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Structural, geographic, and social factors in urban building energy use:
Analysis of aggregated account-level consumption data in a megacity
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H I G H L I G H T S
� Building energy use varies widely across metropolitan Los Angeles.

� Building age, household income, home ownership rates, and land use are all correlated with energy consumption.
� High-income areas use more energy per building, while lower-income areas use more energy per square-foot.
� Account-level energy use data can help local governments devise conservation strategies.
� Energy efficiency programs need evaluated using energy consumption data.
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a b s t r a c t

Residential and commercial buildings comprise approximately forty percent of total energy consumption
and carbon dioxide emissions in the U.S. Yet, while California spends $1.5 billion annually on energy
efficiency programs, limited research has explored how building energy consumption varies within ci-
ties, including the social and structural factors that influence electricity and natural gas use. We present
results from an analysis of aggregated account-level utility billing data for energy consumption across the
over two million properties in Los Angeles County. Results show that consumption in L.A. County varies
widely with geography, income, building characteristics, and climate. Several higher-income areas have
greater total energy use per building even in cooler climates, while many lower-income regions rank
higher for energy use per square-foot. Energy consumption also correlates with building age, which
varies widely throughout the region. Our results demonstrate the many complex and interrelated factors
that influence urban energy use. While billing data is critical for devising energy efficiency programs that
actually realize estimated savings and promote more sustainable cities, opening access to such data
presents significant challenges for protecting personal privacy. The presented approach is adaptable and
scalable to cities seeking to develop data-driven policies to reduce building energy use.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the U.S., residential and commercial buildings account for over
40% of total energy consumption (US EIA, 2015a). Improving energy
conservation in buildings through new technologies and efficiency
measures is an important part of managing future energy demands,
but the task requires more openly-available and higher-resolution
data for energy consumption (DOE, 2013). Additionally, by 2010,
buildings comprised forty percent of total U.S. carbon dioxide
emissions (DOE, 2011). Energy efficiency in the building sector is
critical for meeting long-term greenhouse gas emissions targets.
.

Many utilities offer individual customers access to their own
detailed consumption data to inform behavioral changes and
support household energy efficiency retrofits (upgrades). For in-
stance, programs such as Green Button, a not-for-profit consortium
of public and private organizations dedicated to openly accessible
and standardized energy use data, allow customers to view,
download, and disclose detailed consumption data after signing an
agreement that allows a utility to share their data (Green Button
Alliance, 2015a). To date, nearly one hundred utilities use Green
Button's software and standards to provide customers with data
(Green Button Alliance, 2015b).

Despite the increased availability of detailed data for custo-
mers, few sources of high-detail urban energy consumption data
exist for policy-makers, researchers, and the private sector, even as
such data is highly valuable for improved planning (ACEEE, 2014;
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Kolter and Johnson, 2011). Aggregated energy use data at the na-
tional or regional level, often reported by sectors, is insufficient for
developing informed energy efficiency policies and programs
(Pérez-Lombard et al., 2008). Yet, utilities are often reticent to
share account-level or aggregated data, citing concerns of custo-
mer privacy and potential misuse. Understanding influences of
behavior is important, and such data helps researchers and local
governments devise better programs (Mullaly, 1998; Oikonomou
et al., 2009). When available, the data can improve knowledge of
energy supply and demand trends across: 1) geographic scales,
including buildings, neighborhoods, cities, regions, and states; 2)
sectors, such as residential, commercial, industrial, and agri-
cultural; and 3) time periods, including by minute, hour, day,
month, season, or year. Standardizing data formats across cities
and regions can facilitate more informed energy policies (Green
Button Alliance, 2015a; Pincetl et al., 2015; U.S. DOE, 2013).

In recent decades, energy efficiency improvements in buildings
have resulted in measurable energy savings (Geller et al., 2006).
Building owners in many U. S. states can obtain monetary rebates
for energy audits, though information gaps suppress participation,
often among lower-income with fewer resources and access to
information (Palmer et al., 2013). California has incentivized en-
ergy efficiency improvements for decades through multiple pro-
grams that target various users and building sectors, which to-
gether spent over $2 billion from 2013 to 2015 (CPUC, 2016a).
Multiple programs incentivize more energy efficient buildings,
including the Home Energy Efficiency Rebate program and the Home
Upgrade program for residential buildings through Energy Upgrade
California, which are overseen by the California Public Utilities
Commission and implemented by state utilities. Yet, while long-
term savings from improvements often exceed costs to building
owners, motivating homeowners to spend money upfront on en-
ergy efficiency is difficult. Many voluntary rebate programs,
especially for residences, do not tie rebates with achieved energy
savings (Greening et al., 2000; Morrissey and Horne, 2011; Sadi-
neni et al., 2011). Moreover, actual energy savings from home
retrofits is often less than modeling estimates, though utilities
report estimates as part of assessing home retrofit program im-
pacts (Brown, 2012; CPUC, 2016b). Thus, limited information exists
to broadly evaluate energy efficiency programs, especially in re-
sidential buildings, and connect program data with socio-demo-
graphic and building characteristics. Thus, many questions remain
in developing energy conservation programs. Should limited funds
be spent retrofitting old apartment buildings, incentivizing
homeowners to replace appliances, supporting commercial
building improvements, or promoting better attic insulation in all
buildings? Building owners with multiple accounts, too, often have
limited access to total consumption data that can inform smarter
investments (ACEEE, 2014).

In the absence of available account-level consumption data,
researchers use models, sampling, statistical inferences, and ad-
vanced computing to estimate energy consumption from limited
data. Models often use top-down or bottom-up approaches (Swan
and Ugursal, 2009). Top-down models predict energy consumption
in a sector (i.e. residential or commercial) based on income, de-
mographics, economic activity, and other factors, while bottom-up
models simulate building energy consumption and demand pro-
files by summing appliance consumption and calibrating model
results to real data using parameters from existing literature,
statistical analysis, and modeling (EIA, 2005; Paatero and Lund,
2006; Richardson et al., 2010). Surveys, correlated with utility
data, are another common method. For instance, the U.S. Energy
Information Administration (EIA) surveys residential and com-
mercial buildings to report average consumption of end-uses such
as lighting and heating (EIA, 2013; US EIA, 2015b).

Many factors can limit the accuracy of modeled energy use
predictions. To model direct use (actual consumption) in buildings,
models must characterize climate, building construction and de-
sign, household demographics, inhabitant behavior, device pro-
files, and energy prices (Reiss and White, 2005; Ritchie et al.,
1981). Such considerations also do not account for indirect use of
energy for manufacturing construction materials and consumer
goods in buildings (Moll et al., 2008; Reyna and Chester, 2015).

Emerging statistical techniques augment available data by
disaggregating energy consumption data from households into
individual appliance loads using device signatures within account-
level data (Kolter et al., 2010; Kolter and Johnson, 2011; Neenan
and Robinson, 2009). Yet, such methods typically assume available
account-level data. If delivered to customers by utilities, dis-
aggregated household data can support increased awareness of
effective conservation habits, but privacy concerns remain in
making such data available to policy-makers and researchers
hoping to devise more informed energy efficiency and investment
programs.

Another computing challenge results from managing increas-
ingly large amounts of data. Examining energy consumption and
demand trends over time critically supports energy policy devel-
opment (Brown and Koomey, 2003), but tracking account-level
energy consumption over both time and space requires manage-
ment of “big data” sets (Widén et al., 2009). High-resolution data is
critical for meeting peak energy demands. For metropolitan areas,
the spatial distribution of energy consumption, along with asso-
ciated greenhouse gas emissions is of particular interest. In Cali-
fornia, the 2006 Global Warming Solutions Act (Assembly Bill 32)
requires localities to develop Climate Action Plans that describe
their strategies for reducing Greenhouse Gas emissions by 15%
(CARB, 2016). Appropriate strategies differ by locality and are
closely related to the mix of industrial, commercial, and residential
buildings in each district. Actual consumption data is critical for
developing thoughtful plans to reduce emissions beyond measures
such as updating municipal transit fleets, but localities often have
limited access to detailed electricity and natural gas consumption
in their jurisdictions. Moreover, many localities looking to assess
new renewable supply sources such as rooftop solar potential can
use consumption data to link supply and conservation planning
(Callahan et al., 2014; LA County, 2015). Thus, readily available
detailed building energy consumption data across a locality can
assist with numerous aspects of implementing, facilitating, and
promoting energy efficiency.

Previous studies have estimated spatial distributions of urban
energy consumption by scaling data from representative buildings
with known usage to larger geographic scales (Brownsword et al.,
2005; Heiple and Sailor, 2008; Yamaguchi et al., 2007). One geo-
graphically comprehensive study modeled building energy con-
sumption, including heating, cooling, and other end-uses, across
the boroughs of New York City (Howard et al., 2012). The authors
estimated electricity and fuel consumption using regression to
determine contributing factors of zip code-level energy con-
sumption, which was mapped to zip codes in New York City. While
robust, the analysis necessarily contained assumptions to com-
pensate for the lack of available account-level data. Pincetl et al.
(2015) described the limitations of estimating energy consumption
without account-level data and demonstrated a method of re-
porting higher-resolution billing data for the City of Los Angeles
within the context of urban metabolism (Pincetl et al., 2012). In L.
A. City, residential energy consumption varies in relation to
building type, building size, and income.

Analysis of account-level billing data at the metropolitan scale
thus has significant value for research, energy efficiency policy
development, and smarter investments. This paper presents a
novel analysis of aggregated, account-level energy consumption
data across the Los Angeles metropolis area that spans 88 cities
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and additional unincorporated areas. The procedure analyzes and
aggregates data for account-level monthly energy use (2006–
2010), as well as parcel-level characteristics for building square-
footage and age, land use classifications, and socio-demographics,
to demonstrate a robust, empirical methodology that identifies
contributing factors of energy consumption within cities. It ex-
pands the scope, geography, procedures, and policy relevance of
previous research (Pincetl et al., 2015). We demonstrate the use-
fulness of aggregated account-level data, correlated with socio-
demographic and building characteristics, to reveal trends in ur-
ban energy use across a large geographic region.

The analysis has several key goals: 1) validate the feasibility
and usefulness of obtaining and responsibly reporting account-
level energy use data from electric and fuel utilities; 2) describe a
methodology for analyzing high-resolution energy consumption
data that incorporates procedures to protect personal identifying
information of customers; 3) report research findings of energy
use data, aggregated over time and space; and 4) demonstrate the
value of collaboration between public researchers and utilities in
developing strategies to reduce urban energy use and greenhouse
gas emissions. We describe below relevant findings from the
analysis. Additional results, including analysis of institutional
buildings, trends over higher resolution time periods, and across
many geographic scales will be reported elsewhere. In total, the
analysis illustrates a novel and scalable empirical methodology to
analyze energy use in cities. We conclude with a summary of in-
sights and policy implications for applying data-driven strategies
to improve energy efficiency programs, along with next steps for
extending the research.
2. Methods

The LA Energy Atlas was developed to improve data availability
to analyze spatial and temporal trends in urban energy con-
sumption across L. A. County (Pincetl and LA Energy Atlas Devel-
opment Team, 2015). The tool contains: 1) a relational database of
account-level energy use, building characteristics, and socio-de-
mographic data; 2) software that aggregates parcel-level in-
formation to meet privacy requirements for wider reporting of
consumption data; 3) an Application Programming Interface (API) to
query aggregated data; 4) and a web-based user interface featur-
ing interactive maps, charts, tables, data visualization tools, and
documentation.

The core of the L. A. Energy Atlas is the relational database that
contains 500 million records depicting service addresses, energy
consumption, greenhouse gas emissions, and demographic char-
acteristics for over 2.3 million parcels throughout the county for a
five-year period (2006–2010). This object-relational database, de-
veloped in PostgreSQL, is spatially enabled and contains parcel-
level energy consumption data obtained from utilities and build-
ing characteristics derived from the 2008 Los Angeles County As-
sessor's property dataset (LA County Office of the Assessor, 2008).
Parcels delineate land ownership or public spaces and may contain
multiple buildings, landscapes, and residents. The Assessor main-
tains tax-related information for each property, including vintage,
land use code, square footage, and building design type, though
the accuracy of parcel-level data varies by building type and land
use code. For instance, building area is often inaccurate for in-
stitutional buildings such as schools primarily because the county
does not assess taxes on schools or much institutional property.

We obtained consumption data for electricity (in kWh) and
natural gas (in therms) for the entire region by working directly
with regional Municipally-Owned Utilities (MOUs) or through
agreement with the California Public Utilities Commission (CPUC).
Municipal utilities that provided data include the Los Angeles
Department of Water and Power (LADWP), which serves the City
of Los Angeles, Burbank Water and Power (BWP), Glendale Water
and Power (GWP), and Long Beach Gas and Oil (LBGO), which
provides natural gas to the City of Long Beach. Remaining geo-
graphic areas of the county are served by Investor-Owned Utilities
(IOUs), which report to the CPUC. Two IOUs serve Los Angeles:
Southern California Edison (SCE) for electricity and Southern Ca-
lifornia Gas (SCG) for natural gas.

We received data in multiple formats, including comma-sepa-
rated value (csv) and data files for the statistical software SAS (SAS
Institute, Inc, 2015). All files were uploaded to the database as csv
files and data files from SAS were converted using open-source
Python software sas7bdat.py (Hobbs, 2015; Python Software
Foundation, 2001). We used the electricity and natural gas con-
sumption values to then calculate total account-level energy con-
sumption (in British Thermal Units, or BTUs) and greenhouse gas
emissions (in Tons of Carbon Dioxide).

Statistics and analysis in the LA Energy Atlas are reported at
four, increasingly large, geographic scales across L. A. County:
neighborhoods, cities, Councils of Governments (COGs), and the
entire county. Reported results in this analysis focus on the
neighborhood and city levels. City and county boundaries were
obtained from the Los Angeles County GIS Data Portal (LACDPW,
2012). The source data for cities includes 88 municipalities and
nearly 200 unnamed unincorporated areas in the county. Unin-
corporated areas were combined into 11 entities based on location
within the county's 2012 Service Planning Areas (SPAs), which are
used by several county departments to plan and manage service
delivery. Data for SPAs are also available from the County GIS Data
Portal. Neighborhoods were defined using shape files originating
from the Los Angeles Times delineation of 272 neighborhoods in L.
A. County (LA Times, 2015).

To protect the privacy of individual account holders in reported
data, the LA Energy Atlas uses custom software to mask potential
Personal Identifying Information (PII) by aggregating account-level
data according to guidelines from CPUC regarding the number of
accounts and percent of individual users comprising published
consumption data (CPUC, 2015). The relational database with ac-
count-level data was aggregated into new tables of annual energy
(electricity and natural gas) at each geographic scale, which sup-
port the mapping and download capabilities. Aggregation proce-
dures differ by land use type. Aggregated data reports only median
values to provide additional privacy protection.

2.1. Use codes and building types

A primary unit of analysis is the megaparcel, a parcel layer
dissolved on geometry that maintains reference to parcel polygons
that comprise each megaparcel polygon. Each megaparcel is as-
signed a building type according to its use and construction de-
sign. The building type categories were developed by Arizona State
University researchers (Reyna and Chester, 2015) and include
building shell materials by vintage (year built) and use codes as
assigned by the LA County Assessor. Across 17 possible building
classifications, the majority of buildings (64%) in the county are
classified as single-family residences (Table A1).

2.2. Geocoding

Geocoding links account addresses with geographic locations
and associated characteristics of surrounding cities, neighbor-
hoods, census blocks, and parcels. Geocoding is an iterative pro-
cess and the success (match) rate varies based on the geocoding
method and level of accuracy. In the LA Energy Atlas, accounts are
assigned spatial information in the following priority:



Table 1.
Median annual energy consumption (BTUs/sq-ft) across all parcels by building type.

Parcel Type Min Max Range

Residential: 11,361 55,057 43,696
Single-Family: 0 56,691 56,691
Multi-Family: 0 53,962 53,962
Condominium: 0 51,957 51,957
Commercial: 14,849 83,416 68,567
Industrial: 0 110,859 110,859
Institutional: 4973 2,943,912 2,938,939
All building types: 11,872 133,445 121,573
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1. Parcel centroids use a custom locator provided by LA County to
match addresses to the parcel in which they are located. This is
the most accurate method of geocoding but also the one with
the comparatively lowest match rate (90% of accounts). This
method allows for analyzing consumption in comparison to
parcel-level characteristics such as built square footage or
building vintage.

2. Utility-provided locations are available for most areas. LADWP
provided street-level coordinates for 99.9% of residential ac-
counts and 99.1% of non-residential, while CPUC data included
coordinates for 69.4% of non-residential SCE accounts.

3. Street centerlines use a street level locator, designed by UCLA's
Institute for Digital Research and Education, to place addresses
on the street in which they exist. This information is used for
aggregating to block groups, cities and neighborhoods, and has
a match rate of 95%.

4. ZIP code centroids were used for addresses that could not be
located using any of the previous methods. This location in-
formation is the most complete with a 99.9% match rate, though
it is less precise than other methods.

Customized Python scripts and ArcGIS tools processed geocod-
ing of addresses (ESRI, 2012; Python Software Foundation, 2001).
This software converted heterogeneous addresses and accounts
into a standardized record format suitable for geocoding and up-
loading to the database. Service address points geocoded to the
street or ZIP Code level contain coordinate information sufficient
to match accounts to block group demographics and adminis-
trative layers. To match electricity and natural gas accounts with
associated parcel and building information, we geocoded the
standardized addresses to more precise parcel centroids when
possible, using a custom locator provided by L.A. County. Service
addresses unable to be matched at this level of precision were
checked for street level coordinates. If none existed then they were
geocoded to street centerlines or ZIP Codes. Additionally, due to
inconsistencies in the data and limitations of the County locator,
significant sections of data were geocoded manually. Doc-
umentation on the LA Energy Atlas website reports the validity of
geocoding procedures.

2.3. Incorporating socio-demographic variables

The LA Energy Atlas database includes demographic and income
characteristics taken from the American Community Survey (ACS,
2006–2010) at the block group level (US Census, 2011). ACS data
supplied statistics for population density, median household in-
come (MHI), and home ownership rates, which were geo-
graphically aggregated to neighborhoods and cities for analysis in
relation to aggregated energy consumption. For income, in parti-
cular, the analysis reported below considered if energy use differs
in lower- and higher-income areas, both neighborhoods and cities.
We considered a broad definition of “lower-income” as areas with
a MHI in the lower half of all neighborhoods/cities. This included
neighborhoods with MHI below $62,217 and cities with MHI be-
low $62,250.

2.4. Analysis procedure

The LA Energy Atlas reports median consumption of electricity,
natural gas, or total energy, including both total consumption and
consumption per square-foot (energy use intensity) in geographic
regions. The median value of consumption in a selected geo-
graphic region (cities, neighborhoods, or census tracts) was cal-
culated by determining the median energy consumption in a given
time period (a temporal median) for each parcel, then determining
the median value of energy consumption for all parcels in the
selected geographic region (a spatial median).
The analysis reported below mapped electricity, natural gas,

total energy consumption, and greenhouse gas emissions across L.
A. County by building type. We developed raster maps of con-
sumption using a raster interpolation algorithm (inverse distance to
power) in QGIS 2.6 based on spatially distinct centroids for each
polygon in the neighborhood shape file (QGIS Development Team,
2014). These maps focused on consumption data from 2010. We
also graphed median energy consumption over time (2006–2010)
in areas (neighborhoods or cities) and analyzed trends by demo-
graphic and building characteristics, including percentage of ren-
ters vs. owners, building age, and median household income. Re-
sults below present overall energy use by sectors and then focus
on consumption in residential (single- and multi-family buildings)
and commercial properties. Finally, while local climates across
metropolitan L.A. likely affect differences in urban energy con-
sumption, the current version of the LA Energy Atlas does not in-
corporate climate data, a recognizable limitation in interpreting
results.
3. Results

Energy consumption varies widely in L.A. County. Results pre-
sented below summarize and compare: 1) energy consumption by
sector, 2) consumption trends for total energy use and energy use
per square-foot (energy use intensity), 3) energy consumption and
median household income, 4) energy consumption and building
age, 5) energy consumption and population density, and 5) energy
consumption and home ownership rates.

3.1. Summary trends

Across cities in L.A. County, median annual consumption per
square-foot varies by building type, with residential properties in a
city consuming between approximately 11,000 and 55,000 BTUs/
sq-ft, commercial properties annually consuming between 15,000
and 83,000 BTUs/sq-ft, and industrial properties annually con-
suming up to 110,859 BTUs/sq-ft (all reported as medians), as
shown in Table 1 below. Institutional buildings had the highest
maximum value as well as the largest range, which likely results
from the number of different building types (government build-
ings, schools, universities, and others), inaccuracies in the LA
County Assessor's records of square-footage in such buildings, and
the presence of many buildings on a given parcel. Annual per ca-
pita residential consumption in cities, calculated as the median
consumption in a city divided by its population, ranged from ap-
proximately 5.2 million to 9.5 million BTUs.

Energy consumption also varied by building type, size, and age
(Table 2). For instance, the range of median annual consumption in
multi-family residential buildings up to 40,000 square-feet was
relatively consistent, with a maximum value of 54,000–57,000
BTUs. For non-residential buildings, however, values varied widely,



Fig. 1. Median energy consumption in 2010 across neighborhoods in LA County for: single-family homes, total (a) and per square-foot (b); and commercial buildings, total
(c) and per square-foot (d). For residential consumption, while coastal areas in the northwestern areas of LA County have higher total consumption, denser areas in central LA
and much of the San Fernando Valley (north) have greater intensity of use in buildings.

Fig. 2. Median household income (a) mapped across LA County using an interpolation algorithm and (b) compared to population density in neighborhoods, plotted with
linear axes (right) (Source: ACS 2011).
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revealing both wide building uses and noted inaccuracies in the L.
A. County Assessor's database. For instance, non-residential
buildings with no reported area (in sq-ft) had a range of energy
consumption between 23,000 and 3,000,000 BTUs. Across all
building types, age and consumption are noticeably related
(Table 2). For instance, buildings built before 1950 have the highest
median annual consumption (per square-foot), while those built
after 1990 have the lowest. Buildings built between 1950 and 1978
have a slightly lower median annual consumption than those built
between 1978 and 1990.



Table 2.
Energy use ranges (BTUs/sq-ft) for all parcels in L. A. County, assessed by building
size for multi-family and non-residential buildings, as well as building vintage for all
buildings.

Building Size (in sq-ft)

Multifamily Buildings Min Max Range
0–10k: 0 54,251 54,251
10–20k: 0 55,701 55,701
20–30k: 0 57,961 57,961
30–40k: 0 57,185 57,185
40–50k: 0 149,333 149,333
Over 50k: 0 174,690 174,690

Non-Residential Buildings
0 23,662 3,329,622 3,305,960
0–10k: 0 233,198 233,198
10–20k: 0 246,780 246,780
20–30k: 0 72,089 72,089
30–40k: 0 1,129,185 1,129,185
40–50k: 0 439,577 439,577
Over 50k: 0 2,728,479 2,728,479

Building Vintage
Age Range
Pre-1950: 0 66,947 66,947
1950–1978: 0 58,766 58,766
1978–1990: 0 64,361 64,361
Post-1990: 0 44,495 44,495
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3.2. Spatial Variability in Energy Consumption: Total vs. per Square-
Foot

Geographic variation in median parcel energy consumption
(2010) appears when examining both consumption by total (BTUs)
or unit (BTUs/sq-ft) for a parcel (Fig. 1). For both single-family
(Fig. 1(a),(b)) and multi-family homes, many coastal areas in
northwestern L.A. have higher median values of total residential
parcel energy use, while neighborhoods in Central L.A. have gen-
erally higher median values of energy use per sq-ft. South L.A. also
has several neighborhoods with higher energy consumption per
square-foot but lower total energy consumption, including East
and West Compton, and Watts. For median neighborhood energy
consumption in single-family buildings, ninety percent of
Fig. 3. Median energy consumption (per sq-ft) for lower-i
buildings comprise an equivalent amount of total consumption,
while only four percent of neighborhoods account for over eight
percent of total consumption (see Appendix).

For commercial properties, areas near Beverly Hills and some
coastal areas have high total median consumption (Fig. 1(c)), while
when measured per square-foot, the San Fernando Valley and
areas of the San Gabriel Valley rank highly (Fig. 1(d)). Areas of
Central L. A. do not rank highly for consumption per square-foot.
Much of the San Fernando Valley ranks highly across all the maps.

3.3. Energy use, household incomes, and building types

Some aspects of energy use correlate with incomes. Median
household income (MHI) varies widely for neighborhoods
throughout L. A. County, ranging from $250,001 (Hidden Hills) to
$11,868 (University Park). Fig. 2(a) maps the distribution using a
raster interpolation algorithm (inverse distance to power) of med-
ian income values based on spatially distinct centroids for each
polygon in the neighborhood shape file. Plotting density and
median household income (Fig. 2(b)) shows a moderate relation-
ship (R2¼0.34). Neighborhoods with higher population densities
tend to have lower median incomes.

Some lower-income cities/neighborhoods (those with MHI in
the bottom half of all cities/neighborhoods) rank highly among all
areas across the county for consumption per square-foot. Table 3
compares median parcel energy consumption (BTUs/sq-ft) among
the top-five lower-income cities with the top-five cities overall
across building types. Several cities, such as Compton and West
Hollywood, appear on both lists for a building type.

Quantifying variability in energy consumption for each building
type in lower-income areas reveals widely variability across
building types (Fig. 3). Residential and commercial buildings have
the highest overall consumption (per square-foot), while institu-
tional buildings have the highest variability, represented by the
error bars in Fig. 3.

Unit consumption of natural gas and electricity differs by
building type, but the differences are relatively consistent across
income (Fig. 4). Commercial buildings tend to use the most elec-
tricity per square-foot, followed by institutional and single-family
ncome cities in 2010, including quartiles and outliers.



Fig. 4. 2010 Energy consumption (per square-foot) in cities by building type and median household income, for (a) electricity (top) and (b) natural gas (bottom).

Table 3.
Cities with highest 2010 median parcel energy use (BTUs/sq-ft) for single-family, multi-family, commercial, industrial, and institutional buildings. Bold highlighting notes
cities that rank highly for both lower-income and all cities.

Single-Family Buildings Multi-Family Buildings

Rank Lower-Income All Lower-Income All

1 Compton Westlake Village Glendale Glendale
2 West Hollywood Compton Hawaiian Gardens Culver City
3 San Fernando West Hollywood Palmdale Lakewood
4 Inglewood Hidden Hills Santa Fe Springs Rancho Palos Verdes
5 South El Monte San Fernando Inglewood Carson

Commercial Buildings Industrial Buildings Institutional Buildings
Rank Lower-Income All cities Lower-Income All cities Lower-Income All cities
1 West Hollywood Malibu West Hollywood Manhattan Beach Hawthorne Hawthorne
2 Palmdale Lakewood Maywood Beverly Hills Bell La Canada Flintridge
3 Baldwin Park Hermosa Beach Palmdale Calabasas Downey Bell
4 Hawaiian Gardens Diamond Bar Lancaster West Hollywood San Gabriel West Covina
5 South El Monte Rolling Hills Estates La Puente South Pasadena Montebello Walnut
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(Fig. 4(a)). For natural gas (therms per square-foot), single- and
multi-family homes are most intensely consuming, in many cases
twice as much as industrial and institutional buildings (Fig. 4(b)).

Analysis at the smaller geographic level of neighborhoods re-
veals similar trends in variance and dispersion of consumption.
Ranking median parcel energy consumption (BTUs/sq-ft) for
neighborhoods and comparing the top five in lower-income vs. all
neighborhoods again shows that some areas rank highly for both.
In particular, lower-income L.A. neighborhoods such as Compton,
Willowbrook, and Broadway-Manchester lead the overall rank-
ings, as shown in Table 4. No lower-income neighborhoods rank
highly overall for commercial and industrial, but several do rank
highly of all neighborhoods for consumption in institutional
buildings.

Over time, while energy consumption has generally increased
in California, consumption per capita has remained stable through



Fig. 5. Median Energy Use in households by percentiles of median household income. The top row shows Use per Square-Foot and Total Energy Use for single-family homes (a
and b), while the bottom row shows Energy Use per Square-Foot and Total Energy Use for multi-family homes (c and d).
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energy efficiency improvements (CEC, 2015; Ettenson, 2014; Geller
et al., 2006; US EIA, 2015c). With this in mind, we examined en-
ergy use trends during the time frame of available data in the LA
Energy Atlas database (2006–2010, excluding 2008 where data was
not provided for certain building types). Median total consump-
tion in single-family homes generally increases across income
quartiles (Fig. 5(b)), with a slight trend of increasing consumption
between 2006 and 2010 across all quartiles. Alternatively, median
consumption per square-foot decreases as median household in-
come increases (Fig. 5(b)). In multi-family homes, energy con-
sumption per square-foot is also higher in the neighborhoods with
median household income in the lowest quartile (Fig. 5(c)). Across
multi-family buildings in neighborhoods, median total consump-
tion increases with median household income in a neighborhood
(Fig. 5(d)).

3.4. Energy consumption and building age

The LA Energy Atlas database contains four categories of
building vintages: pre-1950, 1950–1978, 1978–1990, and post
1990. We chose 1978 specifically to correspond with the year that
the California Energy Commission first implemented Title 24 en-
ergy efficiency standards for residential and commercial buildings
in California.

There is a distinct decreasing trend in the distribution of energy
consumption in newer buildings (Fig. 6). However, energy con-
sumption of all buildings most closely resembles use in the two
oldest vintage categorizations (pre-1950 and 1950–78), likely be-
cause most buildings in L.A. County are fall into the two oldest
vintage categories (roughly 80%). Lower-income neighborhoods
tend to have many more buildings constructed before 1950, while
higher-income neighborhoods have many more constructed be-
tween 1950 and 1978. Pre-1950 buildings typically have the
highest energy consumption intensity, relative to the other vin-
tages. Thus, building age may be a significant contributing factor to
increased intensity of energy use in certain lower-income areas.
Notably, while the L.A. County Assessor's database captures ori-
ginal construction dates, it does not often account for subsequent
improvements or remodeling.



Fig. 6. Single-family energy consumption per square-foot (2010) by building age.
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3.5. Energy use and population density

Household income and population density in neighborhoods
are correlated (R2¼ .34), with median income decreasing as po-
pulation density increases (Fig. 2(b)). It follows that total con-
sumption in buildings tends to decrease with population density,
while consumption per square-foot increases (Fig. 7). In single-
family homes, this trend is most clear (Fig. 7(a),(b)). For multi-
family parcels, however, the trend shows more variability (Fig. 7
(c),(d)). In particular, median total energy use of multi-family
parcels decreases significantly as population density increases
(Fig. 7(c)). This could be because areas of lower population density
actually have multi-family parcels with fewer residents (i.e.
smaller apartment buildings). Median consumption per square-
foot of multi-family parcels tends to increase with population
density (Fig. 7(d)).

3.6. Energy Consumption and Home Ownership

We compared energy consumption, both total and per square-
foot, by neighborhoods based on the percentage of owners and
renters in single-family and multi-family homes (Fig. 8). Con-
sumption per square-foot in single-family homes is nearly
equivalent between majority-owner and majority-renter neigh-
borhoods, with a slight decrease between 2006 and 2010 (Fig. 8
(a)). In contrast, total median energy consumption of single-family
homes is higher in majority-owner neighborhoods (Fig. 8(b)). The
trend continued for multi-family homes; however, the differences
in median total energy consumption between renter- and owner-
dominated neighborhoods was greater in 2006 than in 2010, when
they were nearly equal (Fig. 8(c),(d)).

4. Discussion

Deciphering factors that drive urban energy consumption pat-
terns is challenging. In a large, diverse metropolitan region such as
Los Angeles, many variables including income, home ownership
rates, energy prices, and building age likely relate to geography in
multi-faceted ways. Long-established cities in the coastal plain
often have older buildings, since urban infrastructure lasts for
decades. Newer areas in the hotter San Gabriel and San Fernando
valleys are more mixed between old and new buildings.
Throughout the region, lower-income households are less likely to
have capital for structural building improvements or appliance
upgrades, which all significantly influence energy consumption.
Through this analysis, we present relationships in energy con-
sumption, geography, and socio-demographic factors without de-
claring the definitive drivers of consumption. Cities are complex
systems and deciphering precise causes of energy use in a given
parcel is limited by these factors along with limitations in pre-
dicting human behavior.

Climate, too, likely plays a significant role in energy con-
sumption across an arid coastal city with many climate zones like
L.A. Average temperatures of inland areas can be 10 or more de-
grees higher than coastal zones. This affects occupant choices
when, for example, they must use energy-intensive indoor air
conditioning during a greater portion of the day. The analysis did
not control for changes in climate, which is a noted limitation to
interpreting consumption trends, both seasonally and during the
course of a day. Yet, many buildings in lower-income neighbor-
hoods, which lie closer to the coast where temperatures are cooler,
do not necessarily even have sufficient heating or cooling but still
rank highly for energy consumption measured per square-foot.
Thus, local climate conditions do shape decisions of urban re-
sidents, but within the context of available technologies, building
stock, and economic resources. Analysis of energy consumption in
metropolitan areas must further investigate how broader climates
trends, local climate variations influenced by human landscape
decisions, socio-demographic factors, and income all affect energy
use.

While the LA Energy Atlas reports greenhouse gas emissions,
these values are not included here. Even with these noted



Fig. 7. Median Energy Use in households by percentiles of population density. The top row shows Use per Square-Foot and Total Energy Use for single-family homes (a and b),
while the bottom row shows Energy Use per Square-Foot and Total Energy Use for multi-family homes (c and d).
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limitations, the presented analysis of aggregated account-level
data across time and space is novel and provides important in-
sights to understand energy use in cities. It identified fundamental
relationships between income and total energy consumption in a
building as well as energy consumption per square-foot. It also
revealed how building age could significantly influence this trend,
demonstrating the importance of incorporating building char-
acteristics and socio-demographic factors into such an analysis.

Through this methodology, institutional buildings pose parti-
cular difficulties for accurately assessing some energy use metrics.
Building characteristics such as square-footage are undercounted
because municipalities do not generate property tax assessment
revenues from such buildings. For instance, while the L.A. County
Assessor's property database has a land use designation for
schools, it only represents a fraction of the schools identified
through L.A. County's land use shape file. Detailed energy use can
be particularly important for schools in California, where voters
approved Proposition 39 to provide public funds for improving
energy efficiency in schools. Thus, policy-relevant analysis of high-
resolution energy consumption and demand data can still be
constrained by other deficiencies in data.
5. Conclusions and policy implications

Detailed urban energy consumption data is highly valuable for
devising informed strategies to reduce customer energy bills, plan
utility infrastructure, and craft effective energy efficiency pro-
grams. Moreover, energy consumption data supports better esti-
mates of greenhouse gas emissions. Customers, utilities, and pol-
icy-makers can all benefit from such data. To date, however, re-
searchers and local governments have limited access to detailed
data. In this paper, we describe a detailed methodology for col-
lecting, aggregating, and analyzing account-level urban energy
consumption data in Los Angeles County. Across L.A. County,
consumption noticeably varies not only by geography, but also by
income, land use, building age, and home ownership rates. In
particular, while higher-income areas consume more total energy
per parcel, many lower-income areas are top consumers of energy
when measured as use per square-foot. This correlates with the
older building ages found in many lower-income neighborhoods.
High-resolution spatial and historical billing data helps uncover
such complex relationships, which can lead to a better under-
standing of urban development and resource use.



Fig. 8. Median Energy Use of Single-Family Homes and Multi-family Homes in Majority-Renter vs. Majority-Owner Neighborhoods: Energy Use per Square-Foot (a and c) and
Total Energy Use (b and d).

Table 4.
Neighborhoods with highest 2010 median parcel energy use (BTUs/sq-ft) for single-family, multi-family, commercial, industrial, and institutional buildings. Bold highlighting
notes cities that rank highly for both lower-income and all cities.

Single-Family Buildings Multi-Family Buildings

Rank Lower-Income All Lower-Income All

1 East Compton East Compton Westmont North El Monte
2 Lennox Lennox Harvard Park Westmont
3 Willowbrook Willowbrook Florence-Firestone Manchester Square
4 Westmont Westmont Hyde Park Sunland
5 Broadway-Manchester Broadway-Manchester Willowbrook Tujunga

Commercial Buildings Industrial Buildings Institutional Buildings
Rank Lower-Income All Lower-Income All Lower-Income All
1 Willowbrook Lake View Terrace Westmont Pacific Palisades Chesterfield Square East San Gabriel
2 Valley Glen Vincent Hollywood Tujunga Canyons Maywood Hawaiian Gardens
3 Lake Los Angeles Castaic Koreatown Westlake Village Harbor Gateway La Puente
4 Panorama City Hollywood Hills West Beverlywood Highland Park Chesterfield Square
5 University Park Green Valley Hollywood Hills North Hollywood Maywood
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Results of the analysis directly inform energy efficiency policies
(Table 5). First, as noted, California expenditures on energy effi-
ciency programs exceed $1 billion annually, but programs aimed at
some sectors such as residential buildings have minimal verifica-
tion of predicted energy savings. The LA Energy Atlas represents a
scalable approach for efficiently organizing billing data from be-
fore and after improvements to support measurement and
verification procedures. Second, existing reporting and evaluation
procedures often fail to tie energy efficiency and billing data with
other data sets such as real estate assessments and U.S. Census
surveys. The presented procedure illustrates necessary steps for
doing so. Third, we present shortfalls in available datasets at the
local level, such as the inconsistency of tax assessor data for
schools and other institutional buildings. This inhibits accurate



Table 5.
Key findings of direct relevant for improving data-driven energy efficiency programs.

Key Policy Issue Policy Actions

Measuring energy consumption Expand metrics for collecting and analyzing energy consumption data, including energy use per area (sq-ft)
Correlate energy use with building characteristics and socio-demographic trends
Promote better local property records data for public and non-profit buildings, including schools
Identify climate influences of building energy use in context of social and economic factors

Assessing and using detailed energy con-
sumption data in planning

Promote greater access to energy use data that protects privacy
Implement monitoring before and after energy efficiency upgrades in buildings
Promote access to more detailed energy use data for non-profit groups

Linking consumption with other key
datasets

Prioritize building funding by sector, geographic location, and vintage
Improve datasets for county tax assessors and building stock across all types of buildings

Supporting data-driven policies for energy
efficiency programs

Incentivize energy efficiency rebates by returns on investment
Incorporate energy consumption data into pre-upgrade assessments and post-upgrade monitoring as regular procedure
Incorporate consumption data into Title 24 regulations and SB350 implementation for building energy efficiency
Address equity by increasing participation of disadvantaged households in energy efficiency programs

Table A1.
Building codes, associated names, and percentages of building and megaparcels for
each code in L.A. County.

Category Building
Codes

Name % of
Buildings

% of
Megaparcels

Single-Family R1 Single-Family
Detached

63.99% 70.60%

Multi-Family R2 Multi-Family Large 3.74% 11.62%
R3 Multi-Family

Small
12.51%

Condo R4 Condominium 11.77% 0.89%
Commercial C1 Hotel 0.12% 3.58%

C2 Department Store 0.12%
C3 Neighborhood

Store
2.97%

C4 Low Office 0.21%
C5 High Office 0.70%
C6 Hospital 0.04%

Industrial I1 Warehouse 1.92% 1.82%
I2 Heavy Industrial 0.15%

Industrial C7 Church 0.29% 1.49%
C8 School 0.16%
G1 Government

Mixed-Use Any of residential (R) mixed with n/a 0.02%
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assessments of energy consumption (per square-foot) in many
public buildings and state and federal assistance should support
better local data. Fourth, combining energy consumption data with
building and socio-demographic characteristics can inform smar-
ter energy conservation investments. Energy efficiency is a critical
component of more sustainable future cities, but incentive pro-
grams should spend public funds in equitable and cost-effective
ways. Despite the lack of rigorous program evaluations based on
billing data, new policies supporting energy efficiency continue.
For instance, in California, Senate Bill 350, enacted in 2015, es-
tablishes a goal of a 50% increase in building energy efficiency by
2030, but still does not incorporate any mandates for verification
through billing data. Finally, aggregated energy consumption in-
formation for neighborhoods and cities supports local govern-
ments in developing Climate Action Plans to meet GHG reduction
targets as part of AB 32.

The results are subject to several limitations. First, geographic
differences in climate are not integrated in the LA Energy Atlas and
the presented analysis does not control for climate variation
throughout L.A. Second, the property records database from the L.
A. County Office of the Assessor, used to correlate building char-
acteristics with account-level energy consumption, has noted is-
sues of accuracy, especially for building types such as schools and
government buildings. Third, while geocoding results were very
accurate in the context of typical procedures, it was not 100% ac-
curate. Fourth, while the L.A. Energy Atlas includes estimates of
GHG emissions, they were not part of this analysis.

Geographic changes in energy consumption are only verifiable
by aggregating and analyzing actual account-level data. Yet, such
procedures also require caution to prevent published results from
revealing personally identifiable information of utility customers.
When published responsibly, such data can inform energy policy.
Energy efficiency rebate programs, for instance, could implement
monitoring and evaluation to estimate actual returns from public
investments over time. This research can be extended by: re-
porting results with greater temporal resolution; integrating
consumption records with grid management decisions, distributed
generation, and combined heat-and-power operations; and refin-
ing the analysis of particular building categorizations such as in-
stitutional buildings. Given the current push for smarter, data-
driven cities, high detail energy use data is a critical component to
creating future, more sustainable, urban systems.
any of Commercial (C) or In-
dustrial (I)

Other O Other 0.24% 9.59%
P Parking 0.99%
V Vacant 0.08%

Unclassified No Building Information Available 0.40%
Total: 100%
Acknowledgements

This research was supported by the County of Los Angeles. It
incorporates electricity and natural gas consumption data
obtained from the California Public Utilities Commission (CPUC),
Los Angeles Department of Water and Power (LADWP), Burbank
Water and Power, Pasadena Water and Power, Glendale Water and
Power, and Long Beach Gas and Oil. L.A. County GIS experts pro-
vided technical support. UCLA's Sustainable LA Grand Challenge
provided funding for analysis and writing of the article.
Appendix

Building type categories were developed by Arizona State
University researchers (Reyna and Chester, 2015) and include
building shell materials by vintage (year built) and use codes as
assigned by the LA County Assessor (Table A1). The primary unit of
analysis in the L.A. Energy Atlas is the megaparcel, a parcel layer
dissolved on geometry that maintains reference to parcel polygons
that comprise each megaparcel polygon.

Both median total energy use (Fig. A1a) and energy use per
square foot (Fig. A1a) of single-family homes in neighborhoods are



Fig. A1. Distributions of Annual Energy Use in L. A. Neighborhoods for Single-Fa-
mily Homes for (a) Median Total Energy Use (left) and (b) Median Energy Use per
Square-Foot (right).
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relatively consistent over much of the ranked distribution func-
tion, as shown by the flatter (middle) portions of the distributions.
A few high and low outliers round out the S-shaped curves. While
many buildings have similar annual energy performance, near four
percent of neighborhoods account for almost eight percent of total
consumption. Energy use declined slightly over the 5-year period
from 2006 to 2010, corresponding with reduced economic activity
during the recession (also see Figs. 5, 7, and 8 in the text).
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