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Abstract 

 

The aim of this dissertation is to take a journey into exploring more informative 
and rather continuous measures for assessing the cognitive processes experienced by 
humans.  The traditional measures, such as Reaction Time, although incredibly helpful 
fail to provide any particular insight into what mental processes the participants undergo 
to produce a final result. In the recent years, it is becoming clear that a rich and semi-
continuous set of measures is extractable from relatively implicit behaviors such as 
hand or eye movements. It has been shown that spatial and temporal dynamics of motor 
movements (i.e. action dynamics) can shed light on the progression of high-level 
cognitive tasks. This rich body of data could provide a nearly real-time translation of 
unfolding cognitive processes.  

Throughout this document, I present a series of studies on how action dynamics 
could provide a window to observe the emergence of cognitive processes involved in 
deception and predictive learning. These are two areas in which action dynamics have 
not been explored nearly enough. I utilized a novel task to test two competing 
hypotheses concerning the cognitive processes involved in dishonesty. Moreover, a 
novel paradigm was provided for testing hypothesis regarding sequential learning and 
the role of prediction in implicit learning.  
 

I close with a report of findings about the processes underlying deceptive 
behavior and predictive learning. The findings are followed by a discussion about 
implications of this work for the field of cognitive science and the limitations in action 
dynamics approach.  On the one hand this work takes advantage of action dynamics to 
get under the hood as these complex cognitive processes unfold in the brain. On the 
other hand, it utilizes these cognitive phenomena to demonstrate the power of action 
dynamics in studying higher level complex cognitive processes. 
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Chapter 1 

1. Introduction 
 
1.1 Motivation and Background 
 

For a very long time in the history of behavioral psychology and later on in 
cognitive psychology, discrete measures such as Reaction Time (RT) and Accuracy 
were dominating the field; useful dependent variables showing the final result of a 
process. Comparing reaction times and other similar measures between subjects was the 
basis for evaluating how different subjects perform in various tasks. These measures, 
although incredibly helpful, fail to provide any particular insight into what mental 
processes the participants undergo to produce different reaction times as a final result. 
Are there behavioral measures that could shed light on the process rather than 
emphasizing on the final result of that process? If so, what do these measures provide? 
How reliable are they and do they provide the same final results as suggested by 
traditional dependent variables such as Reaction Time?  

The aim of this dissertation is to take a journey into exploring more informative 
and rather continuous measures for assessing the cognitive processes experienced by 
humans.  Introducing concepts and measures to address the questions mentioned above, 
shape the core theme and motivation of this dissertation. Throughout this document, I 
will be exploring the dynamics of human actions to introduce continuous measures for 
studying cognitive processes. I will be presenting a series of studies of how action 
dynamics could provide a window to observe the emergence of cognitive processes 
involved in deception and prediction. The focus is on tracking hand-movements in two 
main studies: making a decision to lie, and making a prediction in sequence learning.  

In the following sections of this Intro, I will provide a brief background on 
action dynamics and how they have come to be a convenient yet reliable set of tools for 
tracking the mind in real time. 

 
1.2 Action Dynamics 
 
In the recent years, it is becoming clear that a rich and nearly continuous set of 
measures is extractable from relatively implicit behaviors such as hand or eye 
movements. This rich body of data could provide a much better picture of different 
features in cognitive processing.  

One way to observe gradual changes in a cognitive process is to explore action 
dynamics of the process. It has been shown that spatial and temporal dynamics of motor 
movements can shed light on the progression of high-level cognitive processes such as 
decision making and learning (for reviews see Spivey and Dale 2006; Song and 
Nakayama 2008; Freeman et al. 2011; Freeman and Ambady 2009). This growing line 
of research on action dynamics suggests that decision-making outcomes are not fully 
processed in the brain before being sent downstream to be expressed in motor 
subsystems. Instead, the ongoing competition between alternative options is captured 



 

 2 

concurrently in a person’s overt movement dynamics. Thus, by studying the micro-
behavioral properties of an unfolding decision, such as eye movements or reach 
movements, we might be able to get a sense of the underlying cognitive processes.  

A pioneering work using continuous measures of movement trajectories for 
studying mental processes was offered by Ghez at al (1990). They analyzed “elbow 
force” trajectories to study the effect of target uncertainty on reach movements. The 
authors show how subjects set initial values for the amplitude and direction of their arm 
movement while they are anticipating the target to show up at a variant location. 
Subjects tended to initially set their default in the middle of the target range and after 
the target was presented they gradually tailored their arm movement more specifically 
towards that target in roughly 200ms.  These elbow force trajectories provided a 
valuable insight into the flow of mental processes. Nonetheless, they could not support 
more spatially complex responses involving multiple joint motions. In a later study 
Ghez et al (1997), extended the measures by recording direction and amplitude of wrist 
movements and wrist forces. The results from these experiments also showed that most 
participants when presented with two competing targets to reach for, tend to move their 
hands to a middle ground around a spatially average point between the two targets.  

Some studies go as far as claiming that the relation is bidirectional. While the 
internal process of decision-making is reflected in action dynamics, the actions and their 
restrictions indeed influence the decision making. Studies on “embodied choice” show 
this bidirectional influence between actions and mental processes. Lepora & Pezzulo 
(2015) designed a decision making task to compare three models for how actions and 
decisions interact: a serial decision-then-action model, a parallel action-and-decision 
model, and an embodied choice model where the action feeds back into the decision 
making process. The results confirmed that in an ecologically valid setting, the most 
proper theory of decision and action is offered by “embodied choice” suggesting that 
dynamics of actions can have a causal influence on cognition. 
In more recent studies Gallivan and Chapman (2014) among many others show that 
when participants are presented with more than one option to choose, their initial hand 
movement trajectories are “spatially biased” corresponding to how probable each option 
is to be the target answer. These trajectories become more to the point when a cue is 
presented in favor of the target option. Action dynamics and more specifically rapid 
reach movements are simple yet powerful tools to provide a real time observation of the 
mental processes underlying these motor-response decisions. The results are in 
consistency with neurophysiological and computational research showing that there are 
neural populations in the brain offering parallel representations that compete to be 
chosen (See Gold & Shadlen, 2007 for review; Roitman & Shadlen, 2002; Murakami& 
Mainen, 2015; Lagzi & Rotter, 2015).  

There are various tools for recording the dynamics of actions while people are 
involved in a cognitive task. Arm movements, wrist movements, and hand movements 
are common ways of tracking these dynamics. One of the well-known paradigms for 
collecting action dynamics data is mouse-tracking where the subjects are asked to 
complete a cognitive task using their computer mouse while the movements of the 
mouse is being recorded by the researcher. Next chapter gets into the details of this 
paradigm, as it is the main theme of the current document. 
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1.2.1 Mouse-tracking paradigm 
 

The paradigm used in the studies presented here involves tracking the movement 
trajectories of participants’ hand. The hand movements are captured by recording the 
movements of the computer mouse. The participants will move the mouse cursor to 
click on a desired location on the screen depending on the task they are participating in. 
The mouse trajectories will be recorded and used for extracting measures that 
demonstrate the gradual process (See Freeman, Dale, Farmer (2011) for more detail on 
mouse-tracking paradigm).  

Social psychology, more specifically implicit social biases and stereotypes, have 
repeatedly been the subject of mouse tracking studies. A reason could be the need for 
implicit measures to detect these personal biases. As pioneers of developing this 
paradigm, Freeman and colleagues, have utilized mouse-tracking in a variety of social 
cognition experiments (Johnson, Freeman, Pauker, 2012; Freeman, Penner, Saperstein, 
Scheutz, Ambady, 2011; Freeman, Pauker, Apfelbaum, Ambady, 2010; Freeman & 
Ambady, 2009). For instance, in a recent study the paradigm is applied to examine the 
process of interpreting ambiguous emotional stimuli consistent with internal biases 
(Mattek, Whalen, Berkowitz, Freeman, 2016). Participants were to assign facial 
expressions (happy, sad, and surprised) into positive or negative labels. During this 
forced choice task they used their computer mouse to choose “negative” or “positive” 
after seeing an image of a facial expression. The surprised facial expressions were the 
main targets as they were the ambiguous option. The results showed that people with a 
certain emotional bias tend to either assign the surprised face to the emotion they are 
biased towards or if they do the opposite their mouse trajectory shows an apparent 
attraction to the alternative option. For example if someone has a negative emotional 
bias they have a more difficult time assigning the ambiguous face to the positive 
category. This hesitation is captured in the nearly continuous movements of their mouse 
by exhibiting a drag towards the other category.  The authors call this a non-modal vs. 
modal interpretation and demonstrate that regardless of the type of emotional bias non-
modal choices take more effort. Using the mouse-tracking paradigm instead of the 
traditional reaction time helps them depict the process that leads to this extra effort. The 
authors also exhibit a critical finding by showing that increasing cognitive load lessens 
the difference between modal and non-modal response trajectories.   

In a similar context, Lazerus et al. used the mouse tracking paradigm to test 
emotional bias towards in-group and out-group members (Lazerus, Ingbretsen, Stolier, 
Freeman, Cikara, 2016). Participants were randomly assigned to two competitive 
groups and were asked to first rate the negativity/positivity of facial expressions of in-
group and out-group members. Further they categorized the facial expressions into 
positive and negative using a computer mouse. The authors found that people judged in-
group faces as more positive, regardless of the facial emotion, both in deliberate rating 
and implicit mouse trajectory judgments. These findings validated the results from the 
mouse-tracking paradigm as it agreed with the explicit ratings.  

In another social cognition setting Freeman, Pauker, and Sanchez (2016) used 
the mouse-tracking paradigm to study racial biases in people with different levels of 
interracial exposure. They used ambiguous mixed-race faces and asked people to 
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categorize them to Black or White. The results confirmed that White individuals with 
limited interracial exposure exhibited a unique pattern of shifting between options for 
mixed-race faces. It was also shown that lower level interracial exposure could serve as 
the base for dynamics of racial judgments and social biases in evaluating mixed-race 
individuals. Moreover, Smeding and colleagues developed a mouse-tracking version of 
Implicit Association Test (IAT) in order to detect biases towards gender-domain 
stereotypical (e.g, male engineers) and counter-stereotypical (e.g., female engineers) 
social groups. By adding the continuous measures from mouse trajectories on top of 
reaction times used in traditional IAT tasks, they were able to depict the details of the 
decision competition in making stereotypical judgments (Smeding, Quinton, Lauer, 
Barca, Pezzulo, 2016). The authors show a competition at the abstract level and the 
sensorimotor level. They conclude that while self-congruency and previously learnt 
social biases have a huge impact on these decisions the role of sensorimotor apparatus 
and features of the experimental design could also play a role in the results we see in an 
Implicit Association Test. 

Mouse tracking has also been applied to visual search scenarios (Quétard, et al., 
2016) where the participants had to make a decision about the existence of a target in a 
real-world scene. The target could be placed in an expected location or an unexpected 
spot. Participants used their computer mouse to report whether the target is present in 
the scene or not. The results provide evidence that the detection and verification of an 
existing object is a process of accumulating information about both the existence and 
absence of a target as competing options throughout an evolving decision. Scenarios 
with targets in unusual locations showed slower decisions and made the mouse 
trajectories deviate towards the ‘absence’ response. Moreover, adding noise to the scene 
reduced mouse velocity. 

In the field of perception, mouse tracking has revealed the ongoing competition 
between options before the perception is complete. It was used in a study on size 
congruity effect, which refers to responses being faster when the numerical size and 
physical size of the stimuli are consistent. A series of mouse tracking experiments were 
conducted to make a comparison between two models of size congruity effect: early 
interaction model which states that the inference happens early on in the 
representational stage and late interaction model indicating that inference happens 
dynamically through the process as a competition between responses. The findings 
provided evidence for the late interaction model by showing that the trajectories are 
more curved when there are incongruities between physical and numerical size. The 
competition between parallel and partially active responses throughout the perception 
process is evident by looking at the continuous measures offered by mouse trajectories. 

Mouse tracking has been tested in studying various areas of cognitive science 
including attention (Xiao, Yamauchi, 2017 ), memory (Koop & Criss, 2016), dual 
cognitive processes (Freeman & Dale, 2013), embodied cognition and linguistics 
(Papesh, 2015), cognitive systems expectancies (Coco & Duran, 2016). It has also 
found its way into ecommerce and online user behavior research (Hibbeln et al, 2017; 
Horwitz, Kreuter, Conrad, 2016). 

This dissertation is an attempt to shed light on the progress of two high level 
cognitive processes, namely deception and prediction using mouse tracking paradigm.  
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As stated by Freeman, Dale, and Farmer (2011) hand in motion reveals mind in motion 
and the current dissertation attempts to take advantage of action dynamics as a simple, 
elegant, arguably ecologically valid and yet very powerful tool to look into the 
dynamics of brain processes. Theoretical debates in deceptive behavior and predictive 
behavior will be assessed through experiments utilizing mouse tracking paradigm. Prior 
to presenting the experimental data, a comprehensive review of mental processes 
involved in deception, and predictive learning will be provided.   

Chapter 2 presents a series of studies in deception. Major debates on the mental 
processes involved in deception will be discussed in this chapter. The experimental 
design and collected data will offer a dynamical systems explanation for the nature of 
the decision to engage in deceptive behavior. Chapter 3 starts with a review on the role 
of prediction in the most recent interpretations of how brains work. This role will then 
be explained in the context of statistical learning and how the structure in the 
environment could give rise to making predictions and therefore learning patterns. The 
chapter reports a series of experiments that are designed to study the emergence of 
predictive mind by tracking the dynamics of hand movements. In these experiments, 
action dynamics are used to track the mental processes as the participants learn the 
underlying patterns of sequences with various levels of structure. Each experiment 
introduces a specific modification to the main framework in order to address a certain 
aspect of this research.  

Chapter 4 is an attempt to model the cognitive behavior observed in the 
experimental results. This chapter will provide the theory and implementation of two 
modeling approaches; a Recurrent Neural Network (RNN) and a more transparent 
model of memory and entropy. A background on Bayesian models and how they can be 
used in this context will also be discussed in this chapter. The final chapter is a general 
discussion with the hope to weave all the mentioned threads into a tapestry that will 
depict a more refined picture of action dynamics in studying cognitive processes and 
more specifically prediction. Further, this chapter briefly discusses the future direction 
and potential follow-up studies. Chapter 5, the final chapter, is a discussion on the 
findings of this dissertation and their implication for the field. 
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Chapter 2 

2. Action Dynamics of Deception 
 
 

We have all been the victim of deception, and given the pervasiveness of little 
lies (DePaulo, Kashy, Kirkendol, Wyer, & Epstein, 1996), on any given day most of us 
are also perpetrators. Deception appears to be a surprisingly common component of 
everyday social interactions (DePaulo et al. 1996; DePaulo, & Kashy, 1998). Inevitably, 
some individuals choose dishonesty over the truth because they find an advantage in 
lying. People are tempted to lie when it serves their self-interest, be it financial, social, 
or emotional. But even so, the question remains: In a tempting situation where being 
dishonest serves one's self-interest, is it easier for people to lie than stay honest, or is 
lying always more cognitively complex?    

The answer to the above is not obvious and has been the target of some debate, 
touching on issues in judgment and decision-making about quick and intuitive processes 
versus slower and deliberative ones.1  There are at least two relevant theories that would 
seem to address the underlying processes of dishonest decisions. One view, stemming 
from Spinoza’s hypothesis about an inevitable truth bias in human belief system 
(Gilbert, 1991), suggests that honesty is the grounded process and is therefore more 
accessible and immediate. From this perspective, in order to act dishonestly, one first 
has to overcome a truth bias, resulting in more time and effort (Duran, Dale, & 
McNamara, 2010; Duran & Dale, 2012; McKinstry, Dale, & Spivey, 2008; Spence, et 
al., 2001). Indeed, most theories of the mechanisms underlying deception imply that 
lying is more cognitively costly (Vrij, Mann, Fisher, Milne, & Bull, 2008; Verschuere, 
& De Houwer, 2011). Those who espouse this view do not often make explicit claims 
regarding precise underlying mechanisms of deception (e.g., whether more implicit or 
deliberative). Yet many accounts referenced above, involve a more or less subtle 
implication that cognitive processes underlying deception are strategically (and thus 
more slowly) deployed in order to serve self-interest.2 

There is, however, another theoretical possibility. A more recent line of research 
argues that dishonesty can be greatly facilitated, perhaps even be “automatic,” and 
therefore will be the first and easier choice in any tempting situation where lying pays. 
This hypothesis predicts that people will need more time and self-control while being 
honest and refraining from cheating (Shalvi, Eldar, & Bereby-Meyer, 2012). Shalvi and 
colleagues (2012) have presented a study showing that dishonesty can in fact be the 
facilitated, rather than the more cognitively costly, response. Given that under time 
pressure people are forced to act as dictated by their more accessible tendencies, Shalvi 
                                                

1 We do not have space to discuss this extensively, but these two notions of fast vs. slow processes have had broad 
influence on social cognitive for decades (e.g., recently, see Kahneman, 2011), and have also been discussed in the 
domain of deception by Seymour and colleagues (Seymour, 2001; Seymour & Schumacher, 2009).  

2 Space limitations restrict our discussion of this tendency here, but many theories imply the 
involvement of cognitive control and related resources in order to deceive, which implies more 
deliberative processes (see: Walczyk, Roper, Seemann, & Humphrey, 2003; Seymour, & Schumacher, 
2009). 
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et al. suggest that, in a situation where one is tempted to lie and is also under high time-
pressure, one will more likely choose to lie. The authors conclude that when lying pays, 
people will automatically choose dishonesty over truth unless they have enough time to 
deliberately refrain from lying. It is also consistent with the literature concerning how 
depletion of self-control can increase the chance of performing dishonestly (Gino, 
Schweitzer, Mead, & Ariely, 2011).  

 
2.1 Experiment 1 
 
Variables often measured in the behavioral studies mentioned above (e.g. reaction time 
or the final answer provided by participants) reflect only the end point of a long 
cognitive process. In order to achieve more information about this longer process, 
action dynamics could provide measures to “peel back” the cognitive processing that 
gives way either to an honest or dishonest response.  

In the study presented here (Tabatabaeian, Dale, & Duran 2015), I used action 
dynamics to investigate people’s behavior when they are naturalistically tempted to act 
dishonestly (as opposed to being explicitly instructed to do so). This allows for testing 
the two competing hypotheses concerning the cognitive processes involved in 
dishonesty. The novel task utilized in the current experiment provides a unique 
opportunity to apply action dynamics to natural act of dishonesty. Inspired by Greene et 
al. (2009), in this study participants were rewarded for their self-reported accuracy in 
predicting a virtual coin flip. The movements of their mouse cursor while reporting the 
accuracy by clicking on Correct or Wrong were recorded and used to illustrate the 
differences between honest and dishonest decisions. If honesty is the default process, 
people who behave dishonestly are expected to have mouse trajectories that, although 
end at the deceptive answer, are curved towards the competing truth response-- 
demonstrating the hesitation and extra effort needed for overcoming the truth bias. On 
the other hand, if dishonesty is specially facilitated in a self-serving situation, dishonest 
people will directly choose the rewarding option even though their prediction was not 
accurate.  

 
2.1.1 Methods 
 

The experiment was programmed as an online Adobe Flash-based game posted 
on Amazon Mechanical Turk (AMT), a web-based crowdsourcing platform. 
Experimenters (i.e., "Requesters") can post their designed task on AMT where 
participants (i.e., "Workers") can sign up and take part in the uploaded task. Workers 
are paid for completing the task. We used a pilot version of the experiment to estimate 
the effective sample size for the study. Moreover, a rough power analysis was run to 
find the required number of observations. However, the work reported here is novel 
enough that it was difficult to run a standard power analysis from past work. 
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2.1.2 Participants  
 

Ninety-seven participants were recruited online through Amazon’s Mechanical 
Turk. They were paid $0.40 for their time. Researchers used a numeric code on the 
server to ensure that participants had actually completed the task, and approved their 
payment on AMT. 

 
2.1.3 Procedure 
 

Participants were instructed to predict the outcome of 20 consecutive coin flips 
with a certain pattern to the sequence of heads and tails, which they may or may not 
notice. They were asked to report their accuracy after each coin flip and were informed 
that they would win a bonus for each correct prediction. Participants were led to believe 
that we were interested in how receiving a reward while making private guesses can 
influence implicit learning of the underlying patterns.  However, after their 
participation, they were debriefed that the study was about response movements of 
people who tend to cheat when lying serves self-interest. 

Following the instructions, participants saw a page that asked them to make their 
prediction and preferably write it down on a piece of paper so that they will not forget. 
This page was repeated before each coin-flip. After making the prediction, they were 
directed to a page where they clicked on a “Flip” button to see an animated coin-flip. 
Once the coin landed, they could go to the next page and report the accuracy of their 
prediction. On this page, they saw two boxes on the top left and top right of the screen 
labeled as “Correct” and “Wrong.” The assignment of labels to left or right side of the 
screen was counterbalanced between subjects. Participants were told to click on one of 
the boxes based on the accuracy of their prediction. If they chose “Correct” they would 
see a message indicating that they had received a bonus. On the other hand, if they 
chose “Wrong” they would see a message indicating that they had received no extra 
bonus. It is worth noting that this procedure assured subjects that they would not be 
caught cheating since their predictions were private and experimenters would never 
know their actual predictions. Figure 1 illustrates the sequence of events in the task.  
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Figure 1. Task sequence: subjects 1) make a prediction, 2) flip the virtual coin, 3) see the outcome and 4) 

evaluate their prediction by clicking on one of the two boxes on top of the screen (i.e. Correct and 
Wrong) which were assigned to left or right on a counterbalanced order. 5) They will be informed that 

they got a bonus (or not) if they report Correct (or Wrong). 

 
Each participant got 20 trials through which the coin outcome was determined 

using a randomized list. This list was made by a random number generator to guarantee 
randomness, with the stipulation that heads and tails appeared an equal number of times 
(50% probability of heads / tails throughout), for each subject. Following the last trial 
participants were prompted to describe any patterns they might have noticed in the 
sequence of flips. At the end, every participant received the same bonus payment ($0.25 
total). All the mouse movements, where participants clicked on "Correct" or "Wrong" to 
report their accuracy, were recorded for further analysis.  

 
2.1.4 Results 
 

Since participants’ predictions were private, we detected lying by comparing the 
distribution of self-reported accuracy with the expected distribution of fair coin-flips. 
Consistent with previous studies in the field (Greene & Paxton, 2009; Shalvi et al., 
2012), the distribution of reported correct predictions in the current study (M = 11.78, 
SD = 2.7) significantly differs from a fair distribution of random coin-flips (M = 10), 
(t(96) = 6.42, p < .001). This suggests that people have actually exhibited dishonest 
behavior. Figure 2 shows the distribution of self-reported accuracy for Experiment 1. 
Obviously, researchers cannot tell whether individuals did or did not lie. However, by 
the logic of this self-serving task, dishonest responses are more likely among 
participants in the rightmost portion of the histogram than on the left. 

Predict

Flip

HEADS

Correct Wrong

Nice prediction!

You will get a bonus



 

 6 

 
Figure 2. Distribution of percentage of self-reported correct predictions, in Experiment 1 

 
Mouse-trajectory shape. Trials with motion times greater than 5000ms were 

removed as outliers (19 out of 1960 trials, approximately 1% of the data).  For the sake 
of visualizing behavioral patterns in mouse movements, participants were labeled as 
“Dishonest” (more than 70% Correct) and “Honest” (less than 55% Correct). The 
mouse trajectories of “Honest” and “Dishonest” participants were interpolated to 101 
time steps (see Spivey, Grosjean, Knoblich, 2005), and superimposed to produce 
average trajectories, which are depicted in Figure 3. The average trajectories of 
“Honest” and “Dishonest” participants show more division while reporting “Correct” 
versus “Wrong”. As shown in Figure 3 the average trajectory for “Dishonest” subjects 
when choosing Correct is shorter and more direct compared to “Honest” subjects; 
suggesting that on average they experienced less hesitation while choosing the 
deceptive answer. 
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Figure 3 The average trajectories of “Honest” vs. “Dishonest” subjects while choosing Correct (solid 

line) or Wrong (dashed line) in Experiment 1 
. 

 
Mouse-trajectory properties. Mouse-movement trajectories allow a wide 

variety of dependent variables that can simply be extracted through analysis of the (x,y) 
coordinates across time. Even though we analyze each independently, they are not 
interpreted independently: The measures should point to similar patterns regarding 
cognitive processes. Put differently, this allows us to “triangulate” from many variables 
the effects on cognitive processing in “Honest” vs. “Dishonest” subjects. Below are the 
definitions of eight variables that have been computed and used to characterize the 
temporal and trajectory behavior for each trial. 

Temporal measures.  The overall time of one trial from the moment a subject 
sees the page containing two choices (Correct, Wrong) to the moment they click on one 
of the two is denoted as total time (msec). Moreover, latency (msec) is the amount of 
time that the mouse cursor stays in a region with 80-pixel radius from the initiation 
point. The region is defined as a latency region, reflecting the time period before 
participants have initiated their decision. Motion time (msec) was calculated as the 
amount of time after the cursor leaves the latency region until the participant clicks on 
the final answer (Correct or Wrong). 

Trajectory measures. Distance (pixels) is the Euclidean distance traveled by the 
trajectory from the initiation point until clicking on the final answer (Correct or Wrong). 
Distance in motion (pixels) is the Euclidean distance traveled by the trajectory after 
leaving the latency region until clicking on the final answer (Correct or Wrong). x-flips, 
a measure of complexity, are the number of times the mouse cursor changes direction 
along the x-axis (i.e., the axis of decision). x-range is defined as the absolute difference 
between the smallest and largest x-coordinate that the mouse reached in transitioning 
towards the chosen answer. This measure can capture the pull toward the alternative 
response (relative amount of attraction). Finally, x-range in motion is the same concept 
as x-range but calculated merely in the motion time.  
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The mean value and standard deviation for each variable for Correct and Wrong 
trajectories are provided in Table 1. It is immediately evident in almost all measures that 
Correct responses by “Dishonest” subjects tend to show more facilitation: faster times, 
shorter trajectory distances, simpler trajectories, etc. 

We conducted a linear mixed effects model with a fully specified random effects 
structure for each of the eight dependent variables. As fixed effects we used total 
accuracy, response type (Correct vs. Wrong), and the interaction term between them. As 
random effects, we had intercepts for subjects, as well as by-subject random slopes for 
the fixed effects. A summary of results is provided in Table 2. 

The model indicated that total time is significantly predicted by response type, 
(B = -60.0, p = .014). The model suggests that a trial reported as correct will be about 
60ms faster than a trial reported as incorrect. Neither the total accuracy nor the 
interaction term was significant. The results held the same pattern for motion time, as 
the response type was a significant predictor (B = -52.1, p = .016). 

The analysis revealed that total accuracy had a significant effect on distance     
(ß = -15.8, p = .003). That is, the total distance along the trajectory was shorter for 
people with a higher percent correct. This suggests that participants who are more likely 
to be dishonest had shorter and more direct trajectories indicating less hesitation and 
more confidence. Similarly, total accuracy had a significant effect on distance in motion 
(ß = -13.8, p = .012).  
 

 
 
 
 

Table 1  
Means and Standard Deviations of the Mouse Trajectory Variables by Honesty 

and Response Type 
Experiment 1 

 Dishonest  Honest 

        
Correct  Wrong  Correct Wrong 

Variable M SD M SD  M SD M SD 
Total time (msec) 1175.31 584.50 1165.76 641.70 1183.82 495.10 1268.44 630.70 

Motion time 
(msec) 909.00 444.29 919.02 529.50 938.86 425.60 1004.58 542.45 

Distance (pixels) 879.24 280.00 870.17 203.50 1012.16 537.90 915.71 342.30 

Distance in 
mot. 

739.90 275.63 720.03 219.00 866.35 544.24 776.3 348.18 

x-range 462.97 132.37 467.66 110.35 510.65 192.01 472.33 142.34 

x-range in 
mot. 401.02 161.28 407.21 140.53 458.22 221.80 419.15 169.68 

x-flips 0.95 0.97 0.98 0.97 1.30 1.31 1.15 1.21 
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In the case of x-flips (using Poisson distribution), total accuracy also had a 

significant effect (ß = -0.04, p = .016), suggesting that number of x-flips was slightly 
lower in participants who are more likely to be dishonest. Thus, changes in direction of 
mouse movements happened less often in “Dishonest” participants, indicating they had 
more confidence in their decision. We conducted the same model on x-range and x-
range in motion. The analysis showed that total accuracy was also a significant 
predictor of x-range (ß = -5.1, p = .027) and x-range in motion (ß = -6.64, p = .012). 
This shows that “Dishonest” subjects illustrated more direct and less curved trajectories. 
Moreover, we obtained a significant interaction between the total accuracy and response 
type in predicting x-range. The interaction between subjects' total accuracy and whether 
Correct was reported as the outcome of the trial provided a significant effect on x-range 
(ß = -8.8, p = .015). Thus, as it is also evident in average trajectories (Figure 3) 
“Dishonest” participants showed less deviation towards the truthful alternative while 
choosing the deceptive answer. 

 While the variety of dependent variables in this experiment might make the 
audience wonder if we had to run multiple tests for comparing each pair of variables, it 
is important to note that we conducted one primary model to assess the general trend of 
differences. All of the defined metrics are pointing to the same direction and the 
analysis show that they agree on what we capture as the over-all picture. 

 
2.1.5 Discussion 
 

The results from this experiment indicated that people show less complexity in 
their mouse trajectories when they are being dishonest in incentivized tasks. 
“Dishonest” participants showed shorter and relatively direct mouse trajectories with no 
significant signs of hesitation. While being deceptive, their trajectories were more direct 
with less deviation towards the alternative response, illustrating less effort and time. 
“Honest” participants on the other hand, were demonstrating hesitation with longer 
trajectories and more attempts to change the direction of the mouse cursor. Consistent 

Table 2 
Coefficient estimates from mixed-effects models predicting variables in Experiment 1 

Variable       Total Accuracy Response type  Interaction     

   Coeff Std 
Err t.value  Coeff Std 

Err t.value   
Coeff 

Std 
Err t.value 

Total time (msec) -1.92 13.75 -0.14  -60.09 24.63 -2.43*  1.18 10.77 0.10 
Motion time (msec) -3.23 10.91 -0.30  -52.16 21.82 12.39*  -0.45 9.23 -0.05 
Distance (pixels) -15.84 5.49 -2.9**  32.30 25.68 1.26  -16.98 9.39 -1.80 
Distance in 
motion(pixels) -13.88 5.58 -2.48*  25.91 25.81 1.00  -13.07 9.71 -1.34 

x range -5.12 2.32 -2.2*  11.48 10.23 1.12  -8.86 3.66 -2.42* 
x range in motion -6.64 2.66 -2.5*  9.36 12.44 0.75  -8.47 4.66 -1.81 
x flips -0.04 0.02 -2.4*  0.001 0.06 0.02  -0.01 0.02 -0.85 

* p<.05.  ** p<.01. 
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with the second theory (Shalvi et al., 2012; Greene & Paxton, 2009), the results suggest 
that cognitive processes can indeed be facilitated during dishonest decisions. However, 
motivation/self-interest is a key task variable that determines which theory will make 
the right relevant predictions. In this experiment, self-interest was provided by 
monetary bonus which seems to have triggered temptation and therefore the observed 
effects in “Dishonest” participants. Next section presents an experiment where there is 
no monetary reward offered. The main objective of this follow-up experiment is to 
assess the influence of self-interest in the existing effects.  

 
2.2 Experiment 2 
 

The previous experiment introduced a task in which participants were not 
explicitly asked to act dishonestly. Rather, the task tempted them to cheat by offering a 
bonus payment, under the impression that they are detecting a pattern in the coin flips. 
In a follow-up experiment, I wished to assess if offering extra bonus does indeed induce 
temptation to lie in participants. I used the same set up as Experiment 1, only without 
rewarding participants with a bonus for their accuracy.  

 
2.2.1 Method 
 

In this experiment, participants were asked to report their accuracy after each 
coin-flip and whether they noticed any pattern in the sequence of heads and tails 
overall. We expected the effects from the previous experiment to be diminished to some 
extent. 

 
2.2.2 Participants and Procedure 
 

Ninety-five subjects were recruited through AMT.  The procedure was the same 
as Experiment 1, except no bonus was given. Participants were led to believe that the 
main objective of the study was to assess whether implicit learning of underlying 
patterns is possible through the process of guessing privately and receiving feedback. 
Participants were debriefed about the actual goal of the study after completing the 
experiment. 

 
2.2.3 Results 
 

The number of “Dishonest” participants (who claimed more than 70% correct) 
was smaller compared to Experiment 1 (9 vs. 16) as well as the maximum self-reported 
accuracy (85% vs. 90%). Nevertheless, this distribution still showed significant 
difference from a fair distribution of coin flips (t(94)=5.04,  p < .001). This bias could 
be caused by people’s desire to show successful performance in the task and learning 
the underlying patterns. Figure 4 shows the distribution of percentage correct reported 
by all 95 subjects.  
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Figure 4. Distribution of percentage of self-reported correct predictions, in Experiment 2 

 
Mouse-trajectory shape. Figure 5 shows the average trajectories of “Honest” 

subjects compared to “Dishonest” subjects. It appears that, indeed, incentive was 
driving the cognitive facilitation, as there is not much difference between the “Honest” 
and “Dishonest” average trajectories while choosing Correct.  

 

 
Figure 5. The average trajectories of “Honest” vs. “Dishonest” subjects while choosing Correct (Solid 

line) or Wrong (dashed line) in non-incentivized condition. 

 



 

 12 

Mouse-trajectory properties. Trials with motion times greater than 5000ms 
were discarded prior to analysis (0.4%). Mean values and standard deviations for all 
dependent variables in Correct and Wrong trajectories are listed in Table 3.  

The same linear mixed effects model with total accuracy and response type as 
fixed effects was used to analyze the data from the second experiment. Total accuracy 
and the response type (Correct, Wrong), did not have any significant effect on total time 
or motion time. Similarly, I did not find any significant effect on x-range, x-range in 
motion, x-flips, distance, or distance in motion. Detailed results are provided in Table 4. 

 
 
 

 
 
 

 

 
 

Table 3 
Means and Standard Deviations of the Mouse Trajectory Variables by 

Honesty and Response Type in Experiment 2. 
 Dishonest  Honest 

        
Correct  Wrong  Correct Wrong 

Variable M SD M SD  M SD M SD 
Total time 
(msec) 1062.3 506.22 1102.75 595.38 1075.27 501.11 1065.10 517.33 

Motion time 795.26 358.58 824.54 423.35 852.38 399.55 848.26 422.70 

Distance 893.37 313.83 963.40 388.83 922.17 381.27 962.33 361.73 

Distance in 
mot. 

743.66 314.38 814.85 402.81 783.22 381.93 825.72 366.53 

x-range 466.43 130.83 487.52 141.46 475.02 156.25 509.40 169.25 

x-range in 
mot. 410.11 158.15 432.56 176.67 425.87 182.98 460.87 197.75 

x-flips 1.19 1.27 1.5 1.36 1.02 1.13 1.06 1.05 

Table 4 
Coefficient estimates from mixed-effects models predicting variables in Experiment 2. 

Variable       Total Accuracy Response type  Interaction     
   Coeff SE t.value  Coeff SE t.value  Coeff SE t.value 
Total time (msec) 12.14 11.77 1.03  -1.62 20.97 -0.08  1.40 8.83 0.15 
Motion time (msec) 4.4 8.11 0.54  -2.3 17.83 -0.12  2.19 7.43 0.29 
Distance (pixels) -4.85 5.71 -0.85  -20.75 20.17 -1.03  -2.21 9.33 -0.23 
Distance in motion -6.62 5.65 -1.17  -22.40 20.24 -1.11  -2.10 9.37 -0.22 
x range -3.13 2.45 -1.27  -16.77 10.19 -1.64  1.44 4.28 0.33 
x range in motion -3.66 2.98 -1.23  -19.26 12.40 -1.55  1.87 5.13 0.36 
x flips 0.02 0.01 1.24  -0.02 0.06 -0.40  -0.03 0.02 -1.20 

* p<.05.  ** p<.01. 
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2.2.4 Discussion 
 

As expected, these results suggest that the effects from Experiment 1 are no 
longer present after discarding the reward and therefore the temptation to lie. The 
current experiment provides a framework to focus on studying the role of self-benefit in 
participants’ performance. The clear difference observed in the behavior of “Dishonest” 
and Honest” participants is no more evident after discarding the monetary benefit. The 
results from these two experiments clearly reiterates the recent findings by Shalvi et al. 
indicating that lying is only facilitated or “automatic” when there is a self-interest or 
benefit in doing so. 

This, however, raises an additional question: to what extent are the results 
dependent on the nature of the task? Are the effects observed here driven by the details 
in task setting rather than a more general underlying cause? The level of difficulty in 
this task is another concern that needs to be addressed as it could directly affect the 
performance of participants and the mental processes involved in producing the 
observed effects.  The next experiment is an attempt to increase the difficulty of the task 
while testing the influence of task properties on the results. 

  
2.3 Experiment 3 
 

In the previous experiments, participants were instructed to click on the box 
labeled “Correct” if their prediction matched the actual outcome of the coin flip and 
click on “Wrong” otherwise. One possible criticism of this procedure is the ease of the 
task; one can automatically choose “Correct” all the time without getting engaged in 
decision-making processes throughout the experiment. In other words, participants can 
decide to always immediately click on “Correct” regardless of their actual accuracy. In 
order to address this concern, Experiment 3 adds more difficulty to the task. Instead of 
clicking on boxes labeled as “Correct” and “Wrong,” participants were instructed to 
click on the box with a label consistent with their prediction: “Heads” or “Tails.” It is 
hypothesized that by doing so, participants cannot decide about the answer at the 
beginning of a trial; instead they need to actively track the outcome of the coin flips in 
order to cheat.  Thus, it is impossible to win extra money if they are not actively 
engaged in the task. If dishonesty is always facilitated in a tempting situation, 
independent from the task nature, we expect to replicate the results from the previous 
work. 

 
2.3.1 Participants 
 

Ninety-one participants were recruited online through Amazon’s Mechanical 
Turk (AMT). They were paid $0.40 for their time. A numeric code on the server was 
assigned to the participants to ensure that they had actually completed the task, and 
approved their payment on AMT. 
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2.3.2 Procedure 
 

The procedure is very similar to Experiment 1. Participants were instructed to 
privately predict the outcome of a computerized coin flip 20 times. When ready, the 
participants could click on a button labeled as “Flip,” which triggered a computer 
animated coin flip with an outcome determined by a random generator to have equal 
probability for heads and tails. Once the coin landed, participants were directed to a 
page that contained two boxes labeled as “Heads” and “Tails” on the top left and top 
right of the screen. The mouse cursor was automatically placed on the bottom center of 
the screen and the participants were expected to move the mouse towards the desired 
option. The trial only finished after the participants finalized their decision by clicking 
on one of the responses. If their prediction was consistent with the actual outcome of the 
coin flip, they were shown a message indicating that they have won a bonus. Otherwise, 
they were informed that no bonus was awarded.  The mouse trajectory and final 
response for each trial were collected for further analysis. Figure 6 displays the task 
sequence. 

 

 
Figure 6. Task sequence: subjects 1) make a prediction, 2) flip the virtual coin, 3) see the outcome and 4) 

report their prediction by clicking on one of the two boxes on top of the screen (i.e. Heads and Tails) 
which were assigned to left or right side counterbalanced. 5) They will be informed that they got a bonus 

(or not) if their report was consistent (or inconsistent) with the actual outcome. 

 
2.3.3 Results 
 

Ten subjects failed to complete all 20 trials and were excluded from the analysis. 
Data from 81 remaining participants were used to run the statistical analysis. Trials with 
total times greater than 5000ms were discarded prior to analysis (0.4% of data).  As 

Predict

Flip

HEADS

Heads Tails

Nice prediction!

You will get a bonus
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participants’ predictions were private, we detected lying by comparing the distribution 
of self-reported accuracy with the expected distribution of fair coin-flips. The 
distribution of reported correct predictions (M= 12.70, SD = 3.1) was significantly 
different from a fair distribution of random coin-flips (M = 10), t(80) = 7.70, p < .001. 
The analysis suggests that participants have been dishonest at the group level. Figure 7 
shows the distribution of self-reported percent correct.  Even though the task set up 
makes it impossible to distinguish dishonesty on an individual basis, dishonest 
responses are expected to be more prominent in the rightmost portion of the 
distribution. Here we investigate the shape and properties of the mouse trajectories for 
potential honest and dishonest decisions.  

 

 
Figure 7. The distribution of percentage of self-reported correct predictions. 

 
 

Mouse-trajectory shape. Participants were labeled as “Honest” and 
“Dishonest” based on their performance in the experiment. 31 participants with more 
than 70% accuracy were classified as “Dishonest” while other participants were 
considered as “Honest.” 70% was chosen as a point where is significantly beyond what 
was expected from a binomial distribution considering conventional .05 level 
probability cutoffs.  

In order to investigate the average performance of each group, 100 time steps 
were interpolated to produce average trajectories, which are represented in Figure 8. 
Trials in which the reported prediction (heads or tails) was consistent with the outcome 
of the coin flip were considered “Correct” and trials of the opposite kind were marked 
as “Wrong.” Showing a different pattern from the previous findings, average 
trajectories for correct do not illustrate any significant disparity between “Honest” and 
“Dishonest” participants. However, surprisingly, the difference appears to be captured 
by wrong trajectories. Figure 8 demonstrates the difference between the current findings 
(the graph on top) and the results from Experiment 1 (bottom graph). 
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Figure 8. The figure on top shows the average trajectories of “Honest” (black) vs. “Dishonest” (gray) 

subjects while reporting correct (solid line) or wrong (dashed line) predictions in the current experiment. 
The bottom figure shows the corresponding trajectories from Experiment 1. 

 
A possible explanation, given that there is approximately no difference between 

“Honest” and “Dishonest” in correct trajectories, is the influence of repetition priming. 
In correct trials participants only have to choose the option that is consistent with what 
they saw on the screen (heads or tails), thus they are much faster in choosing the 
matching option. On the other hand, when reporting a wrong prediction, they have to 
click on an option that is inconsistent with what they were shown on the screen. Thus 
they are expected to take more time to respond. However, there is a substantial 
difference between “Honest” and “Dishonest” trajectories in wrong trials with 
“Dishonest” participants exhibiting more complexity when being honest. Their average 
trajectory captures a desire to report the alternative deceitful option. Although, both 
groups are slower in reporting an inconsistent response, “Dishonest” people are slower 
with more deviated trajectories. Next, we compare these trajectory shapes by extracting 
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measures from them and conducting further analysis on their quantified properties in 
terms of extent, complexity, etc.  

Mouse-trajectory properties. The total time and motion time are temporal 
measures, whereas other variables mainly capture the dynamic changes along the mouse 
trajectory coordinates. Table 5 provides the mean values and standard deviations of the 
dependent variables for correct and wrong trajectories grouped by honesty. For each of 
the four dependent variables, a linear mixed effects model with a fully specified random 
effects structure was conducted. I used honesty (Honest vs. Dishonest), response type 
(Correct vs. Wrong), and the interaction term between them as fixed effects. As random 
effects, I had intercepts for subjects, as well as by-subject random slopes for the fixed 
effects.  

A noticeable difference in the analysis of the current experiment is that in 
Experiment1 and 2 total accuracy was treated as both a continuous and discrete effect. 
However, for simplicity and clarity of presentation, in the current experiment I report 
the results by classifying the participants into “Dishonest” (total accuracy >= 70%) and 
“Honest” (total accuracy < 70%). Thus, in the current analysis I chose honesty as a 
discrete fixed effect. A summary of results is provided in Table 6. 

The models for temporal measures showed that response type has significant 
effects on total time (ß = -138.42, p < .001). All participants exhibited shorter reaction 
times (about 138 millisecond faster) when reporting a correct prediction; by clicking on 
the response that was consistent with the outcome of the coin flip. The results fit with 
the intuitive interpretation that emphasizes the effect of repetition priming. 
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The model for x-range also supports the effect of response type. Reporting a trial 
as correct is a significant predictor of x-range (ß = -25.2, p < .001). Correspondingly, we 
found a marginally significant interaction between response type and dishonesty for x-
range (ß = -26.91, p = .08), suggesting that “Dishonest” participants had less curved 
mouse trajectories when answering correct versus wrong. However, “Honest” 
participants experienced a less dramatic change in their x-range when reporting a 
correct versus a wrong prediction. This offers some preliminary evidence that mouse 
trajectories of “Dishonest” participants were pulled towards the deceitful alternative 
when they were being honest, whereas “Honest” participants did not show any 
substantial difference in their trajectories regardless of the response type. Figure 9 
illustrates the interaction between response type and honesty.  

 

 
                            Figure 9. Average x-range grouped by honesty and response type. 

 
The number of x-flips, which can be an indicator of hesitation, is significantly 

influenced by response type (ß = -0.31, p < .001). When reporting a correct prediction, 
participants changed the direction of their mouse cursor about 30% less compared to 
trials reported as wrong. This suggests that all participants experienced less hesitation 
while choosing the consistent response either truthfully or as a deceptive answer. 

The other variable that shows the cognitive process correspondent to the mouse 
trajectory is the absolute distance that the mouse cursor has traveled. Distance is 
significantly predicted by response type (ß = -70.45, p < .001), as correct trials contain 
shorter and more direct trajectories. Moreover, there is a significant interaction between 
honesty and response type (ß = -84.8, p = .03), suggesting that “Dishonest” participants 
had longer and more curved mouse trajectories while reporting a prediction as wrong.  

 
2.3.4 Discussion 
 

The difference between “Honest” and “Dishonest” participants, which was 
previously captured in correct trajectories, is now evident in wrong trajectories. Put 
another way, “Dishonest” participants merely exhibit a deviation from others when they 
are reporting their prediction as wrong (i.e. being honest). In such situations their 
trajectories demonstrate a pull towards the deceitful answer, indicating a desire for 
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lying. More than facilitation in lying, the results revealed a signature of temptation to 
cheat in “Dishonest” participants, while being honest. Thus, it appears that changing the 
nature of the task directly influences the facilitated process. In the current task, it is not 
dishonesty that is facilitated; rather the more intuitive process that maintains response 
consistency is the dominant process.  

The task setup dictates an advantage for responses that are consistent with the 
outcome of the coin flip. These responses happen to be the tempting option and 
therefore make it difficult to study the dynamics of dishonest responses.  Although 
repetition priming makes correct responses easier for all participants, it helps 
distinguish “Honest” and “Dishonest” participants when they select an answer opposite 
to what they were shown. It is hard for everyone to report an inconsistent response but 
more so for “Dishonest” participants, as they attempt to develop a self-serving strategy 
as well. The results reveals that the task modification forces the difference between the 
two groups to appear in wrong trajectories rather than correct trajectories. “Dishonest” 
participants tend to be slower and more hesitant compared to “Honest” participants. 
They show longer and more curved trajectories, indicating their desire to lie when they 
chose the truthful option.  

 
2.4 Discussion 
 

In these series of experiments, I used a novel action-dynamics paradigm to test 
two competing theories concerning cognitive processes underlying dishonesty. 
Participants were put in a tempting situation, where they could cheat to earn money. 
They reported the accuracy of their prediction by moving the mouse cursor to the top 
right or top left of the screen (labeled as Correct or Wrong). The goal was to track their 
mouse movements while reaching for the option that can be chosen either truthfully or 
by cheating. As mouse trajectories are shown to be representative of underlying 
cognitive processes in decision-making, we expected honest and dishonest decisions to 
demonstrate significantly different shapes of mouse trajectories. Assuming that honesty 
is the grounded process, as predicted by the first theory (Gilbert, 1991; Duran, Dale, & 
McNamara, 2010; Duran & Dale, 2012; McKinstry et al., 2008; Spence et al., 2001), it 
should happen spontaneously with less hesitation and in shorter time, which results in 
shorter and more direct mouse trajectories. On the other hand, if lying to serve self-
interest is the more facilitated process (Greene & Paxton, 2009) or the “automatic 
tendency” (Shalvi et al., 2012), as stated by the second theory, we expect dishonest 
decisions to happen faster with more confidence and less effort, causing shorter and less 
curved mouse trajectories. 

Based on the current findings, people show less complexity in their mouse 
trajectories when they are being dishonest in incentivized tasks. “Dishonest” 
participants showed shorter and relatively direct mouse trajectories with no significant 
signs of hesitation. While being deceptive, their trajectories were more direct with less 
deviation towards the alternative response, illustrating less effort and time. “Honest” 
participants on the other hand, were demonstrating hesitation with longer trajectories 
and more attempts to change the direction of the mouse cursor. Consistent with the 
second theory (Shalvi et al., 2012; Greene & Paxton, 2009), our results suggest that 
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cognitive processes can indeed be facilitated during dishonest decisions. However, 
motivation/self-interest is a key task variable that determines which theory will make 
the right relevant predictions. 

Importantly, a feature that distinguishes the two theories is the type of task each 
implies. It appears that, the second theory is often invoked in tasks where the dishonest 
response is known in advance and serves the interests of the participant; tasks on which 
the first theory is based, tend to be prompted deception paradigms, in which self-serving 
dishonest decisions may not be present. The goal in the present study was to design a 
task in which we could extract the real-time cognitive processes of participants who are 
tempted to lie. By doing so, we were able to track the time course of processing, and 
test predictions from these two accounts.  

Considering a more general and task-independent interpretation of the results, 
we could see the behavior observed from both “Honest” and “Dishonest” participants as 
a parallel-competition between different alternative choices that are fighting to dictate 
the final output process (McKinstry et al., 2008). Thus, there may not be an inevitable 
sequential order to honesty and dishonesty, where one process is always the preliminary 
tendency, being occasionally blocked by the other one. Rather, we suggest the 
possibility of a continuous parallel competition between the two options, which can 
favor any of the two, given the circumstance and the nature of the task.  

Experiment 3 suggests that task variables indeed determine whether and how 
self-serving biases are reflected in cognitive dynamics. The present manipulation of the 
task seems to offer a more realistic picture of naturalistic deception by capturing the 
temptation to behave dishonestly. In a tempting situation, dishonesty is not always the 
facilitated tendency; rather it is one of the competing processes that may or may not 
come to govern responses. Importantly, it is not easy to disentangle all different task 
variables that are producing the effects. One cannot be sure if repetition priming is 
responsible for all of the observed effects. However, these findings start a promising 
trend for discussion.  

Analyzing the dynamics of human hand movements in deceptive behavior 
reveals a good deal about the decision making processes underlying such behavior. 
Tracking the action dynamics helped capture a nearly real-time picture of deceptive 
behavior as it unfolds. Moreover, a signature of hesitation and temptation was found in 
recorded data as “Dishonest” and “Honest” participants made gradual movements 
towards an honest or deceitful option. Nevertheless, despite all effort, deception has 
been shown to be extremely difficult to study. As a rich tapestry of complex and multi-
level cognitive processes, deception resists simplicity. It imposes social and moral costs 
on subjects which makes it extraordinarily difficult to control in an isolated 
experimental design. On the one hand it is nearly impossible to keep track of one’s 
deceptive behavior but not giving them the fear of being caught. On the other hand, 
detecting deception post hoc is repeatedly shown to be a true challenge even for experts 
(Bond, 2008). Moreover, there are many different types of deception present in human 
behavior while there is no agreed upon definition for this complex phenomenon in the 
literature. Different types of deceptive behavior, cheating, and dishonesty are driven by 
a wide range of motivations, moral backgrounds and carried by a combination of 
cognitive processes. All this makes deception not a perfect area for studying fine 
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grained real-time processes in a controlled and isolated setting. That is why this paper is 
going to change gears towards a relatively more narrowed cognitive phenomenon that 
provides an opportunity to get an accurate picture of the involved mental processes. 
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Chapter 3 

3. Action dynamics of Prediction  
 

In the current chapter, prediction in sequence learning is the scenario that I will 
be exploring to make a case for how action dynamics are weaved into the mental 
processes as they unfold. While deception tends to be an extraordinarily difficult 
phenomenon to capture, this chapter will take advantage of action dynamics to study a 
more narrowly scoped and tangible process instead: learning.  

In the following sections, I will explain the theoretical background and 
experimental plan for studying the onset of prediction in environments with different 
levels of regularity and structure. While there is much research conducted on various 
aspects of sequence learning in humans, the role of prediction in these learning 
processes has been neglected. What follows is an attempt to shed light on the 
emergence of predictive mind and the role of prediction in implicit or explicit learning 
of sequences. The current chapter provides a literature review on prediction as the main 
function of the brain while presenting statistical learning as a framework for studying 
prediction. Further, this chapter lays out a precise experimental design and provides 
evidence for the role of prediction in statistical learning by offering data from a series of 
mouse tracking experiments. 

 
3.1 Prediction 
 

Imagine you are reading a book at a coffee shop and, while busy reading, reach 
for the cup that you think is full of coffee.  Your hand picks up the cup with a certain 
amount of force and it suddenly goes too far high in the air. That is the moment you 
realize the cup was empty. Where did you get the estimation on how much force you 
should put in picking up that cup? In other words, where does the prospect of the 
experience of picking up a cup of coffee come from? The same goes when you go up 
the stairs and climb through an imaginary extra step. Immediately after your foot goes 
through the imaginary step your brain realizes something went wrong. In such 
experiences, everything points out to an expectation that the brain held but the input 
data did not meet.  

  “Brains, it has recently been argued, are essentially prediction machines” (Clark, 
2013, p. 1). In his article on predictive brains, Andy Clark draws evidence on how 
brains are shown to support perception and action by a never-ending attempt to match 
the input data to their top-down expectations or as we will refer to it in this paper: 
predictions. Clark suggests that “brains as hierarchical prediction machines” is the 
approach that provides the strongest explanation, to-date, for how the brain works in 
unifying perception, cognition, action and even attention (2013). The brain does this 
through hierarchical generative models, the main responsibility of which is to minimize 
the error in prediction of input. It appears that the higher-level systems in the brain are 
constantly trying to compare the bottom-up input data to the models they hold about the 
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cause or source of the input signal. Any error in these expectations would be corrected 
to help the brain adapt to the environment and increase accuracy in allocating the source 
of input.  

The top-down expectations would also dictate the lower-level systems on how to 
capture the sensory input. In other words, a copy of the top-down expectations would be 
sent to the lower level systems to structure the bottom-up input in the most expected 
pattern. The brain will not form a model of the world by passively accumulating input 
data from the lower level systems; rather it tailors the input data to fit one of its best 
models of the current state of the world.  A very efficient way for encoding input data in 
a hierarchical generative model is to code only the surprising aspects of the input. That 
means the only necessary coding is where the data are not consistent with the 
predictions of the model. Otherwise the model can easily fill in the gaps and make sense 
of the input. This kind of coding is known as predictive coding and is not an invention 
of the computational neuroscience field. Predictive coding was first used as a data 
compression technique (Said & Pearlman, 1993), where in image transmission the only 
data transferred from an encoded image are the values of the unpredictable pixels.  

In an account of unifying perception and action by means of prediction it is 
important to note that they all work towards active minimization of prediction error.  
Learning is the process through which the internal models get updated to minimize the 
prediction error. Thus, prediction and learning are closely entangled.  In the current 
section, I focus on a certain type of learning as it is the main theme of this chapter: 
sequence learning. What follows is a general review on sequential learning through the 
lens of prediction and how the notion of predictive behavior plays a role in this area. By 
that, I hope to lay out a platform for the experimental work presented in the future 
sections.  

3.2 Sequential Learning 
 
“Thinking of going to the next pattern in a sequence causes a cascading prediction of 
what you should experience next. As the cascading prediction unfolds, it generates the 
motor commands necessary to fulfill the prediction. Thinking, predicting, and doing are 
all part of the same unfolding of sequences moving down the cortical hierarchy.” 
(Hawkins & Blakeslee 2004, p. 158). 

An ongoing debate in the field of sequential learning establishes a dichotomy 
between retrospective or memory-based learning versus predictive or implicit learning. 
Some researchers believe that there are two separate systems underlying implicit and 
explicit learning while others see these two as functions of the same system. The school 
of thought which believes that people can implicitly learn the abstract rules in a 
sequence of stimuli is referred to as the two-system view (Mewhort and Jamieson, 
2009).  On the other side of the debate are researchers who argue that this performance 
in learning sequences is not the result of a separate learning system a.k.a implicit 
learning. Rather, it is only due to recent memory of the local structures in the sequence. 
It is not necessarily a predictive learning system but a retrospective simple memory 
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retrieval that gets better by more practice and more redundancy in the sequence 
(Jamieson & Mewhort, 2009; Cleeremans & McClelland, 1991).  

 
3.3 Serial Reaction Time Paradigm  
 

One of pioneering frameworks in studying sequential learning is the Serial 
Reaction Time task introduced by Nissen and Bullemer (1987). In their initial 
experiment, subjects saw lights appearing at four different locations on a computer 
screen and were instructed to press one of the four keys each of which were assigned to 
a particular light location. Subjects were assigned to two different conditions with the 
main difference being in the stimuli sequences; in the repeating sequence a same pattern 
of sequence repeated over and over while in the random condition the appearance of 
lights on the screen was chosen to be random and followed no specific pattern.  

Through 8 blocks of 100 trials subjects in the random condition showed no 
meaningful difference in their reaction time, whereas in repeating condition subjects 
improved significantly showing 163ms decrease in their reaction time. Subjects’ 
accuracy was high throughout the task but in the repeating condition they showed 
improvement by practice, especially in the initial blocks. Almost every subject in 
repeating condition reported that they had noticed a pattern in the sequence of stimuli 
and reproduced the pattern by pointing to the locations on the screen in the order they 
believed was the correct order.  

In a follow-up experiment, Nissen and Willingham (1989) recruited patients 
with amnesia to compare their performance with control healthy subjects. The authors 
suggest the fact that patients with amnesia could learn the task despite severe 
impairments in consciously recalling verbal and nonverbal information provides support 
for the separateness of the procedural system.  

To explore the retrospective theory of sequential learning, (Jamieson & 
Mewhort, 2009), designed experiments as well as simulations that used modifications of 
existing memory retrieval models to capture participants’ performance in sequential 
learning. Their empirical results are consistent with previous results (Nissen & 
Bullemer, 1987; Nissen & Willingham, 1989), showing that more structured sequences 
cause faster reaction times, even though participants can not explicitly point out the 
rules of the grammar. However, their simulation results replicate performances very 
similar to SRT task by only relying on memory retrieval and no learning. They argue 
that the faster responses in repetition phases of SRT task denotes that people could be 
using the repeated local structures in a memory based learning.  

In another critique of SRT task, Jackson and Jackson (1995) argue that studies 
of implicit learning including the famous Serial Reaction Time task may not be 
assessing what they are widely believed to be. The authors mention how the measures 
used in such tasks do not provide any evidence for having an entirely different 
subsystem for implicit learning, as the task does underestimate different sources of 
information available to subjects. They demonstrate that subjects' knowledge of serial-
order could be independent of subjects' knowledge of the statistical structure of the 
sequence.  
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A recent experimental paradigm designed to explore the retrospective and 
predictive processes underlying sequence learning is presented by Duran and Dale 
(2010). This paradigm, inspired by Hunt and Alsin (2001) and Nissen and Bullemer 
(1987), requires subjects to predict the location of the next appearance of the target on 
the screen. Participants have to move the mouse-curser to where they think the next 
target will show up and click on the target as soon as it appears. The coordinates of the 
mouse-cursor are recorded while participants are moving towards the predicted 
location. Compared to the classical paradigms of serial learning, this task is simple, 
short, and only captures the start of the learning behavior. Nevertheless, these 
continuous movement patterns provide an advantage for this study as it is possible to 
observe and analyze not just the final decision of the participants but the process that 
gave rise to that decision and the corresponding reaction time. The dynamics of making 
that decision, as it unfolds in hand movements through time, reveal the initial mental 
processes underlying the learning behavior. This could offer further explanations for 
how retrospective and predictive models interact in sequence learning. The results 
suggest that most participants do, in fact, exhibit predictive behavior through different 
strategies. Although the participants may not be predicting a particular location, 
especially in a randomly generated sequence of target locations, they show anticipatory 
behavior of some kind that could lead to more specific predictions when there is more 
regularity in the sequence of stimuli presentation. The question arising is: when does the 
change in prediction pattern happen? 

What is the golden regularity point at which most participants start going for 
more particular predictions rather than being in a general anticipatory mode? How long 
does it take for the participants to find assurance in structure of the environment and 
begin to predict more specifically and more confidently? These questions along with 
other concerns of the sort provide the theoretical motivation for the series of 
experiments presented here.  

Each of the following experiments attempts to address different aspect of the 
questions that arise while exploring the onset of prediction in humans. The gradual 
modifications in the experimental design pursue the goal of capturing a rather realistic 
image of predictive behavior in environments with different levels of structure and 
uncertainty.  

 
3.4 Experimental Framework 
 

I shall take advantage of this section to establish the main experimental 
framework for all the studies proposed in the current document. This framework is 
inspired by Duran and Dale (2010); utilizing the same paradigm but different patterns of 
stimuli. The goal is to switch from presenting a random sequence of target locations to a 
more regular and predictable sequence of locations. In a between-subject design I wish 
to study the level of regularity in the environment which triggers predictive behavior in 
participants. Detailed modifications for each experiment would be discussed in the 
corresponding section. 
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3.4.1 The Stimuli Format 
 

The interface is designed in Adobe Flash and consists of a fixed size 500-by-
500-pixel white region in the center of the user’s Internet browser window. The target is 
a 35-pixel diameter black circle that periodically shows up at one of the four corners of 
the white region. For each participant the circle appears 48 times with intervals of 750 
milliseconds. The sequence in which order the target circle appears at corners of the 
white region is set differently in each of the three experimental conditions. The key 
constrain is that the target circle could not appear in the same location consequently. 
Moreover, the circle has to appear an equal number of times in each of the four 
positions (1,2,3,4) throughout the 48 trials. A view of the task interface is shown in 
Figure 10.  

 
Figure 10. A screenshot of the task environment on a web browser (Dale et al. 2012) 

 
3.4.2 The Stimuli Regularity 
 

The major difference between experimental conditions lies in the structure of the 
48 trial sequence. Changing the regularity in the pattern of presented stimuli provides 
the difference between conditions that participants are assigned to. There is more than 
one solution for producing sequences with a desired level of regularity. Here, I briefly 
describe two common approaches used in the literature for producing sequences that 
follow specific patterns of regularity.  

A well-known approach in the field is to use a finite state language to produce 
grammatical sequences (Chomskey & Miller 1958, Reber 1967,Reber & Allen 1978). A 
set of letters (or numbers) is used as the vocabulary and combined based on a set of 
rules for constructing sentences that follow the grammar. A hypothetical state diagram 
for combining the numbers 1,2,3, and 4 based on a set of grammatical rules is shown in 
Figure 11. As shown in the figure, every sentence starts from Sinit, the initial state, and 
goes on to a state Sj. The end of the sentence is indicated by reaching Sout or the final 
state. The sentences could contain at least 3 letters. The rules of the grammar forbid any 
immediate repetition of the same letter, and therefore no recurrent loops exist at any 
state. 
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Figure 11. Hypothetical state diagram of the grammar used to generate the stimuli. 

 
Another common approach used in the field of statistical learning is to define a 

predictability or redundancy measure for a sequence. Using this measure will make it 
possible to produce and compare sequences of letters or numbers with different levels f 
regularity.  One such measure is introduced by Jamieson and Mewhort (2009). G is an 
indicator of redundancy in a sequence. The measure G quantifies the amount of 
structure in each grammar and is calculated based on Shannon’s sequential uncertainty 
(Shannon & Weaver, 1949; See Jamieson & Mewhort, 2005, 2009 for details). 

For the purpose of this dissertation, the redundancy measure G works 
efficiently. It is easy to compare the sequences and assign participants to conditions 
with different levels of regularity. Moreover, Duran and Dale (2010) have applied the 
same measure for the original experimental stimuli. Therefore, the stimuli for the 
current study were produced by setting G at certain levels in order to control the level of 
regularity in the sequence.  
 
3.4.3 Measures  
 

An important step in analyzing such rich dataset of nearly continuous action 
dynamics through time is to introduce proper metrics and variable to study. Here, I 
focused on calculating measures that help disentangle predictive and reactive 
performances in different trials. These measures are defined and explained below. 
Distance to Next: This measure indicates the initial distance of the mouse cursor from 
the next target location. The Euclidian distance (in pixels) from the mouse cursor to the 
target position is calculated right at the moment the target appears at that location. If the 
participant has predicted correctly, this distance should be near 0 as the mouse cursor 
lands on top of the target circle exactly when it appears on the screen. On the other 
hand, if the mouse stayed near the last position of the target or in the center waiting for 
the next target to show up, they are most likely taking a reactive approach. Thus, 
distance to next is an indicator of predictive versus reactive behavior and has a negative 
correlation with prediction. Figure 12 (left) illustrates the distance to next in a snapshot 
of the task.  

Distance from Previous: This measure is calculated to account for failed 
prediction attempts. A subject may perform a predictive behavior by moving the mouse 
towards where they believe is the next target position, but they might very well be 
incorrect in their prediction. This is still a predictive behavior and needs to be 
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acknowledged even though was not successful. Initial distance from pervious is 
therefore calculated as the maximum distance from the previous target at the 750-ms 
mark. The smaller this value, the closer the mouse cursor was to the previous location 
of the target and the less effort from the subject to get engaged in predictive behavior. 
On the right panel of Figure 12 you can see distance from previous denoted on the task 
screen.  
 

 
 

 

Figure 12. From left to right the figures illustrate the distance to next and distance from previous 
respectively. 

 
3.5 Experiment 1: Random and structured  
 

The goal of this experiment is to present a random sequence of target locations in 
the first half of the task and switch to a more regular and predictable sequence in the 
second half. I hope to show whether and how participants adjust their strategies to fit 
the changes in patterns of sequences.  

3.5.1 Participants 
 

The participants were recruited through Amazon Mechanical Turk, a crowd-
sourcing website where researchers post desired tasks and online users will participate 
in the experiment. Monetary compensation was paid to the participants in exchange for 
their time. A total of 70 participants were recruited for this task, out of which only 66 
completed the task providing reliable data. All participants received a monetary reward 
of $.75. 

3.5.2 Stimuli 
 

There were three main conditions designed for this experiment. In all conditions 
the first 24 appearances of the target circle were chosen to be random based on a 
sequence with 25% regularity. The second 24 appearances were distinguishing between 
the conditions. Subjects were randomly assigned to 55%, 89% and 100% regularity 
conditions which means after the first random sequence of target locations they got 
assigned to conditions with low, medium and high regularity respectively. Regularity of 
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the sequences were calculated based on a measure introduced by Jamieson and 
Mewhort (2009). This measure, G, is the extent to which a 48-position sequence is 
redundant. Here, the sequence for each condition was constructed by concatenating a 
24-position random regularity and 24-position more regular sequence borrowed from 
Dale et al. (2012). Table 7 shows the random section of the stimuli sequence as well as 
the regular sections.  
 

Table 7 
Blocks of Stimuli Sequence with different regularity levels 

Regularity Sequence 

G = .25 4−2−3−2−1−2−1−2−4−1−3−2−1−4−1−3−1−3−2−4−1−3−1−3 

G = .55 4−2−3−4−2−1−3−1−3−1−3−1−3−4−2−4−2−4−2−1−3−1−3−1 

G =.89 2−3−4−1−2−3−4−1−2−3−2−3−4−1−2−3−4−1−2−3−4−1−2−3 

G = 1.0 4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1 

 
 
3.5.3 Procedure  
 

When participants choose to join our experiment on Amazon Mechanical Turk, 
they are redirected to a webpage that hosts the Adobe Flash interface for the 
experiment. The program randomly assigns each of the participants to one of the three 
conditions: 55%, 89%, and 100% regularity. Participants were informed that they would 
see a black circle periodically appear at each of the four corners of the screen. They had 
to click on the target circle as soon as it popped up. All participants had to go through a 
24-position random sequence of target locations regardless of their assigned condition. 
Following this phase, they had to perform on a more regular pattern of location 
sequences based on the conditions they were assigned to. This study has a between 
subject design. The circle appears once every 750milliseconds at a corner determined 
by the predefined sequence of locations. They could move or hold the mouse cursor 
anywhere on the screen while waiting for the target to show up at the next location. 
While the mouse cursor is travelling around the screen the coordinates of the cursor 
position are recorded every 25 milliseconds. Thus, the trajectory of the movements 
made by each participant throughout each trial was saved and reported at the end of the 
experiment. The mouse coordinates were being constantly recorded throughout all 48 
trials. At the end of 48 trials, participants are asked if they found any specific pattern in 
the sequence of target locations.  
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3.5.4  Results  
 

Data from 66 participants were imported to extract measures and examine 
changes in mouse trajectories. Example mouse-trajectories for two subjects are depicted 
in Figure 13. The subject on the right has spent a lot of time in the center whereas the 
figure on the left is showing a subject with more predictive trajectories, regardless of 
their accuracy. 

 
 
 

 
 

Figure 13. Example mouse-trajectories for two subjects through all 48 trials. 
 
  Distance to next as an important measure of predictive behavior was analyzed 
on a trial-by trial basis in each condition. I expected subjects in 100% regularity 
condition to show the lowest distance to next values and the 55% regularity condition to 
have the highest average distance to next values. In consistence with expectations, 
condition 55% showed the longest distances in pixels (Mdist_next = 273.62). Condition 
89% was the second highest distance to next in pixels among all conditions (Mdist_next = 
234.11), whereas condition 100% with the most regularity had the shortest distance to 
next average (Mdist_next = 227.28). Figure 14 shows trial-based boxplots for changes in 
distance to next values for all three conditions. Each panel illustrates the values for one 
of the conditions through 48 trials. 

I conducted a linear mixed effects model with subject as a random factor 
(Baayen, Davidson, & Bates, 2008), and condition (55, 89, 100) as fixed factor. The 
results confirmed that subjects in condition 55 showed significantly longer distance to 
next throughout the experiment (ß = 39.51, p = 0.02). Condition 100, although having 
shorter distance to next values on average, was not significantly different from 
Condition 89 (ß = -6.83, p = 0.6). This is while participants in every condition show 
high distance to next values when they are in the first half of the experiment with 
random sequence of target locations. That means when there was less randomness in the 
sequence, participants in condition 100 (Mdist_next = 197.14) and condition 89 (Mdist_next = 
205.51) were significantly better in making predictions compared to participants in 
condition 55 (Mdist_next = 267.28). The pattern of results stays the same, but more 
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significantly so, when the model is run on only the second half of the trials for each 
condition. The model showed reliably significant decrease in predictive behavior for 
condition 55 (ß = 61.77, p = .006). 
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Figure 14. Trial-based boxplots for changes in distance to next values. Each panel illustrates the values 
for one of the conditions through 48 trials. 

 
Figure 15 shows a plot of average distance to next values through 48 trials for 

each condition. Each curve illustrates the average values for one of the conditions 
through 48 trials. As it is apparent in the curve for condition 89% (red line in Figure 15) 
there are some trials, which do not obey the general pattern of distance to next values. It 
seems like in these trials something extraordinary happens that causes a sudden 
decrease in distance to next values, suggesting that participants felt more willing to 
make predictions in these specific trials. The nature of this phenomenon, however, is 
still ambiguous. This ambiguity provides the motivation for conducting follow-up 
experiments where there are more than three levels of regularity as conditions. Testing 
more sequences with variant levels of structure would capture a more accurate picture 
of the phenomenon and how prediction changes as the environment becomes more and 
more structured. Next chapter is an attempt to include more experimental conditions in 
order to provide fine-grained analyses of predictive behavior in statistical learning.  
 

 
Figure 15. Average distance to next values for all there conditions. 

 
3.6 Experiment 2: More Sequences  
 

This experiment is in fact a more advanced version of the preliminary experiment 
presented in the previous section. In this version, more conditions (i.e. levels of 
regularity) are added in order to test the role of prediction in sequential learning under 
more controlled levels of structure in the environment. As described in the previous 
experiment, participants are presented with a sequence of target locations. This 
sequence is random in the first half and becomes more structured in the second half. I 
hope to show whether and how participants adjust their strategies to fit the changes in 
patterns of sequences. Having more conditions provides a better view of how 
participants interact with the stimuli and what drives their potential strategies.   
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3.6.1 Participants 
 

Participants were recruited through Amazon Mechanical Turk. There were more 
participants acquired in this version of the experiment as I intended to get a more 
precise view of the phenomenon with more power in detecting any potential effect. A 
total of 170 subjects were recruited for this task; 162 completed the task, providing 
reliable data. Participants were compensated $.75 for their time. 

 
3.6.2 Stimuli 
 

There were 7 conditions designed for this experiment. In all conditions there 
were 48 trials, where each trial was defined as a single appearance of a circle in one of 
the corner locations on the screen. The first 24 appearances of the target circle were 
chosen to be completely random (no G assigned). The second 24 appearances were the 
ones distinguishing between the conditions. Participants were randomly assigned to 
sequences with the following regularity levels: 44%, 55%, 68%, 76%, 79% 89%, and 
100%. In each condition after the first random part of the sequence, participant was 
presented with the rest of the sequence with one of the listed regularity levels. The 
levels were chosen to cover a spectrum of low (44%) to high regularity level (100%). 
From here on, the conditions are named after their regularity level, thus they will be 
referred to as condition 44, 55, 68, 76, 79, 89, and 100. AS mentioned earlier, regularity 
of the sequences was calculated based on G, a measure introduced by Jamieson and 
Mewhort (2009). The sequence for each condition was constructed by concatenating a 
24-position random regularity and 24-position more regular sequence. Table 8 shows 
the stimuli sequences in detail. 
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3.6.3 Procedure  
 

The program randomly assigned each of the participants to one of the 
conditions: 44, 55, 68, 76, 79, 89, and 100.  Identical to the procedure in Experiment 1, 
participants were informed that they would see a black circle periodically appear at each 
of the four corners of the screen. They had to click on the target circle as soon as it 
appeared. While the mouse cursor was travelling around the 500-by-500-pixel white 
region on the screen, the coordinates of the cursor position were recorded every 25 
milliseconds. Similar to the previous experiment, participants had to go through a 24-
position random sequence of target locations followed by a more regular pattern of 
sequence based on the condition they were assigned to.  
 
3.6.4 Results  
 

Eight participants were discarded from the analysis, as they did not complete the 
task. Out of the 162 remaining participants there were an average of approximately 23 
subjects assigned to each condition. The participants in 100% regularity condition were 
expected to demonstrate the most predictive behavior and therefore the shortest distance 
to next average. As seen in Experiment 1, the hope here was to replicate the ascending 
trend of distance to next values as the conditions get less and less regular and 
predictable. Consistent with expectations, condition 100 showed the shortest average 
distance to next (Mdist_next = 242.19, sd= 127.40) while condition 44 showed the longest 
average distance in pixels (Mdist_next = 309.5, sd= 111.49). This is while participants in 
every condition show high distance to next values when they are in the first half of the 
experiment with random sequence of target locations. Figure 16 shows the decreasing 
pattern in distance to next as the sequence gets more structured. Moreover, Figure 17 
shows the difference in average distance to next between the random half and the 
structured half of each condition. Detail values of variables are reported in Table 9.  
 

 
Table 9 

Means and Standard Deviations of the Mouse Trajectory 
 Variables by Condition in Experiment 1 (New Sequences). 
 Time and Trajectory Variables 

 
        

Distance to 
Next (pxl) 

 Response 
Time (ms) 

 Distance from 
Prior (pxl) 

 

Condition  M SD M SD  M SD   
44% (N= 24) 309.5 111.5 704.7 387.39 144.43 148.44   

55% (N= 16) 285.36 137.3 602.66 341.94 224.45 170.02   

68% (N= 22) 269.3 127.97 638.54 347.44 200.93 151.36   

76% (N= 18) 281.55 106.73 550.98 176.18 192.69 127.15   

79% (N= 29) 284.64 125.84 602.8 229.1 201.29 148.08   

89% (N= 32) 250.23 131.67 645.62 716.93 209.11 141.46   

100%(N= 21) 242.19 127.40 571.65 233..02 207.56 134.49   
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Figure 16. Average distance to next for all conditions in Experiment 2. 

 
 

 
Figure 17. Comparison of average distance to next in random and structured parts of the sequence for 

each condition. 
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I conducted a linear mixed effects model with Subject as a random factor 
(Baayen, Davidson, & Bates, 2008), and condition (44,55,68,76,79,89,100) as a 
numerical fixed factor. The model showed reliably significant decrease in predictive 
behavior for conditions with lower regularity. The results confirmed that subjects in 
conditions with less regularity showed significantly longer distance to next throughout 
the experiment (ß = -5.38, p < 0.001). The pattern of results stays the same, but more 
significantly so, when we run the model on only the second half of the trials for each 
condition. This suggests that as expected, people tend to apply more predictive 
strategies as the environment gets more structured. Distance to next as an indicator of 
predictive behavior shows reliable decrease as we introduce more structure.  

Further, I conducted a linear mixed effects model using condition as a 
categorical factor. All conditions were compared against condition 100. I expected the 
performance in lower regularity conditions to show significant difference compared to 
condition 100. This is while the more regular conditions are expected to exhibit a 
similar performance to what we see at condition 100. In this experiment 68% regularity 
seems to be the level that puts participants in predictive mode as their performance 
starts to be significantly different from the levels below it. 

The results approximately follow the decreasing pattern that was expected (see 
Figure 16). However, the conditions 76 and 79 appear to break the pattern by a 
surprising divergence from the general decreasing trend. Despite being a highly 
structured sequence, the average distance to next at these two conditions show a 
significant difference from what we see in a perfectly regular sequence (100% 
regularity). This indicates that, overall, participants had a difficult time predicting the 
location of next stimuli in these conditions even though the general level of regularity 
was relatively high in the sequence. This discrepancy raises important questions about 
the structure of the sequence and what other factors besides the over-all regularity level 
in a sequence can affect the predictive behavior in participants. One graph that could 
shed light on the detailed transitions throughout each condition is the average curve of 
distance to next on a trial-by-trial basis. Figure 18 provides a graph with such curve for 
all conditions including 76 and 79. The graph shows how the value of distance to next 
(averaged over all participants) changes as a new target in the sequence is revealed.  

  A closer look into the curves associated with conditions 76 and 79 shows a 
wave-like pattern in the sequence. It appears that there might be some unintentional 
local structures present in parts of the sequence. Condition 76 is particularly oscillating 
quite often with raises in the distance to next followed by falls.  In order to get an even 
closer look into these oscillations, Figure 19 (top panel) provides a boxplot of the 
average performance of participants in condition 76 on a trial-by-trial basis. You can 
see the exact order of the sequence and the changes in average distance to next as the 
trials unfold. The figure makes it clear that in some cases the participants were led to 
believe that a pattern is happening and as soon as they got into predictive mode the 
pattern suddenly breaks and leaves them with an error in prediction. This error would 
effect a measure like distance to next as they have moved their mouse away from the 
target even though they were engaged in predictive behavior. This is where looking at 
another measures such as distance from prior could provide more insight into the 
subjects’ behavior. Bear in mind that the shorter this distance the more reactive the 
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participant has performed, as this is a metric that shows how far the mouse cursor was 
from the previous target when the new one appeared. If the participant has started 
departing from the previous location in an attempt to make a prediction this measure 
still captures their predictive behavior even though they may end at the wrong location.  
 

 
Figure 18. Average distance to next for all conditions throughout 48 trials 

 
Figure 19 (bottom panel) depicts the average distance from prior on a trial-by-

trial basis. I suspect that the local structure, even though observed only over a few trials, 
could have a noticeable effect on the predictive behavior in participants. This suggests 
that a sequence may be globally well structured (76% or 79% regularity) but the local 
structure could cause prediction errors and therefore not support predictive behavior.  
Thus, the general learning of the sequence will not look as good as expected for the 
level of regularity at that sequence. 
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Figure 19. Average distance to next (top) and distance from prior (bottom) on a trial by trial basis in 
condition 76. 

 
To further study this matter I explored the potential interaction between 

condition and trial. While trial (i.e. how far in the sequence they are) and condition (i.e. 
how structured the sequence is) are both significant predictors of distance to next, there 
is a strong interaction between the two of them (ß=-4.75, p < .0001).  This suggests that 
as the participants go further in the sequence, in more regular sequences their behavior 
becomes more and more predictive. The interaction shows that local effects have a big 
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impact on the general pattern. Next chapter will discuss and examine local structures 
and their role in sequence learning. 

 
3.7 Experiment 3: Local Structures 
 

In Experiment 1, we found the participants’ behavior to be influenced by local 
structures even in random sequences. Local structures are short subsets of the sequence 
that happen to be more patterned than the whole sequence. Some participants showed a 
change in strategy and performance when encountering structured subsets of the 
sequence even if the length of this subsequence was as short as 4 to 5 trials.  

In this experiment the goal is to intentionally create a structured subsequence in 
the heart of an otherwise random sequence. I expect the participants to realize the 
predictability of the subsequence and switch to predictive mode, which will result in 
shorter reaction times and shorter distance to next. Another goal that this follow-up 
experiment suffices is exploring the onset of prediction. How long should the structured 
sequence be for the participants to trust the pattern and start predicting? How long does 
it take for people to switch from a reactive mode in a random setting to a predictive 
mode in a setting perceived as structured and predictable? This experiment is designed 
to explore the role of local structures and how or if they trigger the predictive behavior 
in participants.  

 
3.7.1 Stimuli 
 

In this experiment there will be only one condition for all participants. The 
sequence consists of two random segments and one very patterned and repetitive 
subsequent. The hope is that the participants stop the reactive mode and start exhibiting 
predictive behavior as they notice the presented stimuli to become repetitive and more 
patterned. The location of the stimuli in first 20 trials of the sequence will be chosen 
randomly, followed by eight trials that resonates between location 1 and 2, in order to 
impose a local structure to the sequence. After the patterned subsequence of 8 trials 
there will be another 20 random trials. We predict that the participants will start 
performing more predictive as they find out about the pattern in the stimuli. The main 
goal of this experiment is to explore the onset of prediction. How structured should the 
sequence of stimuli be for the participants to trigger predictive mode.  

 
3.7.2 Participants 
 

This experiment was uploaded on Amazon Mechanical Turk. Data from 75 
participants were collected and analyzed. 

 
3.7.3 Procedure  
 

The procedure in this experiment is similar to Experiment 1. The only difference 
lies in the number of conditions. In this experiment there is only one condition (as 
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described in the stimuli section). All participants receive the same sequence consisting 
of three blocks of random, structured, and again random order respectively. 
 
3.7.4 Measures  
 

The measures used for analyzing the mouse trajectories and behavior follows the 
format described in the main stimuli section (distance to next as a measure of predictive 
behavior). Another important measure used for analyzing the data form this experiment, 
is focused on participants’ behavior throughout the local structured block. The reaction 
time difference between trial 20 (the start of the structured block) and trial 22 will be 
compared to the reaction time difference between trial 26 and 28 (indicating the end of 
structured block).  

 
3.7.5 Results 
 

The first step in conducting analysis for this experiment is to show if the 
structured block did in fact make participants engage in more predictive behavior. 
Consistent with the expectations, the average response time and distance to next both 
dropped during the structured block and raised again as the sequence went back to being 
random. It is apparent that trial type (random v.s. structured) is a very significant 
predictor of distance to next (ß= -33.63, p << .001). On average, the structured block 
shows 33 points decrease in distance to next compared to random blocks.  This is also 
the case with response time (ß= -33.08, p =0.003) as the subjects are significantly faster 
in the structured subsequence. Figure 20 (left) demonstrates the rise and fall of average 
distance to next over 48 trials. Fig 20 (right) zooms into the same graph in order to 
depict the slope of change throughout the 8 structured trials. As it is shown in the figure, 
there is a sharp decrease in the distance to next as the structure block unfolds. A linear 
mixed effects model was conducted to test the significance of this decrease. The model 
confirms that there is a highly significant change in measures in the structures 
subsequence. Trial is a strong predictor of response time (ß = -17.59, p < .0001) and 
distance to next (ß = -11.06, p < .001) throughout the local structure while it does not 
provide any information in the random parts of the sequence (ß = 0.58, p = 0.4). 
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Figure 20. The figure on the left shows the average distance to next throughout all 48 trials. 
The figure on the right zooms into the graph through the structured block (trials 20-28). 

 
More detailed analyses were conducted to compare the difference in 

participants’ performance as the structured subsequence unfolds. As mentioned above, I 
calculated the difference in reaction time between the first two trials of the structured 
block as well as the difference between the last two trials of the structured block. The 
idea is that at the beginning of the structured block participants will still be in reactive 
mode under the impression that the sequence is still entirely random. However, by the 
time they get to the end of this structured block (trial 26-28) they have picked up on the 
pattern and start being more predictive which will result in shorter reaction times and 
shorter distance to next. It is important to note that in analysis I wont be comparing two 
absolute values, rather I will be comparing two differences. The bigger the difference 
the faster the participants were towards the end of the structured block. These faster 
reactions could be interpreted as more predictive strategies and better learning of the 
underlying structure of the stimuli.  
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Figure 21. Trial by trial changes in average distance to next. It is apparent how the average distance to 

next decreases through trials 22-28. 

 
A two sample t-test was conducted to compare the difference between trial 20 to 

22 (M= 134.40, SD= 103.98 ) and the difference between trial 26 to 28 (M= 68.51 , 
SD=84.2). Results from the two tailed t-test show that there was a significant difference 
between the changes of distance to next from trial 20 to 22 compared to the change in 
trial 26 to 28 (t(74) = 3.1147, p = 0.002). The change in predictive behavior spikes as we 
get closer to the end of the structured block, suggesting that it only takes maximum of 6 
trials for most of the participants to trust the structure of the environment and start 
predicting. They see patterns in less than 6 occurrences and act upon what they learn in 
such short exposure. Prediction appears to be a fundamental indictor of this learning 
process.    

 
3.8 Experiment 4: Forced Centering 
 

Data from experiment 1 and 2 show that some participants choose to go back to 
the center of the screen after each trial. They take their mouse cursor to the center to be 
equidistant from all four positions on the screen. This strategy, called “centering”, 
makes it more challenging to compare all participants and difficult to distinguish 
between predictive and reactive behavior.  In Experiment 4, I change the procedure so 
that all participants are forced to go back to the center after each trial. They will have to 
click on the center for the next stimuli to appear. This modification will normalize the 
measures from different strategies while participants can still exhibit predictive 
behavior. The main difference will be reflected into their performance after clicking on 
the center and during the 750ms before the next stimuli shows up. The goal is to 
replicate the results from experiment 1 with a more standard baseline for comparison 
between subjects, regardless of their strategy. If the effects hold under the new 
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circumstances, we can have a more accurate picture of predictive behavior while at the 
same time replicating the results from the original experiment. Moreover, this additional 
step in the procedure refines the definition of prediction as it was always a debate 
whether going back to the center and waiting in an equidistance position from all four 
corners could count as a type of predictive behavior. On the one hand, participants who 
apply “centering” strategy are relatively more engaged in a predictive behavior 
compared to those who will let the mouse cursor sit where the previous stimulus was 
and passively wait for the next target to appear. On the other hand, it is also true that 
centering is not a fully predictive behavior as it still involves waiting for the target to 
show up before any directed move.  

 
3.8.1 Stimuli 
 

The stimuli in this experiment are exactly the same as Experiment 2. Each 
condition contains a sequence of 48 trials half of which are completely random and the 
other half tends to become more regular. The conditions are distinguished based on the 
level of regularity in the second half of the sequence. There will be seven conditions 
with the regularity levels 44%, 55%, 68%, 76%, 79%, 89%, and 100%.  

 
3.8.2 Participants 
 

This experiment was also uploaded on Amazon Mechanical Turk. 100 
participants were recruited from the United Sates. All participants were offered a 
monetary compensation of $0.75for their time. 

 
3.8.3 Procedure 
 

Similar to Experiment 1, participants were instructed to click on the location of 
the next stimuli as fast as they can. However, the main difference between this 
experiment and Experiment 1 lies in the procedure.  After reading the instructions they 
were directed to a page where they saw a red square placed at the center of the screen. A 
text box on the screen instructed participants to click on the red square in order for the 
next stimuli (black circle) to show up. 750ms after they click on the center square the 
first stimulus appears. Each participant was randomly assigned to one of the conditions 
described in Experiment 1.  

 
3.8.4 Results 
 

As the goal for this experiment is to replicate the results from Experiment 2 with 
more homogenous baseline for all participants, the analyses were chosen to be similar to 
the ones from Experiment 2. However, the analyses for this version of the experiment 
are more organized with an opportunity to compare all types of predictive/reactive 
strategies with a common baseline. Measures used for these analyses are also the same 
as the ones used in the previous experiment, namely distance to next and response time.  
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Out of 100 participants, recruited through Amazon Mechanical Turk, one 
participant failed to complete the task and was therefore excluded from the analysis 
(N=99). The bar-plot in Figure 22 shows that the pattern in the data stays very similar to 
Experiment 2. While the over-all pattern is the same, the difference between random 
and structured sections of the sequence tend to be more fluctuant (See Figure 23).  

 
 
 

  
Figure 22. Average distance to next for all conditions in Experiment 4. 

 
 

 
Figure 23. Comparison of average distance to next in random and structured parts of the sequence for 

each condition. 
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 Consistent with the results in Experiment 2, condition 100 showed the shortest 
average distance to next (Mdist_next = 242.19) while condition 44 showed the longest 
average distance in pixels (Mdist_next = 309.5). This is when participants in every 
condition show high distance to next values when they are in the first half (i.e. the 
random half) of the sequence of target locations (See Table 10 for more details).  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

A linear mixed effects model with subject as a random factor, and condition 
(44,55,68,76,79,89,100) as numerical fixed factor was conducted to assess the effects of 
structure on distance to next throughout 48 trials. The model showed that as we 
expected condition (ß = -.61, p = 0.02) is a reliable predictors of distance to next. This 
indicates that despite being forced to go back to the center after each trial, participants 
still engage in predictive behavior as the environment gets more structured. This 
predictive behavior becomes more significant as they get further in the experiment and 
pick up on the potential patterns in the sequence. Therefore, there is also a significant 
interaction between trial and condition (ß = -0.04, p << 0.001).  

That being said, forcing all participants to go back to the center appears to 
undermine the difference between predictive and reactive behavior. Even though there 
is still the same pattern of changes in the average distance to next as the sequences get 
more and more structured the results are not as significant. It appears that forcing 
“centering” strategy upon all participants makes the gap between predicting and 
reacting participants to shrink. There are at least two explanations for this observation. 
On the one hand, forced “centering” could demotivate predictive participants from 
actively predicting the location of next stimuli as it introduces the additional task of 
relocating the mouse cursor to the center. This additional movement could be an extra 
cognitive load and a barrier on the smooth process of transition into predictive mode. 
On the other hand, this slight decrease in the difference between performance could be 
caused by forcing reactive participants to apply a semi predictive strategy such as 
“centering.” In other words, in the current experiment participants cannot passively wait 

Table 10 
Means and Standard Deviations of the Mouse Trajectory 

 Variables by Condition in Experiment 3 (Forced Centering). 
 Time and Trajectory Variables 

 
        

Distance to 
Next (pxl) 

 Response 
Time (ms) 

 Distance from 
Prior (pxl) 

 

Condition  M SD M SD  M SD   
44% (N= 14) 231.95 125.46 547.77 511.13 297.03 98.23   

55% (N= 13) 227.66 104.67 522.83 225.21 288.93 97.06   

68% (N= 13) 224.57 108.62 531.20 203.66 277.83 77.48   

76% (N= 17) 236.18 106.77 562.44 199.17 282.2 91.20   

79% (N= 23) 232.05 90.70 562.27 267.65 268.53 80.33   

89% (N= 7) 208.39 119.90 599.85 274.75 283.09 86.17   

100%(N= 12) 202.32 120.42 598.26 497.49 286.96 90.59   
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for the next stimuli to show up. They have to take their mouse cursor to the center and 
click to proceed. This boosts their predictive measures such as distance to next and puts 
them in a better position compared to the reactive participants in Experiment 2. Figure 
24 shows the average distance to next for all conditions in Experiment 2 and the current 
experiment on the same graph.  

 
Figure 24. Average distance to next for all conditions in Experiment 2 and the current experiment. 

 
An across experiment analysis was conducted to quantify the effect. The mixed 

effects model across Experiment 2 and the current experiment shows an extremely 
significant decrease in average distance to next (ß= -47.9, p << .0001).  The effect is 
very noticeable indicating that there is 47 units drop in average distance to next when 
participants are forced to go back to the center. Thus, the results confirm this boost in 
predictive measures in Experiment 4. The average distance to next tends to be lower for 
every single condition in Experiment 4. This suggests that forced “centering” did in fact 
induce some predictive behavior in participants causing the gap between the two types 
of participants to fade.  
 
3.9 Experiment 5: Priming the Prediction 
 
Experiments 2 and 4 (i.e. new sequence and forced centering) offer platforms to explore 
the predictive or reactive behavior in environments with different levels of structure in 
presence or absence of forced centering. However, in both those experiments 
participants were only instructed to react as quickly as they can. The word prediction 
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was never explicitly used in the instructions. A simple yet crucial manipulation of the 
task could be a change in wording of the instruction. Participants will be instructed to 
predict the location of the next stimulus. 

The objective of this modification is to prime the participants to adopt a 
predictive approach. This simple change in instructions will change the participants’ 
mindset before they start the task. The hope is for them to actively predict and be aware 
of their errors. The action dynamics thus generate an error signal that improves 
learning. The results from this experiment could be compared to those of experiment 2 
and 4. 

 
3.9.1 Participants 
 
The experiment was uploaded on Amazon Mechanical Turk and 108 participants were 
recruited. All participants were paid $.75 for their time. 
 
3.9.2 Stimuli and Procedure 
 

The stimuli are identical to Experiment 2. The only difference in this experiment 
is driven by the instructions in procedure. Prior to the offset of the experiment, 
participants were explicitly instructed to predict the location of each target before it 
appears on the screen. Following is the exact wording of the instructions for this 
experiment: 

“We want you to make PREDICTIONs! Can you predict the location of the next 
circle and click on it as soon as it appears? Click this box to begin, and first 
circle will appear” 
 

3.9.3 Results 
 

Out of the original 108 participants, one person was excluded from the analysis 
due to their extremely long response times. Moreover, trials with response times longer 
than 20seconds were discarded from analysis as outliers.  

A linear mixed effects model was conducted with condition and trial as fixed 
effects and subject as a random factor. The results show that the same pattern observed 
in the original experiment is present in this modification of the experiment as well. Trial 
and condition are still significant predictors of distance to next as the more regular 
sequences cause reliably shorter distance to next and therefore more predictive 
behavior.    

The main goal of this experiment, however, is to assess whether participants 
tend to be actively more predictive because they have been primed to actively predict. 
Or rather, there is no certain change in their behavior. In order to show this effect, I ran 
analysis across two experiments. The measures from the current experiment were 
compared to the results from Experiment 2.  Figure 25 depicts the average distance to 
next for all conditions in both experiments. The graph shows that participants in the 
priming condition are in fact more engaged in predictive behavior. Distance to next is 
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significantly shorter () and response time also shows decrease in the current experiment 
compared to Experiment 2. 

 
Figure 25. Average distance to next for all conditions in Experiment 2 and the current 

experiment 

 
A linear mixed effects model was conducted across Experiment 5 and 

Experiment 2 to explore the effect of priming on predictive behavior.  I looked at 
experiment type as a predictor of distance to next. The model showed a non-significant 
decrease in distance to next under priming instructions (5.9 units drop in average 
distance to next, p=.4). Further, I restricted the analysis to only include the regular half 
of the sequence, which also did not show any significance (ß = .5, p = .9). However, 
surprisingly, the more significant change happened in comparison between random 
halves of the sequence (ß = -12.9, p < .05). It appears that the effect is more salient 
when there is less regularity in the sequence. That is, participants will start being 
predictive in structured environments anyways, but being primed to make predictions 
enhances their predictive behavior in a random environment as well. To explore this 
further, a model was designed to study the interaction between condition and 
experiment type across the two experiments. The results reemphasize the very 
significant role of regularity condition  (ß = -1.1, p << .01) as well as a significant 
interaction between condition and experiment (ß = 0.8, p < 0.1). This suggests that 
participants in the priming version showed significantly more predictive behavior in 
more regular conditions. 

The results support the hypothesis that the onset of prediction could be moved to 
the very beginning of the sequence by priming the participants to actively predict. 
Participants transit into predictive mode more easily in this condition. However, the 
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main question may be whether the decision to make predictions can in fact influence the 
learning process in sequential learning. In other words, could an explicit effort for 
making predictions influence the implicit learning of patterns in the sequence? A good 
follow up study to explore this issue would be presenting participants with a secondary 
test to see if they are able to pick the sequence resembling the target sequence with a 
probability higher than chance level. 

 
3.10 . Discussion 

 
A recent approach in cognitive science argues that prediction is a core concept 

underlying perception, action, and cognition, to the extent that brains could be referred 
to as "prediction machines" (Clark, 2013, p.1). This framework is a valuable reference 
for unifying views of perception, action, cognition and attention. Extending 
experimental paradigms to explore prediction in different aspects of human behavior 
could facilitate tests of this claim. To serve that end, the current document offered an 
experimental paradigm to study the onset of prediction in statistical learning. 

The results in the literature have suggested that participants tend to rapidly 
switch into a predictive mode almost as a discrete strategy. In this project I designed 
tasks, inspired by previous work, to explicitly explore the onset of predictive behaviors. 
Through a mouse-tracking task, participants get to learn the statistical structure in a 
sequence of flashing dots while their mouse movements are being recorded. Pilot results 
suggested that participants engage in more predictive responses as the regularity of the 
statistical sequence increases. These preliminary findings revealed the significant effect 
of the statistical structure on triggering the rapid onset of predictive behavior. The 
follow up experiments lay out an incremental design for manipulating important aspects 
of the study to tap into the mental processes underlying predictive behavior.  
Despite all the limitations in the experimental design and measures, what is novel in this 
research is how I provided a tool to capture the time course of the onset of prediction. 
These continuous measures also present an opportunity for observing the predictive and 
reactive strategies applied by participants throughout the experiment as well as the 
shifts in strategy as the regularity of the stimuli changes. 
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Chapter 4 

4. Simulation  
 
 

Time is an inevitable character of prediction. Predicting future events requires a 
chronological structure that underlies the sequence of events. Simulating a prediction 
task, therefor, would obviously impose a need for simulation of the temporal order of 
events. There have been various attempts to implement time in the literature (Jordan, 
1986; Jordan & Rosenbaum, 1988; Fowler, 1980). Many of these approaches look at 
time as an explicit entity or separate dimension of the input, whereas more recent 
strategies have looked at time as an implicit feature which could be treated by its effect 
on the process (Jordan, 1986; Elman 1990). In connectionist models this implicit 
account of time could be represented as a memory of events. Whereas, probabilistic 
models capture the concept of time by updating the posterior probability using pervious 
events. 

Here, I propose two main simulation approaches to model the predictive 
behavior observed in humans. One group of connectionist models which provide 
infrastructure for simulating memory are Simple Recurrent Neural Networks or SRNs. 
Section 1 of this chapter offers a description on how I simulated the process of sequence 
learning by the aid of recurrent neural networks. The other approach of modeling taken 
in this document is Bayesian modeling as it is well suited for simulating prediction 
based on the likelihood of events happening in the environment. Section 2 is an attempt 
to answer the question of how and to what extent Bayesian models can capture the 
predictive strategies involved in statistical learning. 
 
4.1 Simple Recurrent Neural Network 
 

Implicit account of time in connectionist models has been implemented via 
different strategies. Jordan (1986) used recurrent connections to implement a dynamic 
memory for the first time. In his model, a copy of the previous state of the system was 
fed to the input level in order to have an influence on the training process and the next 
round of output production. He implemented this by adding extra units, called state 
units, to the input level. These nodes would be the same number as output units and will 
copy the previous values of the output units to be involved in future calculation of the 
weights and output values. There will be direct connections between each node on the 
output level and each state node. Figure 26 (left) shows a rough sketch of Jordan (1986) 
recurrent network where not all connections are depicted. Inspired by Jordan (1986), 
Elman (1990) introduces a recurrent neural network with internal representation of time. 
In this network structure, the hidden unit patterns are fed back to the system. The same 
number of nodes as hidden units are added to the input level, called “context” nodes. 
These nodes receive connections from the hidden layer; the connections will always 
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have a fixed weight of 1.0 and will copy the previous state of the hidden units into 
context units. This approach allows the system to hold a memory of the former state of 
the network and make predictions based on that memory. Panel B in Figure 26 shows a 
recurrent neural network structure proposed by Elman (1990). 

 

  
 

Figure 26. On the left is the structure of the recurrent network proposed in Jordan (1986). The 
image on the left shows the structure of the network designed by Elman (1990) where the 

hidden units have backward connections to the context units. 
 

Elman showcases this recurrent network by solving the XOR problem. Using 
recurrent connections to produce memory offers an efficient solution for XOR problem. 
In this problem the network has to get the input [0 0, 0 1, 1 0, 1 1] and produce the 
output [0, 1, 1, 0] respectively. Elman concatenates each input string and the output for 
that to make a long sequence of numbers. This sequence of input will then be fed to the 
network and after training the network learns to predict every third element of the 
sequence as it is predicted by the previous two. 
I propose a structure where a copy of the activation of hidden units is sent back to the 
input layer to be treated as memory of the previous step. Adding memory to the 
structure of the network helps us capture the concept of time as it is the fundamental 
parameter in a sequential learning task.  
 
4.1.1 Implementation 
 

In the current paper we have a prediction task similar to the XOR problem with 
more complexity and less regularity in the sequence. Here we will have sequences made 
of integers 1,2,3, and 4. Each sentence consist of 48 elements and the order of elements 
in the sequence is determined by sampling at different levels of regularity. A very 
predictable sequence would be of 100% regularity or G=1.0 (for more information 
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about G please see Jamieson & Mewhort 2009). An example of a 100% predictable 
sequence would be: 
[4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1] 
 
Each number in the sequence was replaced with a unique four-digit binary code to be 
fed to 4 input units: 

1 ! 0 0 0 1  2! 0 0 1 0   3 ! 0 1 0 0  4 ! 1 0 0 0 

The network consists of 4 input units, 10 hidden units, 10 context units and 4 
output units. Each input was a 4-bit binary vector fed to the input level. Input units and 
context units are all connected to the hidden layer. The hidden units feed forward to the 
output units while also having backward connections to the context units. A simplified 
structure of the network is demonstrated in Figure.27. 

 

Figure 27. Structure of the recurrent network proposed in this paper 

 

The network was trained by presenting 4-bit input vectors one at a time, when it 
was expected to predict the next input. At time step t, the first input vector of four 
elements is fed to the input units. The context units are all initially set to 0.5. Both input 
units and context units then activate the hidden layer. Hidden units will activate the 
output units with a feed forward connection. A copy of hidden units’ activations will be 
fed to the context units through a backward connection from the hidden layer; the 
weights on this set of connections will always be set at 1.0 with no change during the 
training. At time step t+1 the input units will receive the second input vector in the 
sequence while the context units will be fed the values from the hidden layer at time t. 
This new set of input will activate the hidden layer and consequently the output layer.  

The training consisted of simple back propagation approach (Rumelhart, Hinton, 
& Williams, 1986) where the output pattern is compared to the target output and the 
error is used to adjust weights on the input to hidden connections as well as hidden to 
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output connections. The network was trained over 10000 iterations of a sequence with 
24 elements (i.e. 24 vectors of 4-bit length) of a random sequence. The weights from 
that training stage was then used to initiate the training for the sequence with 24 
elements of a more regulated sequence. This training was also iterated 10000 times. 
Testing was done on a sequence of the same length with a different order but the same 
level of predictability. 

The network was separately trained and tested on each condition. Figures 28 
through 10 illustrate the mean-squared-error plots for all three conditions. Note that 
each plot is made by concatenating two mean-squared-error plots: the training on 24-
element random sequence followed by the training on 24-element regulated sequences.  

 

Figure 28. Mean-squared-error plot for training of the condition with random sequences 
followed by 100% regularity sequences 

 

As shown in Figure 28, no learning happens when the network is being trained 
on fully random sequence of inputs (the first half if the error plot). Network behavior 
stays random as is the input. However, in the second half of the plot when the 100% 
regular sequence of input is presented to the network it starts to predict the next input 
pretty quickly. The mean-squared-error plot depicts rapid decrease in prediction error 
which results in accurate predictions towards the end of 10000 iterations of the network. 

Figure 29 (left) shows the error plot for condition 89. The first half of this plot is 
devoted to random sequences which does not lead into any learning. However, the 
network behavior changes in the second half of the error plot. The network starts 
predicting with a hope of learning.  

A closer look into the second half of the graph (Figure 29 right) shows a clear 
zoomed-in view of the prediction-errors made by the network. As it appears in the 
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zoomed-in graph on the right, the network is learning the predictable subsets of the 
sequence (89% of it) and based on the pattern it has picked up confidently makes 
incorrect predictions about the irregular parts of the sequence. Therefor, it is evident 
that although some learning is happening the network is incapable of predicting the 
unpredictable anomalies.  

 

Figure 29. Mean-squared-error plot for training of the condition with random sequences 
followed by 89% regularity sequences. 

 

We expect to see the same pattern of errors to repeat in the 55% condition. In 
fact, the mean-squared-error plot for 55% condition shows the same pattern with even 
more severity in making confidently wrong predictions. A zoom-in capture of the 
second half of the plot (Figure 30 left) gives us a better view on how the network makes 
incorrect predictions 45% of the time, while learning the correct predictions rest of the 
time.  

 

Figure 30. Mean-squared-error plot for training of the condition with random sequences followed by 
55% regularity sequences. 
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4.1.2 Discussion 
 

Here we simulated the process of sequence learning by the aid of recurrent 
neural networks. In general, these networks hold a memory of the previous activation of 
the output. We proposed a structure where a copy of the activation of hidden units is 
sent back to the input layer to be treated as memory of the previous step. Adding 
memory to the structure of the network helps us capture the concept of time as it is the 
fundamental parameter in a sequential learning task. 

The goal for this network was to be exposed to the same sequence of stimuli as 
human subjects were in the experimental design presented in the previous section. In the 
case of 100% regularity sequences, the network quickly learns to predict the next 
element of the sequence with very low error. In a less regular sequence, such as 55% 
condition, the network shows some learning compared to pure randomness but is still 
far from ideal prediction of the whole sequence. Considering the nature of the sequence 
this tends to be a perfectly expected behavior. 

It appears that the network succeeds in mimicking human performance in such 
tasks. During the random trials the network is having a hard time predicting future 
locations of the target. As soon as some regularity is offered the behavior of the network 
changes and it starts making confident predictions, whether correct or wrong. Even 
though Recurrent Neural Network model presented here fits the human behavior data 
very well, this model does not shed any light on how humans make such decisions and 
apply certain strategies. All this model does is to mimic the iterative learning process 
and match the end results with those of humans. Using models that can provide a better 
insight into how humans do so could be a valuable contribution to predictive learning. 
Thus, the next two sections are dedicated to discussing more transparent models of this 
phenomenon.  

4.2 Entropy Model of Memory 
 

In the previous section, I utilized Recurrent Neural Networks to account for time 
as a key component of sequence learning. In this section, I take another route to 
simulate the effect of time, or more specifically, memory in statistical learning. In a 
more human-like approach, here I simulated a sliding time window over each given 
sequence to act as an active memory of the previous steps in the sequence. Since 
different conditions hold different levels of structure in the stimuli sequence, I was able 
to calculate an entropy score (See Shannon, 1948) within the scope of the sliding 
window for each of the sequences.  This was done by designing a contingency table 
containing the probability of moving from each position to any of the other possible 
positions. For instance, in a 100% structured sequence with a repeating pattern of 
(1,2,3,4) the chance of going from position 1 to 2 is 100% whereas the probability of 
going from position 1 to 3 is absolutely zero. This gives a measure of entropy in the 
sequence indicating how much new information is provided by revealing the next 
position in the sequence, or in other words, how surprising the sequence is.  
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One core question in the current study is how much the entropy and structure in 
the sequence correlate with implicit learning, or rather, predictive learning. Here, by 
simulating the role of memory in this statistical learning process I made an attempt to 
visualize the relation between memory of the sequence and committing predictive 
behavior.   

In each iteration of the simulation, the length of the sliding window was 
manipulated, ranging from 4 trials ago to 23 trials ago. The goal was to simulate the 
effect of memory capacity in remembering certain number of steps before the current 
step. For each memory size the entropy was calculated at each slide of the window 
across all conditions of the experiment (44%, 55%, 68%, 76%, 79%, 89%, 100%). The 
calculated entropies were then compared to the distance to next results for each 
condition across all participants looking for possible correlations. The results show an 
interesting correlation between the length of the sliding window (indicating the memory 
capacity) and distance to next (indicating predictive behavior). The curve in figure 31 
demonstrates how the correlation between entropy and predictive behavior changes as a 
function of memory capacity. The correlation is low when the length of the sliding 
window is short (4 to 8 steps back). However, the correlation tends to peak around 
middle length window of memory (10 to 14 steps back) and decreases or flattens out in 
longer memory windows. These results suggest that memory of the previous steps do 
play an important role in implicit learning and predictive behavior. Figure 31 shows the 
changes across all conditions while Figure 32 demonstrates the same phenomenon for 
each level of structure to capture the correlation pattern of each regularity condition.  

 
Figure 31. The correlation between entropy and predictive behavior as a function of memory 

capacity across all conditions 

 
The model shows that having a memory of 12 +or- 2 items ago gives people enough 
confidence to engage in predictive behavior by making assumptions about the 
underlying structure of the environment. However, very short or very long memory 
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spans do not necessarily show any facilitating effects on predictive behavior or implicit 
learning.  

The number 12+-2 may remind the reader of the magic number 7+ or- 2 and the 
famous Miller paper on working memory capacity (Miller, 1956). The number depicted 
by the graphs in the current study tend to be bigger than 7+or-2, as this is not about 
active working memory capacity. It is possible that the system involved in keeping track 
of an implicit pattern in previous steps is not solely dependent on working memory. The 
distinction needs to be made between statistical learning and cognitive tasks requiring 
pure involvement of working memory. 
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Figure 32. The correlation between entropy and predictive behavior as a function of memory 
capacity for each condition and across all conditions. 
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4.3 Bayesian Models and Future Direction 
 

The use of Bayesian methods in cognitive science has considerably increased in 
the recent years. The current paper does not attempt to provide a detailed 
implementation of a Bayesian model for statistical learning. Nevertheless, it is only fair 
to mention the potential Bayesian models proper for this paradigm. In what follows, I 
provide a theoretical background on various Bayesian methods appropriate for 
modeling this phenomenon. The goal here is to show whether the problem of sequential 
learning, as described in this paper, is amenable to Bayesian modeling, and if so, which 
Bayesian approach provides an acceptable simulation of human behavior in this task. 
The actual implementation of these frameworks, however, would be the topic of a 
future work. 

Bayesian models provide a method for how rational agents should infer from the 
environment to update their beliefs. Agents use a combination of new data, assumptions 
about the environment (likelihood), and general knowledge they have previously 
acquired (prior), to make an inference about the current state of the environment 
(posterior). Probabilistic models have been applied to different areas of cognitive 
research such as language processing, vision, deductive inference and decision-making. 
Another important area that many of these models are trying to address includes 
learning causal structure from patterns of statistical correlation (Griffiths, Kemp, 
Tenenbaum, 2008). The probabilistic nature of Bayesian models and their approach in 
making predictions based on a combination of new data and prior knowledge marks 
them as appropriate candidates for modeling predictive learning. Despite connectionist 
models that fit the data with a “black box” approach, Bayesian methods offer a more 
transparent view of how humans decide to predict in a semi-structured environment. 
The variety of Bayesian approaches in the field raises the question of which approach 
provides an acceptable simulation of human behavior in statistical learning.  

One domain that has close resemblance to statistical learning might be the field 
of artificial grammar learning. Thus, Bayesian models offered in this field could very 
well be suitable for our purpose.  Perfors, Tenenbaum, and Wonnacott (2010) present a 
domain-general model for learning artificial language using Hierarchical Bayesian 
models(HBM). They built up on a domain-general Bayesian framework for learning 
higher-level knowledge in an inductive form. Their hierarchical Bayesian model 
replicates experiment results by making inferences about the distributional statistics of 
verbs. Perfor et al. suggest that the model could capture other aspects of general 
language development while demonstrating that generalization in verb acquisition can 
emerge from more generic assumptions about the nature of learning.  

Henderson and Tivot (2010) use a natural language parsing task to benchmark a 
class of Bayesian networks they have proposed for modeling structured prediction 
problems. The authors suggest that Incremental Sigmoid Belief Networks (ISBNs) 
proposed in their 2010 paper are especially appropriate for addressing complex 
structured prediction problems such as natural language processing. These models tend 
to make parsing the language possible due to their incrementally specified model 
structure. Thus ISBNs could be another potential rout for modeling our predictive 
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learning task as it offers a memory of the previous events for making inferences about 
the upcoming stimulus. 
 

The most relevant class of models proposed in the field are Dynamic Belief 
Models. Yu and Cohen (2009) use DBMs to model reaction time data in studies where 
humans observe non-existent patterns in random statistical sequences. In these types of 
experiments subjects see patterns of repetitions or alternations in a random sequence of 
stimuli and their response time and accuracy improve if the upcoming stimulus happens 
to follow the pattern they have imagined. This is very similar to the effect of local 
structures that we observed in our primary analysis on the pilot data from Experiment 1. 
The authors suggest that humans are used to find trends of statistical patterns in the 
stimuli as it is very rare to have purely random occasions in the real world environments 
where laws of physics and biology apply. They have modeled predicting stimuli based 
on previous observations using Bayes theory, and compared the models to participants’ 
behavior. Dynamical Belief models seem to be the most appropriate approach to take 
for our experiment, as we are also interested in modeling human behavior while making 
predictions based on previously observed data. 
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Chapter 5 

5. Discussion 
 

The very promise of this dissertation was to offer a set of tools that goes beyond 
the here and now when studying the complexity of human cognition. The goal was to 
overcome the shortcomings introduced by traditional discrete measures of cognitive 
behavior such as Reaction Time. Is it possible to provide behavioral methods that go 
beyond the final outcome of a behavior and offer a peek into the process that gave rise 
to it? If so, could these methods improve what we know about complex cognitive 
processes? Could they shed light on aspects of emerging mind that stay out of reach 
with traditional discrete methods? And finally, could these new methods equip us with a 
better understanding of cognitive processes as complex and high-level as learning and 
decision making? The work offered in this dissertation shows that the answer to all of 
the above questions is a promising affirmative. 

In the recent years, it is becoming clear that a rich and semi-continuous set of 
measures is extractable from relatively implicit behaviors such as hand or eye 
movements. It has been shown that spatial and temporal dynamics of motor movements 
(i.e. action dynamics) can shed light on the progression of high-level cognitive tasks. 
This rich body of data could provide a nearly real-time translation of unfolding 
cognitive processes.  

In the current work, I chose two areas in which the action dynamics have not 
been explored nearly enough: deception and predictive learning. On the one hand this 
work takes advantage of action dynamics to get under the hood as these complex 
cognitive processes unfold in the brain. On the other hand, it utilizes these cognitive 
phenomena to demonstrate the power of action dynamics in studying higher level 
complex cognitive processes.  

In this document, mouse tracking was utilized as a paradigm to conduct a series 
of studies in deception and predictive learning. This paradigm has only recently been 
evolved as means of studying action dynamics of cognition. The current work expands 
the use of this paradigm into studying deception in a naturally tempting setting as well 
as predictive learning in statistical structures. In what follows, I briefly touch upon the 
findings and limitations of each of the two studies. I will also revisit the findings of 
chapter 4, the computational modeling of predictive learning.  

5.1 Action dynamics of deception 
 

The control theory in deception states that humans have to actively suppress 
their truth bias in order to lie. While the control theory of deception seems to be 
elegantly supported by neuroimaging and experimental data, more recent threads of 
research provide evidence that challenges the confidence of this theory. The new 
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evidence suggests that deception is not a secondary process resulting from active 
inhibition of the truth. Rather, it could be the default process that “automatically” 
happens in the presence of temptation in self-serving situations. Defying the notion of 
deception as a controlled inhibition of the truth, this view has also been supported by 
behavioral (Shalvi et al., 2012; Gino et al., 2011) and neuroimaging (Greene & Paxton, 
2009) evidence. 

In the present work, I utilized action dynamics and more specifically mouse 
tracking to contribute to this debate. The results showed that deceptive behavior could 
be facilitated when there is a self-benefit in being deceptive. People show less 
complexity in their mouse trajectories when they are being dishonest in incentivized 
tasks. “Dishonest” participants showed shorter and relatively direct mouse trajectories 
with no significant signs of hesitation. While being deceptive, their trajectories were 
more direct with less deviation towards the alternative response, illustrating less effort 
and time. “Honest” participants on the other hand, were demonstrating hesitation with 
longer trajectories and more attempts to change the direction of the mouse cursor.  

There are many complications and limitations in studying deception. No matter 
how precise of a picture the action dynamics depict, they still have to deal with these 
limitations. One very common obstacle is that there is no unified concept of deception 
or a specific type of behavior referred to as deception. Rather, deceptive behavior 
contains a wide range of actions that could be categorized as deceptive while also 
falling under more general types of cognitive behavior. This speaks into how 
researchers may be tapping into conceptually different processes involving various 
brain networks while presumably studying deception.  

Another difficulty with deception research is the social and moral aspect, which 
prevents participants from exhibiting natural behavior. The shame and fear of being 
caught influences the participants’ behavior and adds noise to the real picture. One 
advantage of the study presented here is that it offers an anonymous setting, reassuring 
participants that there is no chance of being caught. On the other hand, most 
experimental designs in the field are inspired by deception detection frameworks as that 
was the historical goal of the field. These frameworks were later adopted to also study 
the neural/mental processes involved in deception, but are still not entirely suitable for 
such goal. Participants are usually instructed to be dishonest or honest which makes 
many of the studies in the field to be far from a real-world implementation of deception 
and temptation. In the current work, using mouse tracking gave me an opportunity to 
implement a genuinely tempting situation where the individual participates in the task 
with no explicit instruction on deception. Rather, they genuinely decide whether to act 
honestly or dishonestly from the comfort of their own home while not being worried 
about getting caught or socially shamed. All in all, mouse tracking provides a 
framework to study deception in more ecologically valid setting while shedding light on 
the underlying processes involved in making a decision to lie. 
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5.2 Action Dynamics of Prediction 
 

Many researchers in different domains of cognitive science have identified 
prediction as central to perception, cognition, and action. Yet the methods used in 
studying these fields do not necessarily capture the forward thinking and predictive 
behavior involved. Phenomena such as the onset of prediction and strategy switch are 
not easily (if at all) captured by discrete and ambiguous measures like Reaction Time.  

The paradigm offered in this paper makes it possible to study the unfolding of 
prediction as the core of learning and decision making. It allows for testing various 
hypotheses. For one, I focused on studying the level of structure in the environment and 
how that correlates with the onset of prediction. It appears that predictive behavior is a 
wager that should only be worth it for the individual to get engaged in. The findings 
show that not every participant switches to a predictive mode. Among those who do 
switch, the majority only do so if the underlying structure of the environment looks 
promising. Individuals stay reactive and only in anticipation when they are confused 
about the pattern or structure of the sequence. The results however, show that observing 
a local pattern of structure with the length as short as 4-6 trials is enough to trigger the 
wagers. Moreover, explicit priming of the participants results in noticeably more 
predictions. When people think they are expected to be predictive they take bets even 
on purely random sequences. They engage in predictive behavior even though it may 
not help with accuracy.  

There is an emphasis on the role of prediction as the basis for learning in this 
task. That brings us back to the debate in the field over retrospective or memory based 
learning versus predictive or implicit learning. The findings from the studies conducted 
here, tend to side with predictive learning more so than the alternative. Participants may 
stay passive and not actively predict in all settings, but it does not take too much for 
them to exhibit their internal expectation of the sequence. It appears that there is no 
such thing as pure reactive approach. Whether they act upon it or not, participants still 
make a model or expectation of the next step and judge the structure based on that. The 
entropy model in chapter 4 shows how the memory of the previous steps could play a 
role in how eager the person is to take a predictive approach. Having a memory of 
approximately last 10 steps could provide the participants with confidence in their 
expected model of the sequence. At that point, whether they decide to be predictive or 
stay reactive, is still a notion of forward thinking on their end. Hence, it is worth noting 
that the findings suggest that both memory and prediction are in the heart of this 
learning process no matter we settle on explicit or implicit learning.  

The experimental design here, was considerably simpler than the actual serial 
reaction times studies with hundred of blocks of different sequences. This was partially 
intentional as I am interested in scenarios more resembling the real world situations. 
Nonetheless, it would be very beneficial to develop this framework for tasks precisely 
comparable to the classic studies in the field of statistical learning. Another future 
approach that certainly needs to be explored is the level of learning and awareness in 
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the task. The work here was focused on prediction more than the learning itself. 
However, the common end goal of the sequential learning studies is gauging the 
participants’ implicit / explicit learning of the underlying structure in the sequence.  
Admittedly, the current work does not put enough emphasis on this aspect of the 
phenomenon. As demonstrated by Duran and Dale (2012) a proper follow-up study 
would be to add a recognition and or awareness phase to the end of the task. This would 
give us measures to assess the correlation between predictive behavior and learning.  

5.3 Simulation 
 

In the final section of this document I presented computational models in an 
attempt to simulate the results from experiment 1&2 in chapter 3, where participants 
tend to show predictive behavior as the sequences become more and more structured. 
While the connectionist model offers an exceptionally good fit for the results, the hope 
is that the Entropy Correlation model provides a more transparent picture of how 
participants produce those results. The main challenge in modeling this type of behavior 
would be to simulate strategy switches in participants’ behavior. That will impose 
limitations and complications in the implementation of more transparent models.  

 
5.4 Conclusion 
 

Through this journey I made an attempt to show how it is only fair to start 
decoupling from traditional discrete measures of cognitive behaviors. Despite being 
reliable and informative tools, these measure are relatively blind to the unfolding of a 
cognitive process. I introduced action dynamics as new and more powerful alternatives. 
They offer what traditional measures did and much more. Using two series of studies, I 
demonstrated how these tools are empowering cognitive scientist by equipping them 
with simple, reliable and effective tools to get a real-time view of the mental processes 
in progress. I chose two scenarios that specifically lend themselves to an action 
dynamics study, as they are resulted from inherently dynamic processes orchestrated in 
the brain. What shown here, however, is generalizable to many other areas in cognitive 
science. In the recent years, researchers have shown that this thread has only begun to 
offer its power in capturing a more accurate picture of cognition.  

Action dynamics approach, similar to any other, has its own limitations. 
Although it offers considerably more information compared to traditional measures in 
the field, there is still ambiguity in what give rise to certain behaviors. Motivations, 
brain sections involved in performing that cognitive behavior, and causal relations 
behind it would still be out of reach in these approaches. Mouse-tracking in particular 
shows mainly manual tendencies, whereas, combining it with eye-tracking and 
oculomotor measures could extend the range of reactive and predictive strategies 
captured. Coupling action dynamics with neuro-imaging and non-invasive brain 
manipulation studies that could establish causal relations could be a valuable tool in 
extending our knowledge of complex cognitive processes. 
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