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Equivalence: A Novel Basis for Model Analysis

Terrence C. Stewart (terry@ccmlab.ca)
Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract

As cognitive models are developed that are meant to apply to 
a broad range of phenomena, it is necessary to evaluate how 
successfully they do so.  This is commonly done by measures 
such  as  the  Mean  Squared  Error.   We  propose  and 
demonstrate  an  alternate  approach  based  on  a  measure  of 
statistical  equivalence.  Instead of using sample means, this 
method uses confidence intervals, and places an upper bound 
on how wrong the model may be, given the uncertainties in 
the data.  We apply this to the RELACS model in various 
different  repeated  binary  choice  tasks.   We  show that  the 
equivalence measure identifies ranges of canonical parameter 
settings  that  are  equally  equivalent.   It  also  identifies 
experimental conditions that are not yet modelled well.
Keywords: modeling; statistics; equivalence; repeated binary 
choice; RELACS; parameter spaces; philosophy of modeling

Introduction
When evaluating a cognitive model of a phenomenon, it is 
common  practice  to  determine  how  closely  the  model's 
behaviour matches that of the real system being modelled. 
This  is  typically  done  through  finding  the  mean  squared 
error,  and  there  is  often  a  determination  of  a  “best  fit” 
parameter  setting for  the  model.   Other  approaches  (e.g., 
Bayesian methods)  requiring assumptions  about  statistical 
distributions and prior probabilities are not considered here.

In (Stewart, 2006) and (Stewart, in press), we have argued 
for supplementing this approach by also determining the set  
of  equivalent  models.  This  set  consists  of  all  models  that 
cannot be statistically distinguished from the original data at 
a given probability (p<0.05).  This set of models (one for 
each possible combination of parameter settings) determines 
the space of potential  explanations for the phenomenon at 
hand.1  In  contrast,  the  best  fitting  model  (however 
determined)  can  be  seen  as  the  best  predictor of  the 
particular data set that was used.

In this paper, we apply this approach to a well-established 
model  of  repeated  binary  choice  behaviour  in  humans. 
Specifically,  we  examine  the  Reinforcement  Learning 
Among  Cognitive  Strategies  (RELACS)  model  (Erev  & 
Barron,  2005),  and determine what  potential  explanations 
arise  from it.   This  analysis  is  contrasted  with  the  more 
typical fitting analysis performed by the original developers 
of the model.  This work is a part of a project examining 
various cognitive models of this phenomenon to determine 
key experiments that may distinguish between them.

1 There are, of course, further criteria that would be needed before 
a model can be safely considered to be an explanation.  Statistical 
equivalence (to a specified degree) on the set of relevant measures 
is necessary for an explanation, but is not sufficient.

Repeated Binary Choice
One of the simplest tasks in experimental psychology is the 
Repeated  Binary  Choice  (RBC)  task.   Here,  participants 
make a series of either/or decisions, usually represented by 
pressing  one  of  two  buttons.   After  each  decision, 
reinforcement  feedback  of  some  kind  is  provided  to  the 
participant,  indicating  how  good  that  choice  was.   This 
allows them to refine their choices.  For example, choice A 
may be correct 70% of the time, while choice B is correct 
the remaining 30% of the time.  By giving feedback as to 
whether  the  correct  choice  was  made,  the  subject  will 
eventually  choose  A  more  often  than  B.   Of  particular 
interest is how much more often A is chosen over B, and 
how this changes over time.

In much of the early work on this task (e.g., Myers et al., 
1963), the feedback was limited to a simple correct/incorrect 
indication.  In such situations, the overall result in human 
participants  is  generally  characterized  as  “probability 
matching”.  That is, if A is correct 70% of the time, then the 
participant will choose A around 70% of the time.  This is 
somewhat  surprising,  given that  the  optimal  behaviour  in 
this condition is to choose A 100% of the time.

It is also possible to include numerical rewards within the 
task feedback.  This can either involve just a single number 
indicating the reward given for the button that was pressed 
(the “minimal information” paradigm), or two values can be 
provided,  indicating  both  the  reward  the  participant  has 
received as well as the reward they would have received if 
they  had  have  pressed  the  other  button  (the  “complete 
feedback” paradigm).  These rewards can be probabilistic; 
for example, pressing button A may give 1 point half of the 
time and 10 points the other half of the time, while button B 
may always give 7 points.

This  work  has  resulted  in  a  large  collection  of 
experimental  results  about  the  frequency  of  choices  in 
various conditions.  However, the precise pattern of these 
choices and the mechanism(s) underlying this performance 
are  unclear.   Although  the  idea  that  participants  tend  to 
match  probabilities  is  prevalent,  Friedman  and  Massaro 
(1998) note that “probability matching in binary choice ... is 
less robust than most psychologists seem to believe.”  The 
actual  observed  behaviour  is  much more  complex,  and  a 
variety of models have been proposed to account for it.

Existing Models
Given the simplicity of this task, a wide variety of existing 
cognitive  models  could  be  applied.   Indeed,  any 
reinforcement-based  model  would  be  a  natural  approach, 
including  all  Reinforcement  Learning  (RL)  systems. 
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However, there are a number of robust behaviours observed 
in  Repeated  Binary  Choice  experiments  that  do  not 
generally occur in RL systems.  This has prompted a variety 
of specific models to account for these effects.  Recently, 
attention has been focused on the RELACS model by Erev 
and Barron (2005), which was developed to be a descriptive 
account of this range of results.

The  basis  of  this  model  is  inherent  in  its  name: 
Reinforcement  Learning  Among  Cognitive  Strategies.   It 
consists of three separate learning systems, each of which 
uses  a  slightly  different  approach (Fast  Best  Reply;  Loss 
Aversion  and  Case-Based  Reasoning;  and  Diminishing 
Random Choice and Slow Best Reply with Exploration).  A 
fourth system is in charge of learning which of the three 
strategies is currently doing the best job (i.e. resulting in the 
most reward), and on the basis of this deciding which of the 
three  strategies  should  currently  be  followed.   For  more 
details, see (Erev & Barron, 2005).

It  should  be  noted  that  the  RBC  task  has  also  been 
investigated  using  ACT-R  models  (e.g.,  Fu  &  Anderson, 
2006).  As part of our ongoing work, we are examining not 
only RELACS, but also various ACT-R models, including 
ones  both  procedural-memory  based  and  declarative-
memory based via sequential  dependencies.   We are also 
examining  the  use  of  Clarion  on  this  task.   For  space 
reasons, we restrict this paper to the RELACS model only.

Measuring Equivalence
The key measure used here to compare model and human 
performance on this task involves the equivalence threshold 
(E).  This indicates how  wrong the model  could be, given 
the available information.  This is calculated by examining 
the  maximum  difference  between  the  95%  confidence 
intervals, as shown in Equation 1.

E=maxM U−H L , H U−M L  (Eq 1)

Here, the model confidence interval is  ML to  MU and the 
human data's confidence interval is  HL to  HU.  As noted in 
(Tryon, 2001), this is a conservative version of an inverted 
t-test, where H0:|μM-μH|>E rather than H0:μM-μH=0 (called an 
equivalence  test  in  Barker  et  al,  2002).   So,  if  we  use 
Equation  1  with  95%  confidence  intervals  and  find  an 
equivalence  of  150  milliseconds,  then  we  can  be  95% 
confident  that  the  model  differs  from  the  human 
performance by no more than 150 milliseconds.  

It should be noted that this measure differs considerably 
from  the  standard  approach  of  looking  at  the  squared 
difference between the model's mean performance and the 
human mean performance.  Such a comparison is made in 
the common Mean Squared Difference (MSD) measure and 
even in the (less common) use of the correlation between 
model  and human performance.   The key limitation with 
these measures is that they rely on the  sample means, and 
are thus a measure of how well the model matches to the 
particular  set  of  individuals  being  studied.   It  must  be 
remembered  that  the  population  mean  (which  is  what  a 

model  should  be  compared  to)  is  equally  likely  to  be 
anywhere within  the  confidence  interval  of  the  observed 
data.  The equivalence measure is meant to take this into 
account, and can generalize to any other statistic (such as 
the variance, median, skew, or kurtosis).

As  presented  here,  the  equivalence  measure  is 
conservative.  In (Tryon, 2001), it is shown that if means are 
being  measured  and  if  we  assume  the  data  is  normally 
distributed, these confidence intervals can be reduced by a 
factor of 

CI scaling= S M
2 S H

2

S MS H
(Eq 2)

However, this scaling factor is not used in our work.  The 
first  reason  for  this  is  that  there  is  generally  much more 
model data available than real world data (i.e. much higher 
N).  This means the scaling factor is generally close to 1 
(0.9~0.95),  and  so  has  little  effect.   The  main  reason, 
however,  is  that  avoiding  this  assumption  makes  the 
technique applicable to non-normally distributed data, and 
can thus be applied when comparing statistics other than the 
mean.  This allows us to compare the standard deviations of 
the model and human performance (or any other measure 
for which we can determine confidence intervals).

Since  the  equivalence  measure  relies  on  confidence 
intervals,  attaining accurate  intervals is  important.   When 
raw data is available, we use the bootstrap non-parametric 
confidence  interval  (Davison  and  Hinkley,  1997).   This 
makes no assumptions about the underlying distribution of 
the  data,  and  is  suitable  for  any  statistic.   When  only 
summary  data  is  available  (as  it  is  for  the  experimental 
results  discussed herein),  we use the standard method for 
estimating confidence  intervals  for  the  mean (using  the  t 
distribution) and standard deviation (using χ2 ).

Multiple Measures
Since repeated binary choice behaviour is revealed only by 
examining  a  large  number  of  different  experimental 
conditions, we must have a method for combining data from 
these conditions.  The basic equivalence measure described 
above is suitable for comparing model performance in  one 
experimental condition to that of human participants in that 
same  condition.   In  order  to  combine  across  multiple 
conditions,  there  must  be  some  way of  determining  how 
well the model performs overall.

In the standard MSD approach, the measures across the 
different conditions are combined to their mean value.  This 
indicates how close the model is to the real data on average. 
Thus it is possible for the model to be very close on some 
measures, but much worse than average on others.

Our  approach  is  that,  instead  of  taking  the  average 
difference across measures, we use the maximum difference. 
That is, if a model is very close on two measures, but highly 
different on a third measure, then the overall equivalence for 
that model should be the value for the third measure.  The 
overall equivalence is thus an indication that  all measures 
under consideration are  at worst different from the human 
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data by the given amount.2  It is also possible to scale these 
values before finding the maximum.  Scaling by a factor 
such  as  the  size  of  the  real-world  confidence  interval 
ensures that measures with high uncertainty do not dominate 
the result.  This also provides a simple interpretation to the 
resulting  number:  if  it  is  below  1,  then  the  model  is 
statistically indistinguishable from the real-world results at 
the  chosen  confidence  level.3  The  resulting  measure  is 
termed relativized equivalence (Er).

Er=maxi

maxM i ,U−H i , L , H i , U−M i , L
H i ,U−H i , L

(Eq 3)

We are unaware of any other research using this measure 
for evaluating the quality of a cognitive model.  However,  a 
suggestion that this sort of measure might be possible was 
independently noted in a footnote in (Axtell et al, 1996) for 
use in model/model comparisons.

Evaluating RELACS
As with most cognitive models, RELACS has a variety of 
parameters that  govern its  behaviour (α, β,  λ,  and κ)4.   α 
determines  how  quickly  the  exploration  strategy  learns 
(larger values are faster).  β does the same for the fast reply 
strategy.  λ  controls  the balance between exploration and 
exploitation, with larger values indicating less exploration. 
κ adjusts the loss aversion system, with higher values being 
more accurate in estimating previous losses.

The different combinations of parameters define a space 
of different models, each of which may behave differently. 
In  the  original  work  with  RELACS,  Erev  and  Barron 
searched  this  parameter  space  and  identified  one  “best 
fitting” model.  This was the model at α=0.00125, β=0.2, 
λ=8, and κ=4, which had a MSD of 0.0036.

Two things are unclear from this result.  First, since MSD 
is being used, we do not know how accurate the model is on 
any particular measure.  There may be a few conditions for 
which the model gives extremely different results.  Indeed, a 
visual  inspection  of  the  plots  in  (Erev  &  Barron,  2005, 
Figures 2-4) reveals that measures 8, 28, and 33 differ by 
significantly  more  than  the  average  difference  of  0.06. 
However,  none of  the original  analysis makes any use of 
confidence intervals, so it  is impossible to determine how 
well the model is performing on these conditions.  It may be 
that  a  difference  this  large  is  merely  due  to  statistical 
sampling (especially since many of the studies used by Erev 
and Barron have only 10 to 14 subjects).

The second ambiguity in the original analysis is how well 
other parameter settings perform.  One parameter setting is 
given as the best numerical match.  However, it may be that 
2 The risk of a bad set of data eliminating a good model is handled 
by selectively removing conditions from consideration.
3 It is also possible to choose some predefined scaling factor for 
each measure, indicating how close we require the model to be for 
a  particular  purpose.   This  is  highly  recommended  when  the 
empirical data has small confidence intervals.
4 Other possible changes to RELACS, such as eliminating one of 
the three strategies, or choosing randomly between them, can be 
treated as non-numerical parameters, but are not discussed here.

many other  parameter  settings  perform  just  as  well,  in  a 
statistical equivalence sense.  The fact that one model gives 
a slightly better match than the others is  not necessarily an 
indication  of  a  better  parameter  setting,  as  it  may be  an 
indication of over-fitting to the particular sample data.

From  an  equivalence  testing  perspective,  every  model 
with an Er less than 1 is equally good (i.e. they are all within 
the same confidence level).  If the results produce an area of 
equivalent  models  within  the  model  space,  then  the 
parameter values within that area can be seen as canonical 
parameter  ranges.   This  is  the  range of  parameter  values 
over  which  the  model  behaves  similarly  to  human 
participants.  For a discussion of the concept of canonical 
parameter values, see (Anderson & Lebiere, 1998).

However, it is also possible to find  disjoint areas of the 
parameter space which provide equivalent models.  These 
represent  alternate  explanations of  the  human  behaviour. 
Once  these  alternatives  are  identified,  future  experiments 
can be developed to differentiate them.

Also, when dealing with such a large set of measures, it is 
quite possible that certain parameter settings will result in 
models that are equivalent on some measures but not others, 
and vice versa for other parameter settings.  In this situation, 
the model cannot  explain  both measures,  but  can explain 
either. These occurrences must be identified so that model 
developers  can  resolve  them  (perhaps  by  adding 
mechanisms that adjust parameters based on some change 
between the conditions).

Since it is impossible to evaluate every parameter setting, 
in this work we sample the parameter space using the values 
shown in Table 1, for a total of 3,456 settings.  We have 
performed explorations outside of this space, but have not 
found significant changes in behaviour outside these values. 

Table 1: RELACS Parameter Values Examined
α (exploration learning rate)

0  0.01  0.02  0.03  0.04  0.05

β (quick learning rate)
0  0.01  0.02  0.05  0.1  0.2  0.5  1

λ (conservativeness)
1  2  4  8  16  32  64  128

κ (loss aversion)
0  1  2  4  8  16  32  64  128

Human Data
To simplify the comparison between our approach and the 
standard one, we use the same set of human data as found in 
(Erev  &  Barron,  2005).   This  is  a  set  of  40  different 
conditions,  mostly  consisting of  previous studies  by Erev 
and his colleagues.  Precise details on all these conditions 
can  be  found  in  their  paper.   The  majority  of  these 
conditions use the minimal information paradigm (a single 
numerical reward value shown after each choice), and the 
rewards  are  generally  particular  values  with  different 
probabilities.   For  example,  in  condition #23,  pressing A 
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gives a reward of 32 10% of the time and 0 the remaining 
90%, while pressing B gives a reward of 3 all the time.

Two conditions (#29 and #30) had to be removed from 
consideration, since no information was available on their 
standard  deviations,  making  it  impossible  to  estimate 
confidence intervals.  Also, standard deviation information 
was only available for the 2nd block of  100 trials in each 
condition  (with  the  exception  of  conditions  #15  to  #20, 
which give the 4th block), so only this block is considered.

The remaining conditions are divided into four categories, 
based on the effects being demonstrated.  Most of the first 
22  conditions  (with  the  exception  of  #15  to  #20) 
demonstrate  variations  on  the  Payoff  Variability  Effect. 
This involves adjusting the variation in the outcomes for a 
given  choice,  without  adjusting  the  mean  outcome. 
Observed  behaviour  changes  from  risk-seeking  to  risk-
aversion depending on whether the variability is associated 
with the overall best option

Conditions #15 to #20 examine changing the magnitude 
of the reward.  Choice A is correct 60%, 70%, or 80% of the 
time, and the reward is 1 or 10.  This translates into different 
monetary rewards given to the participants.

Conditions #23 to #25 investigate the under-weighting of 
rare outcomes.  Here, events that are very rare (<10%) seem 
to not be considered when determining expected outcomes.

The remaining 15 conditions (#26 to #40) deal with the 
Loss  Rate  Effect.   In  these  cases,  “when  the  action  that 
maximizes  expected  value  increases  the  probability  of 
losses,  people tend to avoid it” (Erev & Barron, 2005, p. 
917).  That is, a choice that has a higher expected value in 
the long run may be chosen less often if it is comprised of 
many small losses and few large gains.

Results
These four  sets of conditions can be examined separately 
before combining them for an overall understanding of the 
RELACS  model's  performance.   The  goal  here  is  to 
understand what  conditions  RELACS can explain,  and to 
see what can be learned about the parameter values.

Since there are 3,456 different parameter settings to be 
considered, we cannot present  all  the gathered data about 
exactly which parameter settings lead to equivalent models. 
Instead, we present cross-sections of the model parameter 
space.  These cross-sections are created by holding two of 
the parameters constant and allowing the other two to vary. 
For consistency, the same parameters are held to the same 
values  to  create  the  cross-sections  in  each  set  of  graphs. 
Cross-section (a) is  λ=1,  κ=0, (b) is  α=0.01,  β=0.05, (c) is 
λ=2, κ=32, and (d) is α=0, β=0.1.  These values were chosen 
to maximize the amount of space shown as equivalent to the 
human data.  Of course, a three dimensional display could 
further improve the data visualization, but there will always 
be  problems  with  four  or  more  parameters.   Showing 
optimal  cross-sections  with  this  methodology  allows  for 
identification of interesting areas  in any case.

These  cross-sections  are  shown as  contour plots  of  Er, 
where  darker  shading  is  less  equivalence  (larger  Er).   A 

black  line  has  been  added  indicating  Er=1.   Every  point 
inside that contour (coloured pure white) indicates a model 
that gives performance statistically equivalent to the human 
performance (at p<0.05).  

Payoff Variability
There  were  no  parameter  values  that  matched  for  all  16 
conditions  examining  payoff  variability.   At  most  14 
conditions are matched; in these cases,  #1, #7, #11, and #13 
are  the  most  problematic.   Conditions  #1  and #7 are  the 
simplest  cases  (A  always  giving  a  reward  of  11  and  B 
always giving 10), while #11 and #13 are the most complex, 
giving real-value rewards (with a Gaussian distribution), as 
opposed to a one of a small fixed number of rewards.  

If these four conditions are eliminated from consideration, 
many parameter settings fit the remaining conditions (72 out 
of 3,456).  Figure 1a) shows that when κ and λ are low (0 
and 1, respectively), there are a large group of equivalent 
models with  α at 0.01~0.02, and β anywhere from 0.02 to 
0.2.  Figure 1b) shows another view of this same cluster, 
indicating  that  it  extends  up  to  κ of  at  least  8  and  λ≈2. 
Figure  1d)  shows  three  separate  clusters  with  different 
values of κ and λ.  Figure 1c) shows how the lower-right 
cluster in 1d) is shaped as α and β vary.

The main result from Figure 1 is that a wide variety of 
parameter  settings  produce  models  that  are  statistically 
indistinguishable  from  the  human  participants  for  these 
conditions.   If  we note  that  setting either  α or  β  to  zero 
effectively turns off that component of the RELACS model, 
we can see  that  these models  function wildly differently, 
and yet are still overtly similar to the empirical data.

Figure 1: Er for 10 payoff variability conditions.  All points 
inside the black line (Er<1) indicate models that are 

equivalent to human participants, and are shown in white.
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Adjusting Reward
The six conditions where reward is adjusted (#15 to #20) are 
not graphed here.  This is because the RELACS model turns 
out to not change its behaviour  at all when reward values 
are scaled.  For confirmation, examining (Erev & Barron, 
Figure 2, p. 915) reveals identical model performance, but 
changing human data.  This fact is not commented on in that 
paper.  It  is clear, then, that RELACS cannot account for 
this aspect of human performance.  It should be noted that 
the MSD approach to analysis used by Erev and Barron did 
not highlight this fact.

Underweighting
A  wide  selection  of  parameter  settings  are  equivalent  in 
terms of the three measures for underweighting.  These are 
shown in Figure 2.  Note that 2d) shows that  every model 
with α=0 and β=0.1 is equivalent to the human performance, 
regardless of  λ and κ values.

Figure 2: Er for 3 underweighting conditions.  All points 
inside the black line (Er<1) indicate models that are 

equivalent to human participants, and are shown in white.

Loss Rate Effect
As  with  the  payoff  variability  conditions,  there  were  no 
parameter settings that were equivalent on all 13 loss rate 
effect conditions.  However, if #28, #33, #34, and #40 are 
removed,  then  equivalent  models  are  found  for  the 
remaining conditions.  These are shown in Figure 3.  Note 
that  3b)  indicates  only  one  equivalent  model  in  the  very 
bottom-left of the graph (λ=1, κ=0), and 3c) shows a very 
few equivalent models (α=0, β=0.1~0.5).

Condition  #28  involves  a  reward  with  a  Gaussian 
distribution (as did #11 and #13), so the failure to produce 

good results for this is not surprising given the failure for 
#11 and #13.  Also,  #33 and #34 come from a series of 
studies where the only adjustment is the absolute value of 
the reward.  RELACS does not change behaviour in such 
situations, explaining its failure here.

However,  there  seems  to  be  no  clear  reason  why 
RELACS would fail on condition #40.  This measure is a 
fairly standard experiment where choice A always gives a 
reward of -3, and choice B gives a reward of -4 80% of the 
time and 0 the rest of the time.  This is merely the opposite 
of #21, which was modelled well by RELACS.  

Figure 3: Er for 13 loss rate effect conditions.  All points 
inside the black line (Er<1) indicate models that are 

equivalent to human participants, and are shown in white.

Overall Results
If  the  measures  indicated  in  the  previous  figures  are 
combined, we attain Figure 4: an overall plot showing the 
parameters which give equivalent models on all of the above 
conditions (except those explicitly eliminated above).

This  reveals  two  small  regions  of  equivalent  models. 
Figures  4a)  and  4b)  show that  the  models  near  (α=0.01, 
β=0.05,  λ=1,  κ=0)  are  indistinguishable  from the  human 
data.   Figure  4c)  and  4d)  indicate  a  separate  parameter 
setting  that  is  also  equivalent:  (α=0,  β=0.2,  λ=2,  κ=8). 
Looking  at  these  values,  we  can  see  that  these  models 
perform very different internal processes, yet both result in 
equally  convincing  accounts  of  human  performance  over 
this set of RBC task conditions.  The first model makes no 
use  of  the  loss  aversion  system (κ=0),  while  the  second 
never adjusts from its initial state in the exploration system 
(α=0).   Both  of  these  models  are  also  better (from  an 
equivalence standpoint) than the “best fit” model identified 
in (Erev & Barron, 2005).  
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Figure 4: Er for all 26 remaining conditions.  All points 
inside the black line (Er<1) indicate models that are 

equivalent to human participants, and are shown in white.

Discussion
The equivalence  method provides  us  with a  collection of 
models, all of which must be treated equally.  These are all 
parameter settings for models that cannot be distinguished 
from the real data (at p<0.05). These models have differing 
mean squared error values, but there is no sense in which 
any of these settings are more equivalent than others (i.e. a 
better  fit  may indicate  a  better  model  or  it  may indicate 
over-fitting  the  data).   This  process  identifies  sets  of 
canonical  parameter  values  that  constrain  the  use  of  the 
RELACS model.   These parameter values turn out  to  not 
include the “best ” model found by the original researchers.

We  have  also  identified  those  conditions  that  are  not 
modelled  well.   RELACS  was  unable  to  simultaneously 
model all of these conditions at p<0.05. Instead of averaging 
across them, we identified those for which RELACS failed. 
For  these,  RELACS needs  different  parameter  values  for 
different  conditions.   Future  extensions of  RELACS may 
incorporate  mechanisms for  detecting these situations and 
then adjusting its own parameters, but none currently exist.

It is also possible that the failure of RELACS on any of 
these conditions is due to statistical error, as any of the real-
world  data  sets  could  be  outside  the  confidence  interval 
(indeed,  up to 5% of the conditions  may be).   Gathering 
more human data resolves this by exposing atypical results.

We  have  also  restricted  ourselves  to  the  mean 
performance only.  All of this analysis could also be applied 
to any other statistic,  such as the variance.   This has not 
been  done  here,  as  RELACS is  known  to  have  a  much 
smaller variance than the human subjects

Conclusion
The equivalence  method introduced here supplements  the 
standard “fitting” approach to model evaluation by taking 
into account confidence intervals and by treating all models 
that are statistically indistinguishable from the real data as 
equally  good  potential  explanations.   We  chose  the 
RELACS model  to  demonstrate  this  process  because  the 
authors had done what few do; they evaluated their model 
by  comparison  to  a  large  and  diverse  set  of  real-world 
results.  In our opinion, this is critical for evaluating models 
past a certain level of development.  What we have shown 
in this paper  is  the value of  using an equivalence testing 
approach for this type of evaluation.  Particular conditions 
can be identified as problematic, and canonical  parameter 
ranges can be identified.

To facilitate further investigation into the RELACS model 
and other uses of the equivalence approach, all source code, 
data,  and  analysis  tools  used  are  freely  available  at 
<http://ccmlab.ca> as part of the CCMSuite tool-kit.
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