UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Steps Along the On-Line Assistance Spectrum

Permalink
https://escholarship.org/uc/item/4qv6f3sh

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 6(0)

Author
Rissland, Edwina L.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4qv6f3sh
https://escholarship.org
http://www.cdlib.org/

293

Steps Along the On-Line Assistance Spectrum
EDWINA L RISSLAND

Department of Computer and Information Science
University of Massachusetts
Amherst, MA 01003

Abstract

In this paper, we discuss the spectrum of on-line assistance ranging from passive,
canned to active, user-customized. We discuss various aspects of on-line
assistance: interactive introductory tutorials, on-line help, and on-line manuals. We
then describe two steps to make on-line assistance more intelligent: (1) inclusion
gad customization of examples in the information provided the user; and (2)
integration of various aspects of oo-line assistance like tutorials and help.

L Introduction

As any neophyte would probably attest, it is hard to get started on a new
computer system. One thing contributing to this difficulty is the lack of intelligent
on-line assistance in the interface. Often there is a rudimentary on-line help facility,
but it is clumsy to use. It is also “dumb” in that it lacks many key ingredients of
expert knowledge, like examples and heuristics; it consists of canned responses that
are always the same regardless of the user’s background, task, goals, context, etc.

Then too, the interaction is neither gracious, graceful nor friendly (see, for
example, the help facility on VAX/VMS):

1. access is tedious (e.g., menus too long and unorganized);

2. presentation of material is often insensitive (eg. screenfuls of text
whizzing by)

3. it requires the user to speak its language to get anything useful out of
the help invocation (eg., the user might not get any useful information
because he asks about “quit” when he should’ve asked about “logout™).

Such difficulties subvert the user’s expression of his intentions — he knows what he
wants to do but not how to say it — and ignore a key source of knowledge iu:
intelligent user interfaces [Norman 1984}

! This work supported in part by Grant IST-8212238 of the National Science Foundation.

234

At the other end of this spectrum are intelligent assistance providers -
interactive tutors and coaches that use AJl. techniques like user modelling (eg.,
[Woolf 1984]). More intelligent forms of on-line assistance need both more
knowledge and power: that is, many types of knowledge (e.g., of the user’s task,
domain, personal experience, etc. [Rissland 1984]), modes of interaction (e.g., natural
language [Walker 1976]), and processes (e.g., inference engines that isolate the user’s
misconceptions [Lewis and Soloway 1984]).

Thus we see a spectrum ordered by responsiveness and intelligence. At the
low or negative end of the spectrum are the dumb systems with canned responses,
no interactive capability, and only minimal domain knowledge (eg., VAX/VMS
HELP). A little better are interactive “dumb” facilities, like tutorials, without even
explicit models of the user or the knowledge to be explained? Enriching the
knowledge base and enhancing the interaction can move assistance further in the
“positive” direction. Adding user-modelling and the ability to provide responses
custom-tailored in content and form place the assistance facility well towards the
positive end of the spectrum.

So far that end of the spectrum has not been much explored, although
interesting starts have been made. Wilensky, in his UC system, allows the user to
ask for assistance in natural language [Wilensky 1982a, 1982b]; his work has
concentrated on request understanding. Finin, in his WIZARD system, focuses on
the problem of recognizing when the user needs help; for example, when he is using
inefficient means to do something, like using repeated DELETEs instead of PURGE,
the system then volunteers advice [Finin 1983; Shrager and Finin 1982].

Unhappily, however, most assistance facilities available today still lie clearly
towards the dumb end of the spectrum.

In the rest of this paper, we will describe some steps to move on-line
assistance further along towards the intelligent end of the assistance spectrum through
the use of richer domain knowledge and the integration of various aspects of
assistance. We shall assume that the on-line assistance facility has already been
invoked (by the user or the system) and that the facility has already ‘parsed” the
user’s request (ie., knows what the user requires assistance on). Our emphasis is on
the generation of the response, and in pa.rhcular on the embedding of exnmples.
Clearly, this work should eventually be tied in with work on invocation and parsing,
like that of Wilensky or Finin, and an obvious extension would be the use of a
program like McDonald’s MUMBLE [McDonald 1982] to dynamically generate text as
well as examples.

2 For example, the much touted tutorial for the LOTUS 1-2-3 spreadsheet program is a step-by-step
on-line tutorial; it is better than most, but its inflexibilitics can be daunting to a user.

295

2. Aspects of Assistance: Help, Tutorials and Manuals

A recent review article [Houghton 1984], discussed several types of on-line
assistance, including some pertinent here, namely, command assistance, introductory
tutorials and manuals. Other types are error and prompting assistance. We will not
discuss these here but many of our points are relevant to them as well. Of course,
the ideal assistant is very often a human on-line consultant.

By a twtorial, we mean an interactive, structured program that introduces a user
to a system (eg., the EMACS tutorial [Stallman 1983]). A tutorial presents
information but does not necessarily allow free rein in the interaction; some don’t
even allow one to jump around. What one can do next, like read further or supply
parameters to a demonstration, is largely pre-determined.

By on-line help, we mean command assistance. The user asks for information
about a particular command, like “HELP PRINT”, and is then presented with
information on PRINT, including relevant parameter options, but almost never
including examples of standard, potentially dangerous, or clever uses.

By an on-line manual, we mean a version of the hard copy manual (whatever
its content or organization) which is available to the user on-line together, hopefully
with some sort of access interface, the case of a standard text-editor (in read-omly
mode) being the bare minimum.

Help and tutorials are clearly more interactive than manuals, although one can
easily imagine interactive manuals as well. Tutorials can provide a “guided tour” of
a system and an opportunity for the user to try things out in a sheltered, or
hypothetical, environment.

3. Embedding Examples in On-ine Assistance

One important component of knowledge that is missing in most on-line (and
off-line) assistance is examples. Examples, by which we mean specific cases and
instantiations, are one of the most important ingredients of expert knowledge. They
offer concrete illustrations of what is being explained and memorable hooks into
more general information. They are especially important for the beginner.

296

Examples can provide easily understood and remembered usages. For instance,
PRINT VITAMEM
is clearly more perspicuous than
“PRINT [|d:][filename[ext[J/T]/C/P)..]” (from [IBM 1983)

A novice can use simple cases: to figure out how to instantiate the general
syntactic description, to use as “recipes” for standard tasks, as a basis for
generalizing, and as a basis for a “retrieval+modification” approach to generate
another instance. For the more expert, examples can serve as a reminder of syntax
and things previously done, much like an icon; this is especially useful with
commands used only infrequently.

[Rissland 1978] presented a taxonomy of examples: “start-up” (easy, perspicuous
cases); “reference” (standard, textbook cases); “model” (paradigmatic, template-like
cases); “counter-examples” (limiting, illegal cases); “anomalous” (ill-understood, strange
cases).

Here we use such a taxonomy to select and order the presentation of
examples. For instance, we provide the neophyte user with “start-up” examples and
the more experienced user with “references”. Where a sequence of examples is
called for, references are presented before models which are presented before
counter-examples and anomalies. This taxonomy can enable the user to ask
specifically for examples in a certain class (eg., “easy” or “dangerous”).

Another aspect of examples which we have previously studied is their
generation [Rissland 1981]. Two modes of generation are “retrieval+modification” and
instantiation. We use these technmiques in on-line assistance by linking the assistance
program with an example generator, which has an “examples-space” of already
existing examples, and procedures for modification and instantiation. The examples,
which have been harvested and organized by an expert, are represented as frames;
they contain slots for information such as a graphics demonstration, difficulty rating,
and pointers to more and less complicated examples. Modification operators include
procedures to personalize examples (e.g., if an example needs a file-name, use one of
the user’s). Instantiation procedures include ways to generate a range of cases,
including those that satisfy and violate legal parameter values.

This ability to dynamically generate examples allows the assistance facility to
provide examples tailored to the user, his tasks, goals, context, domain, etc.; it
depends, of course, on having some sort of user-modelling capabilities. The idea is
to work examples into the assistance given the user, and better still to make the
examples meaningful in the sense of relating to the user.

297

4. Integrating Aspects of On-ine Assistance

One difficulty in learning or checking out a feature of a system is that the
various aspects of on-line assistance do not share a common language or set of
examples, and thus it is hard to integrate one’s knowledge or to apply information
from one source to another. This violates the pedagogical strategy of using
information seen before by the learner, like examples which have become “old
friends”.

Our approach to this consistency/integration problem is to have all the aspects
of on-line assistance share common source material — examples and text — which is
represented in a way usable by each individual aspect. Each aspect then puts its
presentations together by retrieving the text and examples it needs from the common
source.

In our work, we use a script-like control structure of a text and examples
template, a “TEXPLATE”. A TEXPLATE typically contains pointers to chunks of
text, calls for examples, and control information. It can also contain “literal” material
(like text used nowhere else) which is presented “as is”. Calls to examples are
either requests for explicitly named examples in the Examples Knowledge Base
(EKB) or constraints by which the the example generator can generate a new
example. For instance, an example call could be for a named counter-example or
for an example generated to fulfill prescribed constraints (like one using the name of
the user’s most recently created file). Control information includes options to
present to the user and the appropriate assistance-module response actions: for
instance, MORE to cause the tutorial to go on, EXAMPLE for an example, QUIT,
etc. Control information also contains directions for which sequence of examples the
system should present if the user repeatedly selects the EXAMPLE option.

S. Two On-going Assistance Studies: IA-LADYBUG & VMS

In our on-going work, we are working within two systems. The first is
IA-LADYBUG, a system designed specifically for novice programming students. It
introduces them to notions useful in the Pascal programming language (like
subprocedures) by having them work with a graphics icon, the LADYBUG, which
can be commanded by LOGO-like commands like CRAWL, RIGHT-TURN, etc.
[Levine and Woolf 1984). The second is a subset of VAX/VMS command language
[DEC 1978] dealing with directory commands like PURGE, DELETE, and SET
PROTECTION.

For 1A-Ladybug (over whose environment we have total control), the student
manual, on-line introductory tutorial and interactive on-line HELP share material.
The TEXPLATES are indexed by command and topic and reference the manual’s

298

text file for textual material and a separate EKB for examples. Often, the tutorial
and interactive HELP present dynamic examples that are merely summarized in the
manual, for instance drawing a ball bouncing or a seven color sunburst. The tutorial
and HELP present examples that are too complicated or whose effect (like color)
would be lost in the manual.

The simpler “start-up” and “reference” examples presented in the manual are
the first examples presented in the tutorial and HELP. HELP, especially, goes on to
present more complex or difficult examples, like counter-erxmples to show the limits
of commands (e.g., RIGHT 362 exceeds the parameter range for degrees of turning).
At this time, HELP also does some very simple tuning of its examples to the user,
for instance by using information about the user’s directory and the user’s own
answer to whether or not he is an expert.

6. Summary

In this paper we have discussed two steps to making on-line assistance more
intelligent: (1) inclusion and customization of examples in the information provided
the user; and (2) integration of various aspects of on-line assistance like tutorials and
command help. We have used knowledge about the structure, types, and generation
of examples to implement (1) and a control structure of text and examples, called a
“TEXPLATE”, to achieve (2).

Currently we are experimenting with our prototype on-line assistance modules.
One thing we have learned is that subjects do not read very well and that examples
are a quick way to impart a lot of information. We have also found that using
texplates to separate the control from the substance makes it easy to re-write the
assistance scripts. Another observation is that for examples that are graphics demos,
it would be nice for the user to be able to do “instant replays in slow motion” and
to be able to take a deeper look at the code behind the example.

7. Acknowiedgements

The author acknowledges the work of the members of the “help team”,
specifically E. Valcarce who implemented the on-line command assistance, L. Gordon
who developed the IA-Ladybug tutorial, and R. Filoramo who wrote the IA-Ladybug
Manual. Also thanks to B. Woolf and L. Levine for their critical discussions and
to O. G. Selfridge for sharing his ideas.

299

8. References

DEC, VAX/VMS Command Language User’s Guide. Digital Equipment Corporation.
Order No. AA-D023B-TE, 1978.

Finin, T. W., “Providing Help and Advice in Task Oriented Systems”. In Proceedings
IJCAI-83. Karlsruhe, W. Germnay, 1983.

Houghton, R. C., “Online Help Systems: A Conspectus”. CACM, Vol. 27, No. 2,
February 1984.

IBM, Disk Operating System by Microsoft, Inc.. IBM Personal Computer Language
Series, IBM Corp, 1983.

Johnson, L., and Soloway, E. M., “PROUST: Knowledge-Based Program Debugging”.
In Proceedings Eighth Imt’l Software Engineering Conference, Orlando, FiLA, March
1984.

Levine, L., and Woolf, B., “Do I Press Return?” In Proceedings ACM-SIGCSE
Symposium on Computer Science and Education, Philadelphia, February 1984.

McDonald, D. D., “Natural Language Generation as a Computational Problem: An
Introduction”. In Brady (Ed.) Computational Theories of Discourse, MIT Press, 1982.

Norman, D. L., “Stages and Levels in Human-Computer Interaction”. To appear in
International Jowrnal of Man-Machine Studies, summer 1984.

Rissland, E. L., Constrained Example Generation. COINS TR 81-24, Department of
Computer and Information Science, University of Massachusetts, Amherst, 1981.

Rissland, E. L., “Ingredients of Intelligent User Interfaces”. To appear in
International Journal of Man-Machine Studies, summer 1984.

Rissland, E. L., “Understanding Understanding Mathematics” Cognitive Science, Vol.
2, No. 4, 1978.

Shrager, J., and Finin, T. W., “An Expert System that Volunteers Advice”. In
Proceedings AAAI-82, Pittsburgh, PA, August 1982.

Stallman, R. M., “EMACS: The Extensible, Customizable, Self-Documenting Display
Editor”. In Barstow, Shrobe and Sandewall (Eds.) [Interactive Programming
Environments, McGraw-Hill 1984. Also available as MIT Al Lab Memo 519a, 1981.

Walker, D. E. (Ed.), Speech Understanding Research: Final Report. Stanford Research
Institute, Menlo Park, CA, 1976.

Wilensky, R., “Talking to UNIX in English: An Overview of UC”. In Proceedings

300

AAAI-82, Pittsburgh, PA, August 1982a.

Wilensky, R., Talking to UNIX in English: An Overview of an On-line Consultant.

Report No. UCB/CSD82/104, Computer Science Division, University of California,
Berkeley, September 1982b.

Woolf, B. P., Context Sensitive Text Planning in Tworial Discourse Generation. Ph. D.

Dissertation, Dept. of Computer and Information Science, University of Massachusetts,
Ambherst, May 1984.

	cogsci_1984_293-300

