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RNA languagemodelspredictmutations that
improve RNA function

Yekaterina Shulgina 1,2,3,12, Marena I. Trinidad 1,4,12,
Conner J. Langeberg 1,2,3,12, Hunter Nisonoff 5,12, Seyone Chithrananda 1,6,12,
Petr Skopintsev 1,3,12, Amos J. Nissley 7,12, Jaymin Patel 1, Ron S. Boger 1,8,
Honglue Shi 1,4, Peter H. Yoon 1,2, Erin E. Doherty 1,3, Tara Pande 6,
Aditya M. Iyer9, Jennifer A. Doudna 1,2,3,4,7,10,11 & Jamie H. D. Cate 1,2,3,7,10,12

Structured RNA lies at the heart of many central biological processes, from
gene expression to catalysis. RNA structure prediction is not yet possible due
to a lack of high-quality reference data associatedwith organismal phenotypes
that could informRNA function.Wepresent GARNET (GtdbAcquiredRNawith
Environmental Temperatures), a new database for RNA structural and func-
tional analysis anchored to the Genome TaxonomyDatabase (GTDB). GARNET
links RNA sequences to experimental and predicted optimal growth tem-
peratures ofGTDB referenceorganisms.UsingGARNET,wedevelop sequence-
and structure-aware RNA generative models, with overlapping triplet tokeni-
zation providing optimal encoding for a GPT-like model. Leveraging hyper-
thermophilic RNAs in GARNET and these RNA generative models, we identify
mutations in ribosomal RNA that confer increased thermostability to the
Escherichia coli ribosome. The GTDB-derived data and deep learning models
presented here provide a foundation for understanding the connections
between RNA sequence, structure, and function.

RNAs serve many fundamental roles in biology ranging from gene
expression to catalysis, and can adopt complex three-dimensional
folds to carry out these functions. Inspired by the successes in protein
structure prediction1,2, multiple groups have made progress towards
developing deep learning models for RNA secondary and tertiary
structure prediction3–10. However, based on assessment of the CASP15
RNA modeling challenge and the metrics used therein, RNA structure
prediction using deep learning approaches has not reached human-
tailoredmodel performance, and humanmodeling of RNA structure is
still not at the level of protein structure prediction11–14. A fundamental

weakness in RNA modeling is the state of RNA sequence, structural,
and phenotypic databases available for training deep learning
models13,15. Rfam, the closest analogue to Pfam for proteins16, provides
curated seed sequences, alignments and homology models for thou-
sands of RNA families17. However, Rfam alignments have limited phy-
logenetic scope, only drawing from Uniprot reference genomes
(n = 14,451). The SILVA database contains highly-curated information
for 16S and 23S ribosomal RNA (rRNA) sequences18, but not for other
RNAs. Anothermajor database, RNAcentral, aggregates RNA sequence
and structural information from a range of RNA databases19. However,
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RNAcentral overrepresents rRNAs, tRNAs, lncRNAs and a few small
RNA families (i.e. snRNAs, snoRNAs, miRNAs, and piRNAs). Further-
more, some of the underlying databases are no longer maintained or
updated, or have substantial sequence overlap leading to redundant
entries in the database. Taken together these databases are far less
extensive than protein databases that include hundreds of millions of
unique sequences16. Furthermore, a related fundamental challenge
with RNA structure prediction is the difficulty in building robust
sequence alignments for intact functional RNAs due to limitations in
identifying their 5’ and 3’ ends and the uneven sampling of sequences
across phylogeny20,21. Finally, the number of available high-quality RNA
structures in the Protein Data Bank (PDB)22 lags those for proteins by
orders of magnitude, and is heavily biased towards a small number of
RNA structural types, particularly those found in ribosomes13.

The ribosome is a major target for engineering an expanded
genetic code23. Ribosomal RNA (rRNA) catalyzes peptide bond for-
mation by the ribosome, and many efforts have attempted to use
directed evolution of rRNA to engineer ribosomes that can incor-
porate non-proteinogenic monomers into polypeptides24–27. How-
ever, the complexity of ribosome assembly constrains directed
evolution of the ribosome for novel functions28–31. In Escherichia coli,
ribosomes comprise three ribosomal RNAs (5S, 16S, and 23S rRNAs)
and 54 proteins, along with many protein factors required to
assemble them in cells. As a result of this complexity, ribosomes
obtained from directed evolution experiments often have defects in
their assembly and lose activity32. Strategies for the directed evolu-
tion of proteins for new function often begin with thermostable
proteins, which are more robust to mutations required to recover
functional variants33–35. It is presently infeasible, however, to replace
the E. coli large ribosomal subunit RNA (23S rRNA) with a thermo-
stable 23S rRNA from another organism, as efforts at 23S rRNA
directed evolution beginning from the rRNA from other organisms
have so far been unsuccessful29.

Here we leveraged the Genome Taxonomy Database (GTDB)36 to
build more comprehensive RNA sequence databases and alignments.
The GTDB provides a standardized taxonomy across all high-quality
bacterial and archaeal genomes including metagenome-assembled
genomes and single-cell amplified genomes. This greatly expands the
available RNA sequence diversity, as the vast majority of microbes are
unculturable. Furthermore, as a standardized taxonomy, the GTDB
provides a framework for linking sequence data to phenotypes and
other experimental data, which are often limited to culturedmicrobes.
The taxonomypresently includes over 400,000 bacterial and archaeal
genomes organized around over 85,000 species clusters, which pro-
vides a rich resource for principled genomic comparisons, sequence
analysis and sequence alignment. We find that RNA sequences mined
from GTDB genomes represent a more diverse set of sequences than
state-of-the-art databases with only one clear exception–16S rRNA.We
mapped growth temperatures from other sources to the GTDB and
used an existingmachine-learning approach to predict optimal growth
temperatures for reference genomes lacking direct growth tempera-
ture information. We combined these with the RNA sequences mined
from the GTDB to create the GARNET (Gtdb Acquired RNa with
Environmental Temperatures) database. UsingGARNET,we developed
two types of machine-learningmodels tomap sequences to functional
properties of the RNA. We trained a compact RNA generative Graph
Neural Network (GNN) using a 23S rRNAmultiple sequence alignment
(MSA) with structural conditioning. We also trained Generative Pre-
trained Transformer (GPT)-like RNA language models that revealed an
optimal triplet encoding for RNA. By finetuning these RNA generative
models on hyperthermophilic RNA sequences, wewere able to predict
mutations in the Escherichia coli ribosome that increased its thermo-
stability. These results open new approaches to expand computational
algorithms for predicting RNA structure and altering RNA function in
biology.

Results
Building RNA sequence datasets from GTDB genomes
To generate diverse and minimally-redundant alignments of RNA
sequence families for the GARNET database, we turned to the GTDB
genomes which represent 80,789 bacterial and 4416 archaeal species
clusters (release 214.1) (Fig. 1a). First, we built an rRNA sequence
dataset by searching each GTDB species reference genome for 23S,
16S, and 5S rRNA sequences. Searcheswereperformedwith Infernal20

using the corresponding Rfam covariance models (CMs), taking the
top hit per genome with an e-value < 1e-5 and aligning to at least 85%
of the consensus CM sequence. If no such hit could be found, we
additionally searched the available non-representative genomes in
each species cluster. We further ensured alignment quality by
removing hits that broke a substantial fraction of the consensus base
pairs or had exceedingly long insertions (see Methods for details).
For 23S rRNA, which is roughly 2.9 kb in length, we identified a 23S
rRNA sequence for 32,317 species (Fig. 1b). The absence of a full-
length 23S or 16S rRNA sequence in many genomes likely reflects the
fragmented nature of some metagenome-assembled genomes and
the occasional presence of introns that cause partial hits. We addi-
tionally searched all GTDB representative genomes for 228 RNA
families using Rfam models that are likely to occur in bacteria or
archaea and are over 100 nucleotides long, applying the same
quality-control criteria as for ribosomal RNAs except allowing for
multiple hits per genome. This search identified a total of
714,662 sequences, with the seven largest families comprising 58% of
the 228 RNA sequence dataset (Fig. 1c).

We evaluated the sequence diversity of the GTDB-derived data-
sets by assessing the number of unique sequences at different frac-
tional identity thresholds compared to state-of-the-art datasets for
these RNA families. For 23S and 16S rRNA alignments, we compared
against the SILVA database18; for 5S rRNA, we compared against the
5SRNAdb37 and the Rfam full alignment17; for the top three most
abundant of the 228 RNA families (T-box leader, cobalamin riboswitch,
and TPP riboswitch), we compared against Rfam full alignments. In all
cases, except for 16S rRNA and 23S rRNA, the GTDB-derived align-
ments had substantially greater sequence diversity compared to the
state-of-the-art dataset (Fig. 1d, e, Supplementary Fig. 1c, d). For 23S
rRNA, the SILVA database had comparable diversity to the GTDB-
derived alignment, and for 16S rRNA, the SILVA database had greater
diversity (Fig. 1d, Supplementary Fig. 1c), likely due to the widespread
use of 16S rDNA sequencing of new microbial isolates and environ-
mental samples. Taken together, these results highlight the benefit of
using the GTDB as a framework for building comprehensive RNA
sequence datasets.

Mapping optimal growth temperatures to GTDB reference
genomes
The GTDB taxonomic framework allows us to link RNA sequences
derived from the GTDB genomes to phenotypes, which can aid in
RNA modeling and engineering. We chose to map GTDB species to
optimal growth temperatures (OGTs) from TEMPURA38 and Gosha39

databases. However, since the TEMPURA and Gosha databases only
include cultivated species, they only have experimental OGTs for 15%
of the GTDB reference species. We therefore inferred OGTs of all
GTDB reference genomes using TOME40. TOME predicts the OGT for
an organism using a machine learning model trained on proteome-
wide dipeptide (2-mer) distributions. Importantly, TOME was trained
on only a subset of organisms now available in the TEMPURA and
Gosha databases. We therefore used these new organisms to validate
TOME predictions, and found that the predicted OGTs correlated
well with the TEMPURA and Gosha sets not used for TOME training
(Fig. 2a, Supplementary Data 2; R2 values of 0.868 and 0.881,
respectively). We also used isolation source metadata associated
with each GTDB reference genome as a check on TOME OGT
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predictions, especially for uncultivated species. Although the isola-
tion source of each organism is heterogeneous in terminology and
may not reflect the actual optimal growth conditions, we found that
the metadata with unambiguous source information is consistent
with TEMPURA andGoshaOGTs (Fig. 2b, Supplementary Data 2) (See
Methods). This is also true for OGTs predicted using TOME (Fig. 2b,
Supplementary Data 2). Interestingly, TOME predicted hyperther-
mophilic species (OGT > = 60 °C) in both archaea and bacteria in
clades with no known hyperthermophiles in the TEMPURA or Gosha
databases (Fig. 2c, Supplementary Fig. 2, Supplementary Data 2).
These results provide a rich resource for inferring the physiological
temperature at which RNAs and proteins from GTDB organisms
function optimally. We combined the GTDB-derived RNA sequences
with the TOME-predicted OGTs to create the GARNET (Gtdb
Acquired RNa with Environmental Temperatures) database, to use
for training new RNA deep learning models.

A sequence and structure based RNA generative model for
23S rRNA
Generative deep learningmodels that integrate structural information
provide highly compact representations of protein families that have
proven useful for protein design41. Thesemodels leverage the fact that
structure is generally conserved within protein families. We extended
this framework to RNA, creating compact structure-informed models
to circumvent scalability constraints inherent to the extensive length
of 23S RNA.We harnessed the sequence diversity within the GTDB and
the wealth of high-resolution structures available for the large ribo-
somal (50S) subunit to develop a Graph Neural Network (GNN)model.
For 23S rRNA, the known representative 3D structures provide abun-
dant information to benchmark MSAs and better model the RNA
family. Our generative model inputs a distance matrix for the repre-
sentative structure of the family42, and is trained on next-token pre-
diction for an aligned MSA41.
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Fig. 1 | The Genome Taxonomy Database as a source for RNA sequences.
a Construction of the GARNET database centered on the GTDB structure,
linking RNA alignments mined from GTDB genomes with growth temperature
prediction through a consistent taxonomy. b Number of GTDB species found
to have at least one high-quality, near-full length hit for 23S, 16S, and 5S rRNA.
c Top seven non-rRNA Rfam families with most sequences found in GTDB
representative genomes compared against the Rfam full alignment. In contrast

to the rRNA alignments, multiple sequences per genome were allowed. Infor-
mation for the entire 228 RNA dataset can be found in Supplementary Data 1.
d Comparing diversity of GARNET RNA sequences against state-of-the-art
datasets for 23S rRNA, 16S rRNA, and 5S rRNA by filtering the sequences at a
range of pairwise fractional identity thresholds with VSEARCH58. e Diversity
comparison for the top three most abundant of the 228 RNA families in GAR-
NET with VSEARCH.
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Fig. 2 | Optimal growth temperatures of GTDB reference organisms.
a Correlation of TOME-predicted and experimental OGTs from Gosha and TEM-
PURA, excluding species from TOME’s training set (n = 3346 and 7404 species,
respectively).bArchaeal phylogenetic tree ofGTDB reference organisms, grouped
at the Family taxonomic rank, arbitrarily rooted. A similar tree for bacteria is in
Supplementary Fig. 2. Node tip sizes are proportional to the number of species
represented by node (log2 transformed). Inner circle indicates Phylum. The next
circle represents TOME-predicted min, median, and maximal optimal growth
temperatures of all species within rank. The next two circles similarly represent

empiricallymeasuredoptimal growth temperatures pulled from theTEMPURAand
Gosha datasets, respectively. Outer circles represent the total number of 23S, 16S,
and 5S detected in each rank, respectively (log2 transformed). c Thermal isolation
sources for GTDB bacterial and archaeal species (manually classified from GTDB
metadata) comparing species with hyperthermophilic OGTs (> = 60 °C) in the
Gosha / TEMPURA databases, TOME hyperthermophiles, and non-
hyperthermophiles. The bottom bar corroborates TOME hyperthermophiles
(n = 580) with no close hyperthermophilic relatives in Gosha / TEMPURA
(family-level).

Article https://doi.org/10.1038/s41467-024-54812-y

Nature Communications |        (2024) 15:10627 4

www.nature.com/naturecommunications


The model leverages a graph-based representation of the RNA
structure to build a sparse attention mechanism (i.e. Graph Attention
Network) in which the positions attend to their k-nearest neighbors in
structure space at each layer (Fig. 3a, b). We pre-processed the 23S
rRNA MSA of the GARNET sequences for training. The corresponding
graphwas created by choosing k-nearest neighbors to each nucleotide
from adistancematrix of E. coli 23S rRNA, alignedwith theMSA so that
nucleotides in matrix columns and rows match their counterparts in
the MSA (see Methods). This matrix was derived by calculating the
minimal interatomic distances between nucleotides pairs in the 23S
rRNA. We found that using k = 50 nearest neighbors provided an
optimally trained model, with respect to model size and perplexity
(Fig. 3c). For the model input analysis, the distance matrix was trans-
formed into a binary contact map by selecting the k-nearest neighbors
for each nucleotide (see Supplementary Fig. 2).We found that at k = 50
nearest neighbors, the model samples all contacts below ~12 Å, and a
subset of longer-range contacts up to 24 Å, or distances at which inter-
helical packing can be detected (see Fig. 3d–f, Supplementary
Figs. 3 and 4). Complete model specifications are available in Supple-
mentary Data 3.

A modified GPT language model for RNA
AlphaFold relies on MSAs as a central component of an end-to-end
deep learning algorithm for protein structure prediction1. However,
large language models for proteins such as ESM-2 replace MSAs in
structure prediction, and are particularly useful when MSA informa-
tion is lacking. In the case of RNA, obtaining robust MSAs can be
challenging20,21, even with databases as large and diverse as GARNET.
Furthermore, whereas GNNs require a structural prior for training,
language models are not restricted by structural constraints or
assumptions about RNA flexibility or whether an RNA might adopt
multiple folds.We therefore testedwhether a languagemodel (LM) for
RNA could be developed using sequences from GARNET. We first
modified a compact GPT model architecture–nanoGPT43– for training
on RNA sequences and tested different methods of tokenizing
nucleotides (Fig. 4a). Using 23S ribosomal RNA (rRNA) sequences from
GARNET (Fig. 1, Supplementary Data 1), we found that models trained
using tokens representing three nucleotides, with a 1-nucleotide shift
per token, performed substantially better than using either individual
nucleotides or paired nucleotides (Fig. 4b, Supplementary Data 3 and
Methods). We also found using rotary positional embedding (RoPE)44

in each attention layer allowed RNA LMs to be trained with paired-
nucleotide encodings. However, paired-nucleotide tokenization
required trainingmodels with a slower learning rate, and thesemodels
had a higher validation perplexity thanmodels using RoPEwith triplet-
nucleotide encoding (Fig. 4b). In addition to 23S rRNA, we also trained
a more general RNA LM using sequences from 231 RNA families in
GARNET (228 RNA dataset plus three rRNA datasets), as described
above (Fig. 4c). These models had lower validation perplexities com-
pared to the RNA LMs trained only on 23S rRNA sequences (Supple-
mentary Data 3). They also are capable of generating RNA sequences
that align with full-length 23S and 16S rRNA when queried with their
respective 5’ ends (Fig. 4d).

Finetuning RNA generative models with hyperthermophilic
sequences
Replacing the E. coli 23S rRNA with a thermostable 23S rRNA from
another organism is presently not feasible29. We therefore tested
whether finetuning the GNN and RNA LM models using hyperther-
mophilic 23S rRNAs could help identifymutations thatmake the E. coli
ribosome more stable for future directed evolution efforts. We fine-
tuned the GNN and RNA LM pretrainedmodels described above using
23S rRNA sequences from hyperthermophilic bacteria and archaea
with TOME-predicted OGTs of 60°C or higher (Methods). We then
used the resulting pretrained and finetunedmodels to generate sets of

1000 RNA sequences seeded with the 5’-end of E. coli 23S rRNA, and a
range of “temperature” scaling factors tomodulate the probabilities of
token generation (Methods).

We assessed the quality of the RNA sequences generated from the
models, i.e. how “23S-like” they are, by comparing them to the covar-
iancemodel for bacterial 23S rRNA in Rfam (RF02451) using cmsearch
in the Infernal suite of programs20,29. We evaluated the full set of 23S
rRNA sequences in the GARNET database as a control. Naturally
occurring sequences in GARNET had cmsearch scores that clustered
around 1900 and 2700 for archaeal 23S and bacterial 23S, respectively
(Fig. 5a-d). Sequences generated from the GNN had high cmsearch
scores within the range of natural sequences, although these dropped
at higher generation temperatures likely due to the dropout of local
RNA sequence segments (Fig. 5a, b, and Supplementary Fig. 5).
Sequences generated by the RNA LMs also had high cmsearch scores,
suggesting they have bacterial 23S rRNA-like properties across all
generation temperatures tested (Fig. 5c, d). At lower generation tem-
peratures, the finetuned RNA LM generated some sequences that
harbored long stretches of repetitive sequence, resulting in low
cmsearch scores (Supplementary Fig. 6c, d).

We also examined secondary structure preservation as a separate
measure of the 23S-like properties of the generated sequences. Natu-
rally occurring 23S rRNAs typically contain a small percentage of non-
canonical base pairs (i.e. base pairs other than standardWatson-Crick-
Franklin and G-U pairs) in the consensus secondary structure for
RF02451 model (Fig. 5e–h). Sequences generated by the pretrained
RNALMretained a similarproportion of non-canonical basepairs up to
a generation temperature of 0.9, while the finetuned models inserted
more non-canonical pairs relative to natural sequences at tempera-
tures higher than 0.5 (Fig. 5g, h, and Supplementary Fig. 6d). The GNN
models started to include a higher percentage of non-canonical pairs
at generation temperatures of 0.6 or higher (Supplementary Fig. 5d).
Taken together, these quality control measures inform selection of
sequencegeneration temperatures that canaid subsequent analyses of
sequences generated from the 23S rRNA GNNs and RNA LMs trained
on GARNET sequences (Supplementary Fig. 7, Supplementary Data 3).

Sequences generated by GenerRNA
Separately, we attempted to use a different generative RNA language
model implemented based on the nanoGPT code43,45. This imple-
mentation of nanoGPT, called GenerRNA, was pretrained using the
RNAcentral database19, and used a byte pair encoding (BPE)
algorithm46 to generate a 1024 token library for RNA. We used the
GenerRNA model pretrained on RNAcentral sequences, and also fine-
tuned this model on the GARNET-all and GARNET-hyperthermophile
sequences using the provided GenerRNA tokenization and training
code.We then generated sets of 1000 23S sequences, analogous to the
process for the RNA LMs. However, none of the three GenerRNA
models was capable of generating full-length 23S-like sequences
(Supplementary Fig. 8, see Methods).

Identifying mutations to stabilize the E. coli ribosome
To identify potential mutations to the E. coli 23S rRNA that might
confer thermostability, we examined sequences generated from the
23S rRNA GNN and LM pretrained and finetuned models (PT and FT
models, respectively) using a generation temperature of T =0.5
(Methods).We first compared the Jensen-Shannon divergence (JSD) of
nucleotide frequency distributions of the FT-generated sequences
relative to the PT-generated sequences, after masking the positions
used as the seed as well as those with less than 50% occupancy in the
alignment (Supplementary Data 4). We also calculated the JSD of nat-
ural hyperthermophilic 23S rRNA sequences used for finetuning rela-
tive to the entire GARNET 23S rRNA set (Supplementary Data 4). 23S
rRNA positions with high JSDs differ themost in which nucleotides are
generated by the PT and FT models, indicating mutations that may be
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Fig. 3 | A 23S rRNA generative model using GTDB sequences and large ribo-
somal subunit structures. a Graph Neural Network (GNN) model schematic.
bGNNmodel architecture. Panels (a) and (b) are adapted from Ingraham et al41. to
illustrate their use for RNA. For detailed model parameters and training data sta-
tistics refer to Supplementary Data 3. c Test perplexity of the GNNmodels plotted
as a function of k-nearest neighbors, highlighting that the model does not sig-
nificantly improve for k values greater than 50. The final perplexity of the model
with hidden dimensions d = 128, and k = 50 was 1.751. d Histogram of inter-
nucleotide distances sampled by selecting k nearest neighbors in the distance
matrix for E.coli 23S rRNA structure (PDB ID: 7K00)42. Choosing k = 50 covers all

distances less than 12 Å. e Comparison of the contact maps generated from the
distance matrices, based either on the distance cutoff or the k nearest-neighbors
criteria (see Methods). Top-right, the sum of the contact maps for 18 bacterial and
archaeal ribosomal RNA structures, projected onto the MSA sequence alignment,
and based on the 12 Å distance cutoff criterion. The number of contact maps that
align for a given pair of nucleotides is color-coded in the color bar on the right.
Bottom-left, contact map for E. coli 23S rRNA, based on selecting k = 50 nearest
neighbors to each nucleotide. The two types of contactmaps show high similarity.
f Structure of the three stem-loops highlighted in (e). A 12 Å inter-helical packing
contact is shown with a dashed line in (f), and with an arrow in (e).
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important for thermostability (Supplementary Figs. 9–11). Interest-
ingly, there was very little overlap in positions with the highest JSDs
when comparing GNN- or RNA LM-generated sequences to those
predicted by comparing natural sequences, whereas there was sub-
stantial overlap between the deep learning approaches (Fig. 6a).
Nucleotidepositions predicted to confer thermostability using the 231-
RNA trained LMs also differed from those obtained from natural
sequences in GARNET (Fig. 6a). These results show that the deep
learning models predict nucleotide changes in E. coli 23S rRNA that
differ markedly from those that could be gleaned from the 23S rRNA
data in GARNET.

Although sorting by JSD can help identify candidate stabilizing
mutations, individualmutationsmaydepend on sequence context and
may require evaluation as part of an entire 23S rRNA sequence. Fur-
thermore, the generated sequences may not represent all stabilizing
mutations learned by the models. For example, a rare sequence var-
iation in the A loop of 23S rRNA at positions U2554 and U2555 only
occurs in a single phylum of archaeal hyperthermophiles, Thermo-
proteota, in which one or both nucleotides aremutated to a C47. These
mutations in the E. coli ribosome are known to improve ribosome
stability47, yet neither position appears as a top candidate using the JSD
filtering described above. To assess whether the GNN and RNA LM FT
models support these mutations, we calculated the probability of

generating mutant E. coli 23S rRNA sequences. Since the models were
trained on sequences similar to E. coli, mutations away from the
wildtype (WT) E. coli sequence often lead to lower probabilities. We
therefore compared the probability of generating a mutant E. coli 23S
sequence from the FTmodel relative to the PTmodel, and normalized
it to that of the WT sequence (ΔΔlogP) (Fig. 6b). Using this metho-
dology, a U2554C mutation is supported by the FT model better than
85.4% and 72.3% of all possible single mutants when evaluated by the
23S LM and 231-RNA LM, respectively, and 57.4% of single mutants
when evaluated by the GNN model (Supplementary Fig. 12 and Sup-
plementary Data 5), consistent with the moderate increase in ther-
mostability seenwith E. coli 50S subunits harboring thismutation47.We
also found that the combined U2554C-U2555Cmutation had a positive
ΔΔlogPpredicted from theGNNandRNALMs (SupplementaryData 5).
Taken together, JSD-based sorting and the use of model probabilities
help identify sites in 23S rRNA that could confer higher thermostability
to the E. coli 50S subunit.

Testing 23S rRNAmutations predicted to stabilize the ribosome
One of the strongest predictions from the LM and GNN models for a
mutation that could confer thermostability to the E. coli 50S subunit
occurs in the closing loop at the end of helixH89 in 23S rRNA, adjacent
to the peptidyl transferase center of the ribosome. The H89 stem-loop

Fig. 4 | Tokenization schemes for RNA language models. a Representation of
nucleotides as tokens for single, paired, or triplet nucleotides. Tokens are encoded
for nucleotides in 1-nucleotide steps, i.e. are overlapping for paired and triplet
nucleotides. Beginning and end tokens are also included in the token library.
b Perplexity of RNA language models trained on 23S rRNA sequences, with the
nanoGPTmodel modified to use an overall rotary positional embedding (RoPE), or
with RoPE applied to each attention layer. Training with paired-nt and overall RoPE
was conducted for 100,000 iterations, whereas the other models were trained for
1M iterations, with a batch size of 18 in all models. A perplexity value of 4 would be
random (i.e. 4 nucleotides to choose from), and a value of 1 would indicate perfect
certainty in nucleotide choice. The perplexity after training for a random model
should be 4 regardless of the tokenization scheme, due to the 1-nucleotide steps
used with the paired and triplet encoding. c Perplexity of an RNA LMpretrained on

231 RNA sequence families in GARNET (SupplementaryData 1). The perplexity of an
RNALMmodel finetuned on hyperthermophilic RNAs, starting from the pretrained
general model, is 1.33. For detailedmodel parameters and training data statistics in
panels (b) and (c) refer to Supplementary Data 3. d Alignment of 23S rRNA
sequences generated using the more general pretrained 231-RNA LM, showing the
3’ end of the generated sequences (n = 100). e Alignment of 16S rRNA sequences
generated using themore general pretrained 231-RNALM, showing the 3’ endof the
generated sequences (n = 100). Sequence generation in panels (d) and (e) was
seededwith 100nucleotides ofE. coli 23S rRNAor 16S rRNA, respectively, and using
a temperature of 0.2. The bottom row is the E. coli sequence, and E. coli nucleotide
numbering is also shown. White space shows regions where insertions and dele-
tions are present in the sequences.
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folds late in 50S subunit assembly and also engages with ribosome
assembly factors48,49. We, therefore, examined the JSDs of generated
sequences and model probabilities in this region for potential muta-
tions thatmight stabilize the ribosome. The finetuned GNNmodel and
both finetuned LMs predict a U to Cmutation in the apical loop of H89
at position 2477 to confer thermotolerance using the JSD calculation
(ranked 65, 18, or 178 by the 23S rRNA GNN, 23S rRNA LM, or 231-RNA
LM, respectively). By contrast, nucleotide 2477 is not a top hit when
using the JSD metric on natural GTDB sequences (ranked 1007 out of
2904 positions). Introducing the U2477C mutation in E. coli 23S rRNA
is also supported by the log-probability calculations (Fig. 6d, Supple-
mentary Fig. 12a). The models also support sequences with U to C
mutations at nearby positions 2473 and 2474, either individually
(U2474C) or in combination, and predict these to confer thermo-
tolerance (Supplementary Data 5, Fig. 6d), consistent with their slight
enrichment in hyperthermophilic 23S rRNAs in GARNET (Supplemen-
tary Data 4, Supplementary Data 1). The sequences generated by the
GNN and RNA LMs often introduced compensatory base pair changes
in H89, and the models yielded lower ΔΔlogP values when only one
nucleotide in a pair was changed (Supplementary Fig. 12b). However,
we did not prioritize base pair changes in the H89 stem, as compen-
satory base pairs were deemed unlikely to have a dramatic impact on
ribosome stability at the initial stages of unfolding based on our

previous work47. Given the importance of H89 late in ribosome
assembly, wemademutations at positions 2473, 2474, and 2477 to test
their effects on E. coli 50S subunit thermostability. We also re-
examined the A loopmutations in the closing loop of H92 at positions
2554 and 2555 (Supplementary Data 5, Fig. 6c, f, g). As noted above,
U2554C and U2555C mutations in H92 (H92-CC) were previously
shown to globally stabilize the E. coli 50S subunit47.

We purified in vivo assembled 50S subunits with U2473C-U2474C,
U2477C, U2554C-U2555C, and U2477C-U2554C-U2555C mutations
usingMS2-tagging50,51. We additionally purifiedWT E. coli 50S subunits
with an MS2-tag to serve as a control. To test for thermal stability, we
pre-incubated the 50S subunits at 65 °C, cooled them to room tem-
perature, and then assessed if they maintained activity after heat
treatment in an in vitro translation reaction (Fig. 6e). We found that
H89 mutations U2473C-U2474C and U2477C do not affect the activity
of ribosomes at 37 °C (Fig. 6f). However after pre-incubation at 65 °C,
50S subunits with aU2477Cmutation are roughly twice as active asWT
subunits (Fig. 6f), indicating that this mutation stabilizes the 50S
subunit. By contrast, ribosomes with the U2473C-U2474C mutations
are not more active than WT after pre-incubation at 65 °C (Fig. 6f),
indicating these mutations do not stabilize the 50S subunit in this
assay. We also examined whether the stabilization from mutations in
H89 andH92 are additive. 50S subunits with U2554C-U2555C (H92-CC)
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Fig. 5 | 23S rRNA sequences generated by GNN and GPT-like RNA models.
a–dCmsearch scores for sequences generated from the pretrained GNNmodel (a),
finetunedGNNmodel (b), pretrainedRNALM (c), andfinetunedRNALM (d) trained
on 23S rRNA sequences at generation temperature T = 0.5 compared to naturally
occurring 23S rRNAs in GARNET. For the GARNET reference distributions, random
subsets of 1000 bacterial sequences and 1000 archaeal sequences were used.

e–h 23S rRNA sequences generated from the pretrained GNNmodel (e), finetuned
GNNmodel (f), pretrained RNA LM (g), and finetuned RNA LM (h) according to the
fraction of disrupted canonical base pairs (i.e. Watson-Crick-Franklin and G-U)
relative to the Rfam RF02541 consensus secondary structure (denoted non-
canonical base pairs) in the generated sequences compared to naturally-occuring
23S rRNAs.
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mutationsweremore than threefold as active asWT subunits after pre-
incubation at 65 °C. Addition of the U2477C mutation to the H92-CC
mutations (U2477C-H92-CC) did not increase the stability past that of
the H92-CC mutations on their own (Fig. 6g).

We focused on two additional regions in domains IV and V—helix
H68 and helices H81 and H82—that contained multiple positions
ranking in the top 200 highest JSD values (Fig. 6c, Supplementary
Figs. 9–11). Domain IV is the penultimate domain to fold31,48 and

Fig. 6 | Mutations in 23S rRNA predicted by deep learning models to confer
thermostability on E. coli ribosomes. a Matrix showing the overlap in the 200
positions with highest Jensen-Shannon divergence in finetuned (FT) model-
generated versus pretrained (PT) model-generated sequences for the GNN, LM
models, and in the hyperthermophilic versus total GARNET 23S rRNA sequences.
b Strategy for calculating ΔΔlogP values for candidate mutations, using log like-
lihoods of sequence generation from FT versus PT models, with WT E. coli serving
as a normalization control. c Positions within four regions of the E. coli 23S rRNA
with JSD values ranked in the top 200. Coloring indicates the number of models
which identify each position. d Analysis of the four regions in panel (c) for candi-
date thermostabilizing mutations. For each position, the most frequent nucleotide
in FT-generated sequences (top FT nucleotide) is grafted into the E. coli 23S rRNA
sequence and used to calculate ΔΔlogP for the 23S LM, 231-RNA LM, and GNN

models. Overlapping values are denoted with an asterisk in the graph for clarity.
e Schematic for the heat-treatment in vitro translation assay. Purified 50S subunits
are incubated at the indicated temperature, cooled to room temperature, and then
added to a HiBit in vitro translation assay. The peptide complements an inactive
protein fragment to form an active luciferase. f–i Activity of pre-incubated ribo-
somes in theHiBit in vitro translation assay. Secondary structures of helicesH89 (f),
H92 (g), H68 (h), andH81/H82 (i) of E. coli 23S rRNA. Positions thatweremutated in
this study are shown in red. For panels f through i, WT, andmutant 50S subunits all
contain an MS2 tag (Methods). Relative activity is calculated as the slope of the
initial increase in luminescence during translation and normalized to the WT value
at the given temperature. Data and error bars represent the average and standard
deviation of three reactions, respectively. Source data for panels (f) through (i) are
provided as a Source Data file.
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includes helix H68, which harborsmultiple non-canonical base pairs in
themiddle of the stem42 with high JSD values. Notablywith theGPT-like
LMs, pairwise changes for all three of these non-canonical pairs inde-
pendently resulted in higher log probabilities than changes to indivi-
dual bases in a pair (Fig. 6d). Due to the fact that H68 includesmultiple
adjacent non-canonical base pairs, we tested the H68 changes as a
group (H68mut) and found that changing these base pairs increased E.
coli ribosome stability (Fig. 6h). A second set of nucleotides with high
JSD values that cluster in helices H81/H82 involve four changes in two
Watson-Crick-Franklin base pairs, from A-U to C-G pairs (Fig. 6i). The
fifth nucleotide, G2286, is unpaired (Fig. 6i) and interacts with ribo-
somal protein bL33. In contrast to H68, the two base pair changes do
not result in more positive ΔΔlogP values using any of the language
models, and the changeG2286A gives differing results across the three
languagemodels (Fig. 6d). As with H68, we tested these five mutations
as a group (H81/H82mut), given their close proximity in the structure.
Consistent with our hypothesis that canonical base pair changes are
unlikely to be limiting for thermostability in the E. coli context, theH81/
H82 mutations result in ribosomes with equivalent activity and ther-
mostability as WT ribosomes (Fig. 6i). Thus, taking the H68 and H81/
H82mutation groups together with themutations in H89 and H92, the
GNN and LM models are able to inform 23S rRNA mutations that sta-
bilize the E. coli 50S subunit in four of six cases tested here, and one
tested previously47.

Discussion
Here we show that two distinct deep learning frameworks, a GNN and a
generativeRNALM, couldbeused to identify functional RNAmutations
in the ribosome. RNA structure prediction and design using deep
learning has lagged behind efforts for proteins, in large part due to the
limited abundance and quality of available RNA sequence and struc-
tural information13. While it might be possible in the future to refine the
RNAcentral database, this will require careful handling of RNA
sequence duplication, as well as rigorous division of sequences into
training and validation sets. To address the database problem, we
created GARNET, an entirely new RNA database built from the GTDB36.
The GTDB incorporates not only bacteria and archaea that can be
grown in the lab, but alsogenomes for unculturedmicrobes, expanding
the scope of RNA sequence alignments that can be obtained for bac-
teria and archaea. The GTDB framework also enables linking pheno-
types to genomes, aswell asmultiple sequences from the samegenome
across alignments, which can aid studies of protein and RNA com-
plexes. We used a machine learning approach40 to assign an optimal
growth temperature to each reference genome in the GTDB, building
on experimental measurements38,39. We then tested whether these
temperatures, assigned to the RNAs identified in the GTDB genomes,
could be used to identify thermophilic mutations that stabilize the E.
coli ribosome. Using two different deep learning architectures–a graph
neural network (GNN) and an RNA language model (LM)–we were able
to identifymutations in E. coli 23S rRNA that stabilize the 50S subunit to
heat treatment (Fig. 6). Importantly, instead of relying on generated
sequences individually, we generated sets of 1000 sequences to ana-
lyze, in order to avoid possible issues with model-generated artifacts
(i.e. “hallucination”). We used two different kinds of sequence inter-
rogation to identify stabilizing mutations, namely Jensen-Shannon
divergence (JSD) and model probability calculations (Fig. 6). Sorting
positions by JSD identifies individual positions that differ the most
between the pretrained and finetuned generated sequences. Calculat-
ing the model probabilities allowed us to evaluate whether these
mutations are still supported when grafted individually into the E. coli
23S rRNA sequence.We focused on identifying individualmutations, or
at most several substitutions. Future work to mine the combinatorial
effects of multiple mutations, as well as higher-throughput assays, may
helpmaximize the ability to query the GNN andRNA LMs for stabilizing
RNA mutations. Overall, the methods used here to identify functional

RNAmutations, by comparingmodelspretrainedon theentireGARNET
RNA dataset to models finetuned on GARNET hyperthermophilic
sequences, could likely be adapted for protein engineering.

Thermostabilizing mutations identified using GNNs and RNA LMs
are distinct from those that could be gleaned through direct analysis of
natural 23S rRNA sequences in GARNET, consistent with these deep
learning models extracting new information from the sequence data.
This may be in part due to sequence co-dependence. For example, a
nucleotide change at U2477C is strongly predicted to confer higher
thermostability in the E. coli context using the JSD calculation andmodel
probabilities, and mutations U2473C-U2474C have a higher probability
of conferring thermostability relative to the WT E. coli sequence. How-
ever, only U2477C is capable of stabilizing the E. coli 50S subunit in the
in vitro translation assay used here (Fig. 6f), suggesting positions 2473
and 2474 may have other dependencies. In the E. coli ribosome, the
U2477 base stacks with A2476 and interacts with an arginine side chain
of ribosomal protein bL36 (Supplementary Fig. 13a). Cytosine has a lar-
ger dipole moment than uridine52, which could increase the strength of
the rRNA-ribosomal protein interaction and thereby stabilize the E. coli
50S ribosomal subunit. The predicted H89 mutation maintains and
potentially strengthens this rRNA-ribosomal protein interaction despite
the RNA LMs having no knowledge of ribosomal proteins. By contrast
U2473C-U2474C mutations showed no improvement in ribosome sta-
bility, although U2473 contacts an arginine side chain in ribosome
assembly factor ObgE during 50S subunit maturation49. Notably, ribo-
some assembly factors aremissing from the in vitro assay we used here,
suggesting theU2473Cmutationmight still be beneficial in the assembly
of destabilized engineered ribosomes in vivo.

While a GNN utilizes both sequence and structural information for
training, GPT-like LMs use only sequences for training. Interestingly, the
use of a structural component in the GNN model allowed these models
to perform as well as the GPT-like LMwith an order of magnitude fewer
parameters (Fig. 5, Supplementary Data 3). Notably, we identified a
unique feature of RNA that favors representation of overlapping
nucleotide triplets as tokens for training GPT-like LMs. These tokens
outperform other embedding schemes by substantial margins in our
tests. It is possible that this representation captures a fundamental
property of RNA, in which nucleotide base stacking is the dominant
driving force for RNA structural stability53. This contrasts with proteins,
inwhichhigher-order structuredependsmoreonbackbone features, i.e.
backbone hydrogen bonding in secondary structure elements. Tokeni-
zation of nucleotides as overlapping triplets effectively represents each
of the 4 nucleotides 16 different ways, with additional representations
for beginning and ending tokens. The fact that overlapping triplet
encoding substantially decreases the perplexity of the resulting LMs
suggests that these different representations of the 4 nucleotides cap-
ture distinct features that are hard to train in a simpler token scheme. In
principle the embedding dimension for nucleotides encoded individu-
ally could be increased andmight possibly capture this information. For
examplewithproteins, single-aminoacidencoding results in “clustering”
of amino acids by physicochemical properties54. However, for nucleo-
tides this is likely infeasible due to the fact that model parameters and
memory use scale as the square of the embedding dimension for a
transformer-based model55. Projecting the total embedding dimensions
of overlapping triplets to single nucleotideswould likely require amodel
with over 100-foldmore parameters andmemory than used here. While
we were unable to find sets of parameters and hyperparameters that
allowed training of the RNA LMs using single-nucleotide tokens, this
could be further explored in the future. Nevertheless triplet-encoding
with a 1-nucleotide shift should serve as a useful approach for the rela-
tively small models we developed here.

Protein language models can serve as a foundation for structure
prediction. For example, the ability of ESM-2 to predict correct amino
acids in a sequence, asmeasuredby adecrease in themodel perplexity,
correlates strongly with the ability of the model to serve as a basis for
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protein tertiary structure prediction2. For RNA, in which alternative
secondary and tertiary structures may play important functional bio-
logical roles56,57, starting from an RNA language model may prove
crucial for success in future structural prediction efforts. RNA LMs
could also benefit from coupling to additional data. For example,
combining the RNA LM with a protein LM could help refine searches
for mutations in proteins that confer thermostability to the ribosome,
i.e. in ribosomal proteins or maturation factors. Language models for
RNA could also benefit from information on nucleotide modifications.
These modifications can have profound effects on nucleotide con-
tributions to RNA secondary and tertiary structure, and hence RNA
function. However, information on nucleotide modifications is scarce
apart from a very small select number of organisms. Future efforts to
expand post-transcriptional modification databases could help
improve deep-learning approaches for RNA. RNA language models
could also be combined with experimental data, for example chemical
probing data as a means of introducing additional structural infor-
mation into the model. Finally, there is also room to expand RNA
sequences in theGARNETdatabase, which could improve theRNALMs
created here. For example, the larger diversity present in the SILVA 16S
rRNAdatabase, which includes ribosomal RNA sequences from species
without a sequenced genome, suggests the GTDB could grow in spe-
cies clusters by many times in the coming years. The GTDB also pre-
sently lacks eukaryotic, mitochondrial, and chloroplast genomes, as
well as those of viruses. However, even with the above limitations, we
show that deep learning models including LMs with optimized triplet
encoding canbebuilt and trainedusingRNAsequences extracted from
the GTDB, and applied to RNA functional engineering.

Methods
RNA sequence searches and multiple sequence alignment
construction
Sequences for the three ribosomal RNAs were identified by searching
the corresponding Rfam 14.9 covariance models (23S rRNA: archaea
RF02540, bacteria RF02541; 16S rRNA: archaea RF01959, bacteria
RF00177; 5S rRNA: RF00001) against genomes in the Genome Tax-
onomy Database (GTDB) v214.1. The representative genomes of each
GTDB species cluster was searched using Infernal 1.1.4 with an e-value
cutoff of 1e-5 and omitting hits shorter than 85% of the model length,
keeping the most significant hit per genome. If no such hit could be
found, then any available non-representative genomes for that species
cluster was searched, in order of increasing CheckM contamination,
which is provided in the GTDB metadata.

For each ribosomal RNA family, multiple sequence alignments
were created by aligning the Infernal hits to a single Rfam covariance
model (23S rRNA: RF02541; 16S rRNA: RF00177; 5S rRNA: RF00001).
The alignments were further filtered for quality by 1) removing
sequences with >5% ambiguity characters, 2) removing sequences that
aligned to <85% of the Rfam consensus positions, 3) removing
sequences with a length greater than two standard deviations above
the mean (greater than one standard deviation for 16S and 23S rRNA),
and 4) removing sequences with a fraction of non-canonical base pairs
(not Watson-Crick-Franklin or G-U pairs) in the Rfam consensus sec-
ondary structure greater than two standard deviations above themean
to remove potential pseudogenes. For the GNN approach, the 23S
rRNA alignment was further processed to remove positions that
aligned to insertions relative to the RfamRF02541model and positions
that are not present in the E. coli 23S rRNA sequence from PDB 7K00.

For the expanded 228-RNA dataset, we selected 256Rfam families
that are present in bacteria and archaea, contain 10 ormore sequences
in the Rfam seed, and have 100 or more consensus positions. The
models were then searched against each GTDB species representative
genome using Infernal 1.1.420 with an e-value cutoff of 1e-5, allowing
multiple hits per genome. Across all models, hits with any overlapping
nucleotides were resolved by keeping the hit with the lower e-value.

The resulting sequences were then aligned to their respective Rfam
covariance model. These alignments were filtered for quality in the
same way as described above for rRNA sequences, except sequences
that aligned to <90%ofRfamconsensus positionswere removed. Rfam
families with fewer than 10 sequences after filtering were excluded
from further analysis, resulting in 228 RNA families in the final dataset.

To compare alignment diversity relative to existing RNA align-
ments, each alignment was filtered at a range of fractional identity
cutoffs using a greedy algorithm implemented by two methods:
VSEARCH v2.15.258 with options --cluster_fast --iddef 0 --id <cutoff> and
esl-weight (HMMER version 3.4)59 with options --rna -f --idf <cutoff > .
VSEARCH takes unaligned sequences as input, while esl-weight
requires input sequences to be aligned. For 23S rRNA, the compar-
ison database was SILVA 138.1 LSURef NR99, and for 16S rRNA, SILVA
138.1 SSURef NR9918. The full-length SILVA sequences were aligned
using SINA 1.7.260 to the corresponding ARB file for esl-weight com-
parisons. For 5S rRNA, two comparison databases were used:
5SRNAdb37 and Rfam 14.917 full alignment for RF00001. 5SRNAdb
provides aligned sequences and Rfam sequences were aligned using
Infernal to the Rfam covariance model RF00001. For the TPP ribos-
witch, cobalamin riboswitch, and T-box leader RNA, the comparison
databases were Rfam 14.9 full alignment for RF00059, RF00174, and
RF00230, respectively, aligned using Infernal to the corresponding
covariance model.

Generation of RNA training and test sets for training deep
learning models
We applied hierarchical clustering with CD-HIT-EST61 to generate
training and test sets from 231 Rfam RNA families extracted from the
GTDB genomes. To increase cluster diversity, CD-HIT was customized
by reducing cluster_thd to 60% in the cdhit-common.c + + script (line
358) and recompiling the software. Sequences for each Rfam family
were independently clustered at decreasing percent identities as fol-
lows: 90% with n-mer = 8, 80% with n-mer = 5, 70% with n-mer=4, and
60% with n-mer=4. While the rRNA families were diverse at the 60%
identity level, the remainingRfam familieswere generally less so due to
the stringent filters used in the Infernal search (described above). We
therefore used the following strategy for dividing these Rfam
sequences into an overall training and test set. First, for the 124/231
remaining Rfam families that had sufficient sequence diversity at the
60% level, clusters were randomly sorted into the training and test sets
until up to 33% of sequences from a family were in the test set. Then,
intactRfam familieswith single clusterswere randomly selected for the
test set until the test set contained 10% of the total tokens. Rfam
families with intermediate diversity, i.e. that had dominant clusters
within them, were kept intact in the training set. For models requiring
MSA format, sequences were then formatted using esl-reformat
(HMMER version 3.4)59. The same method was used to split the 5S,
16S and 23Sdatasets, except 5%of sequenceswere reserved for testing.

Growth temperature curation and prediction
Optimal growth temperatures (OGTs) were predicted by TOME40

from proteome sequences from each representative genome in the
Genome Taxonomy Database (release 214.1), yielding a dataset of
85,205 OGTs. This compares to a total of 13,011 out of the 85,205
GTDB species with an OGT listed in TEMPURA and/or GOSHA data-
bases. To determine the accuracy of the TOME predictions, the R2

value was calculated against the optimal growth temperatures from
the TEMPURA (Release 200617)38 and Gosha databases (accessed on
23 October 2023)39, for all species absent from TOME’s training set
(Fig. 2a. n = 7404 and 3346 species for Gosha and TEMPURA,
respectively). OGTs from TOME were further validated by inspecting
the NCBI Isolation Source of species in the GTDB metadata. Isolation
sources indicating direct acquisition fromenvironments warmer than
60 °C were categorized as “hyperthermophilic,” while the remaining
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isolates were classified as “not hyperthermophilic” (Supplementary
Data 2). Manual labels were compared to classifications based on
TOME, where species with a predicted OGT ≥ 60 °C were categorized
as hyperthermophiles (Fig. 2c).

Structural analysis of 23S rRNA for graph representations
The GraphNeural Network (GNN)model takes as input information on
the nucleotides’ structurally proximal neighbors, represented by a
graph. Further, the GNN model is trained on the Infernal MSA of 23S
rRNA sequences from GARNET, truncated to align with the E.coli 23S
rRNA sequence in PDB entry 7K00 and tailored to the Rfam RF02541
model, as detailed in the ‘RNA sequence searches and multiple
sequence alignment construction’ section. This alignment is further
referred to as the ‘GNNMSA’. To train the GNN, we generated a graph
from a structural distance matrix based on the E.coli 23S rRNA struc-
ture from PDB entry 7K00, adjusting the nucleotide coordinates in the
distance matrix to align with those in the GNN MSA. This was accom-
plished through a procedure outlined below.

To generate the aligned distance matrices, we chose 18 repre-
sentative archaeal and bacterial ribosome structures from the PDB
(3CC2, 4W2E, 5DM6, 5NGM, 8HKU, 6SKF, 6SPB, 6V39, 7JI1, 7NHK,
7OOD, 7S0S, 7S9U, 7SFR, 8A57, 8FMW, 7K00, and 4YBB), extracting
the 23S rRNA chains. Using a custom script, we converted nucleotides
with post-translational modifications in these structures to sequences
with canonical A, C, G, and U, further referred to as the ‘PDB-derived
sequences’. We then produced distance matrices by calculating the
minimumall-to-all atomdistances between nucleotide pairs in the PDB
files. To align these distance matrices with the GNN sequence align-
ments, a multi-step matrix adjustment procedure was implemented
(see Supplementary Fig. 2). First, to account for the absence of
unstructured regions in the PDB-derived sequences, these were
aligned with the corresponding rRNA FASTA sequences from the PDB-
derived sequences using MAFFT62. Empty rows and columns were
inserted into the distance matrices corresponding to the locations of
the alignment gaps, signifying the regions of unstructurednucleotides.
Subsequently, in the second step, the FASTA sequences of the 18
rRNAs were aligned with the GTDB-derived 23S rRNA sequences using
Infernal as outlined above in section ‘RNA sequence searches and
multiple sequence alignment construction’, ensuring all rRNA
sequences weremapped onto a consistent coordinate framework with
thenecessarygaps and insertions. Empty columns and rowswereagain
positioned at the coordinates of the gaps and insertions in the distance
matrices. Finally, in the third step, rows and columns in the distance
matrices that correspond to the gaps and insertions specific to the
E.coli 7K00 sequence in the Infernal MSA, were removed, replicating
how the GNN MSA was created. The resulting aligned distance matri-
ces’ nucleotide coordinates matched their counterpart coordinates in
the GNN MSA.

The aligned distancematrices, showing internucleotide distances
in Å, were transformed into binary contact maps, where ‘1’ denotes
contact and ‘0’ indicates no contact, with two differentmethods. In the
first intuitive method, contact ‘1’ was assigned to pairs of nucleotides
having a distance below a certain distance cutoff. Analysis of the
contact map alignment involved summing the 18 maps (see top-right
halves of the plots in Supplementary Fig. 3a-d and Fig. 3e). The align-
ment’s accuracy was confirmed by the precise matching of secondary
structures across the maps. To quantitatively assess rRNA structural
homology, we introduced a structural correlation metric

Corr Aij ,Bij
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whereAij =Aij dð Þ and Bij =Bij dð Þ are the two contact maps compared at
a distance cutoff d, with i, j being the nucleotides coordinates. Pairwise

correlation of the contact maps generated at d = 12Å was on average
0.94 and 0.95 for bacterial species and for archaeal species, respec-
tively, and 0.88-0.90 when comparing bacterial to archaeal 23S rRNA,
which indicated that most of the structural features were identical
between all ribosomal subunits, and prompted us to combine the
sequences for training the GNN (see Supplementary Fig. 3e). We fur-
ther analyzed the average correlation between the contact maps as a
function of distance cutoff d (see Supplementary Fig. 3f), and saw that
the structural correlation did not significantly improve for d
above 12 Å.

In the second method, similar to the one applied in the original
Structured Transformer model introduced by Ingraham et al41., we
sorted pairs of nucleotides according to their distances, and selected
the k-nearest neighbors for each. To justify the use of the second
method, we analyzed the distributions of internucleotide distances
returned for different amounts of nearest neighbors k (see Fig. 3d).
We observed that by choosing a certain k, all internucleotide dis-
tances below a certain cutoff are included (e.g. ~12 Å for k = 50). We
further saw high similarity of the k-nearest neighbors contact maps
with the contact maps generated for the corresponding cutoff dis-
tances captured by a given k nearest neighbor value (see Fig. 3e and
Supplementary Fig. 3a–d). We concluded that the two methods for
generating contact maps could be used interchangeably, and we
chose to proceedwith the k-nearest neighborsmethod for generating
the graph and training the GNN model.

GNN model
As described above, the Graph Neural Network (GNN) RNA model
takes as input a contact map describing the 3D fold of the RNA family
that is being modeled to construct a fixed graph. Each node in the
graph corresponds to a conserved position of the RNA family MSA.
Each node is connected to the k-nearest neighbors. The graph contains
node and edge features. Node features consist of a learned absolute
positional encoding with 16 hidden features as well as information
about the sequence. As in Ingraham et al41., this sequence information
is causally masked during the decoding process. The edge features
consist of the sinusoidal relative positional encodings and the pairwise
distance between nodes in the graph use 16 radial basis functions
spaced between 0 and 20 Ångstroms, as previously described41. All
node and edge features were mapped to a hidden dimension of 128
with a learned linear layer. The model leverages the transformer
encoder-decoder architecture of Ingraham et al41. A single encoder
layer and three decoder layers were used. All sequences were toke-
nized using one token per nucleotide with an alphabet consisting of
the four nucleotides (A, U, C, andG) aswell as a gapcharacter (-) and an
“unknown” character (X). The “unknown” character is found in
sequences where, due to sequencing issues, the identity of the
nucleotide was not determined.

For training, we performed a sweep on the 23S pretraining set,
varying both k-NN (k-nearest neighbors on which to performmessage-
passing), and layer dimension. We trained across values of k = {5, 10,
20, 50, 100} and layer dimension = {64, 128} with learning rate 1e-3, to
profile the contribution of added structural context and/or dimension
on autoregressive perplexity. We trained all models using a dropout
rate of 10% and a label smoothing rate of 10%. For training, we initially
randomly partitioned 20% of the training set into a validation set, to
allow early stopping based on validation perplexity for the hyper-
parameter sweep. We found that structural context begins to saturate
after k = 50 nearest neighbors. Using the best set of hyperparameters
on the holdout, divergent test set (k = 50, layer dimension = 128), we
then partitioned the 10% of the training set for validation for early-
stopping on the final pretrained model. We pause training after vali-
dation perplexity stopped improving for 5 epochs, training the model
for 32 epochs. For finetuning on hyperthermophilic sequences, we
lowered the learning rate to 1e-4, and finetuned the pretrained model
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(k = 50, layer dimension = 128). We similarly held out 10% of the
hyperthermophiles training set as a validation set to allow early stop-
ping based on validation perplexity. Finally, we measured the perfor-
mance of the model by calculating test perplexity after training for 50
epochs. Extended details for each model are available in Supplemen-
tary Data 3.

RNA language model pretraining and finetuning on hyperther-
mophilic sequences
To construct a Generative Pretrained Transformer (GPT) RNA lan-
guagemodel, RNA sequences were converted to n-gram tokens of 1, 2,
or 3 nucleotides, with a step size of one between tokens (Fig. 4a). A
small GPT model, nanoGPT43, was then adapted to train an RNA lan-
guagemodel for comparisons of these token schemes, using 23S rRNA
sequences fromGARNET. Batch sequenceswere adjusted tobe aligned
at index = 0, and used padding if the sequence included the RNA 3’-
end. Padding tokens were excluded from loss calculations. We were
unable to find suitable hyperparameters for training models with
single-nucleotide embeddings. For hyperparameter optimization, we
divided the 23S rRNA training set described above into training and
validation sets using CD-HIT-EST61 for hierarchical clustering (85M/
4M tokens in the training/validation sets). Final models were trained
using the full training and tests sets for 23S rRNA described above,
using the test set as a validation set (89M/5.5M tokens in the training/
validation sets). The architecture and hyperparameters for GPT mod-
els in the comparisons shown in Fig. 4b were the following: context
window = 384 tokens, attention layers = 18, attention heads = 6,
embedding dimension = 300, learning rate = 5e-5 decayed over
100,000 iterations to 5e-6, AdamWoptimizer beta2 = 0.998, batch size
= 18, use of Flash attention63, and with the nanoGPTmodelmodified to
use rotary positional embeddings (RoPE) for relative positional
information44. We also replaced layer normalization in the transformer
layer blockswith root-mean-square normalization64.We also tested the
use of non-overlapping dinucleotide and non-overlapping triplet-
nucleotide encodings. Non-overlapping dinucleotide encodings could
be optimized to some degree, possibly benefitting from multiple
representations of each nucleotide in the token set. However, non-
overlapping dinucleotides require additional tokens to account for
RNAs with an odd number of nucleotides and are not as intuitive to
interconvert between tokens and nucleotides. We therefore did not
pursue non-overlapping embeddings further.

We trained the final RNA language models using the overlapping
triplet-nucleotide scheme (n-gram of 3 with step size 1), and with RoPE
applied to each attention layer. The final model for the 231 RNA set
similarly used the train/test sets described above, with the test set used
for validation (274M/31M tokens in the training/validation sets). We
used early stopping based on the validation loss score to output the
final model checkpoint files. The hyperparameters and perplexity
values of the pretrainedmodels are given in SupplementaryData 3. 16S
and 23S rRNA sequences were generated from the pretrained 231-RNA
LM using 100 nucleotides of E. coli 16S or 23S rRNA, respectively, at a
generation temperature of 0.2. These sets of 100 sequences were
aligned using the MAFFT aligner in Wasabi65, with the E. coli sequence
included for comparison purposes in Fig. 4d and e.

RNA language models trained on 23S rRNA sequences from
GARNETwerefinetuned using hyperthermophilic 23S rRNA sequences
from GARNET identified as described above. Hyperthermophilic
sequences were divided into a training set and validation set splits
based on their partitioning in the data used for pretraining, i.e.
hyperthermophilic sequences in the training set of thepretraining data
were used in the finetuning training set, and hyperthermophilic
sequences in the validation set of the pretraining data were used in the
finetuning validation set. Aswith the pretrainedmodels, early stopping
based on the validation loss score was used to output the final model
checkpoint files. We also finetuned the RNA language model

pretrained on the 231-RNA dataset using a similar workflow (Supple-
mentary Data 3).

Analysis of 23S rRNA sequences to identify candidate thermo-
philic mutations
Full-length 23S rRNA sequences were generated from the pretrained
and finetuned GNN and LM models using a seed sequence beginning
with the 5’ end of E. coli 23S rRNA composed of 100 nucleotides (GNN)
or 384 nucleotides (LM). Sequences were generated in sets of 1000
using a range of “temperature” scaling factors of the model output
logits, then aligned to the consensus 23S sequence using the Rfam
covariance model RF02541 (LSU_rRNA_bacteria). The GNN-generated
sequences lacked regions in the uL1 and bL12 binding regions, which
were missing in PDB entry 7K00. These regions were masked in sub-
sequent analyses. Sequences generated from the LMs aligned to the
Rfam model for 23S rRNA across their entire length (Supplementary
Fig. 6a, c and Supplementary Fig. 7a, c). By contrast, the GNN models
deleted local RNA segments with higher frequency at the higher gen-
eration temperatures tested (Supplementary Fig. 5a, c). Although
shorter as a function of increasing temperature, the GNN sequences
still aligned well to the Rfam model (Supplementary Figs. 5–7).

To choose an appropriate temperature for generating sequences,
they were analyzed for their 23S rRNA-like properties as follows. First,
generated sequences were scored against the Rfam covariance model
RF02541 using cmsearch in the Infernal suite of programs20. The
cmsearch score is a combination of sequence and secondary structure
conservation, giving a global view of the 23S-like properties of the
generated RNAs. However, a 1-2% change in secondary structure may
not affect the score substantially if the rest of the ~3k long sequence is
conserved. We therefore used a second metric, the fraction of con-
sensus base pairs in the RF02541 model aligned to each sequence that
deviate from canonical G-C/C-G, A-U/U-A, or G-U/U-G pairs, compared
to proportion of base pairs disrupted in natural 23S rRNA sequences
from GARNET. Generated sequences were also visually checked for
alignment properties using the SILVA Alignment, Classification, and
Tree (AC) service60, together with the SILVA-associated Wasabi
sequence viewer66.

To identify candidate mutations in E. coli 23S rRNA that might
confer thermostability, we analyzed generated sequences with a gen-
eration temperature of T =0.5 for all GNN and RNA LMs, except for the
231-RNA FTmodel, wherewe used a generation temperature of T =0.3.
We first aligned the generated sequences to the Rfam RF02541 cov-
ariance model using cmalign in the Infernal suite of programs, and
trimmed the alignment to positions corresponding to the E. coli 23S
rRNA sequence.We calculated the Jensen-Shannon divergence (JSD) at
each nucleotide position in the 23S rRNA alignment, comparing
nucleotide frequencies for sequences generated by the pretrained
models and models finetuned on hyperthermophilic sequences, after
masking positions used to seed sequence generation (n = 100 for GNN,
n = 386 for LM to account for tokenization) and with nucleotide
occupancy <50%.

Since JSD-based sorting considers each position in the sequence
independently, we also used log probability values for candidate 23S
sequences to assess mutations. Using the probability of a sequence
being generated by an RNA language model allows us to assess whe-
ther candidate mutations work in the E. coli 23S rRNA context or may
dependonother co-occurringmutations, i.e. compensatorymutations
in base pairs. Notably, many of the highest-scoring JSD sites do in fact
correspond to base paired positions in 23S rRNA, and the deep
learning models generated compensatory mutations at both nucleo-
tide positions to maintain the base pair. However, given the large
number of mutations in each GNN- and LM-generated sequence, on
the order of 200 or more per sequence, it is also possible that candi-
date mutations might not function in an otherwise WT E. coli 23S
background.
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We used four probability calculations in our log probability ana-
lysis (Fig. 6b). First, we calculated the log probability of the finetuned
(FT) model generating a mutated E. coli 23S rRNA sequence, and
compared this to the log probability from the pretrained (PT) model.
Second, we calculated the log probability of the FT model generating
the wildtype E. coli 23S rRNA, and compared this to the log probability
from the PTmodel.We evaluated themutant logprobability difference
between FT and PT normalized to wildtype log probability difference
as ΔΔlogP. Mutant sequences with a positive ΔΔlogP are supported by
the FT model better than the PT model relative to the wildtype E. coli
23S rRNA. As controls, we generated all possible single-nucleotide
mutations in the E. coli 23S rRNA sequence and calculated log prob-
abilities for each of these being generated from the FT or PT models.
We found the average difference in log probabilities from the FT and
PTmodels,ΔΔlogP, to be close to 0 (−0.82 for the 23S rRNAGNN, 0.07
for the 23S rRNA LM, and −0.52 for the 231-RNA LM). Comparing single
mutations to this reference distribution allowed us to assess the per-
centile of individual candidate thermostabilizing mutations. Multiple-
mutation cases should be compared to an analogous reference dis-
tribution considering all themutations in a sequence in the probability
calculations, which could be used to investigate nucleotide depen-
dencies learned by the models. We chose not to comprehensively
assay these due to the computational complexity.

Cloning and ribosome purification
For ribosome expression, a modified version of the pLK35 plasmid67,
which contains an IPTG inducible tac promoter followed by the 5S, 16S,
and 23S rRNAwith theMS2-tag fromNissley et al50. inserted in helixH98,
was used. 23S rRNA mutations were introduced to the pLK35 plasmid
using the corresponding primer set (Supplementary Data 6) and the In-
Fusion Cloning kit (Takara Bio). All sequences were confirmed with full
plasmid nanopore sequencing (Plasmidsaurus and Elim Bio).

MS2-tagged ribosomes were expressed and purified as previously
described47 with adaptations. pLK35 plasmids were transformed into
NEB Express Iq cells (NEB) which are a bL21 derivative that con-
stitutively expresses the lac repressor. Transformants were grown
overnight in LBmedia and the following daywere diluted 1:100 in 1 L of
LB media with 100 µg/mL ampicillin. The cultures were grown at 37 °C
with shaking and once the cultures reached an OD600 of 0.6, expres-
sion of the rRNA was induced with 0.5mM Isopropyl ß-D-1-
thiogalactopyranoside. Induced cultures were grown for three hours
at 37 °C and then cells were pelleted and resuspended in 30mL of
buffer A (20mMTris–HCl pH 7.5, 100mMNH4Cl, 10mMMgCl2) with a
Pierce protease inhibitor tablet (Thermo Fisher). The cell suspension
was lysedby sonication and the lysatewas clarified by centrifugation at
14,000 rpm (34,000 x g) for 45min in a F14-14 × 50cy rotor (Ther-
moFisher). The clarified lysate was then loaded onto a sucrose cushion
with 24mLof buffer B (20mMTris–HCl pH 7.5, 500mMNH4Cl, 10mM
MgCl2) with 0.5M sucrose and 17mL of buffer C (20mM Tris–HCl pH
7.5, 60mM NH4Cl, 6mM MgCl2) with 0.7M sucrose in Ti-45 tubes
(Beckman-Coulter). Ribosomes were pelleted by centrifugation at
27,000 rpm (57,000 xg) for 16 h at 4 °C and then resuspended in dis-
sociation buffer (20mM Tris–HCl pH 7.5, 60mMNH4Cl, 1mMMgCl2).

MBP-MS2 fusion protein was purified as previously described32.
10mg of MBP-MS2 protein was loaded onto a MBP Trap column
(Cytiva) that was equilibrated with MS2-150 buffer (20mM HEPES pH
7.5, 150mM KCl, 1mM EDTA, 2mM 2-mercaptoethanol). The column
waswashedwith 5 column volumes (CV) of buffer A-1 (20mMTris–HCl
pH 7.5, 100mM NH4Cl, 1mM MgCl2) and the resuspended ribosome
pellet (~100mg) was then loaded onto the column. The column was
washed with 5 CV buffer A-1 followed by 10 CV of buffer A-250 (20mM
Tris–HCl pH 7.5, 250mM NH4Cl, 1mM MgCl2) and ribosomes were
eluted with 10mL of elution buffer (20mM Tris–HCl pH 7.5, 100mM
NH4Cl, 1mMMgCl2, 10mMmaltose). The 50S subunit samplewas then
concentrated using a 100 kDa cut-off spin filter (Millipore) andwashed

with buffer A-1. 50S ribosomal subunits were quantified using the
approximation of 1 A260 = 36 nM,flash frozen, and stored at−80°C.WT
untagged 30S subunits were purified from E. coli MRE600 as pre-
viously described47.

Endogenous E. coli 50S subunit contamination was quantified
using semi-quantitative RT-PCR. The rRNA from 50 pmol of MS2-
purified 50S subunitswasdenatured at95 °C andprecipitatedwith 4M
LiCl. 75 ng of rRNA was reverse transcribed and amplified with 8 PCR
cycles using the OneStep RT-PCR kit (Qiagen) and primers
MS2_quant_F andMS2_quant_R (SupplementaryData 6). DNAproducts
were resolved on a 10% TBE gel, visualized with SYBR gold
stain (Thermo Fisher), and quantified using Image J software68.
Uncropped gel images for Supplementary Fig. 13 are provided in the
Source Data.

HiBit in vitro translation reactions
The 11S nanoluciferase fragment that is complemented by the HiBit
peptide to enable luminescence69 was purified as previously
described47. In vitro HiBit translation assays were performed as pre-
viously described47 with adaptations. 50S ribosomal subunits were
diluted to 1.4μMinbuffer A described abovewith afinal concentration
of 10mMMgCl2. The subunits were then incubated at 37 °C or 65 °C as
indicated for 15minutes, and then cooled at room temperature for
15minutes. After cooling, an in vitro translation mixture was assem-
bled using the ΔRibosome PURExpress kit (NEB): 3.2 μL solution A
(NEB), 1μL factor mix (NEB), 250nM pre-incubated 50S ribosomal
subunits, 500nMWTuntagged 30S ribosomal subunits, 1 U/μLMurine
RNAse inhibitor (NEB), 400 nM 11SNanoLuc protein, 1:50 (v/v) dilution
of Nano-Glo substrate (Promega), and 1 ng/μL of DNA template
encoding the HiBit peptide69 (final volume of 8μL). 2μL of the in vitro
translation mixture was placed in a 384 well plate per well, and lumi-
nescence was measured for one hour in a Spark Plate Reader (Tecan)
set to 37 °C. Ribosomeactivitywas calculated bydetermining the slope
of the initial linear region of each in vitro translation reaction. The
reported ribosome activities are the average from three HiBit in vitro
translation reactions.

Benchmarking of GenerRNA
The GenerRNA model was downloaded from the following GitHub
repository: https://github.com/pfnet-research/GenerRNA.git and built
following the instructions provided in the README file. The GenerRNA
pretrained model, trained to 330,000 iterations on the deduplicated
RNAcentral dataset, as provided onHugging Face, was additionally fine-
tuned on two datasets, GARNET-all and GARNET-hyperthermophiles.
To do so, each dataset was first reformatted from the default FASTA
format to have each sequence on a single line lacking headers, as
required by GenerRNA, using a custom Python script. Following this,
each dataset was partitioned into training and validation sets and
tokenized using the included tokenizer_bpe_1024 scheme and the
default vocabulary to ensure consistency with the original GenerRNA
training workflow. Two versions of GenerRNA were then fine-tuned on
these datasets using the included finetuning example config file and
finetune.py script for 50,000 iterations on four A4500 GPUs to ensure
the validation loss plateaued.

We then sampled 1000 sequences from each GenerRNA model
using the provided sampling.py code. We tested a number of para-
meters including temperature, seed, token generation strategy, and
max tokens to generate the most 23S-like set of 1000 sequences
possible from the default GenerRNAmodel, the GenerRNAmodel fine-
tuned on GARNET-all, and the GenerRNA model fine-tuned on
GARNET-hyperthermophiles. Broadly, these parameters ended up
being a 100-nucleotide seed from the 5’ end of the E. coli 23S rRNA,
--max_new_tokens 520, --temperature 0.5 or 1.0 for the pretrained and
fine-tuned models respectively, and --strategy top_k. We chose 520
tokens, because for the 1024-token vocabulary, sequences are
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compressed about 5x once tokenized (Figure S1 in the GenerRNA
manuscript45). Increasing the number of tokes did not result in longer
generated sequences.

In addition to these parameters, we were forced to edit the code
of themodel.py and sampling.py scripts to suppress the <|endoftext | >
token, as without this, sequences would almost always terminate
within 100-150 nucleotides of starting. This was accomplished by set-
ting the <|endoftext | > logit value to negative infinity, aswell as adding
a flag that allowed us to define a forbidden token, <|endoftext | >.
However, this did not totally alleviate the early sequence termination
issues but did allow us to generate longer, though still prematurely
terminated, 23S-like sequences. Following generation, we assessed the
sequences using two metrics, cmsearch score and the fraction of non-
Watson-Crick base pairs, as described for the RNA LM models. With
both metrics, the sequences generated using the default GenerRNA
model yielded poor cmsearch score values, more dissimilar to natu-
rally occurring 23S rRNA sequences than those generated by the
GARNET RNA LMmodels. The fraction of non-WatsonCrick base pairs
on the surface look 23S-like for thedefaultmodel.However, thismetric
does not account for truncation of the sequences at the 3’ end. The
sequences generated by the GARNET fine-tuned GenerRNA models
catastrophically failed, generating only fragmentary sequences with
low cmsearch scores and exceptionally high non-Watson-Crick base
pair fractions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Associated data, models, and the GARNET Database70 are provided
here: https://doi.org/10.5281/zenodo.14003346. PDB coordinates are
available at:7K00. 4YBB. 6SPB. 8A57. 7S0S. 7NHK. 7SFR. 8FMW. 5DM6.
7OOD. 6V39. 7JIL. 5NGM. 4W2E. 7S9U. 6SKF. 3CCZ. 8HKU. Source data
are provided as a Source Data file. Source data are provided with
this paper.

Code availability
Code described in this work is publicly available on Github (https://
github.com/Doudna-lab/GARNET_DL70) and at the following https://
doi.org/10.5281/zenodo.13999143.
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