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Abstract  Visit-to-visit blood pressure variability 
(BPV) predicts age-related hippocampal atrophy, 
neurodegeneration, and memory decline in older 
adults. Beat-to-beat BPV may represent a more reli-
able and efficient tool for prospective risk assess-
ment, but it is unknown whether beat-to-beat BPV 
is similarly associated with hippocampal neurode-
generation, or with plasma markers of neuroaxonal/
neuroglial injury. Independently living older adults 
without a history of dementia, stroke, or other major 
neurological disorders were recruited from the com-
munity (N = 104; age = 69.5 ± 6.7 (range 55–89); 63% 
female). Participants underwent continuous blood 
pressure monitoring, brain MRI, venipuncture, and 
cognitive testing over two visits. Hippocampal vol-
umes, plasma neurofilament light, and glial fibrillary 

acidic protein levels were assessed. Beat-to-beat BPV 
was quantified as systolic blood pressure average real 
variability during 7-min of supine continuous blood 
pressure monitoring. The cross-sectional relationship 
between beat-to-beat BPV and hippocampal volumes, 
cognitive domain measures, and plasma biomarkers 
was assessed using multiple linear regression with 
adjustment for demographic covariates, vascular risk 
factors, and average systolic blood pressure. Elevated 
beat-to-beat BPV was associated with decreased 
left hippocampal volume (P = .008), increased 
plasma concentration of glial fibrillary acidic protein 
(P = .006), and decreased memory composite score 
(P = .02), independent of age, sex, average systolic 
blood pressure, total intracranial volume, and vascu-
lar risk factor burden. In summary, beat-to-beat BPV 
is independently associated with decreased left hip-
pocampal volume, increased neuroglial injury, and 
worse memory ability. Findings are consistent with 
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prior studies examining visit-to-visit BPV and sug-
gest beat-to-beat BPV may be a useful marker of 
hemodynamic brain injury in older adults.

Keywords  Blood pressure variability · 
Hippocampus · Glial fibrillary acidic protein · Plasma 
neurofilament light · Memory impairment

Abbreviations 
ARV	� Average real variability
BPV	� Blood pressure variability
GFAP	� Glial fibrillary acidic protein
NfL	� Neurofilament light
MTL	� Medial temporal lobe
SBP	� Systolic blood pressure

Introduction

Increased visit-to-visit blood pressure variability 
(BPV) is an age-related hemodynamic risk factor 
for dementia [1], and is predictive of decreased hip-
pocampal and medial temporal lobe (MTL) volume 
[2, 3], cognitive decline [4], and neurodegeneration 
[5]. The relationship between BPV and neurodegen-
eration may be related to increased risk for cerebro-
vascular lesion burden [6], or decreased cerebral per-
fusion [7].

Previous research shows that visit-to-visit blood 
pressure variability is influenced by medication 
adherence [8]. Beat-to-beat BPV may therefore 
represent a more reliable tool for prospective risk 
assessment, however, no studies to date have exam-
ined beat-to-beat BPV in relation to markers of neu-
rodegeneration, such as hippocampal atrophy or 
plasma markers of neuroaxonal/neuroglial injury and 
neurodegeneration.

Two plasma biomarkers [9], neurofilament light 
(NfL) and glial fibrillary acidic protein (GFAP), 
have emerged as sensitive markers of neuroaxonal 
[10] and neuroglial injury [11] respectively. Both 
markers are associated with aging and cognitive 
ability [12, 13], with GFAP elevation sensitive to 
even subtle central nervous system injury [11] and 
NfL sensitive to neuroaxonal injury and cerebral 
small vessel disease [14, 15]. Plasma GFAP is 
also a sensitive marker of astrogliosis [16] that is 
associated with neurodegeneration [17, 18], while 
plasma NfL is a neurodegenerative susceptibility 

marker that is predictive of future abnormal mor-
phological changes in the brain [19]. No study 
to date has assessed whether beat-to-beat BPV is 
associated with these plasma biomarkers, despite 
the established relationship between visit-to-visit 
BPV and cerebrovascular [20, 21] and neurodegen-
erative disease [3].

If beat-to-beat BPV is associated with hippocam-
pal atrophy, cognitive impairment might also be 
expected, particularly within the memory domain 
[22]. The present study examines the relationship 
between elevated beat-to-beat BPV and hippocampal 
volumes, plasma NfL and GFAP levels, and memory 
ability.

Methods

Participants

Participants were recruited from Orange County com-
munities through outreach events, mailing lists, word-
of-mouth, online portals, a research volunteer regis-
try, and through the University of California Irvine 
(UCI) Alzheimer’s Disease Research Center (ADRC), 
and all procedures were conducted as part of the 
Vascular Senescence and Cognition (VaSC) Study 
at UCI. Older adults aged 55 to 89  years who were 
living independently were included (Table 1). Study 
exclusions were a prior diagnosis of dementia, history 
of clinical stroke, family history of dominantly inher-
ited neurodegenerative disorders, current neurological 
or major psychiatric disorders that may impact cogni-
tive function, history of moderate-to-severe traumatic 
brain injury, current use of medications impairing the 
central nervous system, current organ failure or other 
uncontrolled systemic illness, and contraindications 
for brain MRI. Eligibility for the study was verified 
by a structured clinical health interview and review 
of current medications with the participant and, 
when available, a knowledgeable informant study 
partner. All participants underwent neurological and 
neuropsychological evaluations performed using the 
Uniform Data Set (UDS), and additional neuropsy-
chological tests, as described in the neuropsychologi-
cal testing section. This study was approved by the 
UCI Institutional Review Board, and all participants 
gave  informed consent. The anonymous data that 
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support the findings of this study are available upon 
reasonable request from the corresponding author, 
DAN, through appropriate data-sharing protocols.

Continuous BP data acquisition

Participants were asked to take medications as nor-
mally prescribed and abstain from caffeine on the 
morning of data collection. Beat-to-beat BP measure-
ments were obtained continuously during supine rest 

Table 1   Participant characteristics and demographics

SD standard deviation, APOE apolipoprotein e, GFAP glial fibrillary acidic protein, NfL neurofilament light, BPV blood pressure 
variability indexed as systolic blood pressure average real variability, SBP systolic blood pressure, A two-sample t-test, B Pearson’s 
chi-squared test

Variable name Overall
(n = 104) Mean ± SD

Biomarker Subset (n = 56) 
Mean ± SD

P

Age 69.5 ± 6.7 (55–89) 69.8 ± 7.3 (55–89) .81a

Sex (n, female %) 65 (62.5) 35 (62.5)  > .99b

Vascular risk factors
  Hypertension (n, %) 37 (35.6) 18 (32.1) .79b

  High Cholesterol (n, %) 51 (49.0) 28 (50.0) .91b

  Diabetes (n, %) 11 (10.6) 5 (8.9) .74b

  Current smoker (n, %) 33 (31.7) 19 (33.9) .78b

  Cardiovascular disease (n, %) 11 (10.6) 6 (10.7) .98b

  Atrial fibrillation (n, %) 5 (4.8) 3 (5.4) .88b

  Transient ischemic attack (n, %) 2 (1.9) 0 (0) .30b

APOE genotype
  APOE2 carriers (n, 2/3%) 3 (2.9) 3 (5.4) .43b

  APOE2 carriers (n, 2/4%) 0 (0) 0 (0)
  APOE3 homozygotes (n, 3/3%) 45 (43.3) 26 (46.4) .70b

  APOE4 carriers (n, 3/4) 42 (40.4) 26 (46.4) .54b

  APOE4 homozygotes 2 (1.9) 1 (1.8) .95b

Unknown or missing 12 (11.5) 0 (0)
Left hippocampal volume (mm3) 3811.52 ± 464.01 3802.03 ± 512.74 .91a

Right hippocampal volume (mm3) 3975.82 ± 413.04 3959.66 ± 454.87 .83a

Plasma GFAP (pg/ml) 147.81 ± 74.47 147.81 ± 74.47
Plasma NfL (pg/ml) 18.84 ± 8.39 18.84 ± 8.39
Memory composite z-score .57 ± .82 .59 ± .86 .89a

  Story memory delayed recall z-score .47 ± 1.07 .45 ± 1.11 .94a

  Word list delayed recall z-score .90 ± 1.20 .84 ± 1.33 .76a

  Word list delayed recognition z-score .25 ± .94 .21 ± .94 .80a

Attention/executive function composite z-score  − .12 ± .58  − .10 ± .57 .87a

  Trail-making test A z-score  − .08 ± .77  − .16 ± .76 .52a

  Trail-making test B z-score .04 ± .65 .03 ± .67 .95a

  Stroop color and word test z-score  − .30 ± .84  − .15 ± .84 .27a

Language composite z-score .06 ± .76  − .009 ± .81 .59a

  Categorical verbal fluency z-score  − .33 ± .87  − .37 ± .85 .77a

  Confrontational naming z-score  − .08 ± 1.20  − .24 ± 1.43 .47a

  Phonemic verbal fluency z-score .58 ± .83 .58 ± .77 .98a

BPV (mmHg) 1.69 ± .79 1.73 ± .81 .74a

Average SBP (mmHg) 133.01 ± 17.03 131.83 ± 17.22 .68a
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in a 3 T Siemens MRI scanner, using an MRI-com-
patible non-invasive continuous BP finger cuff device 
(Biopac®). First, the participant rests for 3 min in the 
supine position prior to the calibration period. Dur-
ing calibration, BP waveforms are acquired by the 
continuous monitoring device and 2 static pressures 
are simultaneously acquired using a calibrated, MRI-
compatible automatic BP device with an inflatable 
brachial artery cuff (TeslaDUO). These static pres-
sures are used to calibrate the continuous BP monitor 
using the Caretaker® system (Biopac®). After cali-
bration, continuous BP was monitored during MRI 
for 7 min and further data processing was performed 
as previously described [23].

Systolic blood pressure average real variability

Beat-to-beat BPV is quantified as systolic blood pres-
sure (SBP) average real variability (ARV), a measure 
of systolic beat-to-beat BPV which has been demon-
strated as reliable in older adults [23, 24] regardless 
of antihypertensive medication use [23]. ARV calcu-
lates the average of absolute changes between con-
secutive blood pressure readings and is calculated as:

where n represents the number of blood pressure 
readings obtained during continuous blood pressure 
monitoring and k represents the beat index of the 
readings as previously described [23, 25]. Systolic 
ARV was chosen as the measure of beat-to-beat BPV 
in the present study due to its increased reliability 
compared to other BPV measures such as standard 
deviation and coefficient of variation [23], and its 
decreased susceptibility to outliers [24]. Additionally, 
ARV has the advantage of considering the temporal 
ordering of systolic BP measurements and is there-
fore a more specific measure of beat-to-beat fluctua-
tions in blood pressure [23, 26].

Vascular risk factors (VRF)

Vascular risk factor (VRF) burden was determined 
through clinical interviews with the participant and 
informant (when available), and review of current 
medications and medical history. The assessed VRFs 
included a history of cardiovascular disease (e.g., 

ARV =
1

n − 1

n−1∑

k=1

|BP
k+1

− BP
k
|

heart failure, angina, stent placement, coronary artery 
bypass graft, intermittent claudication), hypertension, 
hyperlipidemia, type 2 diabetes, atrial fibrillation, 
left ventricular hypertrophy, and transient ischemic 
attack. Total VRFs were summed for each participant 
and elevated VRF burden was defined as ≥ 2 VRFs 
(vs. 0–1) as described previously [27, 28].

APOE genotyping

Fasted blood samples were obtained by venipunc-
ture and used to determine the participant’s APOE 
genotype. Genomic DNA was extracted using the 
PureLink Genomic DNA Mini Kit (Thermo). The 
isolated DNA concentration was determined using 
a NanoDrop One (Thermo). DNA was then stored 
at − 80  °C for long-term storage. Isolated DNA was 
first diluted to a concentration of 10  mg/μL. PCR 
reactions were performed in a final volume of 25 μL 
containing 25 ng DNA, 0.5 μM of both forward and 
reverse primers (forward: ACG​GCT​GTC​CAA​GGA​
GCT​G; reverse: CCC​CGG​CCT​GGT​ACA​CTG​), and 
1 × SYBR Green Master Mix (Qiagen) diluted in 
H2O. For the amplification, a T100 Thermal Cycler 
(BioRad) was used with the following settings: 95 °C 
for 10  min; 32  cycles of 94  °C for 20  s, 64  °C for 
20 s, and 72 °C for 40 s; followed by 72 °C for 3 min. 
Fifteen microliters of the DNA PCR product was 
digested with Hhal-fast enzyme at 37 °C for 15 min. 
The digested PRC product was added to a 3% aga-
rose gel in 1 × borax buffer for gel electrophoresis. 
The gel was run at 175 V for 25 min and visualized 
on ChemiDoc (BioRad) with a GelRed 10,000 × gel 
dye. APOE4 carrier status was defined as APOE4 
carriers (at least one copy of the ε4 allele) or APOE4 
non-carriers (no copies of the ε4 allele), as previously 
described [29]. All analyses were performed at the 
same lab at the University of Arizona (KER).

Brain volumes

All participants underwent brain MRI scans 
conducted on a 3  T Siemens Prisma scan-
ner with 20-channel head coil. High-resolu-
tion 3D T1-weighted anatomical (Scan param-
eters: TR = 2300  ms; TE = 2.98  ms; TI = 900  ms; 
flip angle = 9  deg; FOV = 256  mm; resolu-
tion = 1.0 × 1.0 × 1.2 mm3; Scan time = 9 min) images 
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were acquired, using 3-dimensional magnetization-
prepared rapid gradient-echo (MPRAGE) sequences.

For region-of-interest (ROI) analysis, post-process-
ing of T1 scans was accomplished in FreeSurfer 7.4.1 
[30] using an automated segmentation algorithm that 
is robust to anatomical variability including ventricu-
lar enlargement associated with neurological diseases 
and aging for quantification of bilateral hippocampal 
volumes [31]. After automated segmentation, each 
individual subject was checked for any inaccuracies 
or misclassifications; manual corrections were made 
as needed with FreeSurfer’s built-in editing tools, 
cases were then re-processed, and resulting volumes 
were used for analyses.

Plasma biomarkers

Blood plasma from fasted blood samples was sepa-
rated by centrifugation and stored at -80 °C until AD 
biomarker assays. All plasma Aβ40 and Aβ42 concen-
trations were obtained using the digital immunoas-
say, Simoa Neurology 3-Plex A (N3PA) Advantage 
Kit (Quanterix). Plasma total tau was also obtained 
but not analyzed due to questions regarding its rela-
tionship with brain AD pathological changes [32]. 
Plasma levels of GFAP and NfL were determined 
using a single molecule array, (Simoa®) Neurology 
2-Plex B (N2PB) Kit (Quanterix), following the man-
ufacturer’s protocol on the HD-X machine. Accepted 
ranges were as follows: NfL = 0– ~ 2000  pg/mL and 
GFAP = 0– ~ 40,000  pg/mL. All biomarker assays 
were conducted in the same lab at UCI (EH).

Neuropsychological testing

All participants underwent a clinical interview and 
comprehensive neuropsychological assessment by 
a trained technician or doctoral student under the 
supervision of a licensed clinical neuropsychologist. 
The assessment included multiple tests of memory, 
attention/executive function, and language. All neu-
ropsychological testing and diagnostic assessments 
were conducted blinded to all clinical, biomarker, 
and imaging findings. Composite scores were cre-
ated for memory, attention/executive function, and 
language. A memory composite score was created 
by averaging the demographically corrected (age, 
sex, and education) z-scores from three memory tests 
which included story memory delayed recall (either 

Weschler Memory Scale–Revised [WMS-R] Logi-
cal Memory-II [33] or Craft story delayed recall [34, 
35]), word list delayed recall (Rey Auditory Ver-
bal Learning Test [RAVLT] Trial 7 [36] or CERAD 
word list 30-min delayed recall [37]), and word list 
delayed recognition (RAVLT Recognition [36] or 
CERAD word list 30-min delayed recognition [37]). 
An attention/executive function composite was cre-
ated by averaging the demographically corrected 
z-scores from the attention/executive function tests 
which included the trail-making test A [38], trail-
making test B [38], and one other attention/executive 
test which included either the Golden Stroop color 
and word test [39], the D-KEFS color-word interfer-
ence test [40], or the digit span backward test. Lastly, 
a language composite score was created by averaging 
the demographically corrected z-scores of the three 
language tests which included semantic verbal flu-
ency (Animals) [41], confrontational naming (Boston 
Naming Test [42] or multilingual naming test [43]), 
and phonemic verbal fluency (FAS) [41].

Data analysis

One hundred five participants underwent continuous 
BP monitoring and brain MRI. One participant was 
excluded after 3 SD outlier screens (+ 4.35 SD left 
hippocampal volume, + 4.31 SD right hippocampal 
volume) resulting in a total analyzed sample size of 
104 for volumetric analyses. A subset of these partici-
pants also had neuropsychological testing characteri-
zation (n = 103) available for analysis. Demographi-
cally adjusted neuropsychological component scores 
were screened for outliers and averaged into memory 
(n = 93), attention/executive (n = 101), and language 
(n = 101) composite scores as previously described. 
The relationship between beat-to-beat BPV and 
demographically adjusted neuropsychological domain 
composite scores was investigated. A subset of 56 
participants with plasma GFAP and NfL assays were 
also analyzed.

Linear regression models assessed whether beat-
to-beat BPV was associated with hippocampal atro-
phy, neuropsychological domain composite z-scores, 
and plasma markers of neuroaxonal/neuroglial injury 
with and without adjustment for age and sex where 
applicable (volumetric and plasma biomarker analy-
ses), and for average beat-to-beat SBP and VRF 
burden. Volumetric analyses also included total 
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intracranial volume (TIV) as a covariate. All analyses 
were performed in R [44].

Additional sensitivity analyses were performed 
for the significant age, sex, VRF burden, and aver-
age beat-to-beat SBP-adjusted findings. These analy-
ses included additional correction for APOE4 carrier 
status, plasma Aβ42/40, and where appropriate, neu-
ropsychological testing site. Benjamini–Hochberg 
false discovery rate (FDR) correction [45] was also 
applied for the primary analyses (L/R hippocampal 
volumes, plasma GFAP, plasma NfL, and memory 
composite z-score).

Results

Participant demographics and characteristics for 
the total analyzed sample and the plasma biomarker 
subset are displayed in Table 1 with between-group 
statistical comparisons. No significant differences in 
participant characteristics were observed between 
the overall sample and biomarker subset.

Increased beat-to-beat BPV was significantly 
associated with decreased left hippocampal volume 
(B =  − 195.39, P = 0.0006), and remained so after 
adjustment for age, sex, TIV, average SBP, and VRF 
burden (B =  − 111.40, P = 0.04) (Fig.  1). BPV was 
also associated with decreased right hippocampal vol-
ume (B =  − 139.86, P = 0.0006; however, this relation-
ship was attenuated by age, sex, TIV, average SBP, 
and VRF burden adjustment (B =  − 74.70, P = 0.10).

BPV was significantly associated with plasma 
GFAP (B = 39.45, P = 0.0008), and remained so 
after age, sex, average SBP, and VRF burden adjust-
ment (B = 29.70, P = 0.006) (Fig.  2a). SBP ARV 
was also associated with plasma NfL (B = 3.18, 
P = 0.02), but this relationship was attenuated by 
age, sex, average SBP, and VRF burden adjustment 
(B = 1.58, P = 0.24) (Fig. 2b).

BPV was significantly associated with demo-
graphically adjusted (age, sex, and education) mem-
ory composite z-score in both the univariate analysis 
(B =  − 0.29, P = 0.01) and adjusted for SBP and VRF 
burden as shown in Fig.  3. No significant relation-
ships existed between BPV and attention/executive 
function composite z-score (B = 0.03, P = 0.70) or lan-
guage composite z-score (B =  − 0.02, P = 0.82).

Sensitivity analyses and multiple comparisons

All age, sex, VRF, TIV (where applicable), and aver-
age beat-to-beat SBP-adjusted significant BPV find-
ings remained significant after additional sensitiv-
ity analysis which included APOE4 carrier status, 
plasma Aβ42/40 (Supplementary Table  S1–S2), and 
where applicable, neuropsychological testing site 
(Supplementary Table  S3) as covariates. Addition-
ally, FDR correction was applied to the primary uni-
variate analyses including L/R hippocampal volumes, 
plasma GFAP, plasma NfL, and memory composite 
score. All significant univariate findings survived 
FDR correction (L/R hippocampal volume, plasma 
GFAP, plasma NfL, and memory composite z-score).

Discussion

The present study finds that elevated beat-to-beat 
BPV is significantly associated with decreased left 
hippocampal volume and worse memory ability in 
independently living older adults. BPV was also asso-
ciated with plasma GFAP, a marker of neuroinflam-
mation, neurodegeneration, and reactive astroglio-
sis that is associated with cortical volume loss, and 
cognitive decline [18, 46]. The observed relationships 
were independent of age, sex, SBP, and VRF adjust-
ment. These results are consistent with prior studies 
of visit-to-visit BPV predicting hippocampal atrophy 
and memory decline but extend these findings to the 
more reliable [23, 24] beat-to-beat ARV measure of 
blood pressure fluctuation. This is also the first study 
to examine BPV levels related to the plasma GFAP 
marker of neuroglial injury.

Delayed free recall is associated with MTL atro-
phy, specifically within the hippocampus [47–50], 
consistent with the well-established role of hip-
pocampal atrophy in age-related episodic memory 
decline [51]. The finding that BPV was related to left 
hippocampal atrophy adds convergent validity to the 
memory impairment observed in the present study. 
This effect is further confirmed by the observation 
that plasma GFAP, a sensitive marker of central nerv-
ous system injury, reactive astrogliosis, neuroinflam-
mation, and neurodegeneration [11, 12, 16, 18] was 
also related to elevated beat-to-beat BPV.

Although plasma GFAP displays a strong cor-
relation with cerebral amyloidosis [16], it is not a 
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specific marker of Alzheimer’s disease pathology and 
shows diagnostic accuracy in differentiating between 
healthy controls and individuals with frontotemporal 
dementia, progressive supranuclear palsy, corticoba-
sal syndrome, Lewy bodies dementia, and cognitively 
impaired individuals with suspected non-AD patho-
physiology [52]. Thus, GFAP represents a sensitive 
marker of astrogliosis [53] and neuroinflammation 
[11] associated with numerous neurodegenerative 
pathologies [11]. The observed association between 

elevated beat-to-beat BPV and GFAP suggests that 
BPV may be related to glial injury and neuroinflam-
mation, or it could be related to neural injury more 
broadly, with future studies needed to elucidate these 
specific mechanistic relationships.

The hippocampus is selectively vulnerable to 
age-related vascular pathology [54], chronic hypop-
erfusion [55], and hypoxic injury [56]. Increased 
BPV predicts a future longitudinal decline in cer-
ebral perfusion [57], even when average pressure 

Fig. 1   The relationship between blood pressure variabil-
ity (BPV) and left hippocampal volume. BPV is measured as 
systolic blood pressure (SBP) average real variability. The left 
hippocampus region of interest is shown in green in coronal, 
sagittal, and transverse sections. Unstandardized beta (B) and 

p value (P) are shown for the univariate analysis, as is the p 
value for age, sex, total intracranial volume (TIV), SBP, and 
vascular risk factor burden (VRF) adjusted multiple linear 
regression analysis
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is held within a narrow range as part of a clinical 
trial [7]. Since elevated BPV is associated with 
decreased whole-brain cerebrovascular reactiv-
ity [58], increased cerebrovascular lesion bur-
den [20], and beat-to-beat BPV is associated with 
decreased hippocampal perfusion specifically [59], 

it is possible that the hippocampus would display 
susceptibility to hemodynamic risk factors like ele-
vated beat-to-beat BPV. In the present study, BPV 
was associated with left but not right-sided hip-
pocampal atrophy, which is consistent with previ-
ous research showing a left-sided neurodegenerative 

Fig. 2   The relationship between blood pressure variability 
(BPV) and A plasma glial fibrillary acidic protein (GFAP) pg/
ml and B plasma neurofilament light (NFL) pg/ml. BPV is 
measured as systolic blood pressure (SBP) average real vari-

ability. Unstandardized beta (B) and p value (P) are shown 
for the univariate analysis, as is the p value for age, sex, SBP, 
and vascular risk factor burden (VRF) adjusted multiple linear 
regression analyses

Fig. 3   The relationship 
between blood pressure 
variability (BPV) and 
demographically adjusted 
memory composite score. 
The relationship between 
BPV, measured as systolic 
blood pressure (SBP) aver-
age real variability, and 
demographically adjusted 
(age, sex, and years of edu-
cation) memory composite 
z-score. Unstandardized 
beta (B) and p value (P) 
are shown for univariate 
analysis, as is the p value 
for the SBP and vascular 
risk factor burden (VRF) 
adjusted multiple linear 
regression analysis
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vulnerability [60], and left-sided cerebrovascular 
disease susceptibility [61], potentially related to 
increased left-sided hemodynamic stress [61]. The 
left-sided effect seen in the present study then is 
also consistent with the susceptibility of the hip-
pocampus to vascular insult.

The present study adds the novel findings that 
elevated beat-to-beat BPV is associated with left 
hippocampal atrophy, memory decline, and plasma 
GFAP in a cognitively healthy sample while con-
trolling for plasma Aβ42/40 and Alzheimer’s dis-
ease genetic risk factors. This suggests that elevated 
beat-to-beat BPV may be an early biomarker of hip-
pocampal atrophy and episodic memory decline in 
cognitively healthy older adults, independent of Alz-
heimer’s disease-specific pathophysiological changes. 
Previous research has shown that the adverse effect of 
elevated visit-to-visit BPV on cognitive decline and 
neurodegeneration is increased in APOE4 carriers 
[3, 4]. Future investigations in larger samples should 
assess whether the effect of beat-to-beat BPV is also 
moderated by APOE4 carrier status.

Strengths of the present study include the conver-
gent findings in older adults showing elevated BPV 
in relation to three interconnected markers of neuro-
degeneration, including neuroimaging volumetrics 
of the hippocampus, a plasma biomarker of neurode-
generation, and episodic memory impairment. Other 
strengths include the analysis of beat-to-beat BPV in 
a well-characterized sample, including a participant 
subset with plasma biomarkers of neuroaxonal and 
neuroglial injury. Study limitations include not all 
participants having plasma biomarker data available 
for analysis and the exclusion of participants with a 
history of stroke which limits generalizability. Also, 
causal inference is limited due to the cross-sectional 
study design. Neurodegenerative diseases are associ-
ated with autonomic dysfunction [62], and since neu-
rodegeneration can occur within central autonomic 
brain regions [63], the possibility for reverse causa-
tion exists [64]. However, current evidence supports 
blood pressure variation being predictive of future 
neurocognitive decline [1], and studies that have 
assessed for reverse causation in related disorders 
such as cerebral small vessel disease have failed to 
support the reverse causation hypothesis [21].

The present study findings indicate further 
research is needed into beat-to-beat BPV as a poten-
tially modifiable risk factor for neurodegeneration 

and neurocognitive decline with major clinical impli-
cations for older adults at risk for dementia.
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