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ABSTRACT OF THE DISSERTATION

Function theory on open Kähler manifolds

by

James W. Ogaja

Doctor of Philosophy, Graduate Program in Mathematics

University of California, Riverside, June 2018

Professor Bun Wong, Chairperson

The structure of an open complete Riemannian manifold (Mn, g) with nonnegative sectional

curvature has been studied extensively and well understood. There are two classical results

due to Gromoll-Meyer [9] and Cheeger-Gromol [4]. Gromoll and Meyer proved that a

complete open manifold (Mn, g) with positive sectional curvature is diffeormorphic to Rn.

On the other hand, Cheeger and Gromoll proved that a complete open manifold (Mn, g)

with nonnegative sectional curvature admits a totally geodesic compact submanifold S such

that Mn is diffeomorphic to the normal bundle of S in Mn.

It is natural to imagine that these results and many others can easily be attained in Ricci

curvature case. However, in this case, there are relatively few structural results except

in a lower dimensional case n = 2 where all notions of curvature coincide. In [17], Shen

proved that a complete open Riemannian manifold with nonnegative Ricci curvature and
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maximum volume growth is proper (admits an exhaustion function). Regarding Shen’s

result, it was observed by Wong and Zhang [21] that a complete open Kähler manifold with

positive bisectional curvature and maximum volume growth can be embedded as a complex

submanifold in a complex Euclidean space of higher dimension. Their observation is a partial

result of a weaker version of Yau’s conjecture which states that a complete open Kähler

manifold with positive bisectional curvature can be embedded as a complex submanifold in

a complex Euclidean space of higher dimension. The original Yau’s conjecture [20] states

that: a complete open Kähler manifold with positive bisectional curvature is biholomorphic

to complex Euclidean space.

Here, we exhibit that a complete open Kähler manifold with positive bisectional curvature

can be embedded as a complex submanifold in a complex Euclidean space of higher dimen-

sion if the volume of a cone of rays from a fixed base point is asymptotic to the volume of

a geodesic ball centered at the same point. The volume growth condition we consider here

is weaker than the maximum volume growth condition.
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Chapter 1

Introduction

In this section we present a brief overview of our work. Structure of positively curved

manifolds have been extensively studied with analysis of the Busemann function. There are

different versions of Busemann functions.

Definition 1.1. We define the spherical Busemann function as

bp(x) = lim
r→∞
{r − d(x, ∂(B(p, r))},

where ∂(B(p, r)) denotes the boundary of a geodesic ball centered at p with radius r.

Definition 1.2. For a ray γ emanating from a point p ∈ M we define the Busemann

function with respect to a ray γ as

fγ(x) = lim
t→∞
{t− d(x, γ(t)}

Some texts refer to fγ as simply a Busemann function.
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Definition 1.3. For a manifold M , a function f : M → R is exhaustion if f−1(−∞, a] is

compact for any real number a.

Interestingly, in a complete open Riemannian manifold, nonnegative sectional curvature

does not guarantee that fγ is exhaustion [18], whereas bp(x) is exhaustion.

Definition 1.4. Let Mn be a complete Riemannian n-manifold. Define αM by

αM = lim
r→∞

V ol[B(p, r)]

rn

where B(p, r) denotes a metric ball a round p ∈ M with radius r. We say that Mn has

maximum volume growth if αM > 0.

The proof of the following result can be found in [17].

Theorem 1.5. (In the proof of Lemma 3.4, [17]) If M is an open complete Riemannian

manifold with nonnegative Ricci curvature and maximum volume growth, then bp is exhaus-

tion for any p ∈M .

We extend this theorem by replacing maximum volume growth condition with a weaker

volume growth condition (see page 5).

Definition 1.6. Cone of rays. Let SpM ⊂ TpM be a unit tangent sphere in the tangent

space TpM for a point p ∈M .

For any subset N ⊂ SpM , define

C(N) = {q ∈M | there is a minimizing geodesic γ from p to q such thatγ′(0) ∈ N}

2



•
0

TpM

SpM
N

•
p

C(N)M

expp

Figure 1.1: Cone of rays
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to be the cone over N and let

BN (p, r) = B(p, r) ∩ C(N)

.

Let Σ = {v ⊂ SpM | expp(rv) : [0,∞)→M is a ray}. As denoted above, we have

BΣ(p, r) = B(p, r) ∩ C(Σ).

In chapter 4, we establish that if M is a complete open manifold with nonnegative Ricci

curvature, then the volume growth condition

lim
r→∞

V ol(BΣ(p, r))

V ol(B(p, r))
= 1

is weaker than the maximum volume growth condition.

It is essential to note that nonnegative Ricci curvature ensures that our volume growth

codition is independent of the base point.

Lemma 1.7. Let Mn be a complete open manifold with RicM ≥ 0. For a fixed p1 ∈ M ,

the volume growth

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
= α(n)

is independent of the base point p ∈M .

Proof. Let p, q ∈ M and d = d(p, q). Then it is clear that B(p, r) ⊂ B(q, r + d) and

B(q, r) ⊂ B(p, r + d). By Bishop-Gromov volume comparison theorem,

4



lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
≥ lim

r→∞
inf

{[
r

r + d

]n V ol(BΣ(p, r + d))

V ol(B(p1, r))

}
≥ lim

r→∞
inf

{[
r

r + d

]n V ol(BΣ(q, r)

V ol(B(p1, r))

}
≥ lim

r→∞

[
r

r + d

]n
lim
r→∞

inf
V ol(BΣ(q, r)

V ol(B(p1, r))

≥ lim
r→∞

inf
V ol(BΣ(q, r)

V ol(B(p1, r))

Likewise

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
≤ lim

r→∞
inf

V ol(BΣ(q, r)

V ol(B(p1, r))

Hence

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
= lim

r→∞
inf

V ol(BΣ(q, r)

V ol(B(p1, r))

for any p, q ∈M .

In this paper, we study structures of complete open manifolds with RicMn ≥ 0 and volume

growth condition

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
>

9n − 1

9n

We also study structures of complete open Kähler manifolds with positive bisectional cur-
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vature and volume growth condition

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p1, r))
>

92n − 1

92n

where n = dimCM

Note that for any p, p1 ∈M ,

lim
r→∞

sup
V ol(BΣ(p, r))

V ol(B(p1, r))
≤ 1

We prove the following theorems:

Theorem 1.8. Let M be a complete open manifold with RicM ≥ 0. Let α(n) = 9n−1
9n where

n = dimRM . If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
,

then for any a ∈ R, b−1
p (a) is compact .

Theorem 1.9. Let M be a complete open Kähler manifold with positive bisectional curva-

ture. If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
,

where n = dimCM and α(n) = 92n−1
92n

, then M is a Stein manifold.

In chapter 4 we state general results from Riemannian geometry that will be required in

the proof of theorem 1.8 and in chapter 5 we state general results from complex geometry

that will be required in the proof of theorem 1.9.

In chapters 6 and 7, we provide proofs of theorems 1.8 and 1.9 respectively.
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It Remains a challenge to completely remove the volume growth condition or provide a

counter example of the Greene-Wu’s conjecture (weaker version of Yaus’s conjecture). Chen

and Zhu proved a result in [6] that points to a possible future direction towards establishing

that. They proved that a complete open Kähler manifold with positive bisectional curvature

has at least a half-volume growth.

Theorem 1.10. Let M be a complex n-dimensional complete open Kähler manifold with

nonnegative holomorphic bisectional curvature. Suppose also its holomorphic bisectional

curvature is positive at least at one point. Then the volume growth of M satisfies

V ol(B(p, r)) ≥ αrn, 1 ≤ r < +∞,

where α is some positive constant depending on p and the dimension n.

By having a closer look at the proof of the above theorem in [6], we realize that α is

independent of the base point p. A modified version is presented in chapter 5.
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Chapter 2

Basic Facts and Definitions

In this chapter we discuss facts, definitions, and ideas that are key to the development of

our results. Materials here closely imitate expositions in [23], [3], and [10].

2.1 Notion of Metric, Connection, and Curvature

Definition 2.1. A Riemannian metric on a smooth manifold M is a 2-tensor field g ∈

J 2(M) that is symmetric (i.e g(X,Y ) = g(Y,X)) and positive definite (i.e., g(X,Y ) > 0

if X 6= 0).

Thus a Riemannian metric determines an inner product on each tangent space TpM which

is typically written 〈X,Y 〉 := g(X,Y ) for X,Y ∈ TpM . A Riemannian manifold is a

manifold together with a given Riemannian metric.

If p is a point in a Remannian manifold (M, g), we define the length or norm of any tangent

vector X ∈ TpM to be |X| := 〈X,X〉2. We define the angle between two nonzero vectors

X,Y ∈ TpM to be the unique θ ∈ [0, π] satisfying cosθ = 〈X,Y 〉/(|X||Y |)

If (e1, ..., en) is a local frame for TM , and (ϕ1, ..., ϕn) its dual coframe, A Riemannian metric

8



can be locally written as

g = gijϕ
i ⊗ ϕj ,

where gij = 〈ei, ej〉 is symmetric in i and j and depends smoothly on p ∈M . In a coordinate

frame, g has the form

g = gijdx
i ⊗ dxj . (2.1)

Since gij is symmetric in i and j, (2.1) is equivalent to

g = gijdx
idxj

Definition 2.2. Let π : E → M be a vector bundle over a manifold M , and let E(M)

denote the space of smooth sections of E. A connection in M is a map

∇ : J (M)× E(M)→ E(M),

denoted (X,Y ) 7→ ∇XY , satisfying the following properties:

(a) ∇XY is linear over C∞(M) in X:

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)

9



(b) ∇XY is linear over R in Y :

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b ∈ R

(c) ∇ satisfy the following product rule:

∇X(fY ) = f∇XY1 + (Xf)Y for f ∈ C∞(M).

∇XY is called the covariant derivative of Y in the direction of X.

Here, J (M) denote a space of vector fields.

A linear connection on M is a connection on TM , i.e., a map

∇ : J (M)× J (M)→ J (M),

satisfying properties (a) − (c) in the definition of a connection above. A linear connection

on M is often simply called a connection on M .

A linear connection appears in components. Let {Ei} be a local frame for TM on an open

subset U ⊂M . For any choices of i and j we can expand ∇EiEj in terms of the same frame.

∇EiEj = ΓkijEk (2.2)

If the dimension of M is n, n3 functions Γkij on U are called Christoffel symbols with

respect to the frame {Ei}.

10



Lemma 2.3. Let ∇ be a linear connection, and let X,Y ∈ J (U) be expressed in terms of

a local frame by X = XiEi, Y = Y jEj. Then

∇XY = (XY k +XiY jΓkij)Ek (2.3)

Proof. By definition rules, we have:

∇XY = ∇X(Y jEj)

= (XY j)Ej + Y j∇XiEiEj

= (XY j)Ej +XiY j∇EiEj

= XY jEj +XiY jΓkijEk

We obtain (2.3) by replacing the dummy index in the first term.

Example 2.1.1. On Rn we define the Euclidean connection by

∇X(Y j∂j) = (XY j)∂j (2.4)

∇X(Y ) is just the vector field whose components are just the directional derivatives of the

components of Y in the direction of X. Its Christoffel symbols in standard coordinates are

all zero.

A linear connection ∇ is said to be compatible with a metric g = 〈·, ·〉 if it satisfies the

11



following product rule for all vector fields X,Y, Z.

∇X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.

Definition 2.4. A Lie algebra is a real vector space g equipped a skew-symmetric, bilinear

map [, ] : g× g→ g such that

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0, ∀X,Y, Z ∈ g

The product structure in a Lie algebra is called the Lie bracket. The identity above is

called the Jacobi identity.

The linear connection ∇ has a torsion tensor defined by

T∇(X,Y ) = ∇XY −∇YX − [X,Y ], for any vector fields X,Y

If T∇ = 0, then a linear connection ∇ is said to be torsion-free.

The curvature R of a linear connection is a
(

3
1

)
-tensor field defined by

RXY Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

For a given metric 〈·, ·〉 on TM , there is a unique linear connection on M that is torsion-free:

Proposition 2.5. Given a Riemannian manifold (Mn, 〈·, ·〉), there is a unique connection

∇ on M that is both torsion free and compatible with 〈·, ·〉. This connection is called the

Riemannian connection or Levi-Civita connection of the Riemannian manifold.

As a
(

3
1

)
-tensor field, the curvature tensor of a Riemannian connection can in terms of any

12



local frame with on upper and three lower indices. For example, in terms of local coordinates

(xi), R can be written as

R = Rijk
ldxi ⊗ dxj ⊗ dxk ⊗ ∂l,

where the coefficients are defined by

R(∂i, ∂j)∂k = Rijk
l∂l

We define the Riemannian curvature as the covariant for tensor field obtained from the(
3
1

)
-tensor field by lowering the last index. Its action on vector field is defined by

R(X,Y, Z,W ) = 〈RXY Z,W 〉

and in coordinates it is written as

R = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl

where Rijkl = glmRijk
m and glm = 〈∂l, ∂m〉. It obeys the following symmetries:

R(X,Y, Z,W ) = −R(Y,X,Z,W )

R(X,Y, Z,W ) = −R(X,Y,W,Z)

R(X,Y, Z,W ) + R(Z,X, Y,W ) +R(Y,Z,X,W ) = 0

R(X,Y, Z,W ) = R(Z,W,X, Y )

13



Definition 2.6. Let {X,Y } be a basis of a 2-dimensional subspace P ⊂ TpM , the sectional curvature

of the metric in the 2-plane section P is defined by

K(P ) =
R(X,Y, Y,X)

|X|2|Y |2 − 〈X,Y 〉2

The right hand side is independent of the choice of basis {X,Y } of the 2-plane P ⊂ TpM :

suppose {Z,W} is another basis of P . Then we have

Z = aX + bY

W = cX + dY

for some constants a, b, c, d with ad− bc 6= 0. It follows that

|Z|2|W |2 − 〈Z,W 〉2 = (ad− bc)2(|X|2|Y |2 − 〈X,Y 〉2)

Since R is skew-symmetric in its first two (or las two) positions, we have

R(Z,W,W,Z) = (ad− bc)R(X,Y,W,Z)

= (ad− bc)2R(X,Y, Y,X)

Thus proving the claim.

Definition 2.7. Let {e1, ..., en} be an orthonormal basis of TpM . For any X,Y ∈ TpM ,

define

14



r(X,Y ) =
n∑
i=1

R(ei, X, Y, ei)

Here we are taking the trace of the 4-tensor R at its first and fourth positions. It is clear

that r(X,Y ) = r(Y,X). So r is a symmetric covariant 2-tensor on M . It is called the

Ricci tensor of a Riemannian manifold M . The right hand side of the above formula is

independent of the orthonormal basis {ei}: suppose {e′i} is another orthonormal basis of

TpM . Then there is an n × n orthogonal matrix A = (aij) such that e′i =
∑n

j=1 aijej for

each 1 ≤ i ≤ n. We then have

n∑
i=1

R(e′i, X, Y, e
′
i) =

n∑
i=1

n∑
j,k=1

aijaikR(ej , X, Y, ek)

=
n∑

j,k=1

(
n∑
i=1

aijaik

)
R(ej , X, Y, ek)

=

n∑
j,k=1

δjkR(ej , X, Y, ek) =

n∑
j=1

R(ej , X, Y, ej)

For any 0 6= X ∈ TpM , the Ricci curvature in the direction of X is defined by

r(X) =
r(X,X)

|X|2

It is just the average value of the sectional curvature for all the 2-plane sections containing

X.

The trace of the Ricci tensor r is a scalar valued function on M , which is called the

scalar curvature of the Riemannian manifold denoted by s. At a point p ∈ M , the value

s(p) is given by

15



s(p) =
n∑
i=1

r(ei) =
∑

1≤i 6=j≤n
R(ei, ej , ej , ei)

where {ei} is any orthonormal basis of TpM . The scalar curvature at p is the average value

of the sectional curvature for all the 2-plane sections in TpM .

2.2 Geodesics, Rays, and Busemann function

A curve in a manifold M is a smooth map γ : I → M , where I ⊂ R is some interval. If I

is a closed bounded interval [a, b] ⊂ R, then γ : I →M is called a curve segment.

Lengths of Curves. If γ : [a, b]→M is a curve segment, we define the lenght of γ as

L(γ) =

∫ b

a
|γ̇(t)|dt

If I has an endpoint, smoothness of γ means that γ extends to a smooth map defined on

some open intervals containing I. Here, the notion of smoothness is equivalent to saying the

components functions γi in any local coordinates have one-sided derivatives of all orders at

the endpoint, or having derivatives of all orders that extend continuously to the endpoint.

Since γ can always be extended to a smooth curve on a slightly larger open interval and then

restrict back to the original after working with it, it suffices to assume whenever convenient

that γ is defined on an open interval.

At any time t ∈ I, the velocity γ̇(t) of γ is defined as the push-forward γ∗(d/dt). It acts on

functions by

γ̇(t)f =
d

dt
(f ◦ γ)(t).

16



This corresponds to the usual notion of velocity in coordinates. If we write the coordinate

representation of γ as γ(t) = (γ1(t), ..., γn(t)), then

γ̇(t) = γ̇i(t)
∂

∂xi

A vector field along a curve γ : I → M is a smooth map V : I → TM such that

V (t) ∈ Tγ(t)M for every t ∈ M . Let J (γ) denote the space of all vector space along γ. A

vector field V a long γ is said to be extendible if there exists a vector field Ṽ ∈ J (M) such

that for each t ∈ I, V (t) = Ṽγ(t). Not every vector field along a curve γ is extendible. For

example, if γ(t1) = γ(t2) but γ̇(t1) 6= γ̇(t2), then γ̇ is not extendible.

To make sense of a directional derivative along a curve, we have the following.

Lemma 2.8. Let ∇ be a linear connection on M . For each curve γ : I →M , ∇ determines

a unique operator

Dt : J (γ)→ J (γ)

satisfying the following properties:

(a) Linearity over R:

Dt(aV + bW ) = aDtV + bDtW for a, b ∈ R.

(b) Product rule:

Dt(fV ) = ḟV + fDtV for f ∈ C∞(I)

17



•
p

•
x

t

γ(t)

Figure 2.1: fγ is Lipschitz (fγ(x) ≤ d(p, x))

(c) If V is extendible, then for any extension Ṽ of V ,

DtV (t) = ∇γ̇(t)Ṽ .

Definition 2.9. Let M be a manifold with a linear connection ∇, and let γ be a curve in

M . The acceleration in γ is the vector field Dtγ̇ along γ. A curve γ is called a geodesic

with respect to ∇ if its acceleration is zero: Dtγ̇ = 0

Minimizing geodesic: A geodesic γ is minimizing if for any other geodesic with the same

endpoints γ̃, L(γ) ≤ L(γ̃).

Ray: A ray γ : [0,∞)→M in M is a minimizing geodesic such that t2− t1 = d(γ(t2), γ(t1))

for all t2 ≥ t1 ≥ 0.

Recall that fγ(x) = limt→∞{t − d(x, γ(t))} for each ray γ. By triangle inequality, t −

d(x, γ(t)) ≤ d(p, x) < ∞ (Figure 2.1). So, fγ is Lipschitz continuous. However, it is not

smooth.
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•
p

•
x

d(p, x) r

d(x, ∂B(p, r))

B(p, r)

Figure 2.2: bp is Lipschitz (r − d(x, ∂B(p, r)) ≤ d(p, x))

Note: It is important to note that for any open complete manifold, there is always at least

a ray.

Lemma 2.10. Let M be a complete open Riemannian manifold. For each x ∈ M define

Br
p(x) : R → R by Br

p(x) = r − d(x, ∂B(p, r)). Br
p(x) is non-increasing (with respect to

r) for r ≥ d(p, x). Here, ∂B(p, r) denotes the boundary of a geodesic ball centered p with

radius r.

Proof. Consider real numbers r1 and r2 such that r2 ≥ r1 ≥ d(x, p). Let x′ ∈ ∂B(p, r2)

be such that d(x, x′) = d(x, ∂B(p, r2)). Take a minimizing geodesic γ from x to x′. If
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γ(t0) ∈ ∂B(p, r1), then

r1 = d(γ(t0), p) ≥ r2 − d(γ(t0), ∂B(p, r2))

= r2 − d(x, ∂B(p, r2)) + t0,

that implies

d(x, ∂B(p, r1)) ≤ d(x, γ(t0))

= t0

≤ d(x, ∂B(p, r2)− r2 + r1

Hence Br1
p (x) ≥ Br2

p (x).

Recall that

bp(x) = lim
r→∞
{r − d(x, ∂B(p, r))}

Equivalently, we can verify that bp is Lipchitz continuous (Figure 2.2). Take x′ ∈ ∂B(p, r)

such that d(x, x′) = d(x, ∂B(p, r)). By triangle inequality,

r − d(x, x′) ≤ d(x, p)

Similarly,

d(x, x′) ≤ d(x′, p) + d(x, p)

i.e

−d(x, p) ≤ r − d(x, x′)
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Hence |r − d(x, ∂B(p, r))| ≤ d(x, p).

2.3 Jacobi fields and Cut Locus

Jacobi field provides a way of describing how geodesics from a given point p ∈ M spread

apart. In particular, the spreading a part is determined by curvature condition.

Definition 2.11. Let γ : I → M be a geodesic in M . A vector field J along γ is called a

Jacobi field if it satisfies the equation

D2
t J(t) +R(J(t), γ̇(t))γ̇(t) = 0

Proposition 2.12. (Existence and Uniqueness of Jacobi Fields) Let γ : I → M be

a geodesic in M . Let a ∈ I and p = γ(a) ∈M . For any pair of vectors X,Y ∈ TpM , there

exists a unique Jacobi field J a long γ such that

J(a) = X, and DtJ(a) = Y

Proof. Choose an orthonormal basis {ei} for TpM , and extend it to a parallel frame along

all of γ. Writing J(t) = J i(t)ei, we can express Jacobi equation as

J̈ i +RijklJ
j γ̇kγ̇l = 0.

This is a linear system of second-order ODEs for the n functions J i. Making the usual sub-

stitution V i = J̇ i converts it to an equivalent first-order linear system for the 2n unknowns

{J i, V i}. Then, by existence and uniqueness of linear ODEs, the existence and uniqueness
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of a solution on the whole interval I with any initial conditions J i(a) = Xi, V i(a) = Y i is

guaranteed.

Definition 2.13. Let SpM = {v ∈ TpM : ||v|| = 1} be the unit sphere in TpM . For any

v ∈ TpM , we define

cut(v) = max{t : γv|[0,t] is minimizing}.

This defines the cut locus distance function

cut : SpM → (0,∞]

which is continuous. Let

Cp = {tv : v ∈ SpM, t ≤ cut(v)}

This is a closed subset of TpM and its boundary ∂Cp is called the cut locus in the tangent

space of the point p.

The cut locus of p in M is defined to be image of the cut locus of p in the tangent space

under the exponential map at p. Thus, we may interpret the cut locus of p in M as the

points in the manifold where the geodesics starting at p stop being minimizing.

2.3.1 Conjugate Points

One application of Jacobi field is to investigate when the exponential map is a local diffeo-

morphism. We know that if M is complete then expp is defined on all of TpM , and is a
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local diffeomorphism near 0. However, it may cease to be a local diffeomorphism at points

far away.

A good example is by the sphere Sn(R). Each geodesic starting at a given point meet at

the antipodal point which is at a distance πR along each geodesic. The exponential map is

a diffeomorphism on the geodesic ball BπR(0) but fails to be a diffeomorphism on all points

on the sphere of radius πR on SpM .

Definition 2.14. Consider a geodesic segment γ joining p, q ∈M . The points p and q are

conjugates to each other along γ if there is a Jacobi field along γ vanishing at p and q but

not identically zero.

Remark 2.1. The most important fact about conjugate points is that they are the image

of singularities of the exponential map.

A point in a cut locus of p ∈M is called a cut point of p.

Proposition 2.15. Suppose that γ(t0) is the cut point of p = γ(0) along γ. Then:

a) either γ(t0) is the first conjugate point of γ(0) along γ,

b) or there exists a geodesic σ 6= γ from p to γ(t0) such that L(σ) = L(γ)

Conversely, if (a) and (b) are satisfied, then there exists t in (0, t0] such that γ(t) is the cut

point of p along γ.
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Chapter 3

Busemann Functions on Complete

Open Manifolds with

Nonnegative Sectional Curvature

Noncompact complete Riemannian manifolds of nonnegative sectional curvature have been

extensively studied by analysis of Buseman function(s).

In the proof of soul theorem [4], Cheeger and Gromoll proved that the Buseman function

bp(x) on a complete open Riemaniann manifold with nonnegative sectional curvature is

convex and exhaustion.

Definition 3.1. A function ψ : M → R is convex if for any normal geodesic σ : R :→ M

and any λ ∈ [0, 1], ψ ◦ σ((1− λ)t1 + λt2) ≤ (1− λ)ψ ◦ σ(t1) + λψ ◦ σ(t2).

Definition 3.2. A function f : M → R is an exhaustion function if for any c ∈ R,

f−1 ((−∞, c]) is a compact subset of M .
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Theorem 3.3. (Theorem 1.10 in [4]) Let M be a complete open manifold with nonnegative

sectional curvature. Then the function fγ : M → R is convex.

Definition 3.4. A subset S ⊆ M is said to be geodesically convex if every point in S can

be joined by a minimizing geodesic in M whose image is in S.

Corollary 3.5. Let M be a complete open manifold with nonnegative sectional curvature.

For a ∈ R, denote

Da = {x ∈M : sup
γ
fγ(x) ≤ a}, where sup is taken over all rays γ.

Da is geodesically convex.

Proof. Take points x, y ∈ Da and let σ : [α, β]→ M be a minimizing geodesic from x to y

(σ(α) = x and σ(β) = y). For any ray γ : [0,+∞)→M we have that fγ ◦σ((1−λ)α+λβ) ≤

((1−λ)fγ◦σ(α)+λfγ◦σ(β)). In other words, for any t in [α, β], we have that sup
γ
fγ(σ(t)) ≤ a.

Same as saying that the image of σ : [α, β] → M is contained in Da. So, the image of any

minimizing geodesic with end points contained in Da is contained in Da. Hence Da is

geodesically convex.

To prove that the Busemann function bp is exhaustion, it suffices to established that for any

a ∈ R, Da is a compact subset of M . Here is a short description of a strategy independent

of the one originally presented by Cheeger and Gromol:

Theorem 3.6. Let M be a complete open manifold with nonnegative sectional curvature,

then bp is exhaustion.

Proof. Assume that Da is noncompact. Then we can construct a sequence of minimizing
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geodesics {σi} whose images are contained in Da such that σi(0) = p and σi
i→∞

= σ is a

ray. Since Da is closed, image(σ) ⊂ Da. However, sup
γ
fγ(σ(t)) = t for any t ≥ 0. A

contradiction to the definition of Da. Thus, Da must be compact. We have just proved

that b(x) = sup
γ
fγ is exhaustion. For any minimizing geodesic from p to a point on ∂B(p, r)

we have that d(x, ∂B(p, r)) ≤ d(x, γ(r)). Thus,

bp(x) = lim
r→∞
{r − d(x, ∂B(p, r))} ≥ supγ{fγ(x)}

Since b(x) ≤ bp(x) for any x ∈M , we have that bp is exhaustion.

It is interesting to note that the above result does not hold for a single ray Busemann

function fγ . We can construct examples of complete open manifolds of nonnegative sectional

curvature on which fγ is not exhaustion by simply considering the following theorems by

Shiohama [18] page 297.

Theorem 3.7. Let M2 be a connected complete open manifold of dimension 2 with a

nonnegative Gaussian curvature G. Let γ : [0,∞) → M2 be a ray with respect to which fγ

is non-exhaustion. Then we have

∫
M2

Gdµ ≤ π

Theorem 3.8. Let M2 be a connected complete open manifold of dimension 2 with non-

negative Gaussian curvature G. Assume that M2 admits an exhaustion Busemann function

fγ. Then we have ∫
M2

Gdµ > π
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•
p

•
x

hγ(x)

γ(t)τ(t)

Figure 3.1: S × R

Example 3.0.1. Flat Cylinder (Figure 3.1)

For a point p ∈ M2 = S2 × R, there exists only two rays γ and τ , which are in opposite

directions. For any point x ∈M2, we denote hγ(x) = d(x, γ) and h(x) = d(x, {γ, τ}).

By theorem 3.8 above, fγ is not an exhaustion function. However, b(x) = sup
γ
fγ(x) and

bp(x) are exhaustion by simply observing that d(p, x)− b(x) ≤ 2h(x) by triangle inequality,

and that h(x) ≤ π.
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Chapter 4

Bishop-Gromov Comparison

Theorem and Volume Growth

Condition

Many important tools and results of Ricci curvature lower bound is from the use of compar-

ison thorems, e.g, Bishop-Gromov volume comparison, Mean curvature comparison, Lapla-

cian comparison, Meyers’ theorem, Cheeger-Gromoll’s splitting theorem. Here, we will

present Bishop-Gromov volume comparison and its’ generalized version, Mean curvature

comparison, and Laplacian comparison.

Theorem 4.1. (Bishop and Gromov volume comparison)

Let the Ricci curvature of a complete open manifold M satisfies the lower bound

RicM ≥ (n− 1)K
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for a constant K ∈ R. Let Mn
K be the complete simply connected space of constant sectional

curvature K. Then for any p ∈M and pK ∈Mn
K , the function

ϕ(r) =
V ol(B(p, r))

V ol(B(pK , r))

is non-increasing on (0,∞).

Next, we will discuss the volume comparison theorem that generalizes Bishop-Gromov com-

parison theorem. Some materials in this section follows from exposition in [24].

Let f be a smooth function on Mn. We define its gradient, Hessian, and Laplacian by

〈∇f,X〉 = X(f)

,

Hess(f)(X,Y ) = 〈∇X(∇f), Y 〉

and

∆f = tr(Hess(f))

respectively. For a bilinear form A, we denote |A|2 = tr(AAt). Here, we introduce volume

comparison theorem from Weitzenböck Formula.

Theorem 4.2. (The Weitzenböck Formula) Let Mn, g be a complete Riemannian manifold.

Then for any function f ∈ C3(M), we have

1

2
∆|∇f |2 = |Hessf |2 + 〈∇f,∇(∆f)〉+Ric〈∇f,∇f〉
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point-wise.

Proof. Fix a point p ∈ M . Let {Xi}ni=1 be a local orthonormal frame field such that

〈Xi, Xj〉 = δij and ∇XiXj(p) = 0. Computation at p gives

1

2
∆|∇f |2 =

1

2

∑
i

XiXi〈∇f,∇f〉

=
∑
i

Xi〈∇Xi∇f,∇f〉

=
∑
i

XiHess(f)(Xi,∇f)

=
∑
i

XiHess(f)(∇f,Xi)(Hessian is symmetric)

=
∑
i

Xi〈∇∇f (∇f), Xi〉

=
∑
i

〈∇Xi∇∇f (∇f), Xi〉+
∑
i

〈∇∇f (∇f),∇XiXi〉

=
∑
i

〈∇Xi∇∇f (∇f), Xi〉(The other term vanishes at p)

=
∑
i

〈R(Xi,∇f)∇f,Xi〉+
∑
i

〈∇∇f∇Xi∇f,Xi〉+
∑
i

〈∇|Xi,∇f |∇f,Xi〉

The first term is by definition Ric(∇f,∇f); the second term is

∑
i

(∇f)〈∇Xi∇f,X − I〉 − 〈∇Xi∇f,∇∇fXi〉 = (∇f)
∑
i

〈∇Xi∇f,Xi〉 − 0 (at p)

= (∇f)(∆f)

= 〈∇f,∇(∆f)〉,

and the third term is
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∑
i

Hess(f)([Xi,∇f ], Xi) =
∑
i

Hess(f)(∇Xi∇f −∇∇fXi, Xi)

=
∑
i

Hess(f)(∇Xi∇f,Xi)−Hess(f)(∇∇fXi, Xi)

=
∑
i

Hess(f)(∇Xi∇f,Xi)− 0 (at p)

=
∑
i

Hess(f)(Xi,∇Xi∇f)

=
∑
i

∇Xi∇f,∇Xi∇f〉

= [Hess(f)]2

This is powerful in the sense that we have a freedom to choose the function. We will

choose a distance function. For a fixed p ∈ M let r(x) = d(p, x) be the distance function

from p to x. This is a Lipschitz function and it is smooth except on the cut locus of p.

It also satisfies |∇r| = 1 where it is smooth. We have that ∇r = ∂
∂r in general polar

coordinates at p. Let {e1, e2, ..., en−1} be an orthonormal basis for the geodesic sphere, and

denote the mean curvature of the geodesic sphere by m(r) with the outer normal N , where

m(r) =
∑n−1

i=1 〈∇eiN, ei〉. In general polar coordinate, the volume element can be written

as dvol = dr ∧ Aω(r)dω where dω is the volume form on the standard Sn−1. We suppress

the dependence of Aω(r) on ω for notational convenience.

Lemma 4.3. Given a complete Riemannian manifold (Mn, g) and a point p ∈M , we have

∆r = m(r) and m(r) = A′(r)
A(r) .
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Proof. By definition

∆r = tr(Hess(r)) =

n−1∑
i=1

〈∇ei(∇r), ei〉+ 〈∇N (∇r), N〉

=

n−1∑
i=1

〈∇eiN, ei〉+ 〈∇NN,N〉

=
n−1∑
i=1

〈∇eiN, ei〉 = m(r)

This proves the first equation.

Next, consider the map ϕ : TpM → M defined by ϕ(v) = expp(rv). Let {v1, ..., vn−1} be

the orthonormal basis for the unit sphere in TpM . Then

A(r) = dvol

(
∂

∂r
, ϕ(v1), ..., ϕ(vn−1)

)
= dvol

(
∂

∂r
, dexpp(rv1), ..., dexpp(vn−1)

)
= J1(r) ∧ J2(r) ∧ ... ∧ Jn−1(r)

Where Ji(r) = dexpp(rvi). Fix r0. We have

A′(r0)

A(r0)
=

∑n−1
i=1 J1(r0) ∧ ... ∧ J ′i(r0) ∧ ... ∧ Jn−1(r0)

J1(r0) ∧ J2(r0) ∧ ... ∧ Jn−1(r0)

Let J1(r), ..., Jn−1(r) be the linear combinations (with constant coefficients) of the Ji(r)’s

such that J1(r0), ..., Jn−1(r0) form an orthonormal basis. Then
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A′(r0)

A(r0)
=

∑n−1
i=1 J1(r0) ∧ ... ∧ J ′i(r0) ∧ ... ∧ Jn−1(r0)

J1(r0) ∧ J2(r0) ∧ ... ∧ Jn−1(r0)

=

∑n−1
i=1 J1(r0) ∧ ... ∧ J ′i(r0) ∧ ... ∧ Jn−1(r0)

J1(r0) ∧ J2(r0) ∧ ... ∧ Jn−1(r0)

=

n−1∑
i=1

J1(r0) ∧ ... ∧ J ′i(r0) ∧ ... ∧ Jn−1(r0)

=
n−1∑
i=1

〈J ′i(r0), J i(r0)〉

Let fi(t, s) = expp(svi + t~n). Then

Ji(r0) = dexpp(r0vi) =
∂

∂s

∣∣∣
s=0

fi(t, s)

and

J ′i(r0) =
∂

∂t

∣∣∣
t=r0

∂

∂s

∣∣∣
s=0

fi(t, s)

=
∂

∂t

∣∣∣
s=0

∂

∂s

∣∣∣
t=r0

fi(t, s)

= ∇Ji(r0)N

Therefore, we also have J
′
i(r0) = ∇Ji(r0)N

Thus
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A′(r0)

A(r0)
=

n−1∑
i=1

〈∇Ji(r0)N, J i(r0)〉

= m(r0)

Theorem 4.4. (Main Comparison Theorem)

Let (Mn, g) be complete, and assume that Ric(M) ≥ (n− 1)H. Outside the cut locus of p,

we have:

1) Laplacian Comparison: ∆r ≤ ∆Hr.

2) Volume Comparison: A(r)
AH(r)

is non-increasing along radial geodesics.

3) Mean Curvature Comparison: m(r) ≤ mH(r)

(Quantities with superscript are counterparts in the simply connected space with constant

sectional curvature H. Equality holds iff all radial sectional curvatures are equal to H)

Proof. First we prove Laplacian Comparison. Let f(x) = r(x) and note that |∇r| = 1. Out

of cut locus of p, we obtain

|Hess(r)|2 +
∂

∂r
(∆r) +Ric

(
∂

∂r
,
∂

∂r

)
= 0

Let λ1, ..., λn be the eigenvalues of Hess(r). Since the exponential function is radial isom-

etry, one of the eigenvalues, say λ1 is zero. By the Cauchy-Schwarz inequality, we have
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|Hess(r)|2 = λ2
2 + ....+ λ2

n ≥
(λ1 + ...+ λn)2

n− 1
=

tr(Hess(f))

n− 1
=

(∆)2

n− 1

Thus, if Ric ≥ (n− 1)H, then

(∆)2

n− 1
+

∂

∂r
(∆r) + (n− 1)H ≤ 0

Let n =
(n− 1)

∆r
. Then

u′

1 +Hu2
≥ 1. Note that ∆r → (n−1)

r when r → 0; thus u → r.

Integrating the above inequality gives

∆r ≤ ∆Hr =



(n− 1)
√
Hcot

√
Hr, for H > 0,

(n−1)
r , for H = 0

(n− 1)
√
−Hcoth

√
−Hr, for H < 0

Next, we discuss equality case. If equality holds at r0, then for any r ≤ r0, all the inequalities

above become equalities. In particular, the (n − 1) eigenvalues of Hess(r) are equal to

√
Ncot

√
Hr (to simplify the constant, we assume H > 0. For H ≤ 0, replace cot by coth.)

Let Xi be the orthonormal eigenvalues of Hess(r) at r for i = 1, 2, ..., n;

Thus

∇Xi
∂

∂r
=
√
Hcot

√
HrXi.

Extend Xi in such away that [Xi,
∂
∂r ] = 0 at r, then
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Sec

(
X,

∂

∂r

)
= −

〈
∇ ∂

∂r
∇Xi

∂

∂r
,Xi

〉
= −

〈
∇ ∂

∂r

(√
Hcot

√
Hr
)
Xi, Xi

〉
= Hcsc2

√
Hr −

〈
∇ ∂

∂r
Xi, Xi

〉
= Hcsc2

√
Hr −

√
Hcot

√
Hr

〈
∇Xi

∂

∂r
,Xi

〉
= Hcsc2

√
Hr − (

√
Hcot

√
Hr)2 = H

Volume comparison and mean value comparison follows from lemma 4.3.

For the application of the volume comparison theorem, an integrated form is used.

Lemma 4.5. Let f,g be two positive functions defined over [0,∞). If f
g is non-increasing,

then for any R > r > 0, S > s > 0, r > s, R > S, we have

∫ R
r f(t)dt∫ S
s f(t)dt

≤
∫ R
r g(t)dt∫ S
s g(t)dt

Proof. It suffices to show that the function

F (x, y) =

∫ y
x f(t)dt∫ y
x g(t)dt

satisfies ∂F
∂x ≤ 0, ∂F

∂y ≤ 0. It follows that

∫ R
r f(t)dt∫ R
r g(t)dt

≤
∫ S
r f(t)dt∫ S
r g(t)dt

≤
∫ S
s f(t)dt∫ S
s g(t)dt
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We now compute

∂F

∂y
=

1(∫ y
x g(t)dt

)2 (f(y)

∫ y

x
g(t)dt− g(y)

∫ y

x
f(t)dt

)
=

g(y)
∫ y
x g(t)dt(∫ y

x g(t)dt
)2 (f(y)

g(y)
−
∫ y
x f(t)dt∫ y
x g(t)dt

)

But

f(t)

g(t)
≥ f(y)

g(y)
, for x ≤ t ≤ y

Thus

∫ y

x
f(t)dt ≥

∫ y

x

f(y)

g(y)
· g(t)dt =

f(y)

g(y)

∫ y

x
g(t)dt

that is,

f(y)

g(y)
≤
∫ y
x f(t)dt∫ y
x g(t)dt

which implies
∂F

∂y
≤ 0.

Theorem 4.6. Let M be a complete open with Ric ≥ (n − 1)H. Let AΓ
x,y(p) be the set of

q ∈ M such that x ≤ r(q) ≤ y and any minimal geodesic γ from p to q satisfying γ̇ ∈ Γ.

Then

V ol(AΓ
x,y)

V ol(AH(x, y))

is non-increasing. Here, Γ is a measurable subset of Sn−1
p .
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Proof. Note that

V ol(AΓ
(x,y)) =

∫
Γ
dω

∫ min{y,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr

where cut(ω) is the distance to the cut locus in the direction ω ∈ Sn−1
p . Sicce

A(r, ω)

AH(r)
is

non-increasing for any ω and r < cut(ω), lemma 4.5 implies, for z ≥ y

∫ min{y,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr∫ min{y,cut(ω)}

min{x,cut(ω)}
AH(r)dr

≥

∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr∫ min{z,cut(ω)}

min{x,cut(ω)}
AH(r)dr

That is

∫ min{y,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr ≥

∫ min{y,cut(ω)}

min{x,cut(ω)}
AH(r)dr∫ min{z,cut(ω)}

min{x,cut(ω)}
AH(r)dr

·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr

≥

∫ min{y,cut(ω)}

x
AH(r)dr∫ min{z,cut(ω)}

x
AH(r)dr

·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr

≥

∫ y

x
AH(r)dr∫ z

x
AH(r)dr

·
∫ min{z,cut(ω)}

min{x,cut(ω)}
A(r, ω)dr

where the last inequality follows from the three possibilities; cut(ω) ≤ y ≤ z, y ≤ cut(ω) ≤ z,

and y ≤ z ≤ cut(ω).
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The inequality before that uses the fact that

∫ a

x
AH(r)dr∫ b

x
AH(r)dr

is non-increasing for a < b. Integrating the above over Γ, we get

V ol(AΓ
x,y) ≥

∫ y

x
AH(r)dr∫ z

x
AH(r)dr

· V ol(AΓ
x,z)

=
V ol(AH(x, y))

V ol(AH(x, z))
· V ol(AΓ

x,z)

The equality part follows from equality discussion in theorem 4.4.

From theorem 4.6 above we deduce the generalized version of Bishop-Gromov volume com-

parison theorem by letting H = 0, x = 0, and y = r:

Theorem 4.7. (Generalized version of Bishop and Gromov volume comparison)

Let M be a complete open manifold with RicM ≥ 0. Then for any measurable subset

N ⊂ SpM and any p ∈M , the function

ϕ(r) =
V ol(BN (p, r))

rn

is non-increasing on (0,∞).

Corollary 4.8. Let M be a complete open manifold with RicM ≥ 0. Then for any measur-
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able subset N ⊂ SpM , k > 1, and p ∈M ,

V ol(BN (p, kr)) ≤ knV ol(BN (p, r))

For simplicity, let us denote r(x) = rp(x).

Lemma 4.9. Let M be a complete open manifold. Let Σδ be a δ-neighborhood of Σ in SpM .

Σc
δ is a compact subset in SpM since Σδ is open and Σ ∩Σc

δ = ∅. So there exist a constant

r0 ≥ 0 such that BΣcδ
(p, r) ⊂ B(p, r0) for any r > 0.

Proof. On the contrary, there is a sequence {rn} such that rn → ∞ and a corresponding

sequence of minimizing geodesics {σn} such that σn is a minimizing geodesic from p to rn and

σ′n(0) ∈ Σc
δ. We can take σn(t) = expp(tσ

′
n(0)). Since Σc

δ is compact in SpM , the sequence

{σ′n(0)} converges to σ′∞(0) ∈ Σc
δ. Next, we prove that σ∞ is a ray. Otherwise, there is an s

such that the distance from p to expp(sσ
′
∞(0)) is less than s. Say, d(p, expp(sσ

′
∞(0))) = s−ε.

By continuity of expp, there exists δ such that d(expp(sσ
′
∞(0)), expp(sσ

′
k(0))) < ε when

||σ∞ − σk|| < δ, where σk ∈ TpM . Then for rn ≥ s

d(p, expp(rnσ
′
n(0)) ≤ d(p, expp(sσ

′
∞(0)) + d(expp(sσ

′
∞(0)), expp(sσ

′
k(0)))

+d(expp(sσ
′
k(0)), expp(rnσ

′
k(0)))

< (s− ε) + ε+ (rn − s)

= rn
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A contradiction. Hence σ∞ is a ray. This also contradicts the fact that σ′∞(0) ∈ Σc
δ

Remark 4.1. Applying theorem 4.7 above, it is easy to show that the maximum volume

growth condition implies that

lim
r→∞

V ol(BΣ(p, r))

V ol(B(p, r))
= 1 (4.1)

given that the manifold is complete open and admits nonnegative Ricci curvature as evi-

denced in the following lemma and it’s corollary. From lemma 4 of [15] we have

Lemma 4.10. Let M be a complete open manifold with RicM ≥ 0. Suppose that M has a

maximum volume growth i.e

lim
r→∞

V ol(B(p, r))

rn
= αM , αM > 0

then

lim
r→∞

V ol(BΣ(p, r))

rn
= αM

Proof. Since V ol(B(p, r)) = V ol(BΣ(p, r)) + V ol(BΣc(p, r)), it suffices to prove that

lim
r→∞

V ol(BΣc(p, r))

rn
= 0

Given any ε > 0, choose δ > 0 small enough such that the open δ-neighborhood Σδ of Σ

is such that V oln−1(Σ\Σδ) < ε. Here, V oln−1 is the n − 1-dimensional volume in a unit
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sphere SpM . By theorem 9,

V ol(BΣδ\Σ(p, r))

rn

is an increasing function of r. Thus,

V ol(BΣδ\Σ(p, r))

rn
≤ lim

r→0

V ol(BΣδ\Σ(p, r))

rn

=
V oln−1(Σδ\Σ)

n
<
ε

n

By lemma 9, there exists a constant r0 > 0 such that BΣcδ
(p, r) ⊂ B(p, r0) for all r ≥ r0

sufficiently large. Therefore

V ol(BΣc(p, r)

rn
=

V ol(BΣcδ
(p, r))

rn
+
V ol(BΣδ\Σ(p, r))

rn

≤ V ol(B(p, r0))

rn
+
ε

n

≤
(
rn0V oln−1(SpM)

rn
+ ε

)
/n < ε.

Since ε > 0 is arbitrary small, we have proved that

V ol(BΣc(p, r)

rn
= 0

Hence

lim
r→∞

V ol(BΣ(p, r))

rn
= αM
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Corollary 4.11. Let M be a complete open manifold with RicM ≥ 0. Suppose that M has

a maximum volume growth. Then equation (4.1) holds.

Proof. By lemma 11 above

lim
r→∞

V ol(BΣ(p, r))

V ol(B(p, r))
= lim

r→∞

V ol(BΣ(p, r))

rn
· lim
r→∞

1
V ol(B(p,r))

rn

= αM ·
1

αM

= 1

The converse is not true. In other words, equation (4.1) does not necessarily imply maximum

volume growth. We construct a counter example.

4.0.1 Paraboloid in Rn+1(n ≥ 2).

In this subsection we investigate the volume growth condition of a paraboloid in Rn+1(n ≥ 2)

with the purpose of proving that condition (4.1) is weaker than the maximum volume growth

codition on a complete open manifold with nonnegative Ricci curvature.

Some materials in this subsection closely follow expositions from pages 6,7, and 8 in [5].

Let H be a hypersurface in Rn+1 with a smooth parametrization f : D → H defined by

f(x1, x2, · · ·, xn) = (x1, · · ·, xn, r(x1, · · ·, xn)),

where D ⊂ Rn+1. The standard basis {∂1, · · ·, ∂n} for the tangent space TpH at each point
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p = (x1, · · ·, xn) is given by

∂i =
∂f

∂xi
= (0, · · ·, 0, 1, 0, · · ·, 0, ri),

where ri =
∂r

∂xi
. We then have that the unit normal vector is defined by

N =
(−r1, · · ·,−rn, 1)√
r2

1 + · · ·+ r2
n + 1

Second fundamental form and shape operator . Second fundamental form and shape

operator makes it easier to compute curvature tensors of hypersurfaces. Second fundamental

form of H denoted by

Π : T (H)× T (H)→ N (H)

is defined as Π(X,Y ) := (∇̃XY )⊥, where T (H) is a tangent bundle of H and N (H) is a

normal bundle of H and ∇̃ is a Riemannian connection on Rn+1. Considering N , we can

replace Π by a simpler scalar-valued form h

h(X,Y ) = 〈Π(X,Y ), N〉.

Since N is a unit vector,

Π(X,Y ) = h(X,Y )N

So by definition,
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hi,j = h(∂i, ∂j) = ∇̃∂i∂j ·N

=
∂2f

∂xi∂xj
·N

=
rirj√

r2
1 + · · ·+ r2

n + 1
,

where ri,j = ∂i∂jr. Raising one index of h, we get a shape operator s of M characterized

by

〈sX, Y 〉 = h(X,Y ),

for all X,Y ∈ T (H). Because h is symetric, s is a self adjoint linear endomorphism on

Tp(H), that is

〈sX, Y 〉 = 〈X, sY 〉,

for all X,Y ∈ T (H).

Computing Riemannian curvature tensor of a hypersurface by shape operator .

Using s we can compute Riemannian curvature tensor of a hypersurface H as follows.

The Weingarten equation states that if X,Y ∈ T (H) and N ∈ N (H) are arbitrary extended

to Rn+1 then

〈∇̃XN,Y 〉 = −〈N,Π(X,Y )〉

at every point of H. So,

s∂i = −∂N
∂xi

(4.2)
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Also by denoting s∂i = sji∂j , we have

s∂i = (s1
i , · · ·, sni ,

∑
j

sji rj) (4.3)

Let b = r2
1 + · · ·+ r2

n + 1. Then from equations (4.2) and (4.3), we obtain

sji = −b−
3
2 rj
∑
k

rkrk,i + b−
1
2 rj,i. (4.4)

We can also write the shape operator s in matrix form:

h(∂i, ∂k) = hik = 〈s∂i, ∂k〉

= 〈sji∂i, ∂k〉

= sjigjk

So

sji = gikhik (4.5)

and we can rewrite (4.4) as

sji =
∑
k

(−b
3
2 rjrk + b−

1
2 δjk)rk,i

46



then by symmetry of h and equation (4.5) we have that gik = −b−1rjrk + δjk, where δjk is

the Kronecker symbol.

For any X,Y, Z,W ∈ Tp(H), we define Gauss equation as

R(X,Y, Z,W ) = R(X,Y, Z,W )− 〈Π(X,W ),Π(Y,Z)〉+ 〈Π(X,Z),Π(Y,W )〉

in Rn+1, R = 0. Hence

R(X,Y, Z,W ) = −h(X,Z)h(Y,W ) + h(X,W )h(Y,Z)

and

R(X,Y, Y,X) = h(X,X)h(Y, Y )− h(X,Y )2

that is

R(∂i, ∂j , ∂k, ∂l) = h(∂i, ∂l)h(∂j , ∂k)− h(∂i, ∂k)h(∂j , ∂l)

and

Rijkl = hilhjk − hikhjl = b−1(ri,lrj,k − ri,krj,l)

Paraboloid . Consider a hypersurface f : Rn → M ⊂ Rn+1 defined by f(x1, · · ·, xn) =

(x1, · · ·, xn, r(x1, · · ·, xn)), where r = x2
1 + · · · + x2

n. Then ri = 2xi, ri,j = 2δij and
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b = r2
1 + · · ·+ r2

n + 1 = 4x2
1 + · · ·+ 4x2

i + 1. The curvature tensor becomes

Rijkl = 4b−1(δilδjk − rikrjl)

and

Rijji = 4b−1(δiiδjj − δijδji) =
4

b

At p = (x1, · · ·, xn) let X ∈ TpM be a vector. Construct an orthonormal basis {Ei} ⊂ TpM

such that X
|X| = E1. Let

X = a1∂1 + · · ·+ an∂n

and

Ei = ei1∂1 + · · ·+ ein∂n

then

R(Ei, X,X,Ei) = h(X,X)h(Ei, Ei)− h(X,Ei).

Since h is bilinear,

R(Ei, X,X,Ei) =
4

b
(a2
i + · · ·+ a2

n)((ei1)2 + · · ·+ (ei1)2)− 4

b
(a1e

i
1 + · · ·+ ane

i
n)
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Note that 〈X,Ei〉 = 0 implies a1e
i
1 + · · ·+ ane

i
n = 0. Thus R(Ei, X,X,Ei) > 0 and

Ricci(X) =

n∑
i=1

R(Ei, X,X,Ei) > 0

The vertex 0 of a paraboloid M has an empty cut locus. Assume otherwise, that

is, let γ : [0, a]→M be a minimizing geodesic such that γ(0) = 0 and γ(a) = p, where p is

a cut point of 0. We consider two cases.

Case I: p is a conjugate point of 0 a long a geodesic γ. Choose an orthonormal basis

{ei}i=1,···,n of T0H where e1 = γ̇(0) which can be extended to parallel orthonormal fields

γ̇(t), e2(t), · · ·, en(t) along γ. Let J be a nontrivial Jacobi field a long γ such that J(0) =

0 = J(p). Then J(t) =
∑n

i=1 ai(t)ei(t) for smooth functions ai ∈ C∞, i = 1, · · ·, n.

R(J, γ̇)γ̇ =
n∑
i=1

〈R(J, γ̇)γ̇, ei〉ei

=
n∑
i=1

 n∑
j=1

aj〈R(ej , γ̇)γ̇, ei〉ei


=

n∑
j=1

aj〈R(ej , γ̇)γ̇, e1〉e1 +
n∑
i=2

 n∑
j=1

aj〈R(ej , γ̇)γ̇, ei〉ei


= 0 +

n∑
i=2

aiei
4

b
=

4

b

n∑
i=2

aiei

Also note that

d2

dt2
J =

n∑
i=1

ai(t)
′′ei(t)

so
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n∑
i=1

ai(t)
′′ei(t) +

n∑
i=2

ai(t)ei(t)
4

b
= 0. (4.6)

By Symmetry of curvature tensor,

d2

dt2
〈J, γ̇〉 = 〈D2

t J, γ̇〉

= −〈R(J, γ̇)γ̇, γ̇〉

= −R(J, γ̇, γ̇, γ̇) = 0

Thus 〈J, γ̇〉 is a linear function of t or a constant. By construction, 〈J, γ̇〉 = a1(t), and from

initial conditions of Jacobi field J , a1(0) = a1(p) = 0. Thus a1(t) = 0 for any t. Hence

equation (4.6) becomes

n∑
i=2

ai(t)
′′ei(t) +

n∑
i=2

ai(t)ei(t)
4

b
= 0.

i.e

d2

dt2
J + J

4

b
= 0. (4.7)

Applying ODE to equation (4.7) above, we obtain a unique solution J(t).

SinceM is complete there exists a ray τ from 0 ∈M . Let {fi}i=1,···,n be an orthonormal basis

of T0M where f1 = τ̇(0) and can be extended to parallel orthonormal fields τ̇(t), f2(t), · ·
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·, fn(t) along τ . Let J be a Jacobi field along τ normal to τ . Then

J(t) =

n∑
i=2

bifi(t)

and

d2

dt2
J +

4

b
J = 0 (4.8)

Note that
4

b
is constant on each metric circle S0(t) = {p ∈ Rn : d(0, p) = t} for t ∈ [0,∞).

Since γ and τ are minimizing geodesics within (0, a], there is a unique solution satisfying

both equations (4.7) and (4.8). This contradicts that τ is a ray. Hence there is no conjugate

point of 0 a long γ. In other words, the vertex 0 has no conjugate points. Hence 0 is a pole.

Case II. There is another minimizing geodesics τ : [0, a] → M such that γ 6= τ in (0, a),

γ(0) = τ(0), and γ(a) = τ(a). Since 0 is a pole and M is diffeomorphic to Rn, there is no

such geodesic τ .

From cases I and II above, the vertex 0 of a paraboloid M ⊂ Rn+1 has an empty cut locus.

Thus volume growth condition (4.1) holds at 0 and extends to other points by lemma 1.7.

Maximum volume growth . Next, we establish that a paraboloid M ⊂ Rn+1 doesn’t

admit maximum volume growth condition. Let r > 0 and a point p ∈M . Denote

R(p, r) = {γ(r) : γ a ray from p}

We defineD(p, r) = sup
B
diam(B), where the supremum is taken over all bounded components

B of M\B(p, r), with B ∩R(p, r) 6= ∅. The following is a special case of lemma 4.1 in [16].
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Lemma 4.12. Let f : R+ → R+ be a function defined by f(z) =
√
x2

1 + x2
2 + · · ·+ x2

n,

where f(z) =
√
z. f(z) =

√
x2

1 + x2
2 + · · ·+ x2

n defines a surface of revolution in Rn+1 with

coordinates (x1, x2, · · ·, xn, z). The volume growth of the surface(paraboloid) is at most r
n+1
2 .

Proof. Let r = d(0.(x1, x2, · · ·, xn, z)). It follows that r =
∫ z

0

√
1 + [f ′(z)]2dz. By definition

f(z) ≤ O(z
1
2 ). Then f ′(z) ≤ O(z−

1
2 ) ≤ O(1). Hence

z ≤ r ≤ Cz (4.9)

for some constants C > 0. Clearly D(0, r) ≤ 2πf(z) = O(z
1
2 ). Hence by equation(4.9),

D(0, r) ≤ O(r
1
2 ). Thus the volume of a ball centered at 0 is at most r

n+1
2 .

Remark 4.2. From lemma 4.14 above, if M = {(x1, x2, · · ·, xn, z) : z = x2
1 +x2

2 + · · ·+x2
n},

then M does not admit the maximum volume growth condition. However, since the point

p = (0, 0, · · ·, 0) has an empty cut locus, equation (4.1) is satisfied at p. By lemma 1.7, we

have the same conclusion at other points as well.
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•
p

(M, ds2
M)

a Pole

Figure 4.1: A paraboloid in Rn+1
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Chapter 5

Complex Manifolds

Definition 5.1. Let M be a topological space which is connected, Hausdorff and has count-

able base. It is called complex manifold of (complex) dimension n if there exists an open

covering {Ua}a∈A, and for each a ∈ A a homeomorphism fa from Ua onto an open subset

Da ∈ Cn, such that for any pair a, b ∈ A with Uab = Ua ∩ Ub 6= ∅, the mapping fa ◦ f−1
b is

a biholomorphism (i.e., homeomorphism that is two way holomorphic) between fb(Uab) and

fa(Uab).

5.0.1 The Almost Complex Structure

Let Mn be a complex manifold of dimension n. Since Cn ∼= R2n, and biholomorphism are

diffeomorphisms, M is also differentiable manifold of (real) dimension 2n. It is denoted by

MR and it is called the the underlying differentiable manifold of the complex manifold.

The complex manifold M is called a complex structure on MR.

Write N2n = MR. The complex structure on N induces a splitting of the complexification

of the tangent bundle TNC = TN ⊗R C into the sum of complex subbundles of equal rank.
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We can denote this splitting by TNC = TM (1,0) ⊕ TM (0,1). We can describe this splitting

in coordinate neighborhood as follows.

Let {z1, ....., zn} be a local holomorphic coordinate in a neighborhood U of p ∈ M . De-

note zi = xj + iyj . Then (x1, ...., xn, y1, ...., yn) is a smooth(real) coordinate in U , and{
∂
∂x1

, ....., ∂
∂yn

}
gives a local frame of the tangent bundle TN . Denote by

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)

for each 1 ≤ j ≤ n. Then TM (1,0) is the complex subbundle of TNC spanned by { ∂
∂z1

, ...., ∂
∂zn
},

while TM (0,1) is spanned by { ∂
∂z1

, ...., ∂
∂zn
}.

A bundle isomorphism J : TN → TN defined by

J
∂

∂xj
=

∂

∂yj
, J

∂

∂yj
= − ∂

∂xj

for each 1 ≤ j ≤ n can be linearly extended over C to an isomorphism on TNC, and still

denoted by J , where

J
∂

∂zj
= i

∂

∂zj
, J

∂

∂zj
= −i ∂

∂zj

for each 1 ≤ j ≤ n. Definition of J is independent of local coordinates, so J is a bundle

map from TN onto TN .

For a real vector ( or vector field) X on N , X− iJ is a vector in TM (1,0), and any vector in

TM (1,0) is in this form for some real tangent vector X. Thus the map X 7→ X−iJX defines

an isomorphism (over R) between TN and TM (1,0). Sections of TNC (TM (1,0), or TM (0,1))

are called complex fields (of type (1,0) or (0,1)) on M . A complex field is of type (1, 0) if
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and only if it is in the form X − iJX for some real vector field X.

Definition 5.2. An endomorphism J of a tangent bundle of a differentiable manifold N

satisfying J2 = −I is called an almost complex structure on N . Here, I denotes the

identity map of TN

5.0.2 Kähler manifold

Let Mn be a complex manifold. A Hermitian metric on M is simply a Hermitian metric

defined on the holomorphic tangent bundle TM . That is, a covariant 2-tensor which is

Hermitian symmetric and positive definite everywhere, i.e

h =
n∑

i,j=1

hijdzidzj

where (z1, z2, · · · , zn) is a local holomorphic coordinate, h = (hij) is an nxn matrix of

smooth functions which are Hermitian symmetric and positive definite. The real part g =

Re(h) of h, is a symmetric, positive definite covariant 2-tensor. So, g is a Riemannian

metric on the underlying smooth manifold MR of M . Thus a Hermitian manifold is always

a Riemannian manifold. Conversely, if we start with a Riemannian metric g on MR, then

it is (coming from) a Hermitian metric iff g(JX, JY ) = g(X,Y ) for any real vector fields

X, and Y , where J is the almost complex structure on M . Under a local holomorphic

coordinate (z1, z2, · · · , zn), if we write zk = xk + xn+k, then (x1, x2, · · · , x2n) is a local

diffentiable coordinate in MR. By writing

g =

2n∑
a,b=1

gabdxadxb
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we have that

g = (gab) =

 A B

−B A

 ,
where h = (hij) = A+

√
−1B

Hermitian metric is a Kähler metric if it’s torsion, T = dϕ+tθ∧ϕ vanishes, where θ = ∂hh−1

and ϕ is the dual of a local holomorphic frame of a tangent space.

Suppose (E, h) is a Hermitian vector bundle over a complex manifold Mn and u and v are

sections in E, then we define a curvature tensor Ωuv by

Ωuv =

r∑
i,j,k=1

Ωikhkjuivj

where Ω = dθ − θ ∧ θ, Ω = (Ωij)1≤i,j≤n, u =
∑
uiei, and v =

∑
viei under a frame

{e1, · · · , er} of E. For sections u, v of E and (1, 0) type tangent vectors X, Y in M , we

denote

RXY uv = Ωuv(X,Y )

Restricting the curvature to the tangent bundle of Mn, i.e E = T 1,0M , it becomes a

covariant 4-tensor

RXY ZW = ΩZW (X,Y )

The normalized curvature in the direction of X and Z

B(X,Z) =
RXXZZ
|X|2|Z|2
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is called the bisectional curvature of h in the direction of X and Z, while

H(X) = B(X,X) =
RXXXX
|X|4

is called the holomorphic sectional curvature of h in the direction X.

This R is not the Riemannian curvature tensor of the Riemannian metric Re(h) in general,

unless h is Kähler. The following is a discussion of Kähler case:

Let (Mn, h) be a Kähler manifold. Denote by 〈, 〉 the underlying Riemannian metric Re(h),

and by ∇, R the Riemannian connection and Riemannian curvature respectively. The

curvature tensor R of h is just the linear extension (over C) of the Riemannian curvature

tensor R of the metric Re(h). This justify the use of same symbol.

The Kählerness of the metric means 〈Ju, Jv〉 = 〈u, v〉 and ∇u(Jv) = J∇uv for any two

real vector fields u and v, where J is the almost complex structure of M . The Riemannian

curvature tensor satisfies R(u, v, Jz, Jw) = R(u, v, z, w) because of R(u, v)Jz = JR(u, v)z

by definition of R and commutativity of ∇∗ with J . In practice, it is more convenient to

write R in terms of its complex components.

When we extend g = 〈, 〉 linearly over C to TMR
⊗

C = TM
⊕
TM , then 〈, 〉 becomes

a complex bilinear form and h(X,Y ) = 2〈X,Y 〉, 〈X,Y 〉 = 〈X,Y 〉 for any X,Y ∈ TM .

For the linearly extended Riemannian curvature tensor R over C to a quadrilinear map on

TM
⊕
TM , the only non-trivial components of R are R(X,Y , Z,W ) for X, Y , Z, W in
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TM . By First Bianchi identity, we get

R(X,Y , Z,W ) = R(Z, Y ,X,W )

= R(X,W,Z, Y )

If X = 1√
2
(u− iJu) and X = 1√

2
(v − iJv), by Bianchi identity, we have

R(X,X, Y, Y ) = −R(u, Ju, v, Jv)

= R(v, u, Ju, Jv) +R(Ju, v, u, Jv)

= R(v, u, u, v) +R(Ju, v, v, Ju)

Therefore when X, Y are non-zero,

B(X,Y ) =
|Ju ∧ v|2

|u|2|v|2
K(Ju ∧ v) +

|u ∧ v|2

|u|2|v|2
K(u ∧ v)

and H(X) = B(X,X) = K(u ∧ Ju) where K is the sectional curvature:

K(Ju ∧ v) =
R(Ju, v, v, Ju)

|Ju ∧ v|2

and

K(u ∧ v) =
R(u, v, v, u)

|u ∧ v|2

From this we deduce that for a Kähler manifold, the bisectional curvature is ”dominated”

by the sectional curvature in the sense that B will be positive (negative,nonpositive, or non-
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negative) if K is so. While the holomorphic sectional curvature just the sectional curvature

in a 2-plane π ∈ TpMR such that Jπ = π (i.e a holomorphic plane section).

The Ricci curvature tensor of Kähler manifold (M,h) is defined to be the trace of R:

r(X,Y ) =
∑n

i=1R(X,Y , ei, ei) for any unitary frame {ei}. We use the same letter to

denote value

r(X) =
1

|X|2
r(X,X) =

n∑
i=1

B(X, ei)

called the Ricci curvature of h in the direction of X 6= 0. So, r is the average value of B

which implies that the bisectional curvature dominates the Ricci curvature.

The scalar curvature s of a Kähler manifold is defined by

s = 2

n∑
i=1

r(ei)

Definition 5.3. If f is of class C2, then f is plurisubharmonic iff the hermitian matrix

Lf = (αij) called Levi matrix with entries αij = ∂2f
∂zi∂zj

is positive semidefinite.

Equivalently, a C2-function f is plurisubharmonic iff
√
−1∂∂f is a nonnegative (1,1) form.

Next, we exhibit a modified version of theorem 1.9. We simply adjust the proof presented

by Chen and Zhu in [6].

Theorem 5.4. Let M be a complex n-dimensional complete open Kähler manifold with

nonnegative bisectional curvature. Suppose also its bisectional curvature is positive at a

point x0 ∈M . Then the volume growth of M satisfies

V ol(B(p, r)) ≥ αrn
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for all p ∈ M and 1 ≤ r < +∞, where α is a positive constant depending on x0 and the

dimension n.

Schoen and Yau constructed a cut-off function [14] as follows (see Lemma 2.1 in [6]).

Lemma 5.5. Suppose M is an n-dimensional complete Riemannian with nonnegative Ricci

curvature. Then there exists a constant C(n) > 0, depending only on the dimension n,

such that for any p ∈ M and any number 0 < r < +∞, there exists a smooth function

ϕr ∈ C∞(M) satisfying

e−C(n)(1+
d(x,p)
r

) ≤ ϕr(x) ≤ e−(1+
d(x,p)
r

),

|∇ϕr(x)| ≤ C(n)

r
ϕr(x),

and

|∆ϕr(x)| ≤ C(n)

r2
ϕr(x).

for x ∈M where d(x, p) is the geodesic distance between x and p.

Proof of Theorem 5.4. The Busemann function bp is strictly plurisubharmonic in a neigh-

borhood of x0. Note also that nonnegative bisectional curvature implies nonnegative Ricci

curvature. So, by Lemma 5.5 above, for a fixed p ∈M , we get the cut-off point function ϕr

for any r > 0. The following construction is found in [6] (Proof of Theorem 1, page 73); fix

a small positive number δ and a large positive number r. Let ρ : R2n → R be a nonnegative

smooth function supported in the unit ball centered at the origin of R2n, with

∫
R2n

ρ(v)dv = 1
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Set

ρε(v) =
1

ε2n
ρ(
v

ε
), v ∈ R2n, ε > 0,

and

(η ∗ ρε)(x) =

∫
R2n

ρε(v)η(expx(v))dv, for x ∈M.

Clearly η ∗ ρε is smooth and converges to η uniformly on compact sets as ε→ 0. It is also

well-known that η ∗ ρε is also plurisubharmonic on any compact subset as ε > 0 becomes

small enough. Denote by ω the Kähler form of M . We compute

∫
{ϕr>δ}

(ϕr − δ)n(
√
−1)n(∂∂(η ∗ ρε)n

= −
∫

{ϕr>δ}

n(ϕr − δ)n−1(
√
−1)n∂ϕr ∧ ∂(η ∗ ρε) ∧ (∂∂(η ∗ ρε))n−1

≤
∫

{ϕr>δ}

2nC(2n)

r
(ϕr − δ)n−1ϕr(

√
−1)n−1(∂∂(η ∗ ρε))n−1 ∧ ω

≤
∫

{ϕr>δ}

(2nC(2n))2

r2
(ϕr − δ)n−2ϕ2

r(
√
−1)n−2(∂∂(η ∗ ρε))n−2 ∧ ω2

. . .

≤
∫

{ϕr>δ}

(2nC(2n))n

rn
ϕnrω

n. (5.1)

Since η is strictly plurisubharmonic in a neighborhood of x0, by letting ε → 0 and the

δ → 0, we know that there is a positive number c0, depending on x0 and the dimension n,

such that for r ≥ 1,
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0 < c0 ≤
∫
M
ϕnr (
√
−1)n(∂∂bp)

n

≤ 2nC(2n)

rn

∫
M
ϕnrω

n

≤ 2nC(2n)

rn

∫
M
ϕrω

n (5.2)

By Lemma 5.5, we have

∫
M
ϕrω

n ≤
∫
B(p,r)

e−(1+
d(x,p)
r

)ωn +

∞∑
k=0

∫
B(p,2k+1r)\B(p,2kr)

e−(1+
d(x,p)
r

)ωn

≤ V ol(B(p, r)) +
∞∑
k=0

e−2k(2k+1)2nV ol(B(p, r))

≤ CV ol(B(p, r)) (5.3)

where C is a positive constant depending only on the dimension n, C = 1+
∞∑
k=0

e−2k(2k+1)2n.

Since p is arbitrary, by combining equations (5.2) and (5.3), we get

V ol(B(p, r) ≥ αrn

for all p ∈M and 1 ≤ r <∞, where α = c0
2nC(2n)C as desired. 2

Definition 5.6. A complex manifold Mn is Stein if and only if it can be embedded as a

closed complex submanifold in CN , n < N .

For any open neighborhood V ⊂ CN (Figure 4.1), V ∩Mn = {f1 = 0, ....., fN−n = 0}, where

f1, ....., fN−n are holomorphic in V and

(
∂fi
∂zj

)
1≤j≤n

1≤i≤N−n

has rank N − n.
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V

Mn

CN

Figure 5.1: Stein Manifold

Stein manifolds can also be defined intrinsically. That is, let Mn ⊂ CN be such a manifold,

and denote by O(M) the ring of global holomorphic functions on Mn. Then M satisfies

the following:

1. M is holomorphically convex, i.e for any compact K ⊂ M , the set K̂ := {x ∈

M | |f(x)| ≤ supK |f |,∀f ∈ O(M)} is also compact.

2. Given any two distinct points x and y ∈M , there exists f ∈ O(M) such that f(x) 6=

f(y).

3. Given any x ∈ M , there exists f1, · · · , fn in O(M) such that (f1, · · · , fn) gives a

holomorphic coordinate in a neighborhood of x.

Grauert established that if a complex manifold admits a smooth strictly plurisubharmonic
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exhaustion function then it is a Stein manifold.

Theorem 5.7 (H. Grauert). Let M be a complex manifold. Suppose there exists a C∞

strictly plurisubharmonic exhaustion function f : M → R. Then M is a Stein manifold.

The proof of Grauert is hard. However, it’s converse is easy to prove.

Theorem 5.8. Let Mn ⊂ CN be a Stein manifold, then there exists a C∞ strictly plurisub-

harmonic exhaustion function.

Proof. Let ρ : Cn → R be a distance function i.e ρ(z) = |z|2 = |z1|2 + .....+ |zk|2 : Cn → R.

By direct computation, ∂∂ρ is positive definite i.e ρ is strictly plurisubharmonic. The

restriction of ρ on M , ρ|M : M → R is again strictly plurisubharmonic. It is clear that ρ is

exhaustion. And then restriction, ρ|M is also an exhaustion.
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Chapter 6

Complete Open Manifolds with

nonnegative Ricci curvature

In this chapter we investigate structures of a complete open manifold with nonnegative Ricci

curvature. It is natural to expect that the rich results in the case of sectional curvature

are easily attainable in the case of Ricci curvature. However, in the latter case, there are

relatively few structural results except in a lower dimensional case n = 2 where all notions

of curvature coincide. The Busemann function is one of the most useful tool in studying

the structure of positively curved complete open manifolds. In the former case (sec ≥ 0),

it is an easy consequence from Topogonov comparison theorem that bp is convex. It then

easily follows that the sublevel sets of bp are convex and compact. This argument doesn’t

work for the latter case (Ric ≥ 0) because it is only known that bp is subharmonic. Since

the volume expansion is dependent on the Ricci curvature tensor, the natural idea is to

apply volume growth comparison theorem. As mentioned in chapter 1 (Theorem 1.5), Shen

proved in [17] that if M is a complete open manifold with a nonnegative Ricci curvature

66



and maximum volume growth, then for any point p ∈M , bp is exhaustion. By remark 4.1,

we extend this theorem by replacing the maximum volume growth condition with a weaker

condition in theorem 1.8.
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•
p

•
q

•
x

h(x)

Figure 6.1: Excess function

Theorem 1.8 states: Let M be a complete open manifold with RicM ≥ 0. Let α(n) = 9n−1
9n

where n = dimRM . If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
,

then for any a ∈ R, b−1
p (a) is compact .

Proof. (Proof of Theorem 1.8)

Proving by contradiction, we assume that b−1(a) is non-compact and then show that the

assumed volume growth condition is not true.

We define the excess function for two points p, q as

ep,q = d(p, x) + d(x, q)− d(p, q).

By the triangle inequality (Figure 6.1), we have that

ep,q(x) ≤ 2h(x) (6.1)

Denote rp(x) = d(p, x). Assume that the minimizing geodesic between p and q is part of

a ray emanating from p. Now, taking the limit of inequality (6.1) as q goes to infinity, we
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•
x

•
p

C(Σ)

BΣ(p, rp(x) + hp(x))

BΣc(p, rp(x) + hp(x))

hp(x)

rp(x)− hp(x)

BΣc (p, rp(x)− hp(x))

B (x, hp(x))

Figure 6.2: B(x, hp(x)) ⊂ BΣc(p, rp(x) + hp(x))\BΣc(p, rp(x)− hp(x))

end up with the following inequality

rp(x)− lim
t→∞
{t− d(x, γ(t))} ≤ 2hγ(x), (6.2)

where hγ(x) is a distance from x to a ray γ emenating from p. Since

rp(x)− bp(x) ≤ rp(x)− lim
t→∞
{t− d(x, γ(t))}
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for each ray γ emanating from p, inequality (6.2) implies that

rp(x)− bp(x) ≤ 2hγ(x) (6.3)

Let hp(x) = d(x,Rp), where Rp is a union of rays emanating from p. Since inequality (6.3)

holds for any ray γ, we have that

rp(x)− bp(x) ≤ 2hp(x) (6.4)

Recall that

Σ = {v ⊂ SpM | expp(rv) : [0,∞)→M is a ray}.

and

C(Σ) ∩ C(Σc) = ∅.

For any r > 0 and p ∈M we have that

BΣ(p, r) ∩BΣc(p, r) = ∅

Observe that B(x, hp(x)) ⊂ C(Σc). It then follows that

B(x, hp(x)) ⊂ BΣc(p, rp(x) + hp(x))

See figure 6.2.
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Since bp is exhaustion whenever hp is bounded, we assume that hp is unbounded. Due to

boundlessness of b−1
p (a), we can construct a diverging sequence {xm} ⊂ b−1

p (a). Conse-

quently, {hp(xm)} is a divergence sequence.

For simplicity let us denote hm = hp(xm) and rm = r(xm). By the generalized version of

Bishop-Gromov volume comparison theorem,

V ol(BΣc(p, rm − hm))

V ol(BΣc(p, rm + hm))
≥
[
rm − hm
rm + hm

]n
=

[
1− hm

rm

1 + hm
rm

]n

From figure 6.2 above, we have

B(xm, hm) ⊂ BΣc(p, rm + hm)\BΣc(p, rm − hm) (6.5)

and

V ol(B(xm, hm) ≤ V ol(BΣc(p, rm + hm))− V ol(BΣc(p, rm − hm))

≤

{
1−

[
1− hm

rm

1 + hm
rm

]n}
V ol(BΣc(p, rm + hm))

≤ V ol(BΣc(p, 3hm + a)) (6.6)

The last inequality is due to the fact that h ≤ r and

rp(x)− bp(x) ≤ 2hp(x)
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In particular

rp(x) + h(x) ≤ 3h(x) + a, when x ∈ b−1
p (a)

Now, denote r1(x) = d(x1, x). By triangle inequality and equation (6.4),

lim
m→∞

sup
r1(xm)

hp(xm)
≤ lim

m→∞
sup

r1(p)

hp(xm)
+ lim
l→∞

sup
rp(xm)

hp(xm)

≤ 2 (6.7)

Also note that

B(x1, hm) ⊂ B(xm, hm + r1(xm)) (6.8)

By volume comparison theorem we obtain

V ol(B(xm, hm)) ≥
[

hm
hm + r1(xm)

]n
V ol(B(xm, hm + r1(xm)) (6.9)

For simplicity we denote fp(r) = V ol(B(p, r)) for a fixed p ∈M . From inequality (6.7),

(6.8), and (6.9), we have
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lim
m→∞

inf
V ol(B(xm, hm))

fp(hm)

≥ lim
m→∞

inf

[(
hm

(hm + r1(xm))

)n V ol(B(xm, hm + r1(xm)))

fp(hm)

]
≥ lim

m→∞
inf

[(
hm

(hm + r1(xm))

)n V ol(B(x1, hm))

fp(hm)

]
≥ lim

m→∞
inf

1(
1 + r1(xm)

hm

)n lim
m→∞

inf
V ol(B(x1, hm))

fp(hm)

≥ 1

3n
(6.10)

The last inequality is due to the fact that the volume growth

lim
m→∞

inf
V ol(B(x1, hm))

fp(hm)

is independent of the base point x1.

From inequalities (6.6), (6.10), and the volume comparison theorem, we have

1

3n
≤ lim

m→∞
inf
V ol(B(xm, hm))

fp(hm)

≤ lim
m→∞

inf
V ol(BΣc(p, 3hm + a))

fp(hm)

≤ 3n lim
m→∞

inf
V ol(BΣc(p, hm))

fp(hm)
(6.11)

Which leads to the inequality

lim
m→∞

inf
V ol(BΣc(p, hm))

fp(hm)
≥ 1

9n
(6.12)
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However, the equation

V ol(B(p, r) = V ol(BΣ(p, r)) + V ol(BΣc(p, r))

and the volume growth condition assumption imply that

lim
r→∞

inf
V ol(BΣc(p, r))

fp(r)
<

1

9n
(6.13)

which contradicts inequality (6.12). Hence b−1
p (a) must be compact.

Example 6.0.1. Consider M = {(x1, x2, · · ·, xn, z) : z = x2
1 + x2

2 + · · · + x2
n} ⊂ Rn+1.

(M, ds2
M) is a complete open manifold with positive sectional curvature as shown in chapter

4. Here, ds2
M is an induced Euclidean metric. For 0 6= q ∈ M, let Dr(q) be a geodesic ball

of radius r around q. Consider a smooth function f : Dr(q)→ R. For a small neiborhood U

of Dr(q), there exists a smooth function h :M→ R such that h|
Dr(q)

= f and supp h ⊂ U .

For ε > 0, denote Mε = (M, ds2
M + εhds2

M). We can choose ε small enough such that the

curvature remains positive throughout M and an extension γ : [0,∞) →Mε of a minimal

geodesic from 0 = p to q leaves Dr(q) forever and intersects one of the previously a ray at

a point. It follows that the point p is no longer a pole. Since only rays intersecting and

neighboring Dr(q) are affected in a new manifold, for 0 < α < 1, we can vary r > 0 and

ε > 0 such that

lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
= α

Neither any other point is a pole in this metric.
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•
p

•
q

Not a Pole

Dr(q)

Figure 6.3: Metric pertubation of a paraboloid (Mε = (M, ds2
M + εhds2

M))
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Chapter 7

On the Structure of a Complete

Open Kähler Manifolds

In this section, we present the proof of theorem 1.9.

7.0.1 Yau’s conjecture

Yau’s Uniformization conjecture: Let (M,ds2) be a complete open Kähler manifold

with positive bisectional curvature. Then M is biholomorphic to Cn, n = dimCM .

Weaker version (Greene-Wu, Siu, Yau): Let M be a complete open Kähler manifold

with positive bisectional curvature. Then M is Stein.

The most recent partial result of Yau’s uniformization conjecture is stated as follows.

Theorem 7.1. (Gang Liu [12], Lee-Tam [11], 2017) Let M be a complete open Kähler

manifold with nonnegative bisectional curvature and maximum volume growth. Then M is

biholomorphic to Cn
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In [21], Wong and Zhang partially proved a weaker version.

Theorem 7.2. (Wong-Zhang) Let M be a complete open Kähler manifold with positive

bisectional curvature. If M admits a maximum volume growth then M is Stein.

Definition 7.3. A real-valued function g : M → R is said to support f at p ∈ M if and

only if g is continuous near p, g ≤ f and g(p) = f(p).

Definition 7.4. Define

Sf(p) = lim
r→0

inf
2(dimM)

r2

{∫
∂B(p,r)

f ? dσrp − f(p)

}

where ? is the usual star operator in Hodge theory and σrx is the Green’s function of the ball

B(p, r). Recall that σrx is a fundamental solution of the Laplace-Beltrami operator ∇ with

singularity at x (i.e ∇σrx = δx) which vanishes on ∂B(p, r).

Let M be a Kähler manifold and f |L be the restriction of f to a 1-dimensional complex

submanifold L through p. Then S(f |L)(p) is defined via induced Kähler metric on L, and

by definition,

Pf(p) = inf
L
S(f |L)(p)

where the infinum is taken over all 1-dimensional complex submanifold L of M through p.

Lemma 7.5. [Lemma 3 [22]] f is strictly plurisubharmonic if for some positive function

k on M , Pf ≥ k.

Lemma 7.6. [Lemma 4 [22]] If g supports f at p, then Pf(p) ≥ Pg(p). If f is supported

at every point of M by a strictly plurisubharmonic then f is strictly plurisubharmonic.
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Lemma 7.7. [Lemma 1 [22]] If f is C2 at p, then Pf = 4min∂
X

∂f(X,X) where X runs

through all unit vectors tangent vectors of type (1, 0) at p.

Greene and Wu [22, Theorem A part (c) ] proved the following result:

Theorem 7.8. If M is a complete open Kähler manifold with positive bisectional curvature

then bp is strictly plurisubharmonic.

Idea of the proof: It suffices to prove that Pbp(x) ≥ 0. Recall that Br
p(x) = r −

d(x, ∂B(p, r)) and that Br
p(x)→ bp(x) uniformly. Consider a ball B of radius s containing

x. Let y ∈ ∂B(p, r) a point satisfying d(x, y) = d(x, ∂B(p, r)) = r. Define f : B → R by

f = r − d(·, y). Since f(x) = Br
p(x), f supports Br

p at x.

The next move is to find a C∞ function g : B → R that supports f at x.

Let γ : [0, r]→M be a minimizing geodesic from x to a point in ∂B(p, r) such that |γ̇| = 1.

Let A be a ball of radius s in TpM . Define the following (dimR)-parameter variation of γ,

namely k : [0, r]×A→M such that if X ∈ A and X(t) is the parallel translate of X a long

γ to γ(t), k(t,X) = expγ(t)[(1− t
r )X(t)].

Note that since parallel translation preserves the complex structure tensor J , J [X(t)] =

(JX)(t) for every X ∈ A. This plays a role in the following summary of the properties of k

i) k is C∞

ii) k(t, 0) = γ(t) for all t ∈ [0, r], where 0 is the point of origin in TpM .

iii) k(0, X) = exppX for every X ∈ A.

iv) k(r,X) = y for evry x ∈ A.
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v) if X ∈ TpM and sX ∈ A for every s ∈ (−a, a). Then the variation of γ given by

[0, r]× (−a, a)→M such that (t, s) 7→ k(t, sX) is a variation that induces the vector

field a long (1− t
r )X(t) along γ.

vi) The variation of γ given by (t, s) 7→ k(t, sX) and (t, s) 7→ k(t, sJX) induces a vector

field along γ such that J applied to the former yields the latter.

Now define g : B ∩ expxA → R by g(expxA) = r − [ length of the curve t 7→ k(t,X)]. g is

C∞ and supports bp at x(= expx0). It is enough to prove that there exists a sequence εr,

εr depends only on B and εr → 0 as r →∞ such that the minimum eigenvalue of ∂∂g at x

exceed εr. Since M is Kähler and g is C∞, the eigenvalues of ∂∂g can be calculated from

those of the Hessian D2g in the following way:

∂∂g(X0, X0) = D2g(X,X) +D2g(JX, JX),

where X0 = X +
√
−1JX and D2 is the covariant differential operator.

Let X be any unit vector in TpM . It follows that JX is also a unit vector in TpM . Let

η1 : (−a, a) → B and η2 : (−a, a) → B be geodesics such that η1(s) = expx(sX) and

η2(s) = expx(sJX). In particular, η1(0) = X, η2(0) = JX. Then D2g(X,X) = (g ◦ η1)′′(0)

and D2g(JX, JX) = (g ◦ η2)′′(0). From the definition of g, −(g ◦ η1)′′(0) is nothing but the

second variation of arclength of the family of curves t 7→ k(t, sX), s ∈ (−a, a), similarly for

−(g ◦ η2)′′(0) .

Thus if V (t) and JV (t) are the vector fields a long γ given by V (t) =
(
1− t

r

)
X(t) and

JV (t) =
(
1− t

r

)
JX(t), then properties (v) and (vi) of k and the second variation of arc-

length formula give:
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D2g(X,X) =

∫ r

0
[R(γ̇, V, γ̇, V )− 〈V̇ , V̇ 〉+ {〈V, γ̇〉′}dt

D2g(JX, JX) =

∫ r

0
[R(γ̇, JV, γ̇, JV )− 〈JV̇ , JV̇ 〉+ {J〈V, γ̇〉′}dt

where the prime denotes d
dt . Now, let P1 = span{γ̇, V } and P2 = span{γ̇, JV } at each

γ(t). Since |V | = 1− t
r , R(γ̇, V, γ̇, V ) +R(γ̇, JV, γ̇, JV ) = (1− t

r )B(P1, P2), where B is the

bisectional cuvarture. Moreover, 〈V̇ , v̇〉 = 〈JV̇ , Jv̇〉 = 1
r2

. Hence

∂∂g(X0, X0) ≥ −2

r
+

∫ l

0

(
1− t

r

)
Bdt

For r large enough, ∂∂g(X0, X0) > 0.

By Lemmas 7.5, 7.6, and 7.7, bp is strictly plurisubharmonic.

2

From a similar argument, we also have that for a fixed ray γ, fγ is also strictly plurisub-

harmonic given the same conditions.

Since in Kähler manifold positive bisectional curvature implies positive Ricci curvature, we

can deduce theorem 1.9 from theorem 1.8. Here we list some results that leads to the proof

of theorem 1.9.

Let the sheaf of germs of continuous real-valued functions on a C∞ Riemannian manifold

M be denoted by ζ.

Definition 7.9. a C0 fine topology on the set Γ(ζ,M) of continuous functions on M is the

topology generated by sets
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{F ∈ Γ(ζ,M)||f(p)− F (p)| < g(p), p ∈M},

where f ∈ Γ(ζ,M), g ∈ Γ(ζ,M) and g is positive everywhere on M .

Definition 7.10. A C∞ function f on a Riemannian manifold M is subharmonic if ∆f is

nonnegative everywhere on M . If X1, ...., Xn is an orthonormal frame in the tangent space

TpM of M at a point p, then

∆f |p =

n∑
i=1

D2f(Xi, Xi)

where D2f(Xi, Xi) = second derivative of f at p along the geodesic through p having tangent vector Xi

Remark 7.1. From definition above, it follows that a plurisubharmonic function is neces-

sarily a subharmonic function.

Definition 7.11. A compact-open topology on Γ(ζ,M) is the topology generated by the sets

{F ∈ Γ(ζ,M)||f(p)− F (p)| < ε, p ∈ K}

where f ∈ Γ(ζ,M), ε is a positive real number, and K is a compact subset of M .

The following two results are due to Greene and Wu in [8].

Theorem 7.12. (Pg 67 in [8])

A C∞ subharmonic exhaustion functions are dense in the compact-open topology in the

continuous subharmonic exhaustion functions.

Theorem 7.13. (Pg 80 in [8])
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If M is a complex manifold then the C∞ strictly plurisubharmonic functions are dense in

the continuous strictly plurisubharmonic functions in the C0 fine topology.

For convenience, we restate theorem 1.9: Let M be a complete open Kähler manifold with

positive bisectional curvature. If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
,

where n = dimCM and α(n) = 92n−1
92n

, then M is a Stein manifold.

Proof. (Proof of theorem 1.9) As stated in page 80, in Kähler manifold, positive bisectional

curvature implies that the Ricci curvature is positive as well. Let p ∈M . Then by theorem

1.8 and theorem 7.8, bp is an exhaustion function and a continuous strictly plurisubharmonic

function. By theorem 7.13 above, it follows that there exists a C∞ strictly plurisubharmonic

function g : M → R such that bp(x) < g(x). Since g dominantes an exhaustion function bp

at every point, g itself is exhaustion. So, g(x) is smooth, exhaustion, and strictly plurisub-

harmonic. Hence M is Stein.
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Chapter 8

Application to Topology

Let Hk(M,Z) denote the k-th singular homology group of M with integer coefficients.

It is well know that if M is a complete proper Riemannian n-dimensional manifold with

RicM ≥ 0, then using Morse theorem, M has the homotopy type of a CW complex with

cells each of dimension ≤ n− 2 and Hi(M,Z) = 0, i ≥ n− 1 [16], [13].

As an application of theorem 1.8, we have the following result.

Theorem 8.1. Let (M, g) be a complete manifold with RicM ≥ 0 . If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))

where n = dimRM and α(n) = 9n−1
9n , then M has the homotopy type of a CW complex with

cells each of dimension ≤ n− 2. In particular, Hi(M,Z) = 0, i ≥ n− 1

It is well established that if M is a Stein manifold of n-dimension, then the homology

groups Hk(M,Z) are zero if k > n and Hn(M,Z) is torsion free [1, theorem 1], [2]. As an

application of theorem 1.9, we have the following result.
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Theorem 8.2. Let M be a complete open Kähler manifold with positive bisectional curva-

ture. If

α(n) < lim
r→∞

inf
V ol(BΣ(p, r))

V ol(B(p, r))
,

where n = dimCM and α(n) = 92n−1
92n

. Then

Hk(M,Z) = 0, for k > n

and Hn(M,Z) is torsion free
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