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maximum likelihood estimation for the causal effect of a cluster-
level exposure

Laura B Balzer1, Wenjing Zheng2, Mark J van der Laan3, and Maya L Petersen3 on behalf of 
the SEARCH study
1Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, 
University of Massachusetts, Amherst, MA, USA

2Netflix, Los Gatos, CA, USA

3Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA

Abstract

We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at 

the cluster-level. For example, the literature on neighborhood determinants of health continues to 

grow. Likewise, community randomized trials are applied to learn about real-world 

implementation, sustainability, and population effects of interventions with proven individual-level 

efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level 

factors, including the exposure, as well as social or biological interactions between individuals. To 

flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted 

maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric 

causal model, which allows for arbitrary interactions between individuals within a cluster. These 

interactions include direct transmission of the outcome (i.e. contagion) and influence of one 

individual’s covariates on another’s outcome (i.e. covariate interference). The second TMLE is 

developed under a causal sub-model assuming the cluster-level and individual-specific covariates 

are sufficient to control for confounding. Simulations compare the alternative estimators and 

illustrate the potential gains from pairing individual-level risk factors and outcomes during 

estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the 

sub-model can result in bias and misleading inference in an observational setting. Incorporating 

working assumptions during estimation is more robust than assuming they hold in the underlying 

causal model. We illustrate our approach with an application to HIV prevention and treatment.
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1 Introduction

In many studies, individuals are grouped into clusters, such as households, clinics, or 

communities, and the objective is to learn the impact of an exposure naturally occurring or 

randomly assigned at the cluster-level. In observational settings, for example, there is a 

growing body of literature dedicated to understanding neighborhood determinants of health.
1–3 Likewise, cluster (group) randomized trials are increasingly implemented to learn about 

large-scale implementation as well as the direct, indirect, and population-level effects of 

interventions with proven individual-level efficacy.4 Examples of ongoing cluster 

randomized trials include the SEARCH study, testing a community-based strategy for HIV 

prevention and treatment5; the CBIM study, testing a school-based program to prevent 

gender violence6; and the SHINE study, testing a household-based strategy to reduce 

Staphylococcus aureus infection.7 In both observational and trial settings, individual-level 

outcomes may be correlated due to shared cluster-level factors, including the exposure, and 

causal interactions between individuals within clusters. In this paper, we aim to make full 

use of a hierarchical data structure to flexibly and efficiently estimate the effect of the 

cluster-based exposure, while avoiding unwarranted causal and statistical assumptions.

There is an extensive literature on the definition and estimation of the impact of cluster-

based exposures or interventions.4,8 Two popular approaches are random (mixed) effects 

models and generalized estimating equations (GEE).9,10 For reviews of these methods, we 

refer the reader to Gardiner et al. and Hubbard et al., among others.11,12 In these approaches, 

the causal effect of interest is defined as the coefficient for exposure in the outcome 

regression. For estimation and inference, these algorithms harness the pairing of individual-

level risk factors and outcomes, while accounting for the correlation of outcomes within 

clusters. More recently, augmented-GEE has been proposed to increase precision in cluster 

randomized trials.13,14 A potential short-coming of these approaches is their reliance on 

parametric regression models to define and estimate causal effects. In particular, background 

knowledge is rarely sufficient to justify the parametric models employed. In observational 

settings, this can result in ill-defined causal effects, biased estimates, and misleading 

inference.12 In cluster randomized trials, this approach can result in efficiency losses.

In this manuscript, we begin by presenting a structural causal model to represent a general 

hierarchical data generating process.15–17 This causal model is non-parametric and accounts 

for dependence in individual-level outcomes that may be induced by shared cluster-level 

factors and by causal interactions between individuals.3,18–22 Throughout we assume 

independence between clusters. The causal model can incorporate, but does not require, 

assumptions reflecting the exposure assignment to clusters (e.g. randomization). Through 

interventions on this causal model, we generate counterfactuals and define the causal effect 

of interest without relying on parametric models. This approach ensures that the causal 
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effect corresponds to the underlying scientific question and is agnostic to data generating 

process (e.g. the presence or absence of informative cluster sizes23).

If the observed data are aggregated to the cluster-level, then estimation of the corresponding 

statistical parameter can proceed analogously to non-hierarchical data structures. For 

example, we could apply matching algorithms,24–26 parametric G-computation,27–30 inverse 

probability of treatment weighting (IPTW) estimators,31–36 or double robust approaches,
17,37–41 such as targeted maximum likelihood estimation (TMLE). This aggregated data 

approach is straightforward and naturally respects the experimental (independent) unit as the 

cluster. Furthermore, this approach avoids unwarranted assumptions on the distribution of 

latent terms or on the dependence structure within a cluster. However, this approach ignores 

the pairing of the individual-level risk factors with individual-level outcomes.

As an alternative to approaches based on aggregated data, we develop two targeted 

maximum likelihood estimators (TMLEs) that leverage the hierarchical data structure by 

preserving the pairing of individual-level covariates and outcomes.17,41 TMLE is a general 

framework for the construction of double robust, semi-parametric, efficient, substitution 

estimators. As applied to causal effect estimation in a single time point setting, the algorithm 

begins with an initial estimator of the outcome regression: the conditional mean outcome, 

given the exposure and baseline covariates. TMLE updates this initial estimator by 

incorporating information in the known or estimated propensity score: the conditional 

probability of receiving the exposure, given the covariates. These updated estimates are then 

plugged into the parameter mapping. TMLE is a substitution estimator, which improves its 

stability. Through its updating procedures, TMLE satisfies the efficient score equation, while 

guaranteeing parameter estimates respect known bounds (contrary to a direct estimating 

equation approach). As a result, TMLE is double robust, yielding a consistent estimate if 

either the outcome regression or the propensity score is estimated consistently, and efficient, 

achieving the lowest possible variance if both the outcome regression and propensity score 

are estimated consistently at reasonable rates. Finally, TMLE naturally integrates machine 

learning, while maintaining the basis for formal statistical inference.

In this manuscript, we first propose incorporating the pairing of individual-level covariates 

and outcomes to improve initial estimation of the outcome regression in a cluster-level 

TMLE (Section 3). Then in Section 4, we consider assumptions commonly made when 

estimating effects in hierarchical settings. Specifically, we assume that an individual’s 

outcome is generated as a common function of the cluster-level covariates, cluster-level 

exposure and individual-specific covariates, but is not directly affected by the covariates of 

other individuals within his/her cluster (i.e. no covariate interference42). We further assume 

that the cluster-level and individual-specific covariates are sufficient to control for 

confounding. For the resulting statistical parameter, we present a second TMLE for this 

distinct estimation problem.

We compare the two TMLEs theoretically (Section 5) and with finite sample simulations 

(Section 6). They differ in their efficiency and in how they incorporate individual-level data. 

In particular, the assumptions in the more restrictive sub-model result in a lower efficiency 

bound and thus a potentially more precise TMLE than that developed under the larger 
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model. However, if these assumptions do not hold, the TMLE developed under this sub-

model may be subject to bias and misleading inference in an observational setting and to 

inefficiency in a trial setting. Since these assumptions are often made when estimating the 

effects of cluster-level exposures, our findings may have implications beyond the Targeted 

Learning framework.

To illustrate the concepts in this paper, we consider a community-based strategy for 

intensified HIV testing with immediate initiation of antiretroviral therapy (ART) for all HIV-

infected individuals. The premise of this “Test-and-Treat” strategy is to improve clinical 

outcomes among HIV-infected individuals and dramatically reduce their probability to 

transmission to others.43–48 Our objective is estimate the impact of this strategy as compared 

to the standard of care on cumulative HIV incidence: the proportion of baseline HIV-

uninfected individuals who become HIV-infected by the end of follow-up. Within a 

community, individual outcomes are expected to be correlated due to both shared 

community-level factors and causal interactions between individuals. The desire to capture 

the direct, indirect, total, and overall effects of this nature are a common motivation for 

focusing on evaluation of cluster-level rather than individual-level interventions.3,4,19–22

2 General hierarchical causal model

We begin by specifying a structural causal model for the process that generated data on each 

cluster (the experimental unit).15,16 Throughout, we focus on the simple scenario where a 

cluster is first sampled from some target population, and then individuals within a cluster are 

selected for participation. In the running example, a study community is randomly selected 

from the target population of communities, and then baseline HIV-uninfected individuals are 

randomly sampled from that community. The number of individuals selected in each cluster 

could be fixed or could vary. The latter case may arise if underlying cluster sizes differ and 

all eligible individuals in each cluster are selected. Throughout, clusters are indexed with j = 

{1, … , J}, and individuals are indexed with i = {1, …, Nj}.

After selection of the study units, covariates are measured. These baseline characteristics 

may affect, but are not themselves affected by the exposure. Some characteristics might be 

aggregates of individual-level covariates, while others may be cluster-level covariates with 

no clear individual-level counterpart. The baseline characteristics are divided into two 

mutually exclusive sets. For cluster j, let Ej denote the vector of environmental factors shared 

by all cluster members, and Wj the matrix of individual-level characteristics. In our example, 

Ej could include baseline HIV prevalence and community size, while individual-level 

covariates Wj might include baseline risk behaviors and demographic data, such as age, sex, 

and marital status. If there are p such individual-level covariates, then Wj would be an (Nj × 

p) matrix and Wij would be the (1 × p) vector of baseline characteristics for subject i in 

cluster j. Throughout Wi. denotes the ith individual’s covariates from a randomly selected 

(or unspecified) cluster from the target population.

Next the exposure A is assigned or naturally occurs in each cluster. In our example, Aj is an 

indicator that the Test-and-Treat strategy is implemented in community j. The exposure 

received by cluster j might be randomly assigned or might depend on the covariates (Ej, Wj). 
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Finally, the outcome Yj = ( Yij : i = 1, … , Nj) is measured on all selected individuals in 

cluster j. Throughout, Yi. denotes the ith individual’s outcome from a randomly selected (or 

unspecified) cluster. In the example, Yi is an indicator that individual i becomes HIV-

infected by the end of follow-up.

Causal relationships between these variables are specified through a directed acyclic graph 

(Figure 1) or non-parametric structural equations15,16

E = f E(UE)
W = f W(E, UW)
A = f A(E, W, UA)
Y = f Y(E, W, A, UY)

(1)

where U = (UE, Uw, UA, UY) denotes the set of unmeasured variables. This model states that 

the value of each variable on the left-hand side of an equation may be causally determined 

by the variables on the right hand side of the equation, including unmeasured sources of 

random variation U. This causal model (equation (1)) contains data generating structures 

corresponding to both randomized trials and observational settings. See online Appendix A 

for further details.

This model accounts for many possible sources of dependence between individuals within a 

cluster. For example, individual-level variables (covariates and outcomes) will be correlated 

due to shared measured and unmeasured factors. The model also allows for contagion: when 

an individual’s outcome Yij may be affected by another’s outcome Ykj within cluster j.20 

Covariate interference is also consistent with this model: an individual’s outcome Yij may be 

affected by another’s covariates Wkj.42 No assumptions are made about the structure or 

correlation of the unmeasured factors (UW, UY) between individuals within a cluster. Thus, 

this general causal model covers a wide range of “dependent happenings”.20 It does, 

however, assume causal independence between distinct clusters (communities).

2.1 Counterfactuals and the target causal effect

Counterfactual outcomes are defined through modifications to the data generating process 

described by the causal model (equation (1)).16,17 Replacing the structural equation fA with 

the constant a generates the counterfactual random variable Y(a). Under assumptions linking 

the structural causal model to the observed data (stated explicitly below), Yj(a) = (Yij(a) : i = 

1, … ,Nj) can be interpreted as the vector of individual-level outcomes that would be 

observed for cluster j under exposure level a. As before, Yi.(a) denotes the ith individual’s 

counterfactual outcome for a randomly selected (unspecified) cluster. In the example, Yi.(1) 

represents the final HIV status for subject i were his/her community to receive the Test-and-

Treat strategy, irrespective of whether or not the community in fact received the intervention. 

Likewise, Yi.(0) represents the final HIV status for subject i were his/her community to 

continue with the standard of care.
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Let the cluster-level counterfactual outcome be the (weighted) mean outcome for the Nj 

individuals sampled from cluster j

Y j
c(a) ≡ ∑

i = 1

N j
αijY ij(a) (2)

for some user-specified set of weights such that ∑i = 1
N j αij = 1 When the sample size Nj 

varies, a natural choice for the weights is the inverse cluster-specific sample size: αij = 1/Nj. 

When the individual-level index i is informative (e.g. in a repeated measures setting), other 

choices of the weight vector α might be preferred. To simplify exposition for the remainder 

of the article, we assume the weight αij = 1/Nj and the cluster-level outcome is the empirical 

mean of the individual-level outcomes. In the running example, Yc(a) is the counterfactual 

proportion of baseline HIV-uninfected individuals who would seroconvert during follow-up 

if the community received exposure A = a. In other words, Yc(a) is the counterfactual 

cumulative HIV incidence under exposure level A = a.

We focus on causal parameters defined in terms of the treatment-specific mean, the expected 

counterfactual cluster-level outcome if all clusters in the target population received the 

exposure A = a:𝔼[Yc(a)]. The difference or ratio of these treatment-specific means defines a 

causal effect. For example, the population average treatment effect is given by 

𝔼[Yc(1)] − 𝔼[Yc(0)]. For the running example, this causal effect evaluates the difference in 

HIV incidence if all communities in our target population implemented the Test-and-Treat 

strategy versus if all communities continued with the standard of care. Alternatively, we 

could define our parameter of interest as the causal risk ratio: ℙ(Yc(1) = 1) ℙ(Yc(0) = 1). For 

conditions and interpretation in terms of a pooled individual-level causal effect, see online 

Appendix B.

2.2 Observed data and statistical model

For a randomly sampled cluster, the observed data are the measured environmental 

covariates, the measured individual-level covariates, the exposure, and the vector of 

individual-level outcomes: O = (E, W, A, Y). We define the observed cluster-level outcome 

as the empirical mean of the individual-level outcomes: Y j
c ≡ ∑i = 1

N j αijY ij with our choice of 

weights αij = 1/Nj. We assume that the observed data Oj : j = 1, … , J are generated by 

sampling J independent times from some distribution compatible with the causal model. 

Thereby, the causal model (equation (1)) implies a statistical model, which describes the set 

of possible distributions of O and is denoted ℳI. In many cases, the causal model does not 

place any restrictions on the set of observed data distributions, and the resulting statistical 

model is non-parametric. In other cases, such as a randomized trial, knowledge about the 

exposure assignment mechanism implies a semi-parametric statistical model. We use 

subscript 0 to denote the true distributions. The true distribution of the observed data, 

denoted ℙ0, is an element of the statistical model ℳI.
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2.3 Identifiability of the cluster-level causal effect

To write the treatment-specific mean as a function of the observed data distribution, we 

make two additional assumptions, analogous to common identifiability assumptions for non-

hierarchical causal effects.27 First, we assume that all the common causes of the cluster-

based exposure A and the vector of individual-level outcomes Y are captured by the 

measured covariates (E, W) (Supplementary Figure S1). In other words, we assume there is 

no unmeasured confounding: A ⫫ Y(a) ∣ E, W. In the HIV example, this assumption would 

hold by design if the Test-and-Treat intervention were randomly allocated among 

communities. Otherwise, measuring a rich set of determinants of HIV infection will increase 

the plausibility of this assumption.

We also need the positivity assumption (a.k.a. experimental treatment assignment 

assumption), which ensures that there is sufficient variability in the exposure value within all 

possible confounder strata: ℙ0(A = a ∣ E = e, W = w) > 0 a.e.. Under these assumptions, we 

have the hierarchical analogue to the G-computation identifiability result27: 

𝔼[Y(a)] = 𝔼0[𝔼0(Y ∣ A = a, E, W)]. This provides us with a general identifiability result for the 

causal effect of cluster-level exposure a on any cluster-level outcome YC, which is some real 

valued function of the outcome vector Y:

Ψ I(ℙ0)(a) ≡ 𝔼0[𝔼0(Yc ∣ A = a, E, W)] (3)

We can interpret the resulting statistical estimand as the expected cluster-level outcome, 

given the exposure and covariates, averaged (standardized) with respect to the covariate 

distribution in the population.

The randomization and positivity assumptions thus allow us to identify parameters of 

𝔼[Yc(a)], such as the population average treatment effect: 

𝔼0[𝔼0(Yc ∣ A = 1, E, W) − 𝔼0(Yc ∣ A = 0, E, W)]. Likewise, for a binary outcome, we can 

identify the causal risk ratio as 𝔼0[𝔼0(Yc ∣ A = 1, E, W)] 𝔼0[𝔼0(Yc ∣ A = 0, E, W)].

3 Estimation under the general hierarchical causal model

In the previous section, we defined the statistical estimand as a mapping from the statistical 

model to the parameter space: Ψ I :ℳI R. Under the above randomization and positivity 

assumptions, the target parameter Ψ I(ℙ0)(a) corresponds to the treatment-specific mean 

𝔼[Yc(a)], which can be used to define both absolute and relative effects.49

In this section, we review a targeted maximum likelihood estimator (TMLE) of the statistical 

parameter Ψ I(ℙ0)(a) (equation (3)) based on J i.i.d. observations O from ℙ0 ∈ ℳI. The 

efficient influence curve and cluster-level TMLE presented in this section are direct analogs 

to the standard individual-level TMLE described and implemented elsewhere.17,50,51 We 

then discuss several approaches for nuisance parameter estimation. Our contribution is to 
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consider candidate estimators making full use of the hierarchical data structure (i.e. the 

pairing of individual-level risk factors and outcomes) during initial estimation of the 

conditional mean outcome.

Before proceeding, we introduce some additional notation. Let us denote the marginal 

distribution of the baseline covariates as QE, W ≡ ℙ(E, W) and the conditional mean of the 

cluster-level outcome given the exposure and covariates as Q‒c(A, E, W) ≡ 𝔼(Yc ∣ A, E, W). The 

statistical parameter can thus be written as 𝔼[𝔼(Yc ∣ a, E, W)] = ∑e, wQ‒c(a, e, w)ℙ(e, w), where 

the summation generalizes to the integral for continuous covariates. This clarifies that the 

statistical parameter only depends on the observed data distribution through Q = (QE, W, Q‒c). 

For the targeting step, we will also need to estimate the cluster-level propensity score, 

denoted as gc(a ∣ E, W) ≡ ℙ(A = a ∣ E, W). Without loss of generality, we assume that the 

cluster-level outcome Yc is bounded between zero and one.52 In the running example, Yc is 

cumulative HIV incidence and thus a proportion.

3.1 The cluster-level TMLE

The efficient influence curve of ΨI at ℙ0 is given by

DI(ℙ0)(O) = 𝕀(A = a)
g0

c(A ∣ E, W)
(Yc − Q‒0

c(A, E, W)) + Q‒0
c(a, E, W) − Ψ I(ℙ0)(a) (4)

where Q‒0
c(A, E, W) denotes the true conditional mean of the cluster-level outcome and 

g0
c(A ∣ E, W), denotes the true cluster-level propensity score. This is a direct analog of the 

efficient influuence curve for the G-computation identifiability result for a non-hierarchical 

data setting.17,41 The first component is the weighted deviations between the cluster-level 

outcome and its expectation given the exposure and covariates; the weights are the inverse of 

the cluster-level propensity score. The second component is the deviation between the 

conditional mean outcome and its expectation over the covariate distribution. The efficient 

score equation can be generated as a score of a fluuctuation of the covariate distribution and 

the conditional distribution of the cluster-level outcome, given the exposure and covariates. 

This is used in formulation of the targeting step in TMLE.17,41

Specifically, suppose we have an initial estimator Q‒
c
(A, E, W) of the expected cluster-level 

outcome Q‒0
c(A, E, W). The TMLE algorithm updates this initial estimator with information 

contained in the known or estimated propensity score gc(a ∣ E, W). To do so, we minimize a 

pre-specified loss function along a least favorable (with respect to the statistical estimand) 

sub-model through Q‒
c
(A, E, W). We choose the negative log-likelihood loss function

−ℒc(Q‒c)(O) = Yclog[Q‒c(A, E, W)] + (1 − Yc)log[1 − Q‒c(A, E, W)] (5)
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and the logistic sub-model with fluctuation parameter ϵ

logit[Q‒
c
(ϵ)] = logit[Q‒

c
] + ϵHc

(6)

Where logit( ⋅ ) = log( ⋅ 1 − ⋅ ) and the “clever covariate” Hc = 𝕀(A = a)
gc(a ∣ E, W)

. At zero 

fluctuation, the initial estimator is returned: Q‒
c
(ϵ = 0) = Q‒

c
. Furthermore, the score spans the 

relevant component of the efficient influence curve (equation (4)) at any distribution ℙ in our 

model ℳI.

The parametric sub-model (equation (6)) is used to target the initial estimator Q‒
c
(A, E, W) of 

outcome regression. The amount of fluctuation (i.e. the coefficient ϵ) is estimated with 

maximum likelihood. Specifically, we run logistic regression of the cluster-level outcome Yc 

on the clever covariate Hc and use the logit of the initial estimator Q‒
c
(A, E, W) as offset. 

Plugging in the estimated fluctuation parameter ϵ provides an updated fit to the outcome 

regression:

Q‒
c ∗

= Q‒
c
(ϵ) = logit−1[logit(Q‒

c
) + ϵHc] (7)

As estimator of the covariate distribution, we use the empirical QE, W, which puts weight 1/J 

on each cluster. As detailed in Rose and van der Laan,53 the empirical distribution solves the 

relevant score equation (i.e. relevant component of the efficient influence curve) and does 

not need targeting, even in high dimensional settings.54

The TMLE is the substitution estimator obtained by plugging Q∗ = (QE, W, Q‒
c ∗

), into the 

parameter mapping ΨI:

Ψ I(Q∗)(a) = 1
J ∑

j = 1

J
Q‒

c ∗
(a, E j, W j) (8)

The point estimate, denoted ψ I(a), is the sample average of the targeted predictions of the 

cluster-level outcome, given the exposure of interest (A = a) and the measured covariates.

By construction, TMLE solves the efficient score equation: 0 = ∑ j DI(Q∗, gc). As a result, the 

estimator is double robust in that it remains consistent if only one of the nuisance parameters 

(the outcome regression or the propensity score) is consistently estimated. In an 

observational setting, this double robustness property improves our chances for obtaining a 

consistent estimate and valid statistical inference.55 In a randomized trial, where the 

propensity score is known, the double robustness property implies that the TMLE will 

remain unbiased regardless of the outcome regression specification and thereby confers 
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wider flexibility in covariate adjustment to increase efficiency.56 Furthermore, if both 

nuisance parameters are consistently estimated at reasonable rates,17 then the TMLE is 

asymptotically linear with influence curve equal to the efficient influence curve (equation 

(4)) and asymptotically efficient.57 In other words, this TMLE achieves the lowest possible 

asymptotic variance among a large class of estimators.

Under more general conditions,17 TMLE is a regular, asymptotically linear estimator, and 

the Central Limit Theorem can be used to obtain statistical inference. Specifically, let

DI(Q∗, gc)(O j) =
𝕀(A j = a)

gc(A j ∣ E j, W j)
(Y j

c − Q‒
c ∗

(A j, E j, W j)) + Q‒
c ∗

(a, E j, W j) − ψ I(a) (9)

be the plug-in estimator of the influence curve for observation Oj. We obtain a variance 

estimator with the sample variance of DI(Q∗, gc)) divided by the number of experimental 

units: σ2 = Var[DI] J. This variance estimator is used to construct Wald-Type 95%-

confidence intervals and carry out hypothesis tests. Under additional assumptions, the non-

parametric bootstrap provides an alternative to the influence curve-based inference.

3.2 Data-adaptive estimation of nuisance parameters

In most applied settings, a priori-specification of a correct parametric regression for the 

conditional mean outcome Q‒0
c(A, E, W) is impossible. We may know and measure the 

relevant covariates, but specifying the exact functional form is beyond our knowledge. 

(Recall our causal model often implies a non-parametric or semi-parametric statistical 

model.) In a randomized trial, the propensity score is known (e.g. g0
c(a ∣ E, W) = 0.5)) and can 

be consistently estimated with a parametric regression to improve precision.36,58,59 In 

observational settings, however, consistent estimation of the propensity score may present 

similar challenges. A core feature of TMLE is the use of machine learning algorithms for 

estimation of both the outcome regression Q‒0
c(a, E, W) and the propensity score g0

c(a ∣ E, W).

We focus on Super Learner,60,61 an ensemble algorithm.62,63 Super Learner employs V-fold 

cross-validation to build a convex combination of algorithm-specific predictions to minimize 

the cross-validated risk, based on a user-specified loss function. The library of candidate 

algorithms can include both parametric models and data-adaptive methods (e.g. stepwise 

regression, support vector machines,64 generalized additive models,65 LASSO66 – each with 

multiple tuning parameters). If the correctly specified parametric model is not included in 

the library, Super Learner under minimal conditions performs asymptotically as well as the 

“oracle selector” that uses the true distribution ℙ0 to select the optimal convex combination 

from the library.60,61 If the correctly specified parametric model is included in the library, 

Super Learner still achieves an almost parametric rate of convergence.

Under our statistical model ℳI, Super Learner for the outcome regression and for the 

propensity score can be implemented using a cluster-level loss function (online Appendix 
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C). Alternatively, to leverage the pairing of individual-level covariates and outcomes and to 

reduce the dimensionality of the adjustment set, we now consider two working assumptions. 

These assumptions suggest alternative approaches to estimating the cluster-level outcome 

regression Q‒0
c(A, E, W) and thereby an expanded Super Learner library.

First, suppose that an individual’s outcome is minimally impacted by the covariates of other 

individuals in his or her cluster: 𝔼0(Y i ⋅ ∣ A, E, W) = 𝔼0(Y i ⋅ ∣ A, E, W i ⋅). In other words, 

consider an exclusion restriction that the ith individual’s outcome Yi. is only a function of 

the matrix W through his/her own covariates Wi·. Second, suppose that this individual-level 

regression is common in i:𝔼0(Y i ⋅ ∣ A, E, W i ⋅) = Q‒0(A, E, W) for some function Q‒0. A common 

function is natural when i indexes a random permutation {1,… ,N}. Under these working 

assumptions, we can rewrite the conditional mean of the cluster-level outcome as

Q‒0
c(A, E, W) = ∑

i = 1

N
αi ⋅Q

‒
0(A, E, W i ⋅) (10)

This suggests a natural estimator for Q‒0
c based on fitting a single regression of the individual-

level outcome Y on the exposure and covariates (A, E, W) and then averaging across 

individuals within a cluster. In our HIV example, we could estimate the expected cumulative 

HIV incidence Q‒0
c by (i) pooling individuals across clusters, (ii) fitting a individual-level 

outcome regression with weights αij and with terms for the cluster-level exposure, the 

community’s baseline HIV prevalence as well as the individual’s age and sex; and (iii) 

averaging the individual-level predictions within clusters. Corresponding data-adaptive 

approaches are also possible.

These working assumptions can be relaxed by incorporating knowledge of the dependence 

structure between individuals within clusters. Suppose we are able to identify or 

approximate for each individual i the specific set of individuals Ci. to which individual i is 

“connected”. In other words, Ci. denotes the subset of individuals who influence the ith 

individual’s outcome Yi·. Then we could pose a more general version of the working model 

(equation (10)) by including in the ith individual’s covariate vector the covariates of his/her 

connections Wk· for k ∈ Ci·. In the HIV example, an individual’s probability of 

seroconversion might depend on his/his own sexual behavior as well as the baseline behavior 

of the other individuals in his/her sexual network Wk· : k ∈ Ci·.

In summary, the utility of the working assumption (equation (10)) is to generate an expanded 

set of candidate estimators of the conditional mean of the cluster-level outcome Q‒0
c(A, E, W)

for inclusion in the Super Learner library. Any (N × 1) individual-level covariate vector can 

alternatively be included in either the covariate matrix W or as a cluster-level covariate E. 

Therefore, we can include algorithms that assume Yi. only depends on Wi· for investigator-

specified subsets of W. In other words, this working model allows us to consider a variety of 

dimension reductions for the adjustment set (E, W). Super Learner provides a mechanism to 
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choose between and combine candidate individual-level and cluster-level algorithms in 

response to the data, thereby optimizing estimator performance. Step-by-step 

implementation of the cluster-level TMLE with Super Learner and corresponding R code is 

given in online Appendix D.

4 Hierarchical TMLE when causal dependence is restricted

The cluster-level TMLE, presented in the previous section, is developed under a general 

hierarchical causal model that makes no assumptions about the nature or sources of 

dependence between individuals within a cluster (equation (1); Figure 1). For identifiability 

of the impact of the cluster-level exposure, we assume the cluster-level covariates E and 

whole matrix of individual-level covariates W are sufficient to control for confounding. For 

initial estimation of the conditional mean of the cluster-level outcome Q‒0
c(A, E, W), we 

consider additional working assumptions designed to more fully leverage the hierarchical 

nature of the data (equation (10)). These assumptions are treated as “working” and are not 

considered to reflect the underlying causal process. If the propensity score g0
c(A ∣ E, W) is 

estimated consistently (as will always be true in a randomized trial), then estimating the 

outcome regression Q‒0
c(A, E, W) under these working assumptions may improve asymptotic 

efficiency as well as finite sample bias and variance; the better the working assumptions 

approximate the truth, the better the TMLE will perform.

In this section, we consider an alternative hierarchical causal model, which restricts the 

causal dependence of individuals within a cluster. Specifically, we assume that an 

individual’s outcome is known not to be affected by the covariates of other individuals in the 

cluster. This more restrictive causal model implies that the working assumptions (equation 

(10)) hold, thereby changing the statistical model by restricting the set of allowed 

distributions for outcome regression Q‒0
c. The modified causal model also results in a distinct 

identifiability result and corresponding statistical estimand. Specifically, we now need to 

assume that the cluster-level covariates E and individual i-specific covariates Wi. are 

sufficient to control for confounding. For the modified statistical estimation problem, we 

present the efficient influence curve and the corresponding individual-level TMLE.

4.1 Restricted hierarchical causal model

We now consider a causal model assuming each individual’s outcome Yi. is drawn from a 

common (in i) distribution depending on the cluster-level covariates E, each individual’s 

own covariates Wi., the cluster-level exposure A, and unmeasured factors UYi., but not on 

the measured covariates of all other individuals in that cluster. In other words, we assume no 

covariate interference.42 We further assume that the cluster-level covariates E and individual 

i-specific covariates Wi. are sufficient to control for confounding. This assumption holds by 

design in a randomized trial, but is a strong assumption on the distribution of unmeasured 

factors in an observational setting (Supplementary Figure S2).

This data generating process is represented by the following structural causal model
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E = f E(UE)
W = f W(E, UW)
A = f A(E, W, UA)

Y i ⋅ = f Y(E, W i ⋅, A, UYi ⋅
), i = 1, …, N

whereA ⫫ Y i ⋅(a) ∣ E, W i ⋅

(11)

We further assume that the conditional probability distributions of the individual-level 

covariates and outcome (Wi., Yi.), given the cluster-level covariates and exposure (E, A), are 

common in i. This causal model is compatible with observational studies (Figure 2) and 

cluster randomized trials (Supplementary Figure S3).

Returning to our HIV example, the restricted causal model (equation (11)) assumes 

individual i’s final HIV status Yi. is generated as a common function of the shared 

environmental factors E (e.g. region, baseline prevalence), his/her own covariates Wi. (e.g. 

age, sex, marital status), implementation of the Test-and-Treat strategy A, and unmeasured 

individual-level factors UYi. (e.g. his/her perceived stigma), but not the covariates of others 

in his/her cluster. In this infectious disease setting, the restricted causal model might not be 

realistic. First, the baseline risk behavior of one individual Wk. may directly or indirectly 

impact the outcome of another Yi.. Even if the assumption of no covariate interference is 

plausible, this causal model will not hold if there is an unmeasured common cause (e.g. 

community-level stigma) of the individual-level covariates (Wi., Wk.) and outcomes (Yi., 

Yk.). Of course, we could improve plausibility of these assumptions by including in Wi. the 

baseline covariates of his/her partners Ci.. Nonetheless, the assumptions in the restricted 

causal model are commonly made, but potentially implausible when outcomes are 

biologically or socially transmitted. We refer the reader to Supplementary Figure S2 for 

additional examples and discussion.

4.2 The individual-level TMLE

Assuming the restricted causal model is true, we proceed to estimation. As before, the 

observed data consist of J i.i.d observations of O = (E, W, A, Y), and the observed cluster-

level outcome is the empirical mean of the individual-level outcomes: Yc = ∑i = 1
N αi ⋅Y i ⋅

Without loss of generality, we assume that the individual-level outcome Yi. is bounded in 

zero and one.52 In the example, Yi. is an indicator that the ith individual becomes infected 

with HIV over the course of follow-up.

The restricted causal model (equation (11)) implies the statistical assumption in equation 

(10); the conditional mean of the cluster-level outcome can be written as the average of 

individual-level regressions. We further assume that the conditional distribution of the 

exposure, given the cluster-level and individual i-specific covariates, is a common 

conditional distribution:
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ℙ0(A ∣ E, W i ⋅) ≡ g0(A ∣ E, W i ⋅) (12)

We refer to g0(A|E, Wi·) as the individual-level propensity score. The resulting statistical 

model implied by these assumptions is denoted ℳII and is a sub-model of ℳI.

Under this more restrictive causal model, adjustment for the cluster-level covariates E and 

the individual i-specific covariates Wi. is sufficient to control for confounding. With the 

corresponding positivity assumption, our identifiability result for the treatment-specific 

mean 𝔼[Yc(a)] is given by by

Ψ II(ℙ0)(a) ≡ 𝔼0 ∑
i = 1

N
αi ⋅Q

‒
0(a, E, W i ⋅) (13)

Let Ψ II :ℳII ℝ be the statistical parameter implied by this identifiability result, thus 

defining a new statistical estimation problem. As before, the statistical estimand Ψ II(ℙ)(a)
depends on the observed data distribution ℙ through the marginal distribution of baseline 

covariates and the conditional mean of the cluster-level outcome: Q = (QE, W, Q‒c). Now, 

however, the conditional mean of the cluster-level outcome is assumed to be an average of 

common individual-level regressions: Q‒0
c(A, E, W) = ∑iαi ⋅Q

‒
0(A, E, W i ⋅).

The efficient influence curve of ψII at ℙ0 ∈ ℳII is given by

DII(ℙ0)(O) = ∑
i = 1

N
αi ⋅

𝕀(A = a)
g0(A ∣ E, W i ⋅)

(Y i ⋅ − Q‒0(A, E, W i ⋅)) + Q‒0(a, E, W i ⋅) − Ψ II(ℙ0)(a)

(14)

Under sub-model ℳII, the efficient influence curve is the average of an individual-level 

function. The first component of this individual-level function is the weighted deviations 

between the individual-level outcome and its expectation given the exposure and covariates; 

the weight is the inverse of the individual-level propensity score. The second component is 

the deviation between the conditional expectation of the individual-level outcome and the 

target parameter.

As before, the efficient influence curve (equation (14)) is used to derive the TMLE. 

Specifically, suppose we have an initial estimator Q‒(A, E, W) of the individual-level outcome 

regression Q‒0(A, E, W) and an estimator g(a ∣ E, W) of the individual-level propensity score 

g0(a|E, W). The TMLE algorithm updates the initial estimator Q‒(A, E, W) into Q‒
∗
(A, E, W) by 
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minimizing a pre-specified loss function along a least favorable (with respect to the 

statistical estimand) sub-model through Q‒(A, E, W). This updating step also serves to target 

the initial cluster-level outcome regression Q‒
c

= ∑iαi ⋅Q
‒
 into Q‒

c ∗
= ∑iαi ⋅Q

‒∗
.

As loss function for the outcome regression, we use the average of an i-specific loss function

ℒII(Q‒c)(O) = ∑
i = 1

N
αi ⋅ℒ(Q‒)(O) (15)

where

−ℒ(Q‒)(O) = Y i ⋅log[Q‒(A, E, W i ⋅)] + (1 − Y i ⋅)log[1 − Q‒(A, E, W i ⋅)] (16)

ℒ is a valid loss function for the i-specific outcome regression 𝔼0(Y i ⋅ ∣ A, E, W i ⋅), and under 

the sub-model ℳII this regression is constant across individuals Q‒0(A, E, W). Therefore, this 

is a valid loss function for each i, and the sum loss is also valid (online Appendix C).

For our fluctuation model through an initial estimator Q‒(A, E, W), we select the individual-

level analog to the cluster-level fluctuation model (equation (6))

logit[Q‒(ϵ)] = logit[Q‒] + ϵH (17)

where the individual-level clever covariate is defined as

Hij =
𝕀(A j = a)

g(a ∣ E j, W ij)
, i = 1, …, N j and j = 1, …, J (18)

This fluctuation model is only a function of the covariate matrix W through the ith-specific 

covariate Wi. and is a sub-model of ℳII. At zero fluctuation, the initial estimator is returned. 

This combination of loss function and fluctuation model has score d
dϵℒII(Q‒c)(ϵ) at ϵ = 0 that 

spans the relevant portion of the efficient influence curve DII.

The amount of fluctuation ε is fit by pooling individuals across clusters and running logistic 

regression of the individual-level outcome Yi. on the clever covariate Hi ⋅. with the logit of 

the initial estimator Q‒(A, E, W i ⋅) as offset and weights αi·. Plugging in the resulting 

coefficient estimate ϵ provides an updated fit of the individual-level regression
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Q‒
∗

= Q‒(ϵ) = logit−1[logit(Q‒) + ϵH] (19)

and thereby the cluster-level regression: Q‒
c ∗

(A, E, W) = ∑i = 1
N αi ⋅Q

‒∗
(A, E, W i ⋅).

As an initial estimator of the covariate distribution, we again use the empirical distribution 

QE, W, which puts weight 1/J on each cluster. As before, the empirical distribution QE, W is 

the non-parametric maximum likelihood estimator and does not need to be targeted.53,54 

Therefore, the TMLE is defined as the substitution estimator obtained by plugging 

Q∗ = (QE, W, Q‒
c ∗

) into the parameter mapping ΨII

Ψ II(Q∗)(a) = 1
J ∑

j = 1

J
∑
i = 1

N j
αijQ

‒∗
(a, E j, W ij) = 1

J ∑
j = 1

J
Q‒

c ∗
(a, E j, W j) (20)

The point estimate, denoted ψ II(a), is the sample average of the targeted predictions of the 

cluster-level outcome, given the exposure of interest (A=a) and the measured covariates. By 

construction, this TMLE solves the efficient influence curve equation: ∑ j DII(Q∗, g)(O j) = 0. 

Thereby, the estimator is double robust and asymptotically efficient under consistent 

estimation of both the outcome regression and propensity score.

Statistical inference proceeds as presented in Section 3. Specifically, let

DII(Q∗, g)(O j) = ∑
i = 1

N j
αij

𝕀(A j = a)
g(A j ∣ E j, W ij)

(Y ij − Q‒
∗
(A j, E j, W ij)) + Q‒

∗
(a, E j, W ij) − ψ II(a)

(21)

be the plug-in estimator of the influence curve for observation Oj. We obtain a variance 

estimator with the sample variance of DII(Q∗, g) divided by the number of experimental 

units: σ2 = Var[DII] J. For this sub-model, an alternative variance estimator, which 

explicitly estimates the correlation structure within each cluster, is proposed in Schnitzer et 

al.67

Online Appendix D provides step-by-step implementation of the individual-level TMLE and 

corresponding R code. This individual-level TMLE can also be implemented with the 

existing ltmle51 package using id to specify the clusters (independent units) and 

observation.weights for the weights αij· It is worth emphasizing, however, that this 

individual-level TMLE for the impact of a cluster-level exposure is developed under a causal 
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model with strong assumptions (equation (11)). In the following sections, we explore the 

theoretical and practical consequences of these assumptions.

5 Theoretical comparison of the TMLEs

The cluster-level TMLE is derived under a general causal model allowing for arbitrary 

dependence of individuals within a cluster. Our contribution is to propose incorporating 

pooled individual-level regressions as candidates in the Super Learner library for initial 

estimation of the expected cluster-level outcome Q‒0
c(a, E, W). In contrast, the individual-level 

TMLE is derived under the restricted causal model, which assumes that the covariates of one 

individual do not affect the outcome of another (i.e. no covariate interference) and that the 

cluster-level covariates E and individual i-specific covariates Wi. are sufficient to control for 

confounding. In practice, implementation of the two estimators differs in where and when 

we take averages. In the larger model, we immediately average any individual-level 

regressions to obtain an initial estimator Q‒
c
(a, E, W) and target using a cluster-level clever 

covariate. In the sub-model, we update the individual-level estimator Q‒(a, E, W) using an 

individual-level clever covariate and then average the targeted predictions within each 

cluster: Q‒
c ∗

(a, E, W) = ∑iαi ⋅Q
‒∗

(a, E, W i ⋅).

To compare the asymptotic efficiency of the two approaches, we first consider the special 

case where the exposure assignment A is independent of the whole covariate matrix W, 

given the environmental factors E. In the running example, this would hold by design if the 

Test-and-Treat intervention were randomized g0
c(A ∣ E, W) = 0.5. More generally, this 

condition would hold if the intervention were rolled out according only to community-level 

characteristics, such as baseline HIV prevalence and perceived need: g0
c(A ∣ E, W) = g0

c(A ∣ E). 

In this case, the efficiency bound for Ψ I(ℙ0), presented in Section 3, will be identical to the 

efficiency bound for Ψ II(ℙ0), presented in Section 4. In other words, we have the efficient 

influence curves are equal: DI(ℙ0) = DII(ℙ0) at a ℙ0 ∈ ℳII (Proof in online Appendix E).

However, this does not imply that the corresponding TMLEs will be identical if the 

propensity score is unknown. In an observational setting, estimating a cluster-level 

propensity score g0
c(a ∣ E, W) when implementing the TMLE for Ψ I(ℙ0) as compared to an 

individual-level propensity score g0(a|E, W) when implementing the TMLE for Ψ II(ℙ0) can 

result in estimators that are asymptotically distinct. If on the other hand, the exposure 

mechanism depends on both the environmental factors and the covariate matrix 

g0
c(A, E, W) ≠ g0

c(A ∣ E), then the efficiency bound for Ψ II(ℙ0) in the smaller model ℳII will 

be better than the efficiency bound for Ψ I(ℙ0) in the larger model ℳI.
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6 Finite sample simulations

In this section, we investigate the practical performance of the two TMLEs. We begin with a 

simple simulation to demonstrate implementation and performance in an observational 

setting. We then present a more realistic simulation, generated to reflect the HIV prevention 

and treatment example. Throughout, the causal parameter is the population average 

treatment effect 𝔼[Yc(1) − Yc(0)]. All simulations were conducted using R.68 Full computing 

code is publicly available.

6.1 Simulation 1 – Simple observational setting

We consider a sample size of J = 100 clusters. For each unit j = {1, … , J}, we draw the 

number of individuals Nj from a normal with mean 50 and standard deviation 10 and round 

to the nearest whole number. Then for each individual i = {1, … , Nj}, two covariates (W1, 

W2) are drawn from a multivariate normal. We include their averages as cluster-level 

covariates: W1 j
c = 1 N j∑iW1ij and W2 j

c = 1 N j∑iW2ij. We consider an observational 

setting where the propensity score depends on one cluster-level aggregate: 

A j~Bern(logit−1(0.75W1 j
c)). The probability of the individual-level outcome is simulated 

under two data generating distributions. Specifically, we vary the strength of the coefficients 

to simulate scenarios with minimal covariate interference

ℙ0(Y ij = 1 ∣ A j, W1 j
c, W2 j

c, W1ij, W2ij) = logit−1(0.25 + 0.1A j + 0.15W1 j
c + 1.15W1ij

+ W2ij)
(22)

and with stronger covariate interference

ℙ0(Y ij = 1 ∣ A j, W1 j
c, W2 j

c, W1ij, W2ij) = logit−1(0.25 + 0.1A j + 0.15W1 j
c + 0.25W1ij + W2 j

c

)

(23)

In the first data generating process (equation (22)), an individual’s outcome is strongly 

impacted by his/her own covariates (W1ij, W2ij) and only weakly impacted by the covariates 

of others (i.e. W1 j
c). In the second process (equation (23)), the opposite holds. We then 

simulate the binary individual-level outcome as

Y ij = 𝕀(UYij
< ℙ0(Y ij ∣ A j, W1 j

c, W2 j
c, W1ij, W2ij)) (24)

where the unmeasured error UYij ∈ [0,1] is generated under two scenarios: independent 

within a cluster and correlated within a cluster. In the former, UYj = (UYij : i, … , Nj) is 
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generated by independently drawing Nj times from a Uniform(0,1), while in the latter UYj is 

generated by applying the cumulative distribution function to correlated normal random 

variables (Full R code in Appendix D). Varying the dependence of the unmeasured factors 

UY determining the outcomes Y within a cluster allows us to examine the randomization 

assumption inherent in the restricted causal model (equation (11)). In practice, independent 

UY might be reasonable for outcomes that are not biologically or socially transmitted, but 

may be unreasonable otherwise (Supplementary Figure S2).

As before, we define the cluster-specific outcome Yc as the empirical mean of the 

individual-level outcomes within that cluster. We generate counterfactual outcomes (Yc(1), 

Yc(0)) by setting the cluster-level exposure to A = 1 and A = 0, respectively. For each data 

generating process, the average treatment effect is calculated by taking the mean difference 

in the counterfactual cluster-level outcomes for a population of 10,000 clusters 

(Supplementary Table S1). We also simulate under the null by setting the counterfactual 

outcome under the intervention equal to counterfactual outcome under the control.

As shown in Table 1, we consider three targeted estimators: TMLE-Ia adjusting for the 

covariates at the cluster-level in both the outcome regression and the propensity score 

regression; TMLE-Ib adjusting at the individual-level in the outcome regression and at the 

cluster-level in the propensity score regression; and TMLE-II adjusting at the individual-

level in both the outcome regression and propensity score regression. TMLE-Ia and TMLE-

Ib correspond to statistical model ℳI and TMLE-II to sub-model ℳII. Both TMLE-Ib and 

TMLE-II harness the pairing of individual-level covariates and outcomes, but the former 

incorporates this information as working assumptions (equation (10)) during the estimation 

step, while the latter assumes the restricted causal model (equation (11)) reflects the true 

data generating process. We compare the targeted estimators to the unadjusted estimator, the 

average difference in cluster-level outcomes between treated and control groups.

6.1.1 Results—Table 2 provides a summary of the estimator performance over 5000 

repetitions of the simulation. Recall the unadjusted estimator is simple the difference in 

average outcomes among treated units and average outcomes among control units. TMLE-

Ia, developed under the general model ℳI, corresponds to an aggregated data approach; 

cluster-level regressions are used for both initial estimation and targeting. TMLE-Ib, also 

developed under the general model ℳI, uses a pooled individual-level regression for initial 

estimation of the mean outcome and then a cluster-level regression for updating. TMLE-II, 

developed under the more restrictive sub-model ℳII, uses pooled individual-level 

regressions for both initial estimation and updating.

When the unmeasured factors determining the outcome UY are independent, the unadjusted 

estimator, which fails to control for measured confounding, is biased. This bias is substantial 

enough to prevent reliable inference; the 95% confidence interval coverage is < 50%. The 

TMLE corresponding to an aggregated data approach (TMLE-Ia) performs well with 

negligible bias and good confidence interval coverage. When there is minimal covariate 

interference (equation (22)), TMLE-Ib, which makes working assumptions for initial 

estimation of the outcome regression, performs similarly to TMLE-Ia. However, when there 
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is stronger covariate interference (equation (23)) and these working assumptions fail, 

TMLE-Ib provides less power (23% vs. 34%) and conservative confidence interval coverage 

(98%). In this scenario, the cluster-level regression provides a better approximation of the 

true outcome regression resulting in greater efficiency and power for the aggregated 

estimator (TMLE-Ia).

Under independent errors and minimal covariate interference (equation (22)), TMLE-II, 
constructed under the restricted causal model, performs well with good confidence interval 

coverage and results in notably more power (34%). However, with stronger covariate 

interference (equation (23)), TMLE-II is biased and provides misleading inference. Its 

confidence interval coverage is much less than nominal (81%), while deceivingly providing 

the most power (65%). Under the null, we also see inflated Type I error rates of 18% 

(Supplementary Table S2).

When the unmeasured factors determining the outcome UY are correlated, the assumptions 

in the restricted causal model (equation (11)) do not hold (Supplementary Figure S2b). As 

expected, the unadjusted estimator is again biased with 95% confidence interval coverage 

ranging from 48% to 67%. Both targeted estimators developed under the general model 

(TMLE-Ia and TMLE-Ib) have negligible bias, but the cluster-level estimator yields more 

power. The individual-level TMLE developed under the restricted model (TMLE-II) now 

exhibits substantial bias regardless of the strength of covariate interference. Its resulting 

confidence interval coverage is much less than the nominal and type I error reaches > 40% 

(Supplementary Table S2).

In summary, when the assumptions in the more restrictive causal model hold, the individual-

level targeted estimator (TMLE-II) is the most powerful. However, if these commonly made 

assumptions fail, this TMLE is biased and can yield misleading inference in an observational 

setting. Incorporating working assumptions during the estimation stage (equation (10)) is 

more robust than assuming they hold in the underlying causal model (equation (11)). 

Specifically, TMLE-Ib provides a mechanism to leverage the pairing of individual-level 

covariates and outcomes, while avoiding additional causal assumptions. In practice, we 

recommend considering a general TMLE-I which includes both cluster-level and individual-

level specifications in the Super Learner library for initial estimation of the outcome 

regression. This TMLE is implemented in the following simulation study.

6.2 Simulation 2 – HIV prevention and treatment trial

We now consider a more complicated simulation, generated to reflect the running example. 

For 1000 iterations, we simulate a cluster randomized Test-and-Treat trial, consisting of 32 

communities with 200 individuals each. Within each community, we generate an underlying 

sexual network through a degree-corrected, bipartite stochastic block model.69 On each 

network, we simulate an HIV epidemic with a susceptible-infected-recovered compartmental 

model.70 In the intervention arm, 85% of the HIV-positive patients are on ART and have 

successfully suppressed viral replication. In the control arm, 55% of the HIV-positive 

patients are on ART and are suppressed.45,71–73 There is no sexual mixing or spillover 

effects across communities. To initiate the epidemic in each community, we randomly select 

10% of individuals to be infected and allow the virus to spread until an average prevalence 
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of 25% is reached. We then begin the study and follow all communities for three years. Full 

Python code to generate the networks and epidemic is available in Staples.74

As before, the target of inference is the population average treatment effect: the expected 

difference in the counterfactual cumulative HIV incidence under the Test-and-Treat 

intervention and under the standard of care. Within each community, 75 baseline HIV-

negative individuals are selected, and the cluster-level outcome is the proportion who 

seroconvert within the three years of follow-up. The true value of the treatment effect is 

calculated by averaging the difference in the cluster-level counterfactual outcomes in the 

population of all clusters from all trials (32 × 1000). The estimated impact of the Test-and-

Treat intervention is −4.0%, reducing HIV incidence from 9.1% under the standard of care 

to 5.1% under the intervention. We also simulate under the null by setting the counterfactual 

outcome under the intervention equal to the counterfactual outcome under the control.

We consider the following individual-level adjustment variables: demographic risk group, 

degree (number of sexual partners), and number of partners infected at baseline. We also 

consider the following cluster-level adjustment variables: baseline HIV prevalence, 

assortativity (degree-degree correlation across all network connections), and number of 

components (number of distinct sexual groups). To select among candidate adjustment 

variables, we apply a discrete Super Learner to data-adaptively select the candidate TMLE, 

which minimizes variance and maximizes precision.59 This procedure incorporates 

“collaborative”75 estimation of the known propensity score g0
c(A ∣ E, W) = g0(A ∣ E, W) = 0.5

for further gains in precision.

We implement this approach under the larger general model (TMLE-I) and under the smaller 

sub-model (TMLE-II). Both TMLEs include pooled individual-level regressions as 

candidate estimators of the conditional mean of the cluster-level outcome Q‒0
c(A, E, W). The 

former estimates the propensity score and targets at the cluster-level, while the latter 

estimates the propensity score and targets at the individual-level. In other words, TMLE-I 

can be considered a hybrid of TMLE-Ia (aggregated data approach) and TMLE-Ib 
(incorporating working assumptions), which were studied in the previous section. In this 

simulation, the restricted causal model (equation (11)) does not hold due to causal 

interactions between individuals within a community (i.e. sexual transmission of HIV 

through the network). Nonetheless, the finite sample performances of the TMLEs are 

expected to be similar due to randomization of the exposure (i.e. the double robustness 

property). We compare the targeted approaches to the unadjusted estimator, inverse 

probability of treatment weighting (IPTW) adjusting for average degree in the propensity 

score regression, and G-computation adjusting for average degree in the outcome regression.

6.2.1 Results—As expected, all estimators are unbiased and adjustment for baseline 

covariates increases precision and power in this trial setting (Table 3).49,56,59,76–79 The 

unadjusted difference in cluster-level mean outcomes yields 66% power, while IPTW yields 

68%, and parametric G-computation yields 75%. The two TMLEs, data-adaptively adjusting 

for the covariate(s) to increase precision, obtain substantially more power (82–83%), while 

maintaining nominal confidence interval coverage and Type I error control. In both TMLEs, 

Balzer et al. Page 21

Stat Methods Med Res. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the number of partners infected at baseline (an individual-level covariate) is selected as the 

adjustment variable for the outcome regression in 76% of the trials (Supplementary Table 

S3). The slight difference in performance between the two TMLEs is due to targeting, which 

occurs at the cluster-level in TMLE-I and at the individual-level in TMLE-II. Overall, these 

simulations demonstrate that in a trial setting, the utility of the working assumption 

(equation (10)) is wider flexibility in covariate adjustment to increase efficiency without 

creating bias.

7 Application – household socioeconomic status and baseline HIV testing 

in SEARCH

The Sustainable East Africa Research in Community Health Study (SEARCH) is an ongoing 

cluster randomized trial to evaluate the impact of a community-based strategy for early HIV 

diagnosis with immediate and streamlined ART on HIV incidence in rural Uganda and 

Kenya (NCT:01864603). In SEARCH, population-based HIV testing was conducted through 

multi-disease community health campaigns, consisting of out-offacility health fairs followed 

by home-based testing for non-attendees.80 HIV testing was successfully completed for 89% 

(131,307/146,906) of residents who were aged ≥15 years and considered stable (≥6 months 

in the community during the past year) at baseline. Since data collection for the primary 

outcome is ongoing, we apply the proposed methods to estimate the association of 

household socioeconomic status on the risk of not testing for HIV at baseline.

In this application, the cluster is the household, and the cluster-based exposure is an 

indicator of living in a household in the lowest socioeconomic class, calculated using 

principal component analysis of ownership of livestock and household items.80 The 

individual-level outcome is an indicator of failing to test for HIV, and the cluster-level 

outcome is the proportion of adults not testing in a given household. The cluster-level 

confounders include community indicators, the size of the household, and an indicator of 

male head of household (Table 4). The individual-level confounders include age, sex, 

educational attainment, occupation type, marital status, and mobility (indicator of living 1 or 

more months away from the community). The target parameter is the standardized risk 

difference, corresponding to the causal risk difference if the necessary assumptions hold.

In this setting, we are willing to assume that after controlling for the cluster-level 

confounders and exposure, each individual’s outcome is not a direct function of other 

household members’ individual-level covariates. We are also willing to assume that the 

conditional expectation of the individual-level outcome is common across individuals. 

Therefore, under the general model ℳI and using the working assumptions in equation (10), 

we implement TMLE with Super Learner to fully leverage the pairing of individual-level 

risk factors and outcomes, while avoiding unwarranted assumptions (SuperLearner-

v2.0-2181). The library of candidate algorithms includes both parametric and semi-

parametric approaches: main terms logistic regression without and without all possible 

pairwise interactions, generalized additive models (gam-v1.1482), and penalized maximum 

likelihood (glmnet-v2.0-583). We use the same library for estimation of the outcome 

regression and the propensity score. The analysis is restricted to the 16 intervention 
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communities (77,525 adults total), and the household is the unit of independence: J = 

32,024.

After controlling for measured confounders, the marginal risk of not testing associated with 

living in household in the lowest socioeconomic class is 10.7%, while the marginal risk of 

not testing associated with living in a household in a higher socioeconomic class is 10.0%. 

Despite the large sample size, the standardized risk difference of 0.7% (95%CI: −0.1%, 

1.4%) is not significant at the 0.05-level. For comparison, the unadjusted estimator, which 

fails to control for confounding, yielded a risk difference of −0.3% (−1.0%, 0.3%).

8 Concluding remarks

In this manuscript, we present two distinct approaches for leveraging a hierarchical data 

structure to improve the performance of double robust TMLEs for the causal effect of a 

cluster-level exposure. The first assumes a general hierarchical causal model, which allows 

for arbitrary dependence of individuals within clusters. For the corresponding statistical 

model ℳI, we review a cluster-level TMLE, which is a direct analog for the individual-level 

TMLE in non-hierarchical setting. Our novel contribution to this cluster-level estimator is to 

use the pairing of individual-level covariates and outcomes for improved estimation of the 

expected cluster-level outcome. Pooled individual-level regressions can lead to both 

asymptotic and finite sample improvements without placing restrictions on the original 

statistical model. Super Learner provides one way to choose between and combine several 

candidate algorithms, including cluster-level parametric regressions, averages of individual-

level regressions, and more data-adaptive methods.

We then consider a more restrictive causal sub-model, which assumes that the cluster-level 

and individual i-specific covariates are sufficient to control for confounding. For the 

corresponding restricted statistical model ℳII, we present an alternative individual-level 

TMLE, which still targets the relevant cluster-level causal effect. When the assumptions in 

the sub-model hold, this TMLE is guaranteed asymptotically to be at least as efficient as the 

TMLE developed under the general causal model. When the assumptions fail, this TMLE 

may be subject to bias and misleading inference in an observational setting. However, if the 

propensity score is consistently estimated, the individual-level TMLE will remain consistent 

due to its double robustness property, representing an important advantage over alternative 

estimators, such as those based on a single regression (e.g. IPTW and G-computation).

The results of this paper have the following practical implications. When the exposure is 

delivered at the cluster-level, care should be taken when specifying the causal model and 

framing the statistical estimation problem. In particular, researchers need to consider if an 

individual’s outcome could be impacted by another’s covariates and if the cluster-level and 

individual i-specific covariates are sufficient to control for confounding. If so, the individual-

level TMLE, developed under the sub-model (Figure 2), can offer asymptotic and finite 

sample improvements. If not, estimation under the sub-model can result in misleading 

inference in an observational setting. Instead, the cluster-level TMLE, developed under 

general model (Figure 1), is appropriate and can still harness the pairing of individual-level 

risk factors and outcomes. Overall, incorporating working assumptions during estimation is 
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more robust than assuming they hold in the underlying causal model. For both TMLEs, the 

use of data-adaptive estimators, such as Super Learner, avoids the parametric modeling 

assumptions inherent in common multilevel approaches (e.g. random effects and GEE) and 

improves our chances for reliable inference.

There are several areas of future work. Examples include extensions for missingness on the 

outcome vector, longitudinal settings, and more complicated schemes for sampling 

individuals within a cluster (e.g. case-control sampling). We plan to contrast the algorithms 

proposed in this manuscript with the two-stage TMLE, where an individual-level TMLE is 

used to obtain the optimal estimate of the cluster-level outcome Yc (potentially accounting 

for informative measurement and missingness at the individual-level), and then a cluster-

level TMLE (using these cluster-level outcomes Yc) implemented to estimate the effect of 

the cluster-based exposure.84 We also plan to contrast the proposed algorithms with 

augmented-GEE13,42 when the cluster size is informative.23 Finally, we plan to generalize 

the proposed algorithms to estimate the effects of individual-level exposures in an infectious 

disease setting (e.g. vaccine studies).20,21,85 In all cases, the hierarchical causal models 

presented in this manuscript ensure that the parameter of interest is defined separately from 

the estimation approach and reflects the underlying scientific question. This is a distinct 

advantage of the Targeted Learning framework over other approaches that rely on parametric 

regressions to define the quantity estimated and thus the scientific question answered.17

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic graph for a general hierarchical causal model (equation (1)) with U as 

unmeasured factors, E as cluster-level covariates, (W1., … , WN.) as individual-level 

covariates, A as the cluster-level exposure, and (Y1., … , YN.) as individual-level outcomes. 

Identifiability (Section 2.3) will require additional assumptions on the unmeasured factors U 
(Supplementary Figure S1).
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Figure 2. 
Simplified directed acyclic graph for the restricted hierarchical causal model (equation (11)). 

For ease of presentation, we only show two individuals, denoted by subscripts 1 and 2, in a 

given cluster and assume all unmeasured factors U are independent. For additional details, 

see Supplementary Figure S2.
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Table 1.

Targeted estimators considered for Simulation 1: “Causal Model” refers to the causal model assumed during 

development of the estimator.

Estimator Causal Model Outcome Regression Pscore Regression Targeting

TMLE-Ia General (equation (I)) Cluster-level Cluster-level Cluster-level

TMLE-Iba General (equation (I)) Individual-level
b Cluster-level Cluster-level

TMLE-II Restrictive (equation (II)) Individual-level Individual-level Individual-level

Note: “Cluster-level” refers to logistic regression after all the data are aggregated. “Individual-level” refers to logistic regression pooling individuals 
across clusters and with weights αij = I/Nj.

a
During estimation consider working assumptions to generate alternative estimators of Q‒0

c
.

b
Run a pooled individual-level regression and then average individual-level predictions within clusters.
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Table 2.

Estimator performance in Simulation 1 under minimal covariate interference (equation (22)) and under 

stronger covariate interference (equation (23)).

Estimator

Minimal covariate interference Stronger covariate interference

Bias σ rMSE Power Coverage Bias σ rMSE Power Coverage

Unadj. 10.4 5.0 11.5 66 46 7.6 3.8 8.5 72 49

TMLE-Ia 0.0 1.2 1.2 28 95 0.0 1.4 1.4 34 94

TMLE-Ib 0.0 1.2 1.2 27 95 0.0 1.4 1.4 23 98

TMLE-II 0.2 1.2 1.2 34 95 1.7 1.6 2.3 65 81

Independent UY determining the outcome

Unadj. 6.3 3.2 7.1 88 48 −3.6 2.4 4.3 21 67

TMLE-Ia −0.0 1.3 1.3 86 94 0.0 1.7 1.7 96 94

TMLE-Ib −0.0 1.3 1.3 28 100 0.0 1.8 1.8 91 98

TMLE-II −4.1 2.4 4.7 5 58 −2.1 2.0 3.0 56 81

Dependent UY determining the outcome

Note: We also vary the dependence of the unmeasured factors determining the outcome Uy: independent (top) and correlated (bottom). 

Performance is given by bias as the average deviation between the estimate and truth; σ as the standard error; rMSE as the root-mean squared error; 
power as the proportion of times the false null hypothesis is rejected, and coverage as the proportion of times the 95% confidence interval contains 
the true value. All measures are percentages.

Stat Methods Med Res. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Balzer et al. Page 33

Table 3.

Estimator performance in Simulation 2 when there is an effect and under the null.

With an effect Under the null

Bias σ rMSE Power Coverage Bias σ rMSE Type I Coverage

Unadj. 0.1 1.6 1.6 66 94 0.1 1.9 1.9 4 96

IPTW 0.1 1.6 1.6 68 96 0.0 1.8 1.8 3 97

Gcomp. 0.1 1.5 1.6 75 93 0.0 1.8 1.8 6 94

TMLE-I 0.1 1.3 1.3 83 96 0.0 1.5 1.5 5 95

TMLE-II 0.1 1.3 1.3 82 95 0.0 1.5 1.5 5 95

Note: Performance is measured by bias as the average deviation between the estimate and truth; σ as the standard error; rMSE as the root-mean 
squared error; power as the proportion of times the false null hypothesis is rejected; coverage as the proportion of times the 95% confidence interval 
contains the true value, and Type I error as the proportion of times the true null hypothesis is rejected. All measures are in percentage.
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Table 4.

Characteristics of baseline adult residents of the 16 SEARCH intervention communities (five in Eastern 

Uganda, five in Southwestern Uganda, and six in Kenya) with complete socioeconomic information (249 

individuals excluded).

E. Uganda S.W Uganda Kenya Overall

N. individuals 25041 24913 2757l 77525

N. households 10106 9939 ll979 32024

Male 11365 (45%) 11641 (47%) l2l37 (44%) 35l43 (45%)

Age in years

 15–24 9572 (38%) 8466 (34%) 9226 (33%) 27264 (35%)

 25–34 5305 (21%) 5709 (23%) 6669 (24%) l7683 (23%)

 35–44 3986 (l6%) 4363 (l8%) 4235 (l5%) l2584 (l6%)

 45+ 6178 (25%) 6375 (26%) 744l (27%) l9994 (26%)

Education

 Less than primary 3855 (15%) 4413 (18%) 2l32 (8%) l0400 (l3%)

 Primary 15255 (61%) l3966 (56%) 22302 (8l%) 5l523 (66%)

 Secondary or higher 5931 (24%) 6534 (26%) 3l37 (ll%) l5602 (20%)

Occupation

 Formal
a 5826 (23%) 5273 (21%) 6604 (24%) l7703 (23%)

 High risk informal
b 397 (2%) 652 (3%) 233l (8%) 3380 (4%)

 Low risk informal
c 17190 (69%) 16318 (65%) l536l (56%) 48869 (63%)

 Jobless or disabled 751 (3%) 1132 (5%) 2066 (7%) 3949 (5%)

 Other 877 (4%) l538 (6%) l209 (4%) 3624 (5%)

Never married 6913 (28%) 7424 (30%) 75l5 (27%) 2l852 (28%)

Mobile
d 3024 (l2%) 3305 (l3%) l960 (7%) 8289 (ll%)

Male household head 18219 (73%) 16247 (65%) l6l20 (58%) 50586 (65%)

Household size
e 3 (2, 4) 3 (2, 4) 3 (2, 4) 3 (2, 4)

Lowest SES
f 4201 (17%) 52l2 (2l%) 2522 (9%) ll935 (l5%)

Did not test for HIV 2434 (l0%) 2604 (l0%) 3439 (l2%) 8477 (ll%)

Note: Analyses also adjusted for community indicators.

a
Formal: teacher, student, government worker, military worker, health worker, factory worker.

b
High risk informal: fishmonger, fisherman, bar owner, bar worker, transport, tourism.

c
Low risk informal: farmer, shopkeeper, market vendor, hotel worker, housewife, household. worker, construction worker, mining.

d
Mobile: ≥ 1 month/past year away from the community.

e
Median with interquartile range.

f
Lowest SES: Living in a household with the lowest quintile of the wealth index.
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