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Paolo Annicchiarico1*, Nelson Nazzicari1, Yanling Wei1,2, Luciano Pecetti1 and
Edward C. Brummer2

1 Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (FLC), CREA, Lodi, Italy, 2 Plant Breeding Center,
Department of Plant Sciences, University of California, Davis, Davis, CA, USA

Genotyping-by-Sequencing (GBS) may drastically reduce genotyping costs compared
with single nucleotide polymorphism (SNP) array platforms. However, it may require
optimization for specific crops to maximize the number of available markers. Exploiting
GBS-generated markers may require optimization, too (e.g., to cope with missing
data). This study aimed (i) to compare elements of GBS protocols on legume species
that differ for genome size, ploidy, and breeding system, and (ii) to show successful
applications and challenges of GBS data on legume species. Preliminary work on
alfalfa and Medicago truncatula suggested the greater interest of ApeKI over PstI:MspI
DNA digestion. We compared KAPA and NEB Taq polymerases in combination with
primer extensions that were progressively more selective on restriction sites, and found
greater number of polymorphic SNP loci in pea, white lupin and diploid alfalfa when
adopting KAPA with a non-selective primer. This protocol displayed a slight advantage
also for tetraploid alfalfa (where SNP calling requires higher read depth). KAPA offered
the further advantage of more uniform amplification than NEB over fragment sizes
and GC contents. The number of GBS-generated polymorphic markers exceeded
6,500 in two tetraploid alfalfa reference populations and a world collection of lupin
genotypes, and 2,000 in different sets of pea or lupin recombinant inbred lines. The
predictive ability of GBS-based genomic selection was influenced by the genotype
missing data threshold and imputation, as well as by the genomic selection model,
with the best model depending on traits and data sets. We devised a simple method for
comparing phenotypic vs. genomic selection in terms of predicted yield gain per year
for same evaluation costs, whose application to preliminary data for alfalfa and pea in a
hypothetical selection scenario for each crop indicated a distinct advantage of genomic
selection.

Keywords: GBS, genetic gain, genomic selection, Lupinus albus, Medicago sativa, Pisum sativum, protocol, yield

INTRODUCTION

Next generation sequencing techniques provide many molecular markers at low cost by sequencing
single nucleotide polymorphism (SNP) sites in a fraction of the genome. While many array-
based procedures require prior knowledge of target sequences, other methods, such as complexity
reduction of polymorphic sequences (CRoPS) (van Orsouw et al., 2007) and restriction enzymes
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site-associated genomic DNA sequencing (RAD-seq) (Baird et al.,
2008), skip sequence discovery and explore SNP variation in
DNA fragments cut by a restriction enzyme (RE). The use of
methylation sensitive REs, which tend to avoid highly repetitive
DNA regions, helps targeting restriction sites that are relatively
random and evenly distributed along the genome in gene-rich
regions.

In RAD-seq, restriction fragments are ligated to adapters on
one end, sheared and size selected, then ligated with adapters on
the other end and finally PCR amplified, before sequencing the
region flanking the restriction site. Multiplexing many genotypes
in a single sequencing reaction can be done using a unique
barcode sequence (4 to 8 bp long) in one end of the adapters
before ligation. A similar but simplified procedure termed
genotyping-by-sequencing (GBS) was proposed by Elshire et al.
(2011) using ApeKI as a “frequent cutter” RE. GBS skips the
shearing and size selection stage, combining the ligation of
both adapters into one step. Another improvement of GBS
is the modulation of length and nucleotide composition of
barcode sequences. The current GBS cost per DNA sample
(inclusive of sample preparation) is on the order of 25–30 €.
This represents a possible cost reduction of about 40–60%
relative to SNP array-based genotyping, with greater reduction
for relatively small experiments. At these costs, genomic selection
(Heffner et al., 2009) can be applied even to crops of moderate
or modest economic importance and/or with no sequenced
genome. However, relative to array-based genotyping, GBS
presents challenges in coping with missing data and their
imputation, and it may require optimization for different
species.

The success of GBS depends on the number of polymorphic
SNP markers that can be identified. Statistically robust SNP
calling depends on the number of sequencing reads per SNP, with
a threshold set to 2 or 3 reads for pure lines of inbred species
(where heterozygosity is absent), 6 for outbred diploids, and 11
for homozygous loci of an outbred autotetraploid species such as
alfalfa, for type I error rate <5%. One way to increase the read
depth across all genotypes being sequenced is to minimize the
number of fragments that are able to be sequenced. Poland et al.
(2012a) developed a modified GBS protocol with double enzyme
digestion by PstI and MspI RE to reduce the number of target
sites while increasing their read depth, using a common adapter
that allows amplification only of fragments cut by a different RE
at each end. Selected amplification may also be pursued by using
primers that selectively ligate or amplify a subset of the restriction
fragments while using (for example) the ApeKI RE (Sonah et al.,
2013). GBS protocols that restrict the number of target sites
produce markers with greater read depth (for a fixed total
number of reads per flow cell) but do not imply necessarily more
exploitable SNP markers than the original method by Elshire
et al. (2011), because of the lower number of sequenced DNA
fragments and, for infrequent cutting RE or RE combinations,
because of greater number of large DNA fragments that are
amplified less frequently thereby failing to reach the threshold
read depth. Finally, the Taq polymerase adopted for DNA
fragment amplification may change the numbers of successfully
sequenced SNP markers, e.g., by using a less selective polymerase

such as KAPA in place of the NEB polymerase adopted in the
original method (Elshire et al., 2011).

Greater cultivation of grain and forage legumes is recognized
as a key issue for making cropping systems more sustainable
in terms of greenhouse gas emissions, energy consumption, soil
fertility, and crop diversification (Schneider and Huyghe, 2015),
as well as for reducing the marked and increasing insufficiency of
feed proteins in large regions such as Europe and China (Pilorgé
and Muel, 2016). The main reason for insufficient cultivation
of legumes is their modest yielding ability compared with
cereals (Reckling et al., 2016), which highlights the importance
of exploring the potential of GBS-based genomic selection for
higher yield in these crops (Pandey et al., 2016). One study on
soybean confirmed the value of genome-enabled predictions by
displaying accuracy close to 0.60 (Jarquín et al., 2014). While
prediction of pure line performance is the obvious aim of
genomic selection in inbred species, predicting the breeding
value of candidate parent genotypes for synthetic varieties is
the objective of greatest practical interest in outbred species
such as alfalfa or other important forage legumes, e.g., white
clover or red clover (Annicchiarico et al., 2015a). In a recent
study, genomic selection for alfalfa breeding value for forage
yield in two contrasting populations achieved an accuracy around
0.35, which could largely offset the gain per unit time from
field selection based on progeny test (Annicchiarico et al.,
2015b). In another study, accuracies of up to 0.40 were found
using a model developed from an initial Cycle 0 population to
predict biomass yield of the Cycle 1 population (Li et al., 2015).
GBS data may prove valuable also in plant breeding contexts
other than genomic selection, namely, in studies of genome-
wide association, variety distinctness, diversity, and phylogenetic
relationships. Diploid alfalfa such as Medicago sativa L. subsp.
caerulea, while being less useful agronomically than tetraploid
alfalfa (subsp. sativa), can be studied to produce genomic
information of interest also for tetraploid material (Sakiroglu and
Brummer, 2016).

With a focus on alfalfa and the cool-season grain
legumes pea (Pisum sativum L.) and white lupin (Lupinus
albus L.), this study aimed (i) to assess the effect of
RE, Taq polymerase and primers on the amount of GBS
information generated, and (ii) to report on some successful
applications and challenges of genomic selection based on GBS
data.

MATERIALS AND METHODS

Experiment 1: Comparison of Restriction
Enzyme × Taq Polymerase Combinations
in M. sativa and M. truncatula
This study included 2 genotypes of tetraploid M. sativa (Altet4
and NECS141) described in Khu et al. (2013), 2 of diploid
M. sativa (MS-13 and MS-186) described in Han et al. (2012),
2 of diploid M. sativa (CC78-68 and CF15-13) described in Li
et al. (2011), and 2 reference genotypes of M. truncatula [A17,
genome-sequenced (Young et al., 2011); and R108].
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We compared the utility of two RE protocols [ApeKI (Elshire
et al., 2011) or PstI:MspI (Poland et al., 2012a)] in combination
with Taq polymerases obtained from either New England Biolabs
(NEB) or Kapa Biosystems (KAPA). After DNA extraction, we
prepared libraries for each of the 4 RE × Taq combinations
(ApeKI and NEB, ApeKI and KAPA, PstI:MspI and NEB,
PstI:MspI and KAPA). Libraries using ApeKI were generated
using Elshire et al.’s (2011) protocol with minor modifications.
Briefly, 100 ng of each DNA sample (quantified with a Quant-
iT PicoGreen dsDNA assay kit, Life Technologies, P7589) was
digested with ApeKI (NEB, R0643L) and then ligated to a unique
barcoded adapter and a common adapter (7.0 ng of the adapter
stock were used per the titration test on one alfalfa DNA sample).
Equal amounts of the ligated product of each of the eight samples
were pooled and cleaned up with QIAquick PCR purification
kit (QIAGEN, 28104) for PCR amplification. To generate the
ApeKI and NEB library, 50 ng template DNA was mixed with
NEB 2X Taq Master Mix and 2 primers (with 5 nmoles each)
in a 50 µl total volume and amplified on a thermocycler with
18 cycles of 10 s of denaturation at 98◦C, 30 s of annealing at
65◦C, 30 s extension at 72◦C. To generate the ApeKI and KAPA
library, the only differences were the adoption of the Kapa Library
Amplification Readymix (Kapa Biosystems KK2611) instead of
NEB and the use of 12 instead of 18 cycles in the amplification
program. PstI-MspI and NEB and PstI-MspI and KAPA were
generated according to the protocol by Poland et al. (2012a)
with modifications. In each library, we intentionally doubled the
amount of M. truncatula genotypes, to obtain more reads on
those samples.

After de-multiplexing, we identified 64-bp long DNA
fragment tags for each genotype using the Stacks pipeline
(Catchen et al., 2013), and randomly extracted the same number
of reads from each genotype in each library to make fair
comparisons among protocols. The same number of reads were
randomly extracted using the “fastq-sample” function in the
“fastq-tools”1. Because the lowest number of useful reads for any
genotype × RE × Taq combination was 1.3 M, we extracted
1.25 M reads from each combination to represent approximately
the case of 192-plex multiplexing (since the Illumina HiSeq2000
can deliver over 240 M useful reads per lane). We further
analyzed data with 2.5 M reads extracted for each genotype, to
test approximately the case of 96-plex but excluded the results
for tetraploid M. sativa, which failed to reach this threshold
in all RE × Taq combinations. For each genotype and GBS
protocol, we counted the number of tags available for minimum
read thresholds of 2, 6, and 11, reporting mean values for the
3 genotype groups (M. truncatula; diploid M. sativa; tetraploid
M. sativa).

Experiment 2: Comparisons of KAPA vs.
NEB Taq Polymerases for Sequencing
Bias
We compared KAPA and NEB for selective amplification
across DNA fragments that differed for size or for content of

1http://homes.cs.washington.edu/~dcjones/fastq-tools/

nitrogenous bases, comparing the tag distribution expected from
ApeKI in silico digestion of the M. truncatula reference genome
with those observed from ApeKI digestion with each polymerase
(using the highest number of available reads, i.e., 6.6 M). For each
tag generated by the two polymerases, we obtained the targeted
restriction fragment by BLAST search on the Mt4.0v1 reference
genome from genotype A17 downloaded from http://www.
jcvi.org/cgi-bin/medicago/download.cgi. For DNA fragment size
analysis, we computed for KAPA and NEB-based libraries the
percentage of tags belonging to each of 15 defined size classes,
and compared them with the values expected from in silico
digestion. For bias relative to content of nitrogenous bases, we
computed the percentages of fragments classified to each of seven
classes defined based on the GC content of the DNA fragments
and compared them with the expected values from in silico
digestion.

Experiment 3: Comparison of Taq
Polymerase × Selective Primer
Combinations in Pea, White Lupin, and
Alfalfa
This study included the four diploid and two tetraploid genotypes
of M. sativa described in Experiment 1, six pea genotypes,
and four white lupin genotypes. The pea genotypes included
three cultivars (Attika, Isard, and Kaspa) that were parents
of three connected inbred line populations (Annicchiarico
et al., 2017). For each cultivar, we extracted two random
genotypes obtained from different commercial seed lots.
Although presumably identical, genotyping data revealed genetic
differences between the two genotypes of each cultivar in
all cases. The lupin germplasm included one genotype from
the French cultivar Lucky, and three landrace genotypes that
were selected on the basis of their genetic diversity in a
prior study performed on a wider genotype set. The source
populations of these genotypes were the landraces La568 from
Algeria, La646 from the Canary Islands, and LAP123 from Italy,
described in the world collection study by Annicchiarico et al.
(2010).

The ApeKI RE was used for all protocols as described
earlier. We compared the 12 protocols represented by KAPA or
NEB polymerases in combination with the non-selective primer
proposed in the original method (Elshire et al., 2011) or one of
5 3′ primers we designed that had 5 to 8 specific bases in order
to selectively amplify fragments. All primers were synthesized by
Eurofins MWG Operon.

We used the UNEAK pipeline (Lu et al., 2013) for SNP
discovery and genotype calling. For fair comparisons, we
randomly identified 1.5 M reads from each genotype × protocol
combination in each library as described earlier. A higher number
would have resulted in one or more genotypes being dropped
from the analysis. For each protocol and genotype combination,
we assessed the number of polymorphic SNPs (as 64-bp long
sequences with one polymorphism) that were shared by all test
genotypes, setting a minimum read depth of 3 for pea and white
lupin (inbred species), 6 for diploid alfalfa, and 11 for tetraploid
alfalfa. For tetraploid alfalfa, which featured more total reads per
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genotype, we repeated the assessment for a scenario of 2.5 M total
reads per genotype.

Number of Polymorphic Markers and
Predictive Ability of Genomic Selection
Models in Different Data Sets
This part of the study summarized the number of polymorphic
markers and the predictive ability of genomic selection based
on cross-validations for yield or quality traits in data sets of
tetraploid alfalfa, pea or white lupin. The main sources of data
were provided by alfalfa studies in Annicchiarico et al. (2015b)
and Biazzi et al. (2017) and the pea study in Annicchiarico
et al. (2017), where genotyping protocols, phenotypic procedures
for production traits, SNP calling procedures and details of
other bioinformatic analyses are reported. Most analyses were
performed using various packages of the R software. Some
findings from these studies were recalled here to summarize
the impact on genomic selection predictive ability of different
thresholds for genotype missing data, marker imputation
method, and genomic selection model. An initial filtering step
excluded markers with a minor allele frequency below 2.5%.

The study by Annicchiarico et al. (2015b) described the
genotyping of 154 parent genotypes from a broadly based
reference population including Mediterranean germplasm (Me
population) and 124 parent genotypes from a broadly based
reference population comprising germplasm from the Po Valley,
northern Italy (PV population). These germplasm sets were
phenotyped separately for forage yield on the basis of densely
grown half-sib progenies issued by polycrossing in isolation each
set of parents (as convenient for genome-enabled prediction of
breeding values: Annicchiarico et al., 2015a). The GBS protocol
included ApeKI as RE in both populations, while using NEB
and KAPA polymerases for PV and Me, respectively. SNP
genotype calling distinguished only three classes, namely, the
two homozygous ones (AAAA or aaaa), and the heterozygous
one (pooling the variants Aaaa, AAaa, and AAAa). A filtering
step removed heterozygous loci with less than 4 aligned reads,
and homozygous loci with less than 11 reads (thereby reducing
the probability to falsely call AAAa or Aaaa heterozygotes as a
homozygote to 4.22%).

Biazzi et al.’s (2017) study focused on the same set of half-
sib progenies of the Me population, and assessed various quality
traits of stems and leaves across three growing conditions
(summer harvest, full irrigation; summer harvest, suspended
irrigation; autumn harvest). We currently added original
genomic selection information on two quality traits, namely,
protein content and digestibility of NDF, that were assessed on
pooled leaf and stem foliage of the material. For each trait,
we compared five genomic selection models, namely, Ridge
Regression BLUP, Bayes A, Bayes B, Bayes C, and Bayesian Lasso
(Gianola, 2013), for predictive ability based on cross-validations
as described in Biazzi et al. (2017) for quality traits of stems and
leaves, using a threshold of 30% for missing genotype SNP data
and missing data imputation by the K-Nearest Neighbor method.

In the pea study (Annicchiarico et al., 2017), 315 F6
recombinant inbred lines (RILs) belonging to three populations

derived by connected crosses between Attika, Isard, and Kaspa
were assessed for grain yield under severe terminal drought
stress under a field rainout shelter. The GBS protocol included
ApeKI as RE and KAPA as Taq polymerase. We currently
anticipated unpublished genomic selection results for prediction
of grain yield in a 3-replicate field experiment carried out in Lodi
(northern Italy) under organic farming conditions and autumn
sowing in the season 2013–2014. We held a minimum read
depth of 4 for SNP genotype calling, because the F6 generation
contained some heterozygous loci. We assessed results for a
minimum read depth of 6 as well, obtaining less SNP markers
but very similar predictive ability (data not reported), as observed
already for grain yield under severe drought (Annicchiarico et al.,
2017). Genomic predictions were based on the Ridge Regression
BLUP model, 30% threshold for missing genotype SNP data, and
missing data imputation by the K-Nearest Neighbor method. The
model was trained on all populations joined in a single data set
and took account of population structure, as performed already
in Annicchiarico et al. (2017).

In this paper, predictive ability, i.e., the correlation between
genome-based predicted values and observed values, was used
as an estimate of prediction accuracy, i.e., the correlation
between genome-based predicted values and true breeding
values. In several studies on inbred crops, prediction accuracy
was estimated by dividing prediction ability by the square root
of the broad-sense heritability on a line mean basis, thereby
obtaining a higher value that accounts for possible experiment
errors in the estimation of breeding values. This correction,
however, may introduce a bias when cross-validations are applied
to data of the same experiment (Lorenz et al., 2011), as in the
current case. We preferred to adopt cautiously lower estimates of
prediction accuracy, to minimize the risk of overoptimistic results
for genomic selection.

We reported the number of polymorphic markers also for
two data sets of white lupin. The former included 288 genotypes
sorted out from the world landrace collection in Annicchiarico
et al. (2010). The genotypes belonged to seven major historical
cropping regions (Madeira-Canaries, Portugal, Spain, Maghreb,
Egypt, East Africa, Near East), from each of which we sampled
8 to 10 landrace populations, and 3 or 4 genotypes per landrace
population. The latter lupin set included 191 RILs issued by
the cross between the cultivar Kiev Mutant and the Ethiopian
landrace P27174 [which were used for constructing the first
linkage map of this species: Phan et al. (2007)]. RIL DNA samples
were obtained from the Institute for Plant Genetics in Poznan
in the framework of a joint research work with CREA. GBS
protocols for lupin data sets were identical to those for pea that
were described in Annicchiarico et al. (2017).

We reported, as a reference, also numbers of polymorphic
markers and/or genomic selection predictive ability from other
published studies on forage or cool-season grain legumes. The
information from the study by Li et al. (2015) was relative to a
genomic selection model for forage yield constructed on clonally
phenotyped plants when applied to selected intercrossed material
evaluated in a further selection stage in the same location. We
averaged the results across two target locations (one in NY
State and one in Québec) as this scenario, implying predictions
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essentially for additive genetic effects, can be compared to
prediction of breeding values in the other reported data sets.

Finally, we briefly compared GBS-based genomic selection
vs. phenotypic selection in terms of predicted yield gains per
unit time in relation to hypothetical selection scenarios and
rough estimates of selection costs. Cost estimates (which were
inclusive of DNA extraction for GBS) were based on our
own experience, recent quotes from genomic platforms, and
feedback on phenotyping costs provided by various colleagues
and breeding programs, realizing, of course, that GBS costs may
decrease in the near future.

RESULTS

Comparison of Restriction Enzyme × Taq
Polymerase Combinations in M. sativa
and M. truncatula
For the scenario of 1.25 M total reads per genotype, the
combination of ApeKI and KAPA provided a higher number of
tags than the other GBS protocols in all sets of genotypes, for
minimum read depths of 2 reads per tag (useful for pure lines of
inbreds such as M. truncatula) or 6 (useful for the outbred diploid
M. sativa subsp. sativa) (Figure 1A). However, the four protocols
exhibited few differences and a slight advantage for ApeKI and

NEB, when requiring at least 11 reads per tag (as necessary to
identify homozygotes for tetraploid alfalfa) (Figure 1A). The
responses of diploid and tetraploid alfalfa were nearly identical
(Figure 1A), as expected since their 1C genomes are the same
size and we held read depth constant across genotypes.

The shift from 1.25 to 2.5 M total reads per genotype
improved the relative performance of ApeKI-based GBS at higher
read depths, particularly when combined with KAPA, whereas
PstI:MspI produced fewer tags than ApeKI across all relevant read
depths (Figure 1B). Under this scenario, ApeKI and KAPA were
top-ranking for number of tags even at minimum read depth of
11 (Figure 1B). Results of diploid alfalfa for this read depth are
likely to apply also to tetraploid alfalfa under 2.5 M total reads
per genotype, when considering the high consistency of results
between diploid and tetraploid alfalfa verified under the 1.25 M
total read scenario.

Comparisons of KAPA vs. NEB Taq
Polymerases for Sequencing Bias
KAPA provided more uniform amplification than NEB over
fragment sizes of M. truncatula, on the basis of smaller
differences between observed and expected tag frequencies for
this polymerase. In particular, NEB distinctly overamplified
fragments in the range of 100–500 bp (Figure 2), i.e., those that
make the greatest contribution to GBS tags (Sonah et al., 2013).

FIGURE 1 | Mean number of tags of two restriction enzyme (RE) × 2 Taq polymerase combinations for three read depths, in three sets of genotypes
of Medicago truncatula or M. sativa. (A) 1.25 M total reads per genotype; (B) 2.5 M total reads per genotype.
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FIGURE 2 | Tag distribution across different sizes of DNA fragments in M. truncatula as expected from ApeKI in silico digestion and observed from 2
Taq polymerases.

FIGURE 3 | Tag distribution across different GC contents of DNA
fragments in M. truncatula as expected from ApeKI in silico digestion
and observed from 2 Taq polymerases.

The inspection of observed vs. expected frequencies for
tag classes that differ for relative content of GC nucleotides
revealed more homogeneous amplification by KAPA also
across different GC contents. In particular, NEB tended to
overamplify the fragments whose GC content exceeded 35%,
while underamplifying those with GC content below this level
(Figure 3).

Comparison of Taq Polymerase by
Selective Primer Combinations in Pea,
White Lupin, and Alfalfa
The protocol combining KAPA polymerase with the non-
selective primer (original method) outperformed any other
protocol in terms of number of polymorphic SNP loci for white
lupin, pea, and diploid alfalfa (Figure 4). The advantage of
this protocol was very large in white lupin and large in pea,

in coincidence with the low minimum read depth required for
SNP calling in these inbred species. The advantage was more
limited but still sizeable for diploid alfalfa, where it agreed with
earlier results for the KAPA vs. NEB comparison in the presence
of the non-selective primer that are reported in Figure 1B
for the same minimum read depth of 6 and the scenario of
2.5 M total reads per genotype. However, KAPA combined
with a selective primer (with minor differences among such
primers), or NEB without a selective primer, provided more
polymorphic loci than KAPA without a selective primer for the
outbred tetraploid M. sativa (which requires higher minimum
read depth) (Figure 4). In all species, the adoption of a selective
primer was more beneficial in combination with KAPA than NEB
(Figure 4).

The analysis for the scenario of 2.5 M total reads per genotype,
which was performed only for tetraploid alfalfa, indicated a slight
advantage of the protocol including KAPA with the non-selective
primer (Figure 5), in contrast with results for the scenario of
1.5 M total reads per genotype (Figure 4). Using NEB with the
non-selective primer was nearly as good, however (Figure 5).

Number of Polymorphic Markers and
Predictive Ability of Genomic Selection
Models in Different Data Sets
Genotyping-by-sequencing has been used to genotype several
forage or cool-season grain legumes (Table 1). Most reported
data sets have been sequenced with approximately 96 samples per
lane (in some cases, other samples than those listed in the table
were included in a lane in order to generate a 96-plex). All grain
legume data sets including a RIL population displayed over 2,300
polymorphic SNP markers, with the exception of one chick pea
data set whose lower number of markers may partly be due to
more stringent filtering criteria that were adopted for SNP calling
or possibly a narrower genetic diversity between the parents of
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FIGURE 4 | Number of polymorphic SNP markers shared by 6 pea genotypes, 4 white lupin genotypes, 4 genotypes of diploid M. sativa and 2 of
tetraploid M. sativa, for 2 Taq polymerase by 6 primer combinations. Minimum read depths of 3 for pea and white lupin, 6 for diploid M. sativa, and 11 for
tetraploid M. sativa; 1.5 M total reads per genotype.

FIGURE 5 | Number of polymorphic SNP markers shared by 2
genotypes of tetraploid M. sativa, for 2 Taq polymerase by 6 primer
combinations. Minimum read depth of 11; 2.5 M total reads per genotype.

the RILs. In white lupin, a world collection of landraces displayed
over 2.6-fold more markers than a RIL population, as expected
from the greater genetic diversity of this type of germplasm set.
Finally, the number of polymorphic SNP markers exceeded 6,500
in all data sets of tetraploid alfalfa.

No comparison between GBS and SNP array procedures
for number of polymorphic SNP markers is available for these
or other legume data sets. However, the three pairs of parent
genotypes that originated the RIL populations of pea displayed,

on average, 3,925 polymorphic SNP markers according to the
SNP array facility described by Tayeh et al. (2015a) (Grégoire
Aubert and Judith Burstin, pers. comm.). In comparison, the
GBS-generated polymorphic SNP markers in the three RIL
populations originated by these parents amounted, on average, to
2,547 for the genotype missing data threshold of 30% (Table 1),
and 4,409 for the missing data threshold of 50%.

In earlier work of ours on alfalfa and pea (Annicchiarico
et al., 2015b, 2017; Biazzi et al., 2017), the predictive ability of
genomic selection was affected by the threshold for genotype
SNP missing data, the method for imputing missing data, and
the genomic selection model. Increasingly relaxed missing data
threshold, while increasing the number of polymorphic markers,
displayed a peak of predictive ability in the range of 20–40%
missing data. This is reported in Figure 6 for forage yield of
alfalfa in two data sets, and in Annicchiarico et al. (2017) for
grain yield of pea RILs (for minimum read depth of 4 or 6).
For missing data imputation, we found an advantage of Random
Forest imputation over other methods based on Singular
Value Decomposition, Localized Haplotype Clustering, or Mean
imputation (Annicchiarico et al., 2015b). However, K-Nearest
Neighbors imputation proved about as reliable as Random
Forest, while being much faster computationally (Nazzicari et al.,
2016).

The analysis of various legume data sets indicated that the
predictive ability of genomic selection can be affected by the
genomic selection model, but no model proved unanimously
optimal across different traits or data sets (although in most
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TABLE 1 | Mean number of total reads per genotype, and number of polymorphic single nucleotide polymorphism (SNP) markers, in different data sets.

Germplasm set No. of genotypes No. of reads/genotype (M) No. of SNPs Source

Tetraploid alfalfa, Medit. materiala 154 2.89 10,339 Annicchiarico et al., 2015b

Tetraploid alfalfa, Po Valley materiala 124 2.75 6,690 Annicchiarico et al., 2015b

Tetraploid alfalfa, US materialb 190 2.36 9,906 Li et al., 2015

Pea, Attika × Isard linesc 105 2.40 2,386 Annicchiarico et al., 2017

Pea, Kaspa × Attika linesc 105 1.85 2,506 Annicchiarico et al., 2017

Pea, Kaspa × Isard linesc 105 2.30 2,750 Annicchiarico et al., 2017

White lupin, Kiev × P27255 linesc 191 1.90 2,593 Unpublished data

White lupin, world landrace poolc 288 1.66 6,802 Unpublished data

Chickpea, SBD377 × BGD112 linesd 95 1.80 3,977 Verma et al., 2015

Chickpea, ICC4958 × ICC1882 linese 210 3.37 828 Jaganathan et al., 2015

aMinimum no. of reads: 4/11 for heterozygous/homozygous loci; genotype missing data threshold: 30%.
bMinimum no. of reads: 2/11 for heterozygous/homozygous loci; genotype missing data threshold: 35%.
cMinimum no. of reads: 4; genotype missing data threshold: 30%.
dMinimum Qscore of 10 for read retention; unspecified genotype missing data threshold.
eMinimum Qscore of 20 for read retention; genotype missing data threshold: 50%.

FIGURE 6 | Predictive ability of genomic selection for forage yield and number of polymorphic SNP markers as a function of different genotype
missing data thresholds, in two data sets of tetraploid alfalfa. Source of data: Annicchiarico et al. (2015b).

cases, the differences among models were not large). For example,
Support Vector Regression with linear kernel outperformed
Bayes A, Bayes B, and Bayesian Lasso models for predicting alfalfa
forage yield in two data sets (Annicchiarico et al., 2015b), while
tending to be outperformed by Bayesian methods (especially
Bayesian Lasso) for prediction of pea grain yield (Annicchiarico
et al., 2017) and various leaf and stem quality traits of alfalfa
(Biazzi et al., 2017). Ridge Regression BLUP (or a model
analogous to it, e.g., GBLUP) tended to be among the most
accurate models in all of these studies, as well as in two pea
studies based on Infinium array SNP markers (Burstin et al., 2015;
Tayeh et al., 2015b). In the current comparison of five genomic
selection models for two alfalfa quality traits, Ridge regression
BLUP and Bayes C revealed a slight advantage for crude protein
content and NDF digestibility, respectively, in the absence of
marked differences in predicting ability among all tested models
(Supplementary Figure 1).

Predictive ability values of the best-performing genomic
selection models for yield or key quality traits of alfalfa or pea
using GBS-generated SNP data ranged up to 0.72 (Table 2).

Values for alfalfa breeding values ranged between 0.31 and 0.36.
Results for pea grain yield were averages of 3 RIL populations
reported in Table 1. They were higher than those for alfalfa
breeding values for biomass yield, ranging from 0.72 under
growing conditions experiencing severe terminal drought to 0.48
for northern Italy under autumn sowing (Table 2). Chick pea
results were not available, since data sets in Table 1 were used
for GWAS.

Comparison of Genomic vs. Phenotypic
Selection Scenarios
With the exception of Li et al. (2015), the predictive ability
values reported in Table 2 relate to predictions for the same test
environment using cross-validations. Predictions for other test
environments (as in the ordinary use of genomic selection) are
bound to be less accurate, owing to genotype-by-environment
(GE) interactions between the environment(s) used for model
definition and those used for application of the model. This is
especially true for crop yield, which is usually exposed to wider
GE interaction than quality traits. However, the key issue in
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TABLE 2 | Predictive ability of genomic selection for genotype breeding value in different data sets.

Germplasm set Trait Predictive ability Source

Tetraploid alfalfa, Medit. materiala Biomass yield 0.36 Annicchiarico et al., 2015b

Tetraploid alfalfa, Po Valley materiala Biomass yield 0.32 Annicchiarico et al., 2015b

Tetraploid alfalfa, US materialb Biomass yield 0.31 Li et al., 2015

Alfalfa, Medit. germplasma NDF digestibility 0.32 Unpublished data

Alfalfa, Medit. germplasma Crude protein content 0.32 Unpublished data

Pea, average of three connected crossesc Grain yield, severe drought 0.72 Annicchiarico et al., 2017

Pea, average of three connected crossesc Grain yield, north Italy 0.48 Unpublished data

aMinimum no. of reads: 4/11 for heterozygous/homozygous loci; genotype missing data threshold: 30%.
bMinimum no. of reads: 2/11 for heterozygous/homozygous loci; genotype missing data threshold: 35%.
cMinimum no. of reads: 4; genotype missing data threshold: 30%.

relation to GE interaction for both genomic and phenotypic
selection is the ability to predict the genotype breeding values
for the target environments of the breeding program. In Li
et al. (2015), genomic selection models from NY and Québec
were good at predicting each other’s phenotyping data, as
may be expected from the geographic proximity of their test
sites.

Cross-environment predictions can be incorporated into
formulas for predicting yield gains from one cycle of phenotypic
or genomic selection within a given genetic base. For outbred
species such as alfalfa, the predicted gain per year from
phenotypic selection (1GP) is:

1GP = (iP h sA rgP)/tP

where iP is the standardized selection differential, h is the square
root of narrow-sense heritability in the selection conditions, sA
is the standard deviation of breeding values, rgP is the genetic
correlation for genotype yield responses between selection and
target conditions, and tP is the number of years for one
phenotypic selection cycle. The predicted gain from genomic
selection (1GG) is:

1GG = (iG rA sA rgG)/tG

where iG is the standardized selection differential for genomic
selection, rA is the genomic selection accuracy, rgG is the genetic
correlation for genotype yield responses between phenotyping
conditions for genomic selection modeling and target conditions,
and tG is the duration of one genomic selection cycle. Assuming
the same testing conditions (rgP = rgG) and selection intensities
(iP = iG), a comparison of phenotypic vs. genomic selection
in terms of predicted yield gain per year equates to comparing
(h/tP) vs. (rA/tG). For the alfalfa reference population from the
Po Valley, the estimated values of rA = 0.32 (Table 1) and
h = 0.46 [from h2

= 0.21 in Annicchiarico (2015)] suggest that
genomic selection would result in higher gain than phenotypic
selection if it could halve the duration of one selection cycle.
Actually, considering that tG = 1, and tP = 5 (Table 3) when
including the time for recombination of selected material and
for phenotypic selection along with 1 year for prior production
of half-sib families, this criterion was easily met. Even rA = 0.15
would suffice to grant some advantage to genomic selection over

TABLE 3 | Duration of one selection cycle and indicative cost per
evaluated genotype, for hypothetical scenarios of phenotypic and
genomic selection for higher yield.

Selection Selection
cycle (years)

Cost per
genotype (€)a

Cool-season grain legume

Phenotypic (1 site, 2 years, 3 reps) 2 180–230

Genomic 0.5 32–36

Ratio phenotypic/genomic 4 5.0–7.2

Perennial forage legume

Progeny test (1 site, 3 years, 3 reps) 5 230–280

Genomic 1 32–36

Ratio phenotypic/genomic 5 6.4–8.7

aExcluding bioinformatics/data analysis work.
Grain legumes: selection of inbred lines; forage legumes: selection of parents for a
synthetic variety.

half-sib progeny-based phenotypic selection according to this
criterion.

For inbred species, the reported formulas for estimating
expected genetic gains hold true, when h is substituted for by the
square root of broad-sense heritability on an entry mean basis (H)
under the specific conditions adopted for phenotypic selection:

H2
= sg2/(sg2

+ sge2/e + se2/er)

where sg2, sge2 and se2 are components of variance relative to
genotype, GE interaction and pooled experiment error, and e and
r are the numbers of test environments and experiment
replications, respectively. Extensive multi-environment
phenotypic selection (high e values) could rise H near unity, but
this is usually prevented by its high cost.

The comparison of selection methods for predicted yield
gain could incorporate the evaluation cost per genotype.
For example, even the limited multi-environment phenotypic
selection scenarios hypothesized in Table 3 result, on average,
in about 6-fold greater cost for grain legumes and 7.5-fold
greater cost for forage legumes of phenotypic selection relative
to genomic selection. Thus, for same total evaluation cost of
the two methods, more genotypes could be evaluated by GBS,
increasing the selection intensity (iG). For alfalfa, a comparison
of phenotypic vs. genomic selection in terms of predicted
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yield gains per year for the same overall costs equates to
comparing (h iP/tP) vs. (rA iG/tG). For example, the phenotypic
selection based on progeny-testing of 300 alfalfa genotypes
aimed to select 15 parents for a synthetic variety (selected
fraction = 5%) implies iP = 2.06 (Falconer, 1989), whereas
the genomic selection based on evaluating 2250 genotypes
(7.5-fold more than phenotypic selection) that aimed to select
15 parents (selected fraction = 0.66%) implies iG = 2.80. For
the alfalfa reference population from the Po Valley and the
selection scenarios hypothesized in Table 3, genomic selection
leads to over 4.7-fold greater predicted yield gain per year
than phenotypic selection (from 0.46 × 2.06/5 = 0.189 for
phenotypic selection vs. 0.32 × 2.80/1 = 0.896 for genomic
selection). From this perspective, rA = 0.15 (which implies over
twofold greater predicted gains for genome-enabled selection)
would justify the inclusion of genomic selection in breeding
schemes, for the cost and selection cycle scenarios reported in
Table 3.

For pea in Italian environments, assuming for example
the selection of 15 genotypes phenotypically out of 300 or
genomically out of sixfold more test genotypes (hence, iP = 2.06,
and iG = 2.39) under the scenario in Table 3 (tP = 2; tG = 0.5),
and considering rA = 0.48 (i.e., the lower value for pea in Table 2)
and a cautiously high estimate of H = 0.84 that arises from a
multi-environment study in Italy by Annicchiarico and Iannucci
(2008) with e= 7 (rather than e= 4 as in Table 3), would result in
2.6-fold greater predicted yield gain per year of genomic selection
relative to phenotypic selection. The comparison of phenotypic
vs. genomic selection equates here to comparing (H iP/tP) vs.
(rA iG/tG) (i.e., 0.84 × 2.06/2 = 0.865 for phenotypic selection
vs. 0.48 × 2.39/0.5 = 2.294 for genomic selection). An rA = 0.36
would provide a twofold advantage for genomic selection under
these circumstances.

DISCUSSION

Our results relative to comparisons of major components of
GBS protocols (REs, Taq polymerases, primers) cannot be
considered conclusive, but they indicated that each of these
components may have a large effect on the number of SNP
markers generated by GBS. Also, they highlighted the importance
of investigating combinations of these components (such as
different Taq polymerases in combination with different primers
or REs), because results for each individual component may vary
depending on other components of the GBS protocol.

Reducing the number of target sites through DNA digestion
by PstI:MspI instead of ApeKI was not advantageous for diploid
alfalfa or M. truncatula at convenient read depths for these
species. Results for diploid alfalfa provided indirect evidence for
the greater interest of ApeKI over PstI:MspI even for tetraploid
alfalfa at 2.5 M total reads per genotype, which is the ordinary
scenario for data sets of this crop (Table 1). A contributing reason
for the advantage obtained from greater genome complexity
reduction by using PstI:MspI instead of ApeKI in Poland et al.
(2012a) could be the larger genome of their target species relative
to alfalfa (about 19- and 6-fold larger estimated genome for wheat

and barley, respectively). In addition, the current adoption of
KAPA polymerase could amplify the advantage of ApeKI over
PstI:MspI in comparison with NEB polymerase, which was used
in Poland et al.’s (2012a) study. ApeKI proved preferable to two
less frequent-cutting enzymes also for cassava, whose genome size
is comparable to alfalfa (Hamblin and Rabbi, 2015).

Selective primers displayed an advantage only in the presence
of high minimum read depth and low sequencing effort. In
alfalfa (requiring 11 as minimum read depth), selective primers
proved advantageous at 1.5 M total reads per genotype but
not at 2.5 M total reads. Indeed, one may expect greater
advantage from greater mean read depth per SNP obtained via
reduction of target sites when adopting low sequencing levels.
The advantage of the non-selective primer emerged already at
1.5 M total reads per genotype in diploid alfalfa (minimum
read depth of 6), and was particularly large for pea and
white lupin (minimum read depth of 2). Our results contrast
with those by Sonah et al. (2013) for soybean holding 2 as
minimum read depth, where selective primers increased the
number of polymorphic SNP markers under scenarios of 1–2 M
total reads per genotype. This inconsistency encourages further
investigations, also in consideration of the small set of genotypes
that provided the basis for the polymorphic SNP assessment in
these studies [6 to 2 genotypes here; 2 genotypes in Sonah et al.
(2013)].

Results for number of tags or polymorphic markers indicated
that KAPA can be preferred to NEB Taq polymerase for diploid
alfalfa, pea, and white lupin. It is preferable also for tetraploid
alfalfa in the ordinary scenario of 2.5 M total reads per genotype.
Additionally, our results for M. truncatula indicated more
uniform amplification over fragment sizes and GC contents of
this polymerase relative to NEB. This finding has clear potential
for improving GBS-based activities on legumes, since most GBS
protocols use NEB. Further comparisons are warranted, however,
for other forage or grain legume species.

We assumed a minimum read depth of 2 for pea and white
lupin in our assessment of GBS protocols. However, a higher
value, such as 4, could conveniently be set for lines that may
include some degree of heterozygosity, as we did for the pea RILs
that underwent our genomic selection assessment. Anyway, best
Taq polymerase × selective primer combinations did not change
for these species when considering a minimum read depth of 4
instead of 2 (data not reported).

On the whole, our results support the adoption of a single
successful GBS protocol for tetraploid and diploid alfalfa, pea,
and white lupin, using ApeKI and the non-selective primer as
in the original method (Elshire et al., 2011) along with KAPA
polymerase. The good overall performance of this protocol might
serve as a reference for GBS work in other forage or cool-
season legumes that lacks an experimental assessment of protocol
components. The value of this protocol ought to be reassessed for
tetraploid alfalfa if accurate allele dosage information was desired,
which would require about 48x read depth to differentiate
the heterozygote classes (Uitdewilligen et al., 2013). We did
not consider this scenario, because the large sequencing effort
required to obtain thousands of markers with sufficient read
depth is currently prevented by its high cost.
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We are mainly interested in using GBS for genomic selection
to improve crop yield, a complex, highly polygenic trait. No
statistical model consistently maximized the predictive ability
across different data sets, confirming the scope for exploring
different models in genomic selection studies. Ridge Regression
BLUP (or its analog GBLUP) ought to be included among the
tested models in all cases, on the basis of its currently good
performance in different situations and its theoretical suitability
for a trait controlled by many loci with small effects (as crop
yield is expected to be) (Lorenz et al., 2011). Bayesian Lasso
proved to be another well-performing model in most of our
analyses. Indeed, these models proved well-performing across
a range of plant and animal data sets (de los Campos et al.,
2013).

There are two other suggestions for data analysis that
descend from our experience. One is imputing missing data by
Random Forest [in agreement with results for other species:
e.g., Poland et al. (2012b)] or by K-Nearest Neighbors, until
a sequenced genome will allow for using other methods, e.g.,
Beagle (Nazzicari et al., 2016). The other is the need for assessing
the predictive ability across a range of missing data thresholds.
The peak of predictive ability that we found between 20 and
40% missing data, which agrees with other results for soybean
(Jarquín et al., 2014) and most results for alfalfa reported
by Li et al. (2015), is consistent with the expected trade-off
between increased information (more markers) and increased
noise (higher imputation errors) that arises from increasing
threshold for missing data.

Genotyping-by-sequencing can be used to produce high
numbers of polymorphic SNP markers for forage and cool-
season grain legumes. For three pea RIL populations, the
number of polymorphic markers generated by GBS was
comparable to that expected at much higher cost by a SNP
array genotyping. Particularly when used with best model
configurations, GBS-based genomic predictions were sufficiently
high for cost-effective exploitation by breeding programs.
The occurrence of more accurate predictions in pea than
alfalfa could be expected, owing to the much longer linkage
disequilibrium and the possibility to thoroughly exploit also
non-additive genetic variation that feature the RILs of an
inbred crop compared with a set of progeny-tested alfalfa
parents. Genomic selection accuracy for soybean grain yield
based on cross-validations, which achieved 0.64 (Jarquín
et al., 2014), is intermediate between the values of 0.72 and
0.48 that we found for pea grain yield. The difference in
prediction accuracy between the two data sets of pea could
be attributed to the different ecological complexity of the two
phenotyping environments. The environment prone to severe
terminal drought, which reproduced a climatically unfavorable
Mediterranean environment, was ecologically simpler, because
higher genotype yield was strictly associated genetically with
an early phenology (Annicchiarico et al., 2017). Higher yield
in the autumn-sown, subcontinental-climate environment of
northern Italy required genotype adaptation to both low winter
temperatures and terminal drought.

We proposed a simple general framework for comparing
genomic vs. phenotypic selection in terms of expected genetic

gain, which takes account of differences in selection cycle
duration and genotype evaluation cost between the selection
methods. These differences can be substantial, and their impact
on the relative efficiency of selection methods can be important.
We chose only one example scenario among many possible ones
for comparing genomic vs. phenotypic selection in each crop,
and we lacked estimates for important parameters such as rgP
and rgG. In the absence of these estimates, the ability of genomic
and phenotypic selection to predict genotype yields in cropping
environments other than the test one could be highly informative,
but also this information was not available. Though limited, our
preliminary comparison revealed a large predicted advantage of
genomic selection over phenotypic selection that is encouraging
for legume breeding and supports further and more conclusive
assessments of genome-enabled predicting ability across a wider
set of cropping environments.

Rajsic et al. (2016) proposed another method for comparing
genomic vs. phenotypic selection in inbred crops that accounts
for different selection costs, in which genomic prediction
accuracy is estimated as a function of trait heritability, effective
number of chromosome segments underlying the trait, and
training population size. When setting H2

= 0.85 for pea,
already a twofold cost of phenotypic selection relative to genomic
selection would imply some predicted advantage for genomic
selection across a wide range of effective number of chromosome
segments. With no account for different selection costs or
selection cycle duration, simulation results by Viana et al. (2016)
for outbred species suggest greater predicted yield gain per
selection cycle by genomic selection when h2 is below 0.30 (as
here for alfalfa), for a scenario of 200 genotyped individuals and
moderate sequencing effort.

Another issue of interest is the ability of a model set
up for a given genetic base to predict the same trait in a
different genetic base. Cross-population predictions for alfalfa
biomass of Mediterranean germplasm based on a model from
Po Valley germplasm or vice versa implied just a moderate
loss of predictive ability (25–30%) relative to intra-population
predictions (Annicchiarico et al., 2015b). Preliminary results for
pea revealed small to quite large loss of predictive ability passing
from intra-population to cross-population prediction of grain
yield, depending on the pair of RIL populations (Annicchiarico
et al., 2017).

We valued genomic selection mainly for its ability to increase
the rate of genetic yield gain through shorter selection cycles
and more evaluated genotypes for same overall cost. Another
contribution of genomic selection to crop improvement could
be its unprecedented potential for selecting simultaneously
for several traits. This can be particularly important for
perennial forage legume breeding, which is constrained by high
phenotyping costs and requires at least 10–15 selected genotypes
as parents of a synthetic variety (Annicchiarico et al., 2016).
For example, selecting 10 genotypes for 4 traits at the modest
selection rate of 20% for each trait requires a working population
of [10 × (1/0.20)4] = 6,250 individuals, a number that is hardly
workable for phenotypic selection in these crops (particularly
when involving a time- and resource-consuming trait, such
as forage yield across several harvests and production cycles)
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while being within reach for genomic selection (particularly in
the perspective of continuously decreasing genotyping costs).
The moderately high genome-enabled predictive ability that
emerged for two important alfalfa forage quality traits, namely,
digestibility of NDF and protein content, has practical interest
and supports this perspective use of genomic selection. While
higher protein content is beneficial to decrease the dependency
of crop-livestock systems from expensive extra-farm feed protein
sources, higher NDF digestibility is the main determinant of
cattle dry-matter intake and milk yield (Oba and Allen, 1999).

We expect a steep rise in genomic selection studies in
forage and cool-season grain legumes in the next few years,
especially because of the promising results that have emerged
from the first studies (such as those reported here). GBS data
will probably be pivotal in this context, owing to their low
cost and possible usefulness also for identifying candidate genes
in GWAS as soon as a sequenced genome becomes available
for these crops. Challenges arising from GBS-based genotyping
(adopted protocol; SNP calling procedure; method of missing
data imputation; etc.) have not been trivial in pioneering
work, but are bound to be overcome by increasing scientific
knowledge, availability of sequencing platforms and development
of bioinformatic tools.
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