ∗∫
−1

∞∫
a∗

 1∫
0

1∫
−1

ξ[(ρ,a,λ∗),(ρ′,a′,λ′)]∫
−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ,λ∗(a)dadF (ρ),

where

ξ [(ρ, a, λ) , (ρ′, a′, λ′)] = a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ − m̃D (λ, λ′) + C̃ [(ρ, λ) , (ρ′, λ′)]− J̃ (λ, λ′) ,

m̃D (λ, λ′) ≡ r̃ (λ′)− r̃ (λ)

rγσ2
Dr̃ (λ)

mD,

C̃ [(ρ, λ) , (ρ′, λ′)] ≡ ση
σD

(
r̃ (λ′)

r̃ (λ)

r̃ (λ) ρ+ αρ

r̃ (λ) + α
− r̃ (λ′) ρ′ + αρ

r̃ (λ′) + α

)
,

J̃ (λ, λ′) ≡ r̃ (λ′)

rγσ2
Dr̃ (λ)

(r̃ (λ)− r) J2 (λ)− 1

rγσ2
D

(r̃ (λ′)− r) J2 (λ′) .

Since this equality holds for any (ρ∗, a∗, λ∗), one can take derivative of the both sides with

respect to ρ∗ using Leibniz rule whenever necessary:

0 = −αf(ρ∗)

a∗∫
−∞

φρ∗,λ∗(a)da+ αf(ρ∗)

1∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ)

− 2µλ∗

Λ
f(ρ∗)

a∗∫
−∞

 1∫
0

1∫
−1

∞∫
ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da

+
2µλ∗

Λ
f(ρ∗)

∞∫
a∗

 1∫
0

1∫
−1

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]∫
−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da.
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After cancellations,

0 = −α
a∗∫
−∞

φρ∗,λ∗(a)da+ α

1∫
−1

a∗∫
−∞

φρ,λ∗(a)dadF (ρ)

− 2µλ∗

Λ

a∗∫
−∞

 1∫
0

1∫
−1

∞∫
ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da

+
2µλ∗

Λ

∞∫
a∗

 1∫
0

1∫
−1

ξ[(ρ∗,a,λ∗),(ρ′,a′,λ′)]∫
−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da.

Similarly, take derivative with respect to a∗ using Leibniz rule whenever necessary:

0 = −αφρ∗,λ∗(a∗) + α

1∫
−1

φρ,λ∗(a
∗)dF (ρ)

− 2µλ∗

Λ

a∗∫
−∞

−(1 +
r̃ (λ′)

r̃ (λ)

) 1∫
0

1∫
−1

λ′φρ′,λ′(ξ [(ρ∗, a∗, λ∗) , (ρ′, a′, λ′)])dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da

− 2µλ∗

Λ

a∗∫
−∞

 1∫
0

1∫
−1

∞∫
ξ[(ρ∗,a∗,λ∗),(ρ′,a′,λ′)]

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a∗)
+

2µλ∗

Λ

∞∫
a∗

(1 +
r̃ (λ′)

r̃ (λ)

) 1∫
0

1∫
−1

λ′φρ′,λ′(ξ [(ρ∗, a∗, λ∗) , (ρ′, a′, λ′)])dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a)da

− 2µλ∗

Λ

 1∫
0

1∫
−1

ξ[(ρ∗,a∗,λ∗),(ρ′,a′,λ′)]∫
−∞

λ′φρ′,λ′(a
′)da′dF (ρ′)dΨ (λ′)

φρ∗,λ∗(a∗).
After simplification, the Lemma is derived.
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B.3 Proof of Lemma 1

Restate the equation (14):

r̃ (λ) = r +

1∫
0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′),

where r̃ (λ) > 0 for all λ ∈supp(Ψ) from the strict concavity of the value function. The

functional equation, in turn, implies that r̃ (λ) > r for all λ ∈supp(Ψ). First, let’s establish

the existence and uniqueness of the solution of this functional equation. Rewrite:

r̃ (λ) = r +

1∫
0

µλ
λ′

Λ
dΨ(λ′)− r̃ (λ)

1∫
0

µλ
λ′

Λ

1

r̃ (λ) + r̃ (λ′)
dΨ(λ′).

Rearrangement yields an alternative representation of the functional equation:

r̃ (λ) =
r + µλ

1 +
1∫
0

µλλ
′

Λ
1

r̃(λ)+r̃(λ′)dΨ(λ′)

.

Since I assume a finite support, let supp(Ψ) = {λ1, λ2, ..., λN} with ψn denoting the

fraction of investors with λn for all n ∈ {1, 2, ..., N}. And let r̃n = r̃ (λn) for all n ∈

{1, 2, ..., N}. Define the mapping T : [0,∞)N → [0,∞)N such that

T r̃n = max

r,
r + µλn

1 +
N∑
k=1

µλn
λk
Λ

1
r̃n+r̃k

ψk

 .

[0,∞)N with the usual sup norm constitutes a real Banach space. And, the set [0,∞)N

is a strongly minihedral cone itself (see Krasnosel’skǐı, 1964). Thus, the solution of the

functional equation is a non-zero fixed point of T on a strongly minihedral cone. Theorem
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4.1 of Krasnosel’skǐı(1964) shows that every monotone mapping on a strongly minihedral

cone has at least one non-zero fixed point. It is easy to verify the monotonicity of T , i.e.

r̃A, r̃B ∈ [0,∞)N and r̃A ≤ r̃B imply T r̃A ≤ T r̃B. Hence, the existence of the solution of the

functional equation is established.

To show the uniqueness, I follow Theorem 6.3 of Krasnosel’skǐı(1964), which states that

every u0-concave and monotone mapping on a cone has at most one non-zero fixed point.

Therefore, it suffi ces to show that T is u0-concave. By the definition of u0-concavity, T is

u0-concave if there exists a non-zero element u0 ∈ [0,∞)N such that for an arbitrary non-zero

r̃ ∈ [0,∞)N there exist bl, bu ∈ R++ such that

blu0 ≤ T r̃ ≤ buu0,

and if for every t0 ∈ (0, 1) there exists η (t0) ∈ R++ such that

T (t0r̃) ≥ (1 + η (t0)) t0T r̃.

It can be easily verified from the definition of T that these conditions are satisfied for u0 =

(r + µ, ..., r + µ), bl = r (r + µ)−1, bu = 1, and η (t0) = (1− t0)
(
t0 + µ

2rΛ

)−1
. Hence, the

uniqueness of the solution of the functional equation is established as well.

The effective discount rate function is strictly increasing if r̃ (λ′) > r̃ (λ) for all λ ∈supp(Ψ)

and for all λ′ ∈supp(Ψ) with λ′ > λ. To obtain a contradiction, suppose there exists

λ, λ′ ∈supp(Ψ) with λ′ > λ, and r̃ (λ′) ≤ r̃ (λ). The equation (14) implies that r̃ (λ′) and
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r̃ (λ) satisfy the following equations respectively:

r̃ (λ′) = r +
µλ′

Λ

1∫
0

λ′′r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
dΨ(λ′′)

r̃ (λ) = r +
µλ

Λ

1∫
0

λ′′r̃ (λ′′)

r̃ (λ) + r̃ (λ′′)
dΨ(λ′′).

As λ′ > λ and r̃ (λ′) ≤ r̃ (λ), the RHS of the second equation is lower than the RHS of the

first equation, which implies that r̃ (λ′) > r̃ (λ); and we obtain the desired contradiction.

Hence, the effective discount rate function is strictly increasing.

To show the strict concavity of effective discount rate function, I use the following de-

finition of strict concavity for functions defined on a finite domain, adapted from Yüceer

(2002).

Definition 2 Let S ⊂ R be a discrete one-dimentional space. A function f : S → R is

strictly concave if for all x, y, z ∈ S with x < z < y,

f (z) >
y − z
y − xf (x) +

z − x
y − xf (y) .

Therefore, the effective discount rate function is strictly concave if for all λ0, λ1, λ2 ∈supp(Ψ)

with λ0 < λ2 < λ1,

r̃ (λ2) >
λ1 − λ2

λ1 − λ0

r̃ (λ0) +
λ2 − λ0

λ1 − λ0

r̃ (λ1) .

Equivalenty,
λ1 − λ2

λ2 − λ0

>
r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
.
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Using (14), and using the fact that the effective discount rate is strictly increasing,

r̃ (λ1)− r̃ (λ2)

r̃ (λ2)− r̃ (λ0)
=

1∫
0

µλ1
λ′

Λ
r̃(λ′)

r̃(λ1)+r̃(λ′)dΨ(λ′)−
1∫
0

µλ2
λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ′)dΨ(λ′)

1∫
0

µλ2
λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ′)dΨ(λ′)−
1∫
0

µλ0
λ′

Λ
r̃(λ′)

r̃(λ0)+r̃(λ′)dΨ(λ′)

<

1∫
0

µ (λ1 − λ2) λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ′)dΨ(λ′)

1∫
0

µ (λ2 − λ0) λ′

Λ
r̃(λ′)

r̃(λ2)+r̃(λ′)dΨ(λ′)

=
λ1 − λ2

λ2 − λ0

.

Hence, the effective discount rate function is strictly concave.

To derive the last property of the effective discount rate, take the expectation of the

equation (14):

1∫
0

r̃ (λ) dΨ(λ) = r +

1∫
0

1∫
0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫
0

1∫
0

µλ
λ′

Λ

r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

+
1

2

1∫
0

1∫
0

µλ
λ′

Λ

r̃ (λ)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫
0

1∫
0

µλ
λ′

Λ

r̃ (λ) + r̃ (λ′)

r̃ (λ) + r̃ (λ′)
dΨ(λ′)dΨ(λ)

= r +
1

2

1∫
0

1∫
0

µλ
λ′

Λ
dΨ(λ′)dΨ(λ)

= r +
µΛ

2
.
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B.4 Proof of Proposition 3

I first take the Fourier transform of the second line of equation (20):

∞∫
−∞

 1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a′)φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)

da′dF (ρ′) dΨ (λ′)] e−i2πazda

=

1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ

(
1 +

r̃ (λ′)

r̃ (λ)

)
φρ,λ (a′)

 ∞∫
−∞

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)
e−i2πazda

 da′dF (ρ′) dΨ (λ′)

=

1∫
0

1∫
−1

∞∫
−∞

2µλλ′

Λ
φρ,λ (a′) e

i2πz

1+
r̃(λ′)
r̃(λ)

{−a′+C[(ρ,λ),(ρ′,λ′)]}

 ∞∫
−∞

φρ′,λ′

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

)

e

−i2πz

1+
r̃(λ′)
r̃(λ)

{
a

(
1+

r̃(λ′)
r̃(λ)

)
−a′+C[(ρ,λ),(ρ′,λ′)]

}
d

(
a

(
1 +

r̃ (λ′)

r̃ (λ)

)
− a′ + C [(ρ, λ) , (ρ′, λ′)]

) da′dF (ρ′) dΨ (λ′)

=

1∫
0

1∫
−1

∞∫
−∞

2µλ
λ′

Λ
φρ,λ (a′) e

i2π{−a′+C[(ρ,λ),(ρ′,λ′)]} z

1+
r̃(λ′)
r̃(λ) φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
da′dF (ρ′) dΨ (λ′)
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=

1∫
0

1∫
−1

2µλ
λ′

Λ
φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
e
i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)
r̃(λ)

 ∞∫
−∞

φρ,λ (a′) e
−i2πa′ z

1+
r̃(λ′)
r̃(λ) da′

 dF (ρ′) dΨ (λ′)

=

1∫
0

1∫
−1

2µλ
λ′

Λ
φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
e
i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)
r̃(λ) φ̂ρ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
dF (ρ′) dΨ (λ′) .

And using the linearity and integrability of the Fourier transform, equation (24) is obtained.

To obtain equations (25) and (26), I use the identities satisfied by the Fourier transform

(see Bracewell, 2000, p. 152-154) for any function g(x)

ĝ(0) =

∞∫
−∞

g(x)dx

and

ĝ′(0) = −i2π
∞∫
−∞

xg(x)dx

respectively.

n-th conditional moment of asset holdings can be written as follows using the Fourier

transform

Eφ [an | ρ, λ] = (−i2π)−n
[
dn

dzn
φ̂ρ,λ(z)

]
z=0

.

Let’s first use equation (24) to find an expression for dn

dzn
φ̂ρ,λ(z):

(α + 2µλ)
dn

dzn
φ̂ρ,λ (z) = α

1∫
−1

dn

dzn
φ̂ρ′,λ (z) dF (ρ′)

+

1∫
0

1∫
−1

2µλ
λ′

Λ

dn

dzn

{
e
i2πC[(ρ,λ),(ρ′,λ′)] z

1+
r̃(λ′)
r̃(λ) φ̂ρ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)}
dF (ρ′) dΨ (λ′)
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For the second line, I use the following generalization of the product rule:

dn

dxn

3∏
i=1

gi(x) =
∑

j1+j2+j3=n

 n

j1, j2, j3

 3∏
i=1

dji

dxji
gi(x),

(α + 2µλ)
dn

dzn
φ̂ρ,λ (z) = α

1∫
−1

dn

dzn
φ̂ρ′,λ (z) dF (ρ′) +

1∫
0

1∫
−1

2µλ
λ′

Λ

∑
j1+j2+j3=n

 n

j1, j2, j3


dj1

dzj1
e
C[(ρ,λ),(ρ′,λ′)] i2πz

1+
r̃(λ′)
r̃(λ)

dj2

dzj2
φ̂ρ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
dj3

dzj3
φ̂ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
dF (ρ′) dΨ (λ′) ,

(α + 2µλ) φ̂
(n)

ρ,λ(z) = α

1∫
−1

φ̂
(n)

ρ′,λ(z)dF (ρ′) +

1∫
0

1∫
−1

2µλ
λ′

Λ

∑
j1+j2+j3=n

 n

j1, j2, j3


(i2πC [(ρ, λ) , (ρ′, λ′)])j1(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)ne

C[(ρ,λ),(ρ′,λ′)] i2πz

1+
r̃(λ′)
r̃(λ)

φ̂
(j2)

ρ,λ

(
z

1 + r̃(λ′)
r̃(λ)

)
φ̂

(j3)

ρ′,λ′

(
z

1 + r̃(λ′)
r̃(λ)

)
dF (ρ′) dΨ (λ′) ,

(α + 2µλ) φ̂
(n)

ρ,λ(0) = α

1∫
−1

φ̂
(n)

ρ′,λ(0)dF (ρ′) +

1∫
0

1∫
−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑
j1+j2+j3=n

 n

j1, j2, j3

{(i2πC [(ρ, λ) , (ρ′, λ′)])j1φ̂
(j2)

ρ,λ (0) φ̂
(j3)

ρ′,λ′ (0)
}
dF (ρ′) dΨ (λ′) .
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Dividing both sides by (−i2π)n:

(α + 2µλ)Eφ [an | ρ, λ] = αEφ [an|λ] +

1∫
0

1∫
−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑
j1+j2+j3=n

 n

j1, j2, j3

{(−C [(ρ, λ) , (ρ′, λ′)])j1Eφ
[
aj2 | ρ, λ

]
Eφ
[
aj3 | ρ′, λ′

]}
dF (ρ′) dΨ (λ′) .

Using the multinomial expansion of (−C [(ρ, λ) , (ρ′, λ′)])j1 :

(α + 2µλ)Eφ [an | ρ, λ] = αEφ [an|λ]

+

1∫
0

1∫
−1

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑
j1+j2+j3=n

 n

j1, j2, j3

Eφ [aj3 | ρ′, λ′]

Eφ
[
aj2 | ρ, λ

] ∑
k1+k2+k3=j1

 j1

k1, k2, k3


(
ση
σD

)k1+k2
(
−ρr̃ (λ′)

r̃ (λ) + α

)k1
(

ρ′r̃ (λ′)

r̃ (λ′) + α

)k2

D (λ, λ′)
k3 dF (ρ′) dΨ (λ′) .

(α + 2µλ)Eφ [an | ρ, λ] = αEφ [an|λ]

+

1∫
0

2µλ
λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

∑
j1+j2+j3=n

 n

j1, j2, j3

Eφ [aj2 | ρ, λ]
∑

k1+k2+k3=j1

 j1

k1, k2, k3

( ση
σD

)k1+k2

(
−ρr̃ (λ′)

r̃ (λ) + α

)k1
(

r̃ (λ′)

r̃ (λ′) + α

)k2

D (λ, λ′)
k3 Eφ

[
aj3ρk2 | λ′

]
dΨ (λ′) .
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(α + 2µλ)Eφ [an | ρ, λ] = αEφ [an|λ]

+ 2µλ
∑

j1+j2+j3=n

 n

j1, j2, j3

Eφ [aj2 | ρ, λ] ∑
k1+k2+k3=j1

 j1

k1, k2, k3


(

−ρ
r̃ (λ) + α

)k1
(
ση
σD

)k1+k2
1∫
0

λ′

Λ
(

r̃ (λ)

r̃ (λ) + r̃ (λ′)
)n

r̃ (λ′)
k1

(
r̃ (λ′)

r̃ (λ′) + α

)k2

D (λ, λ′)
k3 Eφ

[
aj3ρk2 | λ′

]
dΨ (λ′) .

Applying the law of iterated expectations, the proof is complete.

B.5 Proof of Lemma 2

Equation (14) implies the system:

r̃ (λf ) = r + µ
λfλs

Λ

r̃ (λs)

r̃ (λf ) + r̃ (λs)

(
1− ψf

)
+ µ

λ2
f

2Λ
ψf ,

r̃ (λs) = r + µ
λ2
s

2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r̃ (λf )

r̃ (λs) + r̃ (λf )
ψf .

Summing up side by side,

r̃ (λf ) + r̃ (λs) = 2r + µ
λ2
f

2Λ
ψf + µ

λ2
s

2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r̃ (λf )ψf + r̃ (λs)
(
1− ψf

)
r̃ (λs) + r̃ (λf )

.

Using the lemma 1,

r̃ (λf ) + r̃ (λs) = 2r + µ
λ2
f

2Λ
ψf + µ

λ2
s

2Λ

(
1− ψf

)
+ µ

λfλs
Λ

r + µΛ
2

r̃ (λs) + r̃ (λf )
.
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Then I get the quadratic equation

(r̃ (λf ) + r̃ (λs))
2 −

(
2r + µ

E
[
λ2
]

2Λ

)
(r̃ (λf ) + r̃ (λs))− µ

λfλs
Λ

(
r +

µΛ

2

)
= 0.

Since r̃ (λf ) , r̃ (λs) > 0, the relevant solution is

r̃ (λf ) + r̃ (λs) = r + µ
E
[
λ2
]

4Λ
+

√√√√(r + µ
E
[
λ2
]

4Λ

)2

+ µ
λfλs

Λ

(
r +

µΛ

2

)
.

Combining this with the equation implied by the lemma 1:

ψf r̃ (λf ) +
(
1− ψf

)
r̃ (λs) = r +

µΛ

2
,

I have a system of two equations in two unknowns. Equivalently, the system can be written

as

r̃ (λf )
(
1− 2ψf

)
= −

(
r +

µΛ

2

)
+
(
1− ψf

)(
r + µ

E
[
λ2
]

4Λ

)

+
(
1− ψf

)√√√√(r + µ
E
[
λ2
]

4Λ

)2

+ µ
λfλs

Λ

(
r +

µΛ

2

)
,

r̃ (λs)
(
1− 2ψf

)
= r +

µΛ

2
− ψf

r + µ
E
[
λ2
]

4Λ
+

√√√√(r + µ
E
[
λ2
]

4Λ

)2

+ µ
λfλs

Λ

(
r +

µΛ

2

) .
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When ψf 6= 1
2
, the system gives the effective discount rates immediately. When ψf = 1

2
, I

calculate the limit as ψf → 1
2
using L’Hospital. The resulting effective discount rates are

r̃ (λf ) =


−(r+µΛ

2 )+(1−ψf )
(
r+µ

E[λ2]
4Λ

)
+(1−ψf )

√(
r+µ

E[λ2]
4Λ

)2

+µ
λfλs

Λ (r+µΛ
2 )

1−2ψf
if ψf 6= 1

2

lim
ψf →

1
2

∂
∂ψf

−(r+µΛ
2 )+(1−ψf )

r+µE[λ2]
4Λ

+

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )


−2

if ψf = 1
2

and

r̃ (λs) =


r + µΛ

2
− ψf

(
r + µ

E[λ2]
4Λ

)
− ψf

√(
r + µ

E[λ2]
4Λ

)2

+ µ
λfλs

Λ

(
r + µΛ

2

)
if ψf 6= 1

2

lim
ψf →

1
2

∂
∂ψf

r+µΛ
2
−ψf

(
r+

µE[λ2]
4Λ

)
−ψf

√(
r+

µE[λ2]
4Λ

)2

+
µλfλs

Λ (r+µΛ
2 )


−2

if ψf = 1
2
.

Appendix C. Distortion of effective discount rates

To show that for λ′ > λ, r̃
∗(λ′)
r̃(λ′) >

r̃∗(λ)
r̃(λ)

, it suffi ces to show the effective discount rate function

is supermodular in µ and λ. i.e.,

r̃ (max{λ′, λ}; max{µ′, µ}) + r̃ (min{λ′, λ}; min{µ′, µ}) ≥ r̃ (λ′;µ′) + r̃ (λ;µ}) .

Since, in my analysis, µ takes on two values µ and 2µ, the only condition I need to show is

r̃ (λ′; 2µ) + r̃ (λ;µ) ≥ r̃ (λ; 2µ′) + r̃ (λ′;µ) .

for λ′ > λ. In the usual notation

r̃∗ (λ′) + r̃ (λ) ≥ r̃∗ (λ) + r̃ (λ′) .
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Equivalently,

1∫
0

2µ
λ′′

Λ

(
λ′r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
− λr̃∗ (λ′′)

r̃∗ (λ) + r̃∗ (λ′′)

)
dΨ(λ′′)

−
1∫
0

µ
λ′′

Λ

(
λ′r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
− λr̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)
dΨ(λ′′) > 0.

1∫
0

2µ
λ′′

Λ

(
λ′r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
− λr̃∗ (λ′′)

r̃∗ (λ) + r̃∗ (λ′′)

)
dΨ(λ′′)

−
1∫
0

µ
λ′′

Λ

(
λ′r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
− λr̃ (λ′′)

r̃ (λ) + r̃ (λ′′)

)
dΨ(λ′′)

>

1∫
0

2µ
λ′′

Λ

(
λ′r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
− λr̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)

)
dΨ(λ′′)

−
1∫
0

µ
λ′′

Λ

(
λ′r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
− λr̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)

)
dΨ(λ′′)

=

1∫
0

2µ
λ′′

Λ
(λ′ − λ)

r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
dΨ(λ′′)−

1∫
0

µ
λ′′

Λ
(λ′ − λ)

r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)
dΨ(λ′′)

=

1∫
0

µ
λ′′

Λ
(λ′ − λ)

(
2r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
− r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)

)
dΨ(λ′′)

=
λ′ − λ
λ′

1∫
0

µ
λ′′

Λ
λ′
(

2r̃∗ (λ′′)

r̃∗ (λ′) + r̃∗ (λ′′)
− r̃ (λ′′)

r̃ (λ′) + r̃ (λ′′)

)
dΨ(λ′′)

=
λ′ − λ
λ′

(r̃∗ (λ′)− r̃ (λ′)) > 0.
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Appendix D. Calculation of targeted moments

Consider an investor with M idiosyncratic correlation shocks between time T0 and T , e.g.,

at times T (M) = (T1, T2, ..., TM), with 0 ≤ T0 < T1 < T2 < ... < TM < T . Suppose that

the correlation type of this investor is ρm during [Tm, Tm+1) , and her search effi ciency is λ.

Then, the investor’s target asset holding for the period [Tm, Tm+1) is

a
(m)
tar = A− ση

σD

r̃ (λ)

r̃ (λ) + α
(ρm − ρ) .

And, suppose that this investor receives Nm trading opportunities between time Tm and time

Tm+1, e.g., at times t(m) =
(
t
(m)
1 , t

(m)
2 , ..., t

(m)
Nm

)
, with Tm ≤ t

(m)
1 < t

(m)
2 < ... < t

(m)
Nm

< Tm+1.

Given the initial holding a0m and a realization t
(m) ∈ [Tm, Tm+1)Nm , the time-path of the

investor’s asset holding during [Tm, Tm+1) is described by a function km : [Tm, Tm+1) → R

defined by

km (x) =



a
(m)
0 for Tm ≤ x < t

(m)
1

a
(m)
1 for t(m)

1 ≤ x < t
(m)
2

... ...

a
(m)
Nm

for t(m)
Nm
≤ x < Tm+1,

where a(m)
n is the post-trade asset holding at time t(m)

n for n = 1, ..., Nm. Given the initial

holding a(m)
0 at Tm, the realized path for an investor’s holding during [Tm, Tm+1) is completely

described by the number of contacts, Nm, the vector of contact times, t(m) ∈ [Tm, Tm+1)Nm ,

and the vector of post-trade holdings at those contact times, a(m) =
(
a

(m)
1 , a

(m)
2 , ..., a

(m)
Nm

)
∈

RNm . Given a(m)
0 and a(m), define the investor’s accumulated volume of purchases during

[Tm, Tm+1),

Vp
(
a

(m)
0 , a(m)

)
=

Nm∑
n=1

max
{
a(m)
n − a(m)

n−1, 0
}
,
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the accumulated volume of sales,

Vs
(
a

(m)
0 , a(m)

)
= −

Nm∑
n=1

min
{
a(m)
n − a(m)

n−1, 0
}
,

and the (signed) net trade,

Vn
(
a

(m)
0 , a(m)

)
= I{

a
(m)
tar ≥a

(m)
0

} min
{
Vp
(
a

(m)
0 , a(m)

)
, a

(m)
tar − a

(m)
0

}
−I{

a
(m)
tar <a

(m)
0

} min
{
Vs
(
a

(m)
0 , a(m)

)
, a

(m)
0 − a(m)

tar

}
.

Then,

X
(
a

(m)
0 , a(m)

)
= Vp

(
a

(m)
0 , a(m)

)
+ Vs

(
a

(m)
0 , a(m)

)
−
∣∣∣Vn (a(m)

0 , a(m)
)∣∣∣

measures the volume of assets that are purchased and sold by the investor for intermediation

purposes during the time interval [Tm, Tm+1). In reality, an econometrician, who observes

transaction-level data, would not be able to calculate the net trade as she could not observe

the target holding of the investor. Alternatively, she would match round-trip trades, which

in turn yield a proxy for X
(
a

(m)
0 , a(m)

)
, as Green et al. (2007) and Li and Schürhoff (2012)

did. Since I observe the target position of investors implied by my model, I am using the

target position to calculate the intermediation volume perfectly.

Similarly, I define, for the period [Tm, Tm+1), the total trading profit

Π(m) =
Nm∑
n=1

(
a(m)
n − a(m)

n−1

)
Pn,

average purchase price

P(m)
p =

(
Nm∑
n=1

max
{
a(m)
n − a(m)

n−1, 0
}
Pn

)
/Vp

(
a

(m)
0 , a(m)

)
,
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average sale price

P(m)
s =

(
−
Nm∑
n=1

min
{
a(m)
n − a(m)

n−1, 0
}
Pn

)
/Vs

(
a

(m)
0 , a(m)

)
,

and intermediation profit

Π
(m)
X = Π(m) + I{Vn(a(m)

0 ,a(m)
)
≥0
} ∣∣∣Vn (a(m)

0 , a(m)
)∣∣∣P(m)

p

− I{Vn(a(m)
0 ,a(m)

)
<0
} ∣∣∣Vn (a(m)

0 , a(m)
)∣∣∣P(m)

s .

Based on the definitions above, the intermediation markup, defined as a fraction of the

mean of the equilibrium price distribution, for the period [T0, T ) is

markup[T0,T ) =

(
M∑
m=1

Π
(m)
X

)
/

(
M∑
m=1

X
(
a

(m)
0 , a(m)

)
/2

)
/Eφ [P ] .

Appendix E. Individual welfare creation

W (λ) =

∞∫
0

e−rt


∞∫
−∞

1∫
−1

u (ρ, a) Φλ,t (dρ, da)

 dt =
1

r

∞∫
−∞

1∫
−1

u (ρ, a) Φλ (dρ, da) .

The definition of u (ρ, a) implies that

W (λ) =
mD

r
A− γσ2

D

2

(
A2 + varφ [a|λ]

)
− γσDση (ρA+ covφ [ρ, a|λ]) .
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From Proposition 3,

W (λ) =
mD

r
A− γσ2

D

2
A2 − γσDσηρA

− γσ2
D

2

(
r

r̃ (λ)
varφ [a|λ] +

r̃ (λ)− r
r̃ (λ)

(
ση
σD

r̃ (λ)

r̃ (λ) + α

)2

var [ρ]

)

+ γσ2
ηvar [ρ]

2 (r̃ (λ)− r)
α + 2 (r̃ (λ)− r)

r̃ (λ)

r̃ (λ) + α
.

By rearranging,

W (λ) =
mD

r
A− γσ2

D

2
A2 − γσDσηρA

+ γσ2
ηvar [ρ]

r̃ (λ)

r̃ (λ) + α

(
2 (r̃ (λ)− r)

α + 2 (r̃ (λ)− r) −
1

2

r̃ (λ)

r̃ (λ) + α

)
− γσ2

D

2

r

r̃ (λ)

(
varφ [a|λ]−

(
ση
σD

r̃ (λ)

r̃ (λ) + α

)2

var [ρ]

)
.

Using the definition of θ,

W (λ) =
mD

r
A− γσ2

D

2
A2 − γσDσηρA

+ γσ2
ηvar [ρ]

r̃ (λ)

r̃ (λ) + α

(
2 (r̃ (λ)− r)

α + 2 (r̃ (λ)− r) −
1

2

r̃ (λ)

r̃ (λ) + α

)
− γσ2

D

2

r

r̃ (λ)

(
varφ [θ|λ]− 2α

α + 2 (r̃ (λ)− r)

(
ση
σD

r̃ (λ)

r̃ (λ) + α

)2

var [ρ]

)
.
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CHAPTER 2

Price Dispersion and Trading Activity
during Turbulent Times

1 Introduction

I propose a search-and-bargaining model of crises in decentralized asset markets à la Duffi e,

Gârleanu and Pedersen (2005) where risk-averse investors with time-varying hedging needs

randomly contact each other and bargain bilaterally over the terms of trade including price

and quantity. The crisis is modeled as a one-time aggregate shock to uncertainty with a

random recovery. The arrival of the crisis shock leads to an increase in both the volatility of

asset payoff and the volatility of investors’background risk.

The equilibrium path for investors’valuations, terms of trade, and the distribution of

investors’positions is derived in closed form both during the crisis and during the recovery.

Having unrestricted asset positions in the model appears quite diffi cult since it leads to a

new endogenous dimension of the equilibrium objects. As trade happens bilaterally during

random contacts, there exists a non-trivial heterogeneity in investors’asset holdings, even

among the ones who are identical with respect to hedging needs. Keeping track of this

heterogeneity complicates the equilibrium computation. However, using the convolution

methods as in Chapter 1, I show that the model is fully tractable. Tractability of the model

allows me to derive natural proxies for price dispersion and trading activity.

The existence of search frictions leads to distortion in holdings on the extensive margin,

which in turn creates dispersion in marginal valuations. When each pair of buyer and seller

contact, their negotiated price depends on their current marginal valuations. This gives rise

to equilibrium price dispersion. I show that both volatility of asset payoff and volatility of
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background risk contribute to higher level of price dispersion during the crisis. This is con-

sistent with the empirical evidence presented by Friewald, Jankowitsch and Subrahmanyam

(2012) for the US corporate bond market and Afonso and Lagos (2012) for the federal funds

market that the price dispersion is higher during crises compared to normal market periods.

The effect of crisis on trading activity might be different in the long term and in the short

term, depending on the relative positioning of the change in the volatility of asset payoff and

in the volatility of background risk. When the increase in the volatility of asset payoff is

higher than a certain threshold, in the long term, a flight from this market is observed. This

is consistent with the "flight-to-quality" events observed in real-life financial markets during

crises. When overall uncertainty in the markets is high, investors trade mostly in relatively

safe markets. Similarly, when the volatility of asset payoff is lower than the threshold, there

is flight-to-quality to this market. Regarding the short term, I find that a flight to the asset

market always starts with a “heating-up” in trading activity but a flight from the market

might start with a dry-up or heating-up during the onset of the crisis. If the relative increase

in the volatility of asset payoff is too high, a period of fire sales is triggered leading to a short

heating-up before the complete dry-up of the trading activity. Therefore, very severe flights

from the market actually starts with a heating-up where fire sales occur in which investors

quickly transition to more cautious positions in the asset.

I calibrate the model according to the US corporate bond market data and show the

effect of this aggregate uncertainty shock created by the subprime crisis on price dispersion

and trading activity. Since the calibrated values imply that the volatility of corporate bond

payoffs increased more than the increase in the overall volatility of markets, we observe a

flight-to-quality from the corporate bond market during the aggregate uncertainty shock in

the long term. On the other hand, as the difference between the increase in the volatility

of corporate bond payoffs and the increase in the overall volatility of markets is suffi ciently

high, a heating-up during the onset of the crisis is observed. Because the investors’new
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trading regime after the aggregate shock is much more cautious than their behavior during

the normal times, they have a strong incliniation to holding conservative positions after the

aggregate uncertainty shock. This leads to plenty of fire sales initially. This, in turn, creates

a spike in price dispersion and a heating-up in the trading activity. The short heating-up

period is followed by a long dry-up in the trading activity, which lasts until the recovery.

This paper belongs to search-theoretic asset pricing literature spurred by Duffi e et al.

(2005). More precisely, it studies an aggregate shock similar to Duffi e, Gârleanu and Pedersen

(2007), Weill (2008), and Lagos, Rocheteau and Weill (2011). Investors in the model of

Duffi e et al. (2007) have binary valuation for holding an indivisible asset. Relative to their

model, my model features an arbitrary heterogeneity in valuations and unrestricted divisible

holdings of the asset. Heterogeneity in valuations creates price dispersion in equilibrium,

while investors’optimal holding decisionof the divisible asset provide them with flexibility

to respond to changes in market conditions. Both of these additional features are essential

to my analysis of the effect of the crisis on price dispersion and trading activity. Weill (2008)

and Lagos et al. (2011) study a partially centralized market in which investors are able to

trade infrequently by paying an intermediation fee to exogenously designated dealers. The

difference of my model is that it features endogenous intermediation. Therefore, changes

in trading activity captures the changes in trades for intermediation purposes as well. This

allows an analysis of intermediation chains.

The remainder of the paper is organized as follows. Section 2 describes the model envi-

ronment. Section 3 studies the equilibrium of this environment, while Section 4 assesses the

main results. Section 5 concludes.
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2 Environment

Time is continuous and runs forever. I fix a probability space (Ω,F ,Pr) and a filtration

{Ft, t ≥ 0} of sub-σ-algebras satisfying the usual conditions (see Protter, 2004). There is a

continuum of investors with a total measure normalized to 1. There is one long-lived asset

in fixed supply denoted by A. This asset is traded over the counter, and pays an expected

dividend flow denoted by mD. There is also a perishable good, called the numéraire, which

all investors produce and consume.

The specification of preferences and trading motives are exactly same as Chapter 1.

Investors’level of risk aversion and time preference rate are denoted by γ and r respectively.

The instantaneous utility function of an investor is u(ρ, a, t) + c, where

u(ρ, a, t) ≡ amD −
1

2
rγ
(
a2σ2D (t) + 2ρaσD (t)ση (t)

)
(1)

is the instantaneous quadratic benefit to the investor from holding a ∈ R units of the asset

when of type ρ ∈ [−1,+1], and c ∈ R denotes the net consumption of the numéraire good.

An investor’s net consumption becomes negative when she produces the numéraire to make

side payments.

This utility specification is interpreted in terms of risk aversion. Since the parameter mD

is an expected rather than actual dividend flow, this cash flow needs to be adjusted for risk.

The term a2σ2D (t) represents the instantaneous variance of the asset payoffwhere σD (t) is the

volatility of the asset payoff. The term 2ρaσD (t)ση (t) captures the instantaneous covariance

between the asset payoff and some background risk with volatility ση (t). Therefore, the

investor’s type ρ captures the instantaneous correlation between the asset payoff and the

background risk. Duffi e et al. (2007), Vayanos and Weill (2008), Gârleanu (2009), and

Chapter 1 of this dissertation show that this quadratic utility specification can be derived
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from first principles.1 I keep the microfoundation of this specification out of the paper

because the reduced-form imparts the main intuitions without the burden of derivations.

For brevity of the notation later, I define the parameters

κ0 ≡ mD,

κ1 (t) ≡ rγσ2D (t) ,

κ2 (t) ≡ rγσD (t)ση (t) .

The correlation between the asset payoff and the background risk is heterogeneous across

investors. Investors occasionally receive idiosyncratic shocks to their correlation type, which

creates the motive to trade. Arrival of these shocks is independent from other stochastic

processes and across investors. The idiosyncratic shocks occur at random Poisson arrival

times with intensity α > 0, and upon the arrival of an idiosyncratic shock, the investor’s

new type is drawn according to the cdf F on [−1,+1]. Time-dependence of κ1 (t) and

κ2 (t) captures a common shock to the level of uncertainty in the OTC market and the

economy. This is designed to capture a crisis period in the spirit of Lagos et al. (2011).

More specifically, I assume that the economy is initially in its stationary equilibrium, where

κ1 (t) = κ1 ≡ rγσ2D and κ2 (t) = κ2 ≡ rγσDση. At date 0, an unexpected aggregate shock

hits the economy, after which κ1 (t) = κ1 ≡ rγσ2D > κ1 and κ2 (t) = κ2 ≡ rγσDση > κ2.

Investors expect the recovery to arrive as a one-time Poisson event with intensity R > 0.

Under the new brief notation, investors’utility flow during the stationary equilibrium

and after the recovery is

u(ρ, a) ≡ κ0a−
1

2
κ1a

2 − κ2ρa

1Appendix A of Chapter 1 assumes that investors have CARA preferences over the numéraire good, and
they can invest in a riskless asset traded in a Walrasian market, and in a risky asset traded over the counter.
Moreover, the investor receives a random income whose correlation with the payoff of risky asset is ρ. These
assumptions give rise to the reduced-form specification, up to a suitable first-order approximation.
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and during the crisis period it is

u(ρ, a) ≡ κ0a−
1

2
κ1a

2 − κ2ρa,

where κ1/κ1 captures the severity of the crisis in the OTC market for the traded asset and

κ2/κ2 captures the severity of the crisis in the combination of all other markets.

All trades are fully bilateral. Pair-wise meetings among investors follow standard random

search and matching dynamics. A given investors meets another investor at random Poisson

arrival times with intensity λ > 0, reflecting the overall search effi ciency of the market.

Conditional on a meeting, the counterparty is drawn randomly from the pool of all investors.

A meeting between investor (ρ, a) and investor (ρ′, a′) at date t is followed by a bargaining

process over quantity q and unit price P . The specific bargaining protocol I employ is the

axiomatic bargaining à la Nash (1950) in which investors are symmetric in their bargaining

strengths. The resulting number of assets that the investor (ρ, a) purchases is denoted by

q [(ρ, a) , (ρ′, a′) , t]. Thus, she will become an investor of type (ρ, a+q [(ρ, a) , (ρ′, a′) , t]) after

this trade, while her counterparty will become type (ρ′, a′−q [(ρ, a) , (ρ′, a′) , t]). The per unit

price, the investor (ρ, a) will pay, is denoted by P [(ρ, a) , (ρ′, a′) , t].

3 Equilibrium

In this section, I solve for the equilibrium of this economy in two steps. First, I characterize

the equilibrium path after the recovery has occurred. To do so, I take as given the recovery

time TR and the joint distribution Φ (ρ, a|TR) of types and asset holdings at t = TR. Then,

I characterize the equilibrium path during the crisis, i.e. when t ∈ [0, TR).
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3.1 Equilibrium path after the recovery

3.1.1 Investor’s problem

Let me start by describing the investor’s problem after the recovery shock has occurred at

t = TR. Suppose J(ρ, a, t) denotes the maximum attainable continuation utility of an investor

with type ρ and asset holding a at date t. Taking the pricing function P [(ρ, a) , (ρ′, a′) , t]

and the trade size function q [(ρ, a) , (ρ′, a′) , t] as given, J(ρ, a, t) is defined as

J(ρ, a, t) ≡ Et

∞∫
t

e−r(s−t) [u(ρs, as) + cs] ds | ρt = ρ, at = a

 ,
s.t.

dat =

 q [(ρt, at) , (ρ
′
t, a
′
t) , t] if there is contact with investor (ρ′t, a

′
t)

0 if no contact,

ct =

 −P [(ρt, at) , (ρ
′
t, a
′
t) , t] dat if there is contact with investor (ρ′t, a

′
t)

0 if no contact.

Taking the derivative with respect to t and rearranging, one can show that J(ρ, a, t) satisfies

the following ordinary differential equation (ODE):

Jt(ρ, a, t) = rJ(ρ, a, t)− u(ρ, a)− α
1∫
−1

[J(ρ′, a, t)− J(ρ, a, t)]dF (ρ′)

− 2λ

∞∫
−∞

1∫
−1

{J(ρ, a+ q [(ρ, a) , (ρ′, a′) , t] , t)− J(ρ, a, t)

−q [(ρ, a) , (ρ′, a′) , t]P [(ρ, a) , (ρ′, a′) , t]}Φ(dρ′, da′|t). (2)
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The first term on the right hand side of the equation (2) is the investor’s "flow" continuation

utility. The difference between this flow continuation utility and the instantaneous change in

her current status governs the growth of the continuation utility. The second term captures

the utility flow from her current holding. The third term is the expected change in the

continuation utility, conditional on switching preference types, which occurs with intensity

α; and the fourth term is the expected change in the continuation utility, conditional on trade,

which occurs with intensity 2λ, since an investor finds others at rate λ and are found by others

at rate λ. Conditional on contact, the counterparty is drawn randomly from the distribution

of types and asset holdings with cdf Φ(ρ′, a′|t). Terms of trade, q [(ρ, a) , (ρ′, a′) , t] and

P [(ρ, a) , (ρ′, a′) , t], maximize the symmetric Nash product (3), subject to usual individual

rationality constraints.

[q [(ρ, a) , (ρ′, a′) , t] , P [(ρ, a) , (ρ′, a′) , t]]

= arg max
q,P

[J(ρ, a+ q, t)− J(ρ, a, t)− Pq] 12 [J(ρ′, a′ − q, t)− J(ρ′, a′, t) + Pq]
1
2 , (3)

s.t.

J(ρ, a+ q, t)− J(ρ, a, t)− Pq ≥ 0,

J(ρ′, a′ − q, t)− J(ρ′, a′, t) + Pq ≥ 0.

3.1.2 Trades

Before solving for the path for the equilibrium distribution of asset holdings, I will char-

acterize the trades happening during the recovery path. To do so, I start by solving the

optimization problem (3) of Nash bargaining. Solving this problem is relatively straightfor-

ward: I set up the Lagrangian of this problem. Then I find the first-order necessary and

suffi cient conditions (see Theorem M.K.2., p. 959, and Theorem M.K.3., p. 961, in Mas-
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Colell, Whinston & Green, 1995) for optimality by differentiating the Lagrangian. The trade

size q [(ρ, a) , (ρ′, a′) , t] solves

Ja(ρ, a+ q, t) = Ja(ρ
′, a′ − q, t). (4)

Notice that the quantity which solves the equation (4) is also the maximizer of the total

trade surplus, i.e.

q [(ρ, a) , (ρ′, a′) , t] = arg max
q

J(ρ, a+ q, t)− J(ρ, a, t) + J(ρ′, a′ − q, t)− J(ρ′, a′, t).

Continuous differentiability and strict concavity of J(ρ, ., t) for all ρ and t, which I will

establish later, guarantees the existence and uniqueness of q [(ρ, a) , (ρ′, a′) , t]. Then, the

transaction price P [(ρ, a) , (ρ′, a′) , t] is determined such that the total trade surplus is split

equally between the parties

P =
J(ρ, a+ q, t)− J(ρ, a, t)− (J(ρ′, a′ − q, t)− J(ρ′, a′), t)

2q
(5)

if J2(ρ, a, t) 6= J2(ρ
′, a′, t); and P = J2(ρ, a, t) if J2(ρ, a, t) = J2(ρ

′, a′, t). Substituting the

trade quantity and price into (2), I get

Jt(ρ, a, t) = rJ(ρ, a, t)− u(ρ, a)− α
1∫
−1

[J(ρ′, a, t)− J(ρ, a, t)]dF (ρ′)

− λ
∞∫
−∞

1∫
−1

[
max
q
{J(ρ, a+ q, t)− J(ρ, a, t) + J(ρ′, a′ − q, t)− J(ρ′, a′, t)}

]
Φ(dρ′, da′|t). (6)
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To solve for J(ρ, a, t), I follow a guess&verify approach as in the first chapter. My

conjecture is

J(ρ, a, t) = D (t) + E (t) ρ+ F (t) a+G (t) a2 +H (t) ρa+M (t) ρ2.

Applying (4),

F (t) + 2G (t) (a+ q) +H (t) ρ = F (t) + 2G (t) (a′ − q) +H (t) ρ′.

Then,

q [(ρ, a) , (ρ′, a′) , t] =
a′ − a

2
+
H (t) (ρ′ − ρ)

4G (t)

and

P [(ρ, a) , (ρ′, a′) , t] = F (t) +G (t) (a+ a′) +
H (t) (ρ+ ρ′)

2
.

To determine F (t), G (t), and H (t), I apply the envelope theorem to (6):

Jta(ρ, a, t) = rJa(ρ, a, t)− ua(ρ, a)− α
1∫
−1

[Ja(ρ
′, a, t)− Ja(ρ, a, t)]dF (ρ′)

− λ
∞∫
−∞

1∫
−1

[ Ja(ρ, a+ q [(ρ, a) , (ρ′, a′)] , t)− Ja(ρ, a, t)] Φ(dρ′, da′|t). (7)

Using the conjectured marginal valuation and trade quantity:

F ′ (t) + 2G′ (t) a+H ′ (t) ρ = (r + α + λ) (F (t) + 2G (t) a+H (t) ρ)− κ0 + κ1a+ κ2ρ

− α (F (t) + 2G (t) a+H (t) ρ)− λ (F (t) + 2G (t) a+H (t) ρ)

− λ
(
G (t) (A− a) +

H (t) (ρ− ρ)

2

)
,
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where

ρ ≡
1∫
−1

ρdF (ρ)

and by market-clearing
∞∫
−∞

1∫
−1

aΦ(dρ, da|t) = A. (8)

Coeffi cient matching implies that F (t), G (t), and H (t) solve the following ODE’s respec-

tively:

F ′ (t) = rF (t)− κ0 − (α + λ/2)H (t) ρ− λG (t)A,

G′ (t) = (r + λ/2)G (t) + κ1/2,

H ′ (t) = (r + α + λ/2)H (t) + κ2.

General solutions of these ODE’s are respectively:

F (t) =
κ0
r
− κ1

r

λ/2

r + λ/2
A− κ2

r

α + λ/2

r + α + λ/2
ρ+ cF e

r(t−TR),

G (t) =
−κ1

2r + λ
+ cGe

(r+λ/2)(t−TR),

H (t) =
−κ2

r + α + λ/2
+ cHe

(r+α+λ/2)(t−TR).

To find the constants cF , cG, and cH , I use the boundary conditions in the limit as t→∞.

This leads to the following coeffi cients for t ≥ TR:

F (t) =
κ0
r
− κ1

r

λ/2

r + λ/2
A− κ2

r

α + λ/2

r + α + λ/2
ρ,

G (t) =
−κ1

2r + λ
,

H (t) =
−κ2

r + α + λ/2
.
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At this point, we are able to characterize the terms of trade after the recovery.

Proposition 1 In any equilibrium, investors’ marginal valuations, individual trade sizes

and transaction prices after the recovery (for t ≥ TR) are given by:

Ja(ρ, a, t) =
κ0
r
− κ1

r

[
ra+ (λ/2)A

r + λ/2

]
− κ2

r

[
rρ+ (α + λ/2)ρ

r + α + λ/2

]
, (9)

q [(ρ, a) , (ρ′, a′) , t] =
a′ − a

2
+
κ2
κ1

r + λ/2

r + α + λ/2

ρ′ − ρ
2

(10)

and

P [(ρ, a) , (ρ′, a′) , t] =
κ0
r
− κ1

r

[
r(a+ a′)/2 + (λ/2)A

r + λ/2

]
−κ2
r

[
r(ρ+ ρ′)/2 + (α + λ/2)ρ

r + α + λ/2

]
. (11)

AfterD (t), E (t), andM (t) are found, the characterization of J (ρ, a, t) after the recovery

will be complete. I proceed by rewriting the conjectured J (ρ, a, t):

J(ρ, a, t) = D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2.

Using the fact that J(ρ, a, t) is quadratic in a, an exact second-order Taylor expansion shows

that:

J(ρ, a+ q, t)− J(ρ, a, t) = Ja(ρ, a+ q, t)q −Gq2.
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Substituting into (6):

Jt(ρ, a, t) = (r + α) J(ρ, a, t)− u(ρ, a)− α
1∫
−1

J(ρ′, a, t)dF (ρ′)

− λ
∞∫
−∞

1∫
−1

{
−2G (q [(ρ, a) , (ρ′, a′) , t])

2
}

Φ(dρ′, da′|t).

Define

C ≡ H

2G
.

Using the trade size function and the conjectured value function,

D′ (t) + E ′ (t) ρ+M ′ (t) ρ2 = (r + α)
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2

)
− κ0a+

1

2
κ1a

2 + κ2ρa− α
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t)E

[
ρ2
])

+
λ

2

∞∫
−∞

1∫
−1

G (a′ − a+ C(ρ′ − ρ))
2

Φ(dρ′, da′|t),

D′ (t) + E ′ (t) ρ+M ′ (t) ρ2 = (r + α)
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2

)
− κ0a+

1

2
κ1a

2 + κ2ρa− α
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t)E

[
ρ2
])

+
λ

2

(
GC2ρ2 − 2GC2ρρ+GC2E

[
ρ2
]

+ 2GCaρ− 2GCaρ− 2GCρA+ 2GCE [ρa|t]
)

+
λ

2

(
GE

[
a2|t
]
− 2GaA+Ga2

)
.
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Coeffi cient matching implies that D (t), E (t), and M (t) solve the following ODE’s respec-

tively:

D′ (t) = rD (t)− α
(
E (t) ρ+M (t)E

[
ρ2
])

+
λ

2
G E

[
(a+ Cρ)2 |t

]
,

E ′ (t) = (r + α)E (t)− λ

2
H (A+ Cρ) ,

M ′ (t) = (r + α)M (t) +
λ

4
HC.

Therefore, to find the value function we need E
[
(a+ Cρ)2 |t

]
which is determined in equi-

librium. Define

θ ≡ a+ Cρ

as the effective type of the investor with asset holding a and correlation ρ. The following

corollary shows the terms of trade as a function of investors’effective types.

Corollary 1 In any equilibrium, the individual trade sizes and transaction prices after the

recovery (for t ≥ TR) are given by:

q(θ, θ′, t) =
θ′ − θ

2

and

P (θ, θ′, t) =
κ0
r
− κ1

r

λ/2

r + λ/2
A− κ2

r

α + λ/2

r + α + λ/2
ρ− κ1

r + λ/2

[
θ + θ′

2

]
,

where

θ ≡ a+
κ2
κ1

r + λ/2

r + α + λ/2
ρ.

Corollary 1 shows that the sole determinant of the trade sizes is the difference between

investors’effective types. This reveals an important intuition that C can be interpreted as
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a measure of how aggressively investors trade. When C is higher, investors’effective types

will be more sensitive to their current correlation type. Thus, investors’asset position will

fluctuate more as they will trade more aggressively, by putting more weight on their current

correlation. When C is lower, the opposite will be true. Investors will put less weight on

their current correlation, implying that they trade cautiously. This interpretation directly

implies that investors trade more aggressively as frictions vanish (as λ → ∞), since C is

increasing in λ.

In addition, we know that, to find the equilibrium trading patterns and investors’val-

ues, knowing the distribution of θ is suffi cient. In the next subsection, I will analyze the

equilibrium dynamics for the distribution of θ.

3.1.3 Dynamics of the distribution of investors’states

For simplicity, I assume that the equilibrium conditional distribution of effective types have

densities. This assumption is actually not necessary but simplifies the presentation of the

results. Suppose g(θ|t) and gρ(θ|t) are the unconditional and conditional pdf of θ, respec-

tively, for t ≥ TR. n-th conditional moment of the effective types can be written as follows

using the Fourier transform (Bracewell, 2000):

E [θn | ρ, t] = (−i2π)−n
[
dn

dzn
ĝρ(z|t)

]
z=0

.

Since I have explicit expression for trade sizes, I can derive the law of motion for the

investors’effective types following the same steps in the derivation of steady-state conditions
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in Chapter 1. The resulting law of motion is:

d

dt
gρ(θ|t) = −(α + 2λ)gρ(θ|t) + α

1∫
−1

gρ′(θ + C(ρ′ − ρ)|t)dF (ρ′)

+4λ

1∫
−1

∞∫
−∞

gρ(θ
′|t)gρ′(2θ − θ′|t)dθ′dF (ρ′).

This equation has the usual inflow-outflow interpretation. The first term represents the

outflow due to idiosyncratic shocks and trade. The second and third terms represent the

inflow due to idiosyncratic shocks and the inflow due to trade, respectively. The last term

contains a convolution since any investor with type (ρ, θ′) can become of type (ρ, θ) if she

meets the right counterparty. The right counterparty in this context means an investor with

type (ρ′, 2θ−θ′). Corollary 1 immediately implies that the post-trade effective type of the first

investor will be θ, and hence she will create inflow. Since the convolution term complicates

the computation of distribution function, I will make use of the Fourier transform of this law

of motion, which is:

d

dt
ĝρ(z|t) = −(α + 2λ)ĝρ(z|t) + α

1∫
−1

ei2πC(ρ
′−ρ)zĝρ′(z|t)dF (ρ′) + 2λ

1∫
−1

ĝρ(
z

2
|t)ĝρ′(

z

2
|t)dF (ρ′).

Then I use the Fourier transform of θ distribution to find an expression for dn

dzn
ĝρ(z|t):

d

dt

(
dn

dzn
ĝρ(z|t)

)
= −(α + 2λ)

dn

dzn
ĝρ(z|t) + α

1∫
−1

dn

dzn

(
ei2πC(ρ

′−ρ)zĝρ′(z|t)
)
dF (ρ′)

+2λ

1∫
−1

dn

dzn

(
ĝρ(

z

2
|t)ĝρ′(

z

2
|t)
)
dF (ρ′).
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To proceed, I use the following generalization of the product rule:

dn

dxn

2∏
i=1

gi(x) =
∑

j1+j2=n

 n

j1, j2

 2∏
i=1

dji

dxji
gi(x),

d

dt

(
dn

dzn
ĝρ(z|t)

)
= −(α + 2λ)

dn

dzn
ĝρ(z|t)

+α

1∫
−1

∑
j1+j2=n

 n

j1, j2

{[ dj1
dzj1

ei2πC(ρ
′−ρ)z

] [
dj2

dzj2
ĝρ′(z|t)

]}
dF (ρ′)

+2λ

1∫
−1

∑
j1+j2=n

 n

j1, j2

{[ dj1
dzj1

ĝρ(
z

2
|t)
] [

dj2

dzj2
ĝρ′(

z

2
|t)
]}

dF (ρ′),

d

dt
ĝ(n)ρ (z|t) = −(α + 2λ)ĝ(n)ρ (z|t)

+α

1∫
−1

∑
j1+j2=n

 n

j1, j2

{(i2πC(ρ′ − ρ))j1ei2πC(ρ
′−ρ)zĝ

(j2)
ρ′ (z|t)

}
dF (ρ′)

+2λ

1∫
−1

∑
j1+j2=n

 n

j1, j2

 (
1

2
)nĝ(j1)ρ (

z

2
|t)ĝ(j2)ρ′ (

z

2
|t)dF (ρ′),

d

dt
ĝ(n)ρ (0|t) = −(α + 2λ)ĝ(n)ρ (0|t) + α

1∫
−1

∑
j1+j2=n

 n

j1, j2

{(i2πC(ρ′ − ρ))j1 ĝ
(j2)
ρ′ (0|t)

}
dF (ρ′)

+2λ

1∫
−1

∑
j1+j2=n

 n

j1, j2

 (
1

2
)nĝ(j1)ρ (0|t)ĝ(j2)ρ′ (0|t)dF (ρ′).
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Dividing both sides by (−i2π)n:

d

dt
E [θn | ρ, t] = −(α + 2λ)E [θn | ρ, t]

+α

1∫
−1

∑
j1+j2=n

 n

j1, j2

{(−C(ρ′ − ρ))j1E
[
θj2 | ρ′, t

]}
dF (ρ′)

+2λ(
1

2
)n

1∫
−1

∑
j1+j2=n

 n

j1, j2

E [θj1 | ρ, t]E [θj2 | ρ′, t] dF (ρ′).

Using the binomial expansion of (−C(ρ− ρ′))j1 :

d

dt
E [θn | ρ, t] = −(α + 2λ)E [θn | ρ, t]

+α

1∫
−1

∑
j1+j2=n

 n

j1, j2


Cj1

j1∑
k=0

j1
k

 (−ρ′)k(ρ)j1−kE
[
θj2 | ρ′, t

] dF (ρ′)

+2λ(
1

2
)n

1∫
−1

∑
j1+j2=n

 n

j1, j2

E [θj1 | ρ, t]E [θj2 | ρ′, t] dF (ρ′),

d

dt
E [θn | ρ, t] = −(α + 2λ)E [θn | ρ, t]

+α
∑

j1+j2=n

 n

j1, j2

Cj1

j1∑
k=0

j1
k

 (ρ)j1−k
1∫
−1

(−ρ′)kE
[
θj2 | ρ′, t

]
dF (ρ′)

+2λ(
1

2
)n
∑

j1+j2=n

 n

j1, j2

E [θj1 | ρ, t] 1∫
−1

E
[
θj2 | ρ′, t

]
dF (ρ′).

Applying the law of iterated expectations, I arrive at the following proposition.

Proposition 2 Let C = κ2
κ1

r+λ/2
r+α+λ/2

. The following system of ODEs characterizes all mo-
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ments of the equilibrium conditional distributions of effective type θ after the recovery

(for t ≥ TR):

d

dt
E [θn | ρ, t] = −(α + 2λ)E [θn | ρ, t] + 2λ(

1

2
)n
∑

j1+j2=n

 n

j1, j2

E [θj1 | ρ, t]E [θj2|t]

+α
∑

j1+j2=n

 n

j1, j2

Cj1

j1∑
k=0

j1
k

 (−1)k(ρ)j1−kE
[
θj2ρk|t

]

for all ρ ∈ supp(F ) and for all n ∈ Z+; and

E [θ|t] = A+ Cρ.

The following corollary shows some relevant moments in closed form.

Corollary 2 Let C = κ2
κ1

r+λ/2
r+α+λ/2

. For t ≥ TR,

E [θ | ρ, t] =
[
1− e−(α+λ)(t−TR)

](
A+ C

αρ+ λρ

α + λ

)
+ e−(α+λ)(t−TR)E [θ | ρ, TR] ,

E
[
θ2 | t

]
=
[
1− e−λ(t−TR)

] [ 2α

α + λ
C2var (ρ) + (A+ Cρ)2

]
+ e−λ(t−TR)E

[
θ2 | TR

]
,

and

var [θ | t] =
[
1− e−λ(t−TR)

] 2α

α + λ
C2var (ρ) + e−λ(t−TR)var [θ | TR] .

Now we can go back to the characterization of the remaining coeffi cients of the value
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function J (ρ, a, t).

D′ (t) = rD (t)− α
(
E (t) ρ+M (t)E

[
ρ2
])

+
λ

2
G E

[
(a+ Cρ)2 |t

]
,

E ′ (t) = (r + α)E (t)− λ

2
H (A+ Cρ) ,

M ′ (t) = (r + α)M (t) +
λ

4
HC.

Solving the ODEs and using Corollary 2,

D (t) =
α (Eρ+ME [ρ2])

r
− λ

2

G

r

[
2α

α + λ
C2var (ρ) + (A+ Cρ)2

]
−λ

2

G

r + λ

[
E
[
θ2 | TR

]
− 2α

α + λ
C2var (ρ)− (A+ Cρ)2

]
e−λ(t−TR) ,

E (t) = −λ (A+ Cρ)

2 (r + α)

κ2
r + α + λ/2

,

M (t) =
λ

4 (r + α)

(κ2)
2

κ1

r + λ/2

(r + α + λ/2)2
.

3.2 The crisis equilibrium

Now, let me move on to describing the equilibrium path during the crisis, i.e. when t ∈

[0, TR). Suppose V (ρ, a, t) denotes the maximum attainable continuation utility of an investor

with type ρ and asset holding a at date t. Taking the pricing function P [(ρ, a) , (ρ′, a′) , t]

and the trade size function q [(ρ, a) , (ρ′, a′) , t] as given, V (ρ, a, t) is defined as

V (ρ, a, t) ≡ Et

TR∫
t

e−r(s−t) [u(ρs, as) + cs] ds+ e−r(TR−t)J(ρ, a, TR) | ρt = ρ, at = a

 ,
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s.t.

dat =

 q [(ρt, at) , (ρ
′
t, a
′
t) , t] if there is contact with investor (ρ′t, a

′
t)

0 if no contact,

ct =

 −P [(ρt, at) , (ρ
′
t, a
′
t) , t] dat if there is contact with investor (ρ′t, a

′
t)

0 if no contact.

Taking the derivative with respect to t and rearranging, one can show that V (ρ, a, t) satisfies

the following ordinary differential equation (ODE):

Vt(ρ, a, t) = rV (ρ, a, t)− u(ρ, a)− α
1∫
−1

[V (ρ′, a, t)− V (ρ, a, t)]dF (ρ′)

− 2λ

∞∫
−∞

1∫
−1

{V (ρ, a+ q [(ρ, a) , (ρ′, a′) , t] , t)− V (ρ, a, t)

−q [(ρ, a) , (ρ′, a′) , t]P [(ρ, a) , (ρ′, a′) , t]}Φ(dρ′, da′|t)

−R[J(ρ, a, TR|t)− V (ρ, a, t)]. (12)

Terms of trade, q [(ρ, a) , (ρ′, a′) , t] and P [(ρ, a) , (ρ′, a′) , t], solve the same Nash bargaining

problem (3) in which the function J is replaced with V . Substituting the trade quantity and

price into (12), I get

Vt(ρ, a, t) = rV (ρ, a, t)− u(ρ, a)− α
1∫
−1

[V (ρ′, a, t)− V (ρ, a, t)]dF (ρ′)

− λ
∞∫
−∞

1∫
−1

[
max
q
{V (ρ, a+ q, t)− V (ρ, a, t) + V (ρ′, a′ − q, t)− V (ρ′, a′, t)}

]
Φ(dρ′, da′|t)

−R[J(ρ, a, TR|t)− V (ρ, a, t)]. (13)
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To solve for V (ρ, a, t), I again resort to a guess&verify approach. My conjecture is

V (ρ, a, t) = D (t) + E (t) ρ+ F (t) a+G (t) a2 +H (t) ρa+M (t) ρ2.

The solution of Nash-bargaining implies that

q [(ρ, a) , (ρ′, a′) , t] =
a′ − a

2
+
H (t) (ρ′ − ρ)

4G (t)

and

P [(ρ, a) , (ρ′, a′) , t] = F (t) +G (t) (a+ a′) +
H (t) (ρ+ ρ′)

2
.

To determine F (t), G (t), and H (t), I apply the envelope theorem to (13):

Vta(ρ, a, t) = rVa(ρ, a, t)− ua(ρ, a)− α
1∫
−1

[Va(ρ
′, a, t)− Va(ρ, a, t)]dF (ρ′)

− λ
∞∫
−∞

1∫
−1

[ Va(ρ, a+ q [(ρ, a) , (ρ′, a′)] , t)− Va(ρ, a, t)] Φ(dρ′, da′|t)

−R[Ja(ρ, a, TR)− Va(ρ, a, t)]. (14)

Using the conjectured marginal valuation, trade quantity, and the solution of Ja from Propo-

sition 1:

F
′
(t)+2G

′
(t) a+H

′
(t) ρ = (r + α + λ/2 +R)

(
F (t) + 2G (t) a+H (t) ρ

)
−κ0+κ1a+κ2ρ

− α
(
F (t) + 2G (t) a+H (t) ρ

)
− λ

(
F (t) +G (t)A+H (t)

ρ

2

)
−R

(
κ0
r
− κ1

r

ra+ (λ/2)A

r + λ/2
− κ2

r

rρ+ (α + λ/2)ρ

r + α + λ/2

)
.
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Coeffi cient matching implies that F (t), G (t), and H (t) solve the following ODE’s respec-

tively:

F
′
(t) = (r +R)F (t)− κ0 − (α + λ/2)H (t) ρ− λG (t)A

−R
(
κ0
r
− κ1

r

(λ/2)A

r + λ/2
− κ2

r

(α + λ/2)ρ

r + α + λ/2

)
,

G
′
(t) = (r + λ/2 +R)G (t) + κ1/2 +R

κ1
2r + λ

,

H
′
(t) = (r + α + λ/2 +R)H (t) + κ2 +R

κ2
r + α + λ/2

.

General solutions of these ODE’s are respectively (using the limiting condition as R→ 0 as

the boundary condition):

F (t) =
κ0
r
− 1

r

rκ̃1 +Rκ1
r +R

(λ/2)A

r + λ/2
− 1

r

rκ̃2 +Rκ2
r +R

(α + λ/2)ρ

r + α + λ/2
,

G (t) =
−κ̃1

2r + λ
,

H (t) =
−κ̃2

r + α + λ/2
,

where

κ̃1 ≡
(r + λ/2)κ1 +Rκ1

r + λ/2 +R
,

κ̃2 ≡
(r + α + λ/2)κ2 +Rκ2

r + α + λ/2 +R
.

At this point, we are able to characterize the terms of trade during the crisis.

Proposition 3 Let κ̃1 = (r+λ/2)κ1+Rκ1
r+λ/2+R

and κ̃2 = (r+α+λ/2)κ2+Rκ2
r+α+λ/2+R

. In any equilibrium, in-

vestors’marginal valuations, individual trade sizes and transaction prices during the
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crisis (for t < TR) are given by:

Va(ρ, a, t) =
κ0
r
− 1

r

rκ̃1 +Rκ1
r +R

(λ/2)A

r + λ/2
− 1

r

rκ̃2 +Rκ2
r +R

(α + λ/2)ρ

r + α + λ/2

− κ̃1
r + λ/2

a− κ̃2
r + α + λ/2

ρ, (19)

q [(ρ, a) , (ρ′, a′) , t] =
a′ − a

2
+
κ̃2
κ̃1

r + λ/2

r + α + λ/2

ρ′ − ρ
2

, (20)

and

P [(ρ, a) , (ρ′, a′) , t] =
κ0
r
− 1

r

rκ̃1 +Rκ1
r +R

(λ/2)A

r + λ/2
− 1

r

rκ̃2 +Rκ2
r +R

(α + λ/2)ρ

r + α + λ/2

− κ̃1
r + λ/2

(
a+ a′

2
)− κ̃2

r + α + λ/2
(
ρ+ ρ′

2
). (21)

AfterD (t), E (t), andM (t) are found, the characterization of V (ρ, a, t) after the recovery

will be complete. I proceed by rewriting the conjectured V (ρ, a, t):

V (ρ, a, t) = D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2.

Using the fact that V (ρ, a, t) is quadratic in a, an exact second-order Taylor expansion shows

that:

V (ρ, a+ q, t)− V (ρ, a, t) = Va(ρ, a+ q, t)q −Gq2.

Substituting into (13):

Vt(ρ, a, t) = (r + α +R)V (ρ, a, t)− u(ρ, a)− α
1∫
−1

V (ρ′, a, t)dF (ρ′)

− λ
∞∫
−∞

1∫
−1

{
−2G (q [(ρ, a) , (ρ′, a′) , t])

2
}

Φ(dρ′, da′|t)−RJ(ρ, a, TR|t).
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Define

C ≡ H

2G
.

Using the trade size function, the conjectured value function, and the solution of J ,

D
′
(t) + E

′
(t) ρ+M

′
(t) ρ2 = (r + α +R)

(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2

)
− κ0a+

1

2
κ1a

2 + κ2ρa− α
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t)E

[
ρ2
])

+
λ

2

∞∫
−∞

1∫
−1

G
(
a′ − a+ C(ρ′ − ρ)

)2
Φ(dρ′, da′|t)−R

(
D (TR) + Eρ+ Fa+Ga2 +Hρa+Mρ2

)
,

D
′
(t) + E

′
(t) ρ+M

′
(t) ρ2 = (r + α +R)

(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t) ρ2

)
− κ0a+

1

2
κ1a

2 + κ2ρa− α
(
D (t) + E (t) ρ+ Fa+Ga2 +Hρa+M (t)E

[
ρ2
])

+
λ

2

(
GC

2
ρ2 − 2GC

2
ρρ+GC

2E
[
ρ2
]

+ 2GCaρ− 2GCaρ− 2GCρA+ 2GCE [ρa|t]
)

+
λ

2

(
GE

[
a2|t
]
− 2GaA+Ga2

)
−R

(
D (TR|t) + Eρ+ Fa+Ga2 +Hρa+Mρ2

)
.

Coeffi cient matching implies that D (t), E (t), and M (t) solve the following ODE’s respec-

tively:

D
′
(t) = (r +R)D (t)− α

(
E (t) ρ+M (t)E

[
ρ2
])

+
λ

2
G E

[(
a+ Cρ

)2 |t]−RD (TR|t) ,

E
′
(t) = (r + α +R)E (t)− λ

2
H
(
A+ Cρ

)
−RE,

M
′
(t) = (r + α +R)M (t) +

λ

4
HC −RM .
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Solving the ODEs and using Corollary 2,

D (t) =
α (Eρ+ME [ρ2])

r
− λ

2

G

r

[
2α

α + λ
C2var (ρ) + (A+ Cρ)2

]
−λ

2

G

r + λ

[
E
[
E
[
θ2 | TR

]]
− 2α

α + λ
C2var (ρ)− (A+ Cρ)2

]
,

E (t) = − 1

r + α

λ

2

1

(r + α + λ/2)2

(
r + α

r + α +R

(
A+ Cρ

)
κ̃2 +

R

r + α +R
(A+ Cρ)κ2

)
,

M (t) =
1

r + α

λ

4

r + λ/2

(r + α + λ/2)2

(
r + α

r + α +R

(κ̃2)
2

κ̃1
+

R

r + α +R

(κ2)
2

κ1

)
.

Again the relevant equilibrium objects are the functions of investors’effective types defined

as

θ ≡ a+ Cρ.

The following corollary shows the terms of trade as a function of investors’effective types.

Corollary 3 Let κ̃1 = (r+λ/2)κ1+Rκ1
r+λ/2+R

and κ̃2 = (r+α+λ/2)κ2+Rκ2
r+α+λ/2+R

. In any equilibrium, the

individual trade sizes and transaction prices during the crisis (for t < TR) are given

by:

q(θ, θ
′
, t) =

θ
′ − θ
2

and

P (θ, θ
′
, t) =

κ0
r
− 1

r

rκ̃1 +Rκ1
r +R

(λ/2)A

r + λ/2
− 1

r

rκ̃2 +Rκ2
r +R

(α + λ/2)ρ

r + α + λ/2

− κ̃1
r + λ/2

(
θ + θ

′

2
),

where

θ ≡ a+
κ̃2
κ̃1

r + λ/2

r + α + λ/2
ρ.
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Since the crisis trade quantity as a function of effective types is the same as the trade

quantity function after recovery, Proposition 2 apply to the crisis equilibrium as well after a

relabeling of θ and C with bars. Thus, I derive the following corollary to show some relevant

moments in closed form.

Corollary 4 Let κ̃1 = (r+λ/2)κ1+Rκ1
r+λ/2+R

, κ̃2 = (r+α+λ/2)κ2+Rκ2
r+α+λ/2+R

, and θ ≡ a + κ̃2
κ̃1

r+λ/2
r+α+λ/2

ρ. For

t < TR,

E
[
θ | ρ, t

]
=
[
1− e−(α+λ)t

](
A+ C

αρ+ λρ

α + λ

)
+ e−(α+λ)tE

[
θ | ρ, 0

]
,

E
[
θ
2 | t
]

=
[
1− e−λt

] [ 2α

α + λ
C
2
var (ρ) +

(
A+ Cρ

)2]
+ e−λtE

[
θ
2 | 0

]
,

and

var
[
θ | t

]
=
[
1− e−λt

] 2α

α + λ
C
2
var (ρ) + e−λtvar

[
θ | 0

]
,

where

E
[
θ | ρ, 0

]
= A+

λ

α + λ
C (ρ− ρ) + Cρ,

E
[
θ
2 | 0

]
=

(
C2 + C

2 − 2CC
λ

α + λ

)
var (ρ) +

(
A+ Cρ

)2
,

and

var
[
θ | 0

]
=

(
C2 + C

2 − 2CC
λ

α + λ

)
var (ρ) .

4 Results

4.1 Price dispersion

As the measure of price dispersion, I use the standard deviation σP of the equilibrium price

distribution. Following Corollary 1 and, and using the fact that θ and θ′ are i.i.d. due to
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random matching,

σP (t) =


κ̃1√

2(r+λ/2)
σθ (t) for t < TR

κ1√
2(r+λ/2)

σθ (t) for t ≥ TR,

where σθ (t) and σθ (t) are the standard deviation of effective types before and after recovery,

respectively. 1/
√

2(=
√

2
√

1
4
) is due to the fact that the trade is bilateral, and the transaction

price is affected by both counterparties’effective types; κ̃1
(r+λ/2)

and κ1
(r+λ/2)

are the sensitivity

of price to effective type before and after recovery, respectively. An expression for σθ (t) and

σθ (t) can easily be derived from Corollary 2 and 4:

σθ (t) =

√
[1− e−λt] 2α

α+λ
C
2
var (ρ) + e−λt

(
C2 + C

2 − 2CC λ
α+λ

)
var (ρ) for t < TR

σθ (t) =
√

[1− e−λ(t−TR)] 2α
α+λ

C2var (ρ) + e−λ(t−TR)var [θ | TR] for t ≥ TR,

where

var [θ | TR] =
[
1− e−λTR

] 2α

α + λ
C
2
var (ρ) + e−λTR

(
C2 + C

2 − 2CC
λ

α + λ

)
var (ρ)

+
(
C2 − C2

)
var (ρ)−

[
1− e−(α+λ)TR

]
2
(
C − C

)
C

λ

α + λ
var (ρ)

−e−(α+λ)TR2
(
C − C

)
C

λ

α + λ
var (ρ) .

After the algebra:

Proposition 4 The price dispersion measured by the standard deviation of equilibrium price

distribution is

σP (t) =


√

[1− e−λt] α
α+λ

κ̃22var(ρ)

(r+α+λ/2)2
+ e−λt κ̃

2
1var(ρ)

2(r+λ/2)2

(
C2 + C

2 − 2CCλ
α+λ

)
for t < TR√

[1− e−λ(t−TR)] α
α+λ

κ22var(ρ)

(r+α+λ/2)2
+ e−λ(t−TR)

κ21
2(r+λ/2)2

var [θ | TR] for t ≥ TR,
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where

var [θ | TR] =
[
1− e−λTR

] 2α

α + λ
C
2
var (ρ) + e−λTR

(
C2 + C

2 − 2CC
λ

α + λ

)
var (ρ)

+
(
C2 − C2

)
var (ρ)−

[
1− e−(α+λ)TR

]
2
(
C − C

)
C

λ

α + λ
var (ρ)

−e−(α+λ)TR2
(
C − C

)
C

λ

α + λ
var (ρ) .

One advantage of my model relative to {0, 1} models of Hugonnier et al. (2014) and

Shen et al. (2015) is the following. In {0, 1} models, the standard deviation of price is not

available in closed form, but the difference between the maximum and the minimum price.

From an econometric point of view, one would like a measure that takes into account the

distributional effect, i.e. trades that are more likely to happen should have higher weight

than trades that are less likely, in the calculation of price dispersion. My model allows to

calculate the impact of this distributional effect.

Both before and after the recovery, the price dispersion is a weighted average of two terms:

first, a dispersion measure of a hypothetical steady-state equilibrium in which investors follow

their current trading behavior, and second, the price dispersion at the beginning of the crisis

and the recovery period, respectively. Focusing on the first terms, these formulae imply that

3 factors create dispersion in transaction prices in equilibrium. First factor is the distortion

on the extensive margin created by the search frictions. Indeed, if there were no search

frictions, all investors’marginal valuations would be the same, implying a unique price for

all transactions. The second factor is the sensitivity of the price to investor’s current intrinsic

type, i.e., a price impact which again stems from search frictions. And, the last factor is the

heterogeneity in investors’intrinsic types.

The comparative statics analysis of this formula yields interesting empirical implications:

To begin with, illiquidity of a market is an important determinant of price dispersion, as
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stated by other search-theoretic models such as Hugonnier et al. (2014), and it vanishes as

the market becomes perfectly liquid (as λ → ∞). Gavazza (2011b) empirically finds that

price dispersion is higher for illiquid markets. Around λ ' ∞, an increase in λ affects the

price dispersion in two different ways: First, since investors find each other faster, the level

of misallocation decreases. Because of the resulting decline in the heterogeneity of effective

types, trades tend to happen in a less dispersed range of prices. The stronger effect is that a

higher λ reduces the sensitivity of prices to current effective types of investors, and in turn

decreases the price dispersion.

Secondly, extreme market conditions associated with high volatility of asset payoffs and

investor incomes (κ2) increase the price dispersion. This is consistent with the empirical

evidence presented by Friewald et al. (2012) for US corporate bond market and Afonso and

Lagos (2012) for the federal funds market that the price dispersion is higher during crises

compared to normal market conditions. Finally, investor heterogeneity (var (ρ)) is positively

related with price dispersion.

4.2 Trading activity

Instantaneous aggregate trading volume is given by

V (t) =
1

2
2λE

[∣∣∣∣θ′ − θ2

∣∣∣∣ |t]

after the recovery. Before the recovery, the same formula applies with replacing θ by θ.

Thus, it requires using the first absolute moment of individual trade sizes. However, my

characterization of equilibrium distribution only allows for usual moments. Consequenlty, I

will calculate an approximation, more precisely a sharp upper bound, for the actual trade

volume. In the probability theory literature, some sharper bounds for first absolute moments

have recently been developed than usual Hölder-Lyapunov inequalities could provide. Using
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the fact that θ and θ′ are distributed i.i.d. due to random matching, Theorem 6 of Ushakov

(2011) yields

E [|θ′ − θ| |t] ≈ 4

π

√
var [θ|t].

Therefore,

V (t) ≈ λ
2

π

√
var [θ|t].

Proposition 5 A sharp upper bound for the instantaneous trading volume in equilibrium is:

V (t) ≈


λ 2
π

√
[1− e−λt] 2α

α+λ
C
2
var (ρ) + e−λt

(
C2 + C

2 − 2CCλ
α+λ

)
var (ρ) for t < TR

λ 2
π

√
[1− e−λ(t−TR)] 2α

α+λ
C2var (ρ) + e−λ(t−TR)var [θ | TR] for t ≥ TR,

where

var [θ | TR] =
[
1− e−λTR

] 2α

α + λ
C
2
var (ρ) + e−λTR

(
C2 + C

2 − 2CC
λ

α + λ

)
var (ρ)

+
(
C2 − C2

)
var (ρ)−

[
1− e−(α+λ)TR

]
2
(
C − C

)
C

λ

α + λ
var (ρ)

−e−(α+λ)TR2
(
C − C

)
C

λ

α + λ
var (ρ) .

Proposition 5 is important because of its implications about the trading activity in the

short term and long term after an aggregate uncertainty shock. In the long term, a flight

from this market occurs if

C < C,

i.e., if the steady-state trading volume is bigger than the long term trading volume during the

crisis period. In the short term, a decline in the trading activity in this market is observed if

C2 + C
2 − 2CC

λ

α + λ
<

2α

α + λ
C2.
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Figure 1 shows the changes in trading activity for various levels of C.

Figure 1. Changes in the trading activity after the aggregate shock at t = 0 for

various C, where red and blue represent an increase and a decrease, respectively

As discussed earlier, C and C are measures of how aggressively investors trade, respec-

tively, during normal times and during crisis. Accordingly, Figure 1 shows that when C > C,

during the crisis, a higher trading activity is observed, and vice-versa. However, during the

onset of the crisis, a higher trading activity might be observed if C is low enough. This type

of "heating-up" in the trading activity is observed in some real-life financial markets and

are mainly caused by fire sales. This is also the case in my model. When C is low enough,

investors suddenly become very cautious. They start to substantially dislike the extreme

positions they had before the aggregate shock. This market-wide high tendency towards

cautious positions leads to fire sales. Many trades occur at extreme prices.

The fundamental determinant of the relative positioning of C and C is the relative posi-

tioning of the change, created by the aggregate shock, in the volatility of asset payoff, σD
σD
,

and in the volatility of background risk, ση
ση
. Define

Y ≡
(
r + α + λ

2
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+R
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Figure 2 shows the changes in trading activity for various levels of σD
σD
.

Figure 2. Changes in the trading activity after the aggregate shock at t = 0 for

various σDσD , where red and blue represent an increase and a decrease, respectively

The first and second part are actually irrelevant because σD
σD

< Y is impossible when ση
ση
> 1.

Let me first focus on the long term. When the increase in the volatility of asset payoff is
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higher than a certain threshold (σD
σD

> Y ), a flight from this market is observed. This is

consistent with the "flight-to-quality" events observed in real-life financial markets during

crises. When overall uncertainty in the markets is high, investors trade mostly in relatively

safe markets. Similarly, when σD
σD
is low, there is flight-to-quality to this market.

When we focus on the short term, we realize that a flight-to-quality to this market always

starts with a heating-up of trading activity in short term. However, flight from this market

might start with a dry-up or heating-up depending on the level of increase in asset payoff

uncertainty relative to the increase in background risk uncertainty. Very severe flights from

the market actually starts with a heating-up where fire sales occur in which investors quickly

transition to more cautious positions in the asset.

Table 1: Parameter values

Parameter Value

Discount rate r 0.05

Risk aversion γ 0.01

Expected asset payoff mD 6.88

Vol. of asset payoff σD 0.25

Vol. of background risk ση 5967

Vol. of asset payoff (crisis) σD 1.64

Vol. of background risk (crisis) ση 13143

Asset supply A 60160

Search effi ciency λ 37

Intensity of idiosyncratic shocks α 8.13

Intensity of recovery event R 2.71

Number of intrinsic types J 30

Intrinsic types ρj −1 + 2β−1
(8,8)

([j − 1] /J)

β−1
(α,β)

(x) refers to the inverse cumulative function of a beta distribution with

an alpha parameter of α and a beta parameter of β.
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4.3 Application to the corporate bond market

In this section, I present a numerical example of my model of crisis to capture the dynamics

of price dispersion and trading activity during and after the onset of the subprime crisis in

the secondary market for corporate bonds, a typical decentralized asset market. Table 1

shows the parameter values chosen for the calibration.

In the calibration, 1 period is thought of as 1 year. Since the preference structure of my

model is same as that of Duffi e et al. (2007), I follow them in setting the discount rate to

5% and the risk aversion parameter to 0.01. I normalize the asset supply to A = 60, 170

so that the average price in the steady-state equilibrium is E [P ] = 100.2 The expected

asset payoff, mD = 6.88, and the volatility of asset payoff, σD = 0.25, are chosen to match

the average yield spread of mD/Eφ [P ] − r = 1.88% and the standard deviation of yield

spread of σD/Eφ [P ] = 0.25% during the period before the subprime crisis, i.e., between

February 2006 and June 2007 (Friewald, Jankowitsch & Subrahmanyam, 2012). I do not

make adjustments to mD during the crisis as the coupon rates of corporate bonds before

and during the crisis are roughly the same as Friewald et al. (2012) report. I calculate the

average price during crisis by targeting the average yield spread of mD/Eφ
[
P
]
− r = 5%. To

choose the volatility of asset payoff σD during the crisis, I target the standard deviation of

yield spread of σD/Eφ
[
P
]

= 2.38% during the subprime crisis, i.e., between July 2007 and

December 2008 (Friewald et al., 2012).

Friewald et al. (2012) find that the trading interval is 3.38 day before the crisis and 3.37

day during the crisis. In my model, the search effi ciency parameter, λ = 37, implies a trading

interval of 250
2λ

= 3.38 day. In the calibration of the idiosyncratic shocks in my numerical ex-

ample, I target the average length of intermediation chains and the price dispersion observed

2When I scale up (down) mD and σD, and scale down (up) A by the same constant, all equilibrium
objects I calculate for my numerical exercise stay the same. That is, if {q, P,Φ (ρ, a)} is an equilibrium when
the asset supply is A, the expected asset payoff is mD and the asset payoff volatility is σD, then, for any
k > 0,

{
q
k , kP,

1
kΦ (ρ, ka)

}
is an equilibrium when the asset supply is A

k , the expected asset payoff is kmD,
and the asset payoff volatility is kσD.
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in the corporate bond market. The intermediation chain length can be written as

CL =
Total Trade V ol.

Fundamental V ol.

where total trade volume is calculated as in the previous chapter and fundamental volume

is the part of total trade volume with trades caused by idiosyncratic shocks, i.e.,

Fundamental V ol. =
α

2
CE [|ρ′ − ρ|] .

Using Theorem 6 of Ushakov (2011), a proxy for fundamental volume is

Fundamental V ol. ≈ α

2
C

4

π

√
var [ρ].

Hence, we arrive at the following proxy for the intermediation chain length

CL ≈
√

2λ√
α (α + λ)

.

According to this formula, the chosen intensity of idiosyncratic shocks, α = 8.13, leads to an

average intermediation chain length of 2.73 which is the one reported by Shen et al (2016) for

the period between July 2002 and December 2012. Proposition 4 and 5 imply that scaling ση

and σρ up and down, respectively, by the same factor has no impact on price dispersion and

trading activity. Hence, I normalize σρ to 1/3. To calibrate ση, I target the price dispersion

of 39.75 bp which is the observed one in the corporate bond market during the period before

the subprime crisis (Friewald et al., 2012). The average VIX index during the period before

crisis was 13.21, while it was 29.1 during the crisis. Thus, I set ση = 29.1
13.21

ση. Since the CAPM

beta of iShares Barclays Aggregate Bond Fund, one of the most established corporate bond

indices, is −0.03, I assume that ρ = 0, i.e., there is no correlation, on aggregate, between
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the payoff of corporate bonds and the investors’stochastic income. In the calibration of the

distribution, F , of intrinsic types, I assume that it has a generalized beta distribution on

[−1, 1]. Hence, the mean and standard deviation I chose earlier fully specifies it.

Finally, I assume that R = α/3, i.e., investors expect to receive three idiosyncratic shock,

on average, before the recovery from the aggregate uncertainty shock. Figure 3 shows the

effect of this aggregate uncertainty shock on price dispersion and trading activity.

Figure 3. (a) Time-series of the price dispersion (bp) (b) Time-series of the proxy for asset turnover

Since the calibrated values imply that C < C, we observe a flight-to-quality from the

corporate bond market during the aggregate uncertainty shock in the long term. On the

other hand, as C < C λ−α
λ+α

also holds, a heating-up during the onset of the crisis is observed.

Because the investors’new trading regime after t = 0 in the corporate bond market is much

more cautious than their behavior during the normal times, they have a strong inclination

to holding conservative positions after the aggregate uncertainty shock. This leads to plenty

of fire sales initially. This, in turn, creates a spike in price dispersion and a "heating-up"

in the trading activity. The short heating-up period is followed by a long "dry-up" in the
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trading activity, which lasts until the recovery at t = 1.

5 Conclusion

Assets which became a center of attention with the subprime crisis, like CDOs, CDSs, and

repos, are traded in decentralized markets. As a result, analyzing the effect of crises in this

type of markets became a center of attention as well. In this paper, I construct a dynamic

model of crises in a decentralized asset market that operates via search and bargaining. The

crisis is modeled as a one-time aggregate shock to uncertainty with a random recovery. I

analyze the effect of this crisis on price dispersion and trading activity. I show that both

volatility of asset payoff and volatility of background risk contribute to higher level of price

dispersion during the crisis. Trading activity might be higher or lower depending on the

increase in the volatility of background risk relative to the increase in the volatility of asset

payoff, consistent with the “flight-to-quality”observations during extreme episodes. A flight

to the asset market always starts with a “heating-up”in trading activity but a flight from

the market might start with a dry-up or heating-up during the onset of the crisis. If the

relative increase in the volatility of asset payoff is too high, a period of fire sales is triggered

leading to a short heating-up before the complete dry-up of the trading activity. I calibrate

the model according to the U.S. corporate bond market data and show that it captures the

observations during the subprime crisis.
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CHAPTER 3

Endogenous Liquidity and Cross-section of Returns
in Dynamic Bargaining Markets

1 Introduction

Analysis of market liquidity (i.e., the ease of buying and selling) as a pricing factor has

become a focus of attention in financial research as the recent developments in financial

markets and the 2007-2008 subprime crisis outlined the importance of market liquidity for

healthy functioning of financial markets and, in turn, of the whole economy. One important

question yet to be answered is how market liquidity interact with asset fundamentals. In this

paper, I aim at answering this question from the point of view of a model with endogenous

liquidity. More precisely, I look, in the theoretical environment provided by the model, at

how differences in asset quality lead to differences in market liquidity in the cross-section.

The main motivation comes from the interesting results that empirical cross-sectional

analysis of the relation between liquidity and uncertainty yields. Barinov (2014) studies

monthly returns on individual stocks traded on NASDAQ over the period 1964-2006. He

finds that the turnover (trading volume over shares outstanding) of an asset is positively

related to its firm-specific uncertainty.1 Li and Wu (2006) study daily returns on individual

stocks listed in the Dow Jones 30 index, over the period 1988-2001. They find that the

trading volume and bid-ask spread of an asset is positively related to its return volatility.2

However, if turnover and trading volume measure liquidity while bid-ask spread measures

illiquidity, the findings of Barinov (2014) and Li and Wu (2006) are puzzling.

Furthermore, controlling for payoff uncertainty, the empirical analysis of liquid/illiquid

1See also Comiskey, Walkling, and Weeks (1987) and Karpoff (1987).
2See also Schwert (1989), Gallant, Rossi, and Tauchen (1992), and Lang, Litzenberger, and Madrigal

(1992).
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asset pairs reveals the existence of a return differential, a liquidity premium, between assets.

The time variation in liquidity premia is delineated by the term "flight-to-liquidity," meaning

that liquidity premia are higher during extreme market episodes. For instance, Kamara

(1994) studies the yield spread between T-notes and T-bills with matched maturities, which

is essentially a liquidity premium stemming from the lower liquidity of notes. He finds that

the liquidity premium is positively correlated with interest-rate volatility.3 Longstaff (2004b)

studies the yield spread between the securities of Refcorp and Treasury securities, which is

again a form of liquidity premium caused by the lower liquidity of the Refcorp securities. He

finds that the liquidity premium is negatively correlated with consumer confidence index.

In order to rationalize those empirical findings, I propose a dynamic bargaining mar-

ket model in which assets differ in (i) their supply, represented by the quantity of trade-

able shares and (ii) their quality, represented by the payoff volatility. My model generates

endogenous cross-sectional liquidity differentials consistent with the empirical regularities

mentioned above. In addition, I show that times of high volatility are associated with a

flight-to-liquidity.

The modeling strategy follows closely Weill (2008). Trade is subject to search and bar-

gaining frictions. Investors optimally choose a portfolio of search efforts. Marginal value of

increasing the search effort allocated to a particular asset is affected by the ease of finding

a counterparty who holds that asset. Investors recognize this fact. Under natural techni-

cal conditions, this fact leads to a trade-off between liquidity and price of assets. That is,

controlling for risk, an asset that is easier to find is sold at a higher price.

The first contribution of this paper is theoretical: It extends the risk-neutral search-

based pricing model of Weill (2008) so as to treat the implications of search frictions for

risky asset pricing. I show how risk aversion can be approximated in a risk-neutral multi-

asset setting by means of a quasilinear utility over asset position that accounts for the

3See also Amihud and Mendelson (1991) and Strebulaev (2003).
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utility reductions stemming from suboptimal hedging. Then, I study how risk and supply

differences affect prices and liquidity of assets in a steady-state equilibrium in which investors

face idiosyncratic risk. I show the effect of risk aversion on cross-section of asset prices in a

setting with search, above and beyond the usual implications of search-theoretical models in

finance. The analysis in this paper could not have been conducted in Weill (2008) in which

the cross-sectional variation in asset returns is exclusively due to liquidity differences and

risk is not priced.

The second contribution of this paper is to classify the measures of liquidity. I show

that cross-sectional liquidity and risk are negatively related in the case of buyers, while

they are positively related for sellers. Combining these results with the results of Weill

(2008) regarding supply-liquidity relationship, I am able to propose the following measures

as proxies for liquidity. For buyers, I suggest that bid-ask spread is a proxy for illiquidity

while market capitalization is a proxy for liquidity. In the case of sellers, trading volume

and turnover are proxies for liquidity. Consequently, higher risk implies lower liquidity for

buyers and hence higher bid-ask spread and lower market capitalization. On the other hand,

higher risk implies higher liquidity for sellers and hence higher trading volume and turnover.

These results are consistent with empirical regularities mentioned before.

The last section of the paper addresses time variation in liquidity. First, I demonstrate

how my model may lead to flight-to-liquidity. In demonstration of flight-to-liquidity, I char-

acterize an equilibrium in which the cross-sectional variation in asset returns is exclusively

due to liquidity differences as is the case in Weill (2008). I show that liquidity premia increase

with common payoff volatility of assets suggestive of flight-to-liquidity.

Early applications of search-theoretical tools can be found in labor economics, spurred

by the “coconuts”model of Diamond (1982). Then, they are also used to answer important

questions in monetary economics.4 As for search-theoretical models of finance, Duffi e, Gâr-

4See, for instance, Trejos and Wright (1995).
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leanu, and Pedersen (2005)5 offer an over-the-counter (OTC) market model with risk-neutral

investors in which only one asset is traded. Miao (2006) generalizes this model to study the

co-existence of centralized and OTC markets. Vayanos and Wang (2007) and Weill (2008)

have provided important generalizations to an environment with many assets. Weill (2007)

shows how dealers provide liquidity during a crisis in an extension of Duffi e et al. (2005).

Longstaff (2004a) and Gârleanu (2006) propose models of infrequent trading by replacing the

bilateral bargaining assumption with an infrequent access to a centralized market. Krainer

and LeRoy (2002) offer a different search-theoretical framework to study the housing market.

Finally, my paper is also related to asset pricing models with exogenously specified trading

costs.6 More precisely, I complement this literature with a model of endogenous trading

costs in the context of search frictions.

The remainder of the paper is organized as follows. Section 2 describes the setup, Section

3 defines, calculates, and analyzes an equilibrium where buyers search for all assets. Section

4 discusses the results and study a flight-to-liquidity event. Lastly, Section 5 concludes.

The Appendix provides the microfoundations for the risk-adjusted utility employed in my

analysis.

2 Environment

This section presents the model environment, in which investors encounter two non-Walrasian

features in the dynamic bargaining market where they trade. First, locating a counterparty

takes time and effort. Investors allocate “trading specialists” to search for asset-specific

counterparties. Second, when two trading specialists meet, they negotiate over the price on

behalf of the investors they work for. The model setup is adapted from Weill (2008). The

5See also Duffi e, Gârleanu, and Pedersen (2002) and Duffi e, Gârleanu, and Pedersen (2007).
6See Amihud and Mendelson (1986), Constantinides (1986), Vayanos (1998), Huang (2003), Vayanos

(2004), and Acharya and Pedersen (2005).
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novel part of my setup is that the preferences are generalized in a way to account for the

asset payoff risk so that not only liquidity is a pricing factor but the risk is also priced in

the equilibrium of this model.

2.1 Preferences

Time is continuous and runs forever. I fix a probability space (Ω,F , P ) and a filtration

{Ft, t ≥ 0} of sub-σ-algebras satisfying the usual conditions (see Protter, 2004). The fil-

tration represents the resolution of information commonly available to investors over time.

Multiple assets k ∈ {1, 2, ..., K} are traded. Fixed supply of asset k is given by sk ∈ (0, 1).

Suppose δ and σk are positive constants, and Bt is a standard Brownian motion. The cu-

mulative dividend process

dDkt = δdt+ σkdBt (1)

describes the cash flow paid by asset k.

The economy is populated by a continuum of infinitely lived investors with total measure

normalized to 1. Investors’ time preferences are determined by a constant discount rate

r > 0. An investor is permitted to hold either zero or one share of some asset, and can

choose which asset to hold. Investors are effectively risk-averse. In order to stay away from

the burden of derivations with minimal intuition, however, I assume investors are risk-neutral

but receive a risk-adjusted utility flow from holding a position in an asset.

At any point in time, an investor has intrinsically either a high valuation or a low valuation

for holding assets. When his intrinsic-type is high and holds asset k ∈ {1, 2, ..., K}, he enjoys

the utility flow δ −Aσ2
k where A is a positive parameter. With a low valuation, he enjoys a

utility flow δ−xσk−Aσ2
k, for some parameter x > 0.7 Any investor’s intrinsic type switches

7These utility flows are interpreted in terms of risk aversion. Since the parameter δ is an expected rather
than actual dividend flow, this cash flow needs to be adjusted for risk. The term Aσ2k represents a cost
of risk bearing. The term xσk represents additional holding cost for low-type investors. In the Appendix,
I provide microfoundations for these utilities. I assume that investors have CARA preferences over the
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from low to high with intensity γu, and switches back with intensity γd. For any pair of

investors, their intrinsic type processes are assumed to be independent. In addition to the

utility flow provided by the assets, an investor cares for the consumption of a nonstorable

numéraire good, with a marginal utility of 1. Investors are endowed with a technology that

instantly produces the numéraire at unit marginal cost so that they are able to make side

payments in the numéraire.

I let s ≡ (s1, s2, ..., sK) denote the vector of asset supplies. I also impose the condition

that
K∑
k=1

sk ≡ S <
γu

γu + γd
, (2)

which implies that the total number of tradeable shares S of all assets is less than the measure

of high-type investors in the steady-state. As investors are allowed to hold 0 or 1 unit of

some asset, Assumption (2) implies that the so-called marginal investor of a hypothetical

frictionless market would be of high type. Hence, in this frictionless benchmark, asset k

would have the equilibrium price of δ−Aσ2k
r

since, at any point in time, assets would be

allocated to those who value them the most.

2.2 Trade

At any point in time, investors differ from each other in two characteristics: an intrinsic type

(high h or low l) and whether he owns an asset or not (owner of asset k ok or non-owner n).

Therefore, the full set of investor types is

I = {hn, ln, ho1, ..., hoK, lo1, ..., loK}. (3)

numéraire good, and that they can invest in a riskless asset with return r and in two different risky assets
with dividend flow described in Equation (1). Moreover, investors receive a stochastic income flow whose
correlation with the dividend flow can be positive (low-type) or zero (high-type). These assumptions give
rise to the risk-adjusted utility flows for low-type and high-type investors, with the parameters A and x
being functions of the investors’risk aversion and the background risk correlation.
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As implied by Assumption (2), high-type non-owners (hn) will be potential buyers, and

low-type owners of asset k (lok) will be potential sellers of asset k in equilibrium. For each

i ∈ I, I let µi denote the fraction of investors of type i. Every investor is endowed with a

measure v of “trading specialists”who search for and negotiate with trading counterparties

on behalf of investors.

A trading specialist is characterized by a two-dimensional vector (i, j) ∈ I2, meaning that

he works for an investor of type i and is allocated by the investors to searching specialists

who work for investors of type j. Therefore, the total measure of specialists of type (i, j)

is µivij. Any investor’s choice of trading specialist allocation is constrained by his total

endowment of trading speciaists such that
∑
j∈I
vij ≤ v for all i ∈ I. A given specialist

finds a counterparty with an intensity z > 0, reflecting the overall liquidity in the dynamic

bargaining markets. Contacts are also pair-wise independent with the investor’s intrinsic type

processes. Specialists of type (i, j) target only the specialists of type (j, i) as contacts, that

could result in a trade, can occur only between those types of specialists. I assume that the

counterparty found is randomly selected from the pool of all specialists. Since one can scale

v and z up and down by the same factor, respectively, I normalize the measure of investors’

trading specialist endowment v to 1. Thus, for a specialist of type (i, j), conditional on a

contact, the random matching assumption implies that the probability that the counterparty

is indeed a targeted one is µivij. As a result, assuming that the law of large numbers applies,

specialists of type (i, j) contact specialists of type (j, i) at an (almost sure) instantaneous

rate of µivijzµjvji and, since specialists of type (j, i) contact specialists of type (i, j) at the

same intantaneous rate, the total rate of such counterparty matching, for i 6= j, is

µivijzµjvji + µjvjizµivij = 2zµivijµjvji (4)

In a discrete-time search-and-matching environment, Duffi e and Sun (2007) show that
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the exact law of large numbers for a continuum of investors indeed applies in the sense that

is presented above. Giroux (2005) provides a proof that the cross-sectional distribution of

investor types in a natural discrete-time analogue of this type of models indeed converges to

its continuous-time counterpart like the one studied here.

3 Equilibrium

This section defines and characterizes a symmetric equilibrium in the sense that potential

buyers optimally search for all assets, and analyzes the basic properties of this equilibrium.

3.1 Definition

The equilibrium definition I use is identical to the one defined in Weill (2008). After a brief

description of the notation and the anticipated equilibrium trading behavior, first, I will

define the investors’value functions, taking as given the equilibrium distribution of investor

types. Then, I will write down the conditions that the equilibrium distribution of investor

types satisfies. Lastly, I will define the equilibrium.

3.1.1 Individual trades

Let Vi denote the maximum attainable continuation utility of an investor of type i. Reserva-

tion value of a high-type non-owner for asset k is defined as ∆Vhk ≡ (Vhok − Vhn). Similarly,

reservation value of a low-type owner for asset k is ∆Vlk ≡ (Vlok − Vln ). The total surplus

created by a trade between two investors of type hn and type lok, thus, becomes

∆Vhk −∆Vlk = (Vhok − Vhn)− (Vlok − Vln). (5)

In equilibrium, it will be the case that ∆Vhk − ∆Vlk > 0 for all k ∈ {1, 2, ..., K}. The
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surplus of a trade can also be positive between a low-type owner lok and a high-type owner

hoj. One of the two might be willing to transfer a specific amount of the numéraire good

to the other in order to swap their initial assets. The total surplus of such a swap is

Vloj − Vlok + Vhok − Vhoj.

In my equilibrium definition, I do not allow for swaps. More precisely, I impose the

condition that lok investors search only for a direct sale with hn investors, but do not search

for swaps. On the sell side of the market, an lok investor allocates all of his trading specialists

to search for hn investors, i.e., vlok,hn = 1 for all k ∈ {1, 2, ..., K}. On the buy side of the

market, an hn investor allocates a measure vhn,lok > 0 of his trading specialists to search

for asset k ∈ {1, ..., K} held by lok investors. Accordingly, when I use the term trading

specialists allocation in the rest of the paper, I always refer to a trading specialists allocation

by hn investors as given in the following definition.

Definition 1 A trading specialists allocation is some v ∈ RK+ with
K∑
k=1

vk ≤ 1.

In order to make sure that, in the equilibrium, an lok investor does not search for swaps,

we need to check if the expected value of searching for a swap is strictly less than the expected

value of searching for a direct sale. This condition can be written as

2zvjkµhojq(Vloj − Vlok + Vhok − Vhoj) < 2zvkµhnq(∆Vhk −∆Vlk) (6)

for all (k, j) ∈ {1, ..., K}2, where vjk is the measure of trading specialists that hoj investors

allocate to search for a swap with lok investors. Dividing both sides by 2zq, vjk ≤ 1 implies

that (6) will hold if

µhoj(Vloj − Vlok + Vhok − Vhoj) < vkµhn(∆Vhk −∆Vlk) (7)

for all (k, j) ∈ {1, ..., K}2. This suffi ciency condition will be verified in the proof of Proposi-
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tion 3. Hence, searching for an direct sale with an hn investor becomes a dominant strategy

for lok investors in equilibrium.

The price of every transaction is determined through bilateral bargaining. The lok in-

vestor will sell his asset to the hn investor, in exchange for some payment pk in the numéraire

good. The price arises as the solution of a generalized Nash-bargaining game, as follows:

pk = arg max
p

(∆Vhk − p)1−q (p−∆Vlk)
q

for all k ∈ {1, ..., K}, where q ∈ (0, 1) is the bargaining power of the lok investor. Solution

of the optimization problem above gives that the bargaining process results in the price of

asset k:

pk = q∆Vhk + (1− q)∆Vlk. (8)

3.1.2 HJB equations

I define the equilibrium continuation utilities of investors recursively. The Hamilton-Jacobi-

Bellman (HJB) equation for the continuation utility of a buyer hn is

rVhn = max
ṽ1,ṽ2,...,ṽK

{γd(Vln − Vhn) +
K∑
k=1

2zṽkµlok(Vhok − Vhn − pk)}, (9)

subject to
K∑
k=1

ṽk = 1

and

ṽk ≥ 0,

for all k ∈ {1, 2, ..., K}. A buyer takes as given the equilibrium measures of investor types

but he is able to choose freely how he allocates his trading specialists to different assets.
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Following from the Bellman principle of optimality in a stationary equilibrium, the HJB

equation (9) equates the flow continuation utility rVhn into the sum of two terms. The first

term, γd(Vln − Vhn), is the expected change in the flow utility caused by an idiosyncratic

shock. The second term is the expected contribution of searching for alternative assets to

the flow utility.

Other investors’ continuation utilities solve the following system of HJB equations by

taking as given the distribution of investor types and the trading specialists allocation of

buyers:

rVhok = δ − Aσ2
k + γd(Vlok − Vhok) (10)

rVlok = δ − xσk − Aσ2
k + γu(Vhok − Vlok) + 2zvkµhn(Vln − Vlok + pk) (11)

rVln = γu(Vhn − Vln ) (12)

for all k ∈ {1, 2, ..., K}.

3.1.3 Stationary distribution of types

I now provide the conditions that the stationary distribution of investor types should satisfy.

Since µ = (µhn, µhok, µlok, µln)1≤k≤K is a probability mass function, it should satisfy

1 =

K∑
k=1

(µlok + µhok) + µhn + µln . (13)

Clearing of the market for all assets requires that

sk = µlok + µhok, (14)
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for all k ∈ {1, ..., K}. Lastly, for all i ∈ I, µi should satisfy the condition for stationarity.

For instance, for hn investors, the condition is

γuµln = γdµhn +
K∑
k=1

2zvkµhnµlok. (15)

The condition basically equates the inflow from ln investors, who receive an idiosyncratic

shock, to the sum of the outflow of hn investors due to an idiosncratic shock and due to

trade. The stationarity condition for ln investors can be written similarly:

γdµhn +

K∑
k=1

2zvkµhnµlok = γuµln.

Note that this condition is actually the same as (15).

Equating the inflow and outflow for lok investors yields

γdµhok = γuµlok + 2zvkµhnµlok (16)

for k ∈ {1, ..., K}. The condition for hok investors

γuµlok + 2zvkµhnµlok = γdµhok

is the same (16).

Weill (2008) studies (13)—(16) and provides a proof for the following proposition.

Proposition 1 Given an allocation v of trading specialists, the system (13)-(16) has a

unique solution µ = (µhn, µhok, µlok, µln )1≤k≤K ∈ [0, 1]2K+2.

I have specified all requirements to define a stationary equilibrium. I only have to bring

those ingredients together. Formally, a stationary symmetric equilibrium is defined as follows:
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Definition 2 A stationary symmetric equilibrium is

i) a collection of prices p = (p1, ..., pK)

ii) a collection of continuation utilities V = (Vhn, Vhok, Vlok, Vln )1≤k≤K

iii) a distribution of types µ = (µhn, µhok, µlok, µln )1≤k≤K

iv) a trading specialists allocation v = (v1, ..., vK)� 0

such that

• Stationarity: Given iv), iii) solves the system (13)-(16).

• Optimality: Given i), iii) and iv), ii) and iv) solves the system (9)-(12) of HJB

equations. The no-swap condition (7) holds for all (k, j) ∈ {1, ..., K}2.

• Nash-bargaining: i) satisfies (8).

3.2 Characterization

The key property of this model is the clear trade-off it introduces between the liquidity of

an asset and the individual transaction surplus that results from trading that asset. Note

that our equilibrium concept imposes the condition that all assets are searched, i.e., v � 0.

The first-order condition of the buyer’s problem (9), therefore, implies that buyers should

be indifferent between searching for all assets since (9) is a linear program:

2zµlok(Vhok − Vhn − pk) = 2zµloj(Vhoj − Vhj − pj) (17)

⇐⇒ 2zµlok(1− q)(∆Vhk −∆Vlk) = 2zµloj(1− q)(∆Vhj −∆Vlj) (18)

for all (k, j) ∈ {1, ..., K}2, where (18) follows from substituting (8) into (17). Using this

search indifference, one can simplify the HJB equations as follows. First, the search-
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indifference conditions (18) can be written as

Wk = W , (19)

for all k ∈ {1, ..., K}, for some positive constant W to be determined in equilibrium, where

Wk ≡ 2zµlok(1− q)(∆Vhk −∆Vlk). (20)

To show the existence and uniqueness of the equilibrium, I follow the steps in Weill (2008).

I start by replacing (19) in Equation (9). Then I combine the HJB equations (9)—(11) and

use the pricing equation (8) to arrive at

rWk = 2zµlok(1− q)xσk − (γd + γu + 2zµhnvkq)Wk − 2zµlok(1− q)W (21)

for all k ∈ {1, ..., K}. Substituting µhok = sk − µlok into Equation (16), I find that

2zµhnvk =
γdsk
µlok

− (γd + γu) (22)

Substituting (22) into (21), using (19) and rearranging gives

r + (1− q)(γd + γu)

(1− q)xσk
1

2zµlok
+

2zγdskq

(1− q)xσk
1

(2zµlok)
2

+
1

xσk
=

1

W
(23)

This quadratic equation allows me to write 2zµlok = mk(W ), for some W < min
k
{xσk}, and

for some continuous and increasing function mk(.).

Now, the stationary measure of high-type investors is equal to the stationary probability
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of being in a state of high intrinsic type

µhn +

K∑
k=1

µhok =
γu

γd + γu
(24)

Combining (24) with (14) shows

µhn =
γu

γd + γu
− S +

K∑
k=1

µlok (25)

Substituting (25) into (22) gives

vk(
2zγu
γd + γu

− 2zS +
K∑
k=1

mk(W )) =
2zγdsk
mk(W )

− (γd + γu) (26)

which shows that
K∑
k=1

vk = 1 only if

2z(
γu

γd + γu
− S) +

K∑
k=1

mk(W )− 2zγd

K∑
k=1

sk
mk(W )

+K(γd + γu) = 0 (27)

Since mk(.) is strictly increasing for each k, the left-hand side of (27) is strictly increasing in

W . Thus, the equilibrium W is uniquely characterized by (27). Once W is found, the other

equilibrium objects are pinned down uniquely: the trading specialists allocation by (26), the

distribution of types by (13)—(16), the continuation utilities V by (9)—(11), and the prices p

by (8). This implies

Proposition 2 (Uniqueness) There is at most one symmetric equilibrium.

In the proof of existence, I again follow Weill (2008) and first analyze the case of iden-

tical asset characteristics, for the distribution ŝ = (S/K, ..., S/K) of asset supplies and for

the distribution σ̂ = (σ̃, ..., σ̃) of dividend volatilities. I show the existence of a symmetric
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equilibrium with vk = 1/K, following Duffi e et al. (2005). Then, the application of the Im-

plicit Function Theorem (see Taylor & Mann, 1983, chapter 12) to Equation (27) establishes

existence in a neighborhood of this equilibrium with identical asset characteristics.

Proposition 3 (Existence with almost-identical assets)

Let ŝ = (S/K, ..., S/K) and σ̂ = (σ̃, ..., σ̃). Then, there is a neighborhood N ⊂ RK+ of ŝ

and a neighborhood M ⊂ RK+ of σ̂, such that for all s ∈ N and σ ∈ M , there is a

symmetric equilibrium.

Proof. I start by guessing that there is a symmetric equilibrium, with µ̂lok = µ̂lo/K and

v̂k = 1/K, when assets have identical characteristics. The equations that characterize the

equilibrium are identical to those of Duffi e et al. (2005), after replacing their "λ" with

"z/K" here. Their results imply that Vi > 0 for all i ∈ {1, 2, ..., I} and ∆Vhk − ∆Vlk for

all k ∈ {1, 2, ..., K}. Moreover, the no-swap condition (7) is trivially satisfied as assets

have identical characteristics. Since the left-hand side of (27) is strictly increasing in W ,

the Implicit Function Theorem can be applied: This provides a neighborhood N ⊂ RK+ of

ŝ and a neighborhood M ⊂ RK+ of σ̂, such that, for all s ∈ N and σ ∈ M , there exists a

candidate equilibriumW = h(s, σ), for some continuous function h(., .). The other candidate

equilibrium objects (V, µ, v) are easily expressed as continuous functions of W and thus as

continuous functions of s and σ. The search-indifference conditions (19) are satisfied by

construction. All other relevant inequalities hold by continuity.

Specifically, the proof establishes that sellers do not have any incentive to search for

swaps if assets characteristics are suffi ciently homogeneous. This follows from the fact that

the net utility of swapping two assets with nearly identical characteristics is close to zero,

and turns out to be strictly less than the value of searching for a direct sale. The proofs so

far are almost identical to those in Weill (2008). The main difference lies in the holding cost

term of low-type investor. The additional dimension of asset characteristics in my model,
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which is dividend volatilities, creates cross-sectional differences in the holding costs of assets.

When σk = σ for all k ∈ {1, 2, ..., K}, my model becomes identical to the model of Weill

(2008) up to a relabeling of the preference parameters.

Does there always exist an equilibrium in which all assets are traded? Weill (2008)

provides a partial answer, in a two-asset economy. Specifically, he shows that if the assets

have suffi ciently different supplies, there cannot be an equilibrium in which both are traded.

Existence in Proposition 3 is proved by studying how the left-hand side of (27) depends on s.

When asset characteristics are suffi ciently similar, the equation has a solution. Alternatively,

when the supply of an asset is suffi ciently small relative to supplies of other assets, (27) has

no solution.

4 Applications

4.1 Cross-section of returns

In this section, I focus on the implications of the model for asset pricing. I first discuss how

risk and liquidity arise endogenously as pricing factors in the model. Then, I discuss the rela-

tion of the cross-sectional variation in asset returns with the exogenous vector s = (s1, ..., sK)

of asset supplies and the exogenous distribution σ = (σ1, ..., σK) of payoff volatilities. The

last objective of this section is to classify the liquidity proxies.

4.1.1 Three equations

The pricing equation (8) can be written

pk = ∆Vhk − (1− q)(∆Vhk −∆Vlk) (28)

156



Using the HJB equations (9) and (10), along with (28), I find that

rpk = δ − Aσ2
k − γd(∆Vhk −∆Vlk)−W − (1− q)r(∆Vhk −∆Vlk) (29)

This equation decomposes the "flow" price of asset k into five terms. The first, δ, is

the expected flow of dividend payments. The second component, Aσ2
k, is the flow cost of

bearing risk. The third component, γd(∆Vhk − ∆Vlk), is the expected cost of switching to

the low-type, and being stuck with the asset due to search frictions. The fourth component,

W , is the opportunity cost of buying the asset, i.e., giving up the expected net benefit of

continuing search. The last component is the bargaining discount.

It is instructive to compare the price pk of the asset in this frictional market with its

price p∞k in a hypothetical frictionless market. Assumption (2) implies that the so-called

marginal investor of a hypothetical frictionless market would be of high type. Hence, in this

frictionless benchmark, asset k would have the equilibrium price of p∞k =
δ−Aσ2k

r
since, at

any point in time, assets would be allocated to those who value them the most. Hence, all

discounts in (29) disappear in the frictionless benchmark, except for the cost of fundamental

risk-bearing.

Substituting the search-indifference condition (19) into (29), I derive the first important

equation

pk =
δ − Aσ2

k

r
− W

r
− (1 +

γd
r(1− q))

W

2zµlok
(30)

This equation implies that, controlling for payoffvolatility, an asset that is easier to find (has

larger µlok) is sold at a higher price. The effect of σk on the price of asset k is indeterminate

at this stage of the analysis, since µlok is endogenous and we do not know the effect of σk on

µlok.

Let E, F , and G be positive constants. Note that the indifference condition (23) has the
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form

E
sk
σk

1

µ2
lok

+ F
1

σk

1

µlok
+G

1

σk
=

1

W
(31)

This is the second important equation and establishes the relation of the measure µlok of

sellers with the asset supply sk and the payoff volatility σk.

The third equation follows from (22), and establishes the relation of the allocation vk of

trading specialists with the measure µlok of sellers and the fixed asset supply sk:

µlok
sk

=
γd

γd + γu + 2zµhnvk
(32)

The object 2zµhnvk represents the demand side of the market. The larger 2zµhnvk is, the

higher the search activity for asset k is, and the easier it is to sell this asset. A natural

question is if 2zµhnvk is an increasing function of µlok. In other words, is an asset that is

easier to sell is also easier to find? Eq. (32) implies that the answer depends on the asset

supply sk, and is therefore unknown at this stage of the analysis.

4.1.2 Liquidity - risk - return relationships

Eq. (31) is of the form

H(sk, σk, µlok) =
1

W
(33)

for some function H(·,·,·) that is increasing in sk and decreasing in σk and µlok. This implies

that µlok is increasing in sk and decreasing in σk. In other words, controlling for payoff

volatility, an asset with higher supply is easier to find, is sold at a higher price, and has

a lower return Rk = δ/pk. Similarly, controlling for supply, an asset with higher payoff

volatility is harder to find, is sold at a lower price, and has a higher return Rk = δ/pk.

sk affects the price through the measure of sellers. An asset with larger sk has a larger

µlok. By the main pricing equation (30), this implies a higher price.
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σk affects the price through two channels. First, it has a negative impact on the investors’

utility flow because they are risk averse. Secondly, an asset with larger σk has a lower µlok.

By the main pricing equation (30), this implies a lower price. Hence, the existence of search

frictions amplifies the pricing impact of the fundamental risk.

The discussion above can be summarized in Proposition 4 and 5.

Proposition 4 Fixing σ̂ = (σ̃, ..., σ̃), in equilibrium, sk > sj implies that

µlok > µloj, vk > vj , pk > pj , Rk < Rj , and ∆Vhk −∆Vlk < ∆Vhj −∆Vlj.

Proof. By (33), µlok > µloj. Since
∂µlok
∂sk

< 1, (32) implies vk > vj. By (30), µlok > µloj implies

pk > pj and Rk < Rj. By search indifference, µlok > µloj implies ∆Vhk−∆Vlk < ∆Vhj−∆Vlj.

In words, controlling for payoff volatility, an asset with higher supply is easier to find,

easier to sell, has a higher price, a lower return, and a narrower individual trade surplus.

When we fix a particular risk for all assets, return differentials arise exclusively due to

liquidity differentials, and our model becomes identical to Weill (2008) model. Hence, our

Proposition 4 is identical to the proposition 5 in Weill (2008).

Proposition 5 Fixing ŝ = (S/K, ..., S/K), in equilibrium, σk > σj implies that µlok < µloj,

vk > vj , pk < pj , Rk > Rj , and ∆Vhk −∆Vlk > ∆Vhj −∆Vlj.

Proof. By (33), µlok < µloj. (32) implies vk > vj. By (30), σk > σj and µlok > µloj imply

pk > pj and Rk < Rj. By search indifference, µlok > µloj implies ∆Vhk−∆Vlk > ∆Vhj−∆Vlj.

In words, controlling for supply, an asset with higher payoff volatility is harder to find,

easier to sell, has a lower price, a higher return, and a wider individual trade surplus. This

model generates a negative relationship between risk and liquidity for buyers because an asset

that is riskier is harder to find. The assumption (2) implies high-type investors are on the
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long side of the market. In symmetric equilibrium, high-type investors without an asset are

buyers who are indifferent between searching for any two assets and low-type investors with

an asset are sellers. Then, surplus of a trade is an increasing function of risk mainly because

holding cost of low-type investors is positively related to risk. Since an asset that is riskier

has a larger trade surplus, it should be less liquid so that buyers are indifferent between all

assets. This generates the negative relationship between risk and liquidity for buyers. On

the other hand, this model generates a positive relationship between risk and liquidity for

sellers because an asset that is riskier is easier to sell. Since an asset that is riskier has a

larger trade surplus, buyers search for riskier assets with a larger search intensity. Then, this

generates the positive relationship between risk and liquidity for sellers.

4.1.3 Risk and liquidity proxies

In this subsection, I analyze natural proxies for liquidity: bid-ask spread, turnover, trading

volume and market capitalization. In particular, I study their dependence on the exogenous

"liquidity" factors: the quantity of tradeable shares and the payoffvolatilities. Then, I relate

them to liquidity for buyers, liquidity for sellers or both.

Bid-ask Spread As in Weill (2008), individual trade surpluses may be interpreted as bid-

ask spreads, in the following sense. Suppose a "monopolistic" marketmaker operates in the

stationary equilibrium, and that investors can trade only when they meet the marketmaker.

Since this marketmaker is monopolistic, he can make take-it-or-leave-it offers to investors.

Then, the marketmaker would charge ∆Vhk to buyers of asset k (the ask price), and pay

∆Vlk to sellers of asset k (the bid price). In other words, the buyer’s reservation value is the

ask price, and the seller’s reservation value is the bid price. Following this interpretation,

condition (18) implies that an asset that is easier to find (with a larger µlok) has a narrower

bid-ask spread. This suggests a negative relationship between liquidity for buyers and bid-ask
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spread.

Proposition 4 and 5 imply bid-ask spread decreases with µlok, but it does not have an

unambiguous relationship with vk. Thus, I conclude that bid-ask spread is a proxy for

illiquidity for buyers: An asset with a larger bid-ask spread is harder to find.

Trading Volume Since all contacts between a buyer and a seller have a positive trade

surplus, all contacts end with a trade. Then, we define trading volume of an asset as the

total rate of contacts between buyers and sellers of that asset: 2zvkµhnµlok. Proposition 5

establishes the positive relationship between sk and µlok. Moreover, Equation (32) implies

2zvkµhn is an increasing function of sk. Combining these two facts, an asset with higher

supply has a higher trading volume.

By (32), trading volume of asset k is equal to γdsk−(γd+γu)µlok. Since µlok is negatively

related to σk, trading volume is positively related to σk. In other words, an asset with a

higher payoff volatility has a higher trading volume. This is because the effect of risk on

demand side (2zvkµhn) is dominant over the effect of risk on supply side (µlok). Volatility

has a negative impact on liquidity for buyers (decreases µlok), but it has a positive impact on

liquidity for sellers (increases 2zvkµhn). The net effect of risk on trading volume is positive.

Thus, Proposition 4 and 5 imply trading volume is positively related to 2zvkµhn, but it does

not have an unambiguous relationship with µlok. Consequently, trading volume is a proxy

for liquidity for sellers.

Turnover In investment jargon, turnover is defined as the volume of shares traded during

a particular period, as a fraction of total shares listed. Then, in our model turnover becomes

2zvkµhnµlok
sk

. By (32), turnover of asset k is equal to γd − (γd + γu)
µlok
sk
. Since ∂µlok

∂sk
< 1,

turnover is an increasing function of sk.

Since µlok is negatively related to σk, the above equation implies turnover is positively

related to σk. The intuition is same as for trading volume: Volatility has a negative impact
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on liquidity for buyers (decreases µlok), but it has a positive impact on liquidity for sellers

(increases 2zvkµhn). The net effect of risk on turnover is positive. Thus, Proposition 4

and 5 imply turnover is positively related to 2zvkµhn, but it does not have an unambiguous

relationship with µlok. Consequently, turnover is a proxy for liquidity for sellers.

Market Capitalization In investment jargon, market capitalization is defined as the total

value of the issued shares. Then, in my model market capitalization becomes pksk. Since an

asset with higher supply is sold at a higher price, market capitalization becomes an increasing

function of sk. On the other hand, market capitalization becomes a decreasing function of

σk since an asset with higher payoff volatility is sold at a lower price. Consequently, market

capitalization is a proxy for liquidity for buyers because, by Proposition 4 and 5, it comoves

with µlok but its relation with 2zvkµhn is ambiguous.

4.2 Flight-to-liquidity

In this section, I will present a slight variation of the model to observe the effect of uncertainty

in the market on liquidity premia between assets. Since liquidity premium is the focus of

analysis, I should control for risk and obtain a cross-sectional variation in asset returns

which is exclusively due to liquidity differences. To this end, I assume all assets have the

same payoff volatility σs. Then, cross-sectional differences between asset prices will be pure

liquidity premia. I use index s because I will vary the volatility to make a comparative

statics analysis of flight-to-liquidity.

The related indifference condition for this model becomes

r + (1− q)(γd + γu)

(1− q)x
1

2zµlok
+

2zγdskq

(1− q)x
1

(2zµlok)
2

+
1

x
=

σs
Ws

(34)

This quadratic equation allows one to write 2zµlok = nk(
Ws

σs
), for some Ws

σs
< x, and for some
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continuous and increasing function nk(.). After some algebra, I get

2z(
γu

γd + γu
− S) +

K∑
k=1

nk(
Ws

σs
)− 2zγd

K∑
k=1

sk

nk(
Ws

σs
)

+K(γd + γu) = 0 (35)

The left-hand side of (35) is strictly increasing in Ws

σs
because nk(.) is strictly increasing

for each k. Hence, (35) uniquely characterizes a candidate equilibrium Ws

σs
. Existence is

established by Proposition 3, since this model is a special case of my general model. Thus,

I found that there is a unique Ws

σs
for any vector of asset supplies. Then, for a fixed vector

(s1, ..., sK) of asset supplies, one can write Ws = Tσs for some T > 0. This implies the flow

value W of searching for an asset is higher in an equilibrium with high volatility compared

to an equilibrium with low volatility.

Since Ws

σs
is unique, Equation (34) implies that the distribution of types is also unique i.e.

independent of volatility level. Intuition is the following: In equilibrium, return differences

between assets are liquidity premia caused by exogenous differences between asset supplies.

Then, buyers choose their trading specialists allocation according to differences in asset

supplies. Consequently, this gives us a unique trading specialists allocation. Proposition 1,

in turn, implies a unique distribution of types. Ws ≡ 2zµlok(1− q)(∆Vhk,s −∆Vlk,s) implies

∆Vhk,s −∆Vlk,s is an increasing function of σs for all k ∈ {1, ..., K}. In other words, bid-ask

spreads are higher in an equilibrium with high volatility compared to an equilibrium with

low volatility.

The pricing equation for this model is

pk,s =
δ − Aσ2

s

r
− Ws

r
− (1 +

γd
r(1− q))

Ws

2zµlok
(36)

Since Ws increases with σs, Equation (36) implies prices are lower in an equilibrium with

high volatility compared to an equilibrium with low volatility.
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Let s1 > s2. Then, µlo1 − µlo2 > 0 and p1,s − p2,s > 0 by Proposition 4 i.e. an asset with

more tradeable shares is sold at a higher price. This difference is equal to

p1,s − p2,s = (
1

2zµlo2
+

γd
2z(1− q)µlo2

− 1

2zµlo1
− γd

2z(1− q)µlo1
)Ws (37)

The terms in the parenthesis in right-hand side are independent of the volatility level. Thus,

p1,s − p2,s = YWs for some Y > 0. Let R2,s −R1,s be the liquidity premium between asset 1

and asset 2. Then, it is equal to δ(p1,s−p2,s)
p1,sp2,s

. Since the numerator increases with σs (because

p1,s−p2,s = YWs andWs increases with σs) and the denominator decreases with σs, liquidity

premia are higher in an equilibrium with high volatility compared to an equilibrium with

low volatility. The above discussion can be summarized in the following proposition:

Proposition 6 (Flight-to-liquidity) In equilibrium, σH > σL implies

∆Vhk,H −∆Vlk,H > ∆Vhk,L −∆Vlk,L, µlok,H = µlok;L, pk,H < pk,L for all k ∈ {1, ..., K} and

Rj,H −Ri,H > Rj,L −Ri,L for all i 6= j ∈ {1, ..., K} with si > sj.

In words, when there is more uncertainty in the market, bid-ask spreads and liquidity

premia are higher and prices are lower. This relationship between uncertainty and liquid-

ity premia is empirically documented by Amihud and Mendelson (1991), Kamara (1994),

Strebualev (2003) and Longstaff (2004b).

The next thing I do is to study the relationship between returns and liquidity factors

for a "random" cross section of 200 assets. I compute two steady state equilibria of the

theoretical model: In the first one, uncertainty is lower than the other equilibrium: σ1 < σ2.

This numerical exercise suggests that the predictions of theoretical model developed in this

paper are qualitatively consistent with much of the evidence from the empirical literature

on flight-to-liquidity.

Both equilibria are computed for the same randomly generated economy of K = 200
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asset types. The asset supplies sk are drawn independently from an uniform distribution on

some interval [s, s]. The expected flow payoff δ is set to 1. The bargaining powers q1, ..., qK

of sellers of assets 1, ..., K are drawn independently from an uniform distribution on some

interval [q, q]. Varying q across trading pairs is a simple way to check the robustness of the

results to the introduction of other forms of asset heterogeneity. The equilibrium expected

return Rk,s = δ/pk,s is plotted against various measures of liquidity used in the empirical

literature, which have direct counterparts in the theoretical model. The relative bid-ask

spread is 1 − ∆Vlk,s
∆Vhk,s

. The trading volume is 2zvkµhnµlok. The turnover is
2zvkµhnµlok

sk
. The

market capitalization is pksk. The values of the exogenous parameters are as in Table 1.

Parameters Value
Contact Intensity z 12000
Intensity of Switching to High γu 1
Intensity of Switching to Low γd 0.1
Discount Rate r 4%
Number of Assets K 200
Asset Supplies sk Uniform([510−4/100, 1.510−3/100])
Expected Payoff δ 1
Bargaining Power qk Uniform([0.45, 0.55])
Hedging Cost of Low Type x 2.4
Cost of Bearing Risk A 18
Payoff Volatilities σs {13.74%, 16.53%}

Table 1: Parameter Values used in Comparison of Steady-states

The unit of time is one year. Assuming that the stock market opens 250 days a year and

that there are 10 trading hours per day, z = 12, 000 means that an investor establishes a

contact every 12.5 minutes, on average. Given the chosen uniform distribution for sk, the

expected aggregate supply of assets, E(

K∑
k=1

sk), is 0.3. As in Duffi e et al. (2005), an investor

has a low marginal utility, on average, for 1 year out of every 11 years.

The discount rate r is set to 4%, consistent with Ibbotson’s (2004) average T-bill rate of

3.8% during the period from 1926 to 2002. I select x and A based on assets’risk premia,

measured by the difference δ
pk
−r between expected returns and the riskless rate. For x = 0.4
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and A = 18, risk premia are about 2% in low volatility equilibrium and about 4% in high

volatility equilibrium.

Figure 1. Cross-sectional variation in returns, explained by "liquidity

factors"

Figure 1 displays the results of the computations. Returns and relative bid-ask spreads

166



are positively related. In contrast with the theoretical results of Amihud and Mendelson

(1986), the relationship is almost linear and not concave. Consistently with the empirical

evidence, returns are negatively related to turnover and trading volume.

The sensitivity of returns to liquidity measures is higher in the high volatility equilibrium.

That is, when there is more uncertainty in the market, liquidity differences create larger

differences in returns suggesting that times of high volatility are associated with a flight to

liquidity.

5 Conclusion

This paper contributes to a recent literature, spurred by Duffi e et al. (2005), by presenting

a model of a dynamic bargaining market that operates via search and matching in the spirit

of Weill (2008). I complement this literature by treating risk-averse investors and multiple

assets at the same time. Unlike the existing body of work in this literature, the uncertainty

of asset payoffs is a factor of liquidity, which in turn opens the door to many interesting

results, such as flight-to-liquidity. Theoretical and numerical results show that the model

generates key qualitative facts documented in the empirical literature. Further work might

extend the current model to incorporate stochastic variation in aggregate volatility.
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Appendix A. Microfoundations for the risk-adjusted utility

Duffi e et al. (2007) and Vayanos and Weill (2008) also provide a formal model of the

holding cost. We model an economy with two heterogeneous assets, while Duffi e et al. (2007)

model an economy with only one asset and Vayanos and Weill (2008) model an economy

with two identical assets.

Investors can invest in a riskless asset with return r and in two risky assets paying the

cash flows given below. Cash flows are described by the cumulative dividend processes

dDkt = δkdt+ σkdBt

for k ∈ {1, 2}, where δ and σk are positive constants, and Bt is a standard Brownian motion.

Investors derive utility from the consumption of a numéraire good, and have a CARA utility

function

−E[

∞∫
0

exp(−αct − βt)dt] (38)

Each investor receives a cumulative endowment process

det = σe[ρtdBt +
√

1− ρ2
tdZt]

where σe is a positive constant, Zt a standard Brownian motion independent of Bt, and ρt

the instantaneous correlation between the dividend process and the endowment process. The

process ρt can take two values: ρt = 0 for high-type investors and ρt = ρ > 0 for low-type

investors. The processes (ρt, Zt) are pairwise independent across investors. We set A ≡ rα/2

and x ≡ rαρσe.
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An investor maximizes (38) subject to the budget constraint

dWt = [rWt − ct +

2∑
i=1

(δi − rpi)qit]dt+ [

2∑
i=1

σiqit + ρtσe]dBt + σe
√

1− ρ2
tdZt (39)

and the transversality condition

lim
T→∞

E[exp(−rαWT − βT )] = 0 (40)

where Wt is the wealth and qit is the number of shares invested in asset i ∈ {1, 2}. The

investor’s controls are the consumption c ∈ R and the investments (q1, q2) ∈ Z2. To derive

the optimal rules, the technique of stochastic dynamic programming is used following Merton

(1971). Define

J(ρt,Wt, t) ≡ max
{ct,q1t,q2t}

− Et[
∞∫
t

exp(−αcs − βs)ds]

subject to (39) and (40). Then

J(ρt,Wt, t) = max
{ct,q1t,q2t}

− Et[
t+∆t∫
t

exp(−αcs − βs)ds+

∞∫
t+∆t

exp(−αcs − βs)ds]

= max
{ct,q1t,q2t}

− exp(−αct − βt)dt+Et{ max
{ct,q1t,q2t}

− Et+∆t[

∞∫
t+∆t

exp(−αcs − βs)ds]}

= max
{ct,q1t,q2t}

− exp(−αct − βt)dt+ Et[J(ρt+∆t,Wt+∆t, t+ ∆t)]

= max
{ct,q1t,q2t}

− exp(−αct − βt)dt+ Et[J(ρt,Wt, t) +
dJ

dt
]

in the limit as ∆→ 0, subject to (39) and (40). By Ito’s lemma,

E[dJ ] = JWE[dW ] + Jtdt+
1

2
JWWE[(dW )2] + γ(ρ)[J(ρ′,W, t)− J(ρ,W, t)]
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where γ(ρ) = γu if ρ = ρ and γ(ρ) = γd if ρ = 0. Thus, the investor’s problem becomes

0 = max
c,q1,q2

−exp(−αct−βt)dt+JWE[dW ]+Jtdt+
1

2
JWWE[(dW )2]+γ(ρ)[J(ρ′,W, t)−J(ρ,W, t)]

where

E[dW ] = [rW − c+
2∑
i=1

(δi − rpi)qi]dt

E[(dW )2] = ((

2∑
i=1

σiqi)
2 + 2ρσe

2∑
i=1

σiqi + σ2
e)dt

and γ(ρ) = γu if ρ = ρ and γ(ρ) = γd if ρ = 0. Hence, suppressing the time argument t, the

investor’s value function J(ρ,W ) satisfies the HJB equation

0 = sup
c,q1,q2

{− exp(−αc) +D(c,q)J(ρ,W )− βJ(ρ,W )} (41)

where

D(c,q)J(ρ,W ) = JW (ρ,W )[rW − c+
2∑
i=1

(δi − rpi)qi]

+
1

2
JWW (ρ,W )((

2∑
i=1

σiqi)
2 + 2ρσe

2∑
i=1

σiqi + σ2
e) + γ(ρ)[J(ρ′,W )− J(ρ,W )]

and where the transition intensity γ(ρ) = γu for ρ = ρ and γ(ρ) = γd for ρ = 0. We guess

that J(ρ,W ) takes the form

J(ρ,W ) = −1

r
exp[−rα[W + V (ρ)] +

r − β + r2α2σ2e
2

r
]

for some function V (ρ). Replacing into (41), we find that the optimal consumption is

c(ρ,W ) = −r[W + V (ρ)] +
r − β + r2α2σ2e

2

rα

170



and the optimal investment satisfies

q(ρ) ∈ arg max
q1,q2

{C(ρ, q1, q2)− rp1q1 − rp2q2} (42)

where C(ρ, q1, q2) is the incremental certainty equivalent of holding q1 shares of asset 1 and

q2 shares of asset 2 relative to holding none. Using the definitions of A and x, we can write

the certainty equivalents as C(0, q1, q2) =
2∑
i=1

δiqi − A(
2∑
i=1

σiqi)
2 for high-type investors and

C(ρ, q1, q2) =
2∑
i=1

δiqi − A(
2∑
i=1

σiqi)
2 − x

2∑
i=1

σiqi for low-type investors.

Plugging c(ρ,W ) back into (41), we find that (41) is satisfied iff

0 = −rV (ρ) + max
q1,q2
{C(ρ, q1, q2)− rp1q1 − rp2q2}+ γ(ρ)

1− exp(−A(V (ρ′)− V (ρ))

A
(43)

By (43), we get a system of two equations in two unknowns V (0) and V (ρ), and it is easy

to check that it has a unique solution. Since investors are allowed to hold only zero or one

unit of some asset in our main model, the relevant certainty equivalents are:

C(0, 1, 0) = δ1 − Aσ2
1

C(ρ, 1, 0) = δ1 − xσ1 − Aσ2
1

C(0, 0, 1) = δ2 − Aσ2
2

C(ρ, 0, 1) = δ2 − xσ2 − Aσ2
2.

Due to our assumption on asset holdings, these certainty equivalents apply to an economy

with any number of assets. As long as investors are allowed to invest in only one of the risky

assets, cross-asset terms in (42) cancel, and certainty equivalent flows described above apply

without loss of generality.
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