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Abstract

When people read, they classify a relatively long string
of characters in parallel. Machine learning principles
predict that classification learning with such high di-
mensional inputs and outputs will fail unless biases are
imposed to reduce input and output variability and/or
the number of candidate input/output mapping func-
tions evaluated during learning. The present paper
draws insight from observed reading behaviors to pro-
pose some potential sources of such biases, and demon-
strates, through neural network simulations of letter-
sequence classification learning that: (1) Increasing di-
mensionality does hinder letter classification learning
and (2) the proposed sources of bias do reduce dimen-
sionality problems. The result is a model that explains
word superiority and word frequency effects, as well as
consistencies in eye fixation positions during reading,
solely in terms of letter classification learning.

Introduction

Models of word recognition and reading typically focus
on processes that occur after letters are classified. They
explain reading behaviors in terms of the processes that
act on the outputs of letter detectors, rather than in
terms of the processes that convert the image of a letter
string to the corresponding outputs of the letter detec-
tors. For example, Morton’s Logogen model (Morton,
1969) focuses on word-level representations, and explain-
s word frequency effects ! in terms of lowered activation
thresholds for word detectors. Similarly, McClelland &
Rumelhart’s (1981) Interactive Activation model focuses
on associations and interactions between letter detectors
and word detectors, and explains word frequency and
word superiority effects > by proposing that these asso-
ciations amplify the activation coming from letter detec-
tors. The present paper departs from this tradition by
proposing a model of letter classification learning. The
model explains word frequency and word superiority ef-
fects, as well as certain regularities in eye fixation po-
sitions solely in terms of factors that determine letter
classification learning.

The model was suggested by an interesting differ-
ence between human reading and machine-based Opti-

! People identify high frequency words faster than low fre-
quency words

?People identify letters within words and pronounceable
non-words faster than they identify isolated letters and letters
within unpronounceable non-words
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cal Character Recognition (OCR) systems (see Figure
1). Whereas OCR systems classify individual letters;
human readers classify letter sequences. That is, people
classify a sequence of as many as 8-13 characters within
a single fixation (Rayner, 1979) and within such a fixa-
tion, the classification occurs in parallel (Reicher, 1969;
Blanchard, McConkie, Zola & Wolverton, 1984).

One reason why this is an interesting difference is that
if people classify a sequence of letters together, with-
in essentially one operation, then we might expect that
the familiarity of the letter sequence would impact letter
classification operations, as well as subsequently occur-
ring processes. In other words, we might expect general
reading behaviors to be determined by letter classifica-
tion processes, as well as processes that involve higher-
level representations.

OCR (Low Dimensionality) Human Reading (High Dimensionality)
[ Dorcty tved In e it of .., |
b ——w Doty ] “DOROTHY LI"
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Figure 1: Character classification versus character se-
quence classification.

A second reason why the difference between OCR sys-
tems and human reading is interesting is that OCR sys-
tems are designed to classify single characters to min-
imize the so-called curse of dimensionality (Denker, et
al, 1987). This machine learning principle predicts that
high dimensionality (for example, large, high detail in-
puts) will cause classification learning to fail. If no con-
straints are placed on inputs, outputs, and input-output
mapping functions, increased dimensionality leads to ex-
ponential increases in the number of different inputs,
outputs, and mapping functions. Classification learn-
ing corresponds to approximating a particular mapping
function by sampling from its population of input-output
pairs. Learning will fail, with high dimensional inputs
and outputs, because: (1) the system can not sample e-
nough pairs to capture the full variability of inputs and
outputs; thereby causing low generalization, and/or (2)
it has insufficient capacity to describe even the sampled
training pairs. Geman, Bienenstock & Doursat (1992)
point out that the answer to this dilemma is not to put



one’s energies into developing yet another new learning
algorithm, because all classification learning algorithms
will be subject to the curse. Instead they recommend de-
veloping an understanding of how to appropriately bias
learning in given domains. Biasing corresponds to im-
plementing a priori assumptions that rule out, or render
less likely, some portion of the set of all possible inputs,
outputs, and/or mapping functions.

This machine learning perspective, combined with the
psychological evidence that people do learn to classify
high dimensional images of letter sequences, suggest-
s that it might be useful to view reading behaviors in
terms of biases that make accurate letter classification
possible. The model proposed here assumes that peo-
ple would fail to learn to classify high dimensional letter
sequences unless such learning was biased, and that spec-
ifying these biases may help explain a variety of reading
behaviors. Three sources of bias, or methods for reduc-
ing learning complexity, are proposed here: (1) Limiting
mapping functions to those based on position-invariant
local feature detectors, and limiting the range of inputs
and outputs by limiting the range of, or variability in,
(2) eye fixation positions, and (3) allowed character se-
quences. This paper describes three experiments that
support the model. Each consists of a set of backprop-
agation (Rumelhart, Hinton, & Williams, 1986) neu-
ral net simulations of letter classification learning, in
which the inputs are images of individual letters or let-
ter strings and the outputs are the corresponding letter
categories.

Materials and Network Architectures

Training and testing materials came from the story The
Wonderful Wizard of Oz by L. Frank Baum. Text
line images were created from 120 pages of text (about
160,000 characters, 33,000 total words, or 2,600 different
words), divided into 6 sets of 20 pages each. Each set
was printed in 1 of 3 fonts, and in either all upper case
characters or the original mix of lower and upper case
(see Figure 2). Two of the three font types had variable-
width characters, and one had constant-width charac-
ters. It was important to include variations in character
widths because classifying letter sequences involves lo-
cating the relative positions of each character identified.
Each image was labeled with the categories and horizon-
tal positions of the letters depicted. Text line images
were normalized with respect to height, but not width.
Training and test sets contained an equal mix of the six
font/case conditions. Two generalization sets were used,
for test and cross-validation, and each consisted of about
14,000 characters. Training performance was measured
by two metrics: (1) Asymptotic accuracy on the train-
ing data, and (2) amount of training required to reach
asymptote. Generalization performance was measured
by accuracy on test set, and on the cross-validation set.

The neural network architectures used here are exten-
sions of the local receptive field, shared weight architec-
tures (see Figure 3) used in some OCR systems (LeCun,
et al, 1990; Martin & Pittman, 1991). In this earlier
version, the input is the image of a single letter, and the
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Figure 2: Samples of type font and case conditions

output a vector representing the letter category. Hidden
nodes receive input from a local region (e.g., a 6x6 area)
in the layer below. Hidden layers are visualized as cubes,
made up of separate planes. Hidden nodes within a plane
share weights. Corresponding weights in the nodes’ re-
ceptive fields are randomly initialized to the same value
and updated by the same error, so that different hidden
nodes within a plane learn to detect the same feature
at different locations. Different feature detectors emerge
from hidden nodes within different planes due to differ-
ent random initializations. Output nodes are connected
to all nodes in the previous layer, but not each other.

[ ABCDEFGHUKLMNOPQRSTUVWXYZ_ |

Local, shared-weight receptive fields

Figure 3: Local, shared weight architecture common in
OCR systems.

The extension to an architecture that classifies char-
acter sequences is illustrated in Figure 4, for the case
in which k, the number of to-be-classified characters, is
equal to 4. The input window is expanded horizontally
to cover k of the widest characters (“WWWW?”). The
image of a string of narrower characters will depict addi-
tional characters to the right, which the net must learn
to ignore. Hidden layers are also expanded horizontally.
Network capacity is described by the depth (the num-
ber of different feature detectors, or planes) and width
of each hidden layer. Each output node represents a
character category in one of the kth ordinal positions
in the string. Networks were trained until the training
set accuracy failed to improve by at least .1% across 5
passes through the training set. Nets were monitored for
overfitting using the test set, but such overfitting never
occurred.

This architecture biases learning by selectively reduc-
ing network capacity relative to that of a comparable
globally connected net. The bias seems to be favorable,
in that these nets could be trained with at least moder-
ate success; whereas attempts to train globally connect-
ed nets on character sequence images failed miserably.



Figure 4: Net architecture for parallel character sequence
classification, k=4 characters.

A limited claim can also be made that the biases im-
posed are similar to those imposed by mammalian visu-
al systems. Like the local, shared-weight architecture,
mammalian visual systems appear to use spatially local
feature detectors that are replicated across the visual
array (Hubel & Wiesel, 1979). There is also some very
rough similarity between the oriented edge and bar de-
tectors that emerge in both systems (Hubel & Wiesel,
1979; Martin & Pittman, 1991), as illustrated in Fig-
ure 5, which depicts some receptive fields that developed
in first hidden-layer nodes with the local, shared-weight
networks trained on letter images (Martin & Pittman,
1991). These receptive fields indicate that the corre-
sponding feature detecting nodes discriminate on the
basis of oriented edges and bars, but beyond this, any
similarity to human or mammalian vision systems is un-

known.
Figure 5: Feature detectors that emerged in OCR neural
nets

Curse of Dimensionality Effects

The purpose of Experiment 1 was to test whether high
dimensionality is associated with decreased training and
generalization accuracy, even when learning is biased
through the use of the local, shared-weight architecture.
That is, the goal was to determine if classification learn-
ing becomes increasingly difficult as we move from the
situation in which only single characters are classified, to
that in which a letter sequence is classified. Four levels
of dimensionality were examined (see Figure 6), ranging
from a 20x20 input window, k=1; to an 80x20 input win-
dow, k=4. Input images were generated by starting the
window at the left edge of the text line, with the first
character centered 10 pixels from the left of the window,
and then successively scanning to the right, pausing at
each character position. Five different training set sizes
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Figure 6: Four levels of input/output dimensionality
used in the experiment.

were used (roughly 700 samples to 50,000), as well as a
lower and higher capacity version of each network (15 vs
18 different feature detectors in each hidden layer). 40 d-
ifferent networks were trained, one for each combination
of dimensionality, training set size and relative network
capacity (4x5x2). Some nets required several months to
train.

Accuracy is reported as percent of fields in which al-
| characters were correctly classified. The results (see
Figure 7) confirm the curse of dimensionality prediction
that increasing dimensionality hinders both training and
generalization. Increasing dimensionality lowers asymp-
totic accuracy achieved on the training set (F(3,27) =
15.15,p < .01), and increases the number of train-
ing passes required to reach the asymptote (F(3,27) =
14.44,p < .01). It also decreases generalization accuracy
rates on both the test set (F(3,27) = 33.9,p < .01) and
the validation set (F(3,27) = 61.38,p < .001). These
results suggest that, even with the constrained archi-
tecture, high dimensionality leads to inadequate classi-
fication learning. Since human reading appears to in-
volve even higher dimensionality than that modeled here,
these results argue for the need for factors that reduce
variance.

Constraints on Fixation Positions

One method for reducing the variance in to-be-classified
images is to constrain the variability in fixation posi-
tions within a word. The input images in Experiment 1
were generated from fixations at each character position
within a word, and thus were highly variable. However,
people fixate most often at a preferred viewing location—
slightly to the left of the middle of a word (Rayner, 1979).
The non-randomness of eye fixation positions would have
the effect of reducing image variability, and hence should
aid classification learning. Accordingly, people do iden-
tify a word more quickly when the eyes are fixated near
this location (O’Regan & Jacobs, 1992). Besides the
benefit of consistency, the location may be optimal in
that the average variability in the distance of character-
s from fixation is minimized when a point toward the
middle of a word is fixated.

Experiment 2 used four different conditions to exam-
ine whether such consistent and optimal positioning re-
duces dimensionality problems. The consistent and op-
timal positioning condition used an 80x20 input window
positioned with respect to the 3rd character of each word
of 3 or more characters (see Figure 8) and the net was
trained to classify the first 4 characters in the word. The

*This is a simplification of the fixation position consisten-
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Figure 7: Impact of dimensionality on training and gen-
eralization.

consistent posilioning only condition differed from this
only in that positioning was with respect to the first
character of a word. The high dimensionalily control
condition used the same input/output dimensionality,
but the window was positioned at all character positions
during training, and at the first character in a word dur-
ing testing. The low dimensionality control used a 20x20
input window, with k=1, and the net trained and tested
only on the first 4 characters. Four levels of training set
size were used, with three replications of each training
set size X window condition, resulting in 4 x 4 x 3 = 48
networks trained and tested. All networks employed 18
different feature detectors for each hidden layers.

The results support the value of both consistent and
optimal positioning in reducing dimensionality problems
(see Figure 9). The effects of positioning were signif-
icant with respect to asymptotic accuracy (F'(3,32) =
71.83,p < .001), and generalization in both the test
and validation sets (F(3,32) = 861.9,p < .001; and

cies in human reading, which are better described in terms
of a probability distribution, the mean of which falls toward
the center of a word.

Consistent & Optimal Congisters. Onldy High Dim. Cantral Low Dim Congol
S0 - 4 Chany B0 - 4 Chuns B0 - 4 Chars 220 - | Char
[y~ ‘000"

~& *DORO”
@ -» *0ROT*

R 10
»eLIVE®

»LIVE®

Figure 8: Window positioning and dimensionality ma-
nipulations in Experiment 2

F(3,32) = 1022.6,p < .001). Subsequent t-tests revealed
that the high dimensional control condition networks did
worse than the nets in the other three conditions across
all three of the metrics which resulted in significant anal-
ysis of variance results. Moreover, the consistent and
optimal positioning networks yielded better asymptotic
training and generalization accuracies than those in the
consistent positioning only condition, and better than or
equivalent to those in the low dimensionality control con-
dition. The consistent positioning only condition gener-
ally performed better than the high dimensionality con-
trol. These results support the value of both consistent
positioning and optimal positioning in reducing the neg-
ative effects of dimensionality on classification learning.
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Figure 9: Impact of consistent & optimal window posi-
tions.

Character Sequence Regularities

Another factor that may reduce the complexity of classi-
fication learning stems from the fact that English words
constitute a subset of all possible letter sequences, and of
this subset, not all sequences have an equal likelihood of
being encountered. People appear to take advantage of
such constraints when they read, in that they are better
at reading familiar, as compared to unfamiliar, letter se-
quences. They identify letters within words faster than
letters within non-words, and letters within pronounce-
able non words faster than letters within random charac-
ter strings (Baron & Thuston, 1973; Reicher, 1969), and
they identify high frequency words more quickly than
low frequency words (Solomon & Postman, 1952). Note
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that the reading system could take advantage of the non-
randomness of letter sequences at the letter classification
learning level, to improve classification accuracy; and/or
at subsequent processing levels, to correct letter classi-
fication errors. As noted in the introduction, most con-
ceptions of reading and word recognition focus on the
latter processing levels. The present focus is on the im-
pact of letter sequence familiarity on letter classification,
exclusive of more abstract levels of processing.

It is also important to point out that the feedforward
networks used here can not reflect processing times di-
rectly, since each forward pass in the net takes the same
amount of time. Therefore, in modeling word superior-
ity and word frequency effects, it is assumed that lower
accuracy rates translate to slower performance, either
because lower accuracy rates would require additional,
time-consuming post-processing mechanisms to correct
classification errors or because, in an interactive activa-
tion network, the reduced activation associated with less
certain responses would be reflected in longer times to
reach thresholds of activation.

Experiment 3 involved seeing if the three best consis-
tent and optimal positioning nets from Exp. 2 exhib-
it human-like word superiority and frequency effects in
the sense of exhibiting lower accuracy for the less fa-
miliar letter sequences. The control condition used the
nets trained in the low dimensional control condition to
distinguish between effects due to individual letter fa-
miliarity and effects due to letter sequence familiarity.
New text images were created to produce the following
sets or conditions. The word set had 30 4-letter word-
s, drawn from the Oz text, of which 15 occurred very
frequently in the text (e.g., SAID), and 15 occurred in-
frequently (e.g., PAID). The pronounceable non-word set
had 30 4-letter pronounceable non-words (e.g., TOID).
The random non-words had 30 4-letter random strings
(e.g., SDIA). The alternating case words used the word
set but the letters were printed in AlTeRnAtInG cas-
es. This latter set was created to see if the nets exhibit
human-like behavior in being able to read despite such
manipulations (McClelland, 1976). Word superiority re-
sults were analyzed in terms of a split-plot analysis of
variance with letter sequence type and dimensionality as
factors, and associated t-tests. Word frequency results
were analyzed with i-tests.

Word Frequency Effect Word Supeniarity Effect
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Figure 10: Sensitivity to word frequency and character
sequence regularities

As shown in Figure 10, the consistent and optimal
positioning nets mimic word frequency and word supe-
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riority effects. In the case of word superiority effects,
significant main effects were found for letter sequence
type (F(3,12) = 181.8,p < .001) and dimensionality
(F(1,4) = 774,p < .001). The interaction was also
significant (F(3,12) = 80.2,p < .001). Paired com-
parison tests confirmed the advantage for words over
the other letter sequence types; and for pronounceable
non-words and aLtErNaTiNg case words over random
non-words. Letter classification accuracy remains high
in spite of the words being printed in alternating cases,
which is presumably due to the local, shared-weight ar-
chitecture biasing the system toward local, rather than
word-level, feature detectors. The consistent and opti-
mal positioning nets also showed a tendency to classify
high frequency words more accurately than low frequen-
cy words (p = .05). These results are interesting because
they support the notion that word superiority and word
frequency effects can be explained without reference to
higher levels of processing.

Discussion

More generally, the results presented here support the
value of viewing reading behaviors in terms of biases that
make it possible to learn to accurately classify letters.
Experiment 1 demonstrated that classification accuracy
drops dramatically with increases in the size of the to-be-
classified image and the number of to-be-classified letter-
s. Experiment 2 demonstrated that these negative effects
of dimensionality can be offset, at least to some exten-
t, through the use of a simplified form of the consistent
fixation positions used in human reading. Experimen-
t 3 demonstrated that the letter classification learning
system exhibited word superiority and word frequency
effects similar to those of human readers, even though
there were no higher level representations such as words
or phonological codes in the system.

The results also raise several issues for discussion. One
of these is the question of whether or not additional pro-
cessing levels also determine word frequency and word
superiority effects. It might be argued on the grounds
of parsimony that there is no need to model addition-
al processing mechanisms, since the relatively low level,
classification mechanism can account for the findings.
However, it seems more reasonable to assume that learn-
ing acts at multiple levels because letter classification
processes are likely to need all the help they can get.
Current extensions of the work reported here involve ex-
panding the input window to cover 8 or more letters,
as well as requiring the network to learn to classify 8
or more letters. This work indicates that classification
accuracy drops considerably with such extensions, and
therefore it seems reasonable to propose that word-level
or phonological-level coding would still play a critical
role in improving letter classification accuracy.

The results also raise the question of whether or
not factors that determine letter classification learn-
ing also determine reading disabilities and developmen-
tal stages of reading. The present work demonstrates
the importance of consistencies in eye fixation position-
s. Some reading problems are associated with reduced



input/output dimensionality, as measured by perceptual
span (Rayner, 1986; Rayner, et al., 1989) and with ir-
regular eye fixation patterns (Rayner & Pollatsek, 1989).
Such irregularities would increase input/output variabil-
ity, and hence reduce the dimensionality at which high
accuracy levels could be maintained. This pattern sup-
ports the relevance of letter classification learning factors
to reading disabilities and developmental differences.
Perceptual and classification processes have sometimes
been discounted as causes of reading disabilities on the
grounds that reading disabilities and developmental dif-
ferences become more apparent with more difficult con-
tent. Content factors have traditionally been associated
with processes beyond letter classification. The present
results suggest that this assumption warrants further
consideration since a factor that is often associated with
content difficulty-word frequency-was shown to impact
classification accuracy.

A third issue pertains to the question of why the hu-
man reading system doesn’t avoid all of these dimen-
sionality problems by taking the same approach chosen
by developers of optical character recognition systems—
classifying individual letters rather than letter sequences.
One possibility is that the brain can’t easily separate s-
mall (letter sized) individual parts of an image, classify
each and retain the original order of the images to in-
fer letter sequence information, and so it is forced into
dealing with the high dimensionality. In this case, the
human mechanisms would be less optimal than the cor-
responding machine-based mechanisms. Alternatively, it
is possible that incorporating letter sequence familiarity
at multiple stages of processing, as is possible in the cur-
rent system, would lead to higher overall accuracy rates.
In this case, the human mechanisms would be superior
to the machine-based mechanisms.

The final issue pertains to the direction of future re-
search. As noted earlier, the current focus is on develop-
ing a model that can at least partially classify between 8
to 13 letters within a single “fixation.” Once this model
has reached some degree of stable performance, the focus
will shift to incorporating additional aspects of reading.
One of these aspects is the control of eye movements.
Previous work (Martin, Rashid & Pittman, 1993) indi-
cates that it is possible to train networks to generate bal-
listic and corrective saccades to navigate along a path of
text. Other aspects include integrating the information
obtained from successive fixations, and using word-level
information to improve classification accuracy.
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