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ABSTRACT OF THE DISSERTATION

Data-driven Simulations of Distributed Systems

by

David Alonso Barajas-Solano

Doctor of Philosophy in Engineering Science (Applied Mechanics)

University of California, San Diego, 2013

Professor Daniel M. Tartakovsky, Chair

This dissertation deals with mathematical modeling of complex distributed

systems whose parameters are heterogeneous and heavily under-specified by data.

Such problems are ubiquitous in every field of science and engineering, where one

or more deterministic models exist to describe a given phenomenon but only a lim-

ited number of measurements of a model’s parameters and its state variables are

available. The main focus of this dissertation is on parameter identification (PI)

and uncertainty quantification (UQ). The first part of this dissertation deals with

development and numerical implementation of an algorithm to compute accurately

and efficiently Green’s functions, which are often used in both PI and UQ analyses

of linear systems with piece-wise continuous parameters. The second part of this

xiv



dissertation explores the propagation of parametric uncertainty through a model-

ing process, in which quantities of interest are described by nonlinear elliptic and

parabolic partial differential equations. We demonstrate that the variance of un-

certain parameters (a measure of their uncertainty) strongly affects the regularity

of a system’s stochastic response, restricting the use of modern probabilistic UQ

methods (e.g, polynomial chaos expansions and stochastic collocation methods) to

low distributed parameters with low noise-to-signal ratios. High ratios adversely

affect the stability and scalability of such methods. The third part of this disserta-

tion deals with this issue by developing a multi-level Monte Carlo algorithm that

outperforms direct Monte Carlo and allows for systematic treatment of different

sources of bias in the computed estimators. In the final part of this dissertation we

explore two PI strategies based on a Bayesian framework. The first strategy is to

sample a posterior distribution using a generalized hybrid Monte Carlo (gHMC)

method. We develop acceleration schemes for improving the efficiency of gHMC,

and use them to estimate parameters in reactive transport systems with sparse

concentration measurements. The second strategy is to compute the maximum a

posteriori estimator of the configuration of spatially distributed, piece-wise contin-

uous parameters by using a linearized functional minimization algorithm. Total

variation regularization (TV) is employed as a prior on the parameter distribu-

tion, which allows one to capture large-scale features of system behavior from

sparse measurements of both system parameters and transient system states.

xv



Chapter 1

Introduction

1.1 Epistemic uncertainty in distributed systems

Analysis and predictions of physical phenomena require the formulation of

mathematical models that capture various mechanisms of interest. Such models

take the form of partial differential equations (PDEs) if a phenomenon of interest is

defined over a space-time continuum. Parameters of these PDEs can vary in space

and time, reflecting a system’s heterogeneity that can manifest itself with different

intensity on different scales. Hydrogeological applications provide a penultimate

example of multiscale heterogeneity [26]. On the meter scale, properties of a ge-

ological formation can vary from one point to another in a way that maintains a

constant average value over the whole structure. On the kilometer scale, one might

encounter multiple geological structures whose vastly different properties give rise

to spatially varying averaged parameters.

Once the required scale of parameter heterogeneity has been ascertained,

one can proceed with assigning parameter values. This task involves measuring

both system parameters (coefficients in the corresponding PDEs) and system states

(unknowns described by these PDEs). The latter set of measurements serves to

identify and calibrate model parameters, as well as to validate the model. In gen-

eral, data collection is an expensive exercise (in terms of both time and money).

Consequently, a typical problem in science and engineering involves system param-

eters that are underspecified by data and, hence, are inherently uncertain. This

1
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then must be taken into account in order to produce valuable estimators of the

relevant quantities of interest.

We assume that the phenomena under consideration are well understood,

i.e., that their PDE-based models capture the “real” behavior of these phenomena

with desired accuracy. Our focus is on quantification of epistemic (parametric) un-

certainty. More specifically, we develop and analyze tools for epistemic uncertainty

quantification and parameter estimation in highly under-characterized distributed

system. Chapters 2–4 deal with uncertainty propagation, i.e., with estimating the

statistics of quantities of interest in terms of the statistics of the input parameters.

This is done by adoptng a probabilistic framework that is outlined in Section 1.2.

Chapters 5 and 6 contain our implementation of two alternative strategies for pa-

rameter identification, both of which are based on a Bayesian framework outlined

in Section 1.3.

1.2 Uncertainty propagation

A probabilistic framework for the characterization of parametric uncertainty

treats uncertain parameters as random fields. Governing PDEs and, correspond-

ingly, system states become stochastic. Given a certain probabilistic characteriza-

tion of the input parameters one would like to compute the probabilistic character-

ization of the system state. This procedure amounts to propagation of parametric

uncertainty through a modeling process.

Various approaches to uncertainty quantification can be subdivided into

three groups: direct methods, sampling methods, and spectral stochastic meth-

ods. Direct methods derive and solve a set of deterministic PDEs governing either

relevant statistics or full probability density functions (PDFs) of the quantities of

interest [64, 65, 82, 81, 83]. These methods generally require one to introduce as-

sumptions and constraints on the stochastic characterization of input parameters,

which limits their range of applicability.

Sampling methods, such as Monte Carlo simulations and its various vari-

ants, consist of generating multiple realizations of input parameters, solving deter-
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ministic PDEs for each of these realizations, and computing the ensemble statis-

tics of their solutions. Variants of sampling methods differ in the way they draw

realizations of input parameters, but share the requirement that the number of

realizations be large. If solving a deterministic PDE for each realization of in-

put parameters is computationally expensive, the overall computational burden of

sampling methods might become prohibitive. On the other hand, these methods

are easy to implement, highly robust, and versatile.

Spectral stochastic methods use a finite number of random variables to

approximate the probability space of input parameter fields, and employ spectral

decompositions of the stochastic response (random system states) over the finite-

dimensional probability space [34, 94, 29, 57, 91, 100]. Two hypotheses underpin

these methods. First, it is assumed that the probability space can be characterized

with a relatively small number of random variables, so that the dimensionality of

the problem is not intractably large. Second, it is assumed that the stochastic

response is sufficiently regular to allow a spectral representation. If any of these two

assumptions is violated, stochastic spectral methods can become computationally

more expensive than Monte Carlo simulations.

This dissertation deals with all three approaches to uncertainty quantifica-

tion. Chapter 2 presents a computationally efficient strategy to compute Green’s

functions that appear in various direct methods, and proposes a regularization

strategy that improves the accuracy of their approximation for problems with

piece-wise continuous coefficients. Chapter 3 contains an implementation of the

method of stochastic collocation (SC), a spectral stochastic method, to solve a class

of nonlinear elliptic and parabolic problems. Analysis of the performance of SC

for these problems sheds new light on the limitations of spectral stochastic meth-

ods, and establishes the requirements that an uncertainty quantification technique

appropriate for these problems should satisfy. Finally, in Chapter 4 a multi-level

Monte Carlo approach is proposed in order to address some of the issues outlined

above for nonlinear elliptic and parabolic problems.
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1.3 Parameter identification

As mentioned in Section 1.1, one can gain information about uncertain

system parameters from measurements of the state of a system. This inverse mod-

eling procedure is known as calibration within a deterministic framework, and as

probabilistic updating of parameter distributions within a probabilistic framework.

Bayes’ theorem is typically used to condition the probability distribution of the sys-

tem parameters to available measurements of the system states. Such an approach

allows for both assimilation of various types of measurements as they become avail-

able and incorporation of the modeler’s previous knowledge or expectations about

the system parameters.

Chapters 5 and 6 introduce novel Bayesian techniques for parameter iden-

tification. A generalized hybrid Monte Carlo (gHMC) method for sampling the

posterior probability distribution is presented in Chapter 5. This approach aims

to reduce the correlation between samples in a generated Markov chain in order to

reduce the variance of the estimators of the statistics of quantities of interest. It is

applied to various identification problems in reactive transport. In Chapter 6 we

present a linear functional minimization algorithm to compute maximum posterior

estimators of heterogeneous, piece-wise continuous distributed parameters. This

algorithm proposes the total variation (TV) regularization as a prior capturing

the piece-wise continuity hypothesis. It is used to identify a composite conduc-

tivity distribution for saturated steady and transient problems with deterministic

external loadings.



Chapter 2

Green functions for flow in

heterogeneous composite media

2.1 Introduction

Green’s functions are often used to quantify parametric uncertainty in phys-

ical systems described by partial differential equations (PDEs). They allow for

direct analysis of the effects of uncertain forcings (source functions, initial and

boundary conditions), whose effect is additive; and facilitate quantification of un-

certainty in system parameters (conductivity, porosity, etc,), whose effect is mul-

tiplicative. Green’s functions were employed to handle random parameters in a

variety of fields, including dispersion of passive scalars in turbulent flows [49], flow

and reactive transport in porous media [64, 65, 87, 88, 95, 82, 83], subsurface

imaging [12] and parameter estimation and source identification [44].

Our analysis is motivated by the nonlocal formalism [64, 65], which em-

ploys moment differential equations (MDEs) to quantify uncertainty in predictions

of steady-state flow in heterogeneous porous media with uncertain conductivity.

The approach we propose relies on Green’s functions to represent the nonlocal

nature of the ensemble statistics of a system’s response (i.e., hydraulic heads and

fluxes). This methodology, coupled with asymptotic expansions in (small) vari-

ances of system parameters, was used to model linear [87], nonlinear [85] and

5
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free-surface [82, 81] flows, as well as transport of chemically inert [25, 61] and

active [83] solutes in porous media with statistically homogeneous and inhomoge-

neous [95] uncertain (random) parameters.

A typical example of the use of Green’s functions in the context of uncer-

tainty quantification is the computation of statistics of the hydraulic head h for

steady saturated flow, governed by an elliptic equation [87]

∇ · [k(x)∇h(x)] + f(x) = 0, x ∈ Ω, (2.1)

where uncertain hydraulic conductivity k(x) and source function f(x) are modeled

as random fields. Let Y (x) = ln k(x) be multivariate Gaussian, with mean 〈Y 〉 and

variance σ2
Y , and correlation function CY (x,y). For mildly heterogeneous media

with small variances σ2
Y , the mean hydraulic head 〈h(x)〉 can be expanded into a

perturbation series in powers of σ2
Y [87],

〈h(x)〉 = 〈h(0)(x)〉+ 〈h(1)(x)〉+ . . . . (2.2)

The zeroth-order approximation satisfies

∇ · [K∇〈h(0)(x)〉] + 〈f(x)〉 = 0, (2.3)

where K is the geometric mean of the field k(x). The first-order approximation

can then be computed as

〈h(1)(x)〉 = −
∫

Ω

[
K
σ2
Y

2
∇y〈h(0)(y)〉 − r̂(1)(y)

]
· ∇yG(y; x) dy. (2.4)

In this expression, G(y; x) is the Green’s function associated with (2.3) and r̂(1)(x)

is given by

r̂(1)(y) = K2

∫
Ω

CY (x,y)∇y∇>xG(y; x)∇y〈h(0)(y)〉 dy. (2.5)

Other statistics of h(x) can be expressed in terms of the Green’s function G as

well.

When Green’s functions are derived analytically, such approaches can be

computationally more efficient than Monte Carlo simulations and other numerical

techniques for solving stochastic PDEs. They also provide physical insight into
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how uncertainty in parameters and/or driving forces affects predictive uncertainty.

However, Green’s functions for many problems of practical significance cannot be

obtained analytically. The need to compute Green’s functions numerically is by

far the largest computational expense in the uncertainty quantification approaches

that rely on them.

Presence of the Dirac delta function in a Green’s function PDE compromises

the accuracy and convergence of regular finite element methods [19]. Further

contributing to the loss of solution regularity are discontinuous coefficients in the

governing PDEs [41] that describe, for example, flow in heterogeneous composite

media [95]. The ability to compute efficiently Green’s functions in such a setting

is of crucial importance to many uncertainty quantification efforts. Meeting this

goal for uncertainty quantifications in elliptic PDEs is the major goal of the present

analysis.

Green’s functions of some elliptic operators decay with the distance from

the location of the Dirac forcing (point source). It is therefore possible to speak of

a “support domain” for the Green’s function, defined as a portion of the compu-

tational domain in which the function is non-zero with a given degree of accuracy.

Outside of the support domain the Green’s function is small enough not to affect

a global quantity, e.g., an integral or another quantity dependent on the function

in a weak sense. In such a case, homogeneous boundary conditions of a Green’s

function PDE are transferred to the boundary of the support domain. Being able

to solve a Green’s function PDE on the support domain, a (small) subset of the

computational domain, leads to a significant reduction in computational time.

2.2 Regularized formulation of Green’s function

problem

Let Ω ⊂ Rd (d = 1, 2, 3) denote a convex domain with the Lipschitz-

continuous boundary Γ. The domain Ω is composed of two disjoint units Ω1 and

Ω2 such that Ω = Ω1 ∪Ω2 and Γ12 being the boundary between them (Figure 2.1).

Consider an elliptic PDE for the Green’s function G(x; x0),
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Figure 2.1: Composite domain Ω.

−∇ · [K(x)∇G(x; x0)] = δ(x− x0) in x,x0 ∈ Ω, (2.6)

subject to the boundary conditions

G(x) = 0 on x ∈ ΓD (2.7)

∇G(x) · n = 0 on x ∈ ΓN . (2.8)

The coefficient K(x) is piecewise constant in Ω1 and Ω2, δ(x − x0) is the Dirac

delta function centered at point x0, and n is the unit normal vector pointing

outward of Ω. The Dirichlet and Neumann boundary conditions are prescribed

in the boundary segments ΓD and ΓN (Γ = ΓD ∩ ΓN), respectively. Along the

interface Γ12, the Green’s function and its flux satisfy the continuity conditions

[G(x)]Γ12 = 0, [K∇G(x) · n12]Γ12 = 0, (2.9)

where [·] denotes the jump of an enclosed quantity across the interface, and n12 is

the unit vector normal to Γ12, pointing from Ω1 to Ω2. The Green’s function G is

singular at x = x0 due to the Dirac forcing.

LetH1(Ω) be the space of square-integrable functions with square-integrable

weak derivatives up to the first order, and V its subspace given by

V = {v ∈ H1(Ω) : v|ΓD
= 0}. (2.10)

Multiplying both sides of (2.6) with v ∈ V and applying the Green’s theorem, one
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obtains the following weak formulation: Find Gd ∈ V such that∫
Ω

K(x)∇Gd · ∇v dx = v(x) for all v ∈ V. (2.11)

The problem with this standard formulation is that G 6∈ H1(Ω) due to the sin-

gularity at x0. This implies that the solution G of (2.6) is not globally smooth

enough for Gd to converge to G in the limit of mesh refinement [19]. In order to

overcome this issue, we follow the finite element strategy [21, 19, 41] for solving

the Poisson-Boltzmann equation (2.6). The approach divides the solution into a

singular part and a regular part [21]. The regular problem admits a unique solution

G̃ ∈ H1 and thus can be computed using a standard finite element approach [41].

To illustrate the regularization methodology, consider a domain Ω such

that the boundary Γ1 of Ω1 contains a portion of the domain boundary Γ, and

let x0 ∈ Ω1. Following [41], the total solution G can be decomposed into three

components Gs, Gh and G̃ such that

G =

Gs +Gh + G̃ if x ∈ Ω1,

G̃ if x ∈ Ω2.
(2.12)

We define Gs, the singular component, as a solution of

−∇ · (K1∇Gs) = δ(x− x0), x ∈ Rd. (2.13)

That is, Gs is the free-space Green’s function for Laplace’s equation with forcing

δ/K1. For d = 2, Gs = −(2πK−1
1 ln(|x−x0|) where | · | is the Euclidean norm. We

also define the component Gh, the harmonic extension of the trace of the singular

component Gs on Γ1 into Ω1, as a solution of

−∇ · (K1∇Gh) = 0 in x ∈ Ω1, Gs +Gh = 0 on x ∈ Γ1. (2.14)

Substituting (2.12)–(2.14) into (2.6) and enforcing the boundary conditions (2.7)
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and (2.8), one obtains the following problem for the regular component G̃:

−∇ · (K(x)∇G̃) = 0 in x ∈ Ω,

G̃ = 0 on x ∈ ΓD,

∇(G̃+Gs +Gh) · n = 0 on x ∈ ΓN ,

[G̃] = 0 on x ∈ Γ12,

[K(x)∇G̃ · n12] = K1∇(Gs +Gh) · n12 on x ∈ Γ12.

(2.15)

It is proved in [41] that G̃ is unique and lies in H1(Ω), thus completing a method-

ology for approximating numerically the solution of (2.6).

2.2.1 Extensions of the regularization formulation

The approach described above can be generalized to more elaborate Green’s

function problems as long as a singular component analogous to (2.13) can be

computed in closed form. Consider for example an equation

−∇ · [K(x)∇G] + α
∂

∂x3

[K(x)G] = δ(x− x0), (2.16)

which arises in the context of unsaturated flow in porous media [88]. For constant

K = K1, the free-space solution of this problem is

Gs = − 1

2πK1

e−α(x3−x0,3)/2K0(α|x− x0|/2),

where K0 is the zeroth-order modified Bessel function of the second kind. A har-

monic expansion and a regular component can be defined in a fashion similar

to (2.14) and (2.15).

Another possible generalization is the relaxation of the piecewise constant

condition on K(x) to the weaker piecewise Lipschitz continuity [20]. Such K(x)

fields capture small-scale variability inside each domain Ωi, superimposed on large-

scale variability between domains. Consider a setting similar to (2.6), but with

the piecewise Lipschitz continuous K(x). While K1 is no longer constant, we

nevertheless define the singular component Gs as a solution of

−∇ · (K∗∇Gs) = δ(x− x0), x ∈ Rd, (2.17)
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where K∗ = K(x0). This solution is often available analytically, and from it one

can define the harmonic extension in a weak sense as a solution Gh ∈ V1 of∫
Ω1

K(x)∇Gh · ∇v dx =

∫
Ω1

[K∗ −K(x)]∇Gs · ∇v dx for all v ∈ V1, (2.18)

with V1 = {v ∈ H1(Ω) : v|Γ1 = 0}. The remaining regular component is defined in

a manner analogous to (2.15).

2.3 Numerical examples

The regularized formulation of the Green’s function problem discussed in

the previous section makes it explicit that differing values of K within subdomains

Ωi (i = 1, 2) affect the global behavior of the Green’s function. This difference can

be of one order of magnitude as in the Poisson-Boltzmann problem, or of many

orders of magnitude as in subsurface applications [98]. To study the effect this

difference has on a solution of the Green’s function, we solve (2.6) on the domain

shown in Figure 2.2, with K1 = 1.0 and K2 = 10.0 or 0.1. The solutions G for both

cases, computed using linear triangular finite elements and a grid size h = 0.02,

are shown in Figure 2.3.

Figure 2.2: Domain of Example 1.

To assess the accuracy of the regularization approach compared to a stan-

dard discrete approximation, we computed solutions to the previous problem, using

both the regularization approach and the discrete approximation Gd of (2.11), for

different grid sizes h. For each value of h, let Ep and Eh denote the absolute differ-

ence between G and Gd at point (0.5, 0.5) and at a distance h in the x1 direction
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from the point source, respectively. Table 2.1 shows that Ep decays with h as h2,

while Eh remains constant independent of grid size; this confirms that Gd doesn’t

converge uniformly to G in the limit of mesh refinement, as stated in [19]. This

result is to be expected as it is not possible for an approximation in H1 to capture

the behavior of the Green’s function in the vicinity of the singularity. The reg-

ularization approach is more accurate than the standard discrete approximation,

especially for low-resolution (large grid size h) simulations in which the vicinity of

the singularity can be rather large.

Next we evaluate the size of the support domains of the Green’s functions

in Figure 2.3. Figure 2.3(a) shows that if the Dirac impulse is located in the

low-K region, then the support domain lies within Ω1 and a portion of Ω2 in the

vicinity of Γ12. If the Dirac impulse lies within the high-K region, then the jump

conditions (2.9) at the interface Γ12 can be approximated with the homogeneous

Neumann (no-flow) boundary condition for the Green’s function PDE defined on

Ω1, and the Green’s function PDE defined on Ω2 is subject to the continuity

(Dirichlet) condition [G] = 0 for x ∈ Γ12. The two PDEs become decoupled, and

the support domain of G becomes larger (Figure 2.3(b)).

(a) (b)

Figure 2.3: Green functions of Example 1 with K1 = 1 and (a) K2 = 10, (b)

K2 = 0.1.

To illustrate these points further, we compute solutions of (2.6) defined on

the L×L square domain shown in Figure 2.4. Its internal geometry is reconstructed

in [98] from synthetic geostatistical data by means of indicator kriging with K1 =

exp(−0.1) and K2 = exp(7.0). The Green’s function, for the Dirac forcing placed

in both subdomains, is presented in Figure 2.5.
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Table 2.1: Absolute differences Ep and Eh for various grid sizes and K1 = 1.

h Ep Eh
K2/K1 = 10 K2/K1 = 0.1 K2/K1 = 10 K2/K1 = 0.1

0.02 5.98× 10−5 4.58× 10−5 7.3× 10−3 7.3× 10−3

0.025 9.39× 10−5 7.17× 10−5 7.3× 10−3 7.3× 10−3

0.05 3.96× 10−4 3.02× 10−4 7.3× 10−3 7.1× 10−3

0.10 1.89× 10−3 1.44× 10−3 7.3× 10−3 7.7× 10−3

Figure 2.5(a) shows that, as expected from earlier discussions, the Green’s

function with x0 in the low-K region has the support domain restricted to that

subdomain. A sizable portion of the rest of the domain can then be disregarded,

with the extent of that reduction depending on the level of accuracy required. On

the other hand, the Dirac forcing located in the high-K region significantly extends

the support domain, reducing the aforementioned numerical advantages.

Figure 2.4: Domain of Example 2. K1 (blue) = exp(−0.1), K2 (red) = exp(7.0),

L = 12.

Finally, we use the Green’s functions in Figure 2.5 to solve a stochastic

problem

∇ · [K(x)∇h(x)] + f(x) = 0, x ∈ Ω, (2.19)

in the composite domain Ω of Figure 2.4 subjected to homogeneous Dirichlet

boundary conditions. The source function f(x) is a stationary random field with
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(a) (b)

Figure 2.5: Green functions of Example 2 for (a) x0 = (9, 6), (b) x = (5, 10).

unit mean and variance, and exponential correlation function

Cf (x,y) = exp (−‖x− y‖2/l)

with correlation length l = L/2, where ‖ · ‖2 denotes the Euclidean norm. In

terms of the Green’s function for problem (2.6), the mean and variance of h can

be written as

〈h(x)〉 =

∫
Ω

〈f(y)〉G(y; x) dy, (2.20)

σ2
h(x) =

∫∫
Ω×Ω

Cf (y, z)G(y; x)G(z; x) dydz. (2.21)

Results computed using (2.20) and (2.21) are shown in Figure 2.6.

2.4 Conclusions

A regularization methodology for the numerical computation of Green’s

functions of elliptic boundary value problems in heterogeneous composite media

has been studied. Green’s functions are routinely used in uncertainty quantifica-

tion, particularly in the moment differential equations approach to solving stochas-

tic partial differential equations. Numerical experiments confirm that the regular-

ization methodology allows for accurate and computationally efficient computation

of Green’s functions compared to standard methods that do not take into account
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(a) (b)

Figure 2.6: Mean (a) and variance (b) of hydraulic conductivity of Example 3.

the lack of regularity of the solution stemming from the Dirac forcing. In the case

of composite media with discontinuous coefficients, the strength of the jump and

the location of the forcing have a damping or amplifying effect on the value of

the Green’s function throughout the domain. If damping occurs, the opportunity

arises for reducing the support domain of the Green’s function, thus reducing the

problem size and cutting the computation cost.

Chapter 2, in part, is a reprint of the material as it appears in Interna-

tional Journal for Uncertainty Quantification: Barajas-Solano, D. A., Tartakovsky,

D. M., “Computing Green’s functions for flow in heterogeneous composite media”,

vol. 3, no. 1, pp. 39-46, 2013. The dissertation author was the primary investiga-

tor and author of the paper.



Chapter 3

Stochastic collocation methods

for nonlinear systems

3.1 Introduction

Nonlinear parabolic partial differential equations (PDEs), and their ellip-

tic (steady-state) counterparts, describe a wide range of physical phenomena that

range from heat conduction in solids to multiphase flow in porous media to elec-

trodynamics [85, and the references therein]. The ability of these equations to

predict underlying phenomena is often, if not always, compromised by uncertainty

in their parameterization. This uncertainty arrises from ubiquitous heterogeneity

of ambient environments in which such phenomena occur, scarcity of parametric

data, and imprecise knowledge of forcings (sources and initial and boundary con-

ditions). Quantification of the impact of parametric uncertainty on the veracity of

model predictions is an integral part of modern scientific computing.

A standard approach to quantification of parametric uncertainty relies on

the probabilistic framework. The latter treats uncertain system parameters and

forcings as random fields. Solutions of the corresponding PDEs with random coeffi-

cients are given in terms of probability density functions or, equivalently, statistical

moments of dependent variables or other quantities of interest (QoI). Computing

these statistics is the major focus of uncertainty quantification.

16
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Monte Carlo simulations (MCS)—a method that consists of i) generating

multiple equally probable realizations of input parameters, ii) solving determin-

istic PDEs for each realization, and iii) evaluating ensemble statistics of these

solutions—provide the most robust and straightforward way to solve PDEs with

random coefficients. Since MCS impose no limitations on statistical properties

of input parameters, they usually serve as a yardstick against which the perfor-

mance of other approaches is compared. MCS entail no modifications of existing

deterministic solvers and therefore is often referred to as a nonintrusive technique.

Yet MCS require a large number of realizations to converge, especially when used

to solve nonlinear stochastic PDEs (SPDEs). This renders them computation-

ally expensive (often, prohibitively so). Much of the research the field of SPDEs

is driven by the goal of designing numerical techniques that are computationally

more efficient than MCS.

One alternative to MCS is to derive deterministic PDEs that govern the evo-

lution of either statistical moments [47, 96] or probability density functions [18, 84]

of dependent variables. The reliance on new governing equations implies that these

approaches are intrusive, even though their underlying structure often remains the

same and existing solvers can be used. In most implementations, these methods

do not rely on finite-term approximate representations of random parameter fields,

e.g., on truncated Karhunen-Loève (K-L) expansions, and thus do not suffer from

“the curse of dimensionality”. When random parameters enter SPDEs as multi-

plicative noise, these approaches require a closure approximation. A systematic

approach to obtaining such closures is based on perturbation expansions of relevant

quantities into series in the powers of variances of the input parameters (e.g., [85,

and the references therein]). This formally limits the applicability of such tech-

niques to PDEs whose random coefficients exhibit low noise-to-signal ratios (co-

efficients of variation), even though in linear diffusion-type problems they might

remain accurate for variances of log-transformed input fields as high as 4 [101].

Various flavors of stochastic finite element methods (FEMs) provide another

alternative to MCS. The stochastic FEMs start by constructing (e.g., by means of

truncated Karhunen-Loève expansions) a finite-dimensional probability space on
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which an SPDE solution is defined. The Galerkin FEM [34, 8], often equipped

with h-type and p-type adaptivity, approximates such solutions in the resulting

composite probability-physical space. Stochastic Galerkin and collocation meth-

ods [100] employ orthogonal basis expansions of an SPDE solution in the chosen

finite-dimensional probability space. These methods are often referred to as non-

perturbative, even though their applications to systems whose parameters exhibit

large coefficients of variation are scarce. They outperform MCS when random

parameter fields exhibit long correlations and, therefore, can be accurately repre-

sented by, e.g., a few terms in their K-L expansions. As the correlation length of

an input parameter decreases, its K-L expansion requires more terms to maintain

the same accuracy, thus increasing the dimensionality of the probability space on

which solution is defined. Once the number of random variables exceeds a certain

threshold the stochastic FEMs become computationally less efficient than MCS, a

phenomenon known as the curse of dimensionality.

Nonlinear problems of the kind considered in the present analysis pose addi-

tional challenges to stochastic Galerkin and collocation methods (and other spec-

tral representations). In particular, the convergence rate of the associated ex-

pansions and quadrature rules is limited by the smoothness of the state variable

manifold in the probability space. A problem’s nonlinearity degrades the solution’s

regularity in probability space, undermining the performance of stochastic Galerkin

and collocation methods. Another issue is that of scalability with the dimensional-

ity of the chosen probability space, which must be taken into account to control the

computation cost while ensuring an accurate solution. Computational approaches

for dealing with the occurrence of discontinuities and/or the loss of regularity in-

clude direction-adaptive quadrature rules [33, 31], multi-element generalized poly-

nomial chaos [94, 91], multi-element probabilistic collocation [29], locally-adaptive

stochastic collocation [1, 57] and wavelet expansions [51, 52]. These methods have

been shown to be efficient for problems with low-dimensional probability space.

Their applicability is curtailed by the exponential cost increase associated with

adaptability in high-dimensional spaces [57].

We investigate the limits of applicability of collocation techniques for solving
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nonlinear advection-diffusion equations with random coefficients, a class of prob-

lems that includes the Richards and viscous Burgers equations. Section 3.2 contains

a problem formulation and its statistical parameterization. Stochastic collocation

approaches for solving this problem are discussed in Section 3.3. In Section 3.4 we

test these strategies on elliptic and parabolic nonlinear Richards equations. Due to

the similarities between these approaches, observations drawn from the application

of stochastic collocation can be generalized to stochastic Galerkin methods. Sec-

tion 3.5 presents recommendations on the appropriateness of stochastic Galerkin

and collocation for this type of problems.

3.2 Problem statement

Consider a nonlinear parabolic equation

∂θ(x, u)

∂t
= ∇ · [K(x, u)∇(u− x3)], x = (x1, . . . , xd)

> ∈ D (3.1)

defined on a d-dimensional domain D ⊂ Rd with 1 ≤ d ≤ 3. In the context of two-

phase fluid flow in porous media, this equation is known as the Richards equation

wherein the state variable u(x, t) is the fluid pressure, θ(x, u) is the fluid saturation

of a porous medium, K(x, u) is the saturation-dependent hydraulic conductivity

of the medium, and the explicit presence of the vertical coordinate x3 accounts for

gravity [85]. Equation (3.1) is supplemented with constitutive relations

θ = θ[Λ(x), u], K = K[Λ(x), u], (3.2)

where Λ(x) is the set of heterogeneous model parameters. A problem formulation

is completed by specifying boundary conditions

B(x, t;u) = g(x, t), x ∈ ∂D, (3.3)

where B is the boundary operator representing, e.g., to the Dirichlet and/or Neu-

mann boundary conditions on various segments of the domain’s boundary ∂D; and

g(x, t) denotes corresponding boundary functions.

Heterogeneity of the input parameters Λ(x), practical impossibility of mea-

suring their values at every point x ∈ D, and measurement errors at points where
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data are available render values of these parameters uncertain. To quantify para-

metric uncertainty, we treat these parameters as random fields Λ(x, ω), where

ω ∈ Ω is the “coordinate” in the suitable probability space Ω. This renders the

state variable u(x, t) random as well, u(x, t, ω).

3.2.1 Probabilistic model parameterization

We assume that two parameters (α and Ks) from the parameter set are

uncertain. They are modeled as second-order stationary, log-normal, mutually

uncorrelated random fields. The log-transforms Y = lnKs and β = lnα are

multivariate Gaussian fields, which we represent via truncated Karhunen-Loève

(K-L) expansions

Y (x, ω) = 〈Y 〉+
P∑
j=1

√
λ1ju1j(x)ξ1j(ω) (3.4a)

β(x, ω) = 〈β〉+
P∑
j=1

√
λ2ju2j(x)ξ2j(ω). (3.4b)

Here ξij are i.i.d. normal random variables with zero mean and unit variance, λij

are the eigenvalues of the Karhunen-Loève expansions, and uij their eigenfunctions.

Retaining the leading P terms in the infinite Karhunen-Loève series introduces a

truncation error, manifested as a bias in the estimators of the statistics of the state

variables. This truncation error can be reduced by increasing P .

This finite-term truncation enables one to characterize the event space by

a random vector

ξ = (ξ11, . . . , ξ1P , ξ21, . . . , ξ2P )>, (3.5)

with multi-Gaussian joint probability distribution function (PDF)

ρ(ξ) =
1

(2π)(N/2)
e−ξ

>ξ/2 (3.6)

and support Γ = RN , where N = 2P is the dimensionality of the problem. In

other words, the random solution u(x, t, ω) is approximated by a random solution

u(x, t, ξ).



21

3.3 Stochastic collocation

Statistics of the state variable u(x, t, ξ) can now be computed as integrals

weighted with the PDF (3.6). For example, the ensemble mean of u(x, t, ξ) is

defined by

E[u] =

∫
Γ

u(x, t, ξ)ρ(ξ)dξ. (3.7)

Stochastic collocation methods compute such multivariate integrals using quadra-

ture rules of the form

E[u] ≈
M∑
i=1

u(x, t, ξi)wi, (3.8)

where ξi and ωi are the nodes and weights of the quadrature rule, respectively, and

u(x, t, ξi) is the solution of the deterministic problem (3.1)-(3.4) for a particular

realization ξi of the random vector ξ. This approach is a sampling technique

whose raison d’être is the claim that it requires a smaller number of terms, M ,

to achieve the same accuracy as MCS. Recall that an estimator of E[u] computed

with MCS—a penultimate sampling technique that consists of drawing equally

probable realizations ξi from the distribution (3.6) and setting wi = 1/M for all

i = 1, . . . ,M—converges as 1/
√
M .

Quadrature rules of the form (3.8) are commonly based on a polynomial

interpolation of the integrand. The extent to which they can provide a certain

level of accuracy in the estimation of moments at a cost lower than MCS depends

on how closely can polynomials approximate the response u(x, t, ξi).

3.3.1 Selection of quadrature rules

Construction of an appropriate interpolatory quadrature rule is a key part

of the stochastic collocation approach. Let A(q,N) denote an N -dimensional rule

with a construction parameter (“order”) q. The number of nodes M in this rule

depends on q and N , i.e., M = M(q,N). A set (“grid”) of nodes {ξ}Mi=1 corre-

sponding to the N -dimensional rule A(q,N) is denoted by H(q,N).

For selected dimensionality N and weight ρ(ξ), one can design a rule that

is exact for integrands of total polynomial degree equal or less than a target value



22

l(q,N) [72], known as degree of exactness, so that l increases with q for fixed

N . However, in general, response surfaces u(x, t, ξ) derived from stochastic PDE

problems cannot be represented exactly by polynomials of any order, therefore,

the use of a quadrature rule of polynomial degree of exactness l introduces an

interpolation error on top of the truncation error of the Karhunen-Loève expansion.

This interpolation error decreases as l increases, so for practical applications it

is advisable to use quadrature rule constructions that allow for variable and/or

adaptive degree of exactness to adequately compute quadratures like (3.8).

In order to be able to control both the error introduced by truncating the

Karhunen-Loève expansions (3.4) and the interpolation error of a quadrature rule

A(q,N), the number of terms M(q,N) in (3.8) must be adequately scalable with

increasing dimensionality N and/or order q. In other words, the growth rate of

M with N and q must be as slow as possible. Additionally, a quadrature rule

A(q,N) must be stable, i.e., the quantity R =
∑M

i=1 |wi| ≥ 1 must be reasonably

small and not scale poorly with dimensionality N and q, this in order to avoid the

appearance of non-physical artifacts during the quadrature evaluation (3.8) due to

numerical cancellation.

Quadrature rules can be either global (with fixed quadrature nodes) or

locally adaptive (with node locations determined be features of the stochastic re-

sponse). Global constructions are defined chiefly by the quadrature weight ρ(ξ)

for which they are designed, and allow for a certain level of adaptivity. For ex-

ample if the smoothness of the stochastic response u(x, t, ξ) exhibits a directional

dependance, one can introduce non-isotropic quadrature rules that locate quadra-

ture nodes preferentially along more critical directions [33]. One can also choose

quadrature rule constructions that produce an embedded series of grids for increas-

ing order,

H(q,N) ⊂ H(q + 1, N). (3.9)

This enables one to increase the rule order q without wasting previous work per-

formed, thus allowing for order adaptivity.
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3.3.2 Quadrature rules for multinormal weights

The probability density function of the weight ρ(ξ) in (3.7) affects the

construction of a quadrature rule A(q,N). If the weight ρ(ξ) is multi-Gaussian,

one can use either appropriate tensor products or sparse grids.

The former takes advantage of the multi-Gaussianiaty of ρ(ξ) to construct

N -dimensional quadrature rules as tensor products of one-dimensional Gauss-

Hermite (GH) quadratures in each of the N directions. If the same number m

of nodes is used in all directions, then the total number of quadrature points is

M = mN . This indicates an unacceptable exponential growth of the number of

nodes with the dimensionality N of the problem. Moreover, standard GH quadra-

tures and their tensor products are not embedded. While in some cases one can

construct embedded extensions of GH quadratures of the Kronrod type, general

embedded rules of arbitrary order do not exist [48]. On the other hand, all the

weights wi in GH quadratures are positive, which ensures that the resulting quadra-

ture rule has ideal stability (R = 1).

Sparse grids constructed with the Smolyak algorithm [79] produce quadra-

ture rules that have significantly fewer nodes than their counterparts based on

tensor products. They also exhibit favorable scalability properties with the di-

mensionality N and order q. A straightforward way to construct a multi-Gaussian

sparse grid is to combine the Smolyak algorithm with GH quadratures (the SGH

rules); more sophisticated constructs include the Genz-Keister (GK) rules [32].

The latter rely on possible Gauss-Kronrod extensions of GH quadratures, and

yield embedded rules that are generally more stable and have fewer nodes than

SGH rules. On the negative side, since the Smolyak algorithm introduces negative

weights, it leads to quadrature rules whose stability number R increases with q

and N .

When sparse quadrature rules are to be used, GK rules are preferable over

SGH rules due to their better stability and lower node count for increasing q and

N . The stability of quadrature rules plays an important rule in the accuracy

of estimators of moments for nonlinear stochastic PDEs, as will be illustrated in

Section 3.4.
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3.3.3 Quadrature rules for other UQ methods

The procedure described above enables one to compute ensemble moments

of quantities of interest in a non-intrusive way, i.e., by utilizing an existing deter-

ministic solver for the PDE under consideration. Generalized polynomial chaos

expansions (gPC) [100] provide an intrusive alternative (requiring modifications of

the deterministic PDE solver), which allows computing a full probabilistic descrip-

tion of quantities of interest. To regain non-intrusiveness, one can approximate

the coefficients in a gPC expansion with the weighted quadrature rules described

above by employing the projection integral definition of these coefficients [100].

The error of the resulting gPC approach is that of the truncated gPC expansion

and that of the quadrature rule.

3.4 Numerical experiments

The major goal of the numerical experiments performed below is to in-

vestigate the accuracy and robustness of stochastic collocation (SC) methods for

solving nonlinear elliptic (steady-state) and parabolic (time-dependent) advection-

diffusion equations. Our focus is on the effect of statistical characteristics (espe-

cially variance) of random coefficients on the performance of stochastic collocation

methods. The impact of the stability of quadrature rules is also considered.

3.4.1 Elliptic problems

We start with an elliptic problem that represents a steady one-dimensional

version of (3.1),

d

dz

[
K(z, u, ω)

d(u− z)

dz

]
= 0, 0 < z < 1 (3.10)

subject to boundary conditions

K
du

dz
(z = 0, ω) = −Q, u(z = 1, ω) = 0 (3.11)
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whereQ is the prescribed (deterministic) boundary flux. We employ an exponential

Gardner’s constitutive relation

K(z, u, ω) =

Ks(z, ω) eα(z,ω)u(z,ω), u ≤ 0,

Ks(z, ω), u > 0.
(3.12)

Theoretical considerations and experimental evidence (see, e.g., [86] and the ref-

erences therein) suggest that the random system parameters Ks(z, ω) and α(z, ω)

have lognormal distributions. We assume their Gaussian counterparts Y = lnKs

and β = lnα to be mutually uncorrelated and stationary (statistically homoge-

neous), each possessing an exponential correlation function.

We use SC to estimate the ensemble mean of the state variable, E[u(z, ω)] ≡
ū(z). This estimate is compared with a Monte Carlo solution, ūref(z), which is

treated as ground truth or reference. The MC solution is obtained by averaging

solutions corresponding to 108 MC realizations generated at the same resolution

of the discrete spatial scheme used for the deterministic solution of (3.10)–(3.11).

The results are presented in the form of a relative error between ū(0) and ūref(0),

εr =
|ū(0)− ūref(0)|
|ūref(0)|

. (3.13)

The estimators and reference value of the ensemble mean are computed up to 3

significant digits. Our goal is to analyze this error a function of a measure of the

associated computational cost.

We conduct two numerical experiments, which are characterized by different

levels of parametric uncertainty (variance of the random parameters), σ2
Y = σ2

β =

0.1, and σ2
Y = σ2

β = 0.5. Both cases assume unit correlation lengths for Y and β.

These and other parameter values are summarized in Table 3.1.

Table 3.1: Model parameters for steady problem (3.10)–(3.12).

Test Q KG = exp 〈Y 〉 αG = exp 〈β〉 σ2
Y σ2

β lY lβ
A 0.1 1.0 7.5 0.1 0.1 1.0 1.0
B 0.1 1.0 7.5 0.5 0.5 1.0 1.0
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Each experiment computes ū(z = 0) using both the GK and SGH rules of

order q = 1, 2 and 3, together with the corresponding Karhunen-Loève expansions

of N = 5, 10 and 15 terms per random variable. This results in a total of 10, 20 and

30 dimensions of the stochastic problem, respectively. All deterministic equations

(in SC and MC) are solved using uniform linear finite elements with 100 elements.

The nonlinear systems of equations resulting from the spatial discretization of

(3.10) together with (3.11) are solved using the modified Newton’s method with

line search as implemented by the KINSOL library [40].

Computational cost for non-intrusive methods such as SC and MC is driven

by the properties of the solution scheme of the deterministic subproblems, and the

total number of samples. For the finite element scheme described above, the com-

putational cost of the t-th sample is of the form k(t)E, where E is the number

of elements of the discretization, and k(t) is a coefficient that includes the num-

ber of evaluations of the nonlinear functional stemming from the discretization of

(3.10)–(3.11), the approximation of its Jacobian, and the solution of the associ-

ated (tridiagonal) linear systems of equations. The partial cost of each of these

operations is proportional to E, and also the number of times these operations

are carried per sample is approximately independent of E, as numerical experience

has shown. Therefore it can be said that k(t) is constant for a given E on average

over M stochastic samples. The measure of the relative computational cost can be

expressed as Mk̄E, where k̄ is the average of the k(t) over those M samples. We

use this relative computational cost for comparing the different estimators.

Figures 3.1 and 3.2 show the results of the numerical experiments. It can be

seen that, when the variance of the model parameters is low (Test A, Figure 3.1),

both SC implementations are more accurate for less cost than simple MC. The

error εr decreases as the rule order q increases, saturating to the estimator bias

introduced by the K-L expansion, which itself drops with increasing number of

dimensions N . The differences in cost and accuracy between the GK and SGH

rules are minor. On the other hand, for the higher variance of Test B (Figure 3.2),

the advantage of SC over MC is less clear, with MC outperforming both sparse

grid constructions. This drop in performance can be attributed to the way the
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Figure 3.1: Relative error in the estimation of ū(z = 0), σ2
Y = σ2

β = 0.1.
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Figure 3.2: Relative error in the estimation of ū(z = 0), σ2
Y = σ2

β = 0.5.

variance affects the smoothness of the state variable manifold in probability space.

To illustrate this idea, Fig. 3.3 presents the stochastic response of u at

z = 0 as a function of the first stochastic terms of the decomposition of Y and β

(all other dimensions set to zero), and for the two levels of variance considered.

Comparison of Figs. 3.3(a) and 3.3(b) reveals that the response is less likely to

be interpolated accurately using the same sparse grid with increasing variance of

the input random fields, therefore increasing the interpolation error. The rescaling

that occurs with increasing variance brings fringe behavior closer to the origin of

the probability space, thus lowering the regularity of the response and requiring
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higher level quadrature rules for an accurate estimation of moments. This effect can

render quadrature-based approaches for the estimation of moments less efficient

than the simpler Monte Carlo approach, as seen in Figure 3.2.

(a) σ2
Y = σ2

β = 0.1 (b) σ2
Y = σ2

β = 0.5

Figure 3.3: Response surface of u(z = 0) using 1-term K-L expansions.

3.4.2 Parabolic problems

Consider the one-dimensional form of (3.1)

∂θ

∂t
=

∂

∂z

[
K
∂

∂z
(u− z)

]
, 0 < z < 1 (3.14)

with boundary conditions

u(z = 0) = ut, u(z = 1) = ub, (3.15)

and an initial condition

u(t = 0) = ub. (3.16)

The constitutive relations θ = θ(u) and K = K(u) are given by the commonly

used van Genuchten and Mualem relations,

K =

Ks(z, ω)S
1/2
e [1− (1− S1/m

e )m]2, u ≤ 0

Ks(z, ω), u > 0
, (3.17)

Se ≡
θ − θr
θs − θr

=

(1 + |α(z, ω)u|n)−m, u ≤ 0,

1, u > 0
. (3.18)
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The parameter values used in the simulations reported below are provided in Ta-

ble 3.2.

Deterministic solutions of this problem develop a sharp moving front across

which the state variable u drops from ut to the background value ub. The depen-

dence of the sharp front’s dynamics on the random input parameters is expected

to translate into a lack of regularity in the probability space. We analyze this

phenomenon by comparing the performance of stochastic collocation and simple

Monte Carlo simulations.

As before, we assume that the random system parameters Ks and α have

log-normal distributions, and that their Gaussian counterparts Y and β are mutu-

ally uncorrelated and stationary, each possessing an exponential correlation func-

tion. The model parameters in Table 3.2 are chosen so that the deterministic

solution of the pressure field develops sharp moving fronts. Such a parameter set

is representative of the scenarios encountered in stochastic analyses of nonlinear

transport problems.

Table 3.2: Model parameters for unsteady problem (3.14)–(3.18).

Parameter values
θs = 0.368 αG = exp(〈β〉) = 2.01
θr = 0.102 KG = exp(〈Y 〉) = 0.5532
n = 2.0 σ2

Y = 1.0× 10−3

m = 0.5 σ2
β = 1.0× 10−3

ut = −1.25 lY = 1.0
ub = −16.67 lβ = 1.0

The reported expectation and variance of u(z, t, ω) are evaluated using ei-

ther MCS with 105 samples or stochastic collocation with the GK and SGH quadra-

ture rules. Deterministic solutions are computed using the method of lines, with

100 uniform linear finite elements and the 3-stage implicit Runge-Kutta scheme

RADAU IIA for temporal integration. The number of dimensions and rule order

of the quadrature rules are chosen to approximate the MC estimator while keeping

the cost lower than that of MC. Two K-L terms per random field, for a total of 4
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stochastic dimensions, and rules of order 7 (polynomial degree of exactness of 15)

were required in order to approximate the MC estimator. Simulation results are

presented in Figures 3.4 and 3.5.

Even though the input parameters have low variances, high-level quadra-

ture rules (order 7) were required to accurately interpolate the stochastic response.

The GK rule gives accurate results, while the SGH rule produces undesirable os-

cillations along the profiles; these oscillations are artifacts introduced by the lack

of stability of the high-level SGH quadrature rules. These results suggest that the

more favorable stability properties of the GK rule makes it preferable to the SGH

rule.

The input parameters in this example were assigned correlation lengths

that equal the domain size. Therefore, a relatively small number of terms in the

K-L expansions (2 per random field) was necessary to build reliable quadrature

rules. If the correlation lengths were to decrease, the number of terms in the K-

L expansions would have to increase to keep the same truncation error. In this

scenario of high-order quadrature rules, the price to be paid for an increase in the

dimensionality of the problem is very high.
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Figure 3.4: Estimated mean of u profile for different times using level 7 quadrature

rules.

Another issue of interest is the effect of increasing variance on the perfor-

mance of stochastic collocation methods. To evaluate this, we plot the response sur-
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Figure 3.5: Estimated variance of u profile for different times using level 7 quadra-

ture rules.

face of u(z, t) at a fixed time and location, as a function of the first terms of the K-L

expansions of Y and β (Fig. 3.6). To emphasize the nonlinearity of the response

surfaces, the input parameters’ variance was increased to σ2
Y = σ2

β = 1.0× 10−2.

(a) z = 0.4 (b) z = 0.5

Figure 3.6: Response surface for t = 0.6 at locations (a) z = 0.4 and (a) z = 0.5

along the profile using 1-term K-L expansions.

Figure 3.6 illustrates pitfalls in using SC methods to compute estimators

of moments. Even for small variances, the response surface develops very steep

regions, which necessitates the use of high-level quadrature rules to accurately in-

terpolate the response. As the variance increases, the required rule order increases
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as well, undermining the advantage of stochastic collocation as compared to MCS.

A possible approach to addressing the presence of a clear transition in the

probability space of the response from ut to ub is to employ an adaptive construc-

tion of a quadrature rule that accurately captures this transition [1, 4, 46, 57].

However, this strategy is problematic for this class of problems, because the loca-

tion of the irregularity in the probability space changes with both time t and space

x. This raises the computational cost of building a quadrature rule that captures

the dynamic transition along the profile as time progresses. Therefore the use of

adaptive schemes to estimating moments of quantities of interest is computation-

ally feasible, i.e., competitive with MCS, only when response surfaces exhibit no

such dynamic behavior.

These limitations do not imply that SC methods are unusable for all tran-

sient problems. In some applications, such as the transition from two steady states

of problem (3.10)-(3.11) for different values of the boundary flux q, response sur-

faces in the probability space can be integrated accurately using a global fixed

sparse grid for appropriate values of variance and correlation lengths of input

random fields [54], and therefore can benefit from the use of SC methods. It is

therefore of much importance for the modeler to properly identify the features of

the transient problem studied in order to determine the applicability of different

UQ methods.

3.5 Conclusions

We have presented a numerical implementation of global stochastic collo-

cation strategies for the estimation of first moments of quantities of interest in

nonlinear parabolic and elliptic problems. It has been shown that the performance

of such strategies, and in general, strategies based on a spectral decomposition

of state variables in probability space, is tied strongly to the way the stochastic

properties of the input random fields affect the regularity of the systems’ stochastic

response in the probability space. If random input fields have low variance and

large correlation lengths, stochastic collocation strategies are competitive against
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alternative uncertainty quantification methods, such as Monte Carlo simulations

(MCS). Increasing variance affects the regularity of the stochastic response, re-

quiring higher-order quadrature rules to accurately approximate the moments of

interest, thus increasing the overall computational cost beyond that of MCS.

The effect of short correlation lengths is more straightforward to understand

and has been discussed thoroughly: for a fixed number of stochastic dimensions, a

bias introduced by a truncated K-L expansion of random fields increases as their

correlation length decreases; the bias is reduced only by increasing the number

of stochastic dimensions and, thus, the dimensionality of the problem. Resulting

high-dimensional formulations restrict usable quadrature rules to low orders, and

by extension to regular problems. Given the nonlinear nature of the parabolic and

elliptic problems studied, this becomes an important limitation to be taken into

account when deciding on an uncertainty quantification framework.

It is important to note that the estimator bias introduced by the K-L expan-

sion is not the only source of bias in the computation of estimators of statistics of

quantities of interest associated to nonlinear parabolic and elliptic problems. Ad-

ditionally, one must take into account the bias introduced by the spatiotemporal

discretization of the governing partial differential equations. A robust uncertainty

propagation framework must be able to deal with these sources of bias in a sys-

tematic fashion and produce estimators with the level of accuracy desired by the

modeler.

Chapter 3, in part, has been submitted for publication of the material:

Barajas-Solano, D. A., Tartakovsky, D. M., “Stochastic collocation methods for

nonlinear parabolic equations with uncertain parameters”. The dissertation author

was the primary investigator and author of the paper.



Chapter 4

Multi-level Monte Carlo for

nonlinear systems

4.1 Introduction

The computational examples of Chapter 3 served to demonstrate that, when

used to quantify parametric uncertainty in nonlinear elliptic and parabolic PDEs,

the state-of-the-art spectral stochastic approaches are restricted to low-dimensional

and low-variance scenarios. Both restrictions are not met in many practical appli-

cations.

Monte Carlo (MC) simulations and its variants can deal with high-dimensio-

nal and high-variance problems, but are computationally expensive. Properties of

simple MC, e.g., the independence of the convergence rate of the estimator from

the number of dimensions are highly desirable. Yet this convergence rate is so slow

that computing an estimator with a certain target standard deviation might not

be feasible in practice. This is particularly so if the computational cost associated

with each sample of the quantities of interest is large, as is the case for nonlinear

systems such as those described above.

These shortcomings motivate the development of approaches that preserve

the robustness of MC and have a reasonable computational cost. Additionally, an

ideal approach must be able to systematically deal with various sources of bias in

34
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the estimators. Specifically, it must be able to compute estimators for a target

level of error, which includes not only the estimator’s variance but also errors

introduced by the truncated representation of the stochastic response in space,

time and probability.

We argue that multi-level Monte Carlo (MLMC) satisfies the requirements

outlined above to a satisfactory extent. The idea of MLMC was first introduced to

estimate quantities of interest described by stochastic ordinary differential equa-

tions [35]. It has since been applied to stochastic partial differential equations

[23, 27, 28]. The MLMC formalism [23] introduces a sequence of random variables

that converge in the mean to the quantity of interest. The sequence is derived from

a corresponding sequence of sequentially refined spatial discretizations of stochas-

tic PDEs. An estimator of the relevant statistics is computed from the statistics of

the sequence of random variables, which are estimated using standard techniques

(e.g., simple MC). This approach allows for systematic quantification of the esti-

mator bias introduced by a spatial discretization of stochastic PDEs. The reliance

on simple MC to solve the sub-problems enables one to use an arbitrary number of

terms for these discrete representations. This sidesteps the issue of bias introduced

by the finite representation of the input random fields altogether.

We use the MLMC variant [23] to solve the family of nonlinear problems

studied in Chapter 3. A general theory of MLMC is presented in Section 4.2. Its

numerical implementation is discussed in Section 4.3. In Section 4.4 we use MLMC

to solve the steady problem formulated in Chapter 3. Our analysis demonstrates

that MLMC outperforms simple Monte Carlo even when input parameters are

high-dimensional and exhibit high variances. Conclusions and directions of further

research are outlined in Section 4.5.

4.2 Multi-level Monte Carlo

Consider a infinite-dimensional probability space (Ω,F ,P). A random vari-

able Q : Ω → R is defined via a functional G as Q = G(ω), where ω ∈ Ω. We

assume that the quantity of interest Q is in general inaccessible, i.e., cannot be
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computed exactly given a certain ω ∈ Ω. Instead, we introduce a sequence of func-

tionals GM , M ∈ N that approximate the quantity of interest Q with increasing

accuracy as M increases for a fixed ω. Specifically, we assume that a sequence of

random variables QM = GM(ω) converges in the mean to Q as M →∞, that is

E[QM −Q] = O(M−α) as M →∞, (4.1)

for a certain constant α independent of M . Instead of trying to approximate the

statistics of Q, we compute unbiased estimators of the statistics of QM . By virtue

of (4.1), these estimators converge to the inaccessible statistics of Q as M increases

and the variance of the estimators decreases.

To illustrate this procedure, let us consider an unbiased simple Monte Carlo

(SMC) estimator of E[QM ],

Q̂SMC
M,N =

1

N

N∑
t=1

Q
(t)
M , (4.2)

where N is the number of MC samples. The variance of this estimator is given by

Var[Q̂SMC
M,N ] =

1

N
Var[Q]. (4.3)

A goal is to use E[QM ] to approximate E[Q]. To quantify how these quantities

differ from each another, we introduce the mean square error

MSE{Q̂SMC
M,N} = E[(Q̂SMC

M − E[Q])2], (4.4)

which, by virtue of the unbiased nature of Q̂SMC
M,N , can be rewritten as

MSE{Q̂SMC
M,N} = E

[
(Q̂SMC

M,N − E[Q̂SMC
M,N ] + E[Q̂SMC

M,N ]− E[Q])2
]

= E
[
(Q̂SMC

M,N − E[Q̂SMC
M,N ])2

]
+ E

[
(E[Q̂SMC

M,N ]− E[Q])2
]

= Var[Q̂SMC
M,N ] + (E[QM −Q])2 .

(4.5)

This expression shows that MSE of the SMC estimator is given by both the

estimator’s standard deviation and its bias. One can compute an estimator with a

root MSE below a certain threshold ε in two steps. First, (4.1) is used to determine

the value of M for which (E[QM −Q])2 ≤ ε2/2. Second, the value of N for which
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Var[Q̂SMC
M,N ] ≤ ε2/2 is determined from (4.3). The drawback of this approach is that

it is very computationally expensive. The condition Var[Q̂SMC
M,N ] ≤ ε2/2 requires

N = O(ε−2), which can be rather large if ε is small, i.e., if a highly accurate

estimator is required. Moreover, if ε or α or both are small, then a large M might

be required to satisfy (E[QM −Q])2 ≤ ε2/2. Since computing each Q
(t)
M becomes

more expensive as M increases, this procedure requires computing a large number

of expensive samples.

Two alternative strategies can be deployed to improve this situation. The

first is to build a sequence of functionals GM that maximizes the rate of decay of

the bias in (4.1), while keeping the cost per sample reasonable. The second is to

compute an estimator whose variance satisfies the required bound at a cost smaller

than that of simple Monte Carlo. The first approach is not discussed in this work,

i.e., we assume that the sequence of functionals GM is given and therefore that α

cannot be modified. On the other hand, we argue that multi-level Monte Carlo

(MLMC) can be used to reduce the computational cost associated with a certain

bound on the estimator’s variance.

Let {Ml}Ll=0 be a sequence in N, such that ML = M and Ml = sMl−1 for

1 ≤ l < L and an s ∈ N\{1}. Each value of the index l represents a “level”, and for

each level we define an associated random variable QMl
. This sequence of random

variables is used to build a telescopic expansion for the expectation of Q,

E[QM ] = E[QML
]− E[QML−1

] + · · ·+ E[QM1 ]− E[QM0 ] + E[QM0 ]

=
L∑
l=1

E[QMl
−QMl−1

] + E[QM0 ] =
L∑
l=0

E[Yl].
(4.6)

Here Y0 ≡ QM0 and Yl ≡ QMl
− QMl−1

for 1 ≤ l < L, i.e., the expectation

of Q is written as the sum of the expectations of random variables Yl. For each of

these expectations, we introduce an SMC estimator

Ŷ SMC
l,Nl

=
1

Nl

Nl∑
t=1

[Q
(t)
Ml
−Q(t)

Ml−1
],

where both Q
(t)
Ml

and Q
(t)
Ml−1

are computed for the same ω(t) ∈ Ω independently from

each other. Once all estimators of E[Yl] have been computed, an MLMC estimator
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of Q is computed as

Q̂MLMC
M =

L∑
l=0

Ŷ SMC
l,Nl

. (4.7)

The variance of this estimator is the sum of the variances of Ŷ SMC
l,Nl

,

Var[Q̂MLMC
M ] =

L∑
l=0

1

Nl

Var[Yl]. (4.8)

An advantage of MLMC is that the MLMC estimator for a certain M (i.e.,

a certain permissible level of estimator bias) can be cheaper to compute than the

SMC estimator for that M [23]. That is because the variances Var[Yl] decay to

zero as l→∞ if QM converges to Q in mean square, which implies that one needs

progressively fewer samples to reduce Var[Yl] as l increases. In other words, most

samples are required at the coarsest levels where samples are cheaper to compute,

and only a few samples are needed at the more expensive finer levels.

According to Theorem 1 in [23] (see also [35]), these considerations imply

that, for a given M , MLMC is significantly cheaper than SMC for a given M under

certain assumptions on the decays of the estimator bias, the sequence of variances

in (4.8) and the computational cost per sample wl. Specifically, condition (4.1) is

supplemented with the following assumptions:

a) Var[Yl] = O(M−β) as M →∞ for β > 0 independent of M ,

b) wl = O(Mγ) as M →∞ for γ > 0 independent of M .

For α ≥ min{β, γ}/2 the overall cost of computing the MLMC estimator is

shown to be much smaller than the cost of computing the SMC estimator. These

assumptions hold for linear diffusion problems [23]. We investigate the validity of

these assumptions for the nonlinear diffusion problems considered in Chapter 3.

While both (4.1) and Assumption a) are likely to hold even for nonlinear problems,

the validity of Assumption b) is less clear because solving a deterministic nonlinear

PDE necessitates the use of an iterative scheme to solve an associated system of

nonlinear algebraic equations. The numerical experiments of section 4.4 show

that Assumptions a) and b) are satisfied (albeit in a weaker sense) for the steady

nonlinear diffusion problem considered.
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4.3 Implementation of MLMC

A general outline of our implementation of MLMC is as follows:

Require: Zeroth-level M0 and bound on root MSE ε.

1: Determine the smallest L such that M = ML satisfies

|E[QM −Q]| ≤ εbias, εbias = ε/
√

2. (4.9)

2: For each level l, compute the number of samples {Nl}Ll=1 in

Var[Q̂MLMC
M ] =

L∑
l=0

1

Nl

Var[Yl] ≤ εest, εest = ε/
√

2, (4.10)

that minimizes the total computational cost

W [Q̂MLMC
M ] =

L∑
l=0

Nl∑
t=1

w
(t)
l , (4.11)

where w
(t)
l is the cost per sample at the l-th level.

3: Compute the MLMC estimator.

Determination of L and M = ML that satisfy (4.9) requires the knowledge

not only of the asymptotic behavior of the estimator bias, but also of its actual

value. Since the latter is generally not known a priori, a guess of L has to be

sequentially refined. Let M ′ denote the level at which the asymptotic regime of

(4.1) takes hold, i.e, |E[QM − Q]| ≈ CM−α for M > M ′. Since Ml = sαMl−1, it

follows from (4.6) that for Ml−1 > M ′

|E[QMl−1
−Q]| = sα|E[QMl

−Q]| = |E[QMl
−Q]− E[QMl

−QMl−1
]|

≤ |E[QMl
−Q]|+ |E[Yl]|.

That allows us to replace the condition |E[QML
−Q]| ≤ εbias in (4.9) with

(sα − 1)|E[QML
−Q]| ≤ |E[YL]| ≤ (sα − 1)εbias. (4.12)

Instead of determining L in advance, we progressively increase L until (4.12)

is satisfied.
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Once L is determined, the next task is to compute {Nl}Ll=1. We assume that

for a certain level l the cost per sample w
(t)
l has a well defined stationary average

w̄l. Then the total simulation cost is

W [Q̂MLMC
M ] =

L∑
l=0

Nlw̄l. (4.13)

By treating Nl as continuous variables, minimizing (4.13) subject to the

constraint (4.10), and rounding off the solution of this optimization problem to

the next largest integer yields [28]

Nl = ceil

CNL

ε2est

√
Var[Yl]

w̄l

 , CNL
=

L∑
k=0

√
Var[Yk]w̄k. (4.14)

Equation (4.14) expresses each Nl in terms of the corresponding variance

Var[Yl] and cost-per-sample w̄l. These latter quantities are computed by embedding

the estimation of Nl into the sequential algorithm that progressively increases L:

Require: Zeroth-level M0, bound on root MSE ε and maximum permissible num-

ber of levels Lmax

1: for L = 0 to Lmax do

2: Estimate Var[YL] and w̄L from an arbitrary number of samples Nest

3: Compute CNL
and NL using (4.14)

4: Update Var[YL], E[YL] and w̄L using NL −Nest samples

5: N∗L ← NL

6: for l = 0 to L− 1 do

7: Compute Nl using CNL
and (4.14)

8: Update Var[YL], E[Yl] and w̄L using Nl −N∗l samples

9: N∗l ← Nl

10: end for

11: if L ≥ 1 and (sα − 1)εbias ≥ E[YL] then

12: Finish

13: end if

14: end for

Note that this algorithm doesn’t require knowledge of the decay rate of

Var[Yl] and the growth rate of w̄l. These quantities are estimated on-the-fly as the
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number of levels L is increased. The interplay between these rates determines the

level at which most of the computational effort occurs [23]. It follows from (4.14)

and (4.13) that
√
W ∼

∑
l

√
Var[Yl]w̄l. Therefore, if Var[Yl] decreases faster than

w̄l increases, most of the work occurs at the zeroth-level. Conversely, if Var[Yl]

decreases slower than w̄l increases, most of the work occurs in the final level.

4.4 Numerical experiments

We use the elliptic boundary-value problem (3.10)– (3.12) to illustrate our

MLMC. The quantity of interest in this problem is the expectation (ensemble

mean) of the pressure head u(z) at z = 0, i.e., Q ≡ u(0) in the notation of

this chapter. We assume that the saturated conductivity Ks(z) is a second-order

stationary random field with log-normal point PDF, and that log-conductivity

Y (z) = lnKs(z) has an exponential covariance function

CY (x, x′) = σ2
Y exp

(
−|x− x

′|
λ

)
with correlation length λ = 0.3.

To facilitate comparison with the stochastic collocation technique used in

Chapter 3, we use the same finite element (FE) discretization with first-order

uniform elements (see Section 3.4 for details). The hierarchy of MC levels is con-

structed by using different levels of spatial discretization, with the number M of

FE elements given by M = slM0 with level index l ≥ 0 and s = 2. The spatial

discretization produces a set of nonlinear algebraic equations, which is solved using

the KINSOL library [40] implementation of the modified Newton’s method with

line search.

The MLMC estimator of the E[Q] is computed for two levels of variance,

σ2
Y = 0.1 and 1.0. Each repetition of the log-conductivity field Y (z) is gener-

ated using its K-L decomposition with 800 terms. The use of a high number of

the K-L terms allows us to sidestep altogether the problem of the estimator bias

introduced by a truncated K-L expansion mentioned in Section 3.2. In the exper-

iments reported below we assume that the estimator bias due to the finite K-L

representation is negligible (3.10)– (3.12) .
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The computational cost at each Monte Carlo level and its behavior with in-

creasing level are worthwhile discussing. For the t-th realization of parameter field

Y (x) at the l-th MC level, the computational cost associated with approximating

Y
(t)
l is that of approximating Q

(t)
l and Q

(t)
l−1. Per the discussion in Section 3.4,

for the numerical scheme described above these costs are respectively k
(t)
l Ml and

k
(t)
l−1Ml−1, where k

(t)
l and k

(t)
l−1 are coefficients associated with the numerical so-

lution of the respective systems of nonlinear algebraic equations. The coefficient

k
(t)
l includes information about the costs of repeated evaluations of the nonlinear

functional and an approximation of its Jacobian, as well as of repeated solutions of

the corresponding tridiagonal linear systems. Each of these partial costs is propor-

tional to Ml in the case of the one-dimensional boundary-value problem. Finally,

we assume that other costs, such as that of generating the random samples and

evaluating the K-L expansion, are negligible compared to the cost of solving the

deterministic PDE problems.

Given that Ml = s−1Ml−1, we approximate the cost associated with the t-th

sample at the l-th level by (k
(t)
l +s−1k

(t)
l−1)Ml. The cost associated with the l-th level

is Nlk̄lMl, where Nl is the number of samples for the l-th level and k̄l is the average

of (k
(t)
l +s−1k

(t)
l−1) over the Nl samples. Our numerical experiments revealed that for

this problem k̄l is approximately constant across all levels. Therefore we introduce

a “standardized cost” associated with each MC level by disregarding the constant

k̄l and only taking into account the scaling factor Ml and the number of repetitions.

This standardized cost is NlMl for each level, and the total standardized cost is

the sum of each cost per level for all MC levels. We use this standardized cost to

compare simple and multi-level MC estimators.

Figure 4.1 exhibits estimators of the (absolute value of) mean and variance

of both Ql and Yl for σ2
Y = 0.1. These results were computed using the MLMC

algorithm with 4 levels and the standard deviation target εest =
√

2 × 10−5. Fig-

ure 4.1 (a) demonstrates that |E[Yl]| decays as M−α with α ≈ 0.89. This finding

experimentally verifies the hypothesis that the discretization bias |E[QML
− Q]|

decays as M−α. Figure 4.1 (b) shows that Var[Yl] decays as M−β with β ≈ 2.0.

Since the variance of Yl decays faster (β ≈ 2.0) than the computational
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cost per sample (γ ≈ 1.0), the concluding remarks of Section 4.3 suggest that the

majority of the computational cost is incurred at the zeroth MC level. In fact, for

σ2
Y = 0.1, εest =

√
2× 10−5, M0 = 16 and L = 4 the zeroth level accounts for 46 %

of the total computational cost.
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Figure 4.1: Absolute value mean (a) and variance (b) of QL and YL for the elliptic

boundary-value problem (3.10)– (3.12) and σ2
Y = 0.1.

Figure 4.2 shows estimators of the mean and variance of both Ql and Yl,

this time for σ2
Y = 1.0. These results were computed using the MLMC algorithm

with 4 levels and a standard deviation target ε = 5
√

2/2× 10−5. The behavior is

similar to that observed for σ2
Y = 0.1. First, the absolute value of the expectation

of Yl decays approximately as M−α but with a smaller coefficient α ≈ 0.84, and

the first level expectation |E[Y1]| is larger for σ2
Y = 1.0. In other words, |E[Yl]|

not only decays (slightly) slower, but also starts from a higher value, so that

reducing the discretization bias |E[QML
−Q]| to an acceptable level, i.e., verifying

the condition (sα − 1)|E[YL]| ≤ εest, takes more levels for larger variances of the

model parameters. Second, the variance of Yl decays as M−β with β ≈ 2.0, but

both Var[Yl] and Var[Ql] are an order of magnitude larger for σ2
Y = 1.0 than for

σ2
Y = 0.1. Hence the number of samples required to satisfy a certain bound on

the standard deviation of the estimator increases. We conclude that increasing the

variance of the model parameters affects the computation of the MLMC estimator
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satisfying a certain bound on its RMSE in two ways. It decreases the rate of

decay of the discretization bias, requiring more levels to satisfy the bound; and

it increases the number of samples per level required to satisfy the bound on the

standard deviation of the estimator.
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Figure 4.2: Absolute value mean (a) and variance (b) of QL and YL for the elliptic

boundary-value problem (3.10)– (3.12) and σ2
Y = 1.0.

The dependence of the scaling exponent α on the variance of the random

input parameters is determined not only by the properties of the governing PDE

but also by a numerical scheme used to approximate the quantity of interest at a

certain level. It is expected that the use of a numerical scheme different from the

one used in our analysis would affect the value and behavior of α. The selection

of a numerical scheme that maximize the decay of the discretization bias with

increasing MLMC levels is a subject for future studies.

Next, we examine the relative performance of our MLMC approach and

simple Monte Carlo in terms of the computational cost associated with a given

bound on the RMSE of the estimator. Since the discretization bias depends on

the discretization level but not on the method used to compute the estimator, we

specify the final level as ML = 256 and compute the estimator of E[QL] using

simple MC, MLMC with 2 levels (M0 = 64, M1 = 128, M2 = 256) and MLMC

with 4 levels (M0 = 16, M1 = 32, . . . ,M4 = 256) for different target values of the
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standard deviations of the estimator εest.
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Figure 4.3: Standardized cost of the simple MC and MLMC estimators for differ-

ent target values of the standard deviations of the estimator and σ2
Y = 0.1. Final

discretization level is fixed at ML = 256.

Figure 4.3 shows the standardized cost as a function of εest for σ2
Y = 0.1.

The cost curves of the different estimators follow the same power-law behavior,

albeit with different leading coefficients. The 2-level MLMC estimator and 4-level

MLMC estimators have a cost approximately 3.5 times and 8.5 times lower than

the simple MC estimator, respectively. The fact that MLMC provides significant

savings relative to simple MC is a direct consequence of its general properties

discussed earlier. Since the variance of Yl decays faster than the standardized cost

per sample at the l-th level, the majority of the computational effort of MLMC

takes place in the lowest MC level. This explains why increasing the number of

levels in MLMC (e.g., going from 2 to 4 levels) reduces the cost of the MLMC

estimator with respect to the equivalent simple MC estimator.

Although not shown in Figure 4.3, the addition of an extra level (i.e., start-

ing at M0 = 8) yields the cost savings of 9.8 relative to simple MC. This further

increase in efficiency provides an evidence of diminishing returns associated with

introducing further levels in the lower end. This phenomenon occurs because de-

creasing M0 not only decreases the cost per sample but also increases the variance

of Y1 [23]. At a certain point, the cost at level 1 would be comparable to the cost
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at level 0 (due to an increase in the number of samples), undermining the efficiency

of MLMC over simple Monte Carlo.
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Figure 4.4: Standardized cost of the simple MC and MLMC estimators for differ-

ent target values of the standard deviations of the estimator and σ2
Y = 1.0. Final

discretization level is fixed at ML = 256.

Figure 4.4 shows the standardized cost as a function of εest, this time for

σ2
Y = 1.0. As expected, given a certain standard deviation target, the cost of the

corresponding estimators is higher than in the case of σ2
Y = 0.1. Yet the cost ratios

between the different estimators remain approximately the same: the 2-level and

4-level MLMC estimators outperform the simple MC estimator (in terms of the

computational cost) by the factor of 3.5 and 8.5, respectively. Hence the efficiency

gained by bending the cost curves via the use of the MLMC algorithm transfers

to high variance cases.

4.5 Conclusions and further work

The multi-level Monte Carlo (MLMC) framework for computing statistics of

quantities of interest offers a systematic way to deal with the estimator bias intro-

duced by replacing the quantities of interest Q with a sequence of approximations

QM that converges to Q as M →∞. The use of MLMC also reduces the compu-

tational cost with respect to simple Monte Carlo. The systematic treatment of the
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discretization bias and the robustness of MLMC estimators in high-dimensional

probability spaces alleviate the difficulties encountered by stochastic collocation

techniques in Chapter 3.

In the follow-up MLMC-related investigations we will will apply it to non-

linear transient problems similar to those described in Section 3, and explore the

behavior of E[Yl] and Var[Yl] with increasing MC level and computational cost per

sample. We will also study the relationship between the decay of the discretization

bias and the discretization scheme used to solve the governing PDEs. This will

enable us to select an efficient scheme that maximizes the rate of decay of the bias.

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Barajas-Solano, D. A., Tartakovsky, D. M. The dissertation author

was the primary investigator and author of the paper.



Chapter 5

Efficient Reconstruction of

Contaminant Release History

5.1 Introduction

An efficient and accurate reconstruction of contaminant release history is

essential to regulatory and remedial efforts. Most such efforts rely on measure-

ments of pollutant concentration to identify sources and/or release history of a

pollutant. Quite often available concentration data are corrupted by measure-

ment errors. Additional complications arise from heterogeneity and insufficient

site characterization, although we do not consider these effects here.

A detailed review of the state-of-the-art in the field of inverse modeling as

related to contaminant source identification is presented in [7]. The existing ap-

proaches can be subdivided into two broad classes: deterministic and probabilistic.

Deterministic approaches include, but are not limited to, Tikhonov regularization

of convolution integrals [77, 56], least-square estimation from analytical approxima-

tions [15], least-square solution of an optimal control problem [37], the method of

quasi-reversibility [78], and the backward beam equation method [6, 10]. These ap-

proaches provide estimates of the release history from a source of known locations,

without a clear way to quantify the uncertainty associated with such estimates.

The robustness of these methods is highly sensitive to measurement errors, and

48
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more often than not their mathematical formulations are fundamentally ill-posed.

While existing probabilistic approaches, such as random walk particle track-

ing for the backward transport equation [11], the minimum relative entropy [99]

and adjoint methods (e.g., [67]), alleviate some of these problems, others remain.

For example, these and similar methods do not take advantage of the regulariz-

ing nature of the measurement noise and, hence, are often ill-posed. Thus, the

minimum relative entropy method treats concentration measurements as ensemble

averages. Additionally, there are some outstanding issues with quantifying uncer-

tainty [66] and the inability of many existing approaches to handle more than one

observation point [70].

Finally, most existing approaches to the reconstruction of release history

are restricted to linear transport phenomena, i.e., to migration of contaminants

that are either conservative (all the references above) or exhibit first-order (lin-

ear) reaction rates [68, 69]. This is because such approaches are based on either

Green’s functions [77, 99] or analytically derived adjoint equations [67, 70]. The

use of Kalman filters for source identification [39] is formally limited to linear

transport phenomena and Gaussian errors. While both limitations can be some-

what relaxed by employing various generalizations of the Kalman filter (e.g., the

extended Kalman filter and the ensemble Kalman filter), their use is suboptimal

and is known to fail if the nonlinearity is too strong.

Purely statistical approaches to history reconstruction, such as the geo-

statistical inversion with Bayesian updating proposed in [80], are applicable to

nonlinear transport. Since this is achieved by ignoring governing equations, the

reconstructed release histories could have non-physical characteristics, including

negative concentrations. These problems have been alleviated by introducing addi-

tional constraints into an optimization functional and requiring the reconstructed

field to be Gaussian [59, 58]. Combining these geostatistical approaches with

analytically derived adjoint equations [60, 76] however brings back the linearity

requirement.

We present an optimal reconstruction of contaminant release history that

fully utilizes all available information and requires neither the linearity of governing
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transport equations nor the Gaussianity of the underlying fields. In Section 5.2

we formulate the problem of reconstructing the contaminant release history from

noisy observations. Section 5.3 introduces our general computational framework,

which is further implemented in Section 5.4 for various examples.

5.2 Problem formulation

We begin with the premise that subsurface migration of a chemically ac-

tive contaminant in a porous medium Ω is adequately described by an advection-

dispersion-reaction equation with a reaction term R(c),

∂c

∂t
= ∇ · (D∇c)−∇ · (uc)−R(c) + r(x, t), x ∈ Ω. (5.1)

Here c = c(x, t) is the solute concentration at point x and time t, u is the average

(macroscopic) pore velocity, and D is the dispersion coefficient tensor. Both the lo-

cation and duration of the contaminant release, i.e., the source function r(x, t), can

be unknown, but only the former source of uncertainty is treated in the computa-

tional examples of section 5.4). Our goal is to reconstruct the release history r(x, t)

from concentration data c̄mi = c̄(xm, ti) collected at points {xm} (m = 1, . . . ,M)

at times ti (i = 1, . . . , I).

Concentration measurements are corrupted by measurement errors. We

assume that the measured concentrations c̄mi differ from the true concentration by

an additive measurement noise, so that

c̄mi = c(xm, ti) + εmi, (5.2)

where the errors εmi are zero-mean Gaussian random variables described by the

covariance matrix E[εmiεnj] = δijRmn, where E[·] is the expectation operator, δij

denotes the Kroneker delta function, and Rmn are components of the spatial co-

variance matrix R of measurement errors. This treatment of measurement noise

assumes that the measurements are well separated in time to neglect any temporal

correlations, but the model can be easily extended to include temporal correla-

tions. We use the additive error model (5.2) of [99], rather than the multiplicative
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error model of [77], for the purpose of illustration only. Both models have similar

effects on the accuracy of history reconstruction [66] and can be handled by our

approach.

In a typical situation, one has prior information (or a belief) about poten-

tial sources of contamination (a region Ωc within the flow domain Ω) and a time

period [Tl, Tu] during which the release has occurred. Examples of Ωc include spa-

tially distributed zones of contamination (e.g., landfills) and a collection of point

sources (e.g., localized/small industrial sites or storage facilities) some of which

have contributed to contamination. The lower (Tl) and upper (Tu) bounds of the

release interval might represent the time when a landfill became operational and

the time when contamination has first been detected, respectively. In the absence

of prior information about the release occurrence, one can assume a uniform ran-

dom distribution of the release in [Tl, Tu]×Ω. We allow for an arbitrary number of

measurement points and for either discrete or continuous-in-time measurements.

5.2.1 Likelihood function

To simplify the exposition, we assume a spatially distributed chemical re-

lease at time t = 0 only, i.e., r(x, t) = c(x, 0)δ(t). Given the measurements c(xm, ti)

and the noise model (5.2) we would like to determine the likelihood of a given re-

lease configuration c(x, 0). Unfortunately, the measurements, generally taken at

later times, do not estimate directly the likelihood of a release configuration. Nev-

ertheless, because the transport equation (5.1) is deterministic, we can implicitly

assess the likelihood of a given release configuration P [c(x, 0)], from the probability

(likelihood) of a given (computed) concentration history c(x, t). This likelihood

can be expressed as [2]

P [c(x, 0)] ∼ exp{−H̃obs[c(x, t)]}, (5.3)

where H̃obs[c(x, t)] is the so-called “Hamiltonian” or log-likelihood function,

H̃obs[c(x, t)] =
1

2

M,I∑
m,n=1,i=1

∆mi(R
−1)mn∆ni, (5.4)
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with ∆mi ≡ c(xm, ti)− c̄(xm, ti). Since (5.1) uniquely determines the evolution of

the solute concentration from its initial state c(x, 0), the Hamiltonian (5.4) is a non-

linear functional of the initial conditions c(x, 0), i.e., H̃obs[c(x, t)] = Hobs[c(x, 0)].

This formulation assumes that the measurement errors εmi are Gaussian

and uncorrelated with the state of the system. Other distributions of the measure-

ment noise and the stochasticity of governing equations can be handled as well [2].

The Hamiltonian for stochastic systems (which can represent, e.g., uncertain hy-

draulic conductivity and flow velocity that are treated as random fields) can be

reformulated to explicitly include the dynamical equations [2, 3].

The contribution of highly fluctuating, unphysical initial conditions is re-

duced by adding a regularization term Hreg[c(x, 0)] to the observation Hamilto-

nian (5.4) and replacing the likelihood function (5.3) with

P [c(x, 0)] ∼ exp{−H[c(x, 0)]}, (5.5a)

where

H[c(x, 0)] = Hobs[c(x, 0)] + γHreg[c(x, 0)] (5.5b)

and the weight γ is a tuning hyperparameter. The regularization term Hreg is

equivalent to a Bayesian prior on the initial condition. The selection of an appro-

priate regularization Hamiltonian is particularly important for problems in which

the observation Hamiltonian doesn’t define a proper probability distribution for

c(x, 0) due to a lack of measurements. For a one-dimensional source profile, the

squared gradient of the initial spatial profile can play a role of the regularization

Hamiltonian. In higher dimensions, one can use a thin-plate penalty functional [93].

A conceptual difference between our approach and maximum likelihood

methods is worthwhile emphasizing. Rather than sampling the Gibbs distribu-

tion exp{−H[c(x, 0)]}, as we do here, maximum likelihood methods minimize the

Hamiltonian (5.5b) over c(x, 0). While standard maximum likelihood methods

determine the mode and variance of the posterior distribution under a Gaussian

approximation, the approach described below can be used to determine the mean

and higher-order statistics and it is valid even when the posterior distribution is

multi-modal.
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5.3 Monte Carlo sampling

In principle, one can sample the Gibbs distribution by using Markov-chain

Monte Carlo (MCMC) (e.g., [58]). However, quite often, the disadvantage of local

MCMC-based methods is their slow convergence. To improve convergence, we

apply a Generalized Hybrid Monte Carlo (gHMC), which enables one to efficiently

sample release configurations c(x, 0) with probability given by (5.5a)

5.3.1 Hybrid Monte Carlo (HMC)

Hybrid Monte Carlo (HMC) refers to a class of methods that combine

Hamiltonian molecular dynamics with Metropolis-Hastings Monte Carlo simula-

tions (see [62] for an introductory survey). Specifically, a time-discretized integra-

tion of the molecular dynamics equations is used to propose a new configuration,

which is then accepted or rejected by the standard Metropolis-Hastings Monte

Carlo criteria. The change in total energy serves as the acceptance/rejection cri-

teria.

In HMC one treats the log-likelihood function H in (5.5b) as the configu-

rational Hamiltonian for a system of N “particles”, each of which has unit mass

and generalized coordinates q1, q2, . . . , qN . Each of these generalized positions cor-

responds to the solute concentration c(x, t) at a space-time point (x, t). In the

following, the particle positions correspond to the initial concentration at time

t = 0, e.g., qi = c(xi, 0), xi = iL/(N − 1), i = 0, . . . , N − 1 for a contaminant

release over the one-dimensional domain [0, L].

At any given time, the state of the system is completely described by (q,p),

where q = {qi}Ni=1 and p = {pi}Ni=1. Here, the momentum of the i-th particle, pi, is

dpi/dτ = pi, where τ is the fictitious time of the molecular dynamics. The kinetic

energy of the system of N particles is given by

HK(p) =
1

2

N∑
i=1

|pi|2, (5.6)

and the total Hamiltonian of the system is

Ĥ(q,p) = H(q) +HK(p). (5.7)
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The Hamiltonian dynamics of such a system is

dqi
dτ

= pi,
dpi
dτ

= Fi, Fi = −∂H
∂qi

, (5.8)

where Fi is the force acting on the i-th “molecule” that is to be computed from

the governing transport equation. During the time interval ∆τ , the system evolves

from its current state (q,p) to a new state (q̃, p̃), which can be computed by

discretizing the Hamiltonian dynamics (5.8). An example of such a discretization

is the standard leapfrog method, which may be written as

q̃i =qi + ∆τ pi +
∆τ 2

2
F (q) (5.9a)

p̃i =pi +
∆τ

2
{F (q) + F (q̃)}, (5.9b)

for i = 1, . . . , N . Multiple dynamic updates, i.e., multiple applications of equation

(5.9), can be performed. For the hybrid Monte Carlo method, the number of

updates M is larger than one. For M = 1 we obtain the Langevin Monte Carlo

method [62]. This completes the “proposal part” of HMC.

The remaining part of HMC consists of deciding whether to accept or reject

the new state (q̃, p̃). This is done by the Metropolis-Hastings sampling strategy,

according to which the new state (q̃, p̃) is accepted with probability

Q = min
{

1, exp{Ĥ(q,p)− Ĥ(q̃, p̃)}
}
. (5.10)

The momenta variables p̃ are resampled after each acceptance/rejection of

the position variables according to a Gaussian distribution of independent variables

exp(−HK). The time-marching and acceptance/rejection process represents one

step in the Markov chain, and therefore one Monte Carlo sample. It is important

to note that the update from (q,p) to (q̃, p̃) does not conserve energy as a result of

the time discretization. The extent to which energy is not conserved is controlled

by the time step ∆τ . Detailed balance is achieved if the configuration obtained

after evolving several steps is accepted with probability Q in (5.10). Thus, the

Metropolis step corrects for time discretization errors.

As we have noted before, the method samples from the multivariate target

distribution, ∼ exp(−Ĥ), by generating a Markov chain. Sampling from this
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density allows us to estimate the mean state (initial configuration) and its variance.

Markov chain sampling from the posterior distribution involves a transient phase,

in which we start from some initial state and simulate the Markov chain for a period

long enough to reach its stationary density, followed by a sampling phase, in which

we assume that the Markov chain visits states from this stationary density. If the

chain has converged, and the sampling phase is long enough to cover the entire

posterior distribution, accurate inferences about any quantity of interest are made

by computing the sample mean, variance and other desired statistics [50].

5.3.2 Generalized Hybrid Monte Carlo (gHMC)

In many cases the generalized hybrid Monte Carlo (gHMC) of [90] can

improve the efficiency of standard HMC via a nonlocal sampling strategy described

in some detail below. For q,p ∈ RN , gHMC replaces the Hamiltonian dynamics

in (5.8) with a more general formulation,

dq

dτ
= Ap,

dp

dτ
= A>F, (5.11)

where A is a linear operator represented by a RN×N matrix. The corresponding

leapfrog discretization is

q(δτ) = q + δτAp +
δτ 2

2
AA>F[q], (5.12a)

p(δτ) = p + A>
δτ

2
{F[q] + F[q(δτ)]}. (5.12b)

The two formulations, (5.8) and (5.11), are identical if A is the identity

matrix. The goal is to find a matrix A that leads to a significant reduction of the

temporal correlations of the Markov chain without appreciably increasing the cost

of the update due to matrix-vector multiplications.

In order to illustrate how the introduction of the matrix A can help reducing

the correlations of the Markov chain, consider the problem with q ∈ RN and

Hamiltonian

H(q) = −1

2
(q− µ)>Σ−1(q− µ),

so that the forcing is given by Σ−1(q − µ). For the case A = I, it can be seen

from (5.12) that the different components qi are updated at different rates, given
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by the covariance matrix Σ. For a given δτ some components would be updated

with long steps, while others would be updated with shorter steps.

The disadvantage of such a configuration is that too long of a step for

a certain component might increase the total Hamiltonian enough to produce a

rejection according to (5.10). If the rejection rate of the chain is too large, one

would have to reduce δτ , which affects all components. The issue of the rejection

rate would be addressed, but then some components would be updated with very

short steps, increasing their correlation. To solve this issue, one can remove the

appearance of Σ altogether by choosing A such that AA>Σ = I. If Σ is a valid

covariance matrix, this is trivially accomplished by choosing A as the Cholesky

factor of Σ.

Unfortunately, in general, the Hamiltonian (5.5b) for our problem doesn’t

have a simple bilinear form for which an appropriate selection of the matrix A can

be derived. Nevertheless, it stands to reason that one can build a matrix A for

more complex systems that still reduces to an extent the correlation of the Markov

chain.

5.4 Numerical applications

In this section we study various applications that show how the framework

outlined above can be applied to source identification problems. In the first two

test cases we study the implementation of HMC to contaminant transport problems

with a nonlinear reaction term for different configurations of observations. In the

third case we study a linear advection-dispersion problem and explore possible

selections of the gHMC acceleration matrix.

5.4.1 Continuous in space, discrete in time measurements

We consider a one-dimensional source profile and a regularization operator,

which is the `2-norm of the gradient of the initial spatial distribution. Furthermore,

we assume that the time of the contaminant release is precisely known and we im-

pose no constraints on the total mass of the released contaminant. We also assume
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that measurements are taken at time T at all space points in the domain and

that the observations have independent, Gaussian-distributed errors with variance

Rmn = 2σ2
ε δmn. Choosing a continuous formulation, the Hamiltonian H[c(x, 0)] in

(5.5b) with the continuous version of (5.4) takes the form

H =
1

2σ2
ε

∫
Ω

[c(x, T )− c̄(x, T )]2 dx+ γ

∫
Ω

|∇c(x, 0)|2 dx. (5.13)

Introducing a method-of-lines discretization of c in terms of basis functions ψi such

that c(t) =
∑
ci(t)ψi, the Hamiltonian can be computed as

H =
1

2σ2
ε

∆c>M∆c + γq>M′q, (5.14)

where c(t) = (c1(t), . . . , cN(t))>, q = c(0) and ∆ci = ci(T )− c̄i(T ). The matrices

M and M′ are symmetric with coefficients

Mij =

∫
Ω

ψiψj dx, M ′
ij =

∫
Ω

ψiψj dx.

The sensitivity of H in the discrete form (5.14) can be computed by using

the adjoint method for sensibility analysis [16, 53]. A possible approach is to

discretize the problem (5.1) into a set of ordinary differential equations (ODEs),

and compute the solution v(t) of the adjoint of the forward ODE problem [53].

This strategy leads to

−F = ∇qH = 2γM′q + v(0), (5.15)

from which the force vector in (5.8) driving the Hamiltonian dynamics is derived.

Details of the derivation are presented in Appendix A.1. For each step of the

leapfrog scheme (5.9) we need to solve forward and backward systems of ODEs.

Those systems must be integrated accurately enough in time to ensure that the

rejection rate of the Markov chain is not negatively affected.

We test this formulation with a one-dimensional transport application with

uniform velocity u and dispersion coefficient D. The unknown contaminant re-

lease distribution at t = 0 and corresponding concentration measurements at a

later time, T = 100∆t, are shown in Figure 5.1. This spatial release was selected

to mimic a localized source with additional weak concentration fluctuations super-

posed.
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Figure 5.1: Observations (solid line) and release distribution to be reconstructed

(dotted line).

Transport is modeled over a unit domain with no-flow boundary conditions

on both ends, and the reaction model [55]

R(c) = 2k(c2 − c2
eq), (5.16)

corresponding to a nonlinear heterogeneous (precipitation/dissolution) reaction

with equilibrium concentration ceq. Here k denotes the kinetic rate constant nor-

malized by porosity. The parameter values are set D = 1.0, u = 50.0, ceq = 0.4

and k = 1.0. The standard deviation of the measurements is set to σε = 0.02. A

space-time discretization with 129 spatial points and ∆t = 1× 10−5 is employed.

Observations are available at all spatial points at time T (see Figure 5.1).

The release history is then inferred using the HMC scheme described above, carried

out with hybrid time-step ∆τ = 0.18, M = 5, and regularizing parameter γ =

0.025. A total of 4× 106 samples of the release configuration were computed, and

the first half of the chain rejected as the “burn-in” period. Our method reconstructs

the configuration that mimics the actual release as shown in Figure 5.2. The

variance of the estimate is too small to be noticeable on the scale of Figure 5.2.
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Figure 5.2: Actual (solid line) and reconstructed (dotted line) release histories

using HMC.

5.4.2 Discrete in space, continuous in time measurements

The second case deals with the same one-dimensional reactive transport

problem, and employs the `2-norm of the gradient of the initial condition as the

regularization term. As in the first case, we assume that the time of the contami-

nant release is precisely known and no constraints on the total mass of the release

contaminant is imposed. In contrast to the first case, the measurements are taken

continuously over the time interval (0, T ] at a discrete subset J of locations in

the spatial domain. We assume that the measurement errors are uncorrelated in

space and time, and have the same variance σ2
ε at every point. This case repre-

sents observations of contaminant breakthrough curves at a number of sampling

locations.

The Hamiltonian corresponding to this setup is

H =
1

2σ2
ε

∫ T

0

∑
j∈J

[c(xj, t)− c̄(xj, t)]2 dt+ γ

∫
Ω

|∇c(x, 0)|2 dx. (5.17)

It is evaluated, together with its sensitivity with respect to the initial condition,

by using a method-of-lines discretization of the concentration field c(x, t). Once

the governing PDE has been discretized into a system of ODEs, one can compute

the sensitivity ∇qH via the adjoint sensitivity method used in the previous case.

The disadvantage of this approach, as mentioned earlier, is that it incurs two levels
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of numerical error: the integration error of the forward problem, which affects the

initial condition of the adjoint problem; and the integration error of the backward

problem. If these errors are significant, both the quality of the estimator and

the rejection rate of the Markov chain can be compromised. Reducing the error

requires one to decrease the time step used for integration in both directions, which

would increase the computational cost per leapfrog step.

To partially alleviate this problem, we use a single-step ODE integration

scheme for the forward problem and compute the sensitivity of H with respect

to the initial condition via multiple applications of the chain rule [24]. Let ci

(i = 0, . . . , I) be a vector of discretized states evaluated at time t = iT/I, and

c̃i be a vector of the measurements at time ti in the elements corresponding to

the J measurements locations and zeros in the other elements. Let C be a diag-

onal matrix with ones on the diagonal elements corresponding to the J subset of

measurement locations, and zeros in all other locations. We use this notation to

rewrite the observation Hamiltonian and the sensitivity as

Hobs(c,q) =
1

2σ2
ε

∆t
I∑
i=1

(ci − c̃i)>C(ci − c̃i),

and

∇qHobs =
1

σ2
ε

∆t
I∑
i=1

(
dci

dq

)>
R−1(ci − c̃i),

respectively. Using the chain rule, this gives

∇qHobs =
1

σ2
ε

∆t

(
dc1

dq

)> [
C(c1 − c̃1) +

(
dc2

dc1

)> [
C(c2 − c̃2) + · · ·

]]
.

This implies that the sensitivities can be evaluated by repeatedly computing

products of the form (dci+1/dci)>u. If these products can be computed exactly,

then this approach provides the exact sensitivity of the (space-time discretized) sys-

tem, which is useful for problems with costly forward and backward solutions. The

disadvantage of this approach is that it is highly application-specific and restricts

the selection of ODE solvers to a specific family. Details of the implementation of

this ad-hoc sensitivity analysis approach are presented in Appendix A.2.
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We test this formulation on a one-dimensional transport problem defined

in the domain [0, 1] with constant velocity u and dispersion coefficient D. The

reaction model (5.16) with ceq = 0.4 and k = 1.0 is used. Boundary conditions are

dc/dx = 0 at x = 0, 1. The transport equation is discretized with finite-volumes

scheme consisting of 128 cells of size ∆x. Concentration measurements are taken

at the cells with centers x = L/2 − ∆x/2, x = 3L/4 − ∆x/2 and x = L − ∆x/2

over the time period (0, 2.5× 10−2] (Figure 5.3). The standard deviation of these

measurements is set to σε = 0.02.
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Figure 5.3: Breakthrough curves of contaminant at observation locations along

the transport domain.

The release configuration is inferred using the HMC scheme, carried out

with hybrid time-step ∆τ = 0.18, M = 5, and regularizing parameter γ = 0.025.

A total of 2 × 106 samples of the release configuration were computed, and the

first half of the chain rejected as the burn-in period. Figure 5.4 shows that, for

the initial condition shown, the HMC scheme is able to infer the main features

of the initial condition, namely the location of the release and the total mass of

contaminant released. The estimator obtained is of high variance given the dearth

of data available and the relatively high measurement error.
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Figure 5.4: Actual (solid line) and reconstructed (dotted line) release histories

using HMC.

5.5 Application of gHMC to linear transport

In order to study the construction of an acceleration matrix A appropriate

for contaminant transport, we consider a 1-D advection-dispersion (no reaction)

problem
∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
, x ∈ [0, 2π], t = (0, T ], (5.18)

with uniform coefficients u and D. This equation is subject to the periodic bound-

ary condition

c(0, t) = c(2π, t),

and (unknown) initial condition

c(x, 0) = c0(x).

Similar to the case studied in Section 5.4.2, available concentration data consist of

a set of measurements continuous in time on the interval (0, T ] collected at a subset

J of the discrete locations xj, cobs,j = cobs(xj, t). The data come with space-time

uncorrelated additive errors of equal variance σ2
ε .

Observation Hamiltonian. The state variable c(x, t) is discretized into N func-

tions cj(t) = c(xj, t), where the xj = 2πj/N , j = 0, . . . , N − 1 are N equi-distant
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nodes along the domain [0, 2π). We define the measurement Hamiltonian as

Hobs =
1

2σ2
ε

∑
j∈J

∫ T

0

[cj(t)− cobs,j(t)]
2 dt. (5.19)

It defines the probability distribution of the initial release vector q with

components qj = c0,j.

A solution of (5.18) is represented by a discrete Fourier transform (DFT),

ĉk =
1

N

N−1∑
j=0

cje
−ikxj , k = −N/2, . . . N/2− 1, (5.20)

which defines the N Fourier modes ĉk. The backward or inverse transform is given

by

cj =

N/2−1∑
k=−N/2

ĉke
ikxj , j = 0, . . . , N − 1. (5.21)

Let c denote a vector of discrete values cj, and ĉ denote the vector of Fourier

modes ĉk. Then (5.20) and (5.21) are rewritten as

ĉ =
1

N
Fc, c = F∗ĉ, (5.22)

where F is the DFT matrix whose elements are

Fpq = ω(p−N/2)q, ω = e−2πi/N (5.23)

and (·)∗ denotes the Hermitian adjoint. By projection, (5.18) is discretized into a

set of uncoupled ODEs for the Fourier modes

∂ĉk
∂t

= −(Dk2 + iku)ĉk, k = −N/2, . . . N/2− 1.

Their solutions are

ĉk = q̂k exp {−(Dk2 + iku)t}. (5.24)

Substituting (5.22) and (5.24) into (5.19) yields and observation Hamilto-

nian

Hobs =
1

2σ2
ε

(q̂− q̂obs)
∗
(∫ T

0

B∗FJF∗JB dt

)
(q̂− q̂obs),

=
1

2σ2
ε

(q̂− q̂obs)
∗Ĝobs(q̂− q̂obs),

(5.25)
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where q̂ ≡ ĉ0, q̂obs = ĉobs,0 is the vector of Fourier modes of the unknown un-

derlying release configuration, FJ corresponds to the J columns of F , B(t) is a

diagonal matrix with elements Bkk = exp[−(Dk2 + iku)t], and Ĝobs is the Her-

mitian (semi)positive definite matrix. The observation Hamiltonian specifies a

multivariate normal distribution for the Fourier modes of the release configura-

tion. The mean of this distribution corresponds to the underlying configuration.

Given that q and q̂ are related via a linear transformation, it follows that the

observation Hamiltonian specifies a multivariate normal distribution for q.

If the measurements are available in every node of the computational do-

main, i.e., if FJ = F , then FF∗ = NI and (5.25) simplifies to

Hobs =
N

2σ2
ε

(q̂− q̂obs)
∗
(∫ T

0

B∗B dt

)
(q̂− q̂obs).

That is equivalent to

Hobs =
N

2σ2
ε

N/2−1∑
k=−N/2

|q̂k − q̂obs,k|2ĝk (5.26)

where the coefficients ĝk are given by

ĝk =

∫ T

0

| exp {−(Dk2 + iku)t}|2 dt =

∫ T

0

e−2Dk2t dt =
1− exp(−2Dk2T )

2Dk2
.

Note that all coefficients ĝk are real, symmetric (ĝk = ĝ−k), and depend

only on the dispersion coefficient D.

It follows from (5.25) that

∇qHobs =
1

σ2
ε

F∗Ĝobs(q̂− q̂obs) = F∗ĜobsF(q− qobs) = Gobs(q− qobs)

where Gobs = F∗ĜobsF . That brings the forcing into the form F[q] = Σ−1(q−µ)

required by our analysis in Section 5.3.2, which suggests a possibility of computing

the acceleration matrices as AA∗ = G−1
obs. Unfortunately this is not generally

feasible, because the matrix Gobs is singular unless the measurements are taken at

every node of the domain. The singularity of Gobs implies the singularity of the

multivariate normal distribution of q̂ given by Hobs, which means the distribution

is concentrated in a r-dimensional subspace of CN . Since q results from a linear
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transformation of q̂, the multivariate normal distribution of q is also degenerate.

This implies that there are linear combinations of qj = c0,j that cannot be sampled

with the distribution stemming from the measurements. In other words, there is

an unobservable subset of initial configurations.

The SVD decomposition Ĝobs = USV∗ provides some insight into features

of the distribution of q that can be sampled from the distribution of the observa-

tions. Specifically, the vectors forming a basis for ker Ĝobs have negligible terms

associated with the lower Fourier modes of q, i.e., |Vk,j| ≈ 0 for small |k| and

rank Ĝobs < j. This implies that the lower frequency components of q fall mostly

on the observable subspace. In general, |Vk,j| 6= 0 for high |k| and rank Ĝobs < j,

which implies that high frequency features are mostly unobservable.

Regularization Hamiltonian. The regularization Hamiltonian extends the dis-

tributions of q and q̂, which makes them well defined. After a real-space discretiza-

tion, the regularization Hamiltonian takes the form

Hreg = γq>Gregq, (5.27)

where γ is a regularization hyperparameter and Greg is the circulant matrix

R =
1

∆x



2 −1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 −1 2


,

or Greg = circ{r}>, where r = (2,−1, 0, . . . , 0,−1)>/∆x and ∆x = 2π/N . The

matrix Greg extends the probability distribution by assigning a high energy (low

probability) to configurations with large high-frequency components. To demon-

strate this, we rewrite Greg as

Greg = circ{r}> = F∗ diag{r̂}F , r̂k =
1

π

[
1− cos

(
2πk

N

)]
,

where r̂ is the DFT of r. The components r̂k of vector r̂ increase with frequency

k, with the zeroth frequency giving rise to r̂0 = 0. The latter is to be expected
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since the regularization operator does not affect the observability of the zeroth

frequency, which corresponds to the average of the initial release.

Note that a Fourier-space discretization of the regularization Hamiltonian

leads to a similar bilinear form for Greg, with r̂k = 2πk2/N2. Indeed, these r̂k have

a similar asymptotic behavior as k → 0.

Acceleration matrix. For the full Hamiltonian H = Hobs +Hreg, the forcing is

given by

F[q] = −Ĝobs(q̂− q̂obs)− Ĝregq̂ = −Gobs(q− qobs)−Gregq (5.28)

where Gobs = F∗ĜobsF and Greg = F∗ĜregF . This suggests that choosing

the acceleration matrix A, such that AA∗(Gobs + Greg) = I, would reduce the

correlation of the Markov chain. Since Gobs and Greg are Hermitian (semi)positive

definite, their sum G = Gobs + Greg is at least Hermitian (semi)positive definite.

In fact, G is a full rank matrix and, therefore, it can be factorized via a Cholesky

decomposition G = R>R. Hence the matrix A, defined by AA∗G = I, is given

by

A = A1 = R−1, R>R = G. (5.29)

The added cost of computing the acceleration matrix A is the Cholesky factor-

ization cost and the cost of computing four matrix-vector products. For dense

matrices, these costs are O(N3) and O(N2), respectively.

An advantage of the Cholesky factorization is that the vector of momenta

p in (5.12) can be chosen as real and multivariate normal, with zero mean and

identity covariance matrix. A drawback is its relatively high cost per step in the

Markov chain. Moreover, the matrix G becomes more poorly conditioned as γ → 0,

which might affect the accuracy of the Cholesky decomposition.

A computationally efficient alternative for the construction of A is to em-

ploy the following heuristic. Instead of using the full correlation matrices in Fourier

space, Ĝobs and Ĝreg, to define G, we approximate it as G ≈ F∗ diag{ḡ}F , where

ḡ is the vector with components ḡi = {Ĝobs + Ĝreg}ii. This approximation allows

one to factorize G as G ≈ Ḡ = F∗DD∗F , where D = diag{(ḡ)1/2} with the
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square root understood as element-wise. This argument suggests that the acceler-

ation matrix A can be constructed as

A = A2 =
1

N
F∗D−1, D = diag{(ḡ)1/2}, ḡ = diag{Ĝobs + Ĝreg}, (5.30)

which gives

Ap =
1

N
(F∗D−1p), A∗F = D−1

(
1

N
FF

)
.

Note that we have replaced the transpose of A with its Hermitian transpose due to

the complex nature of the DFT. This implies that the transpose in (5.11)– (5.12)

must be replace with an Hermitian transpose, and that in order to guarantee that

q ∈ RN we must generalized the momenta such that p ∈ CN .

Once the acceleration matrix A in (5.30) is constructed, products of the

form Ap and A∗F can be computed using DFTs. The computational cost per

leapfrog step is reduced from four matrix-vector products of cost ∼ O(N2) to four

of cost ∼ O(N logN), and no Cholesky decomposition is necessary.

Since ḡ = ∂2H/∂q̂2, the approximation (5.30) can be thought as building

A from the diagonal of the Hessian of H with respect to q̂ (a similar heuristic

is employed in [63] for Bayesian learning). This observation begs the following

question: Why do we take ḡ = ∂2H/∂q̂2 instead of ḡ = ∂2H/∂q2, which would

produce a similar acceleration matrix A without the Fourier transforms? The

answer is that the matrix Ĝobs +Ĝreg is more concentrated along its diagonal than

G is. Hence more information about the observation operator is conserved by

taking the diagonal of Ĝobs + Ĝreg than the diagonal of G.

Sampling of momentum vector. In order to retain the validity of the leapfrog

method with generalized momenta, we require said momenta to be associated

with a kinetic energy following a bilinear form. We can achieve this by assuming

that p ∈ CN has a general complex normal distribution CN (0,Γ,C) with unit

covariance Γ and

C = A∗Ḡ(conj A) =
1

N
DFF>D−1. (5.31)
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For Fpq given by (5.23),

1

N
(FF>)p,q =

N−1∑
r=0

ωr(p+q−N) = P =

1 if p+ q = kN, k = . . . ,−1, 0, 1, . . . ,

0 otherwise.

Since D is diagonal and P is a permutation matrix, (5.23) yields C = P.

Let p = X+iY with X,Y ∈ RN . The vector V> = [X> Y>] is multivariate

normal with zero mean. Given Γ and C, the cross-covariance matrix of this vector

is

E[XY>] =
1

2
={Γ + C} = 0, E[YX>] =

1

2
={−Γ + C} = 0,

since both Γ and C are real. In other words, the real and imaginary parts of p are

mutually uncorrelated. The covariance matrix of this vector is

E[XiXj] =
1

2
<{Γij + Cij} =


1 if i = j = 0, −N/2

1/2 if i = −j, i, j 6= 0

0 otherwise,

(5.32a)

E[YiYj] =
1

2
<{Γij − Cij} =

1/2 if i = −j, i, j 6= 0

0 otherwise.
(5.32b)

It follows from (5.32) that only the components pk = Xk + iYk with k = −k are

correlated. Their covariances are E[XkX−k] = 0.5, E[YkY−k] = −0.5. Since p must

be complex-symmetric to guarantee that q remains real, we generate p as

X−N/2 ∼ N (0, 1),

X−N/2+1 ∼ N (0, 1/2), Y−N/2+1 ∼ N (0, 1/2)

...

X0 ∼ N (0, 1),

X1 = X−1, Y1 = −Y−1,

...

XN/2−1 = X−N/2+1, YN/2−1 = −Y−N/2+1.

Hence the vector p is generated with N independent identically distributed normal

random variables.
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Computational examples. Next we illustrate the effect of selecting the acceler-

ation matrix A on the Markov chains produced by the generalized Hybrid Monte

Carlo algorithm. Three alternatives for A are considered: A = A1 in (5.29),

A = A2 in (5.30) and A = I (no acceleration). We apply these selections to the

model problem (5.18) with parameters D = 1.0, u = 10.0 and N = 64. Obser-

vations are taken at locations xJ , J = {47, 63}. For each case, P = 10 chains

with 2 × 104 samples are run, and the last half samples are kept. Using these

samples over P runs, we compute the autocorrelation function ρ(s) for each qj,

j = 0, . . . , N − 1, except for j = 47, 63, which are included in the observations.

Figures 5.5 show that A = A1 produces highly uncorrelated chains for each

of the qj studied, A = A2 produces more correlated chains, and A = I produces

the most correlated chains. As expected, A2 provides a compromise between the

low autocorrelation / high expense of the full Cholesky decomposition and the high

autocorrelation / low cost of A = I.

For problems with reaction terms, the forcing F = −∇qH is not a linear

function of q as in (5.28). In such cases, the selection of the acceleration matrix

A is not straightforward. The challenge is to find an approximation to the forcing

that is linear in q, i.e., preserves the form (5.28) with Gobs and Greg independent

of q. This is required to guarantee the reversibility of the Hamiltonian dynamics.

Such an approximation can be obtained by disregarding the nonlinear re-

action term and using Gobs in (5.25) and Greg in (5.27), which are functions only

of the temporal and spatial domain properties and the hyperparameters σ2
ε and

γ. This selection is equivalent to taking F ≈ −Glin(q − qobs), where Glin is the

Hessian of the advection-diffusion (linear) portion of the Hamiltonian. It gives the

acceleration matrix A1 of (5.29). This choice is justified for non-periodic bound-

ary conditions if the contaminant plume does not reach the domain’s boundaries

during the simulation time. An alternative is to take only diagonal portion of the

Hessian of an advection-diffusion portion of the Hamiltonian. This would produce

the acceleration matrix A2 in (5.30).
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Figure 5.5: Autocorrelation functions for qj, j = {0, . . . , 63} \ {47, 63}, and

A = A1 (top), A = A2 (middle) and A = I (bottom).
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5.6 Conclusions and further work

We presented a computationally efficient and accurate algorithm for iden-

tification of sources and release histories of (geo)chemically active solutes. The

algorithm is based on a generalized hybrid Monte Carlo approach, in which MC

sampling is accelerated by the use of discrete adjoint equations. Some of the

salient features of our approach are: 1) its ability to handle nonlinear systems,

since it requires no linearizations; and 2) its compatibility with various regulariza-

tion strategies.

The introduction of an acceleration matrix to the gHMC scheme was tested

for a advection-dispersion problem. Our analysis demonstrated that the proposed

acceleration matrices improve upon basic HMC. The generalization of these con-

structions to problems with nonlinear reaction terms and non-periodic boundary

conditions is the subject of future work.

Chapter 5, in part, has been submitted for publication of the material:

Barajas-Solano, D. A., Alexander, F. J., Anghel, M., Tartakovsky, D. M. “Efficient

Reconstruction of Contaminant Release History”. The dissertation author was the

primary investigator and author of the paper.



Chapter 6

Inverse Modeling via Linear

Functional Minimization

6.1 Introduction

The spatially distributed properties of groundwater flow and transport do-

mains, such as conductivity, transmissivity, dispersivity, etc., are often highly het-

erogeneous. Heterogeneity is a product of multiple geological, mechanical and

physico-chemical processes that form subsurface environments [71, 17]. It occurs

over a large range of scales, from well-defined large geological structures with sig-

nificantly different hydrogeological properties to smaller variations of these prop-

erties inside each structures. Taking into account multiple scales of heterogeneity

in complex geologic environments is a must in order to build useful predictive

models [96, 26].

A variety of approaches have been proposed to deal with multiscale hetero-

geneity of flow and transport fields [96, 26]. Generally, they start with building a

conceptual model and identifying a set of relevant parameters. The next step is to

select parameter values via an appropriate inversion process that leverages both

available field observations and prior knowledge and expectations, such as delin-

eation of large-scale structures from geological information [17, 30]. Most modern

inversion techniques are designed to handle only one scale of heterogeneity [97], fo-

72
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cusing on either single-facies heterogeneous systems [30] or multiple homogeneous

facies [45, 98, 89]. A two-scale alternative [42, 43] combines a zonation approach for

large-scale facies delineation with a stochastic description of within-facies variabil-

ity. This strategy is strongly dependent on the selection of an adequate stochastic

model.

We develop an inversion methodology that uses observations of both system

parameters and transient system states to compute an estimator of the underlying

parameter field. No strong assumptions, such as prescribed zonation or stochastic

models for small-scale heterogeneity, are introduced. Instead we adopt a Bayesian

framework and choose a prior for parameter fields, which reflects the knowledge

of their spatial distribution (i.e., that parameters are piecewise continuous). The

total variation (TV) regularization [74] is used to define the prior with desired

properties. A maximum a posteriori (MAP) estimator of the system parameters is

obtained by solving the associated high-dimensional nonlinear optimization prob-

lem. The linearized functional minimization algorithm [97] is used in this task.

Our algorithm splits the nonlinearities of the log-posterior into two parts, each of

which is treated separately in an iterative scheme: The nonlinearity of the data fi-

delity terms associated with system states is treated using a linearization approach

base on the Levenberg-Marquardt method [14, 9]; and the nonlinearity associated

with the TV regularization operator is dealt with using the alternating direction

method of multipliers (ADMM) [13].

TV regularization has been employed in previous works for inverse mod-

eling of spatially distributed parameters of elliptic equations [5, 22, 9], proposing

different algorithms to the one employed in this study. Furthermore, our proposed

methodology allows incorporation of transient information of various system states

for which there are available measurements. This feature is particularly useful from

a history matching perspective, where information of the response of measured

system states can be leveraged to improve the reconstruction of the model param-

eters. The implementation presented in this work uses measurements of a model

parameter and a single state, but can be extended to include multiple states.

Section 6.2 presents the inversion methodology as applied to a saturated
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flow problem. The linearized functional minimization algorithm is described in

Section 6.3. A numerical scheme used both to solve the forward problem and to

compute the sensitivities is outlined in Section 6.4. The computational cost of

the overall inversion procedure is analyzed in Section 6.5. We apply our inversion

methodology to a synthetic two-dimensional saturated flow problem with a highly

heterogeneous, piecewise continuous conductivity field. Error-free measurements

of the synthetic conductivity field are taken over a grid of discrete sampling loca-

tions, together with measurements of the hydraulic head response of the system at

a number of discrete locations under point loadings. The results obtained for differ-

ent selections of the inversion coefficients are presented in Section 6.6. Conclusions

and implications of this work are presented in Section 6.7.

6.2 Formulation of optimization problem

Problem formulation. We consider an n-dimensional groundwater flow equa-

tion
∂h

∂t
= ∇ · (K(x)∇h) + q(x, t), (6.1)

subject to appropriate boundary and initial conditions. Here K(x) is the spa-

tially varying saturated hydraulic conductivity (a system parameter), h(x, t) is

the hydraulic head (a system state), and the source term q(x, t) represents, e.g.,

pumping wells. A spatio-temporal discretization of (6.1) replaces continuos func-

tions K(x) and h(x, t) with their discrete counterparts arranged in vectors k and

h, respectively. The size of these matrices depends on the numerical method used

to solve (6.1). We employ a method-of-lines (MOL) discretization, in which K(x)

is evaluated at Nk discrete grid points in a computational domain and h(x, t) is

computed at Nh discrete grid points in space and Nt discrete points in time. As

a result, vectors k and h have Nk and NhNt components, respectively. Combined

with the initial and boundary conditions, (6.1) defines a nonlinear map h = f(k).

Suppose that hydraulic conductivity K(x) is measured at Nobs,k grid points

(Nobs,k � Nk) of the numerical mesh used to discretize (6.1). Suppose further that

hydraulic head h(x, t) is measured at Nobs,h grid points at each of the Nt discrete
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time points. The support volume of the conductivity measurements is considered

representative of the cell size in the numerical model. These measurements are

assembled into vectors k̂ and ĥ whose dimensions are Nobs,k and Nobs,hNt, respec-

tively. Linear operators Mk and Mh provide spatio-temporal maps between k and

k̂ and between h and ĥ, such that Mkk = k̂ and Mhh = ĥ. The measurement

operator matrices Mk and Mh have dimensions Nobs,k ×Nk and Nobs,hNt ×NhNt,

respectively.

Our goal is to compute estimators of k and h using the nonlinear map

h = f(k) and the available measurements k̂ and ĥ.

Optimization problem. Since the measurement operator Mk is often highly

undetermined, it is in general not possible to use direct inversion or to compute

an ordinary least squares estimator. The inclusion of the state variable data ĥ is

expected to reduce the indeterminacy of the inversion problem, but it is generally

not enough to define a unique solution of the inversion problem. Instead, our

goal is to compute maximum a posteriori (MAP) estimators of k and h. These

MAP estimators combine the measurements k̂ and ĥ with the available general

knowledge of the properties of K(x) and h(x, t).

Following [97], we express the inversion problem in variational form as the

minimization of a (negative) likelihood functional. This likelihood is composed

of data fidelity terms, which penalize the difference between model estimates and

measurements, and regularization terms, which express the prior knowledge of the

properties of the (discretized) fields k and h. Enforcing the constraint h = f(k),

that gives rise to an optimization problem over k,

arg min
k

α

2
‖Mkk− k̂‖2

2 +
β

2
‖Mhf(k)− ĥ‖2

2 + γRk(k) +
δ

2
Rh(f(k)), (6.2)

where Rk(k) and Rh(h = f(k)) are the regularization terms for k and h, respec-

tively. From a Bayesian point of view, the data fidelity terms provide the likelihood

of observations given a certain configuration of k, and the regularization terms pro-

vide the priors on k and h. The inversion coefficients α, β, γ and δ determine the

extent to which low probability is assigned to a certain k configuration, i.e., the

relative contributions of each term in (6.2). For example if one sets α = 1 as
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a reference, then β would determine how the data fidelity of h = f(k) affects

probability of k relative to the data fidelity of k.

In subsurface environments consisting of multiple facies (see Section 6.1)

the hydraulic conductivity field K(x) is piecewise continuous. To reflect this fact,

we select the regularization for k to be given by the `1 norm of the gradient of

the conductivity field ∇K. In n-dimensional domains this regularization, which

is often referred to as Total Variation (TV) [74], penalizes general heterogeneous

fields and promotes fields with low small-scale variation inside facies and large

jumps across the (n − 1)-dimensional surfaces separating the facies. Since h is

continuous and defined by the map h = f(k), we decided not to add an additional

regularity requirement on h. Instead, we add an additional regularization term

for k, which penalizes the `2 norm of ∇K. This increases stability during the

minimization of (6.2). To avoid interference with the regularization properties

of the TV norm, the `2 regularization term is multiplied by a coefficient δ that

satisfies the inequality δ � γ.

Two sources contribute to high nonlinearity of the objective functional (6.2):

the data fidelity penalty on the deviation of the modeled head from observations,

‖Mhf(k)− ĥ‖2
2, and the TV norm. The latter also renders the optimization func-

tional non-differentiable with respect to k. Without the TV norm, the problem

is equivalent to a nonlinear least squares estimation, which can be solved by a

variety of standard techniques (e.g., Levenberg-Marquardt). On the other hand,

the problem without the non-quadratic penalty is equivalent to linear minimiza-

tion equipped with the TV norm, for which many efficient numerical approaches

have been proposed [73, 36, 13]. We pursue a hybrid approach [97] that combines

the strengths of the methods designed for dealing with each type of nonlinearity.

This strategy separates the two sources of nonlinearity by first linearizing the map

h = f(k), and then minimizing a sequence of the linearized models equipped with

the TV norm.

For a current estimate k(c) of the minimizer, we replace f (c) with the affine

model [14, 9]

f(k) ≈ f(k(c)) + Jf (k
(c))(k− k(c)),
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where Jf (k
(c)) = ∂f/∂k(c) is the Jacobian of function f evaluated at k(c). Next, we

approximate the head data fidelity term with

‖Mhf(k)− ĥ‖2
2 ≈ ‖MhJfk + Mh(f(k)− Jf (k

(c))k(c))− ĥ‖2
2.

The modified minimization problem associated with the iterate k(c) is a

quadratic form, except for the TV norm. Any of the previously mentioned TV

optimization schemes can be used to solve this optimization problem. A solution

of this linearized sub-problem yields a new iterate k(c+1), for which a new lin-

earized minimization problem is solved, and so forth. This linearized functional

minimization algorithm is described in detail in the following section.

6.3 Linearized functional minimization

In this section we describe the linearized functional minimization algo-

rithm [97], which we use to solve (6.2) together with a TV regularization term.

In broad terms, this algorithm is a combination of a Levenberg trust-region algo-

rithm, which is employed to propose linearized minimization sub-problems, and

an Alternating Direction Method of Multipliers (ADMM) approach [13], which is

used to solve these sub-problems.

Consider a generalized problem with a parameter vector u ∈ RN and a state

vector v ∈ RM , stemming from a suitable discretization of a partial-differential

equation (PDE) on a two-dimensional domain Ω and time interval (0, T ]. The

discretized PDE provides a map v = f(u). Let P and Q denote measurement

operators, such that Pu = s and Qv = t, with s ∈ RN ′ and t = RM ′ , and

M ′ � M and N ′ � N . The cost functional (6.2) with a TV regularization term

takes the form

arg min
u

α

2
‖Pu− s‖2

2 +
β

2
‖Qf(u)− t‖2

2 + γ‖D(u)‖1 +
δ

2
‖D(u)‖2

2, (6.3)

where D(·) =
√

[Dx(·)]2 + [Dy(·)]2 is a discretized gradient magnitude operator,

with the operations [·]2 and
√
· understood as element-wise, and Dx and Dy are

linear discrete differentiation operators in the x and y directions respectively.
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We use an iterative trust region approach to minimize (6.3). Starting from

an iterate u(c), we compute the next iterate as u(+) = u(c) + w, where w is chosen

so as to minimize a linearization of (6.3). For a w with small ‖w‖2
2, one can

approximate v as v ≈ v(c) +Aw, where A is the Jacobian of f whose elements are

Apq = ∂fp/∂uq, and v(c) = f(u(c)). The step w is chosen as the minimizer of

arg min
w

α∗

2
‖P(u(c) + w)− s‖2

2 +
β∗

2
‖Q(v(c) + Aw)− t‖2

2

+ γ∗‖D(u(c) + w)‖1 +
δ∗

2
‖D(u(c) + w)‖2

2 +
1

2
‖w‖2

2 (6.4)

where the penalty on ‖w‖2
2 is added to provide regularity (convexity) of the so-

lution. The inversion coefficients of the linearized problem (α∗, β∗, γ∗ and δ∗)

are chosen initially to coincide with their counterparts in (6.3). They can also be

allowed to vary in conjunction in order to control the trust region size throughout

the minimization process.

The ADMM approach [13] is used to minimize the linearized functional (6.4).

This allows us to split the regularization terms from the deviation penalties. In-

troducing auxiliary variables dx and dy, we recast (6.4) as

arg min
w

α∗

2
‖P(u(c) + w)− s‖2

2 +
β∗

2
‖Q(v(c) + Aw)− t‖2

2

+ γ∗
∥∥∥√d2

x + d2
y

∥∥∥
1

+
δ∗

2

∥∥∥√d2
x + d2

y

∥∥∥2

2
+

1

2
‖w‖2

2,

subject to dx = Dx(u
(c) + w) and dy = Dy(u

(c) + w). This constrained problem

is solved iteratively via the splitting scheme

w(k+1) ≡ arg min
w

λ

2
‖Dxw − (d(k)

x −Dxu
(c) − b(k)

x )‖2
2

+
λ

2
‖Dyw − (d(k)

y −Dyu
(c) − b(k)

y )‖2
2 +

1

2
‖w‖2

2

+
α∗

2
‖Pw − (s−Pu(c))‖2

2 +
β∗

2
‖QAw − (t−Qv(c))‖2

2, (6.5)

(d(k+1)
x ,d(k+1)

y ) ≡ arg min
dx,dy

γ∗
∥∥∥√d2

x + d2
y

∥∥∥
1

+
δ∗

2

∥∥∥√d2
x + d2

y

∥∥∥2

2

+
λ

2
‖Dxw

(k+1)− (dx−Dxu
(c)−b(k)

x )‖2
2 +

λ

2
‖Dyw

(k+1)− (dy −Dyu
(c)−b(k)

y )‖2
2,

(6.6)
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where λ > 0. The dual variables bx and by are updated as

b(k+1)
x = b(k)

x + Dx(u
(c) + w(k+1))− d(k+1)

x , (6.7)

b(k+1)
y = b(k)

y + Dy(u
(c) + w(k+1))− d(k+1)

y . (6.8)

Initial values for the iteration scheme are set as b
(0)
x = 0, b

(0)
y = 0, d

(0)
x =

Dxu
(c) and d

(0)
y = Dyu

(c).

The linear minimization problem (6.5) is obtained by differentiating (6.5)

and setting equal to 0, and then solving the resulting N×N linear algebraic system

(I + α∗P>P + β∗A>Q>QA + λD>x Dx + λD>y Dy)w
(k+1)

= α∗P>(s−Pu(c)) + β∗A>Q>(t−Qv(c))

+ λD>x (d(k)
x −Dxu

(c) − b(k)
x ) + λD>y (d(k)

y −Dyuc − b(k)
y ). (6.9)

The problem for d
(k+1)
x and d

(k+1)
y is solved component-wise to yield

d
(k+1)
xi = hxiσ(hxi, hyi, γ

∗/λ, δ∗/λ) (6.10)

d
(k+1)
yi = hyiσ(hxi, hyi, γ

∗/λ, δ∗/λ) (6.11)

where hx = Dx(u
(c) + w(k+1)) + b

(k)
x , hy = Dy(u

(c) + w(k+1)) + b
(k)
y , and σ is the

shrinkage function [36] defined as

σ(a, b, ξ, η) =
max(0,

√
a2 + b2 − ξ)

(1 + η)
√
a2 + b2

. (6.12)

The splitting scheme can be generalized to 3-dimensional domains. In such

a case, one introduces an additional variable dz subject to dz = Dz(u
(c) + w) into

the splitting. The (dx,dy,dz) sub-problem is solved via the ansatz dxi = hxiσ,

dyi = hyiσ, dzi = hziσ, which leads to a shrinkage formula similar to (6.12) except

with
√
a2 + b2 + c2 instead of

√
a2 + b2.

The iteration procedure (6.5)–(6.8) is repeated until the relative change in

the functional (6.4) between iterations falls below a certain tolerance. Completing

this iteration procedure produces a candidate w, which is accepted or rejected as

follows. (I.) The candidate is accepted if it produces a reduction of the functional

(6.3) and rejected otherwise. (II.) If the candidate is rejected, the coefficients α∗,
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β∗, γ∗ and δ∗ are reduced by a factor of 2 (thus reducing the trust region) and a

new candidate is computed. This process is repeated until a satisfactory candidate

is found. (III.) If the first candidate w for a certain starting point is satisfactory,

the coefficients α∗, β∗, γ∗ and δ∗ are increased by a factor of 2 (thus expanding

the trust region).

The minimization of (6.3) is carried until the relative change in the func-

tional falls below a certain tolerance. The vector u(+) = u(c) + w of the last

iteration is taken as the estimator of the parameter vector.

6.4 Forward solution

The methodology described in the previous section requires computing the

state and the Jacobian associated with each iterate of the model parameter vector

u. In this study, we have employed a method-of-lines (MOL) strategy to solve the

flow equation (6.1). An MOL discretization of a linear PDE produces a system of

Nh linear ODEs [
M

d

dt
+ S(k)

]
h̃(t) = g(k) + q, (6.13)

where h̃(t) is the hydraulic head vector at time t, M and S are the corresponding

“capacitance” and “conductivity” matrices, g is the forcing vector representing the

boundary conditions, and q is the vector representing the system loading. The set

of ODEs (6.13) is integrated in time using an appropriate time-stepping scheme,

and the state vector is stored for the Nt discrete observation times t1, t2, . . . tNt .

The full state vector is assembled as h = [h̃(t1)>, h̃(t2)>, . . . h̃(tNt)
>]>.

Assuming that the system load q is independent of the conductivity field k,

and using the chain rule with respect to the i-th element of k in (6.13), we obtain

a set of linear ODEs governing the evolution of the i-th column of the sensitivity

J,i = ∂h̃/∂ki: [
M

d

dt
+ S(k)

]
J,i =

∂g(k)

∂ki
− ∂S(k)

∂ki
h̃. (6.14)

The computation of the full sensitivity requires the integration in time of Nk sets

of Nh ODEs. For each forward simulation, the sensitivities at the Nt observation
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times are stored, and the Jacobian A of the functional h = f(k) is assembled as

A = [J(t1)>,J(t2)>, . . .J(tNt)
>]>.

The sets of ODEs (6.13) and (6.14) are similar, differing only in their ar-

guments and right-hand-sides. Therefore the computation of the state vector and

Jacobian can be understood as the simultaneous time-stepping of Nh(Nk+1) linear

ODEs. Given that one of the leading costs of the time-stepping of linear systems

of ODEs using implicit schemes is the factorization of the iteration matrix, inte-

grating state and sensitivities together in time leads to significant computational

savings.

6.5 Computational cost

The feasibility of this inversion strategy depends on one’s ability to effi-

ciently solve the forward problems and the iterative optimization sub-problems.

The most expensive operations of this method are the integration of the forward

equations (6.13)–(6.14) and the linear algebraic system (6.9). The time-stepping

of the ODEs using implicit methods requires the solution of m(Nk + 1) linear al-

gebraic systems of size Nh ×Nh per time step, with m an integer associated with

the scheme. We therefore recommend the use of high-order, variable step ODE

integrators for their solution. The use of high-order methods with variable time

steps allows for accurate time-stepping with long time steps, reducing the total

amount of time steps and the overall cost.

Several robust high-order implicit schemes are known to perform well on

sets of ODEs stemming from MOL discretizations. These include the CVODES

package [40, 75], which uses high-order backward differences formulae, and Implicit

Runge-Kutta (IRK) methods [38]. In the simulations reported below we used the

3-stage, order 5 Radau IIA IRK formula, which allows for time step selection via

a posteriori error control.

Our implementation allows one to control both the error of the Jacobian

and the state. Our experience shows that controlling for the Jacobian tends to

produce smaller steps than just controlling for the step, without any appreciable
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impact in the inversion procedure. Hence we used only state error control. The

accuracy of the Jacobian’s approximation affects chiefly the computation of w(k+1)

in (6.5) and (6.9). If the approximation of A were to be insufficiently accurate

to negatively affect the computation of w, the candidate would still be rejected if

it does not decrease the objective functional (6.3). Nevertheless, our experience

shows that this is not the case: controlling only for the error of the state produces

adequate approximations of A.

When written in terms of A>Q>QA, the size of the system (6.9) is Nk×Nk.

By repeated applications of the matrix inversion lemma one can rewrite this sys-

tem in terms of QAA>Q>, which reduces its size to (Nobs,hNt)× (Nobs,hNt). This

reduction is possible if the terms αP>P and λD>xDx + λD>y Dy are either diago-

nalizable or trivially invertible. For example, if one uses a circulant discretization

of the differentiation operators, the term λD>x Dx + λD>y Dy is a block circulant

with circulant blocks (BCCB) matrix. It can be diagonalized and inverted via the

2D discrete Fourier transform. This approach can lead to nontrivial savings in the

solution of (6.9) if Nobs,hNt � Nk.

6.6 Application

To test our inversion strategy, we consider flow in a square domain [0, 12]×
[0, 12] that is discretized into 30 cells in each spatial direction. The reference log

conductivity field, shown in Figure 6.1, represents two heterogeneous facies with

spatial averages differing by several orders of magnitude. Error-free measurements

of hydraulic conductivity are taken at the Nobs,k = 25 cells labeled with an ’x’.

Note that only two observations fall into the low conductivity region. A first-order

finite-element scheme is used to compute the head response at the nodes of each

conductivity cell. Error-free measurements of hydraulic head are taken at Nt = 6

discrete times (10−4, 10−3, 10−2, 10−1, 100, 101) in the Mobs,h = 25 locations shown

with white circles and at Nt = 6 discrete times (10−4, 10−3, 10−2, 10−1, 100, 101) [T].

Boundary conditions are of constant hydraulic heads h = 20 along the left

boundary and h = 10 along the right boundary. No-flow boundary conditions are
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Figure 6.1: Synthetic log-hydraulic conductivity field.

imposed along the upper and lower boundaries. The initial condition is the steady

configuration of heads in the absence of external loadings.

The algorithm is tested for three system loading (pumping) scenarios. The

first scenario is of zero loadings, so the hydraulic head field is steady. The other two

scenarios consist of a single steady point loading of strength and location indicated

in Table 6.1 representing synthetic pumping tests. Additionally, the inversion is

performed for 4 combinations of the inversion parameters α, β, γ and δ of equation

(6.2), indicated in Table 6.2. The parameter sets are chosen to evaluate the effect

of different degrees of penalization of the deviation of the reconstructed heads, TV

regularization and `2 regularization.

Table 6.1: Properties of point loading in three test cases.

Scenario Location Strength
1 No loading
2 (6.0, 6.0) 5× 100

3 (2.8, 6.0) 5× 103

Figure 6.2 exhibits the estimated conductivity fields obtained for the first

(loading-free) scenario, together with the set (a) of inversion parameters (as listed

in Table 6.2). Our inversion algorithm is capable of reconstructing the overall

features of the original field, namely, the location, orientation and extent of the low

conductivity intrusion, even though the intrusion itself is highly undersampled (2
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Table 6.2: Inversion parameter sets

Set α β γ δ
a 1.0 1.0 1.0× 10−6 2.0× 10−8

b 1.0 0.5 1.0× 10−6 2.0× 10−8

c 1.0 1.0 1.0× 10−4 2.0× 10−8

d 1.0 0.5 1.0× 10−4 2.0× 10−8
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Figure 6.2: Reconstructed log-hydraulic conductivity field for Test 1.

out of 25 conductivity measurements). Additionally, the intrusion is reconstructed

as a region of conductivity higher than in the original field.

The satisfactory reconstruction is a consequence of the additional informa-

tion provided by the hydraulic head observations, together with the piece-wise a

priori information provided by the TV operator. One can think of the hydraulic

head data fidelity term, after the linearization of the functional h = f(k) around

the solution, as a quadratic form

1

2
w>A>Q>QAw + (other terms).

The rank of the symmetric positive semi-definite matrix A>Q>QA gives an

idea of the dimensionality of the parameter subspace observable via observations

of the system state. In the first loading scenario the matrix A>Q>QA, evaluated

around the estimated field shown in Figure 6.2, has an effective rank of 25 (the

number of head observations). Its eigenvectors show that the introduction of state

measurements allows for observation of features that extend spatially beyond the
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observation points. This added information, together with the piecewise regularity

assumptions encapsulated into the TV norm, allow for the reconstruction shown

in Figure 6.2.

While the reconstruction in Figure 6.2 captures the overall trend in hy-

draulic conductivity, it treats the actual observed cells as isolated, point-wise fea-

tures. This is an effect of the TV operator, which penalizes discontinuities along

(n − 1)-dimensional manifolds separating n-dimensional facies, in favor of point

discontinuities. Point discontinuities imply only n jumps per discontinuity and

therefore introduce less total variation than a jump across a manifold of large sur-

face area. This effect is more noticeable in the observational cells with values that

are significantly different from the overall conductivity field.

Figure 6.3 shows the estimated conductivity fields obtained for the second

loading scenario. The location of the point load is marked with a rhombus. The

reconstructed hydraulic head at each observation point compared to observations

for the inversion test (d) are presented in Figure 6.4. The conductivity estimator

is similar to the one obtained for the steady case, albeit with an additional feature.

In the immediate vicinity of the head and conductivity observation locations along

the low-conductivity intrusion, the conductivity field is more accurately estimated

as being of lower conductivity. This effect is more noticeable in the vicinity of the

head observation point (5.6, 6.0), for which there is a significant observed decay

in head due to the point load (Figure 6.4). The extent of the low-conductivity

patch around observation point (5.6, 6.0) is limited by the TV regularization. As

mentioned earlier, it has a tendency to reduce the area of the surface separating the

dark blue patch around (5.6, 6.0) and the surrounding low-conductivity intrusion.

Indeed, the extent of this patch is reduced as the TV coefficient γ increases (Figures

6.3 (c) and (d)).

Comparison of Figures 6.2 and 6.3 reveals that the addition of transient

information has a clear effect on the reconstruction results. This is to be expected

because more information is available in Test 2. The rank of A>Q>QA evaluated

around the estimated field in Figure 6.3 (a) increases from 25 (Test 1) to 76 (Test

2), which implies that more information from the underlying field can be recovered.
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Figure 6.3: Reconstructed log-conductivity fields for Test 2.

Figure 6.5 presents the estimated conductivity fields obtained for the third

loading scenario, with the location of the point load marked with a rhombus. The

reconstructed and observed hydraulic heads at each observation point for Test 3 (d)

are shown in Figure 6.6. The latter figure demonstrates that if the point loading is

located in the high conductivity region, it produces a significant variation of heads

in observation locations both along the low conductivity intrusion and in the center

and upper left portions of the high conductivity region. As expected, the addition

of more transient data increases the amount of recoverable information. The rank

of A>Q>QA (with A evaluated around the reconstructed field shown in Figure

6.5 (a)) increases from 25 (no transient data) to 121.
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Figure 6.4: Observed (continuous) and reconstructed (dotted) hydraulic heads

at observation locations for Test 2(d).

Table 6.3: Penalty results for Test 2.

Set ‖Pu− s‖2
2/2 ‖Qv − t‖2

2/2 TV ‖D(u)‖1 ‖D(u)‖2
2

a 9.69× 10−11 4.25× 10−6 5.92× 102 3.59× 103

b 2.81× 10−10 1.68× 10−5 6.10× 102 3.75× 103

c 1.03× 10−6 7.04× 10−4 5.97× 102 3.48× 103

d 9.80× 10−7 1.73× 10−3 5.94× 102 3.64× 103

Figure 6.5 (a) reveals that for a stringent penalty on the reconstruction of

heads (β = 1) and a relatively lax TV requirement (γ = 1×10−6) this information

increase produces a reconstruction of the intrusion that includes two fingers of

high conductivity connecting the two observation locations. This implies that

in order to accurately match the head observations (see Table 6.4 with heads

data fidelity 1
2
‖Qv − t‖2

2 = 2.13 × 10−5) without introducing either the required

heterogeneity into the field (which would significantly increase TV) or the well

delineated boundary between facies (which is not observable), our reconstruction

approach prefers to pay a small price in TV by introducing the high-conductivity

fingers. A more regular reconstruction can be obtained either by relaxing the
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Figure 6.5: Reconstructed log-conductivity fields for Test 3.

penalty on reconstruction of heads (Figure 6.5 (b), which increases 1
2
‖Qv − t‖2

2

from 2.13×10−5 to 1.85×10−3) or by increasing the TV coefficient (Figure 6.5 (c),

which increases 1
2
‖Qv − t‖2

2 to 1.68 × 10−3, but decreases TV from 1.06 × 103 to

6.38×102). A proper selection of inversion parameters reflecting the desired balance

between reconstruction and regularization is the responsibility of the modeler.

6.7 Conclusions and future work

Our numerical experiments show that the linearized functional minimiza-

tion algorithm is a feasible and promising approach for inverse modeling of geophys-
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Figure 6.6: Observed (continuous) and reconstructed (dotted) hydraulic heads

at observation locations for Test 3(d).

Table 6.4: Penalty results for Test 3.

Set ‖Pu− s‖2
2/2 ‖Qv − t‖2

2/2 TV ‖D(u)‖1 ‖D(u)‖2
2

a 2.24× 10−10 2.13× 10−5 1.06× 103 1.52× 104

b 6.01× 10−8 1.85× 10−3 8.72× 102 9.18× 103

c 5.95× 10−7 1.68× 10−3 6.38× 102 5.78× 103

d 1.07× 10−6 5.35× 10−3 6.06× 102 4.29× 103

ical systems. The application to a steady flow inversion problem shows that the

strategy can be used to detect large-scale features of the parameter field, provided

it is equipped with appropriate regularization terms reflecting the prior knowledge

of the field (e.g., the TV norm). Incorporation of transient information about the

state variables increases the amount of information that can be recovered (Tests

2 and 3 shown in Figures 6.3–6.6). The modeler must pay attention to a possible

appearance of extraneous features in the reconstructed field. These are introduced

by the algorithm in order to match additional head observations, while keeping

the total variation of the field low (Figure 6.5).

The approach is not limited to systems described by linear governing partial
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differential equations, such as the groundwater flow equation (6.1). All that is

required is for the Jacobian of the functional that relate the system parameters

to the system states to be computable. This implies that the strategy can be

easily expanded to incorporate measurements of multiple state variables and both

measurements and previous knowledge of multiple spatially distributed parameters.

Our linearized functional minimization approach to parameter identification

presents a promising venue of research. Future work will be focused on designing

a regularization operator that improves over TV by addressing its observed limita-

tions. These include its tendency to penalize large discontinuity surfaces in favor

of smaller surfaces or even point discontinuities. The trust region approach used

to minimize (6.3) can be improved for robustness and efficiency, together with the

selection of the inversion parameters.

Chapter 6, in part, is currently being prepared for submission for publica-

tion of the material: D. A. Barajas-Solano, D. A., Wohlberg, B., Vesselinov, V.,

Tartakovsky, D. M., “Linear Functional Minimization for Inverse Modeling”. The

dissertation author was the primary investigator and author of the paper.



Chapter 7

Conclusions

This dissertation leads to the following major conclusions.

1. We have proposed a regularization methodology for the numerical compu-

tation of Green’s functions for elliptic boundary value problems with vari-

able piecewise continuous coefficients. These Green’s functions can be used

in uncertainty quantification to solve deterministic partial differential equa-

tions (PDEs) governing the statistics of the quantities of interest that can

be derived from the original elliptic stochastic PDEs. Our regularization

methodology accounts for the lack of a solution’s regularity due to the Dirac

forcing to the Green’s functions’ problems. If not addressed, the lack of regu-

larity can significantly affect the accuracy of the computed Green’s functions.

Numerical experiments show that the proposed regularization methodology

improves the accuracy of the approximated Green’s function over standard

methods that do not take into account the issue of regularity.

2. We have compared the performance of sampling techniques (e.g., Monte

Carlo simulations) and global stochastic collocation strategies for the es-

timation of first moments of quantities of interest in nonlinear stochastic

parabolic and elliptic PDEs. The performance of global stochastic colloca-

tion methods, and in general strategies based on a spectral decomposition

of state variables in probability space, is significantly affected by the statis-

tical properties of uncertain model parameters. As the variance of random

91
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input fields increases it becomes necessary to use methods with high-order

accuracy. At some point these methods are computationally less efficient

than Monte Carlo simulations and its derivatives. These methods also scale

poorly with increasing number of dimensions under high-order of accuracy

requirements. A decrease in the correlation length of random input fields

can significantly increase the computational cost of the estimators. Finally,

different quantities of interest derived from the same nonlinear system can

have markedly different behaviors in probability space. Our numerical exper-

iments demonstrate the need to develop uncertainty quantification strategies

that can outperform simple Monte Carlo under high variance requirements

in high dimensional spaces.

3. To address the shortcomings of stochastic collocation techniques, we have

developed a Multi-level Monte Carlo (MLMC) framework for computing the

statistics of quantities of interest described by stochastic PDEs. This frame-

work has been applied to a family of nonlinear elliptic boundary value prob-

lems with uncertain coefficients. It has yielded a significant reduction in

the computational cost relative to that of simple Monte Carlo simulations.

Additionally, MLMC allows for the quantification of the estimator bias in-

troduced by the spatial discretization of the stochastic PDEs. We have per-

formed numerical experiments with a high number of stochastic dimensions,

effectively removing the bias introduced by the truncation of the stochastic

representation of the random input fields. The selection of spatio-temporal

discretization schemes, which increase the rate of decay of the various biases

with increasing Monte Carlo level, is a critical area for future research.

4. We have presented a computationally efficient algorithm for identification of

sources and release histories of (geo)chemically active solutes. It relies on

a Bayesian formulation of the inversion problem, and employs a generalized

hybrid Monte Carlo (gHMC) method to sample the posterior distribution.

The latter accelerates the Markov chain Monte Carlo (MCMC) sampling by

using information about the gradient of the likelihood to reduce the corre-

lation of the Markov chain. While our inversion algorithm can in principle
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handle nonlinear problems, the computation of the sensitivities for these

problems is a challenge. Robust and efficient sensitivity analysis techniques

must be employed to keep the overall computational cost reasonably low.

We have constructed acceleration matrices for the gHMC scheme for a lin-

ear advection-dispersion problem. These acceleration matrices significantly

reduce the correlation of the Markov chain over HMC without acceleration.

The generalization of these constructions to problems with nonlinear reaction

terms and non-periodic boundary conditions is the subject of further work.

5. We have introduced a novel strategy for estimation of parameters in non-

linear PDEs from discrete measurements of system parameters and system

states. This approach computes the maximum a posteriori estimator based

on a likelihood functional. The latter reflects available discrete (in space)

measurements of system parameters and discrete (in space and time) mea-

surements of transient system states. The approach makes use of regulariza-

tion terms (e.g., the total variation (TV) regularization norm) that capture

the prior information about system parameters, e.g., the fact that they are

piecewise continuous. Our numerical experiments show that the proposed

strategy is capable of detecting large-scale features and values of the uncer-

tain parameter field. Further work is required to design better regularization

operators that overcome some of the shortcomings of the TV norm. The

incorporation of more informative data, such as tracer measurements. will

also be explored.



Appendix A

Computation of sensitivities for

the hybrid Monte Carlo method

A.1 Adjoint sensitivy analysis

The forward problem (5.1) can be written in discrete form as a regular ODE

problem

f(t, c, c0) = ct −Ac + R(c)− r = 0, c(0) = q, (A.1)

where A is the discretized form of the linear advection-diffusion operator D(c) =

∇ · (D∇c) −∇ · (uc) plus boundary conditions, r is the discretized source vector

(which we set to zero without loss of generality), and R is a vector with components

Ri = R(ci).

In the following discussion, the subindices of f , c and scalar functions de-

note partial derivatives. The sensitivity of H in (5.13) with respect to vector c0

is computed following the procedure outlined in [16]. We begin by defining the

functionals

g(t, c,q) =
1

2σ2
ε

∆c>M∆c + γq>M′q, G(c,q) =

∫ T

0

g(t, c,q) dt. (A.2)

Then H = g(T ) = dG/dT , and ∇qH = ∇q(dG/dT ). Next, for f = 0 we

introduce a Lagrange multiplier v(t) such that

G(c,q) = G(c,q)−
∫ T

0

v∗f(t, c,q) dt

94
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where (·)∗ denotes the Hermitian adjoint. The sensitivity of G is given by

∇qG =

∫ T

0

[gccq + gq] dt−
∫ T

0

v∗[fccq + (cq)t] dt. (A.3)

Integrating by parts, ∫ T

0

v∗(cq)t dt = [v∗cq]T0 −
∫ T

0

v∗t cq dt. (A.4)

Substituting this into (A.3),

∇qG =

∫ T

0

gq dt−
∫ T

0

cq[−gc + v∗fc − v∗t ] dt− [v∗cq]T0 . (A.5)

Choosing v as a solution of the reverse-time ODE problem

−v∗t + v∗fc − gc = 0, v(T ) = 0,

greatly simplifies (A.5).

For the sensitivity of H = g(T ), we take the total derivative of (A.5) with

respect to T to obtain

∇qH = gq −
∫ T

0

cq[−(v∗T )t + v∗T fc] dt+ (v∗Tcq)|t=0 −
d

dT
(v∗cq)|t=T

Taking vT to be a solution of the ODE problem

−(v∗T )t + v∗T fc = 0, v∗T (T ) = −vt(T ) = gc,

the sensitivity of H reduces to

∇qH = ∇qg + vT (0) (A.6)

Since M and M′ are symmetric, gc = M∆c/σ2
c , and gq = 2γM′q. Also,

fc = A + Rc. Finally, writing v for vT , we obtain (5.15).

A.2 Ad-hoc sensitivity analysis

For the problem in section 5.4.2 we use the linearized Runge-Kutta (Rosen-

brock) method ROS2 of [92] for time stepping of the forward ODE problem. The
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advantage of using this method is that it allows for a linear implicit treatment

of the dispersion operator and a linearization of the reaction operator, while the

advection operator is treated explicitly.

We assume that the advection-dispersion-reaction equation can be dis-

cretized into an autonomous system of ODEs

ct = f(c) = (AD + AA)c−R(c),

where c is the state vector, AD is the discretized linear dispersion operator, AA is

the discretized linear advection operator, and R(c) is the reaction vector. Time

stepping is performed via a scheme

cn+1 = cn + (2− b)∆tk1 + b∆tk2, (A.7)

(I− θ∆tJ)k1 = f(cn), (A.8)

(I− θ∆tJ)k2 = f

(
cn +

1

2b
∆k1

)
− 1

b
k1, (A.9)

where J = fc(c
n) is the Jacobian of f with respect to the state. The coefficients θ

and b are taken for this application as θ = 1−
√

2/2 and b = 1/2, respectively. The

left-hand side operators of (A.8)–(A.9) are approximated via approximate matrix

factorization (AMF) to obtain the split form

(I− θ∆tJ) ≈ (I− θ∆tAD)(I + θ∆tRc(c
n)).

The discussion in section 5.4.2 led us to conclude that it is necessary to com-

pute products of the form (dci+1/dci)>u in order to apply the ad-hoc sensitivity

technique of [24]. The formulae for the computation of these products is derived

from the time-stepping scheme (A.7)–(A.9). In particular, differentiating (A.7)

with respect to the state and multiplying by a test vector u gives the single-step

sensitivity product as(
dcn+1

dcn

)>
u = u +

3

2
∆t

(
dkn1
dcn

)>
u +

1

2
∆t

(
dkn2
dcn

)>
u.

The next task is to derive formulas for the Jacobians of the stage derivatives

k1 and k2. Let M be the AMF-ed left-hand-side matrix of (A.8)–(A.9). Differen-

tiating (A.8)–(A.9) with respect to the state and multiplying by the test vector u
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gives the formulae(
dkn1
dcn

)>
u =

[
J0 −

(
dM

dcn
kn1

)]
v, M>v = u

and (
dkn2
dcn

)>
u = J>1 v +

(
dkn+1

1

dcn

)>
(∆tJ1 − 2I) v −

(
dM

dcn
kn2

)>
v,

with J0 = fc(c
n), J1 = fc (cn + ∆tkn1 ).

The computation of the products (dM/dcn)kni , i = 1, 2 is highly problem-

specific. It depends on the structure of the second-order derivatives of the reaction

vector with respect to the state. For the reaction model (5.16) and a method-of-

lines discretization, the Jacobian Rc is diagonal and so the computation of these

products is straightforward. For different reaction models and more sophisticated

discretization schemes the computation might be more involved.
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