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ABSTRACT OF THE DISSERTATION

Essays on the Identification and Estimation

of Network Models

by

Yiran Xie

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor Rosa Liliana Matzkin, Chair

This dissertation consists of three main chapters that study social interactions in net-

works. In Chapter 1, I study a market with many-to-many contracts when the number of

market participants increases. Many-to-many contracts allow a seller to trade with multiple

buyers and a buyer to trade with multiple sellers. I focus on investigating the identification of

payoff parameters through data observed from equilibrium matches in a large many-to-many

matching market. In many-to-many matching markets, several issues have to be addressed:

bias would arise since the outcomes are only observed when links are formed between two

agents, and the maximum number of relationships an agent can enter into would possibly

affect the set of stable outcomes. I show that under certain conditions, the number of firms

(workers) that are willing to be matched to a specific worker (firm) grows at a rate re-

gardless of the capacity of both sides. Furthermore, I show a correspondence between the

stable matching outcomes in a many-to-many matching framework and that in a one-to-one

matching framework.

In Chapter 2, I conduct a structural econometric analysis of the diffusion process with

players who observe their neighbors and make decisions based on their neighbors’ decisions.

I study the identification and estimation of diffusion processes in social and economic net-

ii



works. Compared to the classic econometric diffusion literature that assumes a continuous

population with a stochastic network structure, I provide a new econometric framework

to analyze diffusion processes in fixed networks where Bayesian players observe their close

neighbors. I demonstrate the existence of the equilibrium of the model and characterize the

unique symmetric equilibrium. Based on these theoretical findings, I propose a consistent

and tractable two-step estimator for payoff parameters using feasible data from a single large

network. I evaluate the finite sample performance using Monte Carlo simulations.

Chapter 3 applies the network diffusion model to data on the participation of a microfi-

nance program in Indian villages to describe the impact of neighbors on individual decisions.

Our model allows us to study the various network effect across different types of agents

who care about their neighbors’ opinions. It depends on unknown equilibrium beliefs, which

specify agents’ expectations about their neighbors’ decisions. Using participation data from

43 villages, each including about 200 villagers, I estimate these equilibrium beliefs and the

network effects.
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CHAPTER 1

Identification in Many-to-Many Matching Games
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1.1 Introduction

Consider a collection of firms and workers that try to form employer-employee relation-

ship. Firms have preferences over the possible sets of workers, and workers have preferences

over the possible sets of firms. A many-to-many matching is an assignment of sets of workers

to firms, and of sets of firms to workers so that each agent can be assigned to multiple agents

from the other group.

There are many important real-world many-to-many markets. For example, a physician

can hold multiple appointments at different institutions, that is, while having a medical

position in a hospital, he or she could also teach in a university and work for private con-

sultation. Roth (2003)
[49]

discusses the market for medical interns in the U.K. The medical

interns are required to experience both medical and surgical positions, so the market needs to

be modeled as a two-sided many-to-many matching problem where the capacity of a medical

intern is 2. Many-to-many matching also exists in the model of contracting between down-

stream firms and up-stream providers, or between customers and products. A customer can

purchase various products, and a product can be purchased by many customers.

In a market where many-to-many matching is allowed, the equilibrium result can be very

different compared to the market with only one-to-one matching. Echenique and Oviedo

(2006)
[19]

shows that even a few many-to-many contracts can make a crucial difference. In

the real world, most labor markets have at least a few many-to-many contracts. Thus one

needs a many-to-many model to study the labor markets.

In this chapter, I study the identification of payoff parameters with data observed from

equilibrium matches in a large many-to-many matching market. The payoff parameters are

key to identify the production function and the surplus from an equilibrium match. This

chapter focuses on the case of a bipartite graph. Consider the example of the firm-worker

relationship. The payoff a worker i gets from being employed by firm j is given by

U∗
ij = Ũ(xi, zj) + σηij

(e.g.)
= xiα + zjβ + σηij,
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where Xi, Zj consists of the observable characteristics of worker i and firm j. ηij is the

idiosyncratic shock of the payoff to each pair (i, j). U∗
ij is only observable when there is a

link formed between i and j - that is, when worker i is employed by firm j - and the link

formation depends on the payoffs of all players in i and j’s opportunity sets.

It’s worth noticing that this model requires no high-level assumptions. Due to the com-

plexity of the matching mechanism, high-level assumptions, for example, rank-order property,

which is prevalent in the matching literature. Moreover, my model is related to literature

that studies models with endogenous link formation, such as Johnsson and Moon (2021)
[36]

and Auerbach (2019)
[2]
. Unlike in their settings - where the probability that two agents link

is determined by some unknown function of their own social characteristics, thus not affected

by other agents in the network formation game - my model has agents compare the payoffs

from linking with every player who is willing to connect and form links only when the payoff

of the matching is among the highest in the choice set. The link formation depends not only

on the characteristics of players on the two ends of the link, but also on the opportunity set

that characterizes the players who are willing to connect.

To investigate the identification of the payoff parameters, the paper demonstrate the

correspondence between the many-to-many matching and one-to-one matching following

Menzel (2015)
[43]

. We show that the conditional expectation of payoff of a matching, given

the link is observed, depends only on the inclusive value. Thus even if we observe the payoffs

from workers, we still cannot separately identify the deterministic part of the payoff that

depends only on the observable characteristics.

The contribution of the paper is threefold. First, it builds its discussions on a many-

to-many matching framework that requires no high-level assumptions, which has not been

investigated before. The complexity of matching mechanisms arise with the absence of

such assumptions, but it is achievable and beneficial- in that it clarifies how the rank-order

property is driven by the basic assumptions.

Furthermore, we demonstrate that the many-to-many matching outcomes correspond to

3



one-to-one matching outcomes. As illustrated in the paper, the Gale-Shapley algorithms1

yield setwise-stable matchings under the max-min preferences, and the number of links a

player could form - though it affects the density of matchings over types - would not affect

the growth rate of the size of the opportunity set. Therefore, we can connect the results of

the many-to-many matching framework to that of the one-to-one matching framework, as

the inclusive value is very similar.

Lastly, we show that the inclusive values can be identified using information about the

payoff from one side of the market, but it cannot help separately identify the payoff of players

from the total welfare. In the many-to-many matching framework, we prove that the payoff

of a worker, given it is observed, depends on the attributes of all firms in her opportunity

set and is characterized by the inclusive values. Importantly, the payoff does not depend on

the specific characteristics of the firm she connects to.

1.1.1 Related Work

A strand of literature studies matching models with transferable utility. A first group

of methods restrict the distribution of the unobserved heterogeneity εij. Choo and Siow

(2006b)
[13]

assumes the surplus function is additively separable in the unobserved compo-

nents of both partners. Galichon and Salanié (2015)
[24]

show that given exact knowledge

of the parametric specification of the stochastic terms, the mean joint surplus is nonpara-

metrically just identified. Graham (2011, 2013) shows sign-based identification assuming

that unobservables are independently and identically distributed. All these papers cannot

separately identify utility functions from the two sides when the transfers are not observed.

In contrast, Fox (2010)
[22]

has proposed an approach that does not explicitly specify the

distribution of the unobserved heterogeneity. Instead, it directly postulates a rank-order

property that imposes restrictions on the relationship between matching patterns and the

surplus function. Two sets are matched more frequently if they have higher joint surplus.

However, this paper is based on the high level assumption (rank-order property) and such

1Also known as the Deferred Acceptance algorithm.
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monotonic behavior is rare in matching models. But it is worth stressing here that because

Fox’s approach only relies on pairwise stability, it can be applied more widely, to many-to-one

or even many-to-many matching.

For matching models with nontransferable utility, Hsieh (2012) assumes each agent

equally values his or her potential partners who belong to the same category. Menzel (2015)
[43]

yields a remarkably simple asymptotic formula of one-to-one matching with nontransferable

utility, but the model also cannot separately identify the utility functions. Diamond and

Agarwal (2017)
[17]

assume that preferences are homogeneous and the attractiveness can be

summarized using a single index. That is, each side of the market is only vertically differen-

tiated.

A group of related literature studies models with endogenous link formation. Johnsson

and Moon (2015)
[36]

and Auerbach (2019)
[2]

both consider a model of link formation in which

the probability that two agents link is some unknown function of their social characteristics

Dij = {ηij ≤ f(wi, wj)}. In my model setup, the outcomes are also only observed when

links are formed between the two agents. But I consider the case that an agent compares

payoffs of every agent in his or her choice set, since links are formed only when payoffs of

the matching is among the K highest in the choice set. The link formation depends not only

the social characteristics of the two parties, but also social characteristics of those who are

available to them.

The framework of many-to-many matching has been studied in the theory literature.

Early papers such as Roth (1984)
[48]

proposes setwise-stability as an equilibrium concept

in many-to-many matching, and Sotomayor (1999)
[55]

emphasizes the difference between

setwise-stability, pairwise-stability, and the core. For many-to-many matching, although

the Gale-Shapley algorithms continue to yield pairwise-stable matchings, this outcome may

no longer be setwise-stable in a many-to-many matching problem. There can be a group

deviation from a pairwise-stable matching that improves the payoff of every member of the

deviation. Two more recent papers show group deviation from a matching is not executable

under certain conditions. Echenique and Oviedo (2006)
[19]

gives conditions under which the

setwise-stable set is nonempty and can be approached through an algorithm. Konishi and
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Ünver (2005)
[37]

is an independent work shows that a concept they call credible group stability

is equivalent to pairwise stability in a wide class of matching problems when the preferences

are responsive. Jiao and Tian (2015)
[35]

demonstrate the equivalence of setwise-stability and

pairwise-stability obtained under max-min preference.

1.2 Model

Consider an undirected unweighted graph G in which there are two sets of agents, F

and W . We focus on the case of a bipartite graph, that is, the two sets F and W do not

overlap. Suppose links are formed only between the subsets F and W . So for a link between

a pair of agents (i, j), we have that i ∈ F and j ∈ W . The graph describes the interaction

between the two types of units, such as workers and firms or students and teachers. The

corresponding outcome of interest are wages or test scores.

There are nF firms and nW workers in the market. The agents have a quota K giving

the maximum number of partnerships it may enter into, KF for firms and KW for workers.

Assume nF = O(nα), KF = O(n1−α), nW = O(n), and KW = O(1).

Agents maximize their total utility from all their links. Firms’ outcomes U and workers’

outcomes V over matchings depend on their characteristics (Xi, Zj) and idiosyncratic shocks

ηij and ξji.

U∗
ij = Ũij + σηij

(e.g.)
= XiαF + ZjβF + σηij,

V ∗
ji = Ṽji + σξji

(e.g.)
= XiαW + ZjβW + σξji,

for i = 1, ..., nF and j = 1, ..., nW .

Although the capacity is fixed, firms (workers) do not necessarily have to connect to

KF workers (FW firms) since we assume there are J outside options for both groups. The

outcomes of the outside options are

U∗
iO1

= 0 + σηiO1 , ...U
∗
iOJ

= 0 + σηiOJ
,
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V ∗
jO1

= 0 + σξjO1 , ..., V
∗
jOJ

= 0 + σξjOJ
,

where J increases at a rate to be specified later. The idiosyncratic component ηij, ξji and

ηiOl
, ξjOl

are i.i.d. from a standard normal distribution, independent of {Xi, Zj}. The outside

options in a firm-worker example can possibly be time for leisure, rest, or spending time with

family. An agent considers both inside and outside options. They compare the payoffs they

get from connecting with potential partners in the market, and also the payoffs of connecting

to outside options. The outcome is not observable if the link connects the agent to an outside

option.

We observe data (Aij, Xi, Zj) for each i, j and Uij only when a link is formed - in the

firm-worker example, the wage is only observed when agent pairs enter into a firm-worker

relationship - where

Aij = Aji = {i ∈ Fj, j ∈ Wi} = {U∗
ij ≥ U∗

im(KF )
, V ∗

ji ≥ V ∗
jn(KW )

}

Uij = U∗
ij · Aij

and Aij = 1 if a link forms between agent i and j.

Following Menzel (2015)
[43]

, the rationale for allowing the agent to sample an increasing

number J of independent draws for the outside option is that, since the shocks ηij and ξji have

unbounded support, as the set of potential matching partners grows with number of agents

n, any alternative with a fixed utility level will eventually be dominated by the K largest

draws. Hence, we assume that as the market grows, the typical agent can choose from an

increasing number of potential matchings, thus the outside options are sufficiently attractive

to ensure that the share of agents who choose the outside option does not degenerate. In

later sections, I show that J should grow in the same rate (
√
n) as the size of the set of

potential matching partners.

Assumption 1. (Idiosyncratic Part of Payoffs) ηij and ξji are i.i.d. draws from the distri-

bution G(s), and are independent of xi, zj, where

7



(i) the c.d.f. G(s) is absolutely continuous with density g(s),

(ii) the upper tail of the distribution G(s) is of type I with auxiliary function a(s) := 1−G(s)
g(s)

.

Assumption 1 provides sufficient conditions for the distribution of ηiOl
to belong to the

domain of attraction of the extreme-value type-I distribution. Assumption 1 requires the

taste shifter is extreme-value type-I, which causes the conditional choice probability converges

to a logit result.

Assumption 2. (Market Size)

(i) The size of a given market is governed by n = 1,2,... with the number of firms and

workers nF = nα exp γF and nW = n;

(ii) the size of the capacity of firms and workers: KF = n1−α exp γ′
F and KW = exp γ′

W is

a fixed number.

(iii) the scale parameter for the unobservables σ ≡ σn = 1
a(bn)

, where bn = G−1(1 − 1√
n
),

and a(s) is the auxiliary function in Assumption 1.

Assumption 2 gives the approximating sequence of markets. Specifically, we want the

approximation to keep several qualitative features that we observe in the finite-agent market:

First, the share of links that have one end connect to the outside option should not

degenerate to 1 or zero so that agents would be always able to choose among the inside and

outside option. Thus it is necessary to increase the payoff from outside option as the number

of available alternatives grows. This is governed by an assumption on the size of the set of

outside options we will see later.

Second, we want the systematic parts of payoffs to remain predictive for match probabil-

ities in the limit. Thus we have to choose the scale parameter σ ≡ σn at an appropriate rate

to balance the relative scales of the systematic and idiosyncratic parts. This is achieved by

the third part of assumption 1. It is also an assumption used in Menzel (2015)
[43]

.
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1.3 Setwise-stable Matching from Max-min Utility

In the setting, agents maximize the sum of the utility from all their links. This could

instead be characterized by the max-min utility that denotes the preference that agents

choose to form links with the candidates who bring the highest K payoffs. Denote the

outside options by O = {O1, ..., OJ}. Agents compare payoffs of all elements in S ∪ O.

Define max-min utility of firm i as

Ui(S) = max
|K|=KF

min
j∈K

Uij = Ui(KF )

where K ⊆ S ∪O, and Ui(KF ) is the KF -th largest utility.

Max-min maximizes the minimum utility in the choice set. It satisfies strong substi-

tutability, which is a condition that leads to the setwise-stability. Jiao and Tian (2015) show

the equivalence of setwise-stability and pairwise-stability obtained under max-min prefer-

ence. Thus the setwise-stable matching can be achieved by algorithms that generates a

pairwise-stable matching.

1.4 Asymptotic Properties

1.4.1 The Correspondence between the Many-to-Many Matching and One-to-

One Matching

In this section, I demonstrate the correspondence between the many-to-many matching

in my model and the one-to-one matching in Menzel’s setting.

To develop the asymptotic argument, the first step is to derive the convergence of condi-

tional choice probabilities (CCP) to logit CCPs, under the assumption that unobservables ηij

are independent from the equilibrium opportunity sets Wi and Mj, where the CCP denotes

the probability of firm i prefers worker j from the set of worker 1 to J , conditional on firm

i’s utility when it hires worker 1 to J .

Lemma 1. Suppose that Assumption 1 and 2 hold, and the random utilities Ui1, ..., UiJ are

9



J i.i.d. draws from the model with J outside options. Then as J → ∞, the marginal CCP,

󰀏󰀏󰀏󰀏󰀏JP (i ∈ Fj|Ũi1, ..., ŨiJ)−
KF exp{Ũij}

1 + 1
J

󰁓J
k=1 exp{Ũik}

󰀏󰀏󰀏󰀏󰀏 → 0

Similarly,

󰀏󰀏󰀏󰀏󰀏JP (j ∈ Wi|Ṽj1, ..., ṼjJ)−
KW exp{Ṽji}

1 + 1
J

󰁓J
k=1 exp{Ṽjk}

󰀏󰀏󰀏󰀏󰀏 → 0

where Fj is the set of firms available to worker j, and Wi is the set of workers available to

firm i. Ũ ’s and Ṽ ’s are the systematic part of utility, Ũij = U(xi, zj).

Proof. See Appendix.

Recall that in Menzel (2015)
[43]

,

󰀏󰀏󰀏󰀏󰀏JP (Uij ≥ Uik, k = 1, ..., J |Ũi1, ..., ŨiJ)−
exp{Ũij}

1 + 1
J

󰁓J
k=1 exp{Ũik}

󰀏󰀏󰀏󰀏󰀏 → 0

Thus Lemma 1 illustrates the correspondence when the capacity is fixed. As we will show

in the later sections that J grows with rate
√
n, the empirical matching frequencies of this

many-to-many matching follows

f(x, z) =
KFKW exp{U(x, z) + V (z, x) + γF + γW}f(x)w(z)

(1 + ΓF (x))(1 + ΓW (z))

1.4.2 Size of opportunity sets Fj and Wi: O(
√
n)

In this section, I show the size of the opportunity set is O(
√
n), regardless of the fact

that KF grows with rate O(n1−α) and nF grows with rate O(nα).

Proposition 1. (Size of Opportunity Set) Suppose Assumption 1 and 2 hold, then the size

of the opportunity set grows with rate
√
n.

Proof. See Appendix.
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Therefore, we than have the expected inclusive value function in the following fixed-point

characterization:

Theorem 1. (Inclusive Values) Suppose Assumption 1 and 2 hold.

Γ̂f (x) =
KW

n

nW󰁛

k=1

exp{U(x, zk) + V (zk, x)}
1 + Γ̂w(zk)

Γ̂w(z) =
KF

n

nF󰁛

k=1

exp{V (z, xk) + U(xk, z)}
1 + Γ̂f (xk)

Proof. See Appendix.

Notice that as KF grows with rate O(n1−α) and nF grows with rate O(nα), the inclusive

value functions could converges in the limit.

Menzel (2015)
[43]

shows that the inclusive value function is point-identified.

1.4.3 Conditional Expected Utility of Observed Matchings

In this section, we demonstrate the result that the payoff observed from one side of the

market (e.g., wage in the firm-worker matching market) helps identify the inclusive value

function, but could not provide any information about the deterministic part of the payoff

Ũij.

Suppose player i makes decision to connect over a set M and J outside options. Sup-

pose #M = J . Let T = σ−1
󰀓
Uim(KF+1)

− Ũij

󰀔
= ηim(KF+1)

+ σ−1
󰀓
Ũim(KF+1)

− Ũij

󰀔
, where

m(KF+1) denotes the (KF + 1)-th largest element in the set M . We can show that the

following result.

Lemma 2. Under assumption 1 , T follows a Gumbel distribution with µ = Φ−1(1− 1/J)+

σ−1 logC and β = σ−1, conditional on xi, (zj)j∈M .

Theorem 2. Suppose that Assumption 1 holds, and the random utilities Ui1, ..., UiJ are J

i.i.d. draws from the model with J outside options. Then as J → ∞,

E[Uij|X,Z,Aij = 1] → logC + 1 + κ

11



where

C = 1 +
1

J

J󰁛

m=1

exp{Ũim},

and γ ≈ 0.5772 is the Euler’s constant.

Note that 1
J

󰁓J
m=1 exp{Ũim} converges to the inclusive value when J → ∞ and when M

is the opportunity set.

By Proposition 1, when we take J =
√
n, the expected value of the maximum payoffs is

depends on the inclusive value function and thus the inclusive value function can be point-

identified. However, the expected maximum payoff of works with characteristic xi does not

depend on the specific characteristic of the firm zj. This illustrates that we cannot separately

identify the utility from one size of the market. Any equilibrium matching, in this setting,

depends on the total surplus.

1.5 Conclusion

This paper demonstrates the correspondence in outcomes for stable matchings in a many-

t-many framework and that in a one-to-one framework. We show that even if the capacity

K grows with the size of the market, the size of the opportunity set remains at the same

rate of growth (
√
n) as in the one-to-one framework. The inclusive value function can be

easily identified if payoff from one side of the market is observe, but we still cannot identify

the payoff separately from the total welfare.

For future research, we can look into the case that the capacity is endogenous, as the

outcome from endogeneity contains information about the preference.

12



1.6 A. Proofs of Main Results

Proof of Lemme 1. When K = 2 for both firms and workers,

󰀏󰀏󰀏󰀏󰀏J
2P (Uij1 ≥ Uik, Uij2 ≥ Uik,k ∈ {1, ...J}\{j1, j2}|Ũi1, ..., ŨiJ)

− 2 exp{Ũij1 + Ũij2}󰀓
1 + 1

J

󰁓J
k=1 exp{Ũik}

󰀔2

󰀏󰀏󰀏󰀏󰀏 → 0

󰀏󰀏󰀏󰀏󰀏JP (Uij ≥ Uik, UiO(1)
≥ Uik,k = 1, ..., J |Ũi1, ..., ŨiJ)

− 2 exp{Ũij}󰀓
1 + 1

J

󰁓J
k=1 exp{Ũik}

󰀔2

󰀏󰀏󰀏󰀏󰀏 → 0

󰀏󰀏󰀏󰀏󰀏P (UiO(1)
≥ Uik, UiO(2)

≥ Uik,k = 1, ..., J |Ũi1, ..., ŨiJ)

− 1
󰀓
1 + 1

J

󰁓J
k=1 exp{Ũik}

󰀔2

󰀏󰀏󰀏󰀏󰀏 → 0

Thus the ”marginal” CCP follows,

󰀏󰀏󰀏󰀏󰀏JP (Uij ≥ Uik,(2), k = 1, ..., J |Ũi1, ..., ŨiJ)−
2 exp{Ũij}

1 + 1
J

󰁓J
k=1 exp{Ũik}

󰀏󰀏󰀏󰀏󰀏 → 0

Generally speaking, suppose Fj and Wi are the opportunity sets.

󰀏󰀏󰀏󰀏󰀏JP (i ∈ Fj|Ũi1, ..., ŨiJ)−
KF exp{Ũij}

1 + 1
J

󰁓J
k=1 exp{Ũik}

󰀏󰀏󰀏󰀏󰀏 → 0,

󰀏󰀏󰀏󰀏󰀏P (i /∈ Fk, ∀k = 1, ..., J |Ũi1, ..., ŨiJ)−
1

󰀓
1 + 1

J

󰁓J
k=1 exp{Ũik}

󰀔KF

󰀏󰀏󰀏󰀏󰀏 → 0.
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Similarly,

󰀏󰀏󰀏󰀏󰀏JP (j ∈ Wi|Ṽj1, ..., ṼjJ)−
KW exp{Ṽji}

1 + 1
J

󰁓J
k=1 exp{Ṽjk}

󰀏󰀏󰀏󰀏󰀏 → 0,

󰀏󰀏󰀏󰀏󰀏P (j /∈ Wk, ∀k = 1, ..., J |Ṽj1, ..., ṼjJ)−
1

󰀓
1 + 1

J

󰁓J
k=1 exp{Ṽjk}

󰀔KW

󰀏󰀏󰀏󰀏󰀏 → 0.

Proof of Proposition 1 . Define the number of workers available to firm i

JFi
=

nW󰁛

j=1

{Vji ≥ Vj(Fj)},

the number of firms available to worker j

JWj
=

nF󰁛

i=1

{Uij ≥ Ui(Wi)} .

Then

JWj
=

nF󰁛

i=1

{Uij ≥ Ui(Wi)} ≤
nF󰁛

i=1

{Uij ≥ UiO(KF )
} =

nF󰁛

i=1

{i ∈ F̄j} := J̄Wj

Since

P
󰀓
Uij ≥ UiO(KF )

󰀏󰀏xi, zj

󰀔
= 1− P

󰀓
UiO(KF )

> Uij

󰀏󰀏xi, zj

󰀔
→ 1− 1

󰀓
1 + 1

J
exp{Ũij}

󰀔KF
,

E[J̄Wj
|zj, x1, ..., xnF

] →
nF󰁛

i=1

󰀳

󰁅󰁃1− 1
󰀓
1 + 1

J
exp{Ũij}

󰀔KF

󰀴

󰁆󰁄 ≤ nF

󰀣
1−

󰀕
1 +

1

J
exp{Ū}

󰀖−KF

󰀤

J→∞
= nF

󰀕
1− exp

󰀝
−KF

J
exp{Ū}

󰀞󰀖
.
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J should grow at the same rate as the size of the opportunity set JWj
.

If KF/J → 0,

E[J̄Wj
|zj, x1, ..., xnF

] ≤ nFKF

J
exp{Ū}

⇒ J = O(
√
n), E[J̄Wj

|zj, x1, ..., xnF
] = O(

√
n), α > 1/2.

If KF/J = O(1),

E[J̄Wj
|zj, x1, ..., xnF

] = O(nF ) = O(nα), J = O(nα), KF = O(nα)

⇒ α = 1/2, J = O(
√
n), E[J̄Wj

|zj, x1, ..., xnF
] = O(

√
n).

If KF/J = O(nβ), contradiction as KF is not restricting, and thus KW not restricting.

Should be similar to many-to-one matching.

E[J̄Wj
|zj, x1, ..., xnF

] = O(nF ) = O(nα), J = O(nα), KF = O(nα+β)

⇒ α < 1/2, β = 1− 2α, J = O(
√
n), E[J̄Wj

|zj, x1, ..., xnF
] = O(

√
n).

For the following I focus on α > 1/2. (α < 1/2 capacity constraint not binding when

n → ∞)

By law of iterated expectation,

E[J̄Wj
] ≤

√
n
󰀃
exp{Ū + γF + γ′

F}+ o(1)
󰀄
.

Rate of Variance of J̄Wj
: Since

KF

J
exp{−Ũ} ≤ pijn := 1− 1

󰀓
1 + 1

J
exp{Ũij}

󰀔KF
≤ KF

J
exp{Ũ}

v̄jn =
1

nF

nF󰁛

i=1

pijn(1− pijn) = O

󰀕
KF

J

󰀖
= O

󰀃
n1/2−α

󰀄
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Apply a CLT for independent heterogeneously distributed random variables,

1
nF

󰀃
J̄Wj

− E
󰀅
J̄Wj

󰀆󰀄
󰁳

v̄jn/nF

=
1

√
v̄jnnF

nF󰁛

i=1

󰀃
{Uij ≥ UiO(KF )}− pijn

󰀄 d→ N (0, 1)

J̄Wj
− E

󰀅
J̄Wj

󰀆

O(n1/4)

d→ N (0, 1)

We obtain
J̄Wj

− E
󰀅
J̄Wj

󰀆

o(n1/2)

p→ N (0, 1).

Similarly, we can show that for J̄Fi
. and the lower bounds.

Lower bound J◦
Wi
: Denote the set of worker j that prefer firm i to their outside option

or any firm in F̄j by W ◦
i .

JWj
=

nF󰁛

i=1

{Uij ≥ Ui(Wi)} ≥
nF󰁛

i=1

{Uij ≥ Ui(W̄i)} =

nF󰁛

i=1

{i ∈ F ◦
j } := J◦

Wj

Similar for J◦
Fi
.

In sum, when α > 1/2, sizes of opportunity sets Fj and Wi are O(
√
n).

With a little more effort we can show the rate of growth of the size of the opportunity

set is
√
n. What is the rate of growth of J we should choose? Same rate as the rate of

growth of the size of opportunity set. Alpha is the growth rate of number of firms. When α

is less than 1/2, as n approaches infinity, the capacity constraint will not be binding since

the number of firms does not grow fast enough. (Second, we demonstrate that dependence

of taste shifters and opportunity sets is negligible for CCPs when n is large. Hence we can

approximate choice probabilities using the inclusive values. )

In sum, when α > 1/2, sizes of opportunity sets Fj and Wi are O(
√
n).

Proof of Theorem 1. Suppose that J =
√
n.
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Let

Ifi = Ifi [Wi] =
1√
n

󰁛

k∈Wi

exp{Ũik}

Iwj
= Iwj

[Fj] =
1√
n

󰁛

k∈Fj

exp{Ṽjk}

Then

√
nP (i ∈ Fj|xi, zj, Ifi) =

KF exp{U(xi, zj)}
1 + Ifi

+ op(1)

P (i /∈ Fk, ∀k ∈ Wi|xi, zj, Ifi) =
1

(1 + Ifi)
KF

+ op(1)

Similarly,

√
nP (j ∈ Wi|zj, xi, Iwj

) =
KW exp{V (zj, xi)}

1 + Iwj

+ op(1)

P (j /∈ Wk, ∀k ∈ Fj|zj, xi, Iwj
) =

1
󰀃
1 + Iwj

󰀄KW
+ op(1)

Expected inclusive value function

Γ̂f (xi) =
1√
n

nW󰁛

k=1

expU(xi, zk)P (k ∈ Wi|zk, xi, Iwk
) =

KW

n

nW󰁛

k=1

exp{U(xi, zk) + V (zk, xi)}
1 + Iwk

Γ̂w(zj) =
1√
n

nF󰁛

k=1

expV (zj, xk)P (k ∈ Fj|zj, xk, Ifk) =
KF

n

nF󰁛

k=1

exp{V (zj, xk) + U(xk, zj)}
1 + Ifk

Or rewrite it using a fixed-point characterization,

Γ̂f (x) =
KW

n

nW󰁛

k=1

exp{U(x, zk) + V (zk, x)}
1 + Γ̂w(zk)

Γ̂w(z) =
KF

n

nF󰁛

k=1

exp{V (z, xk) + U(xk, z)}
1 + Γ̂f (xk)
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Proof of Lemma 2. Note that T = σ−1
󰀓
Uim(KF+1)

− Ũij

󰀔
= ηim(KF+1)

+σ−1
󰀓
Ũim(KF+1)

− Ũij

󰀔

FT (t) = Pr
󰀓
T ≤ t|Ũim(KF+1)

, Ũij

󰀔

= Pr
󰀓
ηim(KF+1)

≤ t+ σ−1
󰀓
Ũij − Ũim(KF+1)

󰀔 󰀏󰀏Ũim(KF+1)
, Ũij

󰀔

=
󰁜

m ∕=m(i)

i=1,...,KF

Φ
󰀓
t+ σ−1

󰀓
Ũij − Ũim

󰀔󰀔

= exp

󰀫
1

J

2J󰁛

m=1

J logΦ
󰀓
t+ σ−1

󰀓
Ũij − Ũim

󰀔󰀔󰀬󰀡
󰀻
󰁁󰀿

󰁁󰀽

󰁜

m=m(i)

i=1,...,KF

Φ
󰀓
t+ σ−1

󰀓
Ũij − Ũim

󰀔󰀔
󰀼
󰁁󰁀

󰁁󰀾

Let bJ := Φ−1(1− 1
J
) → +∞, aJ = a(bJ) = σ−1, where a(t) = 1−Φ(t)

φ(t)
. Let

RJ(t) =
1

J

2J󰁛

m=1

J logΦ
󰀓
t+ σ−1

󰀓
Ũij − Ũim

󰀔󰀔
.

By a change of variable, t = aJs+ bJ ,

RJ(s) =
1

J

2J󰁛

m=1

J logΦ
󰀓
bJ + σ−1

󰀓
s+ Ũij − Ũim

󰀔󰀔

Since − logG ≈ 1−G,

RJ(s) = − 1

J

2J󰁛

m=1

J
󰁱
1− Φ

󰀓
bJ + aJ

󰀓
s+ Ũij − Ũim

󰀔󰀔󰁲
+ o(1).

And with 1
J
= 1− Φ(bJ), we have

RJ(s) = − 1

J

2J󰁛

m=1

J
󰁱
1− Φ

󰀓
bJ + aJ

󰀓
s+ Ũij − Ũim

󰀔󰀔󰁲
+ o(1)

= − 1

J

2J󰁛

m=1

1− Φ
󰀓
bJ + aJ

󰀓
s+ Ũij − Ũim

󰀔󰀔

1− Φ(bJ)
+ o(1)

= −e−s · 1
J

2J󰁛

m=1

exp{Ũim − Ũij}+ o(1)
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since J(1− Φ(bJ + aJs)) =
1−Φ(bJ+aJs)

1−Φ(bJ )
→ e−s. In addition,

󰁜

m=m(i)

i=1,...,KF

Φ
󰀓
t+ σ−1

󰀓
Ũij − Ũim

󰀔󰀔
=

󰁜

m=m(i)

i=1,...,KF

Φ
󰀓
bJ + aJ

󰀓
s+ Ũij − Ũim

󰀔󰀔

=
󰁜

m=m(i)

i=1,...,KF

(1− J−1 exp{−(s+ Ũij − Ũim)})

→1

Thus

|FT (t)− exp{−e−s · C}| = |FT (t)− exp{− exp

󰀝
−t− Φ−1(1− 1/J)

σ−1
+ logC

󰀞
}| → 0

where C = 1
J

󰁓2J
m=1 exp{Ũim − Ũij}. Therefore,

FT (t) → Gumbel(t;Φ−1(1− 1/J) + σ−1 logC, σ−1).

Proof of Theorem 2 .

E[σηij|X,Z,Aij = 1] =E
󰁫
σηij|X,Z, U∗

ij ≥ U∗
im(KF )

, V ∗
ji ≥ V ∗

jn(KW )

󰁬

=E
󰁫
σηij|σηij ≥ σηim(KF+1)

+
󰀓
Ũim(KF+1)

− Ũij

󰀔󰁬

Let T = σ−1
󰀓
Uim(KF+1)

− Ũij

󰀔
= ηim(KF+1)

+ σ−1
󰀓
Ũim(KF+1)

− Ũij

󰀔
.

E[σηij|X,Z,Aij = 1] = E [σηij|ηij ≥ T ] = σET [E [ηij|ηij ≥ T, T = t]] = σET

󰀗
φ(t)

1− Φ(t)

󰀘

Note that T ∼ Gumbel(t;Φ−1(1−1/J)+σ−1 logC, σ−1). As J → ∞, the Gumbel distribution

is skewed to the right. Since φ(t)
1−Φ(t)

→ t when t → ∞,

ET

󰀗
φ(t)

1− Φ(t)

󰀘
→ ET (t).
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For T ∼ Gumbel(t;µ, β), ET (t) = µ+ βκ, where κ ≈ 0.5772 is the Euler’s constant. Thus

E[Uij|X,Z,Aij = 1] = Ũij + logC + 1 + κ.

1.7 B. Technical Definitions

We start with the definition of pairwise stability.

Definition 1 (Pairwise Stability). A feasible matching µ is pairwise-stable, if there are no

firm and worker who are not partners, but can both obtain a preferred set of partners by

becoming partners, while possibly dissolving other partnerships of µ to remain within their

quotas and keeping other ones.

That is, µ must satisfy the conditions

1. if Uij > Ui(KF ), j /∈ µ̄F (i), then Vji ≤ Vj(KW );

2. if Vji > Vj(KW ), i /∈ µ̄W (j), then Uij ≤ Ui(KF ).

As an extension, Roth (1984)
[48]

and Sotomayor (1999)
[55]

proposed setwise stability.

Definition 2 (Setwise Stability). A matching µ will be called setwise-stable if there is no

subset of agents who by forming new partnerships only among themselves, possibly dissolving

some partnerships of µ to remain within their quotas and possibly keeping other ones, can

all obtain a strictly preferred set of partners.

Echenique and Oviedo (2006)
[19]

gives conditions (substitutability and strong substitutabil-

ity) under which the setwise-stable set is nonempty and can be approached through an al-

gorithm called T-algorithm. Define the fix-point set by the matchings where each agent a is

choosing her best set of partners, out of the set of potential partners who are willing to link

to a given their current match. And define the set of pre-matchings by V = VF ×VW , where
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VF = (2W )F , VW = (2F )W since νF : F → 2W , νW : W → 2F . We often refer to νW (w) by

ν(w) and to νF (f) by ν(f).

In the firm-worker setup, we define the map T as follows.

Definition 3 (Map T ). Let ν be a pre-matching, and let

W (f, ν) = {w ∈ W : f ∈ Ch (ν(w) ∪ {f}, P (w))}

and

F (w, ν) = {f ∈ F : w ∈ Ch (ν(f) ∪ {w}, P (f))},

where the set F (w, ν) is the set of firms f that are willing to hire w, possibly after firing

some of the workers it was assigned by ν. The set W (f, ν) is the set of workers w that are

willing to add f to its set of firms ν(w), possibly after firing some firms in ν(w).

Now, define T : V → V by

(Tν)(s) =

󰀻
󰁁󰀿

󰁁󰀽

Ch(W (s, ν), P (s)), if s ∈ F

Ch(F (s, ν), P (s)), if s ∈ W

We interpret the map T using the firm-worker setup. (Tν)(f) is firm f ’s optimal team

of workers, among those willing to work for f , and (Tν)(w) is the set of firms preferred by

w, among the firms that are willing to hire w.

Let the fix-point set be the set of fixed points of T ; we denote it by E(P ). Then E(P ) =

{ν ∈ V : ν = Tν}.

We now describe an algorithm that is associated with the techniques we use to prove our

results: the techniques exploit the fixed points of T , and the algorithm is designed to find a

fixed point of T . The definition of the algorithm is as follows.

Definition 4. (T-algorithm) The T-algorithm is the procedure of iterating T , starting at

some pre-matching ν.

Let ν0 and ν1 be the pre-matchings defined by ν0(f) = ν1(w) = ∅, ν0(w) = F , and
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ν1(f) = W for all w and f . We consider the T-algorithm starting at pre-matchings ν0 and

ν1. Then Echenique and Oviedo (2006)
[19]

propose the following theorem.

Theorem 3 (Fixed-point Set). If P (F ) is substitutable and P (W ) is strongly substitutable,

then

(i) E(P ) = SW (P )

(ii) SW (P ) is nonempty. The T-algorithm finds a matching in SW (P ),

where E(P ) is the fixed-point set that can be approached through the T-algorithm.

We consider two restrictions on agents’ preferences. The first is substitutability, first

introduced by Kelso and Crawford (1982) and used extensively in the matching literature.

The second is a strengthening of substitutability that we call strong substitutability.

Definition 5. (Substitutability) An agent a’s preference ordering P (a) satisfies substitutabil-

ity if, for any sets S and S ′, with S ⊆ S ′,

b ∈ Ch(S ′ ∪ b, P (a)) implies b ∈ Ch(S ∪ b, P (a)).

Say that a preference profile P is substitutable if P (a) satisfies substitutability for every agent

a.

Definition 6. (Strong Substitutability) An agent a’s preference ordering P (a) satisfies strong

substitutability if, for any sets S and S ′, with S ′ P (a) S,

b ∈ Ch(S ′ ∪ b, P (a)) implies b ∈ Ch(S ∪ b, P (a)).

Say that a preference profile P is strongly substitutable if P (a) satisfies strong substitutability

for every agent a.

We explain the difference of the two definitions. Let f be a firm. Substitutability of

firm f ’s preferences requires that if hiring w is optimal when the set of available workers
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is {w} ∪ S ′, and S is a subset of S ′, then hiring w must still be optimal when the set of

available workers is {w}∪ S. Or equivalently, if w is chosen from a given set of workers, she

is chosen also from a smaller set of workers. Strong substitutability requires that if hiring w

is optimal when the set of available workers is {w} ∪ S ′, and the firm prefers S ′ to S, then

hiring w must still be optimal when the set of available workers is {w}∪S ′. Or equivalently,

if w is chosen from a given set of workers, she is chosen also from a worse set of workers.
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CHAPTER 2

The Estimation of Diffusion Processes with Private

Network Information
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2.1 Introduction

Diffusion processes, in which an innovation spreads from one person to another and

eventually reaches a substantial population, are prevalent phenomena in social or geographic

networks. Evidence shows that networks play a significant role in information diffusion.1 In

particular, policymakers and businesses often rely on social networks to diffuse information

to the community. As one important example, the spread of Gmail started from a small

group of initial users and cascaded to affect a significant proportion of the population via

chains of invitations. Other empirical evidence includes the spread of new products and

services through viral marketing campaigns and referral programs (Leskovec et al., 2007
[38]

),

the uptake of microfinance in developing countries (Banerjee et al., 2013
[6]
), and the spread

of rumors about India’s demonetization policy (Banerjee et al., 2018
[5]
). Therefore, a model

for diffusion processes in social networks is crucial for designing marketing strategies that

maximize diffusion and launching new policies that enhance social welfare.

This paper provides a structural econometric analysis of diffusion processes in social

networks. In the diffusion process, a message about a new product or a new idea spreads

through social ties. Once exposed by their neighbors, agents decide whether to adopt the

new product and pass on the information. We study a diffusion model with players who

observe their neighbors and make decisions based on their beliefs about their neighbors’

decisions. We are interested in the interpersonal influences governing agents’ information and

the decisions that agents make. Extending Sadler (2020)
[51]

, we build a tractable model for

the structural analysis of diffusion processes. We show that a unique, symmetric equilibrium

exists under certain conditions and propose a consistent two-step estimation approach for

individual payoffs using only a single large network where the number of players approaches

infinity.

1An old and large empirical literature studies the role of social networks in information diffusion. Ryan

and Gross (1943)
[50]

and Coleman, Katz, and Menzel (1966)
[14]

highlight the importance of social connections
in technology adoption. More recent literature emphasizes the players’ strategic interactions in the network,

for example, social learning in agriculture that influences the uptake of new technologies (Griliches 1957
[28]

,

Foster and Rosenzweig 1995
[21]

, Munshi 2004
[45]

, Bandiera and Rasul 2006
[3]

, Conley and Udry 2010
[15]

,

Burlig and Stephens 2019
[10]

), and the impact of seed players on diffusion results (Banerjee et al. 2013
[6]

).
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We illustrate diffusion processes using the example from Banerjee et al. (2013)
[6]

that

depicts the diffusion of a new microfinance program through word-of-mouth. Suppose all

players are connected by a social network graph. Initially, none of the players in this popu-

lation has been exposed to the product (e.g., the opportunity to obtain microfinance loans).

Only a seed player is informed in the first period. When a player becomes aware, she makes

an irreversible decision whether to adopt the action, that is, to apply for the loan. Once a

player adopts, she informs her neighbors about the microfinance lender, and thus her neigh-

bors become aware of the opportunity. This step is repeated until there are no new adopters.

A player’s payoff from adoption is based on the decisions of her neighbors, for example, the

number of neighbors who will participate eventually, because they benefit from information-

sharing. Thus, once a player is aware, she forms beliefs about her neighbors’ strategies and

makes the adoption decision based on her expected payoffs. This strategic interaction among

agents leads to correlated individual decisions, which is key to estimating social effects.

The main question is how to estimate the payoff parameters if we have data on the

diffusion process, including the network structure, the information transmission path, and

the participation decisions. The payoff parameters are useful for welfare analysis and out-

of-sample forecasting.

We model diffusion processes in fixed social networks where players only observe their

close neighbors. The theoretical literature focuses on two main modeling approaches: mean-

field modeling and a fixed network approach. The first approach relies on mean-field ap-

proximations2 and is frequently applied in empirical research. The classic Bass diffusion

model (Bass 1969
[8]
) assumes that homogeneous adopters affect all other players equally.

More recent work studies the impact of network structure on diffusion processes, allowing

nodes with different degrees (Jackson and Rogers, 2007
[32]

, López-Pintado, 2006
[40]

, 2008
[41]

,

2012
[42]

) and types (Jackson and López-Pintado, 2013
[31]

). Moreover, the estimation of mean-

2Mean-field approximations assume (a) the speed of diffusion at any instant depends only on the fraction
of adopters in the population; (b) the population is a continuum, so individual adoption decisions are
insignificant to final diffusion results.
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field models has been extensively explored in the econometrics literature.3 The limitation

of these mean-field models is obvious: they are analogous to models where the links shuffle

and reconnect every period, that is, neighbors are randomly assigned and resampled every

period. Thus, the strategic effects of individual players are minimized, and the diffusion

outcome is determined by the network’s degree distribution.

Alternatively, more recent papers, including our paper, focus on diffusion processes on

fixed networks where one player’s adoption decision could possibly affect the diffusion out-

come. In a fixed network where the links are persistent, individual decisions depend on

their permanent neighbors, and players react strategically to their neighbors’ adoption de-

cisions. Morris (2000)
[44]

and Watts (2002)
[61]

study myopic adoption strategies based on a

threshold rule such that players adopt a behavior if enough neighbors did so in the previ-

ous period. The networks discussed in these two papers assume homogeneous players, with

only a single type of nodes and edges. In contrast, Sadler (2020)
[51]

proposes a model that

incorporates Bayesian players that are heterogeneous in types, that is, a more complicated

network consisting of heterogeneous nodes and edges where the agents in this network game

make strategic choices. Despite the empirical relevance and theoretical importance, diffusion

processes on fixed networks have not been investigated in the structural econometrics litera-

ture. The present paper follows Sadler (2020)
[51]

to study heterogeneous strategic players and

provides an econometric framework for the structural analysis of diffusion processes. Unlike

Sadler (2020)
[51]

, where neighbor types remain unobservable to players, our paper assumes

players observe the neighbor types because people often have some information about their

friends’ preferences when making decisions.

The contribution is mainly twofold. First, this paper provides an econometric framework

for analyzing diffusion processes in fixed networks with strategic players that observe their

close neighbors. We extend Sadler (2020)
[51]

to build a model of network games where

3Schmittlein and Mahajan (1982)
[53]

propose a maximum likelihood estimator (MLE) for Bass model

parameter estimation and apply it to model forecasting. Srinivasan and Mason (1986)
[56]

propose a nonlinear
least squares (NLS) approach that considers not only sampling errors but also other errors. They report

that the NLS is comparable to the MLE in terms of fit and predictive validity. Boswijk and Franses (2005)
[9]

develop an asymptotic theory for the parameters in an alternative version of the Bass model that incorporates
heteroscedastic errors.
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the individuals are heterogeneous in types and hold private information about their links

and payoffs. Instead of the assumption that players do not observe neighbor types, as in

Sadler (2020)
[51]

, we assume that neighbor information is observable to players. Players learn

about an innovation from their neighbors and make adoption decisions that maximize their

expected payoffs, given beliefs about their neighbors’ propensity to adopt. A key feature

of the model, which we prove in this paper, is the existence of equilibrium beliefs formed

by strategic players. In addition, since a fundamental difficulty of this procedure is that

diffusion models generally have multiple equilibria for beliefs (Jackson and Yariv, 2007
[34]

),

we provide conditions that guarantee the unique Bayesian equilibrium of the model. We show

that the beliefs are formed based on anonymized information such as types and neighborhood

characteristics. We characterize unique, symmetric equilibrium beliefs.

Furthermore, this paper develops a feasible two-step procedure to identify and estimate

individual payoffs with only a single large network. We first estimate the equilibrium beliefs

via sample analogs and then the payoff parameters using a maximum likelihood estimator.

This two-step estimator for payoff parameters is consistent under regularity conditions and

tractable with observations from a single large network. By restricting the range of payoff-

relevant connections and assuming symmetric equilibria – only neighbors with direct links

can affect one’s payoff, and agents form the same belief about observationally equivalent

neighbors – we deal with the computational difficulties that arise from the highly hetero-

geneous strategic environments across agents. These assumptions enable the estimation of

equilibrium beliefs. In addition, because observations are history-dependent in diffusion pro-

cesses – that is, players make decisions only if they are informed – we address the possibly

selective observations by showing that the forward type and degree distribution of the newly

informed group in each period is independent of the payoff parameters of interest.

Our model is closely related to the literature that investigates the social interaction mod-

els where individuals only observe their close neighbors.4 Unlike the standard literature that

assumes players observe the whole network structure, network games with such incomplete

4This assumption on incomplete information is prevalent when the size of the network is large (Banerjee

et al., 2014
[7]

).
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information often adopt a Bayesian Nash equilibrium as their equilibrium concept. Galeotti

et al.(2010)
[23]

develop a general framework for static incomplete information games and es-

tablish the existence of symmetric, monotone Bayesian Nash equilibria. Jackson and Yariv

(2007)
[34]

establish the correspondence between the Bayesian equilibria in a static incomplete

information game and the steady state of a mean-field diffusion model. While these theory

papers study Bayesian equilibria in static games or mean-field processes, we demonstrate

the existence of a Bayesian equilibrium in diffusion games with fixed networks.

A recent strand of econometrics literature tackles the challenge that arises from incom-

plete network information. Canen et al. (2020)
[12]

take a behavioral approach to modeling

networks games and provide an estimation method for a model of linear local interactions.

Their behavioral approach assumes that a player projects his or her own beliefs about others’

strategies onto his neighbors’ beliefs, which may be restrictive in application. In contrast,

I demonstrate a symmetric equilibrium where a player’s equilibrium beliefs only depend on

anonymized information such as the type and the degree of the player and her neighbors’

types. Eraslan and Tang (2017)
[20]

characterize a unique, symmetric Bayesian Nash equilib-

rium and propose a two-step m-estimator for individual payoffs in the simultaneous-move

setup. Their paper characterizes the equilibrium by the conditional expectation of players’

actions given their types and degrees. Thus, a player’s expected payoff, given that neighbors’

degrees are unobservable, depends on the conditional expectations of all possible degrees.

We instead characterize the equilibrium by players’ beliefs about their neighbors’ strategies

given players’ types and degrees and neighbors’ types. Therefore, the estimation is con-

siderably simplified because we do not need to integrate neighbors’ degrees. An additional

difference from their paper is that our paper applies to diffusion games, so that the obser-

vations are potentially correlated, because players are informed only when someone in their

neighborhood decides to adopt.

The literature on diffusion processes also lies at the intersection of marketing and com-

puter science. The diffusion of innovation has been a major interest in the marketing litera-

ture. Abrahamson and Rosenkopf (1997)
[1]

study the social network effects using computer

simulations. They show that the extent of diffusion is affected by the structure of social
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networks because the information is channeled only to certain potential adopters. Golden-

berg et al. (2009)
[27]

and Iyengar et al. (2011)
[30]

discuss the roles of central individuals in

diffusion rate and extent. By incorporating network structure into the diffusion model, the

literature is extending its focus from a homogeneous and fully connected social system to

a more complicated and possibly heterogeneous network (see Peres et al. (2007)
[47]

for an

overview).

The model for diffusion processes in fixed networks exhibits significant potential for fu-

ture research. First, it provides a tool for out-of-sample forecasting. We can estimate the

payoff parameters using data obtained from other communities and perform predictions over

the network of interest. Second, with a well-defined preference structure, the model helps

determine the group of early adopters (or the seeds) that maximizes the speed and spread

of product adoption and brings the best referral promotion outcomes.5 Lastly, the model

allows us to relate the estimated individual payoff parameters with a series of player-specific

characteristics.6

This paper is organized as follows. Sections 2.2 lays out the model of diffusion processes,

establishes the existence of equilibria, and characterizes the unique, symmetric equilibrium

under certain conditions. Section 2.3 demonstrates the identification strategy as the number

of individuals approaches infinity while observing a single network. In Section 2.4, we present

a two-step estimator for individual payoffs. Section 2.7 provides Monte Carlo simulation

results, and Section 2.8 concludes. In Appendix 2.9, we discuss the assumptions of the

model. Proofs are collected in Appendix 2.10.

5In various applications (Van der Lans et al., 2010
[60]

; Banerjee et al., 2013
[6]

; Cai et al., 2015
[11]

), early
adopters are thought to affect the diffusion outcomes.

6For mean-field models, there is extensive marketing literature that relates the diffusion parameters with

country-specific characteristics, and thus allows multinational diffusion processes (Gatignon et al., 1989
[25]

;

Takada and Jain, 1991
[58]

; Helsen et al., 1993
[29]

; Desiraju et al., 2004
[16]

; Talukdar et al., 2002
[59]

). We can
perform the same study on discrete networks.
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2.2 The Diffusion Model

To illustrate the data observed from a diffusion process, we use a referral program as an

example. Suppose that each time a person purchases a product, she will send referral emails

to her friends. For each consumer i who is informed of this product in the recommendation

network, a researcher observes i’s adoption decision, the person who send the email to i,

i’s type, and her neighbors’ types. The recommendation network is pre-determined and

exogenously given. It describes the long-term relationship among all consumers and can be

recovered from all historical recommendation records on all products.

The following model characterizes the data generating process.

Players. We focus on the sequence of games such that the number of players n ap-

proaches infinity. For each n-th game, let N = {1, ..., n} be the set of n agents. At the begin-

ning of the game, each agent i ∈ N is endowed with a type xi ∈ X, where X = {X1, ..., XK}

is a discrete finite support, and an idiosyncratic shock εi ∈ R.

Network. We consider an exogenous undirected network where all players have no more

than M links. Denote the network by an n-by-n matrix G ≜ (Gij)i,j∈N . Gij = Gji = 1 if

agent i is connected to agent j and Gij = 0 if otherwise. Denote the set of i’s neighbors by

Ni ≡ {j ∈ N : Gij = 1}, i.e., the agents directly connect to i. Then denote the neighborhood

attribute by di. di = (di1, di2, ..., diK) is a vector of sizeK, where each dik denotes the number

of type-Xk neighbors that agent i has. We call di the degree or the neighborhood attribute

of agent i in the rest of the paper.

There exists a player type distribution T ∈ ∆(X) and a degree distribution DX ∈ ∆( K)

for each type with maximum total degrees M , i.e., the total number of neighbors of all types

should not exceed M . The player type and degree distributions are common knowledge.

Consider the asymptotics that n → ∞. For each n ∈ , we generate a network with

type and degree sequences
󰀃
x(n),d(n)

󰀄
. Let N

(n)
x,d denote the number of nodes with type x
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and degree d in the n-th game. Assume for each type x ∈ X and degree d ∈ K ,

lim
n→∞

N
(n)
x,d

n
= P(T = x) ·P(DX = d),

the network converges in distribution as n approaches infinity.

Diffusion process. The game characterizes the diffusion of a behavior on a network

of the n players over n periods t = 0, 1, ..., n − 17. Denote individual i’s action at time

t by yi(t) ∈ Y = {0, 1}, that is, yi(t) = 1 if agent i adopts the new product at time t,

yi = 0 if agent i does not. Initially yi(0) = 0 for all players, and none of the agents has

been informed of the behavior. At time 0, nature does three things: first, it draws a type

and degree sequence {(x(n),d(n))}n∈ from the distribution (T,DX) and forms a random

network; second, it assigns the idiosyncratic shocks to the n players in the network; third,

it draws a seed player uniformly at random from all players to adopt the behavior and pass

the information to all her neighbors.

In each following period, those informed make irreversible decisions whether to adopt.

Once a player adopts, her neighbors become informed. Players have to decide whether to

adopt when they become informed, and individuals who refrain from adopting cannot revisit

their decision. Player i acts at time ti = 1 + min{t : ∃j ∈ Ni such that yj(t) = 1}. Let

yi = yi(n− 1) denote whether player i has adopted the behavior in this process.

Parent(s). We use ωi to denote agent i’s parent(s), meaning the neighbor(s) who already

adopted and passed the information to agent i before agent i makes her decision. In our

setup, the probability that an agent has more than one parent is negligible as n becomes

large. Sadler (2020)
[51]

shows that, as n grows, the local network structure of a configuration

7In a network with n players, the maximum number of periods needed to complete the diffusion process
is n.
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Figure 2.1: A diffusion process. The olive nodes are players that adopt. Arrows indicate the
transition of information. Each arrow starts from a referrer and ends in a receiver.

model8 converges in distribution to a branching process9 as the chance of finding a cycle

approaches zero. In simulations, we find that, in a network with 1,000 players, fewer than

2% of the players have more than one parent. Because we focus on large networks with a

substantial proportion of adopters for estimation purposes, we can safely assume that each

player has only one parent.

Information. Let τi = (xi, Ni, xNi
, εi,ωi) summarize the information available to agent

i - upon becoming informed, agent i observes her own type xi, her neighbors Ni, neighbors’

types xNi
, her private idiosyncratic shock εi and her parent ωi. Let the degree di summarize

her neighborhood attribute. Each agent observes only one parent that adopts the behavior

and regards the other neighbors as not exposed. The player type distribution T and degree

distributions DX are common knowledge. Importantly, agents do not observe the number

of periods that have passed. Agent i is aware of Ni because there are direct links between i

and each member of Ni, but agent i does not observe the whole network.

Payoff. The payoff of agent i depends on the net benefit from adoption if no other

neighbor adopts, hi, on the social effect and on the shock εi. For the social effect, we sum

up the choices of all neighbors by weight γ.

8In network science, the configuration model is a method for generating random networks. In a config-
uration model, the network G(n) is drawn uniformly at random among those with a given type and degree
sequence {(x(n),d(n))}n∈ . It is widely used as a reference model for real-life social networks because it

allows arbitrary degree sequences (Newman, 2010
[46]

).

9Later sections describe the branching process in more detail.
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Ui(yi, (yj)j∈Ni
, τi) = yi

󰀣
hi +

󰁛

j∈Ni

γij · yj − εi

󰀤
, (2.1)

where γij > 0 measures the weight that agent i assigns to her neighbor j’s choice. It

summarizes the influence of player j on player i’s decision making. In reality, the weight can

depend on the strength of the connection between i and j, the type of the two agents, the

number of neighbors agent i has, etc. So far, we assume γij is pair-specific. The non-adoption

payoff is normalized to zero by construction.

Equilibrium concept. Let T denote the support of agent i’s information τi. A strategy

for agent i is a mapping si(τi) : T → Y = {0, 1} that maps i’s information to the adoption

decision. Let Ai =
󰁓

j∈Ni
γij · yj denote the weighted sum of neighbors that adopt the

behavior. The distribution of Ai depends on the profile of strategies (si)i∈N . Upon exposure,

agent i forms a belief about Ai, conditioned on her information τi and on the fact that she

adopted the behavior.10 The belief does not change with the number of periods that have

passed because agent i does not observe it.

A perfect Bayesian Nash equilibrium is a profile of strategies (si)i∈N such that:

si(τi) ∈ argmax
yi∈Y

Ei[Ui(yi, s−i(τ−i), τi)|τi] =

󰀻
󰁁󰀿

󰁁󰀽

1 if εi ≤ hi + Ei(Ai)

0 if εi ≥ hi + Ei(Ai)

∀i ∈ N , (2.2)

where s−i(τ−i) = (sj(τj))j∈N\i. That is, each agent maximizes her expected payoff given her

belief over Ai.

I maintain the following assumption about the exogenously given network.

Assumption 3. The following hold for any n.

a) The idiosyncratic shocks {εi}i∈N are independently and identically distributed with

strictly increasing c.d.f. Fε and density fε, which is common knowledge among players.

b) For each i, εi ⊥ (xi, Ni).

10We focus on the payoff from adoption since we normalized the non-adoption payoff to zero.
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This assumption states that the unobservable shocks εi are independent of each other

and do not degenerate, and that ε is independent of any factors that affect link formation.

The diffusion process characterized in this section is a version of an expectation model

of diffusion studied in the literature, that focus on players who care about the expected

number of neighbors that will participate. (See Sadler (2020)
[51]

for an example.) Different

from Sadler’s model, we allow players to observe the neighbor types and the identity of the

parent.

2.2.1 Equilibrium

This subsection focuses on the existence of equilibria in this network and demonstrates the

equilibrium through a fixed-point characterization. We also propose an anonymous version

of the game and show the uniqueness of the equilibrium.

Note that this is an incomplete information game due to private link and payoff informa-

tion, so agents in the social network form beliefs about their neighbors’ choices when they

get exposed to the behavior, as mentioned in the equilibrium concept of the model.

The equilibrium approach is a standard approach to take in the network games (See

Jackson and Yariv (2007)
[34]

. Also see Eraslan and Tang (2017)
[20]

for the estimation of

static network models using equilibrium approach.) It requires that players have a ”correct”

common prior about the network formation. Canen et al. (2020)
[12]

take a behavioral ap-

proach to model networks games and provides an estimation method for a model of linear

local interactions, which may be restrictive in application. Instead, we assume the existence

of common prior and thus can demonstrate the existence of a symmetric equilibrium where

a player’s equilibrium beliefs only depend on anonymized information.

Recall that by Equation (2.2),

yi = 1 iff εi ≤ hi + Ei(Ai) = hi +

󰀳

󰁃γi,ωi
+

󰁛

j∈Ni\ωi

γij · Ei(yj)

󰀴

󰁄 .

When agent i becomes aware, she observes that ωi has adopted, and expects neighbor j ∈
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Ni \ωi to adopt the behavior with probability Ei(yj) if she adopts, where Ei(yj) is the belief

formed, conditioned on her information τi and on the fact that she adopted the behavior.

In the rest of the section, we focus on the case in which the parent node ωi connects to

any member in i’s neighborhood Ni with a probability approaching zero as n approaches

infinity. Thus, the belief Ei(yj) is formed, conditioned on agent i’s information τi and on

the fact that she passed the information to j. We will discuss the case where ωi connects to

some members of Ni in the Appendix.

We assume the players are rational in the following sense.

Assumption 4. (Rational Expectation) The individuals possess self-consistent expectations,

that is,

Ei(yj) = E (yj|τi,ωj = i, i ∈ I) .

where I = {i : ∃j ∈ Ni such that yj = 1} denotes the set of informed players.

Assumption 4 states that the belief Ei(yj) should be equal to the expected value of agent

j’s choice conditional on τi and on i being j’s parent. Denote the belief Ei(yj) by σij, the

expected weighted sum of adopters Ei(Ai) by ai.

ai(Ni,ωi, σ) = γi,ωi
+

󰁛

j∈Ni\ωi

γij · σij. (2.3)

Agent i’s action is

yi = {εi < hi + ai}. (2.4)

Then we show that there’s a fixed-point characterization that maps σ to itself on a closed

interval because σli can be written as a function of σik for all k ∕= i. Denote the projection

by σli = Rli (σi,−i). It is a continuous mapping from [0, 1]n(n−1) to [0, 1]n(n−1). We prove the

existence of the equilibrium using Brouwer’s fixed-point theorem.

Theorem 4. (Existence of the equilibrium) Under Assumptions 3-4, there exists an equilib-
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rium belief σ∗. Moreover, σ∗ satisfies the following self-projection σ = R(σ),

σli = Rli (σi,−i) =
󰁛

Ni

Fε (hi + ai(Ni,ωi = l, σ)) · P (Ni|ωi = l, xi, xl,dl, l ∈ I), ∀l ∕= i (2.5)

where ai(Ni,ωi = l, σ) = γil +
󰁓

j∈Ni\l γijσij.

Proof. See Appendix.

For estimation purposes, the rest of the paper will focus on the diffusion processes with

an assumption of anonymity, that is, the equilibrium belief σ∗
ij depends only on the agent

type xi, xj and neighborhood attribute di, not on the identity of the nodes. Furthermore,

we prove that the symmetric equilibrium is unique.

Assumption 5. (Anonymity) The deterministic part of an agent’s payoff is affected only by

the characteristics (rather than actual identities) of the agent and her neighbors, specifically,

hi = h(xi,di) and γij = γ(xj, xi,di).

The above assumption arises from the empirical literature. In social interaction models,

the social effect is often characterized by the sum or the average of neighbors’ decisions.

An example for the first type (i.e., the sum) is γij = γ(xj, xi), which depends only on the

types of both ends of a link. For the second type (i.e., the average), a typical example is

γij = γ(xj, xi)/di, where di is the total number of links that agent i has.

Following Assumption 5, we prove that, when two players have the same profile of in-

dividual and neighborhood characteristics, they tend to form the same beliefs for a mutual

friend. For simplicity of notation, we use σ instead of σ∗ to denote a Bayesian equilibrium

in the following discussion.

Assumption 6. (Anonymous beliefs) σij = σik if xj = xk for all i, j, k ∈ N .

Recall that σij = E(yj|ωj = i, τi, i ∈ I) and σik = E(yk|ωk = i, τi, i ∈ I). Given that

xj = xk, on the one hand, agent j and k are observationally identical to agent i; on the other

hand, by Assumption 3 and given the same parent node i, the conditional distribution of
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dj and dk are the same. Thus, we can assume that σij = σik, because the probability that

agent j or k would adopt the behavior depends on the type xj, xk and possible neighborhood

attributes dj and dk.

Then, we show that the equilibrium beliefs are symmetric given Assumptions 5 and 6.

Proposition 2. (Symmetry in equilibrium beliefs) A Bayesian equilibrium σ is symmetric

under Assumptions 5 and 6, that is,

σij = σkl if xi = xk, xj = xl,di = dk.

Proof. See Appendix.

Proposition 2 suggests that the equilibrium beliefs depend only on the agent’s and her

neighbors’ characteristics, not on the specific identity of players, i.e., σij = σ(xj, xi,di). As

a result, ai defined in Equation (2.3) depends only on player i’s individual and neighbor

characteristics (xi,di) and parent information ωi.

One aspect of diffusion processes is that the model generally admits multiple equilibria.

Some equilibria are robust to small perturbations and are therefore stable, while, for other

equilibria, small perturbations lead to significant changes. With some additional restrictions,

we show that a unique symmetric equilibrium belief exists.

Assumption 7. For the shock ε and payoff parameter γ’s,

a) Fε(·) is Lipschitz continuous with constant K, i.e., fε(·) ≤ K;

b) there exists an α ∈ (0, 1) such that Kφ̄ ≤ α, where φ̄ = maxxi,di
{γid′

i − γi,min},

γi = (γ(X1, xi,di), ..., γ(XK , xi,di)) and γi,min is the minimum element of γi.

The above assumption on ε and γ limits the variation in the expected payoff. The

variation cannot be too large, otherwise it affects the stability of the equilibrium and we

may get multiple equilibria.

Theorem 5. (Uniqueness of Nash equilibrium) A unique Nash equilibrium σ exists if As-

sumption 7 holds.
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Proof. See Appendix.

Given that R(·) is upward sloping (because payoffs exhibit complementarity), the shape

restrictions posted by Theorem 5 guarantee a flatter R(·). Together with Proposition 2,

Theorem 5 implies that there exists a unique, symmetric equilibrium.

2.3 Identification

Now we discuss the identification of the model when the number of agents approaches

infinity, and only a single large network is observed. In this section, we use ∗ to indicate an

identifiable element. Throughout this section, we maintain Assumption 3-7 so that there is

a unique, symmetric equilibrium for players’ beliefs about neighbors’ actions.

Suppose the researcher collects data from a single network with n individuals. For each

informed agent i ∈ I, the data includes the agent’s type xi, the identity of the parent ωi,

the type of the parent xωi
, the neighborhood attributes di, and individual choices yi when

the diffusion process is finalized. Recall that the network is observed by the researcher since

it can be recovered from historical data that demonstrates long-run relationships amongst

these agents. Such a size-n network is a single, random realization of some data-generating

process governed by the type and degree distributions
󰀓
T (n), D

(n)
X

󰀔
.
󰀓
T (n), D

(n)
X

󰀔
converges

to (T,DX) as n approaches infinity. Let En(·) denote the expectation under
󰀓
T (n), D

(n)
X

󰀔
in

the following statement.

For identification purposes, this paper only discusses large cascades on networks where

a substantial proportion of the population is informed during the diffusion process, i.e., the

size of the informed group |In| grows linearly in n as n approaches infinity. Examples of such

phenomena include the diffusion of norms and innovations, collective action, propagation of

rumors, and cultural fads, where the information reaches a non-negligible percentage of the

population.
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Assumption 8. (Existence of the Limit) For any x, x′ ∈ X, d,d′ ∈ K

q∗(d′|x′, x,d) ≡ lim
n→∞

1

|In|
󰁛

j

En [ {di = d′}|xi = x′, xωi
= x,dωi

= d]

exists.

With the above assumption, we show that the asymptotic moment of equilibrium beliefs

also exists. The following proposition illustrates the existence of limit σ∗(x′, x,d) and relates

the parameters (h, γ) to asymptotic moments σ∗ and q∗.

Proposition 3. Suppose Assumption 8 holds,

σ∗(x′, x,d) ≡ lim
n→∞

1

|In|
󰁛

j

En(yi|xi = x′, xωi
= x,dωi

= d) (2.6)

exists and

σ∗(x′, x,d) =
󰁛

d′

Fε (h(x
′,d′) + a(x′,d′, xω = x, σ∗)) · q∗(d′|x′, x,d).

where a(x′,d′, xω = x, σ∗) = γ(x, x′,d′)(1−σ∗(x, x′,d′))+
󰁓K

k=1 γ(Xk, x
′,d′)σ∗(Xk, x

′,d′)d′k.

Proof. See Appendix.

Equation (2.6) is derived from the self-projection σ = R(σ) by replacing the equilib-

rium beliefs and neighborhood attributes probabilities in Equation (2.5) with identifiable

asymptotic moments.

The rest of Section 2.3 illustrates the steps for identification. We maintain Assumption

3-8, so that the asymptotic moments are considered identified as probability limits. Then

the payoff parameters are recovered from these asymptotic moments.

Note that, for each i that is informed, we observe player i’s choice yi, parent type xωi

and neighborhood attribute di. Therefore, the conditional probability that agent i would

adopt En(yi|xi,di, xωi
, σ∗) is identified under the asymptotics that the network size n ap-

proaches infinity. On the other hand, Equation (2.3)-(2.4) implies that En(yi|di, xωi
, σ∗) =
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Fε

󰀓
hi + γi,ωi

+
󰁓

j∈Ni\ωi
γij · σ∗

ij

󰀔
. By Assumption 5 and Proposition 2 that the parameters

and the equilibrium beliefs depend only on the agent’s and her neighborhood’s characteris-

tics, we rewrite the previous equation as

En(yi|di, xωi
, σ∗) = Fε

󰀳

󰁃h(xi,di) + γ(xωi
, xi,di) +

󰁛

j∈N(di)\ωi

γ(xj, xi,di) · σ∗(xj, xi,di)

󰀴

󰁄 ,

(2.7)

where N(di) denotes a neighborhood that has degree di, i.e., if di = (1, 2), then there are one

type-1 agent and two type-2 agents in this neighborhood. The parameters to be identified

are h(·, ·) and γ(·, ·, ·).

The following assumption demonstrates two possible types of restrictions that ensure

identification.

Assumption 9. There are two types of restrictions:

a) γ(x′, x,d) = γ(x′, x) for any (x′, x,d);

b) h(x,d) = h(x) and γ(x′, x,d) = φ(x)w(x′, x,d) for any (x′, x,d), and there exist

functions w0(·) such that w(x′, x,d) = w0(x′,x)󰁓
j∈N(d) w0(xj ,x)

.

Assumption 9(a) holds when the players’ payoffs depend on the headcount of adopters

instead of the proportion. Assumption 9(b) holds when payoffs are affected only by the

weighted proportion of adopters.

The parameters are then identified with the additional restrictions.

Proposition 4. Suppose Assumptions 3-9 hold. Then (h, γ) are identified from the asymp-

totic moments.

Proof. See Appendix.

Equation (2.7) implies that (h, γ) cannot be identified without further restrictions. We

can see this by letting T (xi,di) =
󰁓

j∈N(di)
γ(xj, xi,di)σ

∗(xj, xi,di) be the weighted sum of

beliefs for agents with type xi and neighborhood attributes di. Then En(yi|di, xωi
, σ∗) =
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Fε{h(xi,di) + T (xi,di) + γ(xωi
, xi,di) (1− σ∗(xωi

, xi,di))}. Thus, even if S(xωi
, xi,di) =

h(xi,di) + T (xi,di) + γ(xωi
, xi,di) (1− σ∗(xωi

, xi,di)) can be identified as a result of As-

sumption 3(a) such that Fε(·) is strictly monotonic, we still cannot identify h and γ for any

function h + T . This is because there would always exist a weight function γ such that

the equality holds. This is achieved by redistributing weight γ and adjusting the add-on h,

conditioning on each (x,d).

To see it more clearly, I reshape the original expression for function S(·) (see Appendix

for the proof),

S∗(xj, xi,di)(1+Y ∗(xi,di))−X∗(xi,di) = h(xi,di)+γ(xj, xi,di)(1−σ∗(xj, xi,di))(1+Y ∗(xi,di)),

where X∗(xi,di) =
󰁓

j∈N(di)
S∗(xj, xi,di)

σ∗(xj ,xi,di)

1−σ∗(xj ,xi,di)
, Y ∗(xi,di) =

󰁓
j∈N(di)

σ∗(xj ,xi,di)

1−σ∗(xj ,xi,di)
.

The above equation illustrates that the identification is not achievable even if S∗(xj, xi,di)

and σ∗(xj, xi,di) are identified for all combinations of (xj, xi,di), because, for each (xi,di),

we have K equalities but K + 1 unknowns to be identified. Therefore, we propose further

restrictions that guarantee the identification of parameters (h, γ) under the condition that

σ∗ is identified by Proposition 3.

2.4 Two-Step M-Estimator

We propose a two-step m-estimator for parameters in individual payoffs. In the first

step, we estimate σ using asymptotic moments. Then, by plugging in the estimated σ, we

estimate the coefficient θ using an M.L.E. estimator.

2.4.1 First Step: the Equilibrium Belief σ

We begin this section by showing that the asymptotic moments σ in Equation (2.6) can

be consistently estimated using sample averages across individuals from a single network

as the number of individuals n → ∞. Moreover, we prove the root-n consistency of this

estimator.
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Proposition 5. Define estimator of the nuisance parameter σ by

σ̂(x′, x,d) =

󰁓
i∈In yi1{xi = x′}ιωi

(x,d)
󰁓

i∈In 1{xi = x′}ιωi
(x,d)

.

If Assumption 3-6 holds, then we have ||σ̂ − σ∗|| = Op

󰀓
1√
n

󰀔
, i.e.,

sup
x,x′∈X
m∈M

|σ̂(x′, x,d)− σ∗(x′, x,d)| = Op

󰀕
1√
n

󰀖

where σ∗ is the true value of the equilibrium belief.

Proof. See Appendix.

Proposition 5 states that the average of the sample analog is a uniformly root-n consistent

estimator for the equilibrium belief σ. The proof relies on the fact that players’ decisions are

conditionally independent of each other given that researchers observe the types and degree

(x′, x,d). Combined with the definition of large cascades, that the size of the informed

group |In|/n → α0 for some α0 > 0, we demonstrate the root-n consistency of the first-step

estimator σ̂.

2.4.2 Second Step: the Maximum Likelihood Estimator

We can sort the nodes by period. The diffusion process starts with a single individual at

time 0. Each individual makes an irreversible decision in a single period; if she decides to

adopt, she will pass the information to her neighbors. Let Nt be the set of individuals that

make decisions at period t. The process is {N0, N1, ..., NT}. The T is the last period of the

observation. It does not necessarily have to be the termination of the diffusion process.

Suppose we observe a realization of the process {yti, xti,dti,ωti} for i = 1, ..., nt ∈ Nt

and t = 1, ..., T . Denote the observed information about the players who adopt in the first t

periods by Ht. Then Ht = {yt′i, xt′i,dt′i,ωt′i} i∈Nt′
t′=1,...,t

. We can uncover the payoff function by
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finding a parameter θ that maximizes the likelihood function L defined by

L
󰀃
HT

󰀏󰀏y0 = 1, x0,d0, θ
󰀄

=

󰀣
󰁜

i∈NT

P (yT i|xT i,dT i,ωT i, θ)

󰀤
· π

󰀃
{xT i,dT i,ωT i}i∈NT

󰀏󰀏HT−1

󰀄
· L

󰀃
HT−1

󰀏󰀏y0 = 1, x0,d0, θ
󰀄

=
T󰁜

t=1

󰀫󰀣
󰁜

i∈Nt

P (yti|xti,dti,ωti, θ)

󰀤
· π

󰀃
{xti,dti,ωti}i∈Nt

󰀏󰀏Ht

󰀄
󰀬

(2.8)

where θ is the parameter of interest (h, γ) over all types and degrees. The first equality

demonstrates the likelihood function in an iterative form, and the second equality is an

expansion. Thus, the likelihood function consists of two parts: the conditional probability

of period t players’ decisions and the forward function π.

We can easily calculate the conditional probability of player i’s decision, as in the pre-

vious sections P (yi = 1|xi,di,ωi, θ, σ) = Fε

󰁱
hi + γi,ωi

(1− σi,ωi
) +

󰁓
j∈N(di)

γijσij

󰁲
. For

types with finite and discrete support X = {X1, ..., XK}, after categorizing the terms in the

summation by types,

P (yi = 1|xi,di,ωi, θ, σ) = Fε (Zi(xi,di,ωi, σ)
′θi) ,

where θi = θ(xi,di) = (h(xi,di), γ(X1, xi,di), ..., γ(XK , xi,di))
′, and Zi(xi,di,ωi, σ) =

(1, σ(X1, xi,di)di1 + 1{X1 = xωi
}(1− σ(X1, xi,di)), ..., σ(XK , xi,di)diK + 1{XK = xωi

}(1−

σ(XK , xi,di)))
′.

Now we show that the forward function π in Equation (2.8) does not depend on θ in the

limit (n → ∞), that is, π
󰀃
{xti,dti,ωti}i∈Nt

󰀏󰀏Ht

󰀄
is not a function of θ.

First of all, since {xti,ωti}i∈Nt are jointly determined by information contained in the

history {yt−1,i, xt−1,i,dt−1,i}i∈Nt−1 , the forward function π degenerates to π
󰀃
{dti}i∈NT

󰀏󰀏Ht

󰀄
.

The distribution of dti is restricted by the following conditions:

1. one link of node i connects to a type-xωi
player since ωi ∈ Ni,
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2. dωi
affects the distribution of di because i may be connected to some j ∈ Nωi

,

3. ωi ∈ I thus ωωi
∈ I.

The first two do not depend on σ since they are determined by the type and degree distri-

butions that govern the network generating process. Only the third condition is potentially

related to the diffusion process.

When agent l does not observe the identity of her parent, her beliefs about her neighbors’

degrees are affected by the viral belief distortion. However, when the identity of ωl is

observed, viral belief distortion affects only l’s belief about ωl’s degree, not her beliefs about

other neighbors’ degrees. In sum, P (di|ωi = l, xi, xl,dl, l ∈ I) does not change with θ.

The core idea of the proof is to approximate the local network structure with a branching

process. The branching process is defined by the diffusion process from a ”seed” player in the

network. The ”seed” player’s neighbors are the first generation, and the neighbors’ neighbors

are the second, and so on. For each informed agent i, there is a unique period ti in which

agent i decides to adopt. This ti corresponds to the generation in which agent i lies in in

the branching process.

In any finite graph, the offspring distributions in this diffusion process are not indepen-

dent, and they change over time. However, Lemma 1 of Sadler (2020)
[51]

shows that these

complications are asymptotically insignificant: as n grows, the local structure of the configu-

ration model converges to that of a branching process. This result relies on the configuration

model of random graphs, which takes a uniform random draw among all graphs G with a

given type and degree sequence for the nodes in the network.

With the isomorphic structure in asymptotics, the neighborhood attributes of players

informed in Nt depend only on the types and degrees of adopters in period t − 1 and are

independent of the history Ht−2. For example, for period T , π
󰀃
{xT i,dT i,ωT i}i∈NT

󰀏󰀏HT−1

󰀄
=

π
󰀃
{dT i}i∈NT

󰀏󰀏{yti, xti,dti}i∈NT−1

󰀄
.

Therefore, θ affects the likelihood function L(·) only through the conditional probability

of adoption by each informed player, L
󰀃
HT

󰀏󰀏y0 = 1, x0,d0, θ
󰀄
=

󰁔
i∈I P (yti|xti,dti,ωti, θ).
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The second-step MLE objective function is

Q̂n(θ, σ̂) =
1

|In|
󰁛

i∈In

{yi logFε (Zi(σ̂)
′θi) + (1− yi) log (1− Fε (Zi(σ̂)

′θi))} (2.9)

where Zi(σ̂) = Zi(xi,di,ωi, σ̂), and In is the group of agents who are connected with each

other in a giant component of this network index by n. Partition the set of individuals

In into In,k = {i ∈ In : xi = Xk}. This is equivalent to finding the θ̂ that maximizes

Q̂n,k(θ, σ̂) = 1
|In,k|

󰁓
i∈In,k

{yi logFε (Zi(σ̂)
′θ) + (1− yi) log (1− Fε (Zi(σ̂)

′θ))}, where In,k is

the group of agents within this giant component that has the same type Xk.

Assumption 10. The following conditions are needed for the consistency of the estimator

for θ:

a) θ ∈ Θ, Θ is compact;

b) lim infn
1

|In,k|
Z ′Z > 0, where Z = (Zi(σ0)

′)i∈In,k
for all k.

Compactness of Θ is Assumption 10(a) guarantees the maximum of the probability limit

of the MLE objective function. Assumption 10(b) requires that the (K+1)× (K+1) matrix

Z ′Z does not degenerate when n approaches infinity and thus the parameters in the model

are identified.11

The following theorem states the consistency of the second-step estimator θ̂.

Theorem 6. (Consistency) Suppose Assumptions 3-10 hold. Then θ̂
p→ θ0.

Proof. See Appendix.

By Proposition 5, for any θ in the compact set Θ (e.g., a closed interval [a, b]K+1), θ̂ is

consistent if the matrix Z ′Z does not degenerate when n approaches infinity.

In sum, this two-step approach that applies to the diffusion model differs significantly

from a static network model. (See Eraslan and Tang (2017)
[20]

for a two-step approach that

11We provided sufficient conditions for Assumption 10(b) in Section 2.3.
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applies to static network games.) We have to impose restrictions to the network formation

due to possible selectivity in the diffusion games, as not everyone in the network is exposed

to the new information.

2.5 Asymptotic Results

In this section, we briefly derive the asymptotic property of the two-step estimator. We

maintain Assumptions 3-10 throughout this section.

Notice that we already proved the following conditions in Proposition 5 and Theorem 6,

respectively,

a) ||σ̂ − σ0|| = Op(1/
√
n);

b) θ̂ − θ0
p→ 0.

Let fi(θ, σ) = yi logFε(Zi(σ)
′θ)+(1−yi) log(1−Fε(Zi(σ)

′θ)), andWi = E [∇σ∇θfi(θ0, σ0)|Y ],

the estimator is asymptotically normal, as stated in the following theorem.

Theorem 7. (Asymptotic Normality) Suppose Assumptions 3-10 hold.

󰁴
|In,k| Σ−1

n,k(θ̂k − θ0k)
d→ N (0, IK+1), k = 1, ..., K (2.10)

where

Σn,k = Γ−1
n,kΩn,kΓ

−1
n,k,

Γn,k =
1

|In,k|
󰁛

i∈In,k

E

󰀗
∇θθfi(θ0, σ)

󰀏󰀏󰀏󰀏Y
󰀘
,

Ωn,k =
1

|In,k|
󰁛

i∈In,k

V ar (∇θfi(θ0, σ0)) +
1

|In,k|

󰀳

󰁃
󰁛

i∈In,k

Wi

󰀴

󰁄V ar(σ̂)

󰀳

󰁃
󰁛

i∈In,k

Wi

󰀴

󰁄
⊤

.

Proof. See Appendix.
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2.6 Extension to Players Who can Defer Their Decisions

In this section, we extend our discussion to players who can defer their adoption decisions.

We assume, in the previous section, that agents make decisions when they learn about the

new product or new program. However, this might be restrictive if people can postpone their

adoption decisions, which happens especially when agents observe their neighbors actions

and are allowed to have more time for making decisions.

We assume agents who have already learned about the new product but not yet adopted

can adopt the product in a later period. To be more specific, we assume the decision to

participate is irreversible, only those who did not participate are allowed to switch.

This new setup differs from the previous setup because there are stronger interdepen-

dence among agents’ decisions. In the previous setup, correlated individual choices derives

from strategic interaction among agents due to their types and positions in the network,

nevertheless they still make conditional independent decisions because they do not observe

other neighbors’ decisions, except their parents. As agents are allowed to observe all their

neighbors’ decisions, the complementarity can lead to correlated individual choices, and the

correlation can bring difficulty to the identification of social effects.

This section describes the unique equilibrium under the new setup, and provide additional

assumptions to identify the payoff parameters. Same as in the previous setup, the variation

in the neighborhood of different nodes makes it possible for us to have identification with one

single formation of a network instead of several networks with the same network formation

process.

2.6.1 Model and Equilibrium

We maintain the same assumptions for players, network and payoff in Section 2.2. In

addition, we impose the following new model assumptions.

Diffusion process. The game characterizes the diffusion of one particular behavior.

Initially none of the agents has been exposed to the behavior and only a few players are aware
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of it. In each following period, those who are aware decide whether to adopt the behavior,

and once a player adopts, her neighbors become aware. The decision to adopt is irreversible,

that is, players who already adopt the behavior could not change their decision. Individual

i’s choice in period t is denoted by yit ∈ {0, 1}. yit = 1 if agent i adopts the behavior, yit = 0

if agent i denies. The space of all binary choices in period t is yt = (y1t, ..., ynt)
⊤. Denote

the final status of player i, i.e., player i’s choice when the diffusion process stops, by yi.

Information. Let τi = (xi, Ni, xNi
, εi, yNi,t) summarize the information available to

agent i - upon becoming informed, agent i observes her own type xi, her neighbors Ni,

neighbors’ types xNi
, her private idiosyncratic shock εi and her neighbors’ decisions yNi,t =

{yjt ∈ {0, 1} : j ∈ Ni}. Let the degree di summarize her neighborhood attribute. The player

type distribution T and degree distributionsDX are common knowledge. Importantly, agents

do not observe the number of periods that have passed. Agent i is aware of Ni because there

are direct links between i and each member of Ni, but agent i does not observe the whole

network.

We maintain the same equilibrium concept as that in Section 2.2. Assumption 3 remains

for the new setup.

Agents in the social network form beliefs about their neighbors’ choices because of in-

complete information due to private link and payoff information.

By Equation (2.2), yit = 1 if and only if εi ≤ hi + Ei(Ait), where

Ei(Ait) =
󰁛

j∈Ni
yjt=1

γij +
󰁛

k∈Ni
ykt ∕=1

γik · Ei(yk).

When agent i becomes aware, she expects those neighbor who have not adopted to

adopt the behavior with probability Ei(yj) if she adopts, where Ei(yj) is the belief formed,

conditioned on her information τi and on the fact that she adopted the behavior.

We assume the players are rational in the following sense.

Assumption 11. (Rational Expectation) The individuals possess self-consistent expecta-
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tions, that is,

Ei(yj) = E (yj|τi, yi = 1, gli = 1, i ∈ I) .

where I = {i : ∃j ∈ Ni such that yj = 1} denotes the set of informed players.

Denote the belief Ei(yj) by σij, the expected weighted sum of adopters Ei(Ait) by ait,

then ait(σ) =
󰁓

j∈Ni
yjt=1

γij +
󰁓

k∈Ni
ykt ∕=1

γik · σik.

Recall Equation (2.2), in a non-cooperation game, player i’s decision yit, given her ex-

pectation for other players’ choice, is equal to 1 if εi < hi + ait (σ) in period t. Therefore,

a player adopts the behavior if the right hand side of the inequality is large enough. Since

each element in vector yt increases in t, the expected number of neighbors who adopt ait (σ)

is also increasing in t. I denote the maximum of ait(·) by ai such that

ai (σ) = lim
t→∞

ait (σ) =
󰁛

j∈Ni
yj=1

γij +
󰁛

k∈Ni
yk ∕=1

γik · σik. (2.11)

Thus, players’ choice function can also be denoted by its matrix form.

Matrix form. Let E = (ε1, ..., εn)
′, H = (h1, ..., hn)

′, Y = (y1, ..., yn)
′, Γ = [γij]n×n, and

Σ = [σij]n×n, then

Y = {E < H + (Γ ◦G)Y + (Γ ◦G ◦ Σ)(1− Y)}, (2.12)

where A ◦ B is the Hadamard product of matrices A and B. Note that H is an unknown

vector, Y is observable, Σ is unknown, Γ ◦G is the weighted adjacency matrix. H and Γ are

our coefficients of interest.

Then we show that there’s a fixed-point characterization that maps σ to itself on a closed

interval because σli can be written as a function of σik for all k ∕= i. Denote the projection

by σli = Rli (σi,−i). It is a continuous mapping from [0, 1]n(n−1) to [0, 1]n(n−1). We prove the

existence of the equilibrium using Brouwer’s fixed-point theorem.

Theorem 8. (Existence of the equilibrium) Under Assumptions 3 and 11, there exists an

50



equilibrium belief σ∗. Moreover, σ∗ satisfies the following self-projection σ = R(σ),

σli = Rli (σi,−i) =
󰁛

Ni

EY [Fε (hi + ai(σ))] · P (Ni|yl = 1, gli = 1, xi, xl,dl, l ∈ I) (2.13)

∀l ∕= i, where ai(σ) = γil +
󰁓

j∈Ni\l γij ·max{yj, σij}.

Proof. See Appendix.

We maintain Assumptions 5 and 6 from the previous setup. Then we show that the

equilibrium beliefs when agents can defer their decisions are still anonymous and symmetric.

Proposition 6. (Symmetry in equilibrium beliefs) A Bayesian equilibrium σ is symmetric

under Assumptions 3, 5, 6, and 11, that is,

σij = σkl if xi = xk, xj = xl,di = dk.

Proof. The proof is similar to the proof of Proposition 2.

Thus, the equilibrium beliefs still depend only on the agent’s and her neighbors’ charac-

teristics, not on the specific identity of players, i.e., σij = σ(xj, xi,di). We further assume

Assumption 7 still holds to ensure the uniqueness of the symmetric equilibrium belief.

Theorem 9. (Uniqueness of Nash equilibrium) A unique Nash equilibrium σ exists if As-

sumption 3, 5, 6,11, and 7 holds.

Proof. See Appendix.

2.6.2 Estimation

In this section I discuss the estimation of parameters (h, γ) from a sequence of networks,

where the number of agents in the network goes to infinity. Suppose econometricians observe

i) outcomes yi when the diffusion terminates, ii) agent characteristics xi, and iii) the network

G. It takes two steps to investigate the identification of the payoff function. In the first step,
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I show that there exists a unique solution σ∗ which depends only on the types of agents.

Then I argue that (h, γ) are identified under some further assumptions.

I propose two ways to estimate {σij}.

• Method 1 : For any given (h, J), solve {σij} as a function of (h, J). Estimate (h∗, J∗)

that maximizes the likelihood function that I’m going to discuss in section 4.3. Then

find the corresponding {σ̂ij} with the estimated (ĥ, Ĵ).

This method relays heavily on computation. In addition, as we will use M.L.E to

estimate parameters in the discrete choice model, expectations as a function of param-

eters are likely to incur more computational difficulties when deriving the asymptotics.

Therefore a second method is proposed.

• Method 2 : Recall that σij is a type-Xi player’s belief of the probability of her type-Xj

neighbor adopting if that neighbor is exposed to the behavior.

For now, we assume consistency of the following estimator:

Assumption 12. For any characteristics Xi, Xj ∈ Θ,

σ̂(x′, x,d) =

󰁓
i ∕=j yi1{xi = x′}ιi(x,d)gij󰁓
i ∕=j 1{xi = x′}ιi(x,d)gij

p−→ σ(x′, x,d). (2.14)

Therefore {σji} can be estimated by {σ̂ji}. The consistency is proved in the next

subsection.

We impose the following assumption.

Assumption 13. (Existence of the Limit) For any x, x′ ∈ X, d,d′ ∈ K

q∗(d′|x′, x,d) ≡ lim
n→∞

1

|I2
n|

󰁛

j ∕=i

En [ {dj = d′}|xj = x′, xi = x,di = d, gij = 1]

exists, where |I2
n| = |In|(|In|− 1).
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With the above assumption, we show that the asymptotic moment of equilibrium beliefs

also exists. The following proposition illustrates the existence of limit σ∗(x′, x,d) and relates

the parameters (h, γ) to asymptotic moments σ∗ and q∗.

Proposition 7. Suppose Assumption 13 holds,

σ∗(x′, x,d) ≡ lim
n→∞

1

|I2
n|

󰁛

j ∕=i

En(yj|xj = x′, xi = x,di = d, gij = 1) (2.15)

exists and

σ∗(x′, x,d) =
󰁛

d′

󰀳

󰁃
󰁛

yNi

Fε (h(x
′,d′) + a(x′,d′, x, σ∗))

󰀴

󰁄 · q∗(d′|x′, x,d).

where a(x′,d′, x, σ∗) = γ(x, x′,d′) +
󰁓

j∈Ni\l γ(xj, x
′,d′)(yj + (1− yj)σ

∗(xj, x
′,d′).

Proof. See Appendix.

Equation (2.15) is derived from the self-projection σ = R(σ) by replacing the equilibrium

beliefs and neighborhood attributes probabilities in Equation (2.13) with identifiable asymp-

totic moments. Then under the following mentioned assumptions, the asymptotic moments

are considered identified as probability limits, and the payoff parameters are recovered from

these asymptotic moments.

Proposition 8. The unknown components (h, γ, σ) are identified under Assumption 3, 5,

6, 7, 11, and 13.

Proof. See Appendix.

The issue with the new two-step m-estimator lies in the first step when we estimate σ

using asymptotic moments. We need additional assumptions to show that the asymptotic

moments σ in Equation (2.15) can be consistently estimated using sample averages across

individuals as the number of individuals n → ∞, because deferred decisions allow agents

to observe their neighbors and perform more correlated actions. Therefore, we assume that

certain asymptotic properties holds.
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Assumption 14 (Asymptotic Uncorrelation). For any x, x′ ∈ X and d,d′ ∈ M ,

(i) Cn (ιi(x,d), ιi(x,d
′)) → 0 as n → ∞;

(ii) Cn (ιi(x,d)ιj(x,d
′)gij, ιk(x,d)ιl(x,d

′)gkl) → 0 as n → ∞ if {i, j} ∩ {k, l} = φ;

(iii) Vn[yiιi(x,m)] and Vn[ιi(x,d)ιj(x,d
′)gij] exist for all n and are both o(1/n).

Proposition 9. Define estimator of the nuisance parameter σ by

σ̂(x′, x,d) =

󰁓
i ∕=j yi1{xi = x′}ιi(x,d)gij󰁓
i ∕=j 1{xi = x′}ιi(x,d)gij

If Assumption 3-6 holds, then we have ||σ̂ − σ∗|| = Op

󰀓
1√
n

󰀔
, i.e.,

sup
x,x′∈X
m∈M

|σ̂(x′, x,d)− σ∗(x′, x,d)| = Op

󰀕
1√
n

󰀖

where σ∗ is the true value of the equilibrium belief.

Proof. See Appendix.

Proposition 9 states that the average of the sample analog is a uniformly root-n consistent

estimator for the equilibrium belief σ if the network exhibits asymptotic uncorrelation. This

is a relatively weak condition if the network is generated from a configuration model, as we

assume throughout this paper.

We apply maximum likelihood estimation in the second step. For those players who are

informed, define ai(yNi
) =

󰁓
j∈Ni\l γij max{yj, σij} Then the log likelihood function is

L =
󰁛

i∈In

yi log [F (hi + ai(yNi
))] + (1− yi) log[1− F (hi + ai(yNi

))] (2.16)

We maintain Assumption 10. The following theorem states the consistency of the second-step

estimator θ̂.

Theorem 10. (Consistency) Suppose Assumptions 3, 5, 6, 7, 11, 13, and 14 hold. Then

θ̂
p→ θ0.
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Proof. The proof is similar to the proof of Theorem 6.

2.7 Simulation

2.7.1 Data Generating Process

In this section, we present the simulation results of our method. Suppose there are

two types of players, type 0 and type 1. The payoff of each agent in the simulation is

parameterized as

Ui(yi, yj:j∈Ni
, τi) = yi

󰀣
hi +

󰁛

j∈Ni

γijyj − εi

󰀤
,

where h0 = 0.35, γ00 = 0.2, γ01 = 0.15, and h1 = 0.65, γ10 = 0.05, γ11 = 0.10 (for simplicity

of notation, the subscripts denote the types of agents, not their identities). The idiosyncratic

shock εi follows some known distribution. The maximum number of links a player can have

is three. Note that, by the definition of φ̄ in Assumption 7, φ̄ = 0.55. We are interested in

the personal characteristics h and the peer effects γ for both types.

There are two shape restrictions according to Theorem 5:

a) fε(ε) ≤ K for any ε;

b) Kφ̄ ≤ α for some α < 1.

For example, if ε follows a uniform distribution U(0, 1), then K = 1, α = 0.55. In addition,

if ε follows a normal distribution, then K = 1/
√
2πσ = 0.3989/σ, where σ is the standard

deviation. Thus σ = 0.3 would satisfy the second restriction above.

In the simulated networks, individual types xi are drawn independently from the support

X, with probability 0.4 that it is a type-0 agent and 0.6 that it is a type-1 agent. Undirected

links are formed, with the maximum degree of all nodes equal to 3. The generation of the

network follows a configuration model as follows. We assign a degree sequence to each vertex

following the degree distribution (the probability of having 1, 2, and 3 neighbors is (0.1, 0.4,

0.5) for a type-0 agent, and (0.2,0.3,0.5) for a type-1 agent). Then we draw a degree sequence
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from the following distribution: with probability 0.50, a type-0 stub connects to a type-1

stub, and, with probability 0.35, a type-1 stub connects to a type-0 stub. The sum of 1-0

stubs is equal to the sum of 0-1 stubs, which is a necessary condition for the existence of

the network graph with the assigned type and degree sequence. The configuration model

generated the network by taking a uniform draw from all possible simple networks with these

pre-defined type and degree sequences.

Only large cascades that provide enough observations are studied. We consider networks

with 200,500, and 800 nodes, in which the largest connected component should consist of

more than half of the nodes. In the appendix, we attached simulation results from networks

with 1000 or 2000 nodes. The seed players are drawn from the largest component of this

network. The resulting diffusion process should expose more than a quarter of the agents

to the new product. For each sample size n considered, we simulate r = 1, 5, and 10

independent sample networks of size n in order to have more observations12. We repeat each

simulation S = 50 times, the data observed from each player i who is informed consists of

characteristics xi, neighborhood attributes di, the identity of i’s parent, and the choice yi.

Table 2.1 illustrate the diffusion results from a network where a large cascade exists.

The individual choices under the symmetric pure-strategy Bayesian equilibrium are sim-

ulated using the following steps. First, we generate 500 networks of size n and simulate

diffusion processes on generated networks using an initial belief (e.g., σ = 0.6 for all types).

Calculate the realized probability that a neighbor adopts from the simulation result. Next,

plug this probability into individuals’ beliefs and simulate diffusion processes again. Re-

peat this operation until the probability converges. The convergence is guaranteed and the

final simulated probability is the individual’s true belief about her neighbors’ choices, by

Theorem 5 (see the proof of Theorem 5 in Appendix 2.10 for details). Finally, we simulate

diffusion processes using the true belief on a new batch of networks. We estimate the payoff

12We take this approach only because it is difficult to generate a very large network and to find the
true equilibrium belief of that network. Note that, in practice, we can estimate the equilibrium belief from
observations. This is an issue only when performing simulations. In later tables, we can also find that the
bias of the estimator is similar for five networks each with 2000 nodes and ten networks each with 1000
nodes.
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parameters from the individual choices using the two-step m-estimator.

I study two scenarios for the idiosyncratic shock εi: (a) the shock follows a uniform distri-

bution U(0, 1); and (b) the shock follows a normal distribution N(0.5, 0.3). The distributions

are chosen so that max(fε(·)) · φ̄ < 1, as stated in Theorem 5.
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2.7.2 Players with Instant Decisions

Table 2.2 and 2.3 present a general report of the simulation results for a design where

xi follows a Bernoulli distribution, with probability 0.4 that agent i is a type-0 agent. The

two tables demonstrate the same pattern: as the number of observed networks increases,

the root mean squared errors of the parameters decrease. In addition, comparing different

network sizes when n = 1000 and n = 2000 in Table 2.2 (or Table 2.3), RMSEs are smaller if

the network size is larger, as implied by Theorem 6. Moreover, the distribution of individual

payoff noises εi affects the estimation accuracy, as the RMSEs are generally smaller for the

model with a normally distributed error. Table 2.6 and 2.7 in the appendix present the

simulation results from larger networks with 1000 and 2000 nodes and with players who

make instant decisions. They demonstrate the bias, variance and RMSE in the vector form.

Table 2.2: Estimating σ and θ when ε is Uniformly Distributed
σ θ

Network Size # networks BIAS VAR RMSE BIAS VAR RMSE
1 0.0370 0.8754 0.8616 0.1671 0.3500 0.5101
5 0.0148 0.1212 0.1335 0.4251 0.2403 0.6605

200

10 0.0126 0.0526 0.0642 0.2216 0.2141 0.4314
1 0.0409 0.2359 0.2720 0.1152 0.2372 0.3476
5 0.0308 0.0389 0.0689 0.1452 0.2348 0.3753

500

10 0.0300 0.0132 0.0430 0.1018 0.1840 0.2821
1 0.0066 0.1903 0.1931 0.0526 0.1751 0.2241
5 0.0025 0.0317 0.0336 0.0464 0.1355 0.1792

800

10 0.0021 0.0166 0.0183 0.0692 0.1304 0.1969

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network contains
n individuals. The agents make instant adoption decisions when they become informed.
ε ∼ U(0, 1)).
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Table 2.3: Estimating σ and θ when ε is Normally Distributed
σ θ

Network Size # networks BIAS VAR RMSE BIAS VAR RMSE
1 0.0455 0.7218 0.7337 0.0103 0.1014 0.1097
5 0.0230 0.1049 0.1258 0.0076 0.0152 0.0225

200

10 0.0318 0.0449 0.0758 0.0072 0.0090 0.0160
1 0.0180 0.2790 0.2915 0.0140 0.0407 0.0538
5 0.0128 0.0431 0.0550 0.0129 0.0090 0.0218

500

10 0.0155 0.0190 0.0341 0.0126 0.0022 0.0147
1 0.0083 0.1494 0.1547 0.0063 0.0292 0.0349
5 0.0011 0.0256 0.0262 0.0007 0.0063 0.0068

800

10 0.0009 0.0143 0.0149 0.0005 0.0030 0.0034

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network contains
n individuals. The agents make instant adoption decisions when they become informed.
ε ∼ N(0.5, 0.3).

2.7.3 Players with Deferred Decisions

The same simulations are perform on networks with players who are allowed to postpone

their adoption decisions. There is an increase in the number of adopters because of this slight

change in diffusion mechanism, which resulting in more observations from certain networks.

Table 2.4: Estimating σ and θ when ε is Uniformly Distributed
σ θ

Network Size # networks BIAS VAR RMSE BIAS VAR RMSE
1 0.0157 0.2083 0.2198 0.0841 0.0878 0.1701
5 0.0105 0.0329 0.0427 0.0345 0.0659 0.0991

200

10 0.0121 0.0150 0.0269 0.0560 0.0517 0.1067
1 0.0024 0.0951 0.0956 0.1067 0.0557 0.1613
5 0.0050 0.0136 0.0184 0.0258 0.0353 0.0604

500

10 0.0043 0.0050 0.0092 0.0139 0.0199 0.0334
1 0.0042 0.0525 0.0556 0.0679 0.0640 0.1307
5 0.0008 0.0109 0.0115 0.0204 0.0260 0.0459

800

10 0.0004 0.0051 0.0055 0.0152 0.0157 0.0306

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network contains n
individuals. The agents are allowed to defer their adoption decisions. ε ∼ U(0, 1)).
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Table 2.5: Estimating σ and θ when ε is Normally Distributed
σ θ

Network Size # networks BIAS VAR RMSE BIAS VAR RMSE
1 0.0042 0.0525 0.0556 0.0679 0.0640 0.1307
5 0.0008 0.0109 0.0115 0.0204 0.0260 0.0459

200

10 0.0004 0.0051 0.0055 0.0152 0.0157 0.0306
1 0.0035 0.0810 0.0829 0.0032 0.0242 0.0269
5 0.0023 0.0116 0.0137 0.0042 0.0061 0.0102

500

10 0.0021 0.0054 0.0074 0.0038 0.0025 0.0062
1 0.0020 0.0592 0.0600 0.0041 0.0207 0.0244
5 0.0005 0.0098 0.0101 0.0018 0.0043 0.0060

800

10 0.0003 0.0044 0.0047 0.0020 0.0014 0.0034

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network contains n
individuals. The agents are allowed to defer their adoption decisions. ε ∼ N(0.5, 0.3).

2.8 Conclusion

We develop a structural model to analyze diffusion processes with players who observe

their neighbors and form beliefs about their neighbors’ decisions in fixed networks. We

provide an econometric framework for the diffusion processes and prove that, under certain

assumptions, one agent’s unique equilibrium belief about another agent’s choice depends on

the characteristics of both sides. The undirected network structure plays a key role in this

case. The awareness that one player’s own type could affect her neighbors’ payoffs, and that

her decision could result in a change of the information transmission path, updates an agent’s

expectation of her neighbors’ choices, resulting in heterogeneous rational expectations among

players of different types. We then demonstrate the existence of equilibria and characterize

the unique solution to the equilibrium beliefs.

We propose a consistent and tractable two-step m-estimator for individual payoffs. The

estimator requires that, for each player i who is informed, researchers observe the types and

degrees of player i and of the person who passed the information to player i. The estimator

is consistent under the asymptotics that the number of players in a single large network

grows to infinity. Then we address the selectivity using a novel approach based on the tree

network.
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Monte Carlo simulations demonstrate good performance with finite samples. The method

can be used in empirical applications like product referrals, technology adoption, rumors on

social media, etc.

62



2.9 A. Discussion

2.9.1 Irreversible Decisions

We assume players make once-and-for-all choices in the diffusion process; whether or

not they adopt, they do not revisit their decisions. Recall the example of the diffusion of

microfinance in the introduction, where players decide whether to apply for the loan once

they learn about it from their neighbors. The adoption decision is irreversible.

We justify this assumption from four perspectives:

a) High switching cost. Although the decision to adopt a new product or a new technology

is often reversible in the long run, it might not be the case in the short run due to high

switching cost - the cost of getting the new product or the necessary capital investment in

the new technology could be prohibitive. For instance, when a student gets a Mac for college,

the chance that she will switch to a PC in a short time is small.

In addition, short-run diffusion results are economically important because adoption of

new technologies often has been slow (Ryan and Gross 1943
[50]

, Griliches 1957
[28]

, Munshi

2004
[45]

, Skinner and Staiger 2009
[54]

). Ryan and Gross (1943)
[50]

show that it took ten years

for hybrid seed corn to be adopted in Iowa in the 1930s.

b) Unobserved feedback from neighbor adopters. In some cases, it might be reasonable to

think that players would postpone their adoption decisions in order to process information

from their neighbors. However, sometimes the feedback is unobservable, and therefore would

not give players information that might cause them to revisit their decisions. This is also

illustrated in Banerjee et al. (2013)
[6]
. In their paper, information about microfinance loans

spread among villagers. Agents made decisions within one period (4 months), but it took 1

to 2 years to observe the long-run feedback from their neighbors and learn whether neighbors

did well with microfinance. Thus, there is little chance that players will revisit their decisions

in the long run. The data also show that most adoption happens within one year after the

first microfinance loan in the village.

Referral programs are another case in which feedback is usually unobservable. When a
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person receives referred and has to make a quick adoption decision, it is very probable that

the only feedback she can get is from the referrer. The referrer would thus play a significant

role in the player’s decision-making process.

c) Irreversible adoption of information. The diffusion of information is naturally irre-

versible. Watching a film, listening to music, and reading a book are all examples of one-

time consumption that is not returnable. Another case of information diffusion is knowledge

acquisition, such as the adoption of new skills and new technologies.

d) There would be little difference in the results even if players had the option to adopt

in later periods. This would be the case even if some players wait until neighbors make their

decisions before adopting themselves. Sadler (2020)
[51]

finds that late adoption would affect

the results very little in a sufficiently large random graph. This is because large cascades

depend mainly on the group of players who would adopt once they observe one of their

neighbors adopt. If it were otherwise, there would be a substantial group of players who

would like to wait; in that case, the cascade would not exist at all.

2.9.2 Configuration Model

In network science, the configuration model is a method for generating random net-

works from a given degree sequence. It is widely used as a reference model for real-life

social networks because it allows arbitrary degree distributions. In addition, the multi-type

configuration model represents more realistic network features, including heterogeneity and

homophily.

A multi-type configuration model can be formed with the following steps: First, take a

degree sequence, i.e., assign the number of neighbors of each type X to each player. The

degrees of the vertices are represented as half-links or stubs labeled with the type of player

to which the vertice connects. The sum of Xi-to-Xj stubs must be equal to the sum of

Xj-to-Xi stubs in order to be able to construct a graph. Then choose two stubs uniformly

at random and connect them to form an edge. Choose another pair from the remainingstubs

and connect them. Continue this step until running out of stubs.
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2.10 B. Proofs

Proof of Theorem 4. By equation (2.4), the probability that agent i decide to adopt, given

i’s neighbors Ni and parent information ωi, is

P (yi = 1|Ni,ωi) = Fε (hi + ai(Ni,ωi, σ)) (2.17)

where ai(Ni,ωi, σ) = γi,ωi
+
󰁓

j∈Ni\ωi
γij · σij.

Recall that τl = (xl, Nl, xNl
, εl,ωl), by Assumption 4 and the Law of Iterated Expectation,

σli =P (yi = 1|ωi = l, τl, l ∈ I)

=
󰁛

Ni

P (yi = 1|Ni,ωi = l, xl, Nl, xNl
, εl,ωl, l ∈ I) · P (Ni|ωi = l, xl, Nl, xNl

, εl,ωl, l ∈ I).

(2.18)

By Assumption 3 that states the independence between εl and εi,

P (yi = 1|Ni,ωi = l, xl, Nl, xNl
, εl,ωl, l ∈ I) = P (yi = 1|Ni,ωi = l).

With model setup that agent l does not observe the whole network, (Nl, xNl
) contains the

same information about agent l’s local network as dl.

P (Ni|ωi = l, xl, Nl, xNl
, εl,ωl, l ∈ I) = P (Ni|ωi = l, xi, xl,dl, l ∈ I).

Thus by equations (2.17) and (2.18),

σli =
󰁛

Ni

Fε (hi + ai(Ni,ωi = l, σ)) · P (Ni|ωi = l, xi, xl,dl, l ∈ I),

where ai(Ni,ωi = l, σ) = γil +
󰁓

j∈Ni\l γijσij.

Therefore, σli can be written as a function of σik for all k ∕= i. Denote the projection

by σli = Rli (σi,−i). A continuous mapping from [0, 1]n(n−1) to [0, 1]n(n−1) is defined if the

parameters h(·) and γ(·) are identified. This leads to the the existence of at least one
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Bayesian equilibrium by Brouwer fixed-point theorem.

Proof of Proposition 2. First, we show that σik = σjk if xi = xj,di = dj for any i, j, k.

σik =
󰁛

Nk

Fε (hk + ak(Nk,ωk = i, σ)) · P (Nk|ωk = i, xk, xi,di, i ∈ I),

σjk =
󰁛

Nk

Fε (hk + ak(Nk,ωk = j, σ)) · P (Nk|ωk = j, xk, xj,dj, j ∈ I),

where

ak(Nk,ωk = i, σ) = γki +
󰁛

p∈Nk\i

γkpσkp = γ(xi, xk,dk)(1− σki) +
󰁛

p∈Nk

γ(xp, xk,dk)σkp,

ak(Nk,ωk = j, σ) = γkj +
󰁛

p∈Nk\j

γkpσkp = γ(xj, xk,dk)(1− σkj) +
󰁛

p∈Nk

γ(xp, xk,dk)σkp.

Since xi = xj and σki = σkj by Assumption 6, ak(Nk,ωk = i, σ) = ak(Nk,ωk = j, σ). Notice

that
󰁓

p∈Nk
γ(xp, xk,dk)σkp is the same for any k that has the same degree dk, we can abuse

the notation and write ak(Nk,ωk = i, σ) = ak(dk,ωk = i, σ).

Thus

σik =
󰁛

dk

Fε (hk + ak(dk,ωk = i, σ)) · P (dk|ωk = i, xk, xi,di, i ∈ I),

σjk =
󰁛

dk

Fε (hk + ak(dk,ωk = j, σ)) · P (dk|ωk = j, xk, xj,dj, j ∈ I),

In addition, P (dk|ωk = i, xk, xi,di, i ∈ I) = P (dk|ωk = j, xk, xj,dj, j ∈ I) holds by

the model assumption that agents does not observe the whole network. Thus σik = σjk if

xi = xj,di = dj. Since σij = σik if xj = xk by Assumption 6, it’s easy to show that σij = σkl

if xj = xl, xi = xk,di = dk.

Proof of Theorem 5. Let Σ = [0, 1]n
2
be the bounded set that contains all possible σ’s.
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Define a mapping R : Σ → Σ such that

R(σ)li ≡ Rli (σi,−i) , ∀ i ∕= l

Note that σli = Rli (σi,−i), so R(σ) ∈ Σ for any σ ∈ Σ.

Then we show that ||R(σ)−R(σ′)|| ≤ α||σ − σ′|| for some α ∈ (0, 1), where || · || is the

supreme norm.

First, from the proof of Proposition 2,

Rli (σ) =
󰁛

di

Fε (hi + ai(di,ωi = l, σ)) · P (di|ωi = l, xi, xl,dl, l ∈ I).

Notice that in the conditional probability P (di|ωi = l, xi, xl,dl, l ∈ I), the distribution

of di is restricted by the following conditions:

1. one link of i connects to a type-xl player since l ∈ Ni,

2. dl affects the distribution of di because i may be connected to some j ∈ Nl,

3. l ∈ I thus ωl ∈ I.

Only the third condition is potentially related to the diffusion process. The first two do not

depend on σ since they are determined by the type and degree distributions that govern the

network generating process. Sadler (2020)
[51]

shows that when agent l does not observe the

identity of her parent, her beliefs about her neighbors’ degree would be affected by the viral

belief distortion. However, when ωl is observed, viral belief distortion would only affect l’s

belief about ωl’s degree, not other neighbors’ degree. In sum, P (di|ωi = l, xi, xl,dl, l ∈ I)

would not change with σ.
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Let N(di) denote an arbitrary neighborhood with attribute di,

ai = ai(di,ωi = l, σ) = γil +
󰁛

j∈N(di)\l

γijσij,

a′i = ai(di,ωi = l, σ′) = γil +
󰁛

j∈N(di)\l

γijσ
′
ij,

Then for any σ, σ′ ∈ Σ,

|R(σ)li −R(σ′)li| ≤
󰁛

di

|Fε (hi + ai)− Fε (hi + a′i)| · P (di|ωi = l, xi, xl,dl, l ∈ I)

≤
󰁛

di

K |ai − a′i| · P (di|ωi = l, xi, xl,dl, l ∈ I).

Note that

|ai − a′i| =

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

j∈N(di)\l

γij
󰀃
σij − σ′

ij

󰀄
󰀏󰀏󰀏󰀏󰀏󰀏
≤ (γid

′
i − γil)||σ − σ′||,

where γi = (γ(X1, xi,di), ..., γ(XK , xi,di)). Thus

|R(σ)li −R(σ′)li| ≤ K||σ − σ′|| ·
󰁛

di

(γid
′
i − γil)P(di|ωi = l, xi, xl,dl, l ∈ I)

≤ K ·max
xi,di

{γid′
i − γi,min} · ||σ − σ′|| ≤ α||σ − σ′||

where γi,min is the minimum element of vector γi.

Since ||R(σ) − R(σ′)|| = supi ∕=l {|R(σ)il −R(σ′)il|}, it follows that ||R(σ) − R(σ′)|| ≤

α||σ−σ′||. By the contraction mapping theorem, the existence and uniqueness of the solution

σ is guaranteed.

Proof of Proposition 3. By Proposition 2, a unique Bayesian equilibrium exists in each data-

generating process indexed by n, and

yi = 1 w.p. Fε

󰀃
hi + ai(di,ωi, σ

b
n)
󰀄
.
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where σb
n is the belief, and ai(di,ωi, σ

b
n) = γi,ωi

+
󰁓

N(di)\ωi
γijσ

b
n(xj, xi,di).

Define σn(x
′, x,d) ≡ 1

|In|
󰁓

i ∕=j En(yj|xj = x′, xi = x,di = d,ωj = i, i ∈ In) = En(yj|xj =

x′, xi = x,di = d,ωj = i, i ∈ In), the second equality comes from the symmetry of beliefs in

Proposition 2. Similarly, define

qn(d
′|x′, x,d) ≡ 1

|In|
󰁛

j ∕=i

En [ {dj = d′}|xj = x′, xi = x,di = d,ωj = i, i ∈ In]

= En [ {dj = d′}|xj = x′, xi = x,di = d,ωj = i, i ∈ In] .

Thus by the Law of Iterated Expectation, for any n

σn(x
′, x,d) =

󰁛

d′

En(yj|xj = x′,dj = d′, xi = x,di = d,ωj = i, i ∈ In)

· En( {dj = d′}|xj = x′, xi = x,di = d,ωj = i, i ∈ In)

=
󰁛

d′

Fε

󰀃
h(x′,d′) + a(x′,d′, xω = x, σb

n)
󰀄
· qn(d′|x′, x,d).

where a(x′,d′, xω = x, σb
n) = γ(x, x′,d′)(1−σb

n(x, x
′,d′))+

󰁓K
k=1 γ(Xk, x

′,d′)σb
n(Xk, x

′,d′)d′k.

By Assumption 4, σn = σb
n. Thus

σn(x
′, x,d) =

󰁛

d′

Fε (h(x
′,d′) + a(x′,d′, xω = x, σn)) · qn(d′|x′, x,d).

is a self-map over the set of {σn}.

Next, we show that σn, the solution of the self-map is unique. Suppose there exists

69



another solution σ̃n, then

|σn,li − σ̃n,li| =

󰀏󰀏󰀏󰀏󰀏
󰁛

di

Fε (hi + a(xi,di,ωi, σn)) · q(di|xi, xl,dl)

−
󰁛

di

Fε (hi + a(xi,di,ωi, σ̃n)) · q̃(di|xi, xl,dl)

󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏
󰁛

di

[Fε (hi + a(xi,di,ωi, σ))− Fε (hi + a(xi,di,ωi, σ̃))] · q(di|xi, xl,dl)

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏
󰁛

di

Fε (hi + a(xi,di,ωi, σ̃)) · (q(di|xi, xl,dl)− q̃(di|xi, xl,dl))

󰀏󰀏󰀏󰀏󰀏

≤α||σ − σ̃||+ ||q − q̃||,

we have

||σ − σ̃|| ≤ ||q − q̃||
1− α

.

where q and q̃ denote the generic density (probability mass) function of d′ given x′, x,m.

Therefore for any c̄ > 0, there exists c > 0 such that ||q− q̃|| ≤ c implies ||σ− σ̃|| ≤ c̄, where

σ and σ̃ are unique solutions to σ = R(σ; q) and σ̃ = R(σ̃; q̃). As the q∗ exists in limit, σ∗

also exists in limit.

Proof of Proposition 4. Recall that

S∗(xωi
, xi,di) = h(xi,di) + T (xi,di) + γ(xωi

, xi,di) (1− σ∗(xωi
, xi,di))

Note that T (xi,di) =
󰁓

j∈N(di)
γ(xj, xi,di)σ

∗(xj, xi,di) and

γ(xj, xi,di) =
S∗(xj, xi,di)− h(xi,di)− T (xi,di)

1− σ∗(xj, xi,di)

Then

T (xi,di) =
󰁛

j∈N(di)

S∗(xj, xi,di)− h(xi,di)− T (xi,di)

1− σ∗(xj, xi,di)
σ∗(xj, xi,di)

Let X∗(xi,di) =
󰁓

j∈N(di)
S∗(xj, xi,di)

σ∗(xj ,xi,di)

1−σ∗(xj ,xi,di)
, Y ∗(xi,di) =

󰁓
j∈N(di)

σ∗(xj ,xi,di)

1−σ∗(xj ,xi,di)
, re-
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shape the equation and we can get T (xi,di) [1 + Y ∗(xi,di)] = X∗(xi,di)−h(xi,di)Y
∗(xi,di)

or T = (X∗−hY ∗)/(1+Y ∗). Replacing T (xi,di) in S(xωi
, xi,di) with the above expression,

S∗(xj, xi,di)(1+Y ∗(xi,di))−X∗(xi,di) = h(xi,di)+γ(xj, xi,di)[(1−σ∗(xj, xi,di))(1+Y ∗(xi,di))].

It is easy to see, with the above equation, that the identification is not achievable even

if we identify S∗(xj, xi,di) and σ∗(xj, xi,di) for all combinations of (xj, xi,di) because for

each (xi,di), we have K equalities but K +1 unknowns to be identified. Therefore, we need

to impose additional assumption to ensure identification.

For the following proof for identification, let A∗(xj, xi,di) = S∗(xj, xi,di)(1+Y ∗(xi,di))−

X∗(xi,di), B
∗(xj, xi,di) = (1−σ∗(xj, xi,di))(1+Y ∗(xi,di)), which are both point-identified.

Thus A∗(xj, xi,di) = h(xi,di) + γ(xj, xi,di)B
∗(xj, xi,di).

I propose two types of assumptions that ensures identification. Under Assumption

9(a), A∗(xj, xi,di) = h(xi,di) + γ(xj, xi)B
∗(xj, xi,di). for each xi. The identification is

achieved when the set of equalities satisfies a rank condition such that for each x, there exist

(xi, xj,dm,dn) such that 󰀳

󰁃B∗(xi, x,dm) B∗(xj, x,dn)

B∗(xi, x,dn) B∗(xj, x,dm)

󰀴

󰁄

has full rank, or equivalently, 1−σ∗(xi,x,dm)
1−σ∗(xj ,x,dm)

∕= 1−σ∗(xi,x,dn)
1−σ∗(xj ,x,dn)

.

ForK ≥ 2, under Assumption 9(b), a sufficient condition for identification is that for each

x, there exists some type xi and degree dj such that 2AiiAjj+2AijAji > (Aii+Ajj)(Aij+Aji),

where Aij = A∗(xi, x,dj).

For the case that there is only a single type of agent, γ(di) = φ/di, where di is the degree

of agent i. φ is then identified from A∗(d) = h+ φ
d
· B∗(d) since d ≥ 2.

Proof of Proposition 5.

󰀏󰀏󰀏󰀏

󰁓
i yi1{xi = x′}ιωi

(x,d)󰁓
i 1{xi = x′}ιωi

(x,d)
− σ∗(x′, x,d)

󰀏󰀏󰀏󰀏
p→ 0
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By Proposition 2, the equilibrium beliefs only depends on the agent’s and her neighbors’

characteristics, not on the identity of agents. Thus for any referrer-receiver pairs with types

and degree (x′, x,d) (the first argument denotes the type of the receiver, and the second and

the third are the type and degree of the referrer), E(yi|xi = x′, xωi
= x,dωi

= d) = σ(x′, x,d).

As a result,

󰁓
i∈In E(yi|xi, xωi

,dωi
)1{xi = x′}ιωi

(x,d)
󰁓

i∈In 1{xi = x′}ιωi
(x,d)

= σ(x′, x,d)

Denote the types and degree (x′, x,d) by S̃, the support of all types and degree {(x′, x,d)}

by S. Let ∆(S̃) =
󰁓

i yi1{xi=x′}ιωi (x,d)󰁓
i 1{xi=x′}ιωi (x,d)

− σ∗(x′, x,d) denote the difference. We need to show

limη→∞ lim supn→∞ P
󰀓
supS̃∈S |∆(S̃)| > η/

√
n
󰀔

= 0 for the root-n uniform convergence in

probability.

Note that yi is a function of xi,di, εi. For any i, j such that xi = xj = x′, xωi
= xωj

= x,

and dωi
= dωj

= d, Cov(yi, yj) = Edf
i (x),d

f
j (x)

[Fε(hi+γi,ωi
+󰂓γid

f
i (x))Fε(hj+γj,ωj

+󰂓γjd
f
j (x))]−

E(yi)E(yj) ∼ 󰂓γ′
iCov(df

i (x),d
f
j (x))󰂓γj. Recall that Cov(df

i (x),d
f
j (x)) = Op(n

−1).

Note that ∆(S̃) =
󰁓

i∈In(yi−E(yi|xi,xωi ,dωi ))1{xi=x′}ιωi (x,d)󰁓
i∈In 1{xi=x′}ιωi (x,d)

, the variance of ∆(S̃) is

E[∆2(S̃)] = V ar

󰀣󰁓
i∈In yi1{(xi, xωi

,dωi
) = S̃}

󰁓
i∈In 1{(xi, xωi

,dωi
) = S̃}

󰀤
=

1
|In|2

󰁓
i∈In V ar(yi)1{(xi, xωi

,dωi
) = S̃}

󰀓
1

|In|
󰁓

i∈In 1{(xi, xωi
,dωi

) = S̃}
󰀔2 +Op(n

−1)

≤ 1

4|In|

󰀣
1

|In|
󰁛

i∈In

1{(xi, xωi
,dωi

) = S̃}
󰀤−1

+Op(n
−1) = Op(n

−1)

The second equality is a result of Cov(yi, yj) = Op(n
−1). And the last equality is because

size of the informed group In is proportional to n, i.e., |In|/n → α0 for some α0 > 0 by the

definition of large cascades.

Then for any η,

P

󰀣
sup
S̃∈S

󰀏󰀏󰀏∆(S̃)
󰀏󰀏󰀏 >

η√
n

󰀤
≤

󰁛

S̃∈S

P

󰀕
∆2(S̃) >

η2

n

󰀖
≤

󰁛

S̃∈S

E
󰀓
∆2(S̃)

󰀔
nη−2 ≤ |S|nη−2 sup

S̃∈S
E
󰀓
∆2(S̃)

󰀔
.
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Hence, limη→∞ lim supn→∞ P
󰀓
supS̃∈S

󰀏󰀏󰀏∆(S̃)
󰀏󰀏󰀏 > η√

n

󰀔
= 0, which establishes the result.

Proof of Theorem 6. Denote E(Q̂n,k(θ, σ)|Y ) by Qn,k(θ, σ). We show in the following proof

that there exists an identifiably unique θ0 that i) maximizesQn,k(θ, σ0), and ii) supθ |Q̂n,k(θ, σ̂)−

Qn,k(θ, σ0)|
p→ 0, thus θ̂ − θ0

p→ 0.

First, we show that the maximizer is unique. for any θ such that |θ − θ0| ≥ ν > 0,

lim inf
n

Qn,k(θ0, σ0)−Qn,k(θ, σ0)

= lim inf
n

E

󰀳

󰁃 1

|In,k|
󰁛

i∈In,k

yi log
Fε (Zi(σ0)

′θ0)

Fε (Zi(σ0)′θ)
+ (1− yi) log

1− Fε (Zi(σ0)
′θ0)

1− Fε (Zi(σ0)′θ)

󰀏󰀏󰀏󰀏Y

󰀴

󰁄

≥ lim inf
n

1

|In,k|
󰁛

i∈In,k

− log{Fε (Zi(σ0)
′θ) + 1− Fε (Zi(σ0)

′θ)} = 0 a.s.

Since Fε(·) is strictly increasing, the inequality hold strictly when there exists i such that

Zi(σ0)
′(θ − θ0) ∕= 0.

With condition (b) the claim is proved.

lim inf
n

1

|In,k|
(θ − θ0)

′Z ′Z(θ − θ0) ≥ ν2 lim inf
n

1

|In,k|
Z ′Z > 0.

Then we show that supθ |Q̂n,k(θ, σ̂)−Qn,k(θ, σ0)|
p→ 0. Notice that

sup
θ

|Q̂n,k(θ, σ̂)−Qn,k(θ, σ0)| ≤ sup
θ

|Q̂n,k(θ, σ̂)− Q̂n,k(θ, σ0)|
󰁿 󰁾󰁽 󰂀

A

+sup
θ

|Q̂n,k(θ, σ0)−Qn,k(θ, σ0)|
󰁿 󰁾󰁽 󰂀

B

.

Let

fi(θ, σ) = yi logFε (Zi(σ)
′θ) + (1− yi) log(1− Fε (Zi(σ)

′θ)).

Notice that

||Zi(σ̂)− Zi(σ0)|| ≤ (M − 1)||σ̂ − σ0||
p→ 0,
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by condition (a) Θ is compact, it follows that {fi(θ, ·)}θ∈Θ is equicontinuous. Therefore,

A = sup
θ

󰀏󰀏󰀏󰀏󰀏󰀏
1

|In,k|
󰁛

i∈In,k

fi(θ, σ̂)− fi(θ, σ0)

󰀏󰀏󰀏󰀏󰀏󰀏
≤ 1

|In,k|
󰁛

i∈In,k

sup
θ

|fi(θ, σ̂)− fi(θ, σ0)|
p→ 0.

The claim that B converges in probability to zero follows Theorem 2.1 of Newey (1991).

With condition (a) compactness is satisfied. The sequence of nonrandom functions {Qn,k(·, σ0)}

with Qn,k(θ, σ0) equal to

1

|In,k|
󰁛

i∈In,k

Fε (Z
′
iθ) logFε (Z

′
iθ) + (1− Fε (Z

′
iθ)) log(1− Fε (Z

′
iθ)).

is equicontinuous as {Z ′
iθ} is bounded.

Then we show that the sequence {Q̂n,k(·, σ0)} is asymptotically uniformly equicontinuous,

i.e.,

lim sup
n→∞

P

󰀣
sup

||θ−θ′||≤δ

|Q̂n,k(θ, σ0)− Q̂n,k(θ
′, σ0)| ≥ ε

󰀤
δ→0−→ 0.

It suffices to show that

lim sup
n→∞

E

󰀣
sup

||θ−θ′||≤δ

|Q̂n,k(θ, σ0)− Q̂n,k(θ
′, σ0)|

󰀤
δ→0−→ 0. (2.19)

Notice that |Q̂n,k(θ, σ0)− Q̂n,k(θ
′, σ0)|

=

󰀏󰀏󰀏󰀏󰀏󰀏
1

|In,k|
󰁛

i∈In,k

yi(logFε (Z
′
iθ)− logFε (Z

′
iθ

′)) + (1− yi)(log(1− Fε (Z
′
iθ))− log(1− Fε (Z

′
iθ

′)))

󰀏󰀏󰀏󰀏󰀏󰀏

≤ 1

|In,k|
󰁛

i∈In,k

max {|logFε (Z
′
iθ)− logFε (Z

′
iθ

′)| , |log(1− Fε (Z
′
iθ))− log(1− Fε (Z

′
iθ

′))|} .

Since log(Fε(Z
′
i · )) and log(1−Fε(Z

′
i · )) are continuous with bounded differentials, |Q̂n,k(θ, σ0)−

Q̂n,k(θ
′, σ0)| ≤ C||θ − θ′||, and equation (2.19) follows.
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The last condition to show is pointwise convergence, that is,

Q̂n,k(θ, σ0)−Qn,k(θ, σ0)
p→ 0, for all θ ∈ Θ.

Since

Q̂n,k(θ, σ0)−Qn,k(θ, σ0) =
1

|In,k|
󰁛

i∈In,k

[yi − Fε(Zi(σ0)
′θ)] log

Fε (Zi(σ0)
′θ)

1− Fε (Zi(σ0)′θ)
,

Let gi = [yi − Fε(Zi(σ0)
′θ)] log Fε(Zi(σ0)′θ)

1−Fε(Zi(σ0)′θ)
. Since the outcomes {yi} are conditionally in-

dependent, {gi} are conditionally independent with mean zero and uniformly bounded vari-

ance. By the same logic of the proof of Proposition 5, pointwise convergence is established.

Therefore supθ |Q̂n,k(θ, σ0)−Qn,k(θ, σ0)|
p→ 0 follows as a result of Newey (1991).

Proof of Theorem 7. Define ĝn,k(θ, σ) = ∇θQ̂n,k(θ, σ), gn,k(θ, σ) = E[∇θQ̂n,k(θ, σ)|Y ]. Thus

ĝn,k(θ, σ) =
1

|In,k|
󰁛

i∈In,k

∇θfi(θ, σ)

where fi(θ, σ) = yi logFε (Zi(σ)
′θ) + (1− yi) log(1− Fε (Zi(σ)

′θ)).

Since θ̂ solves ĝn,k(θ̂, σ̂) = 0, by the mean-value theorem,

0 = ĝn,k(θ0, σ̂) +∇θĝn,k(θ̃, σ̂)(θ̂ − θ0),

where θ̃ is in between θ̂ and θ0. Then

󰁴
|In,k|(θ̂ − θ0) = −

󰀳

󰁃 1

|In,k|
󰁛

i∈In,k

∇θθfi(θ̃, σ̂)

󰀴

󰁄
−1 󰀳

󰁃 1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ̂)

󰀴

󰁄 . (2.20)

First, we show that

1

|In,k|
󰁛

i∈In,k

∇θθfi(θ̃, σ̂)− E

󰀵

󰀷 1

|In,k|
󰁛

i∈In,k

∇θθfi(θ0, σ0)

󰀏󰀏󰀏󰀏Y

󰀶

󰀸 p→ 0. (2.21)
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It holds because left-hand side is equal to

1

|In,k|
󰁛

i∈In,k

∇θθfi(θ̃, σ̂)−
1

|In,k|
󰁛

i∈In,k

∇θθfi(θ0, σ0)

󰁿 󰁾󰁽 󰂀
A

+
1

|In,k|
󰁛

i∈In,k

∇θθfi(θ0, σ0)− E

󰀵

󰀷 1

|In,k|
󰁛

i∈In,k

∇θθfi(θ0, σ0)

󰀏󰀏󰀏󰀏Y

󰀶

󰀸

󰁿 󰁾󰁽 󰂀
B

Notice that

A ≤ sup
Y

|∇θθfi(θ̃, σ̂)−∇θθfi(θ0, σ0)|

A is op(1) since θ̃ − θ0
p→ 0, σ̂ − σ0

p→ 0, and ∇θθfi(·, ·) is continuous in θ and σ.

B is also op(1) since B is equal to

1

|In,k|
󰁛

i∈In,k

(yi−Fε(ai))

󰀕
fε(ai)

′Fε(ai)− fε(ai)
2

Fε(ai)2
+

fε(ai)
′(1− Fε(ai)) + fε(ai)

2

(1− Fε(ai))2

󰀖
Zi(σ0)Zi(σ0)

′

where ai = Zi(σ0)
′θ0. Therefore B is op(1) since each term in the summation is conditionally

independent, mean zero and bounded in variance.

Define Γn,k =
1

|In,k|
󰁓

i∈In,k
E

󰀗
∇θθfi(θ0, σ0)

󰀏󰀏󰀏󰀏Y
󰀘
. By equation (2.20) and (2.21),

󰁴
|In,k|(θ̂ − θ0) = − (Γn,k + op(1))

−1

󰀳

󰁃 1

|In,k|
󰁛

i∈In,k

∇θfi(θ0, σ̂)

󰀴

󰁄 . (2.22)

It can be proved that the second part of equation (2.22) converges in probability to

1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ0) +
1󰁳
|In,k|

󰁛

i∈In,k

Wi(σ̂ − σ0)

where Wi is defined later.
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The first step is linearization. By Taylor’s expansion,

∇θfi(θ0, σ)−∇θfi(θ0, σ0) = ∇σ∇θfi(θ0, σ0)(σ − σ0) + (σ − σ0)
′∇σσ∇θfi(θ0, σ̃)(σ − σ0)

Rearrange the formula,

||∇θfi(θ0, σ)−∇θfi(θ0, σ0)−∇σ∇θfi(θ0, σ0)(σ − σ0)||

=(σ − σ0)
′∇σσ∇θfi(θ0, σ̃)(σ − σ0)

≤b(Zi)||σ − σ0||2

Note that ||σ̂ − σ0|| = Op(1/
√
n), thus

1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ̂) =
1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ0)

+
1󰁳
|In,k|

󰁛

i∈In,k

∇σ∇θfi(θ0, σ0)(σ̂ − σ0) + op(1) (2.23)

Secondly, we show that

1󰁳
|In,k|

󰁛

i∈In,k

∇σ∇θfi(θ0, σ0)(σ̂ − σ0)−
1󰁳
|In,k|

󰁛

i∈In,k

E [∇σ∇θfi(θ0, σ0)|Y ] (σ̂ − σ0)
p→ 0.

Since

∆i =∇σ∇θfi(θ0, σ0)− E [∇σ∇θfi(θ0, σ0)|Y ]

=(yi − Fε,i)

󰀗
∇σ

󰀕
fε,i
Fε,i

· Zi(σ0)

󰀖
+∇σ

󰀕
fε,i

1− Fε,i

· Zi(σ0)

󰀖󰀘

where Fε,i = Fε(Zi(σ0)
′θ0), fε = fε(Zi(σ0)

′θ0). ∆i has zero mean and bounded variance.

Combined with conditionally independence,

1󰁳
|In,k|

󰁛

i∈In,k

∆i(σ̂ − σ0)
p→ 0
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Rewrite equation (2.23),

1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ̂) =
1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ0)

+
1󰁳
|In,k|

󰁛

i∈In,k

Wi(σ̂ − σ0) + op(1) (2.24)

where Wi = E [∇σ∇θfi(θ0, σ0)|Y ].

{σ̂ij} is independent of {yi}

Ωn,k ≜ V ar

󰀳

󰁃 1󰁳
|In,k|

󰁛

i∈In,k

∇θfi(θ0, σ̂)

󰀴

󰁄

=
1

|In,k|
󰁛

i∈In,k

V ar (∇θfi(θ0, σ0)) +
1

|In,k|

󰀳

󰁃
󰁛

i∈In,k

Wi

󰀴

󰁄V ar(σ̂)

󰀳

󰁃
󰁛

i∈In,k

Wi

󰀴

󰁄
⊤

(2.25)

Combine equation (2.22) and (2.25),

󰁴
|In,k| Σ−1

n,k(θ̂ − θ)
d→ N (0, IK+1) (2.26)

where Σn,k = Γ−1
n,kΩn,kΓ

−1
n,k.

The following are proofs of theorems and propositions in the deferred-decision model

extension.

Proof of Theorem 8. The probability of agent i adopting the behavior if her neighbor l adopts

follows

Pr(yi = 1|yl = 1, Ni, xNi
, I) = E [Fε (hi + ai(σ)) |yl = 1, Ni, xNi

, I]
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where ai(σ) = γil +
󰁓

j∈Ni\l γij ·max{yj, σij}. Therefore

Pr(yi = 1|yl = 1, Ni, xNi
, I) =

󰁛

yNi

Fε

󰀳

󰁅󰁅󰁃hi + γil +
󰁛

k∈Ni
j ∕=l

γij ·max{yj, σij}

󰀴

󰁆󰁆󰁄Pr(yNi
|yl = 1, Ni, xNi

, I)

(2.27)

where Pr(yNi
|yl = 1, Ni, xNi

, I) =
󰁔

j∈Ni,j ∕=l (σij)
yj (1− σij)

1−yj . Recall that

σli = Pr(yi = 1|yl = 1, gil = 1, τl, I) =
󰁛

Ni

Pr(yi = 1|yl = 1, Ni, xNi
, I)Pr(Ni|yl = 1, gil = 1, τl, I)

(2.28)

By equations (2.27) and (2.28), σli can be written as a function of σi,−i for any i ∕= l. This

leads to the proof of the existence of equilibrium using Brouwer’s fixed-point theorem.

For simplicity purpose, I illustrate the detailed proof under the following assumption:

Assumption 15. Assume εi ∼ U [−1, 1], i.e., Fε(x) = κ ((x+ 1)/2), where κ(x) = max{min{x, 1}, 0}.

J(xi) ≤ α/(M − 1) for some α ∈ (0, 1) so that the network effect is small enough. In addi-

tion, hi may not be too large or too small so that neighbors’ choices affect individual payoffs.

In this paper I assume hi ∈ (−1, 1− α) to maintain linearity of the cdf.

With uniformly distributed shocks, the probability of agent i adopting the behavior if

her neighbor l adopts follows

Pr(yi = 1|yl = 1, Ni, xNi
, I) =E

󰀗
1

2
(hi + ai(σ) + 1) |yl = 1, Ni, xNi

, I
󰀘

=
1

2
(hi + E(ai(σ)|yl = 1, Ni, xNi

, I) + 1)

(2.29)

with

E(ai(σ)|yl = 1, Ni, xNi
, I) = γil +

󰁛

j∈Ni\l

γij · E[max{yj, σij}] = γil +
󰁛

j∈Ni\l

γijzij (2.30)

where zij = σij (2− σij).

79



By the set of equations (2.28), (2.29) and (2.30), I denote the projection by σli = Rli (σi,−i)

for all i ∕= l, a continuous mapping from [−1, 1]n
2
to [−1, 1]n

2
. By Brouwer fixed-point

theorem, there is at least one fixed point solution, which gives at least one equilibrium {σij}

for i = 1, ..., n, j = 1, ..., n.

Proof of Theorem 9. Let S = [−1, 1]n
2
be the bounded set that contains all possible σ’s.

Define a mapping R : S → S such that

R(σ)li ≡ Rli (σi,−i) , ∀i ∕= l

Note that σli = Rli (σi,−i), so R(σ) ∈ S for any σ ∈ S.

By Theorem 8 and Proposition 6, under Assumptions 3, 5, 6, and 11, there exists an

equilibrium belief σ∗ that satisfies the following self-projection σ = R(σ),

σli =
󰁛

Ni

EY [Fε (hi + ai(σ))] · P (Ni|yl = 1, gli = 1, xi, xl,dl, l ∈ I)

=
󰁛

di

EY [Fε (h(xi,di) + ai(xi,di, σ))] · P (di|yl = 1, gli = 1, xi, xl,dl, l ∈ I)

∀l ∕= i, where ai(xi,di, σ) = γ(xl, xi,di) +
󰁓

j∈Ni\l γ(xl, xi,di) ·max{yj, σ(xl, xi,di)}.

Then I show that ||R(σ) − R(σ′)|| ≤ α||σ − σ′|| for some α ∈ (0, 1), where || · || is the

supreme norm.
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For any σ, σ′ ∈ S, we have

|R(σ)li −R(σ′)li| =
󰁛

di

(EY [Fε (h(xi,di) + ai(xi,di, σ))]− EY [Fε (h(xi,di) + ai(xi,di, σ
′))])

· P (di|yl = 1, gli = 1, xi, xl,dl, l ∈ I)

=

󰀏󰀏󰀏󰀏󰀏
󰁛

di

1

2

󰀥
󰁛

j

gijγij (zij − zi′j)− (zil − zi′l)

󰀦
Pr(di|Gli = 1, I)

󰀏󰀏󰀏󰀏󰀏

≤1

2

󰁛

di

󰀥
󰁛

j ∕=l

gijγij |zij − zi′j|
󰀦
Pr(d|Gli = 1, I)

≤Kφ̄max
i ∕=j

|σij − σi′j|

≤α||σ − σ′||

where zij = σij (2− σij), zi′j = σi′j (2− σi′j), and |zij − zi′j| = |(σij − σi′j) (2− σij − σi′j)| ≤

2 |σij − σi′j| .

Since ||R(σ) − R(σ′)|| = supi ∕=l {|R(σ)li −R(σ′)li|}, it follows that ||R(σ) − R(σ′)|| ≤

α||σ−σ′||. By contraction mapping theorem, the uniqueness of the solution σ is guaranteed.

Proof of Proposition 7. By Proposition 6, a unique Bayesian equilibrium exists in each data-

generating process indexed by n, and

yi = 1 w.p. Fε

󰀃
hi + ai(di, yNi

, σb
n)
󰀄
.

where σb
n is the belief, and ai(di, yNi

, σb
n) =

󰁓
j∈Ni

γij(yj + (1− yj)σ
b
n(xj, xi,di)).

Define σn(x
′, x,d) ≡ 1

|I2
n|
󰁓

i ∕=j En(yj|xj = x′, xi = x,di = d, gij = 1, i ∈ In) = En(yj|xj =

x′, xi = x,di = d, gij = 1, i ∈ In), the second equality comes from the symmetry of beliefs
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in Proposition 6. Similarly, define

qn(d
′|x′, x,d) ≡ 1

|I2
n|

󰁛

j ∕=i

En [ {dj = d′}|xj = x′, xi = x,di = d, gij = 1, i ∈ In]

= En [ {dj = d′}|xj = x′, xi = x,di = d, gij = 1, i ∈ In] .

Thus by the Law of Iterated Expectation, for any n

σn(x
′, x,d) =

󰁛

d′

En(yj|xj = x′,dj = d′, xi = x,di = d, gij = 1, i ∈ In)

· En( {dj = d′}|xj = x′, xi = x,di = d, gij = 1, i ∈ In)

=
󰁛

d′

EyN

󰀅
Fε

󰀃
h(x′,d′) + a(d′, yN , σ

b
n)
󰀄󰀆

· qn(d′|x′, x,d).

By Assumption 11, σn = σb
n. Thus

σn(x
′, x,d) =

󰁛

d′

EyN [Fε (h(x
′,d′) + a(d′, yN , σn))] · qn(d′|x′, x,d).

is a self-map over the set of {σn}.

Next, we show that σn, the solution of the self-map is unique. Suppose there exists

another solution σ̃n, then

|σn,li − σ̃n,li| =

󰀏󰀏󰀏󰀏󰀏
󰁛

di

EyNi
[Fε (hi + a(d′

i, yNi
, σn))] · q(di|xi, xl,dl)

−
󰁛

di

EyNi
[Fε (hi + a(d′

i, yNi
, σ̃n))] · q̃(di|xi, xl,dl)

󰀏󰀏󰀏󰀏󰀏

≤

󰀏󰀏󰀏󰀏󰀏
󰁛

di

󰁫
EyNi

[Fε (hi + a(d′
i, yNi

, σ))]− EyNi
[Fε (hi + a(d′

i, yNi
, σ̃))]

󰁬
· q(di|xi, xl,dl)

󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏
󰁛

di

EyNi
[Fε (hi + a(d′

i, yNi
, σ̃))] · (q(di|xi, xl,dl)− q̃(di|xi, xl,dl))

󰀏󰀏󰀏󰀏󰀏

≤α||σ − σ̃||+ ||q − q̃||,
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we have

||σ − σ̃|| ≤ ||q − q̃||
1− α

.

where q and q̃ denote the generic density (probability mass) function of d′ given x′, x,m.

Therefore for any c̄ > 0, there exists c > 0 such that ||q− q̃|| ≤ c implies ||σ− σ̃|| ≤ c̄, where

σ and σ̃ are unique solutions to σ = R(σ; q) and σ̃ = R(σ̃; q̃). As the q∗ exists in limit, σ∗

also exists in limit.

Proof of Proposition 8. Conditional on the degree sequence di, player l’s belief about player

i’s adoption decision is

Pr(yi = 1|yl = 1,di, σ) =
1

2

󰀣
hi + γil(1− zil) +

󰁛

j∈Ni

γijzij + 1

󰀤
(2.31)

We are interested in identifying the parameters h and γ for all types.

Under the assumption that d· ≤ M , the cardinality of set {di}ni=1 is finite when n → ∞.

Therefore one can take advantage of the large network and observe Pr(yi = 1|yl = 1,di, σ)

from the data.

Given equation (2.31), suppose there exist (h, J, σ(h, J)) and (h̃, J̃ , σ̃(h̃, J̃)) such that

Pr(yi = 1|yl = 1,di, σ) =
1

2

󰀣
hi + γil(1− zil) +

󰁛

j∈Ni

γijzij + 1

󰀤

=
1

2

󰀣
h̃i + γ̃il(1− zil) +

󰁛

j∈Ni

γ̃ijzij + 1

󰀤 (2.32)

Reshaping equation (2.32),

hi + γil(1− zil)− h̃i − γ̃il(1− zil) =
󰁛

j∈Ni

(γ̃ij − γij)zij (2.33)
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Equation (2.33) indicates that, since di is a random vector,

γilzil =γ̃ilz̃il for i, l

hi + γil =h̃i + γ̃il

(2.34)

Recall that

σji =
1

2
(hi + Ji (1− zij) + 1) +

Ji
2
E [di|gij = 1, I] · zi

=
1

2

󰀓
h̃i + J̃i (1− z̃ij) + 1

󰀔
+

J̃i
2
E [di|gij = 1, I] · z̃i

= σ̃ji

(2.35)

It follows that hi = h̃i, γij = γ̃ij.

Proof of Proposition 9. Let j denote {xj = x}, ′
j = {xj = x′}, ιi = ιi(x,d). Let

ξij = (yj
′
jιigij + yi

′
iιjgji)/2. Then ξij = ξji and

1

n(n− 1)

󰁛

j ∕=i

yj
′
jιigij =

2

n(n− 1)

󰁛

j>i

ξij.

By Chebyshev’s inequality,

Pn

󰀫󰀏󰀏󰀏󰀏󰀏
2

n(n− 1)

󰁛

j>i

ξij − En

󰀣
2

n(n− 1)

󰁛

j>i

ξij

󰀤󰀏󰀏󰀏󰀏󰀏 ≥ C

󰀬
≤ 1

C2
Vn

󰀣
2

n(n− 1)

󰁛

j>i

ξij

󰀤

where

Vn

󰀣
2

n(n− 1)

󰁛

j>i

ξij

󰀤
=

4

n2(n− 1)2

󰁛

j>i

󰁛

t>l

Cn(ξij, ξtl)

=
4

n2(n− 1)2

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

󰁛

j>i

V n(ξij)

󰁿 󰁾󰁽 󰂀
A1

+
󰁛

j>i

󰁛

t>l

#({i,j}∩{k,l})=1

Cn(ξij, ξtl)

󰁿 󰁾󰁽 󰂀
A2

+
󰁛

j>i

󰁛

t>l

{i,j}∩{k,l}=φ

Cn(ξij, ξtl)

󰁿 󰁾󰁽 󰂀
A3

󰀼
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀾

.
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The number of terms in the summation A1, A2, A3 are
󰀃
n
2

󰀄
= 1

2
(n2 − n),

󰀃
n
2

󰀄
× 2(n− 2) =

n3 − 3n2 + 2n, and
󰀃
n
2

󰀄
×

󰀃
n−2
2

󰀄
= 1

4
(n4 − 6n3 + 11n2 − 6n), respectively.

For A1,

Vn(ξij) =
1

4
[Vn(yj

′
jιigij) + Vn(yi

′
iιjgji) + 2Cn(yj

′
jιigij, yi

′
iιjgji)].

Note that En(yj
′
jιigij) ∈ [0, 1] and En(yi

′
iιjgji) ∈ [0, 1], then Vn(ξij) ∈ 1

4
{[0, 1] + [0, 1] +

2[−1, 1]× [0, 1]2} = [0, 1]. Thus, 4
n2(n−1)2

A1 ≤ 2
n(n−1)

.

For A2 such that #({i, j} ∩ {k, l}) = 1,

|Cn(ξij, ξtl)| =
󰀏󰀏ρV 1/2

n (ξij)V
1/2
n (ξlt)

󰀏󰀏 ≤ 1

Thus, | 4
n2(n−1)2

A2| ≤ 4(n−2)
n(n−1)

.

For A3 such that {i, j} ∩ {k, l} = φ,

Cn(ξij, ξtl) =
1

4
Cn

󰀃
yj

′
jιigij + yi

′
iιjgji, yt

′
tιlglt + yl

′
lιtgtl

󰀄

=
1

4
{Cn

󰀃
yj

′
jιigij, yt

′
tιlglt

󰀄
+ Cn

󰀃
yj

′
jιigij, yl

′
lιtgtl

󰀄

+ Cn (yi
′
iιjgji, yt

′
tιlglt) + Cn (yi

′
iιjgji, yl

′
lιtgtl)}

Notice that

Cn

󰀃
yj

′
jιigij, yt

′
tιlglt

󰀄
= E(yjyt

′
j

′
tιiιlgijglt)− En(yj

′
jιigij)En(yt

′
tιlglt)
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and

E(yjyt
′
j

′
tιiιlgijglt|xj,dj, yNj

, xt,dt, yNt)

=E[ {εj < h(xj,dj) +
󰁛

m∈Ni

γ(xm, xi,di)(ym + (1− ym)σim)}

· {εt < h(xt,dt) +
󰁛

k∈Nt

γ(xk, xt,dt)(yk + (1− yk)σtk)}

· {xj = x′, xt = x′xi = x, xl = x,di = d,dl = d, gij = 1, glt = 1}|xj,dj, yNj
, xt,dt, yNt ],

Then E(yjyt
′
j

′
tιiιlgijglt|xj,dj, yNj

, xt,dt, yNt) = o(1/n) by Assumption 14.

2.11 C. Tables
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Table 2.6: Estimating Payoff Parameters when ε is Uniformly Distributed
Network Size

n = 1000 n = 2000
# networks BIAS SE RMSE BIAS SE RMSE

Uniform

r = 1

−0.0156
−0.0404
0.0638
0.0093
0.0228
0.1320

0.1292
0.1632
0.3017
0.0689
0.1279
0.2722

0.1288
0.1666
0.3054
0.0689
0.1287
0.3001

−0.0030
−0.0169
0.0044
0.0012
0.0049
0.0246

0.0898
0.0977
0.0495
0.0409
0.0714
0.1211

0.0889
0.0982
0.0492
0.0405
0.0709
0.1224

r = 5

0.0128
0.0016
0.0026
−0.0089
0.0003
0.0007

0.0501
0.0416
0.0347
0.0222
0.0176
0.0310

0.0512
0.0412
0.0345
0.0237
0.0174
0.0307

0.0038
0.0011
0.0069
−0.0071
−0.0013
0.0000

0.0545
0.0296
0.0412
0.0188
0.0154
0.0126

0.0541
0.0293
0.0414
0.0199
0.0153
0.0125

r = 10

0.0043
−0.0009
0.0096
−0.0067
0.0044
0.0008

0.0545
0.0273
0.0430
0.0163
0.0142
0.0203

0.0541
0.0270
0.0436
0.0175
0.0147
0.0201

−0.0109
0.0017
0.0132
−0.0002
−0.0013
−0.0003

0.0480
0.0189
0.0353
0.0194
0.0105
0.0078

0.0488
0.0188
0.0373
0.0192
0.0105
0.0077

r = 20

−0.0096
0.0031
0.0175
−0.0019
0.0043
−0.0027

0.0439
0.0160
0.0386
0.0148
0.0080
0.0074

0.0445
0.0161
0.0420
0.0147
0.0090
0.0078

0.0008
−0.0026
0.0048
−0.0034
0.0014
0.0009

0.0320
0.0147
0.0293
0.0091
0.0077
0.0062

0.0317
0.0148
0.0294
0.0097
0.0077
0.0062

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network has n
individuals. ε ∼ U(0, 1).
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Table 2.7: Estimating Payoff Parameters when ε is Normally Distributed
Network Size

n = 1000 n = 2000
# networks BIAS SE RMSE BIAS SE RMSE

Normal

r = 1

0.0191
0.0114
−0.0076
−0.0040
0.0045
−0.0057

0.0854
0.0715
0.0349
0.0442
0.0423
0.0352

0.0867
0.0717
0.0354
0.0440
0.0421
0.0353

0.0113
0.0106
−0.0054
−0.0002
−0.0085
−0.0035

0.0632
0.0440
0.0332
0.0299
0.0218
0.0220

0.0636
0.0449
0.0333
0.0296
0.0232
0.0220

r = 5

0.0131
−0.0022
−0.0048
−0.0047
0.0032
−0.0005

0.0377
0.0305
0.0191
0.0208
0.0159
0.0160

0.0396
0.0303
0.0195
0.0211
0.0160
0.0158

0.0034
0.0034
0.0002
−0.0018
−0.0037
−0.0009

0.0297
0.0230
0.0151
0.0138
0.0127
0.0109

0.0296
0.0230
0.0149
0.0138
0.0131
0.0108

r = 10

0.0160
0.0029
−0.0046
−0.0073
0.0007
−0.0013

0.0354
0.0204
0.0177
0.0155
0.0127
0.0108

0.0386
0.0204
0.0181
0.0169
0.0126
0.0108

0.0009
0.0003
−0.0010
0.0001
−0.0006
0.0013

0.0196
0.0173
0.0105
0.0093
0.0097
0.0076

0.0194
0.0171
0.0104
0.0092
0.0096
0.0076

r = 20

0.0127
−0.0028
−0.0031
−0.0055
0.0041
0.0011

0.0183
0.0122
0.0098
0.0085
0.0077
0.0066

0.0221
0.0124
0.0102
0.0101
0.0087
0.0066

0.0043
−0.0012
−0.0026
−0.0001
−0.0021
0.0012

0.0143
0.0114
0.0072
0.0071
0.0074
0.0053

0.0148
0.0114
0.0076
0.0071
0.0076
0.0054

Note: The bias, standard deviation and root mean squared errors in this table are
calculated from S = 50 independent draws of r networks, where each network has n
individuals. ε ∼ N(0.5, 0.3).
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CHAPTER 3

The Application of Network Model in the Diffusion of

Microfinance
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3.1 Introduction

This chapter discusses how we can measure the network effect in a diffusion process, for

example, product adoptions and the diffusion of rumors.

Although social effect has been a field of great interest for economists, there is little

empirical evidence that fully take the impact of local network structure into account. Labor

economists that study network effects commonly suppose that individual take-up decisions

depend only on the take-up rate in the population or in their local neighborhood, not on

specific links to their local neighbors. However, the impact of network can change with the

specific local network structure faced by each agent in the network. To be more specific, a

network connect an individual to neighbors of different type, and thus resulting in different

social effects. Instead of treating all neighbors the same in the previous literature, we are

going to estimate network effects that differs with the neighbor types.

We apply our model in Chapter 2 to data on participation of a microfinance program in

India villages to describe the impact of neighbors on individual decisions. We need a struc-

tural model because the analysis of diffusion games depends crucially on the model that

depicts information transmission. Our model provides crucial assumptions on the mecha-

nism that drive the information to diffuse through social links. Also, it allows us to study

the various network effect across different types of agents who cares about their neighbors’

opinions. It depends on unknown equilibrium beliefs which specify agents expectations about

their neighbors’ decisions. Using participation data from 43 villages each includes about 200

villagers, we estimate these equilibrium beliefs and the network effects. The model estimates

suggest that positive network effect exists among households in the villages, and we also find

an evidence of homophily as households tend to value the decision of neighbors who have

the same financial wellness more.

3.1.1 Related Works

Social interactions lead to correlated individual choices, and the correlation forms the ba-

sis of identification. With increasing interest in social determinants of individual behavior,
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the literature grows fast to address the arised identification problems. As a review of this

literature, Durlauf and Ioannides (2010)
[?]

summarize the significant advances made in the

identification of peer effects, neighborhood effects, or more generally, social effects. In addi-

tion, Bramoullé, Djebbari, and Fortin (2009)
[?]

and Blume, Brock, Durlauf, and Jayaraman

(2015)
[?]

show that in the case that interactions are structured through a social network,

the correlated behaviors also occur in games with either privately or commonly observable

types.

There is a vast and still growing empirical literature that identifies the effects of agents’

neighborhood on behavior and outcomes. For example, Katz and Lazarsfeld (1955) study

how the opinions of the majority are shaped, they suggest a small subset of influential

individuals play a big role in filtering and reinterpreting the mass media. Glaeser, Sacerdote

and Scheinkman (1996) evaluate the role of social interactions in criminal behavior. Other

influential works include Coleman (1966), Granovetter (1994), Foster and Rosenzweig (1995),

Topa (2001) and Conley and Udry (2005).

There is not much empirical literature about the identification of preference in dynamical

processes. Banerjee et al. (2013)
[6]

study the diffusion of microfinance in Indian villages

using a simulated moment approach. In economic theory, Bass (1969)
[8]

provide a widely-

used model where diffusion depends on the adoption rate in the population. Morris (2000)
[44]

starts with a finite and fixed network such that players’ choice depends on their neighbors’

choice in the previous period. Watts (2002)
[61]

studies large networks such that players

make irreversible adoption decisions if the fraction of her neighbors who adopt exceed some

threshold. The networks discussed in these two papers are homogeneous, where there is

only a single type of nodes and edges. Sadler (2017)
[?]

models information diffusion in more

complicated networks that consist of heterogeneous types of nodes and edges. The analysis

reveals the positive local externalities from adoption decisions, indicating that standard

simplified assumptions may lead to misguided predictions.

This chapter is also related to network games with private information on links and

payoffs. It is empirically sound to assume incomplete information especially when the net-

work involves a large population. As shown in Banerjee, Chandrasekhar, Duflo and Jackson
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(2016)
[?]
, community members in rural India have very limited information about the full

network structure. This topic is also discussed by Goldsmith-Pinkham and Imbens (2013)
[?]
,

where their model assumes that many independent small games are observed, i.e., the econo-

metricians observe a large number of repeated games on a fixed network structure. In ad-

dition, Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010)
[23]

studies homogeneous

players with partial information on network structures. Eraslan and Tang (2017)
[?]

study

the identification and estimation of large network games with private links and payoffs.

They consider linear interactions and ignore the fact that for undirected networks players

hold partial information about their neighbors’ network, which greatly reduces the compu-

tational difficulties. Canen, Schwartz and Song (2017)
[?]

adopts a behavioral approach to

model games on networks where agents only observe part of their neighbors’ types.

3.2 The Data

We use data from Banerjee et al. (2013)
[6]
. The dataset contains survey information from

75 villages in rural India, among which 34 villages participated in the microfinance program.

The survey questionnaire collects various data from both household and individual levels.

For our analysis, we restrict attention to household-level data from the 34 villages in which

the microfinance company operates.

We observe the household characteristics and the social network structure from the data.

The household characteristics are drawn from the household survey, which contains ques-

tions about household wealth (e.g., the number of rooms in a household, number of beds,

amenities). The network structure is generated from individual questionnaire, in which vil-

lages are asked about their personal relationships (who they visit, who they borrow money

from, etc.). By aggregating the individual relationships to the household level, we generate

an undirected, unweighted social network.

With a simple logistic regression on only household characteristics data, we get coeffi-
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cients for covariates1 and the constant. The results are shown in Table 3.1. This simple

regression implies that number of rooms per capita is one key factor that affects the house-

hold participation decisions.

Table 3.1: Microfinance Participation on Household Characteristics
Estimate SE pValue

(Intercept) -1.2098 0.3218 0.0002
# Rooms 0.0070 0.0853 0.9348
# Beds -0.2831 0.1426 0.0471
Electricity 0.1559 0.1228 0.2044
Latrine 0.1793 0.0804 0.0257
# Rooms per capita -1.0232 0.3925 0.0091
# Beds per capita 1.1465 0.6557 0.0804

Note: The table summarizes the logistic regression results for a basic analysis of
key factors that affects household participation decisions.

Table 3.2: Data Description
All Type 1

Mean Std. Dev. Mean Std. Dev.
Number of Households 212.233 53.536 52.837 26.143
Degree 9.656 1.642 8.786 1.956
Betweenness Centrality 189.733 63.103 162.811 64.107
# Rooms 2.308 0.413 3.470 0.331
# Beds 0.878 0.455 1.271 0.598
Electricity 1.474 0.230 1.352 0.267
Latrine 2.429 0.293 2.164 0.380
# Rooms per capita 0.561 0.120 1.079 0.079
# Beds per capita 0.201 0.110 0.364 0.182
Take-Up Rate 0.194 0.082 0.126 0.080

Note: Sample includes 43 villages. Type-1 households are those with 70 percentile and
upper number of rooms per capita

Table 3.2 provides descriptive statistics. Villages that participates in the microfinance

program have an average of 212 households. We denote the households with 70 percentile and

upper number of rooms per capita by type-1 households, the rest of the households by type-0

households. From the table, the degree and the betweenness centrality imply that type-1

households are not specifically different from other households in terms of network position.

1The covariates include number of rooms in a household, number of beds, whether the household has
private/government/no electricity, whether the household has own/common/no latrine, number of rooms
per capita, and number of beds per capita.
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19.4% of households participate in microfinance, while the type-1 households take-up rate is

only 12.6%, with a standard deviation of 8% across villages.

3.3 Model and Estimation

3.3.1 Model structure

We describe our diffusion model in this subsection, with emphasis on the adaptions we

made to tailor it to the data. The model we adopt is the diffusion model with players who

are allowed to make deferred decisions.

As researchers, we observe the participation decisions at the end of the diffusion yi ∈

{0, 1}, the network structure G, and the types of households, type-0 and type-1, as divided

in the previous section.

The diffusion is characterized by the following algorithm. At t = 0, a set of seed players

(households) are informed about the new microfinance program. In each subsequent period,

those who are informed decide whether to participate based on their own characteristics and

the decisions of their close neighbors in the social network. When player participate, they

transmit the information to their neighbors, so that their neighbors become aware of the new

program. The decision to participate is irreversible, that is, players who already participated

could not withdraw from the program.

Player i’s payoff function is

Ui = hi +
󰁛

j∈Ni

γij · yj − εi, (3.1)

or

Ui = hi +
󰁛

j∈Ni

γij · yj/di − εi, (3.2)

where hi = h(xi) depends on player i’s type xi and γ = γ(xj, xi) depends on the types of

both ends of the link xi and xj.

We assume players hold private information about their links and their payoff shocks ε.
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Because of incomplete information, agents form beliefs about their neighbors’ participation

decisions σ. According to the theorems in the previous chapter, player i’s belief about j’s

decision, σij, depends on xi, xj and player i’s degree di. In this application, a player can

have up tp about 50 neighbors in their social network. Therefore, to address the arising

computational difficulty, we categorize the degree into three groups of the same sizes by the

quantiles of the degree distribution (0.33 and 0.67).

3.3.2 Estimation and Bootstrap

We apply the two-step estimator estimate to estimate the payoff parameters. First, we

estimate σ’s from sample analogs. Then we take maximum-likelihood estimation. We use

bootstrap to approach the variance of the estimate.

The bootstrap algorithm is as follows. Note that we have a sample of 43 villages x1, ..., x43

drawn from a distribution F from which we wish to estimate the payoff parameter θ using

a statistic θ̂ = T (x1, ..., xn). Then we generate a large number of random samples from

x1, ..., x43, compute θ from each sample, and compute the standard deviation of these esti-

mates.

1. Set B as the number of bootstraps, V as the number of villages. Assign weight wb
r to

village r in b-th bootstrap, where wb
r = ebr/ē

b, with ebr i.i.d. exp(1) random variables

and ēb = 1
R

󰁓
r e

b
r.

2. Compute σb using the weighted sample averages of participating rate by types and

degrees.

3. For each village r, compute the log-likelihood lr(θ, σ
b) by plugging in σb computed in

the first step.

4. Find θb = argmaxLb(θ, σb), where Lb(θ, σb) = 1
R

󰁓
r w

b
r · lr(θ, σb).

5. Compute the standard deviation and confidence interval from {θb}Bb=1.

We use B = 1000 for bootstrap.
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3.3.3 Comparison with the Mean-field Model

We compare our model to the canonical Bass model (Bass 1969
[8]
), which falls in the

category of mean-field models. They do not consider local network structure because it relies

on mean-field approximations, which assume all prior adopters in the population influence

current decisions equally. The model characterize adoption rate over time using a logistic

curve. In contrast, our model assumes fixed network with persistent relationships, where

players react to their local neighbors’ decisions strategically.

Figure 3.1 presents the different diffusion patterns between two models. We fitted the data

to our model for the coefficients, and then perform simulations to generate the blue curve.

Then we fit the simulated participation rate to the Bass model. 2 The two models generate

significantly different diffusion patterns. The simulation suggests that the Bass model is not

a good fit for the data as the local network plays an crucial role in the microfinance take-up.

3.4 Empirical Results

Table 3.3 presents the result of the estimation. The first row is the coefficient estimates of

type-0 households’ payoffs, and the second is the coefficient estimates of type-1 households’

payoffs. The results demonstrate that social effect exists for households in the network, and

are in general positive. The impact of type-0 neighbors on both type-0 and type-1 households

are significantly different from zero, with P < 0.01 for type-0 on type-0, and P < 0.05 for

type-0 on type-1 (t test). While the impact of type-1 neighbor on both type-0 and type-1

households are less significant (P = 0.11 for type-1 on type-0, and P < 0.10 for type-1 on

type-1, t test).

We can find evidence of homophily from the results. The same-type network effects γ00

and γ11 has greater coefficient values than the cross-type network effects γ01 and γ10.

Recall Table 3.2, the microfinance take-up rate of type-1 households is significantly below

average. Note that type-1 households are those who have more rooms per capital. Their

2We take this approach because we do not have data on the participation rate over time.
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Figure 3.1: Fixed Network Approach v.s. Mean-field Model
Note: The figure demonstrates the diffusion pattern for two models. The blue curve

presents the diffusion pattern when we fit the data to our model that based on the fixed
network approach, and the brown curve is the diffusion pattern when we fit the data to a

simple Bass model that makes mean-field assumptions.

advantage in wealth may therefore reduce their demand for financial instruments.

We also present the estimates of the nuisance parameter σ in Table 3.4. We observe

two patterns from the table. First, the for each agent in the network, their beliefs about the

participation decision of a type-1 neighbors is in general lower than that of a type-0 neighbor.

This is consistent with the microfinance take-up rate in the data. Second, Households who

have more links form lower beliefs for neighbor take-up rate, as the value of σ decreases

along the diagonal.
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Table 3.3: Parameter Estimates of the Model
hi γi0 γi1

Type 0
0.3513 0.1200 0.0470
(0.0091) (0.0349) (0.0396)

Type 1
0.3002 0.0619 0.1102
(0.0114) (0.0331) (0.0806)

Note: This table presents the estimated payoff parameters. γi0, γi1
are the coefficient in Equation (3.2) on the fraction of neighbors that
participated. hi is the constant term in Equation (3.2). Household of
different types have different coefficients. Bootstrap estimation with
1000 draws is used to compute the standard errors of the parameter
estimates.

3.5 Conclusion

This chapter applies the model in Chapter 2 to the data on the diffusion of microfinance

from Banerjee et al. (2013)
[6]
. We find an evidence of positive network effect. To be

more specific, the households with lower scores on financial wellness have more impact on

their neighbors. Their neighbors benefit more from their decisions to participate in the

microfinance program. We also find agents exhibit homophily.
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Table 3.4: {σ̂ij} by Household Types and Neighborhoods
j = 0 j = 1

(d0, d1) lower middle upper lower middle upper

i = 0

lower
0.3413 0.3708 0.3019 0.2274 0.3199 0.2602
(0.0242) (0.0416) (0.0454) (0.0432) (0.0494) (0.0504)

middle
0.3468 0.3336 0.2884 0.1821 0.2560 0.2399
(0.0304) (0.0272) (0.0263) (0.0355) (0.0326) (0.0254)

upper
0.3813 0.3007 0.2761 0.1493 0.2305 0.1877
(0.0376) (0.0299) (0.0142) (0.0463) (0.0335) (0.0183)

i = 1

lower
0.3313 0.3476 0.2054 0.2118 0.2679 0.2867
(0.0423) (0.1007) (0.0442) (0.0728) (0.0770) (0.0626)

middle
0.3566 0.2954 0.2926 0.3824 0.2620 0.1880
(0.0362) (0.0360) (0.0324) (0.0915) (0.0541) (0.0326)

upper
0.3449 0.3225 0.2509 0.2686 0.2006 0.1972
(0.0433) (0.0402) (0.0296) (0.1193) (0.0637) (0.0280)

Note: This table presents agents’ beliefs about the decisions of their neighbors, {σij}, by household
types (0,1) and neighborhood types (d0, d1 in the lower/middle/upper range, respectively).
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[24] Galichon, A., and Salanié, B. The econometrics and some properties of separable match-
ing models. American Economic Review 107, 5 (2017), 251–55.

[25] Gatignon, H., Eliashberg, J., and Robertson, T. S. Modeling multinational diffusion
patterns: An efficient methodology. Marketing Science 8, 3 (1989), 231–247.

[26] Glance, N. S., and Huberman, B. A. The outbreak of cooperation. Journal of Mathe-
matical sociology 17, 4 (1993), 281–302.

[27] Goldenberg, J., Han, S., Lehmann, D. R., and Hong, J. W. The role of hubs in the
adoption process. Journal of marketing 73, 2 (2009), 1–13.

[28] Griliches, Z. Hybrid corn: An exploration in the economics of technological change.
Econometrica, Journal of the Econometric Society (1957), 501–522.

[29] Helsen, K., Jedidi, K., and DeSarbo, W. S. A new approach to country segmentation
utilizing multinational diffusion patterns. Journal of marketing 57, 4 (1993), 60–71.

[30] Iyengar, R., Van den Bulte, C., and Valente, T. W. Opinion leadership and social
contagion in new product diffusion. Marketing Science 30, 2 (2011), 195–212.
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