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System Identification for Building Thermal Systems
under the Presence of Unmeasured Disturbances in
Closed Loop Operation: Theoretical Analysis and

Application

Donghun Kima,∗, Jie Caib, James E. Brauna, Kartik B. Ariyura

aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
bThe School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman,

OK, USA

Abstract

It is important to have practical methods for constructing and learning a good
mathematical model for a building’s thermal system in the presence of unmea-
sured disturbances and using data from closed loop operation. With this goal in
mind, this paper presents a mathematical framework that explains the asymp-
totic behavior of an estimated model under those conditions and that can aid in
learning an accurate model. Some analytic results from the literature of system
identification are extended and interpreted for building systems. A new identi-
fication approach for determining an accurate thermal network (RC) model for
a multi-zone building is developed based on the analytic result, and its superior
performance over a conventional grey-box modeling approach is demonstrated
experimentally.

Keywords: building modeling, grey-box model, system identification, thermal
network, disturbances

1. INTRODUCTION

In the past three decades, there has been great interest in applying system
identification methods for characterizing building thermal dynamics. Mathe-
matical models obtained through identification processes have been widely used
for many purposes. Identified models for buildings can be utilized for shifting
cooling loads using the building’s thermal capacities, for optimally operating
heating ventilation and air conditioning (HVAC) systems using prediction of
future loads and for monitoring building energy performance [1; 2; 3; 4; 5; 6; 7;
8; 9; 10].
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Considerable research has been performed within the past few decades on
methods for obtaining reliable models for building systems. The primary focus
of research from the early 1990s has been to select a proper model structure
and identification algorithm [11]. Various model structures including black box
types, e.g. ARX, ARMAX and state-space forms [12; 13; 14; 15; 16], and grey-
box types [4; 17; 18; 19; 20; 21; 22; 23; 24; 25] have been investigated. Many
identification algorithms developed from other fields, e.g. signal processing and
statistics, have been applied to the field of building science. Popular choices
are the least squares method(LS) [13], prediction error methods (PEM) [12],
maximum likely-hood methods (MLE) [11] and subspace identification methods
(SIM) [12; 26]. Other identification methods, e.g. the identification for long
range predictive control [26], extended or unscented Kalman filters [27] and
machine learning methods [28; 29] were also applied to building systems. Com-
parisons between several model structures and algorithms applied to buildings
can be found in [26; 30; 31].

Buildings interact with many unmeasured 1disturbance sources such as occu-
pancy gains, in/ex-filtration and occupant random behaviors, e.g. window/door
openings. Furthermore there are many situations where significant disturbance
data is missing due to high sensor cost. For instance, information for each zonal
plug load which is not negligible for commercial buildings [32, p. 3-5] may not
be available, although a whole building plug load can be measured. In addition,
it is common to have imperfect information in measurements, e.g. the outdoor
air temperature and solar radiation, which also act as unknown disturbances.
A typical situation occurs when the building of interest is shaded by its sur-
roundings. In this case, obtained solar data, say from weather services, could
be incorrect. It is common to assume schedules for occupancy and equipment
in identification processes, e.g. [26] and [18], or to assume that unmeasured
disturbances are not dominant, e.g. [33] and [19]. For some buildings equipped
with many sensors, the information of dominant disturbances is accessible, and
the concern can be alleviated. However, for many buildings in practice, many
unknowns exist.

In addition, it is often necessary to obtain a model while maintaining thermal
comfort. Therefore, open-loop identification methods, e.g. mode switching of
electric heaters with pseudo random binary signals (PRBS), to obtain a better
model are limited in practical situations.

Despite the practical and common issues, there has been little research into
the questions of what happens if working data is corrupted by unknown build-
ing disturbances and how to obtain a good representation for a building system
under the presence of unmeasured disturbances and closed-loop operation. This
paper develops a mathematical framework to analyze the behaviors of identified

1Uncontrolled external inputs to a system will be called disturbances. We distinguish
between measured and unmeasured disturbances depending on their availability. For example,
the ambient temperature is a measured disturbance when the data is available. Otherwise, it
is an unmeasured disturbance.
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models under those conditions and provides a new identification approach for
multi-zone buildings. Sections 2.1 and 2.2 are devoted to describing the system
of interest and mathematical frameworks. In Section 2.3, a fundamental result
of classical system identification, that describes how an estimated model will be
biased when significant unmeasured disturbances exist, will be reviewed. Sec-
tion 2.4 will extend the result to building applications. The bias expressions
derived in this section are used to analyze the relationship between model per-
formance and training data quality. A new identification algorithm is drawn
from the analysis and case study results are shown in Section 3.

2. ANALYSIS OF THE INFLUENCE OF UNMEASURED DISTUR-
BANCES ON IDENTIFICATION

2.1. System of Interest

(a) Block diagram of a closed loop system

(b) System of interest

Figure 1: Control Loop Systems

Fig. 1a shows a standard block diagram for a closed loop system. GT is the
system to be identified and K represents a feedback controller which responds to
a reference signal, denoted as r. u and y are the control input(s) and output(s)
in the closed loop system. The signal v is to describe unmeasured output distur-
bances. Y is the output response minus the disturbances, i.e. Y (k) = y(k)−v(k)
for each time step k and Y = GT ◦ u.

We are particularly interested in a building thermal system in which y is zone
air temperature and u is mechanical/electrical heat rate or equipment mode.

Fig. 1a may not be suitable for the purpose of system identification. Most
likely, building models have to include some measured disturbances, such as
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the ambient temperature or solar irradiation. Therefore, a more suitable form
would be Fig. 1b instead of Fig. 1a, where u1 and u2 represent the controlled
input and measured input disturbances, respectively. Y is the output response
purely driven by the control input, where Y = G1 ◦ u1. We are interested in
identifying both G1 and G2.

2.2. Assumptions and Mathematical Framework for Analysis

This section summarizes some notations and assumptions to describe the
theoretical results in Sections 2.3, 2.4 and the Appendix. Terminologies from
[34; 35] were adopted.

It is assumed that the true building dynamic system to be identified, denoted
as P, is a linear, discrete-time stochastic system having the following form:

P : y(k) = G1(z)u1(k) +G2(z)u2(k) + v(k) (1)

z−1 is the backward time shift operator such that z−1x(k) = x(k − 1) for
any sequence of x. G1(z) and G2(z) are stable rational polynomials in z. The
assumption of a linear and stable building system is widely adopted, in almost
all papers using grey-box based thermal network model structures, despite some
nonlinearities associated with convective heat transfer coefficients and radiative
heat interactions through windows, as long as u1 is mechanical/electrical heat
rate. v represents the unmeasured (output) disturbances. From Fig. 1b and
(1), note that we are not looking at unmeasured heat gains [kW] but looking
at their aggregated influence on zone air temperature(s) y [oC]. This unique
view on building disturbances provides significant benefits in analysis and ap-
plications: 1) a variety of building heat sources can be replaced with a single
process (for a single zone), 2) the output disturbance would be a low pass filtered
process through the dynamics of buildings, and 3) together with the assump-
tion described in the next paragraph, the identification problems in practical
buildings can be analyzed within a standard mathematical framework of system
identification.

Our key assumption for handling the output disturbance v is the following.

v(k) = HT (z)e(k) (2)

where e is a zero-mean white noise process such that E(e(k)e(s)) = σ2δ(k−s) for
all s and k2. HT is a monic, minimum-phase and stable transfer function. The
monic assumption is introduced for normalization reasons and the minimum-
phase is to ensure its stable invertibility. Those are standard assumptions in
classical system identification books, e.g. [34; 35]. Note that we regard the
output disturbance as a filtered process with the filter of HT , rather than a
white noise process. Depending on the shape of HT in the frequency domain,
one can imagine that (2) can generate a variety of disturbances, although it can

2δ is the Kronecker delta such that δ(k − s) = 1 only if k = s. Otherwise it is zero.

4



not completely characterize all possible disturbances. Therefore, the color noise
assumption together with the output disturbance treatment are anticipated to
cover many of building heat sources in practical buildings. If the assumption
fails for some cases, the analysis presented in this paper is not valid. However,
it is argued that the assumption is versatile enough for most practical purposes
[35] in the system identification community.

We restrict parametric models to having the following form.

y(k) = Gθ(z)u(k) +Hθ(z)ε(k), (3)

where ε is a zero-mean white noise process and θ ∈ Rd, d ∈ N. A model structure
that maps parameters θ to a model is denoted by M. Examples are ARX,
ARMAX and any grey box types.

We denote identification methods, e.g. PEM and SIM, as I and experimental
conditions as E , respectively. E describes how data is obtained. In this paper,
we are interested in data obtained from closed-loop operation.

It is important to mention that in this paper we are interested in system iden-
tifiability (SI) rather than parameter identifiablitiy (PI). SI concerns whether an
estimated model with M, I and E approaches P as the number of data points
goes to infinity [34; 36], while PI concerns whether estimated parameters, e.g.
R and C in thermal network models, converge to true parameter values.

2.3. A Brief Review on a Result from a Classical System ID (PEM)

This section reviews a theoretical result of an identification method, PEM,
which is relevant for the analysis of the identification with closed loop data. The
system of interest is shown in Fig. 1a.

PEM searches parameters, denoted as θ, by minimizing a norm of one-step
ahead prediction errors, denoted as ε. A standard objective function of PEM,
denoted as V , with N data is

V (N ; θ) :=
1

N

N∑
k=1

tr(ε(k)εT (k)), (4)

where tr and the superscript T represent the trace and transpose of a matrix,
respectively.

Under the assumptions of Section 2.2, the objective function of PEM con-
verges in probability one to

1

N

N∑
n=0

tr(ε(k)εT (k))→trE(ε(k)εT (k)). (5)

Ljung [35, pp. 263-265] showed, for a single-input single-output (SISO)
system, the objective function can be expressed as

min
θ

E(ε2(k)) = min
θ

1

2π

∫ 2π

0

Φε(w)dw, (6)
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where

Φε =
|GT −Gθ +Bθ|2

|Hθ|2
Φu +

|HT −Hθ|2(Φe − |Φue|2
Φu

)

|Hθ|2
+ Φe,

Bθ = (HT −Hθ)
Φue
Φu

.

where Hθ is an output disturbance model as shown in (3), Φi and Φi,j are
power spectrum of a process i and cross power spectrum of i and j processes,
respectively. Frequency dependency w of all terms in the equation are omitted
for simplicity in notation.

Consider a simple case where the disturbance model is fixed, say H0, in order
to investigate what happens for closed loop operation. From (6), it is clear that
PEM tends to minimize∫ 2π

0

|GT −Gθ +B0|2Φudw, (7)

where B0 = (HT−H0)Φue

Φu
. Therefore, the asymptotic estimated model, denoted

as Gθ̂, will be Gθ̂ = GT + B0 if the range of M is large enough and u(k) is
persistently exciting (PE) for any orders, i.e. Φu(w) > 0,∀w. This is clearly not
system identifiable. We denote G̃ := GT −Gθ̂ as an asymptotic bias. Then

G̃ = −(HT −H0)
Φue
Φu

. (8)

Note that (8) relates quality of an identified model to quality of data and
will provide an analytic tool to judge the data quality and methods to improve
the model for the system of Fig. 1a.

2.4. Analysis of the Bias of a Model for a Building System Caused by Unmea-
sured Disturbances

We will generalize the expression of the asymptotic bias (8) for SISO systems
to MIMO systems, interpret it for buildings, and then use it for designing a new
identification approach in Section 3. Consider the system shown in Fig. 1b
where the working data for model estimation consists of both control inputs u1,
and measured disturbances u2. As mentioned, for building modeling, we are also
interested in questions of how the model associated with measured disturbances,
i.e. the model for G2 in Fig. 1b, is affected by v and how to improve the model
for both G1 and G2. In order to answer those questions, a generalized version
of (6) for the system was derived in the Appendix.

For a case when y(k), u1(k), u2(k) ∈ R, the asymptotic objective function of
a PEM is

min
θ

E(ε2(k)) = min
θ

1

2π

∫ 2π

0

Φε(w)dw (9)
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where

Φε = |G̃2 + G̃1Φ12Φ−1
2 + H̃Φe2Φ−1

2 |2
Φ2

|Hθ|2

+ |G̃1 +B1|2
(Φ1 − Φ12Φ−1

2 Φ21)

|Hθ|2

+ |H̃|2 Φ′e
|Hθ|2

+ Φe.

where G̃1, G̃2 are the model bias, and H̃ is the model mismatch between the
true disturbance dynamics and modeled disturbance dynamics. In other words,
G̃1 = G1 −G1,θ, G̃2 = G2 −G2,θ and H̃ = HT −Hθ. See (42) in the Appendix

for its derivation and other notations. G̃1, G̃2, H̃ and Hθ are dependent on θ,
and all spectrums are determined by estimation data.

For analytical simplicity, focus on a simple case where the disturbance model
is fixed. From (9), it is clear that PEM tends to minimize∫ 2π

0

|G̃2 + G̃1Φ12Φ−1
2 + H̃Φe2Φ−1

2 |2Φ2 + |G̃1 +B1|2(Φ1 − Φ12Φ−1
2 Φ21)dw. (10)

Clearly 0 is the minimum of (10) and under mild conditions, a minimizer
satisfies the following.

G̃1 = −B1 = −H̃(Φe1 − Φe2Φ−1
2 Φ21︸ ︷︷ ︸)(Φ1 − Φ12Φ−1

2 Φ21︸ ︷︷ ︸ )
−1

(11)

G̃2 = −G̃1Φ12Φ−1
2 − H̃Φe2Φ−1

2 (12)

(11) and (12) are the concluding equations that express the asymptotic bias
for estimated models of G1 and G2. Their interpretations are as follows.

Define a process, denoted by u1|2, to be

u1|2(k) := u1(k)− Φ12(z)Φ−1
2 (z)u2(k). (13)

Then it is easy to see

Φ1|2,2 = 0 (14)

Φ1|2 = Φ1 − Φ12Φ−1
2 Φ21.

This implies the process u1|2 is the uncorrelated component of u1 with respect
to u2. Therefore the second bracketed term of (11) is the power of the signal.
u1|2 may be thought of as a portion of the control effort to reject the unmea-
sured disturbances rather than u2. Note that when u1 and u2 are significantly
correlated, e.g. u1 ≈ u2 as an extreme case, the second bracketed term is close
to 0. Furthermore the first bracketed term is the cross spectrum between e and

7



u1|2, i.e. Φe,1|2. This can be seen by taking the z-Transform of the correlation
function between e and u1|2.

With these in mind, (11) means that the asymptotic inconsistency for G1

appears due to

• the mis-specified disturbance model

• the correlation between unmeasured disturbances and the component of
u1 that is not correlated to measured disturbances

• the correlation between u1 and u2.

G̃2 of (12) represents the asymptotic bias for G2. It can be clearly seen
by the formula, unlike SISO cases, that the model mismatch for G1, i.e. G̃1,
directly affects the bias for G2. In other words, inconsistent estimation of G1

deteriorates the model quality of G2. Therefore one can not expect a good
model for G2 if the model for G1 is bad, unless the correlation between the two
inputs is weak or the power of u2 is high enough for all frequencies. Conversely
one can improve the model quality for G2 by improving the model for G1. In
summary, the asymptotic inconsistency for G2 appears due to

• the mis-specified disturbance model

• the correlation between the measured disturbances and the unmeasured
disturbances

• the bias of G1.

So far, we have shown that the correlations between u1, u2 and v deteriorate
the quality of the models. However it is not difficult to show that the correlations
between individual components of u1 when the dimension of u1 is greater than
1, e.g. for a building served by multiple rooftop units (RTU), also deteriorate
the quality of the models. Likewise, the correlation between u2 components
influences the estimated model.

Despite the complex mathematical development, the conclusion to judge or
design data for the estimation of building models under the presence of un-
measured disturbances and closed loop operation is extremely simple: ”Try to
decorrelate all inputs”. This simple goal provides insights for assessing model
quality by looking at purely the training data set or for selecting a better data
set for practical situations in buildings. Some examples are listed below.

1. Suppose data for ambient temperature and solar are available. Correlation
between the two disturbances can cause inconsistency. Therefore, it is wise
to select data where the correlation is low, e.g. cloudy days.

2. Suppose ambient temperature and plug-load data are available. If weather
and plug-load data are strongly correlated, the models associated with the
inputs are most likely not reliable.
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3. Consider an open space building served by multiple rooftop units (RTUs).
In this multi-input multi-output system, G1 is not accurate unless all
control inputs are uncorrelated. This makes sense because one can not
distinguish which RTU affects which thermostat if they are turned on and
off at the same time.

4. Consider the case that data is collected from closed loop operation with
a fixed zone air temperature setpoint and the ambient temperature and
mechanical heat removal rate are measured as inputs. One can easily
conclude that G1 is not reliable, because the cooling load profile must be
correlated to the ambient temperature since the controller would reject the
signal of the ambient temperature, unless the building is not significantly
affected by the temperature.

5. In the above case, one can not also expect a good model for G2 because
G̃1 affects G̃2.

The arguments themselves in the examples are not surprising. However the
interesting point is that they can be explained within the mathematical expres-
sions of (11) and (12) which support the validity and physical meaningfulness
of the mathematical framework.

Unfortunately, the final equations do not provide a specific metric for de-
termining model quality in real-world applications. This is because, 1) their
evaluations require the knowledge of unknown dynamics of disturbances, i.e.
HT (z), and the underlying white noise process of e(k). Nevertheless, they pro-
vide qualitative methods and theoretical reasons for assessing model quality by
looking at purely the training data set, for selecting or designing a better data
set as shown in the examples, and for designing an identification algorithm (see
Section 3.3 where they are used to identify and resolve the issue of lack of dis-
turbance model associated with typical grey-box thermal network identification
approaches).

2.5. Validity range of the analytic results

Note that we did not assume any feedback control so far, thus the conclusions
made in Section 2.4 hold for any controller, including with several mode changes
and control input saturation.

PEM is a general identification method. When PEM is applied to an ARX,
it is the same as LS. Furthermore it is well-known that PEM is asymptotically
equivalent to MLE [37] when the noise process, e, is Gaussian. More impor-
tantly, most grey-box-based identification approaches also belong to PEM as
long as the approaches tend to minimize a norm of simulation errors. Shook,
Mohtadi, and Shah [38] also showed that an identification method which min-
imizes a norm of several step prediction errors, so called identification for a
long-range predictive control, is asymptotically the same as PEM except for one
filter term of its asymptotic description (see [38] and [39]). Therefore the follow-
ing asymptotic results of PEM can be applied for many identification methods
which are relevant to the field of building modeling.
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3. APPLICATION: AN IDENTIFICATION APPROACH TO AL-
LEVIATE EFFECTS OF UNMEASURED HEAT GAINS FOR
MIMO BUILDING THERMAL SYSTEMS

In this section, we present an identification approach aiming at improving
the accuracy of a grey-box model for a multi-zone building despite the presence
of unmeasured disturbances. The analytic result, (11) and (12), in the preced-
ing section is used to identify the problem associated with typical RC network
identification approaches and overcome the problem. The system of interest is
described in Section 3.1. Section 3.2 elaborates an RC network for the multi-
input multi-output (MIMO) building. The proposed approach is summarized
in Section 3.3. Section 3.4 describes an experimental design approach aim-
ing at obtaining a better model. Experimental case study results are shown in
Section 3.5.

3.1. System Description

An open space area served by multiple packaged units is of particular inter-
est. A rooftop unit (RTU) is a packaged air conditioning unit consisting of a
vapor compression cycle, supply air blower, air mixing box and optional econo-
mizer and heating element, i.e. an electric heater or gas burner. In general, a
thermostat is dedicated to a RTU and turns one or more compressor stages on
and off to maintain a local zone air temperature near a setpoint. The supply
fan is typically on continuously during the occupied period or can cycle with
the compressor during unoccupied times. Most RTUs in the field do not have
variable speed compressors or fans controlled by variable frequency drives. Con-
ventional thermostat logic for a RTU employs a relay switch where a compressor
stage is switched on when the thermostat temperature reaches a temperature
that is the setpoint plus a deadband, and remains on until the temperature is
cooled to the sepoint.

To formulate the identification problem, let n ∈ N be the number of zones
or equivalently the number of RTUs or thermostats. The measured outputs are
the thermostat temperatures, denoted as y ∈ Rn. The manipulated variables
are the RTU or compressor stages, denoted as u ∈ Zn, and we assume the in-
formation of the outdoor air temperature, To ∈ R, is available. Let [uT , To]

T be
the measured inputs having the size of m where m = n + 1. The dynamics of
the system, namely Gu : u 7→ y and GTo : To 7→ y, in nature is very complex,
because it involves a refrigerant cycle, the heat exchange between ventilation air
and the refrigerant, inter-zonal air flows that could vary depending on the com-
bination of the supply fan modes and air duct systems, and the time constants
of thermostats.

The systems to be identified are Gu and GTo . It is assumed that measure-
ments are collected under closed-loop operation. In other words, u is deter-
mined by a control loop. The most significant challenge to modeling is the lack
of available measurement points associated with this application. The IO data
for identification contains unknown but possibly significant disturbances (e.g.,
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Figure 2: RC network structure for a two-zone building

solar radiation, internal gains), and hence the control inputs are correlated to
the unmeasured disturbances due to the thermostat feedback controllers.

3.2. Choice of RC Network Model Structure

We assume a simple model structure in an attempt to capture major dy-
namics of the complex system. An example RC network for a two-zone (i.e.,
two thermostat) system is depicted in Fig. 2. Each zone is composed of two
thermal capacitances and two thermal resistances, and is served by its own unit
having capacity of Q̇j . Zone air nodes are connected by a resistance denoted as
Rzz in the figure3.

Corresponding differential equations for the jth zone are;

Cz,j Ṫz,j =
1

Rzw,j
(Tw,i − Tz,j) +

n∑
k=1,k 6=j

1

Rzz,kj
(Tz,k − Tz,j)

+
1

Rzo,j
(To − Tz,j) + Q̇g,j + Q̇juj

Cw,j Ṫw,j =
1

Rzw,j
(Tz,j − Tw,i). (15)

3In reality, the inter-zonal resistance could be time varying depending on the status of sup-
ply air fans. Furthermore, the cooling/heating capacity is also time varying depending on the
outdoor air temperature, return air wet-bulb temperature and supply air/condenser fan speed.
Our intention is to get representative values for those parameters based on measurements.
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Tz,j is the local zone air (thermostat) temperature and Tw,j is a local wall

temperature representing averaged behaviors of the building enclosure. To, Q̇j
are the outdoor air temperature, and mechanical heat rate for the jth zone.
uj ∈ Z represents a RTU stage. Cz,j and Cw,j represent thermal capacitances
of the zone and wall. Rzw,j and Rza,j are thermal resistances between the zone
air and wall, and between the zone air and ambient air, respectively. Rzz,kj =
Rzz,jk is the effective thermal resistances between the kth and jth zone. The
total number of interzonal resistances is the number of 2-combinations from n,
and hence is n!/((n − 2)!2!). Q̇g,j represents unmeasured input disturbances,
e.g. occupancy gains, lighting loads and transmitted solar radiation.

The parameters to be estimated are denoted as θ which consists of Cw,j , Cz,j ,

Rzw,j , Rzo,j , Q̇j and Rzz,kj , ∀j, k ∈ {1, · · · , n}. The dimension of θ is 5n +
n!/((n− 2)!2!).

Based on (15), an n zone system can be expressed as follows.[
C̃w

C̃z

] [
Ṫw
Ṫz

]
=

[
H̃ww H̃wz

H̃zw H̃zz

] [
Tw
Tz

]
+

[
0 0
˜̇Q H̃zo

] [
u
To

]
+

[
0

Q̇g

]
(16)

where C̃w = diag(Cw,1, · · · , Cw,n), C̃z = diag(Cz,1, · · · , Cz,n), H̃ww =

−diag(1/Rzw,1, · · · , 1/Rzw,n), H̃wz = H̃zw = −H̃ww, ˜̇Q = diag(Q̇1, · · · , Q̇n)

and H̃zo = [1/Rzo,1, · · · , 1/Rzo,n]T . The (k, j) entry of H̃zz is 1/Rzz,kj for

k 6= j. When k = j, the jth diagonal entry of H̃zz is −(1/Rzw,j + 1/Rzo,j +∑n
k=1,k 6=j 1/Rzz,kj). Here, diag(a, b) means a diagonal matrix having (a, b) for

the entities.
After discretizing the differential equations, one can come up with the fol-

lowing discrete transfer function.

Tz(k) = Gu(z)u(k) +GTo
(z)To(k) +Gg(z)Q̇g(k). (17)

3.3. Lumped Output Disturbance Identification Algorithm

Our goal is to estimate Gu and GT,o in (17) as accurately as possible based

on measurements of u, To and Tz without any information of Q̇g.
In this paper, we will call a grey-box based identification approach conven-

tional if its model structure relies on an RC network structure and there are no
parameters to estimate dynamics of unmeasured disturbances. Typically con-
ventional approaches seek to find a certain θ by minimizing the sum of squares
of simulation errors and have the following model structure.

Tz(k) = Gu(z; θ)u(k) +GTo
(z; θ)To(k) + ε(k). (18)

Comparing this to (1) indicate that the true dynamics of unmeasured dis-
turbances, i.e. HT (z), is identified as the identity matrix In in the conventional
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approaches. Based on the results in Section 2.4, it is clear that they result in
poor models due to the mismatched disturbance model.

More precisely, using (11) and (12), asymptotic bias for Gu and GTo
for the

conventional grey-box approaches, are

G̃u = −(HT − In)(Φeu − ΦeTo
Φ−1
To

ΦTo,u)

×(Φu − Φu,To
Φ−1
To

ΦTo,u)−1 (19)

G̃To = −G̃uΦuToΦ−1
To
− (HT − In)ΦeToΦ−1

To
(20)

where Φu,ΦTo and Φe represent the power spectrums of u, To and a noise process
e. Φi,j represents a cross spectrum between i and j processes.

(19) and (20) indicates that the conventional approaches result in poor
models, i.e. increased G̃u, G̃To

, due to the discrepancies of disturbance mod-
els (underlined terms). This failure is intuitively clear, since the conventional
approaches tend to explain input/output relationships without information of
Q̇g.

Equations of (11) and (12) indicate that the only solution to reduce G̃u
and G̃T,o is to lower H̃ in the identification algorithm phase because the other
terms are associated with data. The solution approach that is not only esti-
mating physical parameters of θ but also estimating underlying dynamics of
the unknown disturbances is termed the lumped (output) disturbance model-
ing approach (LD) and was presented in our companion paper [40]. The idea
of modeling disturbances can be found in most standard system identification
algorithms, e.g. PEM on ARMAX model structures and subspace system iden-
tification methods, but the LD works on grey-box models with parameter con-
straints rather than black box models and with decoupled output disturbance
models as described below.

Since the LD introduced in [40] is limited to a single output system, it can
not be directly applied to our systems. Therefore, in this paper, the algorithm
is revised to cover the MIMO identification problem by modifying a disturbance
model structure. It starts from characterizing disturbances in buildings. Dy-
namics of a building are influenced by many disturbance sources. However, in
the mathematical frame of Section 2.2, the various heat gains were lumped into
v(k), and hence one needs to characterize only one signal, i.e. Gg(z)Q̇g,j , for
each zone. In addition, heat gains may have high power spectrum in a high
frequency range, which is difficult to model. The key observation to handle
this issue is that if the signal of Gg(z)Q̇g(k) is modeled, the characterization
problem becomes much easier.

More precisely, let

v(k) := Gg(z)Q̇g(k). (21)

We call v the lumped (output) disturbances. From (21), v is a filtered signal
of unknown heat gains due to building dynamics, i.e. Gg(z). Since building

13



dynamics are essentially a low pass filter, v has high power spectrum within a
low frequency range. A simple low pass filtered signal may be characterized by
a pole and DC-gain. Therefore, we model HT having the following structure.

H(z; ρ) = diag(
ρ2,1z

−1

1 + ρ1,1z−1
+ 1, · · · , ρ2,nz

−1

1 + ρ1,nz−1
+ 1) (22)

where ρ1,j , ρ2,j ∈ R having bounds of

0 < ρ1,j < 1, (23)

− 1 < ρ2,j < 1 , (24)

for all j ∈ {1, · · · , n}. The first parameter, ρ1,j , and the corresponding con-
straint make H asymptotically stable and a low pass filter. The second param-
eter, ρ2,j , is to adjust the DC-gain of a low pass filter.

Considering (17) and (22), our final model structure has the following state
space form.

T̂ (k + 1) = A(θ)T̂ (k) +Bu(θ)u(k) +BT,o(θ)To(k) (25)

Tz(k) = [0n, In]T̂ (k) + v̂(k)

ζ̂(k + 1) = F(ρ)ζ̂(k) + G(ρ)ε(k)

v̂(k) = ζ̂(k) + ε(k)

where ρ represents parameters for the disturbance model and

F(ρ) = −diag(ρ1,1, · · · , ρ1,n), (26)

G(ρ) = diag(ρ2,1, · · · , ρ2,n).

A(θ), Bu(θ) and BT,o(θ) are defined by (16) and a discretization scheme

for the continuous time dynamic description, e.g. the zero-order hold. T̂ is
estimated states for zone air and wall temperatures with candidate parameters
of θ, v̂ is an estimation of true output disturbances with ρ, and ζ̂ is the internal
state appearing in converting the transfer function description of the output
disturbances (22) to the state space description (25).

A remark on the final model structure (25) compared with other disturbance

modeling approaches is that we have additional state ζ̂ augmented to physical
state T̂ , and the dynamics associated with them are completely decoupled. This
is to provide flexibility in our disturbance model H(ρ) to fit HT with a smaller
number of parameters. For example, ARX, ARMAX or SIM structures have
constraints such that dynamics of a system and disturbance have shared poles
while our disturbance model structure does not need to. In this sense, a black
box version of (25) is the Box-Jenkins model structure.

Since ε in (25) is the innovation process, a simulation error minimization
scheme can not be utilized. Therefore, the PEM approach is used for estimating
both parameters of θ and ρ based on the state space form of (25). For detailed
descriptions to get θ and ρ, see [40].
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Figure 3: Case study building (supply air diffuser 1 and return vent 1 are not
shown)

3.4. Design of Experiment

As mentioned in Section 2.4, it is wise to decorrelate all inputs to reduce
unwanted influences of unknown heat gains to an estimated model. From (20),
recall that the model mismatch for Gu, i.e. G̃u, directly affects the bias for GTo

through the correlation between u and To. In other words, poor estimation of
Gu implies a poor model for GTo , and vice versa. Likewise, the correlations
between control inputs u also deteriorate the quality of the models. It makes
sense that one cannot distinguish which RTU affects which thermostat and how
much a RTU influences a thermostat temperature when RTUs turn on and off
at a same time, i.e. RTU stages are correlated. A standard approach which
perturbs setpoints of thermostats randomly within comfort bounds is suitable
for this purpose.

3.5. Case Study

3.5.1. Building Description and Experimental Setup

To test the overall identification approach a cooling system for a conference
room (about 15 m long, 7 m wide and 3.5 m high) in the Ray W. Herrick Labora-
tories at Purdue University, IN, U.S. (see Fig. 3) was retrofitted. Two packaged
air conditioners (termed RTU1 and RTU2) having different cooling capacities
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Figure 4: Floor Plan with locations of thermostats, supply and return vents
(Purdue Herrick Laboratory)

were installed and the air duct system was reconfigured accordingly. RTU1 is
a 1-ton single stage unit with 9 EER and RTU2 is a 2-ton single stage unit
with 10 EER. Thermostats, supply and return vents associated with the two
units are shown in Fig. 3 and 4. In this system, we have 2 thermostat temper-
ature outputs and 3 measured inputs that are the RTU stages and outdoor air
temperature which was obtained from a NOAA (National Oceanic and Atmo-
spheric Administration) website. Note that there is a strong coupling between
the two sub-zones (or thermostats), and hence the operation of one unit can
influence both thermostat temperatures. Unmeasured heat sources are lighting
gains (around 1.5 kW), loads from electric appliances (a small freezer and one
laptop computer), in/exfiltration and solar gains though windows. The lights
were turned on and off by occupant random behavior.

3.5.2. Results

The thermostat temperatures and each RTU ON/OFF mode, more precisely,
the stage run time, were recorded with a five-minute sampling time. The set-
points during the daytime were 72±2oF and 72±4oF for night time. The input
and output data for model training are shown in Fig. 5 for a one-week period.
The NOAA outdoor air temperature data was available at a one-hour sampling
time, which was interpolated to coincide with the 5-minute sampling time for
the other data.

grey-box models were developed using the proposed identification algorithm
(LD) and a conventional simulation error minimization algorithm (denoted as
Conv) with the same estimation data and the same RC network model described
in the preceding section. For detailed descriptions for the conventional approach,
see Section 3.3.

Recall that we are interested in the question of system identifiability: ”Does
the model describe the true system”?. It is important to mention that typical
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Figure 5: Esimation data set (Purdue Herrick Laboratory)
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Figure 6: Responses of step tests for model comparisons and validation (Purdue
Herrick Laboratory)

residual analysis does not answer the question.
A more convincing and straightforward model validation strategy is to find

the ”true system” and compare it to the two models. Therefore, in order to
qualify the two models, we performed several step tests for the building and
compared them to the step responses of the estimated models.

Note that it is impossible for a real building to reach an equilibrium point
because uncontrollable inputs, e.g. weather and internal heat gains, change con-
tinuously and the building dynamics are typically slow because of high thermal
mass of the building materials. Therefore, the experiment does not show the
true step response in a strict sense. Nevertheless, we chose this approach be-
cause it at least provides some useful information of the building dynamics and
there are no simple alternatives for model validation for a real building system.

To implement the step tests, all RTUs were forced to be off for about 2 hours
in order to derive the state of the building dynamics at an ”equilibrium” point.
Then, we activated RTU1 for about 2 hours. After that, the RTU was turned
off in order to allow the building dynamics return to the equilibrium point. The
procedure was repeated for the other RTU. Fig. 6 shows the implementation
and the responses of the zone air temperature. The outdoor air temperature
during the experiment is also included in the figure.

For each period of the step tests, the temperature responses were subtracted
from the equilibrium point, denoted as ∆T (k). The experimental step responses
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Figure 7: Model comparisons with experimental step test results (dotted lines),
1 time step = 5 min

of ∆T over the 2 hours are shown with dots in Fig. 7, where the 1 step in the x-
axis represents 5 min. The experimental response do not match each other due
to time varying outdoor air temperatures and unknown disturbances. Since the
outdoor air temperature is not controllable, no step responses associated with
the outdoor air temperature change are included in the figure. The unit step
responses of the LD and Conv were calculated purely using estimated models
and are shown with blue and red lines, respectively.

Note that the step response of Conv is far away from the experimental step
test results. The Conv predicts that RTU1 has no cooling effect and RTU2 has
much smaller cooling effect than the measurements. The inconsistency corre-
sponds to (19) and (20) in the frequency domain. The distortion is intuitively
obvious because the Conv has to explain input/output relationships without
disturbances.

In contrast, the estimated model from the LD matches experimental results
reasonably well, despite combinations of input-to-output responses to be ex-
plained. The inconsistencies could be from the narrow setpoint perturbation
band, i.e. ±2oF , or from the simple disturbance model structure. Nonethe-
less, the suggested approach alleviates influences of unmeasured disturbances
on estimated models, and leads to significantly improved dynamic models for
the MIMO building thermal system. The improvement from the Conv base-
line is purely due to the additional disturbance model structure of the LD as
shown in (25), because the same grey-box model structure, i.e. (16), and the
same estimation data set, i.e. Fig. 5, were applied to both the LD and Conv.
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Figure 8: Behaviors of the LD w.r.t. sizes of estimation data sets, 1 time step
= 5 min

More precisely, it is achieved by lowering the H̃-term in (11) and (12), which is
the motivation of the LD approach, since the correlation terms in those equa-
tions are the same for both modeling methods. It should be noted that the
reduced H̃ implies that the suggested output disturbance model structure (22)
can efficiently capture complex building disturbances with a small number of
parameters in this experiment.

Since To is not controllable, the step test approach is limited to validate
estimated transfer functions associated with u1 and u2. However with the theo-
retical result in Section 2.4, i.e. an improvement of a model implies an improve-
ment of the others, we conclude that the transfer function estimation for GT,o
of the LD should be better than the Conv.

It is of interest to investigate the behavior of the LD with respect to a finite
size of data set. Recall that the mathematical descriptions of (11) and (12) are
valid for a large enough data set. For this purpose, the LD was applied to a
sequence of subsets of the estimation data shown in Fig. 5: each subset data
has a n-day data period from Aug/18 and n varies from 1 to 10 days. The
resulting model corresponding to a n-day data set is denoted as Gn. Fig. 8
shows the behaviors of the estimated models as the data size increases. For a
short training data period, e.g. less than 4 days, model performance is sensitive
to the variation of data period. However, Gn starts to converge at every time
step for every input/output pair after around one week showing that the LD is
no longer sensitive to the data size.
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4. CONCLUSIONS AND FUTURE WORK

This paper presents a unique mathematical framework in the building science
field that provides qualitative guidelines for estimating the quality of building
models that are trained using data obtained under closed-loop operation where
there are significant unmeasured disturbances. This paper also presents a
new identification approach based on the analytic result to extract an improved
RC network building model from data under the presence of unknown heat
gains. To reasonably characterize complex buildings disturbances, they are in-
directly treated as output disturbances and are independently modeled from the
semi-physical model. Using experiments, it was demonstrated that the method
leads to a significantly improved model compared to that from a conventional
grey-box simulation error minimization scheme. The results presented in this
paper are originated from literature on system identification in other fields and
are expected to be generally applicable to many different types of models for
buildings.

5. APPENDIX

This section drives an expression for the asymptotic bias term for a general
system shown in Fig. 1b.

Let y(k) = GT (z)u(k) + v(k) where GT (z) =
[
G2(z) G1(z)

]
and u(k) =[

u2(k)
u1(k)

]
.

The asymptotic objective function of a PEM for an MIMO system can be
expressed as

min
θ

trE(ε(k)εT (k)) = min
θ

1

2π
tr

∫ 2π

0

Φε(w)dw. (27)

and

Φε = H−1
θ

[
G̃ H̃

] [Φu Φue

Φeu Φe

] [
G̃
†

H̃†

]
H−†θ + Φe. (28)

where G̃ = GT −Gθ, H̃ = HT −Hθ and † represents conjugate transpose.

We want to decompose the expression of Φε of (28) like (6).
Taking LDU decomposition on the power spectrum matrix in (28) leads to[
Φu Φue

Φeu Φe

]
=

[
I

ΦeuΦ−1
u I

] [
Φu

Φe − ΦeuΦ−1
u Φue

] [
I Φ−1

u Φue

I

]
. (29)

Substituting (29) to (28) results in

Φε − Φe = H−1
θ [(G̃ + H̃ΦeuΦ−1

u )Φu(G̃
†

+ Φ−1
u ΦueH̃

†) (30)

+ H̃(Φe − ΦeuΦ−1
u Φue)H̃

†]H−†θ .
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By introducing

B := H̃ΦeuΦ−1
u (31)

Φ′e := Φe − ΦeuΦ−1
u Φue,

(30) can be simply expressed as

Φε − Φe = H−1
θ ((G̃ +B)Φu(G̃ +B)

†
+ H̃Φ′eH̃

†)H−†θ . (32)

The equation (32) is an MIMO version of (6).

We want to split the expression (32) for bias terms corresponding to G1 and
G2.
Since

Φu :=

[
Φ2 Φ21

Φ12 Φ1

]
, (33)

B in (31) can be expressed as

B = H̃
[
Φe2 Φe1

] [Φ2 Φ21

Φ12 Φ1

]−1

. (34)

Applying the matrix inversion lemma leads to

B = H̃
[
Φe2 Φe1

] [Φ−1
2 + Φ−1

2 Φ21∆Φ12Φ−1
2 −Φ−1

2 Φ21∆
−∆Φ12Φ−1

2 ∆

]
,

where ∆ = (Φ1 − Φ12Φ−1
2 Φ21)−1.

After simple matrix manipulations, one can get

B =
[
B2 B1

]
, where (35)

B2 = H̃[Φe2(Φ−1
2 + Φ−1

2 Φ21∆Φ12Φ−1
2 )− Φe1∆Φ12Φ−1

2 ]

B1 = H̃(Φe1 − Φe2Φ−1
2 Φ21)∆.

Therefore, the underlined term of (32) becomes

(G̃ +B)Φu(G̃ +B)
†

(36)

=
[
G̃2 +B2 G̃1 +B1

] [Φ2 Φ21

Φ12 Φ1

] [
(G̃2 +B2)†

(G̃1 +B1)†

]
.

One can arrive at the following expression after decomposing the power
spectrum matrix in (36) as in (29).

(G̃ +B)Φu(G̃ +B)
†

(37)

= (G̃2 +B2 + (G̃1 +B1)Φ12Φ−1
2︸ ︷︷ ︸)Φ2(G̃2 +B2 + (G̃1 +B1)Φ12Φ−1

2 )†

+(G̃1 +B1)(Φ1 − Φ12Φ−1
2 Φ21)(G̃1 +B1)†.
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By substituting (35) into B2, the underbraced term of (37) becomes

G̃2 +B2 + (G̃1 +B1)Φ12Φ−1
2 (38)

= G̃2 + H̃[Φe2(Φ−1
2 + Φ−1

2 Φ21∆Φ12Φ−1
2 )− Φe1∆Φ12Φ−1

2 ]

+(G̃1 + H̃(−Φe2Φ−1
2 Φ21∆ + Φe1∆))Φ12Φ−1

2

= G̃2 + G̃1Φ12Φ−1
2 + H̃Φe2Φ−1

2 .

Gathering (32),(35),(37) and (38) leads to the final asymptotic objective
function of PEM for an MIMO system.

min
θ

1

2π
tr

∫ 2π

0

Φε(w)dw (39)

where

Φε = H−1
θ [(G̃2 + G̃1Φ12Φ−1

2 + H̃Φe2Φ−1
2 )Φ2(G̃2 + G̃1Φ12Φ−1

2 + H̃Φe2Φ−1
2 )†

+ (G̃1 +B1)(Φ1 − Φ12Φ−1
2 Φ21)(G̃1 +B1)†

+ H̃Φ′eH̃
†]H−†θ + Φe, (40)

where
B1 = H̃(Φe1 − Φe2Φ−1

2 Φ21)(Φ1 − Φ12Φ−1
2 Φ21)−1, (41)

and Φ′e = Φe − ΦeuΦ−1
u Φue.

Consider a simple case when u1(k), u2(k), y(k) ∈ R, then (39) and (40)
becomes

min
θ

E(ε2(k)) = min
θ

1

2π

∫ 2π

0

Φε(w)dw (42)

where

Φε = |G̃2 + G̃1Φ12Φ−1
2 + H̃Φe2Φ−1

2 |2
Φ2

|Hθ|2

+ |G̃1 +B1|2
(Φ1 − Φ12Φ−1

2 Φ21)

|Hθ|2

+ |H̃|2 Φ′e
|Hθ|2

+ Φe.
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