
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
A Local Construction of the Smith Normal Form of a Matrix Polynomial, and Time-periodic
Gravity-driven Water Waves

Permalink
https://escholarship.org/uc/item/4qj976xg

Author
Yu, Jia

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4qj976xg
https://escholarship.org
http://www.cdlib.org/

A Local Construction of the Smith Normal Form of a Matrix Polynomial, and
Time-periodic Gravity-driven Water Waves

by

Jia Yu

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Jon A. Wilkening, Chair
Professor Alexandre J. Chorin

Professor John A. Strain
Professor Francisco Armero

Spring 2010

A Local Construction of the Smith Normal Form of a Matrix Polynomial, and
Time-periodic Gravity-driven Water Waves

Copyright 2010
by

Jia Yu

1

Abstract

A Local Construction of the Smith Normal Form of a Matrix Polynomial, and
Time-periodic Gravity-driven Water Waves

by

Jia Yu

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jon A. Wilkening, Chair

This dissertation consists of two separate chapters. In the first chapter, we present an
algorithm for computing a Smith normal form with multipliers of a regular matrix polynomial
over a field. This algorithm differs from previous ones in that it computes a local Smith form
for each irreducible factor in the determinant separately and combines them into a global
Smith form, whereas other algorithms apply a sequence of unimodular operations to the
original matrix row by row (or column by column) to obtain the Smith normal form. The
performance of the algorithm in exact arithmetic is reported for several test cases.

The second chapter is devoted to a numerical method for computing nontrivial time-
periodic, gravity-driven water waves with or without surface tension. This method is es-
sentially a shooting method formulated as a minimization problem. The objective function
depends on the initial conditions and the proposed period, and measures deviation from
time-periodicity. We adapt an adjoint-based optimal control method to rapidly compute
the gradient of the functional. The main technical challenge involves handling the nonlocal
Dirichlet to Neumann operator of the water wave equations in the adjoint formulation. Sev-
eral families of traveling waves and symmetric breathers are simulated. In the latter case,
we observe disconnections in the bifurcation curves due to nonlinear resonances at critical
bifurcation parameters.

i

Contents

List of Figures iii

1 A Local Construction of the Smith Normal Form of a Matrix Polynomial 1
1.1 Introduction . 1
1.2 Preliminaries . 3

1.2.1 Smith Form . 3
1.2.2 Multiplication and division in R/pR 5
1.2.3 Jordan Chains . 6
1.2.4 Bézout’s Identity . 8

1.3 An Algorithm for Computing a (Global) Smith Form 9
1.3.1 A Local Smith Form Algorithm (Step 1) 10
1.3.2 Algorithms for the Extended GCD Problem 17
1.3.3 From Local to Global (Step 2) . 19
1.3.4 Construction of Unimodular Matrix Polynomials (Step 3) 21

1.4 Performance Comparison . 25
1.4.1 Discussion . 27

2 Time-periodic Gravity-driven Water Waves with or without Surface Ten-
sion 40
2.1 Introduction . 40
2.2 Equations of Motion . 41
2.3 Numerical Methods . 43

2.3.1 Boundary Integral Formulation . 43
2.3.2 Time-periodic Solutions . 46
2.3.3 Breather Solutions . 50

2.4 Numerical Results . 52
2.4.1 Traveling Waves . 52
2.4.2 Symmetric Breathers . 52

2.5 Future Work . 53

A Alternative Version of Algorithm 2 for Computing Local Smith Forms 60

ii

Bibliography 66

iii

List of Figures

1.1 Algorithm for computing a local Smith form. 11
1.2 Algorithm for computing a unimodular local Smith form. 14
1.3 The reduced row-echelon form of Ȧβ contains all the information necessary

to construct V (λ) = [Λ(X̃−1), . . . , Λ(X̃s−1)]. An arrow from a column [v; u] of
[Yk; Uk] indicates that the vector

(
[rem(Xk−1u, p); v]+quo(ι(Xk−1u), p)

)
should

be added to X̃k. 15
1.4 Running time vs. matrix size n for the first test, without column permutation

(top) and with columns reversed (bottom). 29
1.5 Running time vs. number of roots l of det [A(λ)] for the second test, without

column permutation (top) and with columns reversed (bottom). 30
1.6 Running time vs. κ1n, the maximal Jordan chain length, for the third test,

without column permutation on test matrices (top) and with columns reversed
(bottom). 31

1.7 Running time vs. κ1n, the maximal Jordan chain length, on a variant of the
third test, without column permutation (top) and with columns reversed (bot-
tom). 32

1.8 Running time vs. matrix size n for the fourth test, without column permuta-
tion (top) and with columns reversed (bottom). 33

1.9 Running time vs. k for the fifth test, without column permutation (top) and
with columns reversed (bottom). 34

1.10 Running time vs. n for the sixth test, without column permutation (top) and
with columns reversed (bottom). 35

1.11 Running time of each step of our algorithm vs. k for the fifth test, without
column permutation (top) and with columns reversed (bottom). 36

1.12 Running time of each step of our algorithm vs. n for the sixth test, without
column permutation (top) and with columns reversed (bottom). 37

1.13 Running time of our algorithm with and without U(λ) computed compared
to Villard’s method on Test 1, 2, 3-1, 3-2, 5 and 6, without column permutation. 38

1.14 Running time of our algorithm with and without U(λ) computed compared
to Villard’s method on Test 1, 2, 3-1, 3-2, 5 and 6, with columns reversed. . 39

iv

2.1 Bifurcation from the flat state to two families of traveling waves, using η̂1(0)
as the bifurcation parameter. 52

2.2 snapshot of traveling waves labeled A and B in Figure 2.1. 53
2.3 Bifurcation diagrams of a family of symmetric breathers with the mean of η

equal to 1 without surface tension, using d1, d9, d15, d21, d23 and d37 (dk =
ϕ̂k(0)) as the bifurcation parameter respectively. 55

2.4 Time-elapsed snapshots over a quarter-period of the solutions labeled C and
D in Figure 2.3. 56

2.5 Bifurcation diagrams of a family of symmetric breathers with the mean of η
equal to 0.25 without surface tension, using d19, d21 as the bifurcation param-
eter respectively. 56

2.6 Time-elapsed snapshots over a quarter-period of the solutions labeled E and
F in Figure 2.5. 57

2.7 Bifurcation diagrams of a family of symmetric breathers with the mean of η
equal to 0.05 without surface tension, using d17, d19, d21, d23 as the bifurcation
parameter respectively. 58

2.8 Time-elapsed snapshots over a quarter-period of the solution labeled G in
Figure 2.7. 59

2.9 Time-elapsed snapshots over a quarter-period of breathers with surface tension
(τ = 1), where the mean of η is equal to 1 (left) and 0.25 (right). 59

v

Acknowledgments

This dissertation consists of joint work with my advisor Jon Wilkening, and I would like
to thank him for allowing me to use this work as the basis of my dissertation. I feel very
lucky to have had chances to share his mathematical insights and ideas in last five years.
His guidance, patience and great generosity, both mathematical and otherwise, have been
invaluable to me.

I am very grateful to my family and Xinwen, for their love, support and encouragement,
and to all my friends at Berkeley and beyond, for their friendship and giving me a home
away from home.

I would like to thank Alexandre Chorin for his courses and for his guidance as my course
advisor. I would also like to thank the other members of my committee, John Strain and
Francisco Armero, for the mathematics they have taught me. I also thank the Applied
Math community at University of California at Berkeley and Lawrence Berkeley National
Laboratory, which has too many great mathematicians for me to acknowledge all of them
here.

1

Chapter 1

A Local Construction of the Smith
Normal Form of a Matrix Polynomial

1.1 Introduction

Canonical forms are useful tools for classifying matrices, identifying their key properties,
and reducing complicated systems of equations to the de-coupled, scalar case, e.g. the Jordan
form of a matrix over a field. When working with matrix polynomials over a field K, one
fundamental canonical form, the Smith form, is defined. It is a diagonalization

A(λ) = E(λ)D(λ)F (λ) (1.1)

of a given matrix A(λ) by unimodular matrices E(λ) and F (λ) such that the diagonal entries
di(λ) of D(λ) are monic polynomials and di(λ) is divisible by di−1(λ) for i ≥ 2.

This factorization has various applications. The most common one involves solving the
system of differential equations [34]

A(q) d
qx

dtq
+ · · ·+ A(1) dx

dt
+ A(0)x = f(t), (1.2)

where A(0), . . . , A(q) are n × n matrices over C. For brevity, we denote this system by
A(d/dt)x = f , where A(λ) = A(0) + A(1)λ + · · · + A(q)λq. Assume for simplicity that A(λ)
is regular, i.e. det [A(λ)] is not identically zero, and that (1.1) is a Smith form of A(λ). The
system (1.2) is then equivalent to

d1(
d
dt

)
. . .

dn(d
dt

)

y1
...

yn

 =

g1
...
gn

 ,

where y = F (d/dt)x(t) and g = E−1(d/dt)f(t). Note that E−1(λ) is also a matrix polynomial
over C due to the unimodularity of E(λ). The system splits into n independent scalar

2

ordinary differential equations

di

(d

dt

)
yi(t) = gi(t), 1 ≤ i ≤ n,

which can be solved for yi(t) separately. The solution of (1.2) is then given by x =
F−1(d/dt)y, where F−1(λ) is also a matrix polynomial over C.

Another important application of the Smith form concerns the study of the algebraic
structural properties of systems in linear control theory [43]. A close variant of the Smith
form, the Smith-McMillan form of rational function matrices, plays an important role in
linear systems in the sense that it reveals the finite eigenvalue structure, namely, the positions
and multiplicities of its poles and zeros, of the system.

Smith forms of linear matrix polynomials can also be used to determine similarity of
matrices. A fundamental theorem in matrix theory states that two square matrices A and
B over a field K are similar if and only if their characteristic matrix polynomials λI −A and
λI − B have the same Smith form D(λ) [31, 34].

Other applications of this canonical form include finding the Frobenius form of a matrix
A over a field by computing the invariant factors of the linear matrix polynomial λI − A
[75, 77].

The computation of the Smith form of matrix polynomials over K with K = Q is a widely
studied topic. Kannan [46] provides a polynomial-time algorithm for computing the reduced
row-echelon form (Hermite form) of a matrix polynomial with unimodular row operations.
Kaltofen, Krishnamoorthy and Saunders [44] gave the first polynomial-time algorithm for the
Smith form without multipliers (also called transformations) using the Chinese remainder
theorem. A new class of probabilistic algorithms (the Monte Carlo algorithms) were proposed
by Kaltofen, Krishnamoorthy and Saunders [44, 45]. They showed that by pre-multiplying
the given matrix polynomial by a randomly generated constant matrix on the right, the
Smith form with multipliers is obtained with high probability by two steps of computation
of the Hermite form. A Las Vegas algorithm given by Storjohann and Labahn [72, 73]
significantly improved the complexity by rapidly checking the correctness of the result of the
KKS algorithm. Villard [74, 76] established the first deterministic polynomial-time method
to obtain the Smith form with multipliers by explicitly computing a good-conditioning matrix
that replaces the random constant matrix in the Las Vegas algorithm. He also applied the
method developed by Marlin, Labhalla and Lombardi [51] to obtain useful complexity bounds
for the algorithm. Each of these methods is based on performing elementary row and column
operations.

We propose a new deterministic algorithm for computing the Smith form of a matrix
polynomial over a field K. Our approach differs from previous methods in the sense that
we begin by constructing local diagonal forms and then combine them to obtain a (global)
post-multiplier which generates the Smith form. This chapter is organized as follows: In
Section 1.2, we begin by reviewing the definitions and theorems we will use. In Section 1.3, we
describe our algorithm for computing a Smith form with multipliers of a matrix polynomial.

3

Since we do not discuss complexity bounds in this paper, we compare the performance of our
algorithm to Villard’s method with good conditioning [74, 76] in Section 1.4. We also include
some discussion on the improvement in speed in Section 1.4. In Appendix A, we present a
parallel theory in algebra that connects this work to [79], and give a variant of the algorithm
in which all operations are done in the field K rather than manipulating polynomials as
such.

1.2 Preliminaries

In this section, we describe the theory of the Smith form of matrix polynomials over a
field K, following the definition in [34] over C. In practice, K will be Q, Q + iQ, R, or C,
but it is convenient to deal with all these cases simultaneously. We also give a brief review
of the theory of Jordan chains as well as Bézout’s identity, which plays an important role in
our algorithm for computing the Smith form of matrix polynomials.

1.2.1 Smith Form

Suppose A(λ) =
∑q

k=0 A(k)λk is an n × n matrix polynomial, where A(k) are n × n
matrices whose entries are in a field K. In this paper we assume that A(λ) is regular, i.e. the
determinant of A(λ) is not identically zero. The following theorem is proved in [34] (for
K = C).

Theorem 1. There exist matrix polynomials E(λ) and F (λ) over K of size n × n, with
constant nonzero determinants, such that

A(λ) = E(λ)D(λ)F (λ), D(λ) = diag[d1(λ), . . . , dn(λ)], (1.3)

where D(λ) is a diagonal matrix with monic scalar polynomials di(λ) over K such that di(λ)
is divisible by di−1(λ) for i = 2, . . . , n.

Since E(λ) and F (λ) have constant nonzero determinants, (1.3) is equivalent to

U(λ)A(λ)V (λ) = D(λ), (1.4)

where U(λ) := (E(λ))−1 and V := (F (λ))−1 are also matrix polynomials over K.

Definition 2. The representation in (1.3) or (1.4), or often D(λ) alone, is called a Smith
form (or Smith normal form) of A(λ). Square matrix polynomials with constant nonzero
determinants like E(λ) and F (λ) are called unimodular.

To distinguish, the term “Smith form with multipliers” is commonly used when referring
to representation (1.3) or (1.4). In this paper, by “Smith form” we always mean the repre-
sentation (1.3) or (1.4). The diagonal matrix D(λ) in the Smith form is unique, while the
representation (1.3) is not.

4

Example 1. Consider

A =

(
2λ4 + 6λ2 + 4 λ8 + 4λ6 − λ5 + 6λ4 − 5λ3 + 7λ2 − 6λ + 6

2λ3 − 2λ2 + 4λ − 4 λ7 − λ6 + 3λ5 − 4λ4 + 4λ3 − 5λ2 + 4λ − 2

)

as a matrix polynomial over Q. We have

A =

(
λ2 + 1 λ + 1
λ − 1 1

)(
λ2 + 2 0

0 (λ − 1)2(λ2 + 2)

)(
2 λ4 + λ2 − 2λ + 2
0 1

)
(1.5)

and also

A =

(
λ2 + 1 λ2 + λ + 2
λ − 1 λ

)(
λ2 + 2 0

0 (λ − 1)2(λ2 + 2)

)(
2 λ4 + 1
0 1

)
.

Both of them are Smith forms of A. We will use this matrix polynomial throughout the
remainder of this chapter to explain the concepts and to demonstrate the algorithm.

Suppose that the determinant

∆(λ) := det [A(λ)] (1.6)

can be decomposed into prime elements p1(λ), . . . , pl(λ) in the principal ideal domain K[λ],
that is, ∆(λ) = c

∏l
j=1 pj(λ)κj where c 6= 0 is in the field K, pj(λ) is monic and irreducible,

and κj are positive integers for j = 1, . . . , l. Then the di(λ) are given by

di(λ) =

l∏

j=1

pj(λ)κji, (1 ≤ i ≤ n)

for some integers 0 ≤ κj1 ≤ · · · ≤ κjn satisfying
∑n

i=1 κji = κj for j = 1, . . . , l.
We now define a local Smith form of A(λ) at p(λ). Let p(λ) = pj(λ) be one of the

irreducible factors of ∆(λ) and define αi = κji, µ = κj . Generalizing the case that p(λ) =
λ − λj, we call µ the algebraic multiplicity of p(λ).

Theorem 3. Suppose A is an n × n matrix polynomial over a field K and p(λ) is an
irreducible factor of ∆(λ) in the principal ideal domain K [λ]. There exist n × n matrix
polynomials E(λ) and F (λ) such that

A(λ) = E(λ)D(λ)F (λ), D(λ) =

p(λ)α1 0
. . .

0 p(λ)αn

 , (1.7)

where 0 ≤ α1 ≤ · · · ≤ αn are nonnegative integers and p(λ) does not divide det[E(λ)] or
det[F (λ)].

5

We call (1.7) a local Smith form (with multipliers) of A(λ) at p(λ). Note that D(λ),
E(λ) and F (λ) in (1.7) are different from those in (1.3). D(λ) is uniquely determined in a
local Smith form, while E(λ) and F (λ) are not. In particular, we can impose the additional
requirement that F (λ) be unimodular by absorbing the missing parts

∏l
s 6=j,s=1 pj(λ)κji of

D(λ) into E(λ) in a global Smith form (1.3). Then the local Smith form of A(λ) at p(λ) is
given by

A(λ)V (λ) = E(λ)D(λ), (1.8)

where V (λ) := F (λ)−1 is a matrix polynomial.

Example 2. Define the matrix A(λ) as in Example 1. It is easy to check

∆(λ) = det [A(λ)] = (λ − 1)2(λ2 + 2)2.

From the (global) Smith form (1.5), we obtain

A

(
1
2

−1
2
(λ4 + λ2 − 2λ + 2)

0 1

)
=

(
λ4 + 3λ2 + 2 λ3 + λ2 + 2λ + 2

λ3 − λ2 + 2λ − 2 λ2 + 2

)(
1 0
0 (λ − 1)2

)

as a local Smith form of A about (λ − 1) and

A

(
1
2

−1
2
(λ4 + λ2 − 2λ + 2)

0 1

)
=

(
λ2 + 1 λ3 − λ2 − λ + 1
λ − 1 λ2 − 2λ + 1

)(
λ2 + 2 0

0 λ2 + 2

)

as a local Smith form of A about (λ2 + 2).

1.2.2 Multiplication and division in R/pR

We define R = K[λ] and M = Rn. Note that R is a principal ideal domain and M is a
free R-module of rank n. Suppose p is a prime element in R. Since p is irreducible, R/pR is
a field and M/pM is a vector space over this field.

We use quo(·, ·) and rem(·, ·) to denote the quotient and remainder of polynomials:

g = quo(f, p), r = rem(f, p) ⇔ f = gp + r, deg r < deg p. (1.9)

Multiplication and division in R/pR are easily carried out using the companion matrix of p.
If we define

γ : Ks → R/pR, γ
(
x(0); . . . ; x(s−1)

)
= x(0) + · · · + λs−1x(s−1) + pR, (1.10)

where s := deg p, we can pull back the field structure of R/pR to Ks to obtain

xy = γ(x)(S)y = [x(0)I + x(1)S + · · ·+ x(s−1)Ss−1]y = [y, Sy, . . . , Ss−1y]x,

quo(x, y) = [y, Sy, . . . , Ss−1y]−1x, x =
(
x(0); . . . ; x(s−1)

)
∈ Ks, (1.11)

6

where

S =

0 . . . 0 −a0

1
. . .

...
...

. . . 0 −as−2

0 1 −as−1

 , p(λ) = a0 + a1λ + · · · + as−1λ

s−1 + λs (1.12)

is the companion matrix of p, and represents multiplication by λ in R/pR. The matrix
[y, Sy, . . . , Ss−1y] is invertible when y 6= 0 since a non-trivial vector x in its kernel would
lead to non-zero polynomials γ(x), γ(y) ∈ R/pR whose product is zero (mod p), which is
impossible as p is irreducible.

1.2.3 Jordan Chains

An irreducible factor p(λ) in C [λ] takes the form p(λ) = λ − λ0. Finding a local Smith
form with multipliers of a matrix polynomial over C at p(λ) is equivalent to finding a canon-
ical system of Jordan chains [33, 79] for A(λ) at λ0. We now generalize the notion of Jordan
chain to the case of an irreducible polynomial over a field K.

Definition 4. Suppose A(λ) is an n × n matrix polynomial over a field K and p(λ) is
irreducible in K[λ]. A vector polynomial x(λ) ∈ K[λ]n of the form

x(λ) = x(0)(λ) + p(λ)x(1)(λ) + · · ·+ p(λ)α−1x(α−1)(λ) (1.13)

with α ≥ 1 and deg x(k)(λ) < s := deg p(λ) for k = 0, . . . , α − 1, is called a Jordan chain of
length α for A(λ) at p(λ) if

A(λ)x(λ) = O(p(λ)α) (1.14)

and x(0)(λ) 6≡ 0. The meaning of (1.14) is that each component of A(λ)x(λ) is divisible by
p(λ)α. Any vector polynomial x(λ) satisfying (1.14) such that p(λ) ∤ x(λ) is called a root
function of order α for A(λ) at p(λ).

We generally truncate or zero-pad x(λ) to have α terms in an expansion in powers of
p(λ) when referring to it as a Jordan chain. If K can be embedded in C, (1.14) implies that
over C, x(λ) is a root function of A(λ) of order α at each root λj of p(λ) simultaneously.

Definition 5. Several vector polynomials {xj(λ)}ν
j=1 form a system of root functions at p(λ)

if
A(λ)xj(λ) = O(p(λ)αj), (αj ≥ 1, 1 ≤ j ≤ ν)
the set {ẋj(λ)}ν

j=1 is linearly independent in M/pM over R/pR,
where R = K[λ], M = Rn, ẋj = xj + pM .

(1.15)

It is called canonical if (1) ν = dim ker Ȧ, where Ȧ is the linear operator on M/pM induced
by A(λ); (2) x1(λ) is a root function of maximal order α1; and (3) for i > 1, xi(λ) has

7

maximal order αi among all root functions x(λ) ∈ M such that ẋ is linearly independent of
ẋ1, . . . , ẋi−1 in M/pM . The integers α1 ≥ · · · ≥ αν are uniquely determined by A(λ). We
call ν the geometric multiplicity of p(λ).

Definition 6. An extended system of root functions x1(λ),. . . ,xn(λ) is a collection of vector
polynomials satisfying (1.15) with ν replaced by n and αj allowed to be zero. The extended
system is said to be canonical if, as before, the orders αj are chosen to be maximal among
root functions not in the span of previous root functions in M/pM ; the resulting sequence
of numbers α1 ≥ · · · ≥ αν ≥ αν+1 = · · · = αn = 0 is uniquely determined by A(λ).

Given an extended system of root functions (not necessarily canonical), we define the
matrices

V (λ) = [x1(λ), . . . , xn(λ)], (1.16)

D(λ) = diag[p(λ)α1 , . . . , p(λ)αn], (1.17)

E(λ) = A(λ)V (λ)D(λ)−1. (1.18)

E(λ) is a polynomial since column j of A(λ)V (λ) is divisible by p(λ)αj . The following
theorem shows that aside from a reversal of the convention for ordering the αj , finding a
local Smith form is equivalent to finding an extended canonical system of root functions:

Theorem 7. Suppose A(λ), V (λ) = [x1(λ), . . . , xn(λ)], D(λ) = diag[p(λ)α1 , . . . , p(λ)αn] and
E(λ) are regular n × n matrix polynomials over a field K such that A(λ)V (λ) = E(λ)D(λ),
where p(λ) is irreducible in K[λ], α1 ≥ · · · ≥ αn ≥ 0, and the set {ẋj(λ)}n

j=1 is linearly
independent in M/pM over R/pR (R = K[λ], M = Rn, ẋj = xj +pM). The following three
conditions are equivalent:

(1) the columns xj(λ) of V (λ) form an extended canonical system of root functions for
A(λ) at p(λ).

(2) p(λ) ∤ det[E(λ)].

(3)
∑n

j=1 αj = µ, where µ is the algebraic multiplicity of p(λ) in ∆(λ).

This theorem is proved e.g. in [33] for the case that K = C. The proof over a general
field K is identical, except that the following lemma is used in place of invertibility of E(λ0).
This lemma also plays a fundamental role in our construction of Jordan chains and local
Smith forms.

Lemma 8. Suppose K is a field, p is an irreducible polynomial in R = K[λ], and E =
[y1, . . . , yn] is an n × n matrix with columns yj ∈ M = Rn. Then p ∤ det E ⇔ {ẏ1, . . . , ẏn}
are linearly independent in M/pM over R/pR.

8

Proof. The ẏj are linearly independent iff the determinant of Ė (considered as an n × n
matrix with entries in the field R/pR) is non-zero. But

det Ė = det E + pR, (1.19)

where det E is computed over R. The result follows.

Example 3. Define the matrix polynomial A(λ) as in Example 1. From (1.5) we see that both
(1/2, 0)T and (−(λ4+λ2−2λ+2)/2, 1)T are root functions of order 1 of A(λ) at p(λ) = λ2+2.
Truncating higher order terms and keeping the zeroth order term in an expansion in powers
of p(λ), we obtain two Jordan chains of length 1 for A(λ) at p: (1/2, 0)T and (λ − 2, 1)T .
They form a canonical system of root functions of A(λ) at p(λ), which provides us another
local Smith form at p(λ) = λ2 + 2:

A

(
1
2

λ − 2
0 1

)
=

(
λ2 + 1 λ6 + 2λ4 + λ3 − 2λ2 − λ − 1
λ − 1 λ5 − λ4 + λ3 − 4λ + 3

)(
λ2 + 2 0

0 λ2 + 2

)
.

The determinant of the first matrix on the right-hand side is 2(λ−1)2, which is not divisible
by p(λ).

1.2.4 Bézout’s Identity

As K[λ] is a principal ideal domain, Bézout’s Identity holds, which is our main tool
for combining local Smith forms into a single global Smith form. We define the notation
gcd(f1, . . . , fl) to be 0 if each fj is zero, and the monic greatest common divisor (GCD) of
f1, . . . , fl over K[λ], otherwise.

Theorem 9. (Bézout’s Identity) For any two polynomials f1 and f2 in K[λ], where K is a
field, there exist polynomials g1 and g2 in K[λ] such that

g1f1 + g2f2 = gcd(f1, f2). (1.20)

Bézout’s Identity can be extended to combinations of more than two polynomials:

Theorem 10. (Generalized Bézout’s Identity) For any scalar polynomials f1, . . . , fl in K[λ],
there exist polynomials g1, . . . , gl in K[λ] such that

l∑

j=1

gjfj = gcd(f1, . . . , fl).

The polynomials gj are called Bézout’s coefficients of {f1, . . . , fl}.

9

In particular, suppose we have l distinct prime elements {p1, . . . , pl} in K[λ], and fj

is given by fj =
∏l

k 6=j pβk

k (j = 1, . . . , l), where β1, . . . , βl are given positive integers and

the notation
∏l

k 6=j indicates a product over all indices k = 1, . . . , l except k = j. Then
gcd (f1, . . . , fl) = 1, and we can find g1, . . . , gl in K[λ] such that

l∑

j=1

gjfj = 1. (1.21)

In this case, the Bézout’s coefficients gj are uniquely determined by requiring deg(gj) < sjβj ,
where sj = deg(pj). The formula (1.21) modulo pk shows that gk is not divisible by pk.

Example 4. Suppose we have two prime elements p1 = λ − 1 and p2 = λ2 + 2 in Q[λ].
Define f1 = λ2 + 2 and f2 = (λ − 1)2. We find that g1 = (−2λ + 5)/9 and g2 = (2λ − 1)/9
satisfy g1f1 + g2f2 = 1. g1 and g2 are uniquely determined if we require deg(g1) < s1β1 = 2
and deg(g2) < s2β2 = 2.

1.3 An Algorithm for Computing a (Global) Smith

Form

In this section, we describe an algorithm for computing a Smith form of a regular n × n
matrix polynomial A(λ) over a field K. We have in mind the case where K = C, R, Q or
Q + iQ ⊂ C, but the construction works for any field. The basic procedure follows several
steps, which will be explained further below:

• Step 0. Compute ∆(λ) = det [A(λ)] and decompose it into irreducible monic factors
in K[λ]

∆(λ) = const ·p1(λ)κ1 . . . pl(λ)κl. (1.22)

• Step 1. Compute a local Smith form

A(λ)Vj(λ) = Ej(λ)

pj(λ)κj1 0
. . .

0 pj(λ)κjn

 (1.23)

for each factor pj(λ) of ∆(λ).

• Step 2. Find a linear combination Bn(λ) =
∑l

j=1 gj(λ)fj(λ)Vj(λ) using Bézout’s co-

efficients of fj(λ) =
∏l

k 6=j pj(λ)κkn so that the columns of Bn(λ) form an extended
canonical system of root functions for A(λ) with respect to each pj(λ).

10

• Step 3. Eliminate extraneous zeros from det
[
A(λ)Bn(λ)

]
by finding a unimodular

matrix V (λ) such that B1(λ) = V (λ)−1Bn(λ) is lower triangular. We will show that
A(λ)V (λ) is then of the form E(λ)D(λ) with E(λ) unimodular and D(λ) as in (1.3).

Note that the diagonal entries in the matrix polynomial D(λ) are given by

di(λ) =

l∏

j=1

pj(λ)κji , i = 1, . . . , n

once we know the local Smith forms. This allows us to order the columns once and for all
in Step 2.

1.3.1 A Local Smith Form Algorithm (Step 1)

In this section, we show how to generalize the construction in [79] (for finding a canonical
system of Jordan chains for an analytic matrix function A(λ) over C at λ0 = 0) to finding
a local Smith form of a matrix polynomial A(λ) with respect to an irreducible factor p(λ)
of ∆(λ) = det[A(λ)]. The new algorithm reduces to the “exact arithmetic” version of the
previous algorithm when p(λ) = λ. In Appendix A, we present a variant of the algorithm that
is easier to implement than the current approach, and is closer in spirit to the construction
in [79], but is less efficient by a factor of s = deg p.

Our goal is to find matrices V (λ) and E(λ) such that p(λ) does not divide det[V (λ)] or
det[E(λ)], and such that

A(λ)V (λ) = E(λ)D(λ), D(λ) = diag[p(λ)α1, . . . , p(λ)αn], (1.24)

where 0 ≤ α1 ≤ · · · ≤ αn. In our construction, V (λ) will be unimodular, which reduces the
work in Step 3 of the high level algorithm, the step in which extraneous zeros are removed
from the determinant of the combined local Smith forms.

We start with V (λ) = In×n and perform a sequence of column operations on V (λ) that
preserve its determinant (up to a sign) and systematically increase the orders αi in D(λ) in
(1.24) until det[E(λ)] no longer contains a factor of p(λ). This can be considered a “breadth
first” construction of a canonical system of Jordan chains, in contrast to the “depth first”
procedure described in Definition 5.

The basic algorithm is presented in Figure 1.1. The idea of the algorithm is to run through
the columns of V in turn and “accept” columns whenever the leading term of the residual
A(λ)xi(λ) is linearly independent of its predecessors; otherwise we find a linear combination
of previously accepted columns to cancel this leading term and cyclically rotate the column
to the end for further processing. Note that for each k, we cycle through each unaccepted
column exactly once: after rotating a column to the end, it will not become active again
until k has increased by one.

At the start of the while loop, we have the invariants

11

Algorithm 1. (Local smith form, preliminary version)

k = 0, i = 1, V = [x1, . . . , xn] = In×n

while i ≤ n
rk−1 = n + 1 − i rk−1 := dim. of space of J. chains of length ≥ k
for j = 1, . . . , rk−1

yi = rem(quo(Axi, p
k), p) define yi so Axi = pkyi + O(pk+1)

if the set {ẏ1, . . . , ẏi} is linearly independent in M/pM over R/pR
αi = k, i = i + 1 accept xi and yi, define αi

else

find ȧ1, . . . , ȧi−1 ∈ R/pR so that ẏi −
∑i−1

m=1 ȧmẏm = 0̇

⋆ x
(new)
i = x

(old)
i −

∑i−1
m=1 pk−αmamxm

tmp = xi, xm = xm+1, (m = i, . . . , n − 1), xn = tmp
end if

end for j
k = k + 1

end while
β = k − 1, rβ = 0 β := αn = maximal Jordan chain length

Figure 1.1: Algorithm for computing a local Smith form.

(1) Axm is divisible by pk, (i ≤ m ≤ n).
(2) Axm = pαmym + O(pαm+1), (1 ≤ m < i).
(3) if i ≥ 2 then {ẏm}

i−1
m=1 is linearly independent in M/pM over R/pR.

The third property is guaranteed by the if statement in the algorithm in Figure 1.1, and the
second property follows from the first due to the definition of αi and yi in the algorithm. The
first property is obviously true when k = 0; it continues to hold each time k is incremented
due to step ⋆, after which Ax

(new)
i is divisible by pk+1:

Ax
(old)
i −

i−1∑

m=1

pk−αmamAxm = pkyi + O(pk+1) −
i−1∑

m=1

pk−αmam

(
pαmym + O(pαm+1)

)

= pk
(
yi −

i−1∑

m=1

amym

)
+ O(pk+1) = O(pk+1).

This equation is independent of which polynomials am ∈ R are chosen to represent ȧm ∈
R/pR, but different choices will lead to different (equally valid) Smith forms; in practice, we

12

choose the unique representatives such that deg am < s, where

s = deg p. (1.25)

This choice of the am leads to two additional invariants at the start of the while loop, namely

(4) deg xm ≤ max(sk − 1, 0), (i ≤ m ≤ n),
(5) deg xm ≤ max(sαm − 1, 0), (1 ≤ m < i),

which are easily proved inductively by noting that

deg(pk−αmamxm) ≤ s(k − αm) + (s − 1) + deg(xm) ≤ s(k + 1) − 1. (1.26)

The while loop eventually terminates, for at the end of each loop (after k has been
incremented) we have produced a unimodular matrix V (λ) such that

A(λ)V (λ) = E(λ)D(λ), D = diag[pα1 , . . . , pαi−1 , pk, . . . , pk

︸ ︷︷ ︸
rk−1 times

]. (1.27)

Hence, the algorithm must terminate before k exceeds the algebraic multiplicity µ of p(λ) in
∆(λ):

k ≤
(∑i=1

m=1 αi

)
+ (n + 1 − i)k ≤ µ, ∆(λ) = f(λ)p(λ)µ, p ∤ f. (1.28)

In fact, we can avoid the last iteration of the while loop if we change the test to

while
[(∑i−1

m=1 αi

)
+ (n + 1 − i)k

]
< µ

and change the last line to

β = k, αm = k, (i ≤ m ≤ n), rβ−1 = n + 1 − i, rβ = 0.

We know the remaining columns of V will be accepted without having to compute the
remaining yi or check them for linear independence. When the algorithm terminates, we will
have found a unimodular matrix V (λ) satisfying (1.24) such that the columns of

Ė(λ) = [ẏ1(λ), . . . , ẏn(λ)]

are linearly independent in M/pM over R/pR. By Lemma 8, p(λ) ∤ det[E(λ)], as required.
To implement the algorithm, we must find an efficient way to compute yi, test for linear

independence in M/pM , find the coefficients am to cancel the leading term of the residual,
and update xi. Motivated by the construction in [79], we interpret the loop over j in
Algorithm 1 as a single nullspace calculation.

13

Let us define Rl = {a ∈ R : deg a < l} and Ml = Rn
l , both viewed as vector spaces over

K. Then we have an isomorphism Λ of vector spaces over K

Λ : (Ms)
k → Msk,

Λ(x(0); . . . ; x(k−1)) = x(0) + px(1) + · · ·+ pk−1x(k−1).
(1.29)

At times it will be convenient to identify Rls with R/plR and Mls with M/plM to obtain
ring and module structures for these spaces. We also expand

A = A(0) + pA(1) + · · ·+ pqA(q), (1.30)

where A(j) is an n × n matrix with entries in Rs for j = 1, . . . , q. By invariants (4) and (5)

of the while loop, we may write xi = Λ(x
(0)
i ; . . . ; x

(α)
i) with α = max(k − 1, 0). Since Axi is

divisible by pk in Algorithm 1, we have

yi = rem(quo(Axi, p
k), p) =

k∑

j=0

rem(A(k−j)x
(j)
i , p) +

k−1∑

j=0

quo(A(k−1−j)x
(j)
i , p). (1.31)

The matrix-vector multiplications A(k−j)x
(j)
i are done in the ring R (leading to vector poly-

nomials of degree ≤ 2s − 2) before the quotient and remainder are taken. When k = 0, the
second sum should be omitted, and when k ≥ 1, the j = k term in the first sum can be
dropped since x

(k)
i = 0 in the algorithm.

In practice, we test all the active columns ẏi, . . . , ẏn ∈ M/pM for linear independence of
their predecessors simultaneously using Algorithm 2 in Figure 1.2. If k = 0 we have

[y1, . . . , yn] = A(0). (1.32)

Otherwise k ≥ 1 and we have computed the matrix Xk−1 with columns
(
x

(0)
m ; . . . ; x

(k−1)
m

)
for

i ≤ m ≤ n such that Λ(Xk−1) (acting column by column) represents the last rk−1 columns
of V (λ) at the start of the while loop in Algorithm 1. Then by (1.31),

[yi, . . . , yn] = rem([A(k), . . . , A(1)]Xk−1, p) + quo([A(k−1), . . . , A(0)]Xk−1, p). (1.33)

As before, the matrix multiplications are done in the ring R before the quotient and remain-
der are computed to obtain the components of ym, which belong to Rs. To test for linear
independence, define the auxiliary matrices

Ak =

{
A(0), k = 0,[
Ak−1 , [yi, . . . , yn]

]
, 1 ≤ k ≤ n.

(1.34)

and compute the reduced row-echelon form of Ȧk using Gauss-Jordan elimination over the
field R/pR.

14

Algorithm 2. (Local smith form, final version)

k = 0
A0 = A(0)

X0 = X0 = null(Ȧ0)
r0 = R0 = num cols(X0) (number of columns)

X̃−1 = [ej1, . . . , ejn−r0
], (columns ji of rref(Ȧ0) start new rows)

while Rk < µ (µ = algebraic multiplicity of p)
k = k + 1

• Ak =
(
Ak−1 , rem(

[
A(k), . . . , A(1)

]
Xk−1, p) + quo(

[
A(k−1), . . . , A(0)

]
Xk−1, p)

)

• [Yk; Uk] = new columns of null(Ȧk) beyond those of null(Ȧk−1)
rk = num cols(Uk), (Uk is Rk−1 × rk)
Rk = Rk−1 + rk

Xk = [rem(Xk−1Uk, p); Yk] + quo(ι(Xk−1Uk), p) (Xk is n(k + 1) × rk)
Xk = [ι(Xk−1), Xk] (Xk is n(k + 1) × Rk)

X̃k−1 = Xk−1(:, [j1, . . . , jrk−1−rk
]), (columns n + Rk−2 + ji of

end while rref(Ȧk) start new rows)
β = k + 1 (maximal Jordan chain length)

X̃β−1 = Xβ−1

V (λ) =
[
Λ(X̃−1), . . . , Λ(X̃β−1)

]

Figure 1.2: Algorithm for computing a unimodular local Smith form.

The reduced row-echelon form of Ȧk can be interpreted as a tableau telling which columns
of Ȧk are linearly independent of their predecessors (the accepted columns), and also giving
the linear combination of previously accepted columns that will annihilate a linearly depen-
dent column. On the first iteration (with k = 0), step ⋆ in Algorithm 1 will build up the
matrix

X0 = null(Ȧ0), (1.35)

where null(·) is the standard algorithm for computing a basis for the nullspace of a matrix
from the reduced row-echelon form (followed by a truncation to replace the elements in R/pR
of this nullspace matrix with their representatives in Rs). But rather than rotating these
columns to the end as in Algorithm 1, we now append the corresponding yi to the end of
Ak−1 to form Ak for k ≥ 1. The “dead” columns left behind (not accepted, not active)
serve only as placeholders, causing the resulting matrices Ak to be nested. We use rref(·)
to denote the reduced row-echelon form of a matrix polynomial. The leading columns of

15

Figure 1.3: The reduced row-echelon form of Ȧβ contains all the information necessary to

construct V (λ) = [Λ(X̃−1), . . . , Λ(X̃s−1)]. An arrow from a column [v; u] of [Yk; Uk] indicates

that the vector
(
[rem(Xk−1u, p); v] + quo(ι(Xk−1u), p)

)
should be added to X̃k.

rref(Ȧk) will then coincide with rref(Ȧk−1), and the nullspace matrices will also be nested:

(
X0 Y1 · · · Yk−1 Yk

0 [U1; 0] · · · [Uk−1; 0] Uk

)
:= null(Ȧk). (1.36)

Note that Ak is n × (n + Rk−1), where

R−1 = 0, Rk = r0 + · · ·+ rk = dim ker Ȧk, (k ≥ 0). (1.37)

We also see that X0 is n × r0, Yk is n × rk, and Uk is rk−1 × rk. Since the dimension of the
kernel cannot increase by more than the number of columns added,

rk ≤ rk−1, (k ≥ 0). (1.38)

If column i of Ȧk is linearly dependent on its predecessors, the coefficients am used in step
⋆ of Algorithm 1 are precisely the (truncations of the) coefficients that appear in column i
of rref(Ȧk). The corresponding null vector (i.e. column of [Yk; Uk]) contains the negatives
of these coefficients in the rows corresponding to the previously accepted columns of Ȧk,
followed by a 1 in row i; see Figure 1.3. Thus, in step ⋆, if k ≥ 1 and we write xm =
Λ
(
x

(0)
m ; . . . ; x

(α)
m

)
with α = max(αm − 1, 0), the update

16

x
(new)
i = x

(old)
i −

i−1∑

m=1

pk−αmamxm, rem(amxm, pαm+1) = Λ
(
z(0); . . . ; z(αm)

)
,

z(j) =

rem(amx
(0)
m , p), j = 0,

rem(amx
(j)
m , p) + quo(amx

(j−1)
m , p), 1 ≤ j < αm,

quo(amx
(j−1)
m , p), j = αm and αm > 0,

is equivalent to

Xk = rem

([
ιk(X−1) , ιk−1ρ(X0) , . . . , ι0ρ(Xk−1)

](Yk

Uk

)
, p

)

+ quo
([

ιk(X0) , . . . , ι1(Xk−1)
]
Uk, p

)
,

(1.39)

where ι, ρ : (Ms)
l → (Ms)

l+1 act column by column, padding them with zeros:

ι(x) = (0; x), ρ(x) = (x; 0), x ∈ (Ms)
l, 0 ∈ Ms. (1.40)

Here ΛιΛ−1 is multiplication by p, which embeds Mls
∼= M/plM in M(l+1)s

∼= M/pl+1M as
a module over R, while ρ is an embedding of vector spaces over K (but not an R-module
morphism). If we define the matrices X0 = X0 and

Xk = [ι(Xk−1), Xk] =

[(
0nk×r0

X0

)
,

(
0n(k−1)×r1

X1

)
, . . . ,

(
Xk

)]
, (k ≥ 1), (1.41)

then (1.39) simply becomes

Xk = [rem(Xk−1Uk, p); Yk] + quo(ι(Xk−1Uk), p). (1.42)

As in (1.33) above, the matrix multiplications are done in the ring R before the quotient
and remainder are computed to obtain Xk. Finally, we line up the columns of Xk−1 with
the last rk−1 columns of Ȧk and extract (i.e. accept) columns of Xk−1 that correspond to
new, linearly independent columns of Ȧk. We denote the matrix of extracted columns by
X̃k−1. At the completion of the algorithm, the unimodular matrix V (λ) that puts A(λ) in
local Smith form is given by

V (λ) =
[
Λ(X̃−1), . . . , Λ(X̃β−1)

]
. (1.43)

The final algorithm is presented in Figure 1.2. In the steps marked •, we can avoid
re-computing the reduced row-echelon form of the first n + Rk−2 columns of Ȧk by storing
the sequence of Gauss-Jordan transformations [35] that reduced Ȧk−1 to row-echelon form.
To compute [Yk; Uk], we need only apply these transformations to the new columns of Ȧk

and then proceed with the row-reduction algorithm on these final columns. Also, if A0 is

17

large and sparse, rather than reducing to row-echelon form, one could find kernels using an
LU factorization designed to handle singular matrices. This would allow the use of graph
theory (clique analysis) to choose pivots in the Gaussian elimination procedure to minimize
fill-in. We also note that if ∆(λ) contains only one irreducible factor, the local Smith form
is a (global) Smith form of A(λ); steps 2 and 3 can be skipped in that case.

Example 5. Let A(λ) be the matrix polynomial defined in Example 1. Expanding about
p1(λ) = λ − 1, we have

A(λ) =

(
12 12
0 0

)
+ p1

(
20 44
6 6

)
+ O(p2

1), R−1 = 0,

A0 =

(
12 12
0 0

)
, X0 =

(
−1
1

)
, R0 = 1, X̃−1 =

(
1
0

)
,

A1 =

(
12 12 24
0 0 0

)
,

(
Y1

U1

)
=

−2
0
1

 , X1 =

0 −1
0 1
−1 −2
1 0

 , R1 = 2,

β = 2, X̃1 =

−1
1
−2
0

 , V1 =

(
1 1 − 2λ
0 1

)
, D1 =

(
1 0
0 (λ − 1)2

)
,

E1 = AV1D
−1
1 =

(
2λ4 + 6λ2 + 4 λ6 + 2λ5 + 7λ4 + 7λ3 + 15λ2 + 6λ + 10

2λ3 − 2λ2 + 4λ − 4 λ5 + λ4 + 4λ3 − λ2 + 4λ − 6

)
.

Expanding about p2(λ) = λ2 + 2, we obtain

A(λ) =

(
0 0
0 0

)
+ O(p2), R−1 = 0,

A0 =

(
0 0
0 0

)
, X0 =

(
1 0
0 1

)
, R0 = 2, X̃−1 = ∅,

β = 1, X̃0 =

(
1 0
0 1

)
, V2 =

(
1 0
0 1

)
, D2 =

(
λ2 + 2 0

0 λ2 + 2

)
,

E2 = AV2D
−1
2 =

(
2λ2 + 2 λ6 + 2λ4 − λ3 + 2λ2 − 3λ + 3
2λ − 2 λ5 − λ4 + λ3 − 2λ2 + 2λ − 1

)
.

1.3.2 Algorithms for the Extended GCD Problem

The extended Euclidean algorithm is widely applied to solve the extended GCD problem
for two polynomials in K[λ], e.g. gcdex in Maple. The algorithm requires O(P (d) logd)
arithmetic operations in K to solve the problem, where f1 and f2 both have degrees no
greater than d and P (d) is the number of field operations in K required to multiply two
polynomials of degree d − 1 in K[λ]. Using standard polynomial multiplication, we have
P (d) = d2, while a fast algorithm [72] uses P (d) = d(log d)(log log d).

18

The extended GCD problem (1.21) for more than two polynomials can be solved by
applying the extended Euclidean algorithm to all the polynomials simultaneously; see below.
A variant of this approach is to focus on the two lowest degree polynomials until one is
reduced to zero; we then repeat until all but one is zero. In practice, we use the function
‘MatrixPolynomialAlgebra[HermiteForm]’ in Maple.

Suppose we have n polynomials f1, . . . , fn in K[λ]. We find fi 6= 0 with the lowest degree.
Each fj with j 6= i can then be written as

fj − qjfi = rj,

where qj := quo(fj , fi), rj := rem(fj, fi). Hence, we have

1 −q1

. . .
...
1
...

. . .

−qn 1

f1
...
fi
...

fn

=

r1
...
fi
...
rn

.

Denote the matrix by Q1. We repeat this procedure on (r1; . . . ; fi; . . . ; rn) until there is only
one nonzero entry in the vector, and we obtain

QkQk−1 . . . Q1

f1

...

fn

=

0
...
r
...
0

. (1.44)

The row of Q := QkQk−1 . . . Q1 with the same index as r divided by the leading coefficient
of r gives a solution of the extended GCD problem.

Example 6. Define f1 = λ2 +2 and f2 = (λ−1)2 as in Example 4. Following the procedure
described above, we obtain

(
1 0

8
9
λ + 4

9
1

)(
1 1

2
λ − 1

4

0 1

)(
1 0
−1 1

)(
f1

f2

)
=

(
1 0

8
9
λ + 4

9
1

)(
1 1

2
λ − 1

4

0 1

)(
λ2 + 2
−2λ − 1

)

=

(
1 0

8
9
λ + 4

9
1

)(
9
4

−2λ − 1

)
=

(
9
4

0

)
.

With

Q =

(
1 0

8
9
λ + 4

9
1

)(
1 1

2
λ − 1

4

0 1

)(
1 0
−1 1

)
=

(
−1

2
λ + 5

4
1
2
λ − 1

4

−4
9
λ2 + 8

9
λ − 4

9
4
9
λ2 + 8

9

)
,

we have g1 = −2
9
λ + 5

9
and g2 = 2

9
λ − 1

9
as in Example 4.

19

1.3.3 From Local to Global (Step 2)

Now that we have a local Smith form (1.23) for every irreducible factor pj(λ) of ∆(λ), we
can apply the algorithm in Section 1.3.2 to obtain a family of polynomials {gj(λ)}l

j=1 with
deg(gj(λ)) < sjκjn, where sj = deg(pj), such that

l∑

j=1

[
gj(λ)

l∏

k=1,k 6=j

pk(λ)κkn

]
= 1, (1.45)

where pj(λ)κjn is the last entry in the diagonal matrix of the local Smith form at pj(λ). The
integers κjn are positive. We define a matrix polynomial Bn(λ) via

Bn(λ) =

l∑

j=1

[
gj(λ)Vj(λ)

l∏

k 6=j

pk(λ)κkn

]
. (1.46)

The main result of this section is stated as follows.

Proposition 11. The matrix polynomial Bn(λ) in (1.46) has two key properties:

1. Let bni(λ) be the ith column of Bn(λ). Then A(λ)bni(λ) is divisible by di(λ), where
di(λ) =

∏l
j=1 pj(λ)κji is the ith diagonal entry in D(λ) of the Smith form.

2. det[Bn(λ)] is not divisible by pj(λ) for j = 1, . . . , l.

Proof. 1. Let vji(λ) be the ith column of Vj(λ). Then A(λ)vji(λ) is divisible by pj(λ)κji and

bni(λ) =

l∑

j=1

[l∏

k 6=j

pk(λ)κkn

]
gj(λ)vji(λ).

Since κjn ≥ κji for 1 ≤ i ≤ n and 1 ≤ j ≤ l,

A(λ)bni(λ) =

l∑

j=1

[
(A(λ)vji(λ))

l∏

k 6=j

pk(λ)κkn

]
gj(λ)

is divisible by di(λ).
2. The local Smith form construction ensures that pj(λ) ∤ det[Vj(λ)] for each 1 ≤ j ≤ l.

Equation (1.45) modulo pj(λ) shows that pj(λ) ∤ gj(λ). By definition,

det[Bn(λ)] = det
([

bn1(λ) , . . . , bnn(λ)
])

= det
([

bni(λ)
]n
i=1

)

= det

([l∑

j′=1

(l∏

k 6=j′

pk(λ)κkn

)
gj′(λ)vj′i(λ)

]n

i=1

)
.

20

Each term in the sum is divisible by pj(λ) except j′ = j. Thus, by multi-linearity,

rem(det[Bn(λ)], pj(λ)) = rem

([l∏

k 6=j

pk(λ)κkn

]n[
gj(λ)

]n
det
[
Vj(λ)

]
, pj(λ)

)
6= 0,

as claimed.

Remark 12. It is possible for det[Bn(λ)] to be non-constant; however, its irreducible factors
will be distinct from p1(λ), . . . , pl(λ).

Remark 13. Rather than building Bn(λ) as a linear combination (1.46), we may form Bn(λ)
with columns

bni(λ) =
l∑

j=1

[l∏

k 6=j

pk(λ)max(κki,1)

]
gij(λ)vji(λ), (1 ≤ i ≤ n), (1.47)

where {gij}
l
j=1 solves the extended GCD problem

l∑

j=1

[
gij(λ)

l∏

k 6=j

pk(λ)max(κki,1)

]
= 1.

The two properties proved above also hold for this definition of Bn(λ). The reason for
increasing the power of pk(λ) to 1 when κki = 0 is to ensure that pj(λ) ∤ gij(λ) is satisfied
for any i, j. This modification can significantly reduce the polynomial degree and coefficient
size of Bn(λ) when there is a wide range of Jordan chain lengths.

Example 7. With A(λ) defined as in Example 1, the matrix polynomial Bn(λ) is given by

Bn(λ) = g1(λ)V1(λ)p2(λ) + g2(λ)V2(λ)p1(λ)2

=

(
−

2

9
λ +

5

9

)(
λ2 + 2

)(1 1 − 2λ
0 1

)
+

(
2

9
λ −

1

9

)
(λ − 1)2

(
1 0
0 1

)

=

(
1 4

9
λ4 − 4

3
λ3 + 13

9
λ2 − 8

3
λ + 10

9

0 1

)
,

(1.48)

where n = 2 in this case. Alternatively, we can construct B2(λ) with the modified formula-
tion (1.47) in Remark 13. We find that (g11, g12) = (1

3
,−1

3
λ − 1

3
) solves the extended GCD

problem g11p2 + g12p1 = 1 with deg g11 < 1 and deg g12 < 2, and (g21, g22) = (g1, g2) solves
the extended GCD problem g21p2 + g22p

2
1 = 1. We obtain

B2(λ) = (b21 b22) , (1.49)

21

where

b21 = g11(λ)v11(λ)p2(λ) + g12(λ)v21(λ)p1(λ)

=
1

3

(
λ2 + 2

)(1
0

)
+

(
−

1

3
λ −

1

3

)
(λ − 1)

(
1
0

)
=

(
1
0

)
,

b22 = g21(λ)v12(λ)p2(λ) + g22(λ)v22(λ)p1(λ)2

=

(
−

2

9
λ +

5

9

)(
λ2 + 2

)(1 − 2λ
1

)
+

(
2

9
λ −

1

9

)
(λ − 1)2

(
0
1

)

=

(
4
9
λ4 − 4

3
λ3 + 13

9
λ2 − 8

3
λ + 10

9

1

)
.

Note that this matrix polynomial in (1.49) coincides with that in (1.48). In general this is
not true. It happened here because the first column of V1(λ) and that of V2(λ) are both equal
to (1, 0)T .

1.3.4 Construction of Unimodular Matrix Polynomials (Step 3)

Given a vector polynomial [f1(λ); . . . ; fn(λ)] ∈ K[λ]n, we can use the extended GCD
algorithm to find a unimodular matrix Q(λ) such that Q(λ)f(λ) = [0; . . . ; 0; r(λ)], where
r = gcd(f1, . . . , fn). Explicitly, we apply one additional transformation Qk+1 to (1.44) to
swap row i with row n and scale this row to make r monic. We then define Q = Qk+1Qk · · ·Q1,
which is unimodular. We apply this procedure to the last column of Bn(λ) and define
Vn(λ) = Q(λ)−1. The resulting matrix

Bn−1(λ) := Vn(λ)−1Bn(λ)

is zero above the main diagonal in column n. We then apply this procedure to the first n−1
components of column n − 1 of Bn−1(λ) to get a new Q(λ), and define

Vn−1(λ) =

0

Q(λ)−1 ...

0
0 · · · 0 1

 . (1.50)

It follows that Bn−2(λ) := Vn−1(λ)−1Bn−1(λ) is zero above the main diagonal in columns
n − 1 and n. Continuing in this fashion, we obtain unimodular matrices Vn(λ), . . . , V2(λ)
such that

A(λ)Bn(λ) = A(λ) Vn(λ) · · ·V2(λ)︸ ︷︷ ︸
V (λ)

V2(λ)−1 · · ·Vn(λ)−1Bn(λ)︸ ︷︷ ︸
Bn−1(λ)

= A(λ)V (λ)B1(λ),

22

where V (λ) is unimodular, B1(λ) is lower triangular, and

det[B1(λ)] = const · det[Bn(λ)]. (1.51)

The matrix V (λ) puts A(λ) in Smith form:

Proposition 14. There is a unimodular matrix polynomial E(λ) such that

A(λ)V (λ) = E(λ)D(λ), (1.52)

where D(λ) is of the form (1.3).

Proof. Let rmi denote the entry of B1(λ) in the mth row and ith column. Define yi(λ) and
zi(λ) to be the ith columns of A(λ)V (λ) and A(λ)V (λ)B1(λ), respectively, so that

zi(λ) = yi(λ)rii(λ) +
n∑

m=i+1

ym(λ)rmi(λ), (1 ≤ i ≤ n). (1.53)

By Proposition 11, zi(λ) is divisible by di(λ) for 1 ≤ i ≤ n and pj(λ) ∤ det[B1(λ)] for
1 ≤ j ≤ l. Since B1(λ) is lower triangular, we have det[B1(λ)] =

∏n
i=1 rii. It follows that

the diagonal entries rii(λ) of B1(λ) are relatively prime to each of the dk(λ) (k = 1, . . . , n).
As dn(λ) divides yn(λ)rnn(λ) and is relatively prime to rnn(λ), it divides yn(λ) alone. Now
suppose 1 ≤ i < n and we have shown that dm(λ) divides ym(λ) for i < m ≤ n. Then
since di(λ) divides dm(λ) for m > i and rii(λ) is relatively prime to di(λ), we conclude from
(1.53) that di(λ) divides yi(λ). By induction, di(λ) divides yi(λ) for 1 ≤ i ≤ n. Thus,
there is a matrix polynomial E(λ) such that (1.52) holds. Because V (λ) is unimodular and
det[A(λ)] = const · det[D(λ)], it follows that E(λ) is also unimodular, as claimed.

Remark 15. V (λ) constructed as described above puts A(λ) in a global Smith form whether
we build Bn(λ) as a linear combination (1.46) or as in Remark 13.

Remark 16. We can stop the loop before reaching (V2, B2) by adding a test

while dk 6= 1

and defining V (λ) = Vn(λ) · · ·Vk+1(λ) after the while loop terminates. In the remaining of
this section k refers to this index. It is the largest integer for which

d1(λ) = · · · = dk(λ) = 1.

We know k from the local Smith form calculations. As a matter of fact, once we obtain
Vn(λ), . . . , Vk+1(λ), the ith column of the matrix polynomial V = Vn(λ) · · ·Vk+1(λ) is ac-
cepted for i = k + 1, . . . , n and will not change in the remaining iterations of the for loop.
The last n−k columns of Vn · · ·Vk+1 are the same as those of Vn · · ·V2, and therefore contain
identical Jordan chains.

23

We find that a slight modification can significantly reduce the degree of the polynomials
and the size of the coefficients in the computation. In this variant, rather than applying
the extended GCD algorithm on bnn(λ) to find a unimodular matrix polynomial Q(λ) so
that Qbnn(λ) has the form [0; . . . ; 0; r(λ)], we compute Q(λ) that puts rem(bnn(λ), dn(λ))
into the desired form. That is, we replace the last column of Bn(λ) with rem(bnn(λ), dn(λ))
and then find Q(λ) that puts Bn(λ) in the desired form.To distinguish, we denote this new
definition of Vn(λ) = Q(λ)−1 by Ṽn(λ) and the resulting Bn−1(λ) by B̃n−1(λ). Continuing
in this manner, we find unimodular matrix polynomials Ṽn(λ), . . . , Ṽk+1(λ) by applying the
procedure on rem(b̃ii(λ), di(λ)) for i = n, . . . , k+1, where b̃ii(λ) has the first i components of
column i of B̃i(λ). We also define B̄i = Ṽi+1(λ)−1 · · · Ṽn(λ)−1Bn(λ) for k ≤ i ≤ n − 1. Note
that B̄i(λ) 6= B̃i(λ). It remains to show that this definition of Ṽ (λ) = Ṽn(λ) . . . Ṽk+1(λ) such
that

A(λ)Bn(λ) = A(λ) Ṽn(λ) · · · Ṽk+1(λ)︸ ︷︷ ︸
Ṽ (λ)

Ṽk+1(λ)−1 · · · Ṽn(λ)−1Bn(λ)︸ ︷︷ ︸
B̄n−1(λ)

= A(λ)Ṽ (λ)B̄k(λ)

also puts A(λ) in Smith form:

Proposition 17. There is a unimodular matrix polynomial Ẽ(λ) such that

A(λ)Ṽ (λ) = Ẽ(λ)D(λ), (1.54)

where D(λ) is of the form (1.3).

Proof. Define q̃i(λ) =
[
quo(b̃ii(λ), di(λ)); 0

]
∈ M = Rn for i = k + 1, . . . , n, where 0 ∈ Rn−i,

b̃ii(λ) has the first i components of column i of B̃i(λ), and B̃n(λ) := Bn(λ). Then we have

B̃n−1(λ) = Ṽn(λ)−1
(
Bn(λ) −

[
0n×(n−1) dn(λ)q̃n(λ)

])

= B̄n−1(λ) −
[

0n×(n−1) dn(λ)Ṽn(λ)−1q̃n(λ)
]
.

The first n−1 columns of B̃n(λ) are the same as those of B̄n(λ). Continuing to find B̃n−2(λ),
we have

B̃n−2(λ) = Ṽn−1(λ)−1
(
B̃n−1(λ) −

[
0n×(n−2) dn−1(λ)q̃n−1(λ) 0n×1

])

= Ṽn−1(λ)−1
(
B̄n−1(λ) −

[
0n×(n−2) dn−1(λ)q̃n−1(λ) dn(λ)Ṽn(λ)−1q̃n(λ)

])

= B̄n−2(λ) −
[

0n×(n−2) dn−1(λ)Ṽn−1(λ)−1q̃n−1(λ) dn(λ)Ṽn−1(λ)−1Ṽn(λ)−1q̃n(λ)
]
.

It follows by induction that

B̃k(λ) = Ṽk+1(λ)−1
(
B̃n+1(λ) −

[
0n×k dk+1(λ)q̃k+1(λ) 0n×(n−k−1)

])

= B̄k(λ) −
[

0n×k dk+1(λ)Ṽk+1(λ)−1q̃k+1(λ) · · · dn(λ)Ṽk+1(λ)−1 · · · Ṽn(λ)−1q̃n(λ)
]
.

24

B̃k(λ) is zero above the main diagonal in columns k + 1 to n. Define

ui(λ) := Ṽk+1(λ)−1 · · · Ṽi(λ)−1q̃i(λ).

Then the ith column of the difference B̄k(λ)− B̃k(λ) is given by di(λ)ui(λ) for k+1 ≤ i ≤ n.
Let r̃mi(λ) denote the entry of B̃k(λ) in the mth row and ith column. Define ỹi(λ) and

zi(λ) to be the ith columns of A(λ)Ṽ (λ) and A(λ)Ṽ (λ)B̄k(λ), respectively, so that

zi(λ) = ỹi(λ)r̃ii(λ) +

n∑

m=i+1

ỹm(λ)r̃mi(λ) + di(λ)A(λ)Ṽ (λ)ui(λ).

By Proposition 11, zi(λ) is divisible by di(λ) and pj(λ) ∤ det[Bn(λ)] = const · det[B̄i(λ)] for
1 ≤ j ≤ l, where const 6= 0. Since di is divisible by dm for i ≤ m ≤ n, det[B̄i(λ)]−det[B̃i(λ)] is
divisible by di+1(λ) due to the structure of B̄i(λ)−B̃i(λ) and multi-linearity of determinants.
We also know that det[B̃i(λ)] is divisible by r̃ii(λ). Proof by contradiction shows that r̃ii(λ)
is relatively prime to di(λ) (i = k + 1, . . . , n). Then we argue by induction as in the proof of
Proposition 14 to conclude that di(λ) divides yi(λ) for k + 1 ≤ i ≤ n. It holds trivially for
1 ≤ i ≤ k as d1 = · · · = dk = 1. Thus, there is a matrix polynomial Ẽ(λ) such that (1.54)
holds. Because Ṽ (λ) is unimodular and det[A(λ)] = const · det[D(λ)], it follows that Ẽ(λ)
is also unimodular.

Example 8. To continue our example, we use the extended GCD algorithm to find

Q =

(
1 −4

9
λ4 + 4

3
λ3 − 13

9
λ2 + 8

3
λ − 10

9

0 1

)

such that Q(λ)b22(λ) = [0; 1]. We obtain the unimodular matrix polynomial

V = V2 = Q−1 =

(
1 4

9
λ4 − 4

3
λ3 + 13

9
λ2 − 8

3
λ + 10

9

0 1

)
.

The unimodular matrix polynomial E(λ) is given by

E =

(
2λ2 + 2 17

9
λ4 + 10

9
λ3 + 55

9
λ2 + 19

9
λ + 47

9

2λ − 2 17
9
λ3 − 7

9
λ2 + 28

9
λ − 29

9

)
.

Alternatively, we apply the extended GCD algorithm on rem(b22(λ), d2(λ)) = [−4
9
λ3 + 1

9
λ2 −

8
9
λ + 2

9
; 1] to obtain

Q̃ =

(
1 4

9
λ3 − 1

9
λ2 + 8

9
λ − 2

9

0 1

)
,

Ṽ = Ṽ2 = Q̃−1 =

(
1 −4

9
λ3 + 1

9
λ2 − 8

9
λ + 2

9

0 1

)

and

Ẽ =

(
2λ2 + 2 λ4 + 10

9
λ3 + 31

9
λ2 + 19

9
λ + 31

9

2λ − 2 λ3 + 1
9
λ2 + 4

3
λ − 13

9

)
.

We obtain Smith forms that are different from those given in Example 1.

25

1.4 Performance Comparison

In this section, we compare our algorithm to Villard’s method with good conditioning [76],
which is also a deterministic sequential method for computing Smith forms with multipliers,
and to ‘MatrixPolynomialAlgebra[SmithForm]’ in Maple. All the algorithms are implemented in
exact arithmetic using Maple 13 so that the maximum allowable setting of digits that Maple
uses (given by ‘kernelopts(maxdigits)’) is 38654705646. However, limitations of available
memory may set the limit on the largest integer number much lower than this. We use the
variant of Algorithm 2 given in Appendix A to compute local Smith forms.

To evaluate the performance of these methods, we generate several groups of diagonal
matrices D(λ) over Q and multiply them on each side by unimodular matrices of the form
L(λ)U(λ) and then by permutation matrices, where L is unit lower triangular, and U is unit
upper triangular, both with off diagonal entries of the form λ − i with i ∈ {−10, . . . , 10}
a random integer. We find that row permutation on the test matrices does not affect the
running time of the algorithms, while column permutation increases the size of rational
numbers in the computation and therefore the running time of both our algorithm and
Villard’s method. We compare the results in two extreme cases: without column permutation
on test matrices and with columns reversed. Each process is repeated five times for each
D(λ) and the median running time is recorded.

We use several parameters in the comparison, including the size n of the square matrix
A(λ), the bound d of the degrees of the entries in A(λ), the number l of irreducible factors
in det[A(λ)], and the largest order κjn. Note that when we compute a local Smith form at
pj(λ), only coefficients up to A(κjn−1)(λ) in the expansion of A(λ) in power of pj(λ) enter
into calculation. Due to this truncation and operation of remainder for computing V from
Bn, it is the degrees of the diagonal entries di(λ) (depending on l, sj = deg pj(λ) and κji)
rather than the degree bound d of the entries in A(λ) that directly affect the computational
cost of our algorithm. Therefore, the running time mostly depends on n, l and κjn. The cost
of Villard’s method with good condition is a function of n and d, as well as the size of the
coefficients, which we do not discuss here.

Our first group of test matrices Dn(λ) are of the form

Dn(λ) = diag[1, . . . , 1, λ, λ(λ− 1), λ2(λ − 1), λ2(λ − 1)2],

where the matrix size n increases starting from 4. Hence, we have d = 8, l = 2, and
κ1n = κ2n = 2 all fixed. (The unimodular matrices in the construction of A(λ) each have
degree 2.) A comparison of the cpu time of the various algorithms is plotted in Figure 1.4.
We did not implement the re-use strategy for computing the reduced row-echelon form of
Ak by storing the Gauss-Jordan transformations used to obtain rref(Ak−1), and then con-
tinuing with only the new columns of Ak. This is because the built-in function LinearAlge-
bra[ReducedRowEchelonForm] is much faster than can be achieved by a user defined maple
code for the same purpose; therefore, our running times could be reduced by a factor of

26

about 2 in this test if we had access to the internal LinearAlgebra[ReducedRowEchelonForm]
code.

For the second test, we use test matrices Dl(λ) of size 9 × 9, where

Dl(λ) = diag[1, . . . , 1,

l∏

j=1

(λ − j)]

with the number of roots of det[A(λ)] equal to l = 1, 2, · · · . In other words, n = 9, d = l + 4
and κjn = 1 for 1 ≤ j ≤ l. The running time of Villard’s method does not directly rely on l
but increases as d and the size of coefficients of entries in A(λ) grows.

In the third test, we use 9 × 9 test matrices Dk(λ) of the form

Dk(λ) = diag[1, . . . , 1, λk], (k = 1, 2, . . .),

with n = 9, l = 1, κ1n = k and d = k + 4. The results are shown in Figure 1.6. As in the
second test, Villard’s method has an increasing cost as d grows. But the slope is almost flat
for test matrices without column permutation, because multiplication by λk with a larger k
will not increase the numbers of terms or the coefficient size of the polynomials in the test
matrices A(λ). We add a more general case in Figure 1.7 where

Dk(λ) = diag[1, . . . , 1, (λ − 1)k], (k = 1, 2, . . .).

If we had access to the internal LinearAlgebra[ReducedRowEchelonForm] code, the re-use strat-
egy for computing rref(Ak) from rref(Ak−1) would decrease the running time of our algorithm
by a factor of nearly κ1n, i.e. the slope of our algorithm in Figure 1.6 would decrease by one.

As the fourth test, we use matrices Dn(λ) similar to those in the first test, but with
irreducible polynomials of higher degree. Specifically, we define

Dn(λ) = diag[1, . . . , 1, p1, p1p2, p
2
1p2, p

2
1p

2
2],

where p1 = λ2+λ+1, p2 = λ4+λ3+λ2+1, κ1n = 2, κ2n = 2, d = 16 and n increases, starting
at 4. The cpu time of the various algorithms is plotted in Figure 1.8. It looks analogous to
Figure 1.4.

In addition to these basic tests, we include two more complicated cases. In the fifth test,
we use 9 × 9 test matrices Dk(λ) of the form

Dk(λ) = diag[1, . . . , 1,
k∏

j=1

(λ2 + j),
k∏

j=1

(λ2 + j)2,
k∏

j=1

(λ2 + j)k], (k = 2, 3, . . .),

with n = 9, l = k, κjn = k and d = 2k2 +4.The cpu time of the various algorithms is plotted
in Figure 1.9.

27

As a final test, we define n × n matrices

Dn(λ) = diag[1, 1, (λ2 + 1), (λ2 + 1)2(λ2 + 2), . . . ,

n−2∏

j=1

(λ2 + j)n−1−j]

with n = 3, 4, . . . , so that all the parameters n, l = n − 2, κjn = n − 1 − j and d =
(n − 1)(n − 2) + 4 increases simultaneously. The results are shown in Figure 1.10.

1.4.1 Discussion

The key idea in our algorithm is that it is much less expensive to compute local Smith
forms than global Smith forms through a sequence of unimodular row and column operations.
This is because (1) row reduction over R/pR in Algorithm 2 (or over K in the variant of
Appendix A) is less expensive than computing Bézout’s coefficients over R; (2) the size of
the rational numbers that occur in the algorithm remain smaller (as we only deal with the
leading terms of A in an expansion in powers of p rather than with all of A); and (3) each
column of V (λ) in a local Smith form only has to be processed once for each power of p in the
corresponding diagonal entry of D(λ). Once the local Smith forms are known, we combine
them to form a (global) multiplier V (λ) for A(λ). This last step does involve triangularization
of Bn(λ) via the extended GCD algorithm, but this is less time consuming in most cases
than performing elementary row and column operations on A(λ) to obtain D(λ). This is
because (1) we only have to apply row operations to Bn(λ) (as the columns are already
correctly ordered); (2) with the diagonal entries di(λ) obtained from local Smith forms, we
keep the degree of polynomials (and therefore the number of terms) in the algorithm small
with the operation rem(·, di); and (3) the leading columns of Bn(λ) tend to be sparse (as
they consist of a superposition of local Smith forms, whose initial columns X−1 are a subset
of the columns of the identity matrix). Sparsity is not used explicitly in our code, but it
does reduce the work required to compute the Bézout’s coefficients of a column.

Figure 1.11 and Figure 1.12 show the running time for each step of our algorithm (e.g.
finding irreducible factors of det[A(λ)], computing local Smith forms, constructing V (λ),
and computing E(λ)) for the last two tests in Section 1.4. The obvious drawback of our
algorithm is that we have to compute a local Smith form for each irreducible factor of ∆(λ)
separately, while much of the work in deciding whether to accept a column in Algorithm 1
can be done for all the irreducible factors simultaneously by using extended GCDs. In our
numerical experiments, it appears that in most cases, the benefit of computing local Smith
forms outweighs the fact that there are several of them to compute.

We note that there is no additional computational cost to obtain F (λ) to write the Smith
form in terms of A(λ) = E(λ)D(λ)F (λ). However, if the goal is to write A(λ) in the Smith
form U(λ)A(λ)V (λ) = D(λ) as traditionally used, the computation of a matrix inverse is
needed to obtain the left multiplier U(λ) = E(λ)−1. We include Figure 1.13 and 1.14 to
show how the performance of our algorithm is affected with U computed.

28

Although it is not implemented in this dissertation, it is easy to see that the local Smith
form construction in Step 1 is easy to parallelize.

29

10-2

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s

method

our algorithm

10-2

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.4: Running time vs. matrix size n for the first test, without column permutation
(top) and with columns reversed (bottom).

30

10-2

10-1

100

101

102

103

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

number of roots l of det(A(λ))

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple
Villard’s

method

our algorithm

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

number of roots l of det(A(λ))

‘MatrixPolynomialAlgebra[SmithForm]’ in Maple

Villard’s method

our algorithm

Figure 1.5: Running time vs. number of roots l of det [A(λ)] for the second test, without
column permutation (top) and with columns reversed (bottom).

31

10-2

10-1

100

101

102

103

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.6: Running time vs. κ1n, the maximal Jordan chain length, for the third test,
without column permutation on test matrices (top) and with columns reversed (bottom).

32

10-2

10-1

100

101

102

103

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.7: Running time vs. κ1n, the maximal Jordan chain length, on a variant of the third
test, without column permutation (top) and with columns reversed (bottom).

33

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s

method

our algorithm

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.8: Running time vs. matrix size n for the fourth test, without column permutation
(top) and with columns reversed (bottom).

34

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple Villard’s method

our algorithm

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.9: Running time vs. k for the fifth test, without column permutation (top) and
with columns reversed (bottom).

35

10-3

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

10-3

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

‘MatrixPolynomialAlgebra[SmithForm]’

in Maple

Villard’s method

our algorithm

Figure 1.10: Running time vs. n for the sixth test, without column permutation (top) and
with columns reversed (bottom).

36

10-3

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

irreducible factors of det(A(λ))
local Smith forms

matrix polynomial V(λ)
matrix polynomial E(λ)

10-3

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

irreducible factors of det(A(λ))
local Smith forms

matrix polynomial V(λ)
matrix polynomial E(λ)

Figure 1.11: Running time of each step of our algorithm vs. k for the fifth test, without
column permutation (top) and with columns reversed (bottom).

37

10-3

10-2

10-1

100

101

102

103

104

101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

irreducible factors of det(A(λ))
local Smith forms

matrix polynomial V(λ)
matrix polynomial E(λ)

10-3

10-2

10-1

100

101

102

103

104

101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

irreducible factors of det(A(λ))
local Smith forms

matrix polynomial V(λ)
matrix polynomial E(λ)

Figure 1.12: Running time of each step of our algorithm vs. n for the sixth test, without
column permutation (top) and with columns reversed (bottom).

38

10-2

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

our alg without U
Villard’s method

our alg with U

10-2

10-1

100

101

102

103

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

number of roots l of det(A(λ))

10-2

10-1

100

101

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

10-2

10-1

100

101

102

103

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

Figure 1.13: Running time of our algorithm with and without U(λ) computed compared to
Villard’s method on Test 1, 2, 3-1, 3-2, 5 and 6, without column permutation.

39

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

matrix size n

our without U
Villard’s

our with U

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

number of roots l of det(A(λ))

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

10-1

100

101

102

103

104

100 101 102

cp
u

tim
e

(in
 s

ec
on

ds
)

maximal length κ1n of Jordan chains

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

k

10-2

10-1

100

101

102

103

104

100 101

cp
u

tim
e

(in
 s

ec
on

ds
)

n

Figure 1.14: Running time of our algorithm with and without U(λ) computed compared to
Villard’s method on Test 1, 2, 3-1, 3-2, 5 and 6, with columns reversed.

40

Chapter 2

Time-periodic Gravity-driven Water
Waves with or without Surface
Tension

2.1 Introduction

The study of time-periodic waves is an interesting topic in fluid mechanics. However,
general numerical methods for computing time periodic solutions were designed with ordi-
nary differential equations in mind, and are prohibitively expensive for partial differential
equations. For example, “direct” methods like orthogonal collocation, as implemented in a
popular software package AUTO, require solving a large nonlinear system involving all the
degrees of freedom from discretizing in space at every time step; “indirect” methods such
as shooting and multi-shooting rely on the computation of Jacobian matrices with respect
to the variation of the initial conditions, which is also expensive. We adapt an adjoint-
based optimal control algorithm developed by Ambrose and Wilkening [7, 4, 6] for solving
general nonlinear two-point boundary value problems to perform a computational study of
time-periodic gravity-driven water waves with or without surface tension.

The water wave problem is one of the oldest and the most classical problems in fluid
mechanics [21, 22, 78]. After Newton’s work [58], Euler [27, 28, 29], Laplace [55], Lagrange
[52, 53, 54], Gerstner [32], Poisson [65], Cauchy [16], Russell [67], and Airy [1] in the eigh-
teenth and first half of the nineteenth century all made significant contributions to describe
the propagation of traveling waves before Stokes’ most famous paper on water waves [71].
Since then numerous scientists such as Boussinesq [11], Rayleigh [66], Korteweg and de-
Vries [49] have contributed substantially to study various types of waves (solitary, cnoidal,
long, gravity, capillary, gravity-capillary), and a number of models were proposed in various
asymptotic limits. Since the nineties, authors such as Crannell [23], Chen and Iooss [17],
Iooss, Plotnikov and Toland [41, 64], and Cabral and Rosa [15] have worked on the existence

41

of time-periodic solutions of water wave models.
Our numerical method is a variant of the one developed by Ambrose and Wilkening to

compute families of time-periodic solutions of the Benjamin-Ono equation [7, 4], and of the
vortex sheet with surface tension [6]. The idea of the method is to minimize a nonlinear
functional of the initial condition and supposed period that is positive unless the solution is
period, in which case it is zero. We adapt an adjoint-based optimal control method [12, 13,
42, 56] to compute the gradient of the functional with respect to the initial condition, and
use quasi-Newton line search algorithm BFGS [63] for minimization. Compared to standard
methods for solving two point boundary value problems, namely orthogonal collocation [26]
and shooting [70], this reduces the computational cost tremendously, especially when we use
approximate Hessian information from the previous solution in the continuation algorithm.

A new feature of the water wave problem is that the evolution equations involve a Dirichlet
to Neumann map relating the potential to its partial derivatives on the free surface. Nu-
merical methods based on a boundary integral formulation were proposed by Ambrose and
Wilkening to deal with this Dirichlet to Neumann map [5]. We start with two separate codes
written by Ambrose and Wilkening, one for time-stepping the 2D water wave equations [5],
and the other for computing time-periodic solutions of the vortex sheet with surface tension
[6]. We combine these codes and add to them the capability of solving the adjoint system
for the water wave problem, which we derive in Section 2.3 below. The adjoint system is
linear but non-autonomous, and also involves a Dirichlet to Neumann operator.

This chapter is organized as follows: In Section 2.2, we describe the derivation of the
model equations. In Section 2.3, we present our numerical methods for computing time-
periodic solutions. We also propose techniques for finding symmetric breathers in this sec-
tion. In Section 2.4, we give some numerical results. In Section 2.5, we discuss possible
future work.

2.2 Equations of Motion

Following [2, 3, 40, 62, 64], we consider a two-dimensional inviscid, irrotational, incom-
pressible fluid bounded below by a flat wall y = −H0 where H0 > 0 and above by an evolving
free surface η(x, t). This is a reasonable model of water waves in a large scale system such
as the ocean in which inertia forces dominate viscous forces [25]. We assume that η is
2π-periodic in x.

For an inviscid fluid, the Navier-Stokes equation governing the flow is simplified to the
Euler equation

ut + (u · ∇)u = −
1

ρ
∇p + g, (2.1)

where u is the velocity field, ρ is the density, p is the pressure and g = −gŷ is the force due
to gravity. Incompressibility implies that

∇ · u = 0. (2.2)

42

For irrotational flows, we have a velocity potential φ such that u = ∇φ. Equation (2.1) can
be rewritten in terms of φ

∇φt +
1

2
∇(∇φ)2 = −

1

ρ
∇p + g. (2.3)

Integrating, we obtain Bernoulli’s equation

φt +
1

2
(∇φ)2 = −

p

ρ
− gy + c(t), (2.4)

where g > 0 is the acceleration of gravity and c(t) is a constant function in space. We
assume the pressure above the free surface is a constant p0 and has a jump proportional to
the curvature κ across the free surface due to surface tension

p0 − p
∣∣
y=η

= τκ = τ∂x

(
ηx√

1 + η2
x

)
. (2.5)

Note that c(t) can be any function in t in the sense that the fluid velocity u = ∇φ will
not change if φ(x, y, t) changes by a constant function in space. At y = η, (2.4) and (2.25)
become

ϕt − φyηt +
1

2
(∇φ)2 = −

p0

ρ
+

τ

ρ
∂x

(
ηx√

1 + η2
x

)
− gη + c(t), (2.6)

where ϕ(x, t) = φ(x, η(x, t), t) is the restriction of φ to the free surface, and satisfies φt =
ϕt − φyηt. The potential φ also satisfies the Laplace equation

∆φ = 0 (2.7)

by (2.2).
Another boundary condition on the free surface requires that particles on the free surface

stay on it
ηt + ηxφx = φy. (2.8)

The velocity at the bottom wall is tangential. It implies that φy = 0 at y = −H0.
Therefore, we pose the Cauchy problem as that of finding η(x, t) and φ(x, y, t) with

restriction ϕ(x, t) = φ(x, η(x, t), t) to the free surface such that

η(x, 0) = η0(x), ϕ(x, 0) = ϕ0(x), t = 0, (2.9a)

φxx + φyy = 0, −H0 < y < η, (2.9b)

φy = 0, y = −H0, (2.9c)

φ = ϕ, y = η, (2.9d)

ηt + ηxφx = φy, y = η, (2.9e)

ϕt = P

[
−ηxφxφy −

1

2
φ2

x +
1

2
φ2

y − gη + τ∂x

(
ηx√

1 + η2
x

)]
, y = η, (2.9f)

43

where the density ρ has been set to be 1, and

P0f =
1

2π

∫ 2π

0

f(x)dx, P = id − P0 (2.10)

are orthogonal projections onto the mean and onto the space of zero-mean functions, respec-
tively. Note that we have chosen

c(t) =
p0

ρ
+ P0

[
ηxφxφy +

1

2
φ2

x −
1

2
φ2

y + gη − τ∂x

(
ηx√

1 + η2
x

)]
(2.11)

to eliminate the terms causing the mean of ϕ to drift as it evolves forward. That is, if we
set the initial ϕ(x, 0) to have zero mean, it will remain true for all time. The advantage of
this construction is that u is time-periodic with period T if and only if ϕ is periodic with
the same period. (With arbitrary c(t), ϕ only needs to be periodic up to a constant function
in space for u to be periodic.)

We denote 2π-periodic functions in x by their Fourier series in numerical computation.
A hat denote a Fourier coefficient f(x) =

∑
k f̂ke

ikx. Note that f̂k and f̂−k must be complex
conjugates for f(x) to be real for any x.

2.3 Numerical Methods

2.3.1 Boundary Integral Formulation

Following Ambrose and Wilkening [5], we explain the method for evaluating the Dirichlet
to Neumann map in this section. For simplicity, we use y = 0 (instead of y = −H0) as the
bottom wall in this section to describe the boundary integral formulation of (2.9). We
represent φ using a double-layer potential [30, 47, 50, 80] on the free surface, suppressing t
in the notation when convenient:

φ(x) =

∫

∂Ω

−
∂N

∂nζ

(x, ζ)µ̃(ζ)dsζ, N(x, ζ) = −
1

2π
log |x − ζ|, (2.12)

where µ̃ is the dipole distribution. Rather than use a single layer potential on the bottom
wall, which doubles the number of unknowns, we extend the function evenly in y and use
an identical double-layer potential on the mirror image surface, y = −η(x). The boundary
condition φy = 0 at y = 0 is automatically satisfied by the even extension. We parametrize
the free and mirror surfaces by ζ = (α,±η(α)) so that

−
∂N

∂nζ

dsζ =
1

2π

(α − x)(−η′(α)) + (±η(α) − y)(±1)

(α − x)2 + (±η(α) − y)2
dα.

44

Next we use 1
2
cot x+iy

2
= PV

∑
k

(x+2πk)−iy
(x+2πk)2+y2 to sum over periodic images, which gives

φ(x, y) =
1

2π

∫ 2π

0

[K1(x, y, α) + K2(x, y, α)]µ(α)dα, (2.13)

where µ(α) = µ̃(α, η(α)), and

K1(x, y, α) = Im

{
1

2
cot

(
(α − x) − i(η(α) − y)

2

)
[1 − iη′(α)]

}
, (2.14)

K2(x, y, α) = Im

{
1

2
cot

(
(α − x) + i(η(α) + y)

2

)
[−1 − iη′(α)]

}
. (2.15)

Conjugating and changing signs, we obtain

K1(z, α) = Im

{
−

1

2
cot

(
(α − x) + i(η(α) − y)

2

)
[1 + iη′(α)]

}

= Im

{
ζ ′(α)

2
cot

(
z − ζ(α)

2

)}
,

(2.16)

K2(z, α) = Im

{
−

1

2
cot

(
(α − x) − i(η(α) + y)

2

)
[−1 + iη′(α)]

}

= Im

{
−

ζ̄ ′(α)

2
cot

(
z − ζ̄(α)

2

)}
,

(2.17)

with z = x + iy and ζ(α) = α + iη(α). As z approaches the boundary, the Plemelj formulas
[57] show that the double-layer kernel approaches a delta-function plus a principal value
integral, which we regularize via

φ(x, η(x)−) =
µ(x)

2
+

1

2π

∫ 2π

0

[
K̃1(x, α) + K2(x, η(x), α)

]
µ(α)dα, (2.18)

K̃1(x, α) = Im

{
ζ ′(α)

2
cot

(
ζ(x) − ζ(α)

2

)
−

1

2
cot

(
x − α

2

)}
. (2.19)

Note that K̃1 is continuous if we define K̃1(x, x) = −η′′(x)
2(1+η′(x)2)

. Equation (2.18) is a second

kind Fredholm integral equation which may be solved for µ(x) in terms of ϕ(x) = φ(x, η(x)−).
In the numerical simulations, η, ϕ and ζ are represented by their values at M equally spaced
points xk = 2πk/M , 0 ≤ k < M . The x-derivative of η are computed using the FFT.

Once µ(x) is known, we may compute the normal derivative ∂φ
∂n

(x) as follows. First, for a
field point z in the fluid away from the boundary, we may differentiate (2.13) and integrate

45

by parts to obtain

φx − iφy =
1

2π

∫ 2π

0

−i∂z

[
ζ ′(α)

2
cot

(
z − ζ(α)

2

)
−

ζ̄ ′(α)

2
cot

(
z − ζ̄(α)

2

)]
µ(α)dα

=
1

2π

∫ 2π

0

i

2
∂α

[
cot

(
z − ζ(α)

2

)
− cot

(
z − ζ̄(α)

2

)]
µ(α)dα

=
1

2πi

∫ 2π

0

[
1

2
cot

(
z − ζ(α)

2

)
−

1

2
cot

(
z − ζ̄(α)

2

)]
µ′(α)dα.

(2.20)

If z approaches (x, η(x)) along the normal direction from the interior of the domain, we find
that

√
1 + η′(x)2

∂φ

∂n
= Re [(−η′(x) + i)(φx(z) − iφy(z))]

=
1

2π
Re

∫ 2π

0

(1 + iη′(x))

[
1

2
cot

(
z − ζ(α)

2

)
−

1

2
cot

(
z − ζ̄(α)

2

)]
µ′(α)dα

=
1

2π
Re

∫ 2π

0

[
ζ ′(x)

2
cot

(
z − ζ(α)

2

)
−

ζ ′(x)

2
cot

(
z − ζ̄(α)

2

)]
µ′(α)dα.

(2.21)

To evaluate the limit as z → (x, η(x)), we subtract and add ζ′(α)
2

cot
(

z−ζ(α)
2

)
µ′(α) from the

first term of the integrand and write it as a sum of two terms

[
ζ ′(x)

2
cot

(
z − ζ(α)

2

)
−

ζ ′(α)

2
cot

(
z − ζ(α)

2

)]
µ′(α) +

ζ ′(α)

2
cot

(
z − ζ(α)

2

)
µ′(α).

(2.22)
Let z = ζ(x) − iǫ, and let ǫ → 0. The Plemelj formula [57] tells us that the second term
in (2.22) gives a jump equal to i

2
µ′(x), and a principal value integral. The term in brackets

is continuous at ǫ = 0. Therefore, the first term in (2.22) remains a Riemann integral in
the limit as ǫ → 0. We can evaluate Riemann integrals as principal value integrals. Since
the second term inside brackets makes sense as a principal value integral alone, and the
difference is also defined as a principal value integral, we conclude that the first term has
a limit as a principal value integral. Splitting these terms apart, we obtain three principal
value integrals (two of which cancel) plus a term i

2
µ′(x), which disappears when the real part

is taken. Regularizing the remaining principal value integral, we find that as z → (x, η(x)),

(2.21) →
1

2π
Re

∫ 2π

0

[
ζ ′(x)

2
cot

(
ζ(x) − ζ(α)

2

)
−

1

2
cot

(
x − α

2

)]
µ′(α)dα

+
1

2
H [µ′] (x) −

1

2π
Re

∫ 2π

0

ζ ′(x)

2
cot

(
ζ(x) − ζ̄(α)

2

)
µ′(α)dα,

(2.23)

46

where Hf(x) = 1
π
PV

∫∞

−∞
f(α)
x−α

= PV
∫ 2π

0
f(α)
2π

cot
(

x−α
2

)
dα is the Hilbert transform, which

has symbol Ĥk = −isgn(k). The limiting value of the bracketed term in the first integrand

of (2.23) as α → x is iη′′(x)
2(1+iη′(x))

. Equation (2.23) is a variant of the Birkhoff-Rott integral

[68].
From (2.23), we may compute φx and φy on the boundary using the formula

(
φx

φy

)
=

1√
1 + η′(x)2

(
1 −η′(x)

η′(x) 1

)(
ϕ′(x)/

√
(1 + η′(x)2)

∂φ
∂n

(x, η(x))

)
, (2.24)

which allows the formulas (2.9) for ηt and ϕt to be evaluated. As the water wave is not
stiff unless the surface tension is large, we use the 5th order explicit Runge-Kutta method
DOPRI5 [36] to evolve η and ϕ from time t = 0 to t = T .

After the equations are solved, the velocity and pressure at any point in the fluid can be
computed using (2.20) for velocity and

p = p0 + P0

[
−φyηt +

1

2
φ2

x +
1

2
φ2

y + gη − τ∂x

(
ηx/
√

1 + η2
x

)]
− φt −

1

2
(u2 + v2)− gy (2.25)

for pressure. Formulas for φt in (2.25) are derived in terms of the known quantities ηt and ϕt

in [5] and implemented in Ambrose and Wilkening’s code for time-stepping the water wave
problem.

2.3.2 Time-periodic Solutions

We now present our algorithm for computing time-periodic solutions of the gravity-driven
water wave with or without surface tension. Let q = (η, ϕ) and denote the system (2.9)
abstractly by

qt = f(q), q(x, 0) = q0(x). (2.26)

We define the inner product

〈q1, q2〉 =
1

2π

∫ 2π

0

[η1(x)η2(x) + ϕ1(x)ϕ2(x)] dx. (2.27)

Next we define a functional G of the initial conditions and supposed period via

G(q0, T) =
1

2
‖q(·, T)− q0‖

2 =
1

2π

∫ 2π

0

1

2
[η(x, T) − η0(x)]2 +

1

2
[ϕ(x, T) − ϕ0(x)]2 dx, (2.28)

where q = (η, ϕ) solves (2.9). G(q0, T) is zero if and only if the solution is time-periodic with
period T .

To find time-periodic solutions, we minimize G, hoping to obtain G = 0. We use a tem-
plated C++ version of the limited memory BFGS algorithm [14, 63] developed by Wilkening

47

for the minimization. BFGS is a quasi-Newton line search algorithm that builds an approx-
imate (inverse) Hessian matrix from the sequence of gradient vectors it encounters during
the course of the line searches. In our continuation algorithm, we initialize the approximate
Hessian with that of the previous minimization step (rather than the identity matrix), which
leads to a tremendous reduction in the number of iterations required to converge (by fac-
tors of 10-20 in many cases). The initial conditions η0 and ϕ0 are represented in the BFGS
algorithm by their Fourier coefficients

η(x, 0) = η̂0(0) +
∞∑

k=1

(
η̂k(0)eikx + η̂k(0)e−ikx

)
, (2.29)

ϕ(x, 0) = ϕ̂0(0) +

∞∑

k=1

(
ϕ̂k(0)eikx + ϕ̂k(0)e−ikx

)
, (2.30)

where η̂0(0) and ϕ̂0(0) are real numbers. Given a set of these Fourier coefficients and a
proposed period T , we must supply BFGS with the function value G as well as its gradient
∇G.

The T -derivative of G is easily obtained by evaluating

∂G

∂T
=

1

2π

∫ 2π

0

[η(x, T) − η0(x)] ηt(x, T) + [ϕ(x, T) − ϕ0(x)] ϕt(x, T)dx (2.31)

using the trapezoidal rule. All qualities η(·, T), ηt(·, T), ϕ(·, T) and ϕt(·, T) are already
known by solving (2.9). One way to compute the other components of the gradient of G,
namely ∂G/∂Re(η̂k(0)), ∂G/∂Im(η̂k(0)), ∂G/∂Re(ϕ̂k(0)) and ∂G/∂Im(ϕ̂k(0)) would be to
solve the variational equation

q̇t = Df(q(·, t))q̇ (2.32)

with initial condition q̇(·, 0) = q̇0 to obtain q̇(·, T) = (η̇(·, T), ϕ̇(·, T)) in

Ġ =
d

dǫ

∣∣∣∣
ǫ=0

G(q0 + ǫq̇0, T) =
〈
q(·, T) − q0, q̇(·, T) − q̇0

〉
(2.33)

for q̇0 = (eikx+e−ikx, 0), q̇0 = (ieikx−ie−ikx, 0), q̇0 = (0, eikx+e−ikx) and q̇0 = (0, ieikx−ie−ikx),
respectively. To avoid the expense of solving (2.32) repeatedly for each value of k and for
both components of q, we solve a single adjoint PDE to find δG/δq0 such that

Ġ =
〈
q(·, T) − q0︸ ︷︷ ︸

q̃0

, q̇(·, T) − q̇0

〉
=
〈
q̃(·, T) − q̃0︸ ︷︷ ︸

δG/δq0

, q̇0

〉
. (2.34)

Here q̃ solves the adjoint problem

q̃s = Df(q(·, T − s))∗q̃ (2.35)

48

backward in time with initial condition q̃0 = q(·, T) − q0. This definition of q̃ ensures that
〈q̃(·, T − t), q̇(·, t)〉 is constant, which justifies 〈q̃0, q̇(·, T)〉 = 〈q̃(·, T), q̇0〉 in the final equality
of (2.34). Like the variational equation (2.32), the adjoint equation (2.35) is linear and non-
autonomous due to the presence of the solution q(t) of (2.9) in the equation. Note that (2.35)
only needs to be solved once to obtain all the derivatives ∂G/∂Re(η̂k(0)), ∂G/∂Im(η̂k(0)),
∂G/∂Re(ϕ̂k(0)) and ∂G/∂Im(ϕ̂k(0)) simultaneously, and therefore ∇G can be computed in
approximately the same amount of time as G.

Df(q) and Df(q)∗ can be computed explicitly. The equation (2.32) is simply

η̇(x, 0) = η̇0(x), ϕ̇(x, 0) = ϕ̇0(x), t = 0, (2.36a)

φ̇xx + φ̇yy = 0, −H0 < y < η, (2.36b)

φ̇y = 0, y = −H0, (2.36c)

φ̇ + φyη̇ = ϕ̇, y = η, (2.36d)

η̇t + η̇xφx + ηxφ̇x + ηxφxyη̇ = φ̇y + φyyη̇, y = η, (2.36e)

ϕ̇t = P

[
−(η̇φxφy)

′ − (⋆) − gη̇ + τ∂x

(
η̇x

(1 + η2
x)

3/2

)]
, y = η, (2.36f)

where ⋆ = (φx,−φy)

(
1 ηx

−ηx 1

)(
φ̇x

φ̇y

)
, and a prime indicates an x-derivative along the free

surface, e.g. f ′ := d
dx

f(x, η(x), t) = fx +ηxfy. In (2.36d) and (2.36e), we account for the fact
that φ, φx and φy in (2.9d) and (2.9e) are evaluated at the free surface y = η, which itself
varies when the initial condition is perturbed. In (2.36f), (η̇φxφy)

′ is the sum of five terms

(η̇φxφy)
′ = η̇xφxφy + η̇φxxφy + η̇ηxφxyφy + η̇φxφxy + η̇ηxφxφyy

= η̇xφxφy − η̇φyyφy + η̇ηxφxyφy + η̇φxφxy + η̇ηxφxφyy.
(2.37)

Combined with (⋆), this gives
[
ηxφxφy + 1

2
φ2

x −
1
2
φ2

y

]
˙ in (2.9f). The equation q̃s = Df(q)∗q̃

is obtained from

〈q̇, q̃s〉 = 〈q̇t, q̃〉 =
1

2π

∫ 2π

0

[
(φ̇y − ηxφ̇x) + φyyη̇ − η̇xφx − ηxφxyη̇

]
η̃dx

+
1

2π

∫ 2π

0

P

[
−(η̇φxφy)

′ − (⋆) − gη̇ + τ∂x

(
η̇x

(1 + η2
x)

3/2

)]
ϕ̃ dx.

(2.38)

We move P from the left bracketed term to the right by self-adjointness to obtain

〈q̇, q̃s〉 =
1

2π

∫ 2π

0

[
(φ̇y − ηxφ̇x) + φyyη̇ − η̇xφx − ηxφxyη̇

]
η̃dx

+
1

2π

∫ 2π

0

[
−(η̇φxφy)

′ − φxφ̇
′ + φy(φ̇y − ηxφ̇x) − gη̇ + τ∂x

(
η̇x

(1 + η2
x)

3/2

)]
Pϕ̃ dx.

(2.39)

49

The difficult terms are underlined. These are the terms in which the partial derivatives of φ̇
are evaluated on the free surface. They cannot simply be integrated by parts as functions of
x. Instead, we construct an auxiliary PDE such that integration by parts in the interior of
the domain yields these terms as boundary terms. We combine all the underlined terms and
define χ to solve Laplaces equation in the interior of the domain with homogeneous Neumann
boundary conditions on the bottom wall and the Dirichlet condition χ = η̃ + φyPϕ̃ at the
free surface. By Greens identity, we have

0 =

∫∫
(χ∆φ̇ − φ̇∆χ)dA =

∫
χ

∂φ̇

∂n
− φ̇

∂χ

∂n
ds =

∫
χ(φ̇y − ηxφ̇x) dx−

∫
φ̇(χy − ηxχx) dx.

(2.40)
The first integral on the right hand side accounts for the underlined terms in (2.39) while
the second has the desired form after expanding φ̇ = ϕ̇ − φyη̇ on the free surface. Note

that
∫ 2π

0
f ′(x)Pϕ̃ dx =

∫ 2π

0
f ′(x)(id − P0)ϕ̃ dx =

∫ 2π

0
f ′(x)ϕ̃ dx as P0ϕ̃ is independent of x.

Integrating by parts and simplifying, we obtain

〈q̇, q̃s〉 =
1

2π

∫ 2π

0

(ϕ̇ − φyη̇)(χy − ηxχx)dx +
1

2π

∫ 2π

0

[φyyη̇ − η̇xφx − ηxφxyη̇] η̃dx

+
1

2π

∫ 2π

0

[
−φxφ̇

′ − gη̇
]
Pϕ̃ dx +

1

2π

∫ 2π

0

[
−(η̇φxφy)

′ + τ∂x

(
η̇x

(1 + η2
x)

3/2

)]
ϕ̃ dx

=
1

2π

∫ 2π

0

ϕ̇ [χy − ηxχx + (φxPϕ̃)′] dx +
1

2π

∫ 2π

0

η̇ [−φy(χy − ηxχx) + η̃φyy + (φxη̃)′

−ηxφxyη̃ + φxφyϕ̃x − φy(φxPϕ̃)′ − gP ϕ̃ + τ∂x

(
ϕ̃x

(1 + η2
x)

3

2

)]
dx

=
1

2π

∫ 2π

0

ϕ̇ [χy − ηxχx + (φxPϕ̃)′] dx +
1

2π

∫ 2π

0

η̇ [−φy(χy − ηxχx) + φxη̃x

−φy(φx)
′Pϕ̃ − gP ϕ̃ + τ∂x

(
ϕ̃x

(1 + η2
x)

3

2

)]
dx.

(2.41)

Here the last equality holds because (Pϕ)x = ϕx − (P0ϕ)x = ϕx. Thus, the adjoint system

50

is given by

η̃(x, 0) = η(x, T) − η0(x), ϕ̃(x, 0) = ϕ(x, T) − ϕ0(x), s = 0, (2.42a)

χxx + χyy = 0, −H0 < y < η, (2.42b)

χy = 0, y = −H0, (2.42c)

χ = η̃ + φyPϕ̃, y = η, (2.42d)

ϕ̃s = χy − ηxχx + (φxPϕ̃)′, y = η, (2.42e)

η̃s = −φy (⋄) + φxη̃x − gP ϕ̃ + τ∂x

(
ϕ̃x

(1 + η2
x)

3

2

)
, y = η, (2.42f)

where ⋄ = φ′
xPϕ̃ + χy − ηxχx. Note that the adjoint problem has the same structure as the

forward problem, with a Dirichlet to Neumann map involved in the evolution of η̃(x, t) and
ϕ̃(x, t), which is also evaluated with the boundary integral formulation presented in [5].

To solve the adjoint equation numerically in the Runge-Kutta framework, the values of
q(·, T − s) are needed between timesteps. We use the fourth order dense output formula in
[69, 36] to compute q at these intermediate times, having stored q and qt at each timestep
when (2.9) was solved. This is enough to achieve fifth order accuracy in the adjoint problem.

2.3.3 Breather Solutions

In this section, we describe a technique we use specifically for breather solutions of (2.9)
to achieve a factor of 4 improvement in speed. We always set the mean of ϕ0 to zero in our
numerical computation.

If at any moment η(x, t) and ϕ(x, t) are both even functions of x, then ηt and ϕt will also
be even. We assume that, in addition to being even, ϕ(x, 0) changes sign upon translation
by π, while η(x, 0) remains the same, that is, we look for breather solutions with initial
conditions of the form

η̂k(0) =

{
0 k odd,
c|k| k even,

ϕ̂k(0) =

{
d|k| k odd,
0 k even,

(2.43)

where ck (k = 0, 2, 4, . . .) and dk (k = 1, 3, 5, . . .) are real numbers.
If at some time T/4 the solution with initial conditions (2.43) evolves to a state in which

ϕ = 0, a time-reversal argument shows that the solution will evolve back to the initial state
at T/2 with the sign of ϕ and therefore the sign of the velocity reversed, that is, the condition
ϕ(x, T/4) = 0 implies that η(x, T/2) = η(x, 0) and ϕ(x, T/2) = −ϕ(x, 0). Then if we can
show that the symmetry upon translation by π at t = 0 implies that η(x + π, T/2 + t) =
η(x, t), ϕ(x + π, T/2 + t) = ϕ(x, t), we have η(x, T) = η(x − π, T/2) = η(x − π, 0) = η(x, 0)
and ϕ(x, T) = ϕ(x − π, T/2) = −ϕ(x − π, 0) = ϕ(x, 0), that is, the solution is periodic
with period T . As a matter of fact, q1 = (η1, ϕ1) defined by η1(x, t) = η(x + π, T/2 + t),

51

ϕ1(x, t) = ϕ(x + π, T/2 + t) is also a solution of (2.9). In addition, the initial conditions
satisfy

η1(x, 0) = η(x + π, T/2) = η(x + π, 0) = η(x, 0),

ϕ1(x, 0) = ϕ(x + π, T/2) = −ϕ(x + π, 0) = ϕ(x, 0).

Therefore, q1 is equal to q. The conclusion follows. The symmetry upon translation by π
ensures that η and ϕ evolve as a mirror image (about x = π

2
or x = 3π

2
) from T/2 to T as

they did from 0 to T/2, ending in the original state.
We can improve our numerical methods in Section 2.3.2 when computing breather solu-

tions based on the above analysis. We look for ck, dk and T such that the solution of the
Cauchy problem (2.9) satisfies ϕ(·, T/4) = 0. Rather than defining G as in (2.28), we define

G(q0, T) =
1

2π

∫ 2π

0

1

2
ϕ(x, T)2 dx, (2.44)

where q = (η, ϕ) solves (2.9) with initial conditions q(·, 0) = q0, and T is 1/4 of the period,
which is our convention in this section to compute breather solutions only.

It remains to explain how to compute ∇G in this case. The T -derivative is simply

∂G

∂T
=

1

2π

∫ 2π

0

ϕ(x, T)ϕt(x, T) dx (2.45)

We define q̇ and q̃ just as before, with q̇ solving the linearized equation (2.32) and q̃ solve-
ing the adjoint equation (2.35) backward in time, which ensures that 〈q̃(·, T − t), q̇(·, t)〉 is
constant. But we must change the initial condition of the adjoint problem to fit the new
functional G. Specifically, to put

Ġ =
d

dǫ

∣∣∣∣
ǫ=0

G(q0 + ǫq̇0, T) =
1

2π

∫ 2π

0

ϕ(x, T)ϕ̇(x, T) dx (2.46)

in the desired form
Ġ =

〈
q̃0, q̇(·, T)

〉
=
〈
q̃(·, T)︸ ︷︷ ︸
δG/δq0

, q̇0

〉
, (2.47)

we set the initial conditions of the adjoint equation to be

η̃0(x) = 0, ϕ̃0(x) = ϕ(x, T). (2.48)

We only need to solve the adjoint problem once to obtain ∇G.

52

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

 0 2 4 6 8 10 12

A

B

Figure 2.1: Bifurcation from the flat state to two families of traveling waves, using η̂1(0) as
the bifurcation parameter.

2.4 Numerical Results

2.4.1 Traveling Waves

Although other methods exist for computing traveling waves [2, 3, 19, 20, 59, 61], they
serve as a useful initial test case for our algorithm. We use a sinusoidal solution of the
linearized problem [78] for the initial guess for our optimal control algorithm to find a
solution of the nonlinear problem near the flat rest state. We then use linear extrapolation
(or the result of the previous iteration) for the initial guess in subsequent calculations as we
vary the bifurcation parameter.

In Figure 2.1, we show the result of two families of traveling waves with the mean of η
equal to 1 and 0.25 when varying η̂1(0) from 0 (the flat state). The surface tension is set to
be 0. In Figure 2.2, we give a snapshot of the solutions with largest amplitude along each
path. They are labeled A and B on the bifurcation diagram.

2.4.2 Symmetric Breathers

We show the bifurcation of varying ϕ̂k(0) for k = 1, 9, 15, 21, 23, 37 of a family of symmet-
ric breathers with η̂0(0) = 1 without surface tension in Figure 2.3. We use a small amplitude
starting guess built by hand by trial and error on the breathers. Higher Fourier modes are
used to reveal a complete picture of this family of time-periodic solutions. When we plot
the kth Fourier mode of the initial free surface potential with k = 9, 15, 21, 23, 37, the graph
consists of two disconnected branches. (However, the disconnection near T = 7.237 in ϕ̂37(0)
is due to mesh refinement.) In Figure 2.4, we plot time-elapsed snapshots over a quarter-
period of the solutions labeled C and D in Figure 2.3. The bifurcation diagram contains 697
time-periodic solutions, each computed down to G ranging from 10−27 to 10−30, with the

53

A

0 2π

 0

 1.5

 0

 1.15

B

0 2π

 0

 0.45

 0

 0.28

p

p

Figure 2.2: snapshot of traveling waves labeled A and B in Figure 2.1.

number of Fourier modes, M , ranging from 64 to 512. G grows as large as 2 × 10−23 as we
approached point C in Figure 2.3 before refining the mesh from 256 to 512 Fourier modes.
It took a week running in parallel with OpenMP using 16 threads on an 8 core 2.93 GHz
Intel Nehalem architecture to compute this family of solutions.

We also show the bifurcation diagrams of two other families of symmetric breathers
without surface tension with the mean of η equal to 0.25 and 0.05 in Figure 2.5 and Figure 2.7.
Each of the graphs consists of two disconnected branches. Some interesting solutions from
these two families are plotted in Figure 2.6 and Figure 2.8. Most visibly in Figure 2.8, two
small localized waves form in the solution. They collide at T/4, and recover their exact
shapes after collision. Small amplitude, non-localized, higher frequency standing waves are
also visible in the solution of Figure 2.8.

To see the effect of surface tension on the water waves when gravity and surface tension
are of similar magnitude, we give time-elapsed snapshots over a quarter-period of breathers
with τ = 1 in Figure 2.9. When surface tension is present, we do not observe localized waves.
Instead, we find large amplitude sloshing modes spread over the whole domain.

2.5 Future Work

Concerning future work, there are many interesting problems to investigate. First, we see
in Figure 2.3 that the bifurcation digram of the ninth Fourier mode reveals a disconnection
not visible in that of the first mode. Similar behavior is seen in Figures 2.5 and 2.7. For
the vortex sheet with surface tension [6], it was found that additional disconnections appear

54

on finer and finer scales for higher and higher Fourier modes. It was conjectured that time-
periodic solutions of the vortex sheet do not occur in smooth families, but are parametrized
by totally disconnected Cantor sets. Further investigation is needed to determine if the same
situation occurs for the water wave. Next, since traveling and steady rotational water waves
have been studied in [18] and [48], we hope to extend our numerical methods to compute
time-periodic water waves with vorticity. This would require adopting a vorticity-stream
formulation of the equations of motion rather than assuming potential flow. It would also
be worthwhile to extend our work to three dimensions. The double layer potential in (2.12)
is valid in the 3D case with N(x, ζ) = 1

4π|x−ζ|
. But it is not possible to use tools in complex

analysis to sum over periodic images in the same way as in 2D. One option is to use finite
element methods to compute the Dirichlet to Neumann map. Even within 2D, it would be
interesting to explore the effect of a non-flat bottom boundary, or to search for time-periodic
solutions that overturn, using the angle-arclength formulation developed by Hou, Lowengrub
and Shelley for the vortex sheet [37, 38] and extended to the water wave case by Ambrose
and Wilkening [5]. Finally, much is known about the stability of traveling water waves
[3, 8, 9, 10, 24, 61, 60, 81]. We hope to extend this work to determine if stable, genuinely
time-periodic solutions of the water wave problem exist.

55

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

-1.4e-05

-1.2e-05

-1e-05

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

-1e-05

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 8e-06

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

-8e-08

-6e-08

-4e-08

-2e-08

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

-1.6e-07

-1.4e-07

-1.2e-07

-1e-07

-8e-08

-6e-08

-4e-08

-2e-08

 0

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

-2e-10

-1e-10

 0

 1e-10

 2e-10

 3e-10

 4e-10

 5e-10

 7.19 7.2 7.21 7.22 7.23 7.24

C

D

Figure 2.3: Bifurcation diagrams of a family of symmetric breathers with the mean of η
equal to 1 without surface tension, using d1, d9, d15, d21, d23 and d37 (dk = ϕ̂k(0)) as the
bifurcation parameter respectively.

56

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 π 2π

C

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

0 π 2π

D

Figure 2.4: Time-elapsed snapshots over a quarter-period of the solutions labeled C and D
in Figure 2.3.

-4e-09

-3e-09

-2e-09

-1e-09

 0

 1e-09

 2e-09

 3e-09

 4e-09

 12.25 12.3 12.35 12.4 12.45 12.5 12.55 12.6

E

F
-4e-09

-2e-09

 0

 2e-09

 4e-09

 6e-09

 8e-09

 1e-08

 1.2e-08

 12.25 12.3 12.35 12.4 12.45 12.5 12.55 12.6

E

F

ϕ̂
1
9
(0

)

Figure 2.5: Bifurcation diagrams of a family of symmetric breathers with the mean of η equal
to 0.25 without surface tension, using d19, d21 as the bifurcation parameter respectively.

57

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

0 π 2π

E

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

0 π 2π

F

Figure 2.6: Time-elapsed snapshots over a quarter-period of the solutions labeled E and F
in Figure 2.5.

58

ϕ̂
1
9
(0

)
-1.5e-05

-1e-05

-5e-06

 0

 5e-06

 1e-05

 26.8 27 27.2 27.4 27.6 27.8 28 28.2

G

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 6e-06

 26.8 27 27.2 27.4 27.6 27.8 28 28.2

G

-8e-06

-6e-06

-4e-06

-2e-06

 0

 2e-06

 4e-06

 26.8 27 27.2 27.4 27.6 27.8 28 28.2

G

-2.5e-06

-2e-06

-1.5e-06

-1e-06

-5e-07

 0

 5e-07

 1e-06

 1.5e-06

 26.8 27 27.2 27.4 27.6 27.8 28 28.2

G

ϕ̂
1
7
(0

)

Figure 2.7: Bifurcation diagrams of a family of symmetric breathers with the mean of η
equal to 0.05 without surface tension, using d17, d19, d21, d23 as the bifurcation parameter
respectively.

59

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

0 π 2π

G

Figure 2.8: Time-elapsed snapshots over a quarter-period of the solution labeled G in Fig-
ure 2.7.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

0 π 2π

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0 π 2π

Figure 2.9: Time-elapsed snapshots over a quarter-period of breathers with surface tension
(τ = 1), where the mean of η is equal to 1 (left) and 0.25 (right).

60

Appendix A

Alternative Version of Algorithm 2
for Computing Local Smith Forms

In this section we present an algebraic framework for local Smith forms of matrix poly-
nomials that shows the connection between Algorithm 2 and the construction of canonical
systems of Jordan chains presented in [79]. This leads to a variant of the algorithm in which
row-reduction is done in the field K rather than in R/pR.

Suppose R is a principal ideal domain and p is a prime in R. M defined via M = Rn is
a free R-module with a free basis {(1, 0, . . . , 0), . . . , (0, . . . , 1)}. Suppose A : M → M is a
R-module morphism. We define submodules

Nk =
{
x ∈ M : Ax is divisible by pk+1

}
, (k ≥ −1). (A.1)

Then Nk is a free submodule of M by the structure theorem [39] for finitely generated
modules over a principal ideal domain, which states that if M is a free module over a
principal ideal domain R, then every submodule of M is free. The rank of Nk is also n, as
pk+1M ⊂ Nk ⊂ M . Note that N−1 = M and

Nk ⊂ Nk−1, (k ≥ 0), (A.2)

Nk ∩ pM = pNk−1, (k ≥ 0). (A.3)

Next we define the spaces Wk via

Wk = Nk/pNk−1, (k ≥ −1), (A.4)

where N−2 := M so that W−1 = M/pM . By (A.3), the action of R/pR on Wk is well-defined,
i.e. Wk is a vector space over this field. Let us denote the canonical projection M → M/pM
by π. Note that π(pNk−1) = 0, so π is well-defined from Wk to M/pM for k ≥ −1. It is
also injective as xp ∈ Nk ⇒ x ∈ Nk−1, by (A.3). Thus, cosets {ẋ1, . . . , ẋm} are linearly
independent in Wk iff {π(x1), . . . , π(xm)} are linearly independent in M/pM . We define the
integers

rk = dimension of Wk over R/pR, (k ≥ −1) (A.5)

61

and note that r−1 = n. We also observe that the truncation operator

id : Wk+1 → Wk : (x + pNk) 7→ (x + pNk−1), (k ≥ −1) (A.6)

is well-defined (pNk ⊂ pNk−1) and injective (x ∈ Nk+1 and x ∈ pNk−1 ⇒ x ∈ pNk, due to
(A.3)). We may therefore consider Wk+1 to be a subspace of Wk for k ≥ −1, and have the
inequalities

rk+1 ≤ rk, (k ≥ −1). (A.7)

The case r0 = 0 is not interesting (as Nk = pk+1M for k ≥ −1), so we assume that r0 > 0.
When R = K[λ], which we assume from now on, this is equivalent to assuming that det[A(λ)]
is divisible by p(λ). We also assume that rk eventually decreases to zero, say

rk = 0 ⇔ k ≥ β, β := maximal Jordan chain length. (A.8)

This is equivalent to assuming det[A(λ)] is not identically zero.
The while loop of the algorithm in Algorithm 1 is a systematic procedure for computing

a basis
{xj + pNk−2}

n−rk

j=n−rk−1+1 (k ≥ 0) (A.9)

for a complement W̃k−1 of Wk in Wk−1:

W̃k−1 ⊕ Wk = Wk−1. (A.10)

Any basis for any complement W̃k−1 would also lead to a local Smith form; however, the one
we chose is particularly easy to compute and has the added benefit of yielding a unimodular
multiplier V . The interpretation of the rk as dimensions of the spaces Wk shows that the
integers

αj = k, (n − rk−1 < j ≤ n − rk) (A.11)

in the local Smith form are independent of the choices of complements W̃k−1 and bases (A.9)

for W̃k−1. Using induction on k, it is easy to show that for any such choices, the vectors

{quo(Axj , p
αj) + pM}n−rk

j=1 (A.12)

are linearly independent in M/pM ; otherwise, a linear combination of the form ⋆ in Algo-

rithm 1 can be found which belongs to W̃k−1 ∩ Wk, a contradiction.
We now wish to find a convenient representation for these spaces suitable for computation.

Since pk+1M ⊂ pNk−1, we have the isomorphism

Nk/pNk−1
∼= (Nk/p

k+1M)/(pNk−1/p
k+1M), (A.13)

i.e.
Wk

∼= Wk/pWk−1, (k ≥ 0), Wk := Nk/p
k+1M, (k ≥ −1). (A.14)

62

Although the quotient Wk/pWk−1 is a vector space over R/pR, the spaces Wk and M/pk+1M
are only modules over R/pk+1R. They are, however, vector spaces over K, which is useful
for developing a variant of Algorithm 2 in which row reduction is done over K instead of
R/pR. Treating M/pk+1M as a vector space over K, A(λ) induces a linear operator Ak on
M/pk+1M with kernel

Wk = ker Ak, (k ≥ −1). (A.15)

We also define

Rk =
dimension of Wk over K

s
, (k ≥ −1, s = deg p) (A.16)

so that R−1 = 0 and
Rk = r0 + · · ·+ rk, (k ≥ 0), (A.17)

where we used W0 = W0 together with (A.14) and the fact that as a vector space over K,
dim Wk = srk. By (A.11), rk−1 − rk = #{j : αj = k}, so

Rβ−1 = r0 + · · ·+ rs−1 = (r−1 − r0)0 + (r0 − r1)1 + · · · + (rβ−1 − rβ)β

= α1 + · · · + αn = µ = algebraic multiplicity of p,
(A.18)

where we used Theorem 7 in the last step. We also note that ν := r0 = R0 = s−1 dim ker(A0)
can be interpreted as the geometric multiplicity of p.

Equations (A.14) and (A.15) reduce the problem of computing Jordan chains to that of
finding kernels of the linear operators Ak over K. If we use the vector space isomorphism
Λ : Ksn(k+1) → M/pk+1M given by

Λ(x(0); . . . ; x(k)) = γ(x(0)) + pγ(x(1)) + · · ·+ pkγ(x(k)) + pk+1M,

γ(x(j,1,0); x(j,1,1); . . . ; x(j,n,s−1)) =

x(j,1,0) + λx(j,1,1) + · · · + λs−1x(j,1,s−1)

· · ·
x(j,n,0) + λx(j,n,1) + · · · + λs−1x(j,n,s−1)

to represent elements of M/pk+1M , then multiplication by λ in M/pk+1M viewed as a module
becomes the following linear operator on Ksn(k+1) viewed as a vector space over K:

Sk =

I ⊗ S 0 0 0

I ⊗ Z I ⊗ S 0 0

0
. . .

. . . 0

0 0 I ⊗ Z I ⊗ S

, S as in (1.12), Z =

0 0 1
. . . 0

0 0

. (A.19)

Here Sk is a (k + 1)× (k + 1) block matrix, I ⊗ S is a Kronecker product of matrices, S and
Z are s × s matrices, and I is n × n. Multiplication by λm is represented by Sm

k , which has
a similar block structure to Sk, but with S replaced by Sm and Z replaced by

Tm =

{
0, m = 0,∑m−1

l=0 SlZSm−1−l, 1 ≤ m ≤ s − 1.
(A.20)

63

Thus, if we expand

A(λ) = A(0) + pA(1) + · · ·+ pqA(q), A(j) = A(j,0) + · · · + λs−1A(j,s−1), (A.21)

the matrix Ak representing A(λ) is given by

Ak =

A0 0 · · · 0
A1 A0 · · · 0
· · · · · · · · · · · ·
Ak Ak−1 · · · A0

 , (A.22)

where

Aj =

{∑s−1
m=0 A(0,m) ⊗ Sm, j = 0,∑s−1
m=0

[
A(j,m) ⊗ Sm + A(j−1,m) ⊗ Tm

]
, j ≥ 1.

(A.23)

The terms
∑

m A(j,m) ⊗ Sm and
∑

m A(j−1,m) ⊗ Tm compute the remainder and quotient
in (1.31) if we set y = Ak · (x(0); . . . ; x(k)) and compare y(k) to the formula for yi =
rem(quo(Axi, p

k), p) in (1.31).
Next we seek an efficient method of computing a basis matrix Xk for the nullspace

Wk = ker Ak. Note that we are now working over the field K rather than R/pR as we
did in Section 1.3. Suppose k ≥ 1 and we have computed Xk−1. The first k blocks of
equations in AkXk = 0 imply there are matrices Uk and Yk such that Xk = [Xk−1Uk; Yk],
while the last block of equations is

Ak︷ ︸︸ ︷
(

Ak . . . A0

)(0 Xk−1

Isn×sn 0

)(
Yk

Uk

)

︸ ︷︷ ︸
Xk

=
(

0sn×sRk

)
. (A.24)

Thus, we can build up the matrices Xk recursively via X0 = null(A0) and

Ak =
(
A0 , [Ak, . . . , A1]Xk−1

)
, [Yk; Uk] = null(Ak), Xk = [Xk−1Uk; Yk].

Here null(·) is the standard algorithm for computing a basis for the nullspace of a matrix by
reducing it to row-echelon. As the first sn columns of A1 coincide with A0 := A0, and since
X0 = null(A0), there are matrices Y1 and U1 such that

(
Y1

U1

)
=

(
X0 Y1

0 U1

)
, X1 =

[
ι(X0), X1], X1 = [X0U1; Y1], (A.25)

where ι : Ksnl → Ksn(l+1) represents multiplication by p from M/plM to M/pl+1M :

ι(x(0); . . . ; x(l−1)) = (0; x(0); . . . ; x(l−1)), x(j), 0 ∈ Ksn. (A.26)

64

But now the first s(n + R0) columns of A2 coincide with A1, so there are matrices Y2 and
U2 such that

(
Y2

U2

)
=

(
Y1 Y2

[U1; 0] U2

)
, X2 =

[
ι(X1), X2], X2 = [X1U2; Y2]. (A.27)

Continuing in this fashion, we find that the first s(n + Rk−2) columns of Ak coincide with
Ak−1, and therefore Yk, Uk and Xk have the form

(
Yk

Uk

)
=

(
X0 Y1 · · · Yk−1 Yk

0 [U1; 0] · · · [Uk−1; 0] Uk

)
, X0 = X0, (A.28)

Xk =

[(
0snk×sr0

X0

)
,

(
0sn(k−1)×sr1

X1

)
, . . . ,

(
Xk

)]
, Xk = [Xk−1Uk; Yk].

By construction, Xk = [ι(Xk−1), Xk] is a basis for Wk when k ≥ 1; it follows that Xk+ι(Wk−1)
is a basis for Wk when Wk is viewed as a vector space over K. We define X0 = X0 and
X−1 = Isn×sn to obtain bases for W0 and W−1 as well.

But we actually want a basis for Wk viewed as a vector space over R/pR rather than K.
Fortunately, all the matrices in this construction are manipulated in s×s blocks; everywhere
we have an entry in R/pR in the construction of Section 1.3, we now have an s × s block
with entries in K. This is because the matrix Ak commutes with Sk (since A(λ) commutes
with multiplication by λ). So if we find a vector x ∈ ker Ak, the vectors

{x , Skx , . . . , Ss−1
k x} (A.29)

will also belong to ker Ak. These vectors are guaranteed to be linearly independent, for
otherwise the vectors

{x(j,i) , Sx(j,i) , . . . , Ss−1x(j,i)} (A.30)

would be linearly dependent in Ks, where x(j,i,m) is the first non-zero entry of x. This is
impossible since p is irreducible; see (1.11) above. As a consequence, in the row-reduction
processes, if we partition Ak into groups of s columns, either all s columns will be linearly
dependent on their predecessors, or each of them will start a new row in rref(Ak); together
they contribute a block identity matrix Is×s to rref(Ak). It follows that the block nullspace
matrices [Yk; Uk] will have supercolumns (groups of s columns) that terminate in identity

matrices Is×s, and that the submatrix X
(0)
k consisting of the first ns rows of Xk also has

supercolumns that terminate with Is×s. The structure is entirely analogous to the one in
Figure 1.3 above, with s×s blocks replacing the entries of the matrices shown. The following
four conditions then ensure that successive columns in a supercolumn of Xk are related to
each other via (A.29): (1) the terminal identity blocks in X

(0)
k contain the only non-zero

entries of their respective rows; (2) if x is a column of Xk and x(0,i) ∈ Ks is one of the
columns of a terminal identity block, the (Skx)(0,i) = Sx(0,i) is the next column of Is×s (with
the 1 shifted down a slot). (3) the columns of Xk are a basis for ker Ak; (4) if x is a column

65

of Xk, then Skx also belongs to ker Ak. Thus, to extract a basis for Wk over R/pR, we
simply extract the first column of each supercolumn of Xk. The result is identical to that
of Algorithm 2. In practice, this version of the algorithm (working over K) is easier to
implement, but the other version (over R/pR) should be about s times faster as the cost of
multiplying two elements of R/pR is O(s2) while the cost of multiplying two s×s matrices is
O(s3). The results in Figure 1.8 to 1.10 were computed as described in this appendix (over
K = Q).

Example 9. Define the matrix polynomial A(λ) as in Example 1. We use the algorithm
presented in this appendix to find a local Smith form of A(λ) at p2(λ) = λ2 + 2. First, we
expand

A(λ) =p2

[(
−2 −1
−2 −1

)
+ λ

(
0 −1
2 4

)]
+ p2

2

[(
2 6
0 2

)
+ λ

(
0 −1
0 −3

)]

+ p3
2

[(
0 −4
0 −1

)
+ λ

(
0 0
0 1

)]
+ p4

2

(
0 1
0 0

)
.

We have the matrix A0 = A0 = 04×4 and a basis matrix X0 = I4 for the null space W0 =
ker A0. In practice, the while loop terminates here so that we obtain two jordan chains of
length 1, because we already have R0 = µ = 2. To show how the algorithm works, we continue
to compute

A1 = (A0 , A1X0),

where

A1 = A(1,0) ⊗ I2 + A(0,0) ⊗ T0 + A(1,1) ⊗ S + A(0,1) ⊗ T1 =

−2 0 −1 2
0 −2 −1 −1
−2 −4 −1 −8
2 −2 4 −1

 .

It follows that X1 = ι(X0), which verifies that this is the last iteration in the loop. We view
X0 in 2 × 2 blocks to obtain the local Smith form as in Example 5 at p2(λ) = λ2 + 2.

66

Bibliography

[1] G. B. Airy. Tides and waves. Encyclopaedia Metropolitana (1817-1845), Mixed Sciences,
3, 1841.

[2] B. Akers. On model equations for gravity-capillary waves. PhD Thesis, University of
Wisconsin - Madison, 2008.

[3] B. Akers and D. P. Nicholls. Traveling waves in deep water with gravity and surface
tension. (preprint), 2009.

[4] D. M. Ambrose and J. Wilkening. Global paths of time-periodic solutions of the
benjamin-ono equation connecting pairs of traveling waves. Comm. App. Math. and
Comp. Sci., 4/1:177–215, 2009.

[5] D. M. Ambrose and J. Wilkening. A boundary integral method for time-stepping the
2d water wave. in preparation, 2010.

[6] D. M. Ambrose and J. Wilkening. Computation of symmetric, time-periodic solutions
of the vortex sheet with surface tension. Proc. Natl. Acad. Sci., 2010.

[7] D. M. Ambrose and J. Wilkening. Computation of time-periodic solutions of the
benjamin-ono equation. J. Nonlinear Sci., 2010.

[8] T. B. Benjamin and J. E. Feir. The disintegration of wave trains on deep water. part i.
theory. J. Fluid Mech., 27:417430, 1967.

[9] T. B. Benjamin and K. Hasselmann. Instability of periodic wavetrains in nonlinear
dispersive systems. Proc. R. Soc. Lond. A, 299(1456):59–76, 1967.

[10] N. Bottman and B. Deconinck. Kdv cnoidal waves are spectrally stable. Discrete and
Continuous Dynamical Systems, 25(4):11631180, 2009.

[11] J. V. Boussinesq. Théorie de l’intumescence liquide appelée onde solitaire ou de trans-
lation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris, 72:755–759,
1871.

67

[12] M. O. Bristeau, R. Glowinski, and J. Périaux. Controllability methods for the computa-
tion of time-periodic solutions; application to scattering. J. Comput. Phys., 147:265–292,
1998.

[13] M. O. Bristeau, O. Pironneau, R. Glowinsky, J. Périaux, and P. Perrier. On the numer-
ical solution of nonlinear problems in fluid dynamics by least squares and finite element
methods. i least square formulations and conjugate gradient solution of the continuous
problems. Comput. Meth. Appl. Mech. Engng., 17:619–657, 1979.

[14] C. G. Broyden. The convergence of a class of double-rank minimization algorithms,
parts i and ii. J. Inst. Maths. Applics., 6:7690, 222231, 1970.

[15] M. Cabral and R. Rosa. Chaos for a damped and forced kdv equation. Physica D,
192:265–278, 2004.

[16] A-L Cauchy. Mémoire sur la théorie de la propagation des ondes ‘a la surface dun fluide
pesant dune profondeur indéfinie. Mém. Présentés Divers Savans Acad. R. Sci. Inst.
France, I:3–312, 1827.

[17] M. Chen and G. Iooss. Standing waves for a two-way model system for water waves.
European J. Mech. B/Fluids, 24:113–124, 2005.

[18] A. Constantin and W. Strauss. Exact periodic traveling water waves with vorticity. C.
R. Math. Acad. Sci. PAris, 335:797–800, 2002.

[19] W. Craig and D. P. Nicholls. Traveling two and three dimensional capillary gravity
water waves. SIAM Journal on Mathematical Analysis, 32:323–359, 2000.

[20] W. Craig and D. P. Nicholls. Traveling gravity water waves in two and three dimensions.
Eur. Jour. Mech. B/ Fluids, 21:615–641, 2002.

[21] A. D. D. Craik. The origins of water wave theory. Ann. Rev. Fluid Mech., 36:1–28,
2004.

[22] A. D. D. Craik. George gabriel stokes on water wave theory. Ann. Rev. Fluid Mech.,
37:23–42, 2005.

[23] A. Crannell. The existence of many periodic non-travelling solutions to the boussinesq
equation. J. Differential Equations, 126:169–183, 1996.

[24] B. Deconinck, D. E. Pelinovsky, and J. D. Carter. Transverse instabilities of deep-water
solitary waves. Proc. R. Soc. A, 462(2071), 2006.

[25] N. DeDontney and J. R. Rice. Effect of splay fault rupture on open ocean tsunamis
with application to the 2004 indian ocean event. submitted to Journal of Geophysical
Research - Solid Earth, 2010.

68

[26] E. J. Doedel, H. B. Keller, and J. P. Kernévez. Numerical analysis and control of
bifurcation problems: (ii) bifurcation in infinite dimensions. Int. J. Bifurcation and
Chaos, 1:745–772, 1991.

[27] L. Euler. Continuation des recherches sur la théorie du mouvement des fluides. Mém.
Acad. Sci. Berlin, 11:361–361, 1757.

[28] L. Euler. Principes géneraux du mouvement des fluides. Mém. Acad. Sci. Berlin,
11:271–315, 1757.

[29] L. Euler. Principia motus fluidorum. Novi Commentarii Acad. Sci. Petropolitanae,
6:271–311, 1761.

[30] G. B. Folland. Introduction to Partial Differential Equations. Princeton University
Press, Princeton, 1995.

[31] F.R. Gantmacher. Matrix Theory, volume 1. Chelsea Publishing Company, 1960.

[32] F. J. von Gerstner. Theorie der wellen. Abhand. Kön. Böhmischen Gesel. Wiss., 1802.

[33] I. Gohberg, M. A. Kaashoek, and F. van Schagen. On the local theory of regular analytic
matrix functions. Linear Algebra Appl., 182:9–25, 1993.

[34] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New
York, 1982.

[35] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins Univer-
sity Press, Baltimore, 1996.

[36] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd Edition. Springer, Berlin, 2000.

[37] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. Removing the stiffness from interfacial
flows with surface tension. J. Comput. Phys., 114:312338, 1994.

[38] T. Y. Hou, J. S. Lowengrub, and M. J. Shelley. The long-time motion of vortex sheets
with surface tension. Phys. Fluids, 9:19331954, 1997.

[39] Thomas W. Hungerford. Algebra. Springer, New York, 1996.

[40] G. Iooss, P. Plotnikov, and J. Toland. Standing waves on an infinitely deep perfect fluid
under gravity. Arch. Rat. Mech. Anal., 177:367–478, 2005.

[41] G. Iooss, P. I. Plotnikov, and J. F. Toland. Standing waves on an infinitely deep perfect
fluid under gravity. Arch. Rat. Mech. Anal., 177:367–478, 2005.

69

[42] A. Jameson. Aerodynamic design via control theory. J Sci. Comput., 3:233–260, 1988.

[43] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, 1980.

[44] E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders. Fast parallel computation of
Hermite and Smith forms of polynomial matrices. SIAM J. Alg. Disc. Meth., 8(4):683–
690, 1987.

[45] E. Kaltofen, M.S. Krishnamoorthy, and B.D. Saunders. Parallel algorithms for matrix
normal forms. Linear Algebra and its Applications, 136:189–208, 1990.

[46] R. Kannan. Solving systems of linear equations over polynomials. Theoretical Computer
Science, 39:69–88, 1985.

[47] O. D. Kellogg. Foundations of Potential Theory. Dover, New York, 1954.

[48] J. Ko and W. Strauss. Large-amplitude steady rotational water waves. Eur. J. Mech.
B/Fluids, 27:96–109, 2008.

[49] D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a
rectangular canal, and on a new type of long stationary waves. Philos. Mag., 39(5):422–
443, 1895.

[50] B. Kress. Linear Integral Equations. Springer-Verlag, New York, 1989.

[51] S. Labhalla, H. Lombardi, and R. Marlin. Algorithmes de calcul de la réduction de her-
mite d’une matrice à coefficients polynomiaux. Theoretical Computer Science, 161:69–
92, 1996.

[52] J-L Lagrange. Mémoire sur la théorie du mouvement des fluides. Nouv. Mém. Acad.
Berlin, page 196, 1781.

[53] J-L Lagrange. Sur la maniére de rectifier deux entroits des principes de newton relatifs
á la propagation du son et au mouvement des ondes. Nouv. Mém. Acad. Berlin, 1786.

[54] J-L Lagrange. Méchanique Analitique. la Veuve Desaint, Paris, 1788.

[55] P-S Marquis de Laplace. Suite des récherches sur plusieurs points du système du monde
(xxvxxvii). Mém. Présentés Divers Savans Acad. R. Sci. Inst. France, pages 525–552,
1776.

[56] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford
University Press, New York, 2001.

[57] N. I. Muskhelishvili. Singular Integral Equations, 2nd Edition. Dover, New York, 1992.

70

[58] I. Newton. Philosophiae Naturalis Principia Mathematica. Jussu Societatis Regiae ac
Typis J. Streater. Engl. transl. N Motte, London, 1687.

[59] D. P. Nicholls. Traveling water waves: Spectral continuation methods with parallel
implementation. J. Comput. Phys., 143:224–240, 1998.

[60] D. P. Nicholls. Boundary perturbation methods for water waves. GAMMMitt., 30(1):44–
74, 2007.

[61] D. P. Nicholls and F. Reitch. Stable, high-order computation of traveling water waves
in three dimensions. Eur. Jour. Mech. B/ Fluids, 25:406–424, 2006.

[62] D.P. Nicholls. Spectral data for travelling water waves: singularities and stability. J.
Fluid Mech., 624:339–360, 2009.

[63] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 1999.

[64] P. Plotnikov and J. Toland. Nash-moser theory for standing water waves. Arch. Rat.
Mech. Anal., 159:1–83, 2001.

[65] S. D. Poisson. Mémoire sur la théorie des ondes. Mém. Acad. R. Sci. Inst. France,
1:70–186, 1818.

[66] B. Rayleigh. On waves. Philos. Mag., 1:257–279, 1876.

[67] J. S. Russell. Report on waves. Rep. Br. Assoc. Adv. Sci., pages 311–390, 1844.

[68] P.G. Saffman. Vortex Dynamics. Cambridge University Press, Cambridge, UK, 1995.

[69] L. F. Shampine. Some practical runge-kutta formulas. Mathematics of Computation,
46:135–150, 1986.

[70] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, 3rd Edition. Springer,
New York, 2002.

[71] G. G. Stokes. On the theory of oscillatory waves. Trans. Camb. Philos. Soc., 8:441–455,
1847.

[72] A. Storjohann. Computation of Hermite and Smith normal forms of matrices. Master’s
thesis, Dept. of Computer Science, Univ. of Waterloo, Canada, 1994.

[73] A. Storjohann and G. Labahn. A fast las vegas algorithm for computing the Smith
normal form of a polynomial matrix. Linear Algebra and its Applications, 253:155–173,
1997.

71

[74] G. Villard. Computation of the Smith normal form of polynomial matrices. In In-
ternational Symposium on Symbolic and Algebraic Computation, Kiev, Ukraine, pages
209–217. ACM Press, 1993.

[75] G. Villard. Fast parallel computation of the Smith normal form of polynomial matrices.
In International Symposium on Symbolic and Algebraic Computation, Oxford, UK, pages
312–317. ACM Press, 1994.

[76] G. Villard. Generalized subresultants for computing the Smith normal form of polyno-
mial patrices. J. Symbolic Computation, 20:269–286, 1995.

[77] G. Villard. Fast parallel algorithms for matrix reduction to normal forms. Appli. Alg.
Eng. Comm. Comp., 8(6):511–538, 1997.

[78] G. B. Whitham. Linear and Nonlinear Waves. Wiley, New York, 1974.

[79] J. Wilkening. An algorithm for computing Jordan chains and inverting analytic matrix
functions. Linear Algebra Appl., 427/1:6–25, 2007.

[80] J. Wilkening. Math 228 lecture notes: Numerical solution of differential equations.
available from author’s website, 2007.

[81] V. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep
fluid. J. Appl. Mech. Tech. Phys., 9:190–194, 1968.

