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ABSTRACT OF THE DISSERTATION

Using the Einstein-Infeld-Hoffmann Equations to Determine the

Equivalence of Rotational Frames with Gravitational Forces: A New

Tool For Cosmological Investigation

by

Daniel Patrick Gonzales

Doctor of Philosophy in Physics

University of California San Diego, 2023

Professor Thomas W. Murphy, Chair

In order to better understand the equivalence between gravitational forces of ro-

tating bodies and rotating frames, I use the Einstein-Infeld-Hoffman equations to

develop a cosmological appropriate integral for such study. I find that the ΛCDM

model of cosmology along with General Relativity (GR) are enough to get a near

equivalence between rotational frames and gravity. Then, using this integral and

asserting an interpretation of Mach’s Principle (MP), I examine what might need

to change from the standard ΛCDM cosmology to make a perfect equivalence. One

topic developed and tested is a modified ΛCDM cosmology with a time varying grav-

itational coupling. This model is compared with supernova distance modulus data

against ΛCDM. I find that in some cases this modified cosmology can statistically

outperform ΛCDM.
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Chapter 1

Introduction

An undergraduate’s first encounter with General Relativity is often accompanied

by an image of an astronaut in a rocket with no windows. This lonely astronaut

makes a number of observations that include projectiles making parabolic arcs with

a constant acceleration a. We teach the student that the astronaut, not being able to

observe outside of the rocket’s cabin, cannot determine whether they are on a planet’s

surface with its mass and radius such that a = −GM/r2ẑ, or if they are far away

from any massive body with their rocket accelerating at −a. We would state that

both these situations are in principle equivalent, and no experiment the astronaut

can make will distinguish between the two. If the astronaut were in fact on a planet,

we would attribute the parabolic arcs to the force of gravity. If they were in the

second case, we could state that the arcs are caused by the straight line—inertial—

trajectories of the projectiles being observed in an accelerating—non-inertial—frame.

The ability to make the equivalence between a uniform gravitational1 field and an

1It should be noted that the gravitational field at the planet’s surface is not uniform, but is in fact
divergent. As a result, an astronaut in a sealed cabin can in principle with very precise measurements
tell the difference between the two situations described. Implicit in the setup is an assumption that
the astronaut’s equipment cannot make measurements precise enough to differentiate elliptical
trajectories from perfect parabolas. However, this is a common scenario when introducing these
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accelerating frame is a foundational concept in our modern understanding of gravity.

Now let’s consider not simply linear accelerations but rotations. For any child

on a merry-go-round (MGR) they understand that the way things move on the

merry-go-round is dramatically different from their everyday experiences. The most

apparent difference is that they seem to be forced away from the center of the MGR,

despite the lack of another object to provide this force. Some particularly observant

kids might notice that—even in the absence of wind—projectiles follow paths that

are curved in the horizontal direction as well as the vertical. We could provide

an explanation to the children that these unusual experiences are caused by the

straight line—inertial—trajectories of the objects being observed in a rotating—

non-inertial—frame. In fact, if our astronaut from the previous paragraph were to

make similar observations of projectile trajectories, they would know without a doubt

that their rocket was rotating relative to the fixed stars—even without making any

observations outside of their rocket. However, in the case of rotation, we don’t try to

draw an equivalent picture where the curved trajectories are caused by gravity. This

is not because they are children and the equivalence might be difficult to explain to

them. It might even be rare to draw attention to this equivalence in a graduate level

General Relativity course. Why is that? Is there a gravitational–inertial equivalence

to be made between trajectories observed in rotating frames? Or rather, is there

something that is fundamentally different between rotation and linear acceleration?

These questions along with others will be explored in this work.

concepts in General Relativity to illustrate the equivalence of gravitational fields and accelerations.

2



1.1 General Relativity and the

Einstein-Infeld-Hoffman Equations

General Relativity (GR) is a geometric theory of gravity developed by Albert

Einstein in 1915. It is widely regarded as the best and most accurate theory of

gravity. It generalizes special relativity and Newton’s theory of universal gravity

into a unified framework. Specifically, GR relates the curvature of space-time to

local energy-momentum distribution. In turn, bodies within the curved space-time

follow straight lines (geodesics). The fact that space and time are coupled and can

in fact be curved can be quite perplexing to many people. Nevertheless, GR makes

testable predictions for a remarkable range of phenomena that are confirmed by

experiment. Some of the most interesting of these predictions include; the perihelion

shift of Mercury, light deflection by massive bodies, gravitational lensing effects, and

gravitational waves from in-spiraling neutron stars and black holes.

The theory of GR is succinctly captured in the tensor equation:

Gµν =
8πG

c4
Tµν − Λgµν . (1.1)

These are known as Einstein’s Field Equations. Broadly speaking, the left-hand side

of the equation is a description of the geometry of space-time while the right-hand

side describes the energy and momentum distribution through the so called energy-

momentum tensor Tµν . Λ in the equation is called the cosmological constant and is

the energy density of space or the vacuum energy.

This elegant framing can hide the true complexity of the theory. Tucked into this

equation are ten coupled second-order partial differential equations. Because of this

complexity, only a handful of exact solutions to the Field Equations have been found.

And all of those that have been found have utilized symmetries of the energy and

momentum distribution of the system to drastically reduce the number of coupled

differential equations to a manageable number. Some of these solutions include the

3



Schwarzschild Exterior Solution for points outside a non-rotating spherically sym-

metric body (used to describe trajectories of bodies exterior to a slowly rotating body

like a planet or star); The Kerr Exterior Solution for points outside an axially sym-

metric rotating body (used to describe trajectories outside a rapidly rotating body

like a black hole or neutron star); and the Friedman-Lemâıtre-Robertson-Walker

(FLRW) solution which describes a homogeneous and isotropic expanding perfect

fluid (used as the basis for cosmological models).

Because no general solution exists to the Einstein Field Equations, working with

systems that present no apparent symmetry can be nearly impossible to analyze

using the full tensor theory of GR. Because of this, a common technique for solving

the Einstein Field Equations in a weak field limit is to introduce “Nearly Lorentz”

coordinate systems (pp. 189 [Sch09], pp. 435 [MTW73]) with metric components:

gαβ = ηαβ + hαβ, where, |hαβ| ≪ 1. (1.2)

In Equation 1.2 ηαβ are the components of the flat Minkowski metric, and hαβ are

the components of a linearized gravitational field. Given these components for the

metric tensor, one can expand Einstein’s Field Equations to powers of hαβ using a

coordinate frame in which Eq. 1.2 holds. This technique has been applied to many

situations. Two better known cases are gravitational waves (ch. 9 [Sch09], part VIII

[MTW73]) and the equations of motion for massive bodies (ch. 39 [MTW73], pp.

149 [Wil95]).

In general, any metric theory of gravity can utilize this technique of having a

“Nearly Lorentz” coordinate system, not just GR. The equations of motion for any

theory of gravity can be written in the so called Parameterized-Post-Newtonian for-

malism (PPN). The “Post-Newtonian” part of PPN refers to the fact that these are

corrections to Newton’s universal theory of gravity, usually in terms of (v/c)2. The

“Parameterized” part of PPN refers to 10 parameters: γ related to the amount of

spatial curvature generated by mass; β related to the degree of non-linearity in the

4



gravitational field; ξ and three α parameters related “preferred frame” effects; four

ζ parameters related to “breakdowns in global conservation laws” ([Wil11], box 39.5

[MTW73]). In GR both γ and β are equal to one. All other parameters are equal to

zero. Many local experiments of gravity have been made that tightly constrain the

parameters of the framework to coincide with the GR values.

Even though spacetime is curved, the PPN coordinates provide a natural “3+1”

split of spacetime into space plus time. We can then treat that split using the

notation of three-dimensional, flat-space vector analysis [MTW73] pp. 1074. This

treatment of curved spacetime might seem fundamentally incorrect, PPN has been

very well tested by experiment and observation. Clifford Will sums it up nicely in

the title of his 2011 paper “On the Unreasonable Effectiveness of the post-Newtonian

Approximation in Gravitational Physics” [Wil11]. Experiments have determined the

PPN parameters to be consistent with GR. Table 1.1 summarizes the degree to which

we have experimentally verified the parameters to their values in GR.

In GR the equations of motion for massive bodies are referred to as the Einstein-

Infeld-Hoffman Equations (EIH) [EIH38]. These equations determine the acceler-

ations on a particle labeled with the subscript, A, that are imparted on it by the

gravitational interactions of the distribution and motions of particles summed over

with labels B, and in cases where double sums are required C. The EIH Equations

contain, as I present them,2 twelve vector terms.

2Various sources represent the EIH Equations with slightly different conventions, usually in how
the sums over the B and C particles are grouped together or using different vector conventions
(such as expanding out a BAC-CAB rule).
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Table 1.1: Parameters in the general PPN framework. For GR, the γ and β param-
eters in the top two lines are equal to one, while all others are equal to zero. The
second column in the table gives the experimental limits of the various parameters.
The third column gives a short description of the experiments that best constrain
those particular parameters. This table is reproduced from [Wil11] (LLR indicates
Lunar laser ranging).

Parameter Limit Remarks
γ − 1 2.3× 10−5 Cassini spacecraft tracking

4× 10−4 VLBI radio deflection
β − 1 3× 10−3 perihelion of Mercury

2.3× 10−4 no Nordtvedt effect, LLR
ξ 10−3 no anomalous Earth tides
α1 10−4 no anomalies in lunar, binary-pulsar orbits, LLR
α2 4× 10−7 alignment of sun and ecliptic
α3 2× 10−20 no pulsar “self” accelerations
ζ1 2× 10−2 combined PPN bounds
ζ2 4× 10−5 no binary “self”-accelerations
ζ3 10−8 no Lunar “self”-acceleration, LLR

6



aA =
∑
B ̸=A

GmB

r2AB

n̂BA

+
1

c2

∑
B ̸=A

GmB

r2AB

[
v2A + 2v2B − 4(vA · vB)−

3

2
(n̂BA · vB)

2

− GmA

rAB

− 4
GmB

rAB

]
n̂BA

− 1

c2

∑
B ̸=A

GmB

r2AB

[n̂BA · (4vA − 3vB)](vA − vB)

− 1

c2

∑
B ̸=A

∑
C ̸=A,B

GmB

r2AB

[
4
GmC

rAC

+
GmC

rBC

]
n̂BA

+
1

c2
1

2

∑
B ̸=A

GmB

rAB

[
n̂BA(n̂BA · aB) + 7aB

]
+O(c−4)

(1.3)

A quick point to make before getting into the details of this equation, one may

recognize the first term as Newton’s Law of Universal Gravitation. All other terms

are GR corrections of order v2/c2. You may notice that the numerical coefficients in

front of all the terms are simple rational numbers. This is a result of the fact that

the PPN parameters in GR are either one or zero.

A list of the various symbols used in the equations and their meanings is presented

as follows:

1. G and c are the typical physical parameters for the gravitational constant and

speed of light, respectively. Their values in SI units being G = 6.67 × 10−11

Nm2/kg2 and c = 3.00× 108 m/s. Because of the nature of this work, it is also

worth mentioning that c is also the speed of gravity.

2. mX is the mass of particles X (X = A,B,C).

7



3. Vectors rX , vX , and aX represent the barycentric position, velocity and accel-

eration vectors of particle X.

4. rXY is the scalar distance between the X and Y particles.

5. n̂XY is the unit vector pointing from the X mass to the Y mass, n̂XY =

(rY − rX)/rXY .

Even though these equations are a simplification of the ten coupled partial differential

equations GR begins with, they are still complicated. Handling such a large equation

can be quite daunting and confusing to discuss. Given that, I will introduce the

following labeling convention for each of the terms. Each term will be labeled in

roughly alphabetical order using script capital roman letters in the following way:

aA = N

+ [A+B + C +D

+ E +F ]

+ G

+ [H+ I]

+ [J +K].

(1.4)

This was typeset in such a way as to make it easier for the reader to pair the

letter label of each term in the second equation with its more explicit pair in the

Equation 1.3.3

3If you spend a lot of time with these equations, you feel like they are your children and may
want to name them. May I suggest the following names Newton, Albert, Banesh, Charles, Daniella,
Ernst, François, Galileo, Hermann, Isaac, John and Kip. Only two of these are not named after
scientists that have contributed to topics discussed in this thesis. Sadly, these are mostly boys
names, not for want of attempting to include some diversity in this list. Hopefully by the time
Daniella and Isaac are ready to write their PhD dissertations, if like their old man they want to
include a silly list of names in theirs, they will have a more diverse pool of names to choose from.

8



Though the equation may seem complicated and exotic, those familiar with

physics at various levels may find a few familiar faces within the equations. As

a reminder, the first term, N , is simply Newton’s Law of Universal Gravitation or

the inverse square law of gravitation. The next two terms (A & B) and part of term

C account for kinetic energy and their difference for both the A and B particles.

It can be noted that all terms except for the G and K terms are parallel (or an-

tiparallel) to the ray joining particle A to particle B. These two terms then can help

to partially account for the phenomenon known as frame dragging. Additionally, it

can be shown that parts of the C and G terms are the result of expanding out the

vector triple product BAC-CAB rule. The origin of that vector triple product is the

phenomenological effect of gravitomagnetism. Gravitomagnetism is the gravitational

analogue to magnetism. In electromagnetism, where moving charges create magnetic

fields, so to do moving masses create gravitomagnetic fields. And again, just like a

moving charge in a magnetic field has its trajectory deflected by magnetic force, a

moving mass in a gravitomagnetic field will be deflected by a gravitomagnetic force.

It is worth noting that lunar laser ranging (LLR), has played a large role in

tightening the constraints on some of these parameters. Of course, much of the

resent progress in LLR has been performed here at UCSD under Tom Murphy. Thus

working from the EIH Equations of motion, as this dissertation does, provides a firm

footing in tested GR.

1.2 Inertial Forces

In this section we turn away from GR and discuss inertial forces in terms of

classical Newtonian mechanics. If we consider two frames, one an inertial frame

labeled A, and another non-inertial rotating frame labeled B, the rotation of the

noninertial frame is characterized by the vector quantity ω. The acceleration of a

body observed in the rotating frame is given by the formula:

9



aB = aA − 2ω × vB − ω × (ω × xB). (1.5)

In this formula, the kinematic variables with subscript B are what an observer ro-

tating with the noninertial frame would measure. The acceleration aA is due to real

external forces acting on the body in the inertial frame. The two additional terms

in the formula are the so-called fictitious or inertial forces. It is important to em-

phasize that ω is the rotation rate of frame B relative to A. Observers in B would

characterize the rotational motion of A as −ω.

A general derivation for these (or any other fictitious forces) can be done by

considering a non-inertial frame B whose origin relative to the inertial one is given

by XAB(t). Let the position of a particle with mass m in the B frame be given

by x = Σ3
j=1xjûj. Here ûj are the unit vectors in the j = 1, 2, 3 directions. An

interesting note, naturally ûj cannot change in magnitude, so their time derivatives

can only represent a rotation of frame B. Additionally, XAB is only a relationship

between the origins of A and B and therefore can only represent a translation. We

can then write down the position of the particle in A’s frame in terms of it’s position

in B and XAB:

xA = XAB +
3∑

j=1

xjûj. (1.6)

To determine accelerations and thus forces, we only need to differentiate this

equation twice with respect to time. We get:

aA = AAB + aB + 2
3∑

j=1

vj
dûj

dt
+

3∑
j=1

d2ûj

dt2
. (1.7)

The first term is the translational acceleration of frame B relative to A. By solving

for aB and multiplying by the particle’s mass, we can write this as:

FB = FA + Ffict, (1.8)
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where FA = maA are the real external forces as determined in the inertial frame.

Ffict is the collection of other “force” terms that arise purely from the rotation and

acceleration of B relative to A:

Ffict = −mAAB − 2m
3∑

j=1

vj
dûj

dt
−m

3∑
j=1

d2ûj

dt2
. (1.9)

For non-inertial frames without any translational acceleration, the first term is nat-

urally zero. The other two terms would lead to the Coriolis and centrifugal forces,

respectively.

1.3 Mach’s Principle

Mach’s Principle is a philosophical concept that suggests the inertial properties

of matter arise from the influence of all the matter in the universe. It was pro-

posed by physicist and philosopher Ernst Mach in the late 19th century as a possible

explanation of inertia.

Perhaps more to the point: what are inertial frames? If these are the frames

in which Newtonian mechanics works and bodies under no external forces follow

straight lines, which frames are they? Is there an absolute frame which all other

frames move relative to? Newton seemed to think so [Mau12]. However, because

physics worked even in Galilean relativity, no observational evidence could be made

to support such an idea. Whether absolute space and time existed was a moot point.

So long as you are in a Galilean frame with respect to another inertial frame, physics

experiments would agree with one another. Therefore, rather than having a single—

absolute—inertial frame, an infinite number could be defined, so long as they were in

relative constant motion with respect to one another. Still, some frames appeared to

not be inertial. Any frame in which the fixed stars were rotating about a central axis

was NOT an inertial frame, because Newton’s laws did not work in those frames.
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Then Albert Einstein formulated his special theory of relativity. His theory laid

to rest any possibility of the existence of an absolute and fundamental space and

time. His new space-time had novel and interesting properties, where the lengths of

objects were not absolute but depended on a body’s motion relative to an observer.

Likewise, two identical and perfect clocks in relative motion to one another would

disagree on how much time had passed between events. Even if one clock measures

no time passing between two events, that is, the events are simultaneous, the same

events would not be simultaneous according to the other clock. Despite this definitive

argument against the notion of an absolute space and time, a condition still existed

which needed to be met in order for a frame to be considered inertial: the distant

stars should not be in relative rotation to that frame. The frame in which the distant

stars are rotationally fixed was seemingly still an absolute and fundamental frame.

Why is this frame special? Are there reasons within our physical laws that make

it special? Or is it just the way the universe is, existing with an infinite number of

Minkowski inertial frames but only one rotational inertial frame? In all my reading of

Mach’s principle, I think these are the core questions that philosophers and scientists

want to answer. Part of the motivation for this dissertation is to address some of

these questions. Furthermore, I think that supporters and investigators of Mach’s

Principle hope that giving a physical reason for this seemingly singular inertial frame

would yield deep insights into the nature of space-time, mass-energy, and gravity.

Despite the many scientists and philosophers that investigate MP, no clear con-

sensus has been met on what exactly is MP.4 Hermann Bondi and Joseph Samuel

categorized and enumerated what they felt were the most common interpretations

of MP in the literature. They came up with 11 classes of MP [BS97]:

• Mach0*: The universe, as represented by the average motion of distant galaxies,

does not appear to rotate relative to local inertial frames.

4Or maybe non consensus exists because so many scientists and philosophers have investigated
it.
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• Mach1*: Newton’s gravitational constant G is a dynamic field.

• Mach2: An isolated body in otherwise empty space has no inertia.

• Mach3*: Local inertial frames are affected by the cosmic motion and distribu-

tion of matter.

• Mach4: The universe is spatially closed.

• Mach5: The total energy, angular and linear momentum of the universe are

zero.

• Mach6*: Inertial mass is affected by the global distribution of matter.

• Mach7: If you take away all matter, there is no more space.

• Mach8*: Ω ≡ 4πρGT 2 is a definite number, of order unity, where ρ is the

mean density of matter in the universe, and T is the Hubble time.

• Mach9: The theory contains no absolute elements.

• Mach10: Overall rigid rotations and translations of a system are unobservable.

It is important to note that this list of interpretations is not exhaustive, nor does

the truth value of one imply the truth value of another. Items marked with asterisks

(*) can be related to this work and will be addressed as we come across examples of

them.

One modern experimental technique that can be used to verify Mach0 with in-

creasing precision is the use of ring laser gyros (RLGs). RLGs are devices that use

the Sagnac effect to measure rotations to high precision. In an RLG, a laser beam is

split into two counter-propagating beams that travel around a closed loop in opposite

directions. The two beams recombine at a detector, where they interfere with each

other. If the loop is not rotating, the two beams will experience the same amount
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of time delay and arrive at the detector at a static phase difference. However, if the

loop is rotating, the path length of the beam traveling in the direction of rotation is

shorter than the path length of the beam traveling in the opposite direction. This

leads to a phase shift between the two beams. Naturally, this will cause an interfer-

ence pattern at the detector. The shift in the interference pattern is proportional to

the area enclosed by the loop and the angular velocity of the rotation, and is known

as the Sagnac phase shift [DV20]. One promising experiment is the Gyroscopes IN

General Relativity (GINGER) project, which aims to measure the Earth rotation

rate relative to the International Earth Rotation Reference System with a sensitivity

to a part in 1012. Its prototype project, GINGERINO, has demonstrated its own

capabilities to a part in 109 [ABB+23]. This makes GINGERINO as capable as an-

other, longer running RLG experiment, the Wettzell “G” ring laser [BSG+19]. Better

than 10−9 sensitivity in RLG experiments is necessary to test GR terms measuring

Lense-Thirring and de Sitter precessions5 on the Earth [VTB+22]. It is worth noting

that while the 10−12 is impressive and useful for testing and constraining GR, this

sensitivity is about 10−16 radians per second, which may not be quite cosmologically

relevant yet, as it would allow about 30 radians of accumulation (5 wraps) over the

age of the universe 13.8 Gyr.

1.4 Cosmology

Cosmology is a field of study that aims to understand the origins, evolution,

and structure of the universe as a whole. Additionally, cosmology investigates the

distribution of matter and energy throughout the universe. Our modern interpre-

tation of cosmology is intimately intertwined with gravity and GR. Indeed, as we

will see in the next subsection, the foundational principles of modern cosmology are

rooted in one of the few exact solutions of Einstein’s Field Equations. Furthermore,

5De Sitter precession is also commonly known as geodetic precession.
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driven by observations, the simplest model for the evolution of our universe, known

as Lambda-CDM, ΛCDM, predicts a mysterious form of mass-energy known as dark

energy.

1.4.1 FLRW

The Freidmann-Lemâıtre-Robertson-Walker metric is an exact solution of Ein-

stein’s Field Equations. The symmetries used to simplify the field equations are

that the universe is spatially homogeneous and isotropic. The FLRW metric makes

no assumptions regarding the temporal nature of space-time or its overall spatial

curvature. The line element for the FLRW metric is given by:

ds2 = −dt2 + a2(t)[dr2 + r2dΩ2]. (1.10)

FLRW describes the geometry of space-time in terms of scale factor, a(t). The

scale factor determines the size of the universe at any given time, with the typical

convention that in the present epoch, t0, a(t0) is equal to one. From this line element,

the equations of motion for the scale factor in a flat universe are determined to be:

(
ȧ

a

)2

≡ H2 =
8πG

3
ρ− kc2

a2
+

Λc2

3
, (1.11)

2
ä

a
+

(
ȧ

a

)2

= 2Ḣ +H2 = −8πGp

c2
+

Λc2

3
− kc2

a2
. (1.12)

The top equation is known as the Friedmann Equation, and is found from the 0–0

component of the Einstein Equations. The second equation is found from the i–i

components of the Einstein Equations. These two equations are not independent, and

by subtracting Eq. 1.11 from Eq. 1.12, one can find an equation for the acceleration

ä alone:

ä

a
= −4

3

(
ρ+

3p

c2

)
+

Λc2

3
. (1.13)
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The Friedmann Equation defines the Hubble parameter H, and it is simply the

rate of expansion of the universe. It is a dynamical property of an evolving universe

and thus changes in time. The expansion rate for the present epoch t = t0 is defined

as the Hubble Constant H0. In the equation, G and c serve their usual purpose as the

gravitational constant and the speed of light, while ρ is the mass-energy density of

the universe and p is the pressure provided by the density. The curvature parameter,

k, determines the overall spatial curvature of the universe. The magnitude of k is

unimportant as it can be arbitrarily rescaled with a, however the sign of k is very

important. The Λ in the equation is the cosmological constant and is the same

constant from Einstein’s Field Equations 1.1.

We will, as per convention, absorb the cosmological constant term into the def-

inition of the overall density such that, ρ → ρ − Λc2/8πG. Given this convention,

Equation 1.11 reads:

(
ȧ

a

)2

≡ H2 =
8πG

3
ρ− kc2

a2
. (1.14)

If we solve this equation for k and set the dynamical parameters H, ρ, and a to the

current epoch values H0, ρ0 and 1 respectively, we get:

k =
1

c2

(
8πG

3
ρ0 −H2

0

)
(1.15)

Given this, we can define a quantity called the critical density ρc. It is the density at

which the curvature vanishes, and is easily found to be ρc = 3H2
0/8πG. By definition

if, ρ0 = ρc then k > 0. Then the universe is flat, spatially open and infinite. The

analogous two-dimensional structure is that of an infinite flat sheet. For ρ0 > ρc,

k > 0, the universe is spatially closed, finite and positively curved. The analogous

two-dimensional space would be the surface of a sphere. Finally, for ρ0 < ρc, k < 0

the universe is spatially open, infinite and negatively curved. An analogous two-

dimensional shape often used to visualize this space is that of an infinite saddle.6

6An interesting fact to point out is that not every “infinite saddle” has constant negative cur-
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With the definition of ρc, it will be useful to define the density parameters Ωx.

The density of species x of mass-energy given by ρx. The density parameter for that

species is then simply the ratio of the density to the critical density:

Ωx =
ρx
ρx

. (1.16)

Observationally, the universe is flat [KR22]. The driving observation for de-

termining this is the Wilkinson Microwave Anisotropy Probe (WMAP) as well as

observations of type-Ia supernovae from the Sloan Digital Sky Survey. WMAP mea-

sures the temperature fluctuations in the Cosmic Microwave Background radiation.

Given this fact, this dissertation will only operate under an assumption of k = 0.7

For a flat universe, the Friedmann Equation simplifies to:

(
ȧ

a

)2

≡ H2 =
8πG

3
ρ. (1.17)

This is the form of the Friedmann equation we will be working with for the remainder

of the dissertation.

1.4.2 ΛCDM

The current, most well accepted theory of cosmology is known as ΛCDM. ΛCDM is

a modification of the FLRW metric that proposes that the universe is mostly made

up of two exotic forms of mass-energy: Dark Energy (the Λ in ΛCDM) and Cold Dark

Matter (CDM), in about 68% and 27% ratios respectively to the total mass-energy

content of the universe in the present epoch. The remaining 5% of the mass-energy

is what we might call normal matter that is primarily made up of baryons and ra-

diation. Nobel laureate Adam Riess, describes ΛCDM as the vanilla cosmological

vature. The pseudosphere is usually given as the example of a constant negative curvature surface,
but such a surface cannot be completely embedded in three-dimensional space without a singularity
somewhere. Special thanks to Jeff Rabin for this interesting insight.

7Though, it could be an interesting future endeavor to relax this constraint and perform a similar
analysis as this thesis to a universe without k = 0.
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model—as it is simple and only contains six independent parameters [RCY+19]. The

set of six parameters used to define the model is open to choice. However, from those

chosen parameters, a number of derived parameters can be determined. Included in

these derived parameters that will be of interest to us are: the Hubble Constant H0;

the various density parameters Ωx,0; and the age of the universe t0 [aPARAAAC
+14].

Cold Dark Matter is a form of mass which interacts only through gravity and

is invisible by electromagnetic means. Many observations support the idea of Dark

Matter independent of cosmology. The main lines of evidence for the existence of

dark matter include: Galaxy Rotation Curves, the Cosmic Microwave Background

Radiation, gravitational lensing and Dark Matter Halos. Despite this overwhelming

evidence for the existence of Dark Matter, no clear consensus has been met on what

it is actually made of or how it might interact with normal matter through channels

other than gravity. Bertone and Hooper provide a broad historical perspective on

these observational discoveries and the theoretical arguments that led the scientific

community to adopt Dark Matter as an essential part of cosmology [BH18].

Dark Energy is a very unusual kind of mass-energy. It is most often associated

with the cosmological constant Λ (the same Λ appearing in Einstein’s field equations

(Eq. 1.1), which would give it the equation of state p = wΛρ, with the equation

of state parameter wΛ = −1. This equation of state is quite unusual in that w is

negative. For comparison, the equation of state parameters for matter and radiation

are wM = 0 and wR = 1/3.

One common way to describe how a negative equation of state parameter works

is to consider a spring. Normally, if you try to compress a spring, the spring would

impart a force in the opposite direction of compression. Likewise, if you attempt to

stretch a spring, it will impart a force in the opposite direction of stretching. This

is captured in the negative sign in Hooke’s Law F = −kx. Now let us consider a

Dark Energy Spring. If you try to compress this exotic spring, it will not resist the

compression, in fact it will begin to compress further on its own accord. Likewise, if
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you try to stretch it, it will create a force that will increase the stretched length. If

we were to mathematically describe this force like Hooke’s law, the biggest difference

would be in the sign of the RHS, FΛ = +kx.

The observational evidence for dark energy comes from a variety of cosmological

observations, which suggest that the universe is accelerating in its expansion. In

a flat universe when G is constant, this acceleration cannot be explained by the

gravitational attraction of matter alone, and requires the existence of a repulsive

force that counteracts gravity. This repulsive force is believed to be due to the

presence of dark energy.

One of the earliest pieces of evidence for dark energy came from studies of distant

supernovae in the late 1990s. These studies found that the light from distant super-

novae was dimmer than expected. This observation was consistent with the idea of

an accelerating universe, and was interpreted as evidence for the existence of dark

energy [RFC+98][PAG+99]. Follow-up observations of supernovae have confirmed

the initial results, providing more evidence for an accelerating universe and the need

for dark energy [KRA+08].

Despite its success, a number of observations have been made that are in ten-

sion with the ΛCDM model. Perhaps the most well known of these is the Hubble

tension, which refers to a discrepancy between measurements of the expansion rate

of the universe obtained using independent methods. “Early” methods of deter-

mining the Hubble constant primarily use observations of the Cosmic Microwave

Background (CMB) and spatial fluctuations in galaxy distributions. These obser-

vations have determined its value to be in the range Hearly
0 = 67 − 68 km/sMpc.

While “late” methods use recessional velocities of nearby galaxies and the distances

to those galaxies to directly measure the Hubble constant. These late methods give

a higher range for the Hubble constant in the range H late
0 = 70− 75 km/sMpc. The

accepted weighted mean of each of these measurements with their uncertainties are

reported as Hearly
0 = 67.4 ± 0.5 km/sMpc and H late

0 = 73.0 ± 1.0 km/sMpc—a 5-
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sigma discrepancy. Several theoretical hypotheses have been proposed to account for

this large discrepancy, some models include Early Dark Energy (EDE), changing the

equation of state parameter for Dark energy with a value of w < −1 (wCDM), and

modified gravity [KR22]. In 2022 Nils Schöneberg et al. proposed an “Olympics”

for fairly ranking proposed modifications to ΛCDM against one another [SAS+22].

In this playful yet comprehensive and systematic comparison, they had 17 theories

of cosmology compete to win the coveted gold medal.

While the Hubble tension is the most well known discrepancy of ΛCDM, addi-

tional challenges for ΛCDM have been enumerated by Perivolaropoulos and Skara

[PS22]. Some of these tensions include:

1. Growth Tensions: in the context of GR, the Planck/ΛCDM parameters in-

dicate stronger growth of the cosmological perturbations than are implied by

observations.

2. CMB Anisotropy anomalies: statistical anomalies of the large angle fluctua-

tions in the CMB.

3. Cosmic Dipoles: the presence of signals which indicate the violation of the

cosmological principle8.

4. Cosmic Birefringence: parity violating rotation of CMB linear polarization.

1.4.3 Cosmography: Distance Measures in Cosmology

Future chapters will rely heavily on various cosmological distance measures, which

are laid out here. This section is largely taken from David Hogg’s work [Hog99].9

8William Keel writes, “The cosmological principle is usually stated formally as: ‘Viewed on a
sufficiently large scale, the properties of the Universe are the same for all observers.”’ p. 1 [Kee02].

9Nearly every cosmology textbook will have some portion of it devoted to this topic. However,
Hogg’s work was very good at organizing this information and relieving confusion between the
differences in these distances.

20



The Hubble time is defined as the inverse of the Hubble parameter tH = 1/H0. If

we multiply the Hubble time by the speed of light, c, we get the Hubble Distance DH .

It is worth pointing out that these two quantities are not the age of the universe or

its size, but they do provide decent scales for comparing cosmological distances and

times. Their numerical values are tH = 14.5 Gyr and DH = 4.4 Gpc. The redshift, z,

of an object is the fractional shift in its emitted wavelength of light z = λo

λe
−1, where

λo is the observed wavelength and λe is the emitted wavelength. It is similar to the

Doppler shift of an object with an outward radial motion from an observer. However,

it is probably more accurate to consider it as the gravitational redshift produced by

an expanding universe. The redshift of an object is related to the scale length of

the universe at the time it emitted its light to the scale length of the universe today.

Defining the scale length in the present epoch to be one, the scale length at redshift

z is given by:

1 + z =
1

a(t)
. (1.18)

It is very important to note that the redshift of a distant object is a directly

measurable quantity—unlike the distance to that object or the time it emitted its

light. Because of this, redshift will be used as a coordinate to past events rather

than time, with higher values of z corresponding to events further back in time.

A note on notation: at times it will be important for us to juggle various redshift

quantities at a time. I will use a lower case z as the independent variable in a

function such as a(z) = (1 + z)−1. Often, a function of z might have the redshift

as the upper limit on an integral. In such cases, I will use the Greek letter zeta, ζ,

as an integration variable over redshift. On occasion, I may need to speak about

a specific redshift, sometimes in the context of a hypothetical astronomer at some

redshift relative to us, in these cases I will use a capital Z. Lastly, sometimes it may

be necessary for me to refer to a redshift relative to this hypothetical astronomer

at redshift Z. In those cases, I will add a “rel” subscript to the redshift zrel. The
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relationship between Z and z (both measured from the current epoch) and zrel is:

1 + zrel =
1 + z

1 + Z
. (1.19)

The density of the universe is a dynamical property of an expanding universe.

As can be clearly seen in Equation 1.17 it affects the time evolution of the metric.

The density of our universe is naturally the sum of partial densities of the different

species of mass-energy in our universe, ρ = Σρx. In terms of the density parameters,

the density in the present epoch is, ρ0 = ρcΣΩx,0. If the universe is measured to be

flat today, then that means that the closure parameter defined as Ω0 = ΣΩx,0 = 1.

Additionally, if the universe is flat today, then it has always been flat. This means

that the density at any epoch is equal to the critical density at that epoch ρ(z) =

3[H(z)]2/8πG. If we define the function E(z), such that H(z) = H0E(z), we can

see that the density at redshift z is given by ρ(z) = ρc[E(z)]2. Which means that

the square of the E(z) function is simply the sum of the density parameters at that

epoch [E(z)]2 = ΣΩx(z). This makes the density as a function of z equal to:

ρ(z) =
3H0

8πG
[E(z)]2. (1.20)

The density of each species of mass-energy reacts differently to changes in the

scale length. In particular, each one will scale like a−dx = (1+z)dx , where dx is known

as the dilution parameter of that species. The dilution parameter is related to the

equation of state for that species. Given the equation of state p = wρx, dx = 3(1+w).

For radiation, matter and dark energy w is 1/3, 0 and −1 respectively, leading to

dilution parameters of 4, 3 and 0 respectively. With this, we are ready to fully define

the E(z) function as:

E(z) =

√∑
x

Ωx,0(1 + z)dx . (1.21)
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The 0 subscript in the Ω parameters indicates that those are the density parameters

as measured in the present epoch. For ΛCDM E(z) is explicitly given as:

E(z) =
√

ΩΛ,0 + ΩM,0(1 + z)3 + ΩR,0(1 + z)4, (1.22)

where the Λ,M andR subscripts refer to dark energy, matter (including both baryons

and dark matter), and radiation (including photons and high energy massive particles

like neutrinos) respectively.
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No Lambda

Figure 1.1: E(z) function for various basic flat models of the universe. The models
differ only in their current density parameters Ωx,0. The values for the density
parameters are provided in Table 1.2.

Figure 1.1 presents the evolution of E(z) with differing values of the density

parameters Ωx,0. The density parameters used for the different models plotted are

provided in Table 1.2. These basic models will be used to make various comparisons

throughout this work. You’ll notice in the table references to curvature only models

ΩK,0 = 1, even though it was explicitly state that the universe is flat and the curva-

ture parameter k is zero. I include the curvature only model because the equation

of state yields a dilution parameter of dK = 2 which sits nicely on the other side of
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Table 1.2: Density parameters for various basic flat models for the universe. The
“Standard” case uses the values for ΛCDM as determined from the 2018 Planck
experiment release [AAA+20]. The subscripts Λ, M , R and K refer to dark energy,
matter (including both baryons and dark matter), and radiation (including photons
and high energy massive particles like neutrinos), and curvature respectively. The
subscript of 0 refers to the fact that these are the density parameters in the current
epoch t = t0.

Case ΩΛ,0 ΩM,0 ΩR,0 ΩK,0

Standard 0.6889 0.3111 10−4

Lambda 1
Matter 1

Radiation 1
Curvature10 1
No Lambda11 0.3111 10−4

matter’s dilution parameter, dM = 3 from radiaiton’s, dR = 4. In this sense, plotting

the curvature only model can at times give a sense of how some results might “fit”

between simple cases, for example in the results plotted in Figure 3.3.

Plugging the definition of E(z) in Eq. 1.21 into Equation 1.20 we get our full

formula for the density as a function of redshift to be:

ρ(z) =
3H0

8πG
[E(z)]2 =

3H0

8πG

∑
x

Ωx,0(1 + z)dx . (1.23)

The general expression of E(z) also leads us to define the rate of change of the

scale length in terms of it as:

ȧ

a
= H(z) = H0E(z). (1.24)

10Because the sum of the density parameters is not equal to one, various cosmographic values
and other values we will introduce will have very different forms that can include sin(r) and sinh(r)
functions, where r is the radius of curvature of the universe. However, often the purpose of these
comparisons will be more a demonstration of how those values behave when the density parameters
are changed, and not necessarily for situations in which the k parameter is not equal to 0.

11Same note as the “Curvature” case.
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Table 1.3: These are the three redshifts for which the given density parameters are
equal. The arrows indicate when increasing z leads to a change from one domi-
nant species to another. The two values where the dominant species changes will be
plotted with vertical dotted lines in most of the figures as an aid for comparisons be-
tween the different dominated epochs. When ΩΛ = ΩR matter remains the dominant
species.

Transition Ztrans

ΩΛ −→ ΩM 0.30
ΩΛ = ΩR 5.1
ΩM −→ ΩR 3100

Two things we might want to know are: what are the density parameters at some

redshift Z; and what is E(zrel) as measured from some redshift Z? It can be easy to

relate these two quantities:

Ωx,Z =
Ωx,0(1 + Z)dx

[E(Z)]2
, (1.25)

E(zrel) =
E(z)

E(Z)
. (1.26)

Figure 1.2 plots how the density parameters, Ωx,Z evolve in time over the age of the

universe.

Additionally, because the different mass-energy species scale differently with the

size of the universe, there are times when two of the species’ densities may be mo-

mentarily equal as one becomes more dominant than the other. The redshift of these

epochs can be shown to be:

Zeq =

(
Ωx,0

Ωy,0

)1/(dy−dx)

− 1. (1.27)

For ΛCDM these redshifts can be found in Table 1.3:

The comoving distance DC is an important baseline distance measure in cosmol-

ogy. The comoving distance we observe to a distant object is one that remains fixed
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Figure 1.2: Plotted is the cosmological evolution of the density parameters. The
values at the current epoch are given by the Planck experiment 2018 results (ΩΛ,ΩM)

in time, even though the proper distance—the distance you would measure with

rulers—between the two objects will increase with the expansion of the universe.

From Hogg:

A small comoving distance δDC between two nearby objects in the Uni-
verse is the distance between them, which remains constant with epoch
if the two objects are moving with the Hubble flow. In other words, it is
the distance between them which would be measured with rulers at the
time they are being observed (the proper distance) divided by the ratio
of the scale factor of the Universe then to now; it is the proper distance
multiplied by (1+ z). The total line-of-sight comoving distance DC from
us to a distant object is computed by integrating the infinitesimal δDC

contributions between nearby events along the radial ray from z = 0 to
the object.

The integral over time looks like this:
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DC =

∫ to

te

c
dt′

a(t′)
. (1.28)

But recalling (1 + z) = a−1, differentiating this expression with respect to time

gives, dz/(ȧ/a) = −dt/a. Plugging this into the integral above and replacing ȧ/a

with H(z) = H0E(z) and c/H0 with the Hubble distance, DH , we get:

DC = DH

∫ z

0

dζ

E(ζ)
. (1.29)

Figure 1.3 plots how DC (red solid line) as a function of redshift z along with other

distance measures we will discuss.

Many other cosmographic distances are defined in terms of the line-of-sight co-

moving distance. The proper distance to any object is an observer specific quantity,

as it is the distance between two events in the frame in which they occur at the

same time. It is physically defined as the number of rulers that would span between

two objects at any given instant in the observer’s frame. In terms of cosmology, we,

here on Earth, are implicitly defined as the observer. The proper distance not only

requires identifying the two objects of interest, but also the time at which at which it

is measured12. By definition, the comoving distance to any object at redshift z today,

t = t0, is the proper distance DC(z) = DP (t0). Remember, the comoving distance

stays fixed in time. So, the proper distance to that same object when it emitted its

light that we observe today, t = te, would be today’s proper distance reduced by the

scale factor when the light was emitted a(te) = 1/(1 + z). So the proper distance at

the time when light was emitted to some object at redshift z is:

DP (te) =
DC(z)

1 + z
=

DH

1 + z

∫ z

0

dζ

E(ζ)
. (1.30)

12The act of laying out rulers and counting them is not meant to be a literal way to measure
proper distance. By definition, it is the distance between two points at the same instant, and this
would necessarily make the events of observing both points for measurement time-like separated.
This is true not just for distances on the cosmic scale, but even holds for small terrestrial objects
in a laboratory. Rather, this idea of laying our rules is simply used as a visualization device.
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Figure 1.3: Distance measures in flat-ΛCDM cosmology. By definition, the proper
distance today DP (t0) is equal to the comoving distance DC , (solid red line). In a
flat universe, the proper distance between two objects at the time of emission, te, is
equal to the angular diameter distance, DA = DC/(1 + z) = DP (te), (dashed green
line). The blue dotted line gives the look-back distance as determined by the look-
back time DT = tL/c. The dotted black line has a slope of one in the plot and is
used to show the departure of the other distance measures from a familiar Euclidean
distance measure.

The transverse comoving distance, DM , relates the comoving distance between

two events at the same redshift but separated on the sky by some angle δθ. The

comoving distance between these two events is δθDM . In a flat universe the transverse

comoving distance, DM is simply equal to the line-of-sight comoving distance DC .

The angular diameter distance DA is the ratio of an object’s physical transverse size

to its angular size on the sky. It is commonly used to convert angular separations in

telescopes into proper distances at the source. It is equal to the transverse comoving

distance multiplied by the scale factor DA = aDM = aDC . For a flat universe:
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DA(z) =
DC

1 + z
. (1.31)

You’ll notice that DA(z) is equal to DP (te). This is only true in a flat universe due

to the fact that in a flat universe DM = DC . DA is the one distance measure that

begins to actually get smaller with high redshift, as can be seen in Figure 1.3 (green

dashed line).

Hogg also talks about a lookback time. This is defined as the difference between

the age of the universe now, t0, and the age of the universe at the time the photons

were emitted, te (according to the object). It is given by:

tL = tH

∫ z

0

dζ

(1 + ζ)E(ζ)
. (1.32)

Therefore, by multiplying by the speed of light, we can determine how “far” the light

has traveled from the time it was emitted to observation:

DT = DH

∫ z

0

dζ

(1 + ζ)E(ζ)
. (1.33)

This then measures distance to events along our past light-cone. Furthermore, since

gravity also travels at the speed of light, we can perhaps consider these events to

be on our past gravitational-cone. I should point out that this is not a distance

measure that Hogg defines. However, because it is the distance that a gravitational

“signal” travels between two events, we will use this as the “gravitational distance”

between two masses in Chapter 3. It is interesting to note that both DC and DT both

approach constant values as z → inf, as can be seen in Figure 1.3. Additionally, those

values are very near the value of DH , at DT (∞)/DH = 0.95 and DC(∞)/DH = 3.2.

One last distance measure is the luminosity distance DL. This distance is defined

by the relationship between the bolometric (i.e., integrated over all frequencies) flux

S and the bolometric luminosity L:
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DL ≡
√

L

4πS
. (1.34)

It is related to the comoving distance and angular diameter distance by:

DL = (1 + z)2DA = (1 + z)DC = DH(1 + z)

∫ z

0

dζ

E(ζ)
. (1.35)

As we can see in Figure 1.3, for ΛCDM the luminosity distance (purple dash-dotted

line) is larger than the Euclidean distance. Because of this, distant supernovae look

dimmer than expected from a simple inverse square law.

Cosmologists use the luminosity distance to directly measure H. They do this

by recording the flux of “standard candles,” objects with known intrinsic luminosity.

By measuring the flux and knowing the luminosity, they are able to directly measure

DL via Equation 1.34. By also measuring the redshift z, they can fit H(z) with the

integral form of DL in Equation 1.35. That is of course if DH = c/H0 is known. In

practice, many standard candles are observed to constrain both H0 and the density

parameters Ωx,0 in E(z).

Often, rather than reporting the luminosity distance directly, cosmologists will

report the distance modulus µ. Therefore, a brief introduction to this quantity is

necessary in order to be conversant with experimental results involving supernova

data, as we will do in Chapter 4. The distance modulus is the magnitude difference

between an object’s observed bolometric flux and what its bolometric flux would be

at a distance of 10 parsecs. The distance modulus is defined as:

µ ≡ 5 log

(
DL

10 pc

)
. (1.36)

The absolute magnitude M is an astronomer’s measure of luminosity, defined as

the apparent magnitude the object would have if it were at 10 parsecs. The observed

magnitude m of an object is:
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m = M + µ+K, (1.37)

where K is the k-correction, and needs to be used if the magnitude is not measured

at all wavelengths. The k-correction is given by:

K = −2.5 log

[
(1 + z)

L(1+z)ν

Lν

]
= −2.5 log

[
1

(1 + z)
Lλ/(1+z)

Lλ

]
, (1.38)

where Lν is the differential luminosity at frequency ν over the band pass δν. It

has units of energy per unit time per unit frequncy. Likewise, Lλ is the differential

luminosity at wavelength λ over the band pass λ, with units of energy per unit time

per unit wavelength. For this work, we won’t be directly working with m or K, they

are only provided to complete the discussion of the distance modulus.

The last cosmographic measures we will discuss are the comoving volume element

and the proper volume element. The comoving volume VC , is the volume in which

the number densities of non-evolving objects locked into the Hubble flow are constant

with redshift. The comoving volume element is the differential line-of-sight comoving

distance, dDC , multiplied by two factors of the transverse comoving distance times

a small solid angle element dΩD2
M . However, DM is simply (1+ z)DA. Furthermore,

from Eq. 1.29 we can see that dDC is just (DH/E(z))dz. Altogether, the comoving

volume element is given by:

dVC = DH
(1 + z)2D2

A

E(Z)
dΩdz. (1.39)

Recall that the comoving distances are fixed in time. That is to say, the comoving

distance to a distant galaxy today is the same as it was at any point in the past,

no matter how physically close it may have been at some earlier epoch. This would

also mean that the comoving volume would remain fixed in time as well. If we are

interested in real physical densities, clearly this notion of a volume that remains

fixed in time is not sufficient. Recalling that the proper distance when the light

31



was emitted is simply the comoving distance multiplied by the scale factor at that

redshift, in order to properly determine physical densities, what we want is the

proper volume element. Which is the comoving volume element multiplied by the

scale factor cubed. Given that, the proper volume element is:

dVP = DH
D2

A

(1 + z)E(z)
dΩdz. (1.40)

But DA in a flat universe is just DC/(1 + z). So, the proper element is also:

dVP = DH
D2

C

(1 + z)3E(z)
dΩdz (1.41)
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Chapter 2

Integration of EIH Over Rotating

External Spherical Shells

An observer in what we would call a non-inertial frame is entitled by relativistic

formulations to evaluate physics in that frame, in which the universe seems to wheel

around their lab. Our question is: does the mass distribution of the universe, through

GR, impose “fictitious forces” that collectively assert an inertial frame which is tied

to the distant stars. To that end, this chapter will focus on evaluating the EIH

Equations of motion for a test particle at the center of a thin shell of mass that can

both move relative to the frame. We will then compare the accelerations imparted

by the shell on the test particle to accelerations that would be observed should the

observer change their frame to one that is fixed to the non-inertial shell.

2.1 The Spherical Shell

2.1.1 The Setup

In this section, we will consider a test particle at the center of a spherical shell

with radius R and mass M in flat static space (not in an expanding FLRW universe,
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to which we will return later). Because the coordinates in EIH are “Nearly Lorentz”

and can be treated with a flat 3+1 space and time split, the coordinate radius R

is simply the familiar Euclidean distance to the shell’s surface. It will also have a

uniform surface density σ such that M = 4πR2σ. We will consider three cases with

the following distinctions:

• Case:1 - Linear Acceleration Case - The shell will be momentarily at rest w.r.t

the test particle, but it will have uniform linear acceleration, aA.

• Case:2 - Coriolis Case - The shell will be rotating uniformly with some angular

frequency ω, while the particle has some velocity vA in the equatorial plane.

• Case:3 - Centrifugal Case - The shell will be rotating uniformly with some

angular frequency ω about an axis that is displaced from the test particle by

some distance xA. Additionally, the axis of rotation will be perpendicular to

that displacement.

Because our shell is an extended mass and not a set of discrete point masses, we

will need to convert the sums within the EIH Equations to integrals. For that, we

will use the following transformations for all the cases:

mB −→ dm = ρ(x)d3x −→ R2σdΩ, (2.1)

rBA −→ const = R, (2.2)

n̂BA −→ r̂, (2.3)

vB −→ v(x), (2.4)

aB −→ a(x), (2.5)∑
A ̸=B

mBf(rA, rB,vA,vB,aB) −→ R2σ

∫
Ω

dΩf(Rr̂,vA,v(x),a(x)), (2.6)

∫
Ω

dΩ =

∫ 2π

0

dϕ

∫ π

0

sin θdθ. (2.7)
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2.1.2 Evaluation of Common Terms Between Cases

Before evaluating the integrals for each case, we can notice that the N , E , F ,

H, and I terms do not contain any factors of vA, vB or aB. Since all other factors

are identical between each case, we can evaluate those terms once for all the cases.

With the substitutions from the previous section, the N and E terms become:

N = GR2σ

∫
Ω

dΩ
r̂

R2
, (2.8)

E = −5
GmA

c2
R2σ

∫
Ω

dΩ
r̂

R3
. (2.9)

The integrals in both of these terms are identical and simply
∫
Ω
dΩr̂. This

isotropic integral is equal to zero, with Appendix A.1 detailing the the integration

steps. Therefore, N = E = 0 for all cases. Naturally, the N term is more generally

zero for any location inside a shell, according to Newton’s Shell theorem.

The integral of the F term is a bit trickier to set up because the m2
B factor

carries two powers of dΩ, while we need only integrate over one. For clarity in the

integration I will label one of the differential elements as δΩ, while we integrate over

dΩ. The integral will then look like this:

F = −4
G2

c2R
σ

∫
Ω

dΩ(R2σδΩ)r̂. (2.10)

Now, this term has the same form of isotropic integral as N and E . Therefore, the
F term is also equal to zero.

Finally, theH and I integrals contain double sums. One thing we can note about

these two terms is that because of the spherical symmetry of the setup, those inner

sums/integrals will be constant over the surface of the sphere. For the moment, let’s

simply call them Hinner and I inner. Plugging these in and the substitutions from the

previous section, we get:
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H = −4
G2

c2
R2σ

∫
Ω

dΩ
Hinner

R2
r̂, (2.11)

I = −G2

c2
R2σ

∫
Ω

dΩ
I inner

R
r̂. (2.12)

Once again, these are both isotropic integrals equal to zero. So in summary, the

following terms are equal to zero for all of the cases:

N = E = F = H = I = 0. (2.13)

2.1.3 Linear Acceleration Case:1

R

aB

Figure 2.1: Diagram for the linear acceleration Case:1. The shell and test mass are
momentarily at rest with respect to each other. The test mass is located at the center
of the shell. The shell is accelerating uniformly with acceleration aB indicated with
the red arrows.

For the linear acceleration case, all the velocities are zero everywhere, vA =

v(x) = 0. Therefore, the A through I terms can readily be set to 0. This leaves the
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J and K terms as the only ones requiring explicit evaluation. Furthermore, aB is

equal to a constant for all points on the sphere. To give it a direction, the integrals

are easiest if we choose its direction to be in the x̂ direction, aB = ax̂. Using the

substitutions from Section 2.1.1 the J 1 and K1 integrals look like this1:

J 1 =
1

2

G

c2
R2σ

∫
Ω

dΩ
r̂(r̂ · a)

R
, (2.14)

K1 =
7

2

G

c2
R2σ

∫
Ω

dΩ
a

R
. (2.15)

The J 1 term is evaluated to (see Appendix B.1 for a detailed solution):

J 1 =
2

3

G

c2
Rσπax̂. (2.16)

Putting this in terms of M = 4πσR2 and a = ax̂ it looks like this:

J 1 =
1

6

MG

c2R
a. (2.17)

The K1 term is much simpler. We can notice that everything in the integral is

constant. Since the integral of
∫
Ω
dΩ is equal to 4π, we get:

K1 =
7

2

G

c2
σ4πRa. (2.18)

Again, putting this in terms of the mass of the shell M , we get:

K1 =
7

2

GM

c2R
a. (2.19)

Adding the J 1 and K1 terms together, we get our final solution for the linear

acceleration Case:1 as:

aA,1 =
11

3

GM

c2R
a . (2.20)

1I’m introducing numerical subscripts to the terms to label the case they are evaluated for.
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2.1.4 The Coriolis Case:2

The Coriolis case dynamic and coordinate parameters can be defined:

vA = vAx̂, (2.21)

ω = ωẑ, (2.22)

v(x) = ω ×R = ωR(ẑ × r̂) = ωR sin θϕ̂, (2.23)

a(x) = ω × v = −ω2R sin θ(ẑ × ϕ̂) = −ω2R sin θρ̂, (2.24)

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ, (2.25)

r̂ = sin θρ̂+ cos θẑ. (2.26)

vA

R

vB = × R

Figure 2.2: Diagram for the Coriolis Case:2. The shell is rotating uniformly with
velocity v = ω × b and indicated by the red arrows. The test particle is located at
the center of the shell and has velocity vA.

As already noted in Section 2.1.2 the N , E , F , H, and I terms have already

been evaluated to 0. Because vA, v(x), and a(x) are non-zero for this case, none of

the remaining terms can quickly be dismissed.
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The first term we come across is the A2 term:

A2 =
G

c2
σR2

∫
Ω

dΩ
v2A
R2

r̂. (2.27)

However, this looks remarkably like the formula for N (Eq. 2.8) with the excep-

tion of the constant (vA/c)
2 factor. So just like the N term, this one also evaluates

to zero.

Next up, the B2 term looks like this after plugging everything in:

B2 = 2
G

c2
R2σ

∫
Ω

dΩ
(ωR sin θ)2

R2
r̂. (2.28)

We can use Appendix A.2 that covers powers of the sine function over the solid

angles to evaluate this term to also be zero.

The C2 term turns out to be non-zero. So let’s come back to it. Next up, let’s

evaluate the D2 term. But for this term, we require evaluating r̂ · v(x). But since

v(x) = −ωR sin θϕ̂, and r̂ · ϕ̂ = 0, this term is also equal to zero.

The G2 term is also non-zero and a real pain to evaluate. Let’s skip to the final

two J 2 and K2 terms, and then we can come back to C2 and G2.

For the J 2 term, we need to evaluate r̂ · a. We can write r̂ in cylindrical

coordinates as r̂ = sin θρ̂+ cos θẑ and a = −ω2R sin θρ̂, the inner product between

the two is quickly evaluated to be r̂ · a = −ω2R sin2 θ. Converting the sum to an

integral and plugging all this in the term looks like:

J 2 = −1

2

G

c2
R2σ

∫
Ω

dΩ
ω2R

R
sin2 θr̂. (2.29)

Again, using the Appendix for powers of sine over the solid angles A.2, this

integral also evaluates to zero.

Now we turn our attention to the K2 term. Converting the sum to an integral,

it looks like this:
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K2 = −7

2

G

c2
R2σ

∫
Ω

dΩ
ω2R sin θ

R
ρ̂. (2.30)

This integral evaluates to zero. Appendix A.5 details this conclusion.

As a brief recap, we have evaluated all but the C2 and G2 terms in the Coriolis

case, and every one so far has evaluated to 0. Both the remaining C2 and G2 terms

are equal to each other and evaluate to:

C2 = G2 =
16

3

GvAσωπR

c2
ŷ. (2.31)

See appendices B.2 and B.3 for details on how these terms can be evaluated. After

all is said and done, the acceleration on the test particle A is:

aA,2 = 2

(
16

3

GvAσωπR

c2

)
ŷ, (2.32)

where the 2 subscript denotes the acceleration of particle A in Case:2. We can also

note that:

ω × vA = ωvA(ẑ × x̂) = ωvAŷ. (2.33)

Furthermore, a careful evaluation of other cases where v is not necessarily in the

equatorial plane validates this general form. Additionally, replacing σ with M/4πR2,

we can rewrite our solution as:

aA,2 = 2
4

3

GM

Rc2
ω × vA . (2.34)

2.1.5 The Centrifugal Case:3

The integration of this case was saved for last because the nature of it makes it a

little more difficult to perform than the previous cases. The primary reason for this

is that while the shell is rotating uniformly, its axis of rotation is not through its
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xA

R

vB = × b

b

Figure 2.3: Diagram for the centrifugal Case:3. The shell (black solid circle) is
centered on the test particle. The center axis of rotation is displaced by vector
xA from the test particle and is perpendicular to that displacement. Defining the
displacement of points on the shell from the axis of rotation as b the velocity at any
point is given by v = ω × b, represented by the red arrows. The velocity vectors
are therefore not necessarily tangent to the shell. Rather, they are tangent to an
imaginary sphere centered on the axis of rotation. One of these imaginary spheres is
represented by the dotted circle. You’ll notice the velocity vectors at the points where
the solid and dotted circles intersect are tangent to the dotted circle. Additionally,
you’ll notice the velocity vectors are not equal in magnitude. The red arrows toward
the left side of the diagram are shorter than those on the right side.

center. In this case, the shell’s axis of rotation is offset from the particle by the vector

−xAx̂. The vector from the test particle to a point on the shell is still R = Rr̂. We

now need to define the displacement vector from the center of rotation at (−xa, 0, 0)

to a point on the shell. This vector will be defined as b. We have the simple formula

−xAx̂+ b = R. So for the vector b we get:

b = R+ xax̂. (2.35)

To get the velocity of each point on the sphere, we simply need to use the formula
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v = ω × b. We will introduce a quantity s which is simply the ratio of xA/R.

Additionally, it will be useful to note the cross product of some of the unit vectors.

Specifically, we will use: ẑ × x̂ = ŷ in a rectilinear right-handed coordinate system,

and ẑ × r̂ = sin θϕ̂ mixing cylindrical and spherical coordinate unit vectors. Given

all this, we can write the velocity for each point on the sphere as:

v(x) = ωR(sin θϕ̂+ sŷ). (2.36)

To know the acceleration of all the points on the sphere we need to use a similar

formula for acceleration of rotating points, a = ω × v. For this, we will need more

relationships for the cross products of unit vectors. In a rectilinear coordinate system

we have ẑ × ŷ = −x̂, and in a cylindrical coordinate system we know ẑ × ϕ̂ = −ρ̂,

where ρ̂ is the radial unit vector in a cylindrical coordinate system centered on the

test particle. Given these relationships, we have the acceleration as:

a(x) = −ω2R(sin θρ̂+ sx̂). (2.37)

It is worth pointing out here that the velocity and acceleration of points on the

sphere for Case:2 are the same for Case:3 with an additional constant offset sŷ for

the velocity and −sx̂ for the acceleration. This fact will make it easier to evaluate

some of the terms in the EIH Equations.

One thing to note, is that this particular arrangement for the centrifugal case

is not the only way we could have set up a rotating shell. We could have easily

chosen the shell’s axis of rotation to make a diameter with the shell and simply have

the test particle offset from the center of the shell by the same displacement. This

method would have been simpler to integrate, as the velocities and accelerations

for points on the shell would be easier to handle. However, with the end goal of

using this solution to integrate over a volume of the universe, it makes better sense

to set up this case as described above. This is done so that we may evaluate a

positional displacement from the rotation axis while maintaining a mass distribution
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that is symmetric around the test particle. Furthermore, as we will see in the next

chapter, when density is a function of radial distance from the particle, these simpler

velocities and accelerations would be traded for more complex density distributions

and an asymmetric upper limit to the radial integration. Additionally, within the

context of cosmology, every particle is at the center of its universe. So again, it

makes better sense to center the shell on the test particle.

Beginning the integration of the terms, we already noted in Section 2.1.2 the N ,

E , F , H, and I terms have already been evaluated to 0. Furthermore, in this case

vA = 0. This makes the A and C terms vanish as well. Because v(x) and a(x) are

non-zero for this case, none of the remaining terms can quickly be dismissed.

For theB3 term we need to evaluate v·v. For our setup, this becomes ω2R2(sin2 θ+

2s sin θ(ρ̂ · x̂) + s2). But ρ̂ is equal to cosϕx̂ + sinϕŷ. Therefore, ρ̂ · x̂ is simply

equal to cosϕ. So, after converting to an integral and substituting all the necessary

values it looks like this:

B3 = 2
G

c2
R2σ

∫
Ω

dΩ
ω2R2(sin2 θ + 2s sin θ cosϕ+ s2)

R2
r̂. (2.38)

Here we can note two things. For one, the first term in the above expression is

identical to the B2 term from Case:2 (Eq. 2.28). Recall that term vanished in Case:2,

so the first term in this equation will also vanish. Second, the last term in the integral

is made up of only constant factors, with the exception of the r̂. By symmetry (and

Appendix A.1) that term also vanishes. What’s left is only to evaluate the integral

over the center term. Details of how this is performed can be found in Appendix B.4.

The final result for this term is:

B3 =
16π

3

Gσω2RxA

c2
x̂. (2.39)

For the D3 term we need to evaluate the product r̂ · v. The first term in the

expression for v is the ϕ̂ direction which is orthogonal to r̂. The second term is in
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the ŷ direction, so this picks out only the ŷ term of r̂ which is sin θ sinϕ. Given this

substitution, we get:

D3 = −3

2

G

c2
R2σ

∫
Ω

dΩ
(sωR sin θ sinϕ)2

R2
r̂. (2.40)

This will evaluate to D3 = 0. For details on the calculations, see Appendix B.4.

In the G3 term the fact that vA = 0 simplifies it a bit. This leaves the term to

look like this:

G3 = −3
G

c2
R2σ

∫
Ω

dΩ
r̂ · v
R2

v. (2.41)

But we also know what r̂ · v is, so we can plug that right in to get:

G3 = −3
G

c2
σ

∫
Ω

dΩsωR sin θ sinϕv. (2.42)

As nicely as this simplifies, there remains much work to be done to fully work it

out. For details see Appendix B.6 the result of which gives:

G3 = 4π
Gσω2RxA

c2
x̂. (2.43)

For theJ 3 term we need to know r̂·a. This turns out to be r̂·a = −ω2R(sin2 θ cos2 ϕ+

s sin θ cosϕ + sin2 θ sin2 ϕ). But the first and third terms have a common factor of

sin2 θ and the sum of cos2 ϕ+sin2 ϕ is of course equal to one. This leaves the integral

to be solved as:

J 3 = −1

2

G

c2
R2σ

∫
Ω

dΩ
ω2R(sin2 θ + s sin θ cosϕ)

R
r̂. (2.44)

However, once again from Appendix A.2 we can conclude that the first term is simply

0. Leaving the final integral as:

J 3 = −1

2

G

c2
R2σω2s

∫
Ω

dΩ sin θ cosϕr̂. (2.45)
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For details of the rest of the integration, see Appendix B.7. It evaluates to:

J 3 = −2π

3

Gσω2RxA

c2
x̂. (2.46)

Finally, we can turn to the last term K3. We only need to insert our value of a

to get:

K3 = −7

2

G

c2
R2σ

∫
Ω

dΩ
ω2R(sin θρ̂+ sx̂)

R
. (2.47)

Appendix A.5 has details on why the term with the ρ̂ is zero. The remaining integral

is simply:

K3 = −7

2

G

c2
R2σω2s

∫
Ω

dΩx̂. (2.48)

But the x̂ factor is simply a constant, and the integral of solid angle over a whole

shell is simply 4π. This and plugging s = xA/R leaves our K term to be:

K3 = −14π
Gσω2RxA

c2
x̂. (2.49)

All of our terms now contain the same factors of all the parameters of the setup:

π
Gσω2RxA

c2
x̂. (2.50)

We can again use the fact that M = 4πR2σ to rewrite this as:

GMω2xA

4Rc2
x̂. (2.51)

Additionally, we can rewrite the ω’s and xAx̂ to be:

ω × (ω × xA) = −ω2xAx̂. (2.52)

As a quick demonstration of the above fact, consider this double cross product,

c× (c× d) between two arbitrary orthogonal vectors c = cẑ and d = xx̂+ yŷ. The
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cross product inside the parenthesis will yield c× d = −c(yx̂+ xŷ). Now the outer

cross product will look like this c[c× (−yx̂+ xŷ)] and this will equal c2(−xx̂− yŷ).

But the parenthetical factor is simply −d. We are then justified to rewrite the double

product as c×(c×d) = −c2d. It is interesting to note that the double cross product

of two orthogonal vectors has the effect of reversing the right-most vector and scaling

it by the square magnitude of the left vector.

Given these two substitutions the common factor for each term can be written

as:

1

4

GM

c2R
ω × (ω × x). (2.53)

Now all we need to do is add the terms by their rational prefactors. Those

prefactors factors are summarized here:

B3 −→
16

3
, (2.54)

G3 −→ 4, (2.55)

J 3 −→ −2

3
, (2.56)

K3 −→ −14. (2.57)

The sum of these is simply −16/3. All told, the final form of the acceleration in this

Case:3 is:

aA,3 =
4

3

GM

c2R
ω × (ω × xA) . (2.58)

2.1.6 Comparison with Inertial Cases

Looking back at the results from the previous three sections, we can notice a

common factor of 4GM/3c2R. To simplify notation, I’ll introduce the dimensionless

quantity Θ.
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Θ ≡ 4

3

GM

c2R
. (2.59)

Summarizing our results from the previous three sections, we have:

aA,1 =
11

4
Θa, (2.60)

aA,2 = 2Θω × vA, (2.61)

aA,3 = Θω × (ω × xA). (2.62)

So far in this chapter, we have assumed the shell is moving relative to an observer

in an inertial frame. That setup made the accelerations on the test particle come

from “real” gravitational forces. Now we will analyze the situation from the opposite

standpoint, in which the shell is static relative to an inertial frame but the observer

is in a non-inertial frame. In each case, the relative motion of the shell to the

observer frame must be maintained. For Case:1 the frame would be accelerating in

the opposite direction of the shell’s original acceleration, aframe = −ashell. For cases

2 and 3—the rotational ones—the observer’s non-inertial frame would rotate in the

opposite direction as shell’s original rotation, ωframe = −ωshell.

With these new non-inertial frames set up, we can ask what will the test par-

ticle’s apparent acceleration will be without any external forces. The results would

simply be the fictitious forces of the centripetal, Coriolis and linear acceleration as

established in Chapter 1.

anon
A,1 = −aframe (2.63)

anon
A,2 = −2ωframe × vnon

A (2.64)

anon
A,3 = −ωframe × (ωframe × xnon

A ) (2.65)

Note in the above set of equations I replace the “B” subscript that was used in the
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original definition of the fictitious forces with a “non” superscript. Now substituting

in ωshell = ω = −ωframe, and ashell = a = −aframe we get:

anon
A,1 = a, (2.66)

anon
A,2 = 2ω × vnon

A , (2.67)

anon
A,3 = −ω × (ω × xnon

A ). (2.68)

Now we are able to make some very interesting comparisons between gravita-

tional forces of a rotating/accelerating sphere vs. its observationally equivalent2

static counterpart in a non-inertial frame. First, each case is proportional3 to the

dimensionless quantity Θ. Second, the vector relationships are the same under both

considerations. Finally, cases 2 and 3 have the same numerical proportionality for

both considerations (1 and 2, respectively).

For now, let’s focus on Case:2, the Coriolis case. Since the gravitational solution

is completely in line with the fictitious solution apart from the Θ factor, what does

that factor mean? For one, we can note that the Schwarzschild radius of a body,

RS, is equal to 2GM/c2, which forms the event horizon for a black hole. Θ then is

equivalent to (2/3)RS/R. So, unless the test particle is in a black hole R > RS, and

Θ must be less than one. But in fact Θ is typically really small for most conceivable

shells. G is on the order of 10−11 and c2 on the order of 1017 in SI units. Any M/R

configuration needs to reach an order of magnitude of about 1027 for Θ to be of order

unity. As an example, for a spinning basketball Θ is roughly 8 × 10−27. However,

more relevant to the topic at hand is Θ sets the amount that the shell drags the

inertial frame of the particle. It may be helpful to consider a gyroscope at the center

of the shell rather than a free particle. Without the spinning shell the gyroscope

2To make this truly observationally equivalent, the shells would have to have the same char-
acteristics of an “Einstein Cabin.” That is to say, the observer cannot be able to view anything
outside the shell.

3Admittedly, I’ve shoehorned that factor out of the linear acceleration case.

48



would naturally remain fixed in its orientation with respect to the distant stars and

galaxies. However, once we introduce the spinning shell, the gyroscope will slowly

drift in its orientation in the direction of the shell’s rotation. And, after Θ−1 full

rotations of the shell, the gyroscope will have made one full rotation with respect to

the distant stars and galaxies. This effect is better known as “frame dragging,” as it

appears to drag the inertial frame of the gyroscope relative to stars.

It is worth pointing out again that these kinds of effects have been tested very

well with experiments like GINGERINO, Gravity Probe B, and Lunar Laser Ranging.

Additionally, I am not the first to theoretically determine this result of Θ. In Misner,

Thorne and Wheeler’s (MTW) massive textbook on “Gravitation” they attribute

Lense and Thirring to first determining this drag [MTW73]:

ωdrag = k
G

c2
Mshell

Rshell

ωshell, (2.69)

with k being a coefficient depending on the location of the experiment relative to

the shell, and k = 4/3 anywhere inside the shell, as is the case in Θ (Eq. 2.59).

However, Lense, Thirring and other authors have determined this coefficient by de-

tailed calculations using weak field limit within GR. Additionally, Okamura, Ohta,

Kimura and Hiida computed accelerations within a rotating shell to order (v/c)4 to

determine ωdrag/ωshell [OOKH75]. They found the same result for the Coriolis case

as was found in Section 2.1.4. However, their result for the centrifugal case included

two terms. The first was is identical to the result found in Section 2.1.5. The second

term represents an acceleration toward the axis of rotation at the order of ω2. Based

on the two centrifugal terms, they concluded that the quantity GM/R needed to be

equal to both 3/4 and 1260/3737 in order to satisfy “Mach’s thought,” thus exposing

a critical contradiction and thereby rejecting the Machian premise.

Okamura et al. treat the centrifugal case differently than I did in Section 2.1.5,

by putting the test particle away from the shell center, while I required the shell

to be symmetric about the particle—instead displacing the rotation axis. When I
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originally approached the problem in the common way (as Okamura et al. did), I also

saw unexpected axial acceleration. Reasoning that the universe is not asymmetrically

distributed around the test particle, I switched to the centered approach and found

that the centrifugal term survived while the unexpected acceleration disappeared.

It seems to me that the inconsitiency noted by Okamura et al. is an artifact of

their choice of shell de-centering. An asymmetric mass distribution is not physically

consistent with the universe, and produces a spurious acceleration in the EIH terms

when invoked.

One question we should ask is, what happens when Θ is equal to one? As men-

tioned above, since Θ is also equal to (2/3)(RS/R), for a single shell the test particle

would be within the shell’s event horizon. But, what if there were two concentric

shells each rotating at the same rate? If these shells had different radii and mass such

that both their ratios of RS/R were equal to 3/4, then ωdrag = ωshell. This would

mean that the inertial frame of the gyroscope would be totally dragged by the shells.

We might call this frame “locking,” as for every full rotation of the shells we would

expect a full rotation of the gyroscope. If these shells made up the Einstein cabin in

which our lonely astronaut was sealed within, they might conclude that their rocket

was not rotating relative to the fixed stars. In this case, their inertial frame would

be tied, not to the fixed stars, but to their rocket’s cabin. This implies that the

gravitational forces of their rotating cabin would supply the inertial forces if they

were to do experiments in a frame rotating relative to their cabin.
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Chapter 3

Volume Integration of Shells

In the previous chapter we integrated the EIH Equations over the surface of a

shell to determine the net gravitational accelerations it imparted on a test particle

at its center. We did this under three different cases to compare with well known

“fictitious” forces. They were the linear acceleration Case:1, the Coriolis Case:2,

and the centrifugal Case:3. The results from each case contained a common factor

of Θ ≡ 4GM/3c2R. Additionally, the vector nature of each result was in line with

its fictitious counterpart. In this chapter we extend the previous integration in the

radial direction to get a volume integral. The question will be whether the universe

as a whole has the right amount of
∫
M/R to lock our inertial frame to the fixed

stars—providing fictitious forces from gravitational coupling to any frame that is not

fixed wrt the stars.

If one moves to a rotating frame, then the whole universe is in relative rotation

to the frame. For this reason, we want to understand what the total gravitational

contributions would be from every bit of mass-energy in the test particle’s past light-

cone. Our integral will then need to cover a volume that includes the whole observable

universe. We will then compare this again with the fictitious counterparts.
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3.1 Solid Sphere

For a spherical solid, to get a volume integral from the shells, we simply need to

integrate over Θ, by redefining the mass to be a mass element M → dM(r):

I =

∫
4

3

GdM

c2R
. (3.1)

Naturally, we will define this in terms of the density, ρ, as a function of r, dM =

ρ(r)dV (r) → 4πr2ρ(r)dr. We will then need to integrate from r = 0 to some upper

limit R. Again, the distance measures will be Euclidean. The integral will then look

like this:

I =
4

3

G

c2

∫ R

0

4πρ(r)r2

r
dr =

4

3

G

c2
4π

∫ R

0

rρ(r)dr. (3.2)

This integral would be perfectly valid for any sphere where one might be interested

in these sorts of accelerations. In cases where the density is constant, and the sphere

has mass M , I simply reduces to

I =
2

3

G

c2
(4πρR2) =

2GM

c2R
(3.3)

This result is equivalent to RS/R. For those with easily retrievable knowledge on

the Schwarzschild radius of certain bodies, this result can be quite useful to estimate

I. For instance, RS for the Sun and Earth respectively are about 3 km and 1 cm.

While their radii are about 7 × 105 km and 6, 000 km respectively. This puts their

values at ISun ≈ 4×10−6 and IEarth ≈ 2×10−9. If we look at some other astrophysical

objects, a white dwarf is about the size of Earth but with a density that is a factor of

about 200,000 greater than the Earth, resulting in IWD ≈ 4× 10−4. A neutron star’s

mass is on the order of a solar mass, but its radius is only 20 km ≈ 3 × 10−5RSun.

This makes the integral for a neutron star to be about1 INS ≈ 0.1. For a black

1The strong gravitational field of the interior of a neutron star would very likely be a case
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hole R = RS, making IBH = 1. If we wanted to consider what we might get for a

terrestrial construction, lead has a density of about 11,000 kg/m3. A ball of lead 2

meters across would have the integral come out to Ilead ≈ 7× 10−23.

3.2 Näıve Integral

Turning back to our original goal of integrating over the volume of the universe,

let’s first take a näıve but simple setup for the universe to get a sense of scale for

this integral. In this setup, we will assume the universe has constant density and

extends out to some finite horizon. In addition to this, we will assume a non-evolving

FLRW universe where space is not expanding. Given that condition, we can still use

Euclidean distance measures in this integration. Later, we will take greater care in

setting up the density and distance relationships in a more cosmologically relevant

manner. For now, however, let’s use the fact that this universe is observationally flat

to determine an appropriate density for this näıve integral. Recall, a flat universe

has its overall density parameter, Ω, equal to 1. This in turn determines the density

to be equal to the critical density ρc = 3H2
o/8πG. In terms of the radial limits,

we know the Hubble distance R = DH = c/H0 sets the scale for the size of the

universe and all other relevant radial cosmographic distances. Using this as the

upper limit then sets a natural scale for our integral. Another facet we should be

careful about is the rotation rate. Recall that EIH carries terms to order (v/c)2. The

speed of a particle in circular motion is given by v = ωr. Even a modest rotation

rate can provide superluminal velocities at fairly short distances2. To ensure there

are no superluminal speeds on account of the rotation, we require ω ≪ 1/tH . Even

though this rotation rate is incredibly slow, a demonstration of I ∼ 1 would be a

where the EIH approximation would not hold. So this value should only be really used as a first
approximation.

2Consider the Earth, and its angular frequency of 2π × 365 yr−1. Given c = 1 ly yr−1, the
superluminal distance, is merely 4× 10−4 ly or about 25 AU. It isn’t even passed Neptune’s orbit.
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significant result, in that even trivially small relative rotation rates would impose

inertial effects that would “lock” the inertial frame to the universe. We can give this

particular implementation of the cosmological integral a subscript of N to remind us

that it is a näıve first step toward understanding the general integral. This integral

then results in:

IN =
2

3

G

c2
(4πρcD

2
H) =

2

3

G

c2

(
4π

3H2
0

8πG

)(
c

H0

)2

= 1. (3.4)

The fact that this integral comes out to unity is quite a remarkable result. This

means that the gravitational accelerations from this rotating sphere are exactly equal

to their fictitious counterparts. These accelerations being equal makes it so that any

two frames that observe the same relative rotation of the distant stars are equivalent.

This equivalence means that like our lonely astronaut who cannot tell whether they

are on a planet’s surface or accelerating out in deep space, we cannot tell whether

gravitational influences from a rotating universe are producing our “fictitious” forces

or whether we’re rotating with respect to some absolute frame. In other words, the

only frame in which we see no “fictitious” forces is the one that is not rotating relative

to the mass distribution of the universe. Likewise, the only rotation we would be

able to determine from experiment would be a rotation relative to the fixed stars.

All this is consistent with three interpretations of Mach’s principle. Restating them

from page 12:

• Mach0: The universe, as represented by the average motion of distant galaxies,

does not appear to rotate relative to local inertial frames.

• Mach3: Local inertial frames are affected by the cosmic motion and distribution

of matter.

• Mach8: Ω ≡ 4πρGT 2 is a definite number, of order unity, where ρ is the mean

density of matter in the universe, and T is the Hubble time.
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All of this implies that our local inertial frame is “locked” to that of the distant

stars. Or put another way, General Relativity asserts the universe as a “nat-

ural” frame, allowing the detection of rotation relative to the fixed stars, whether

you can see them or not.

Furthermore, because all experiments we have done imply that our natural inertial

frame is the one that is tied to the fixed stars, I strongly believe that this integral

must be equal to unity. To substantiate this belief, it may be helpful to consider

what would happen should the integral be close—but not equal—to one. Suppose we

analyze a situation in two frames, both of which observe the same relative rotation

to the distant stars. The first frame A asserts that their frame is not rotating while

the universe rotates about it. The second frame, B, asserts that the distant stars

are not moving, but that its frame is non-inertial (rotating). Observationally, A is

indistinguishable from B. The integral relates the gravitational accelerations from

frame A, aA = agrav, to the accelerations from the fictitious forces in frame B,

aB = afict, by the relationship agrav = Iafict. Naturally, observables in one frame

should not contradict observables in the second. But, if I ̸= 1, then aA ̸= aB. If

this were the case, we would need to invent some other force to make aA = aB.

Figure 3.1 gives another illustration of what happens should I ̸= 1. The figure

plots trajectories for particles in a rotating frame with accelerations a = Iafict, where

afict is equal to the Coriolis acceleration and centrifugal accelerations. The axis of

rotation is through the origin of the figure and perpendicular to the x-y plane. In the

rotating frame all these trajectories will produce inward spirals. When plotted in the

rotating frame it is difficult to qualitatively analyze. For this reason, the trajectories

have been “un-rotated” back to a non-rotating frame. The initial conditions for each

trajectory are identical with x0 = (1, 0) and v0 = (−1, 0). The time span for the

trajectories is set to t = [0, tf ], where tf = |x0/v0| = 1. The initial position and final

positions of each trajectory are marked with a star and diamond, respectively. The

rotation rate used in the fictitious accelerations is ω = 1. We clearly notice when
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I ̸= 1 the trajectories make large deviations from the straight line trajectory given

by I = 1. What is more interesting however is that the curved trajectories never

reach the origin. Suppose we placed some sort of detector at the origin that will beep

if our projectile strikes it. This means that if we analyze this situation like we would

in cases A and B from the previous paragraph and if I ̸= 1 we would get different

testable results.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.3

0.2

0.1

0.0

0.1

0.2

0.3

y

Un-rotated Trajectories of Particles in Rotating Frames
I = 1
I = 0.8
I = 1.2

Figure 3.1: Projectiles following accelerations in a rotating frame equal to Iafict, with
afitct = −2ω×v−ω×(ω×x) and ω = 1ẑ. The initial conditions are x0 = (1, 0) and
v0 = (−1, 0). The time is run for a span of |x0/v0|. The initial and final positions are
marked with a star and diamond, respectively. These trajectories are “un-rotated”
and viewed from a frame that is fixed relative to the rotating frame.

Another way to look at this is to say that the inertial properties of a body,

given by its inertial mass, are dictated by gravitational coupling to the universe and

proportional to the gravitational (coupling) mass of the body in question. Thus, this
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relationship provides a mechanism for the inertial mass of a body to be equal to its

gravitational mass. This is in line with Mach6: inertial mass is affected by the global

distribution of matter. This mechanism also explains the success of equivalence

principle measurements: if an object’s inertial mass is produced by gravitational

coupling of its gravitational mass to the mass distribution of the universe, then no

experiment will be able to produce anything but strict proportionality between these

two mass types.

It is worth pointing out that in 2017 Braek, Grøn and Farup made a similar

integration to find the Cosmic Causal Mass. However, their method simply sought

to find the ratio rSD0/rph0, where rSD0 is the Schwarzschild radius of the total amount

of matter in the observable universe and rph0 is the particle horizon distance for the

current epoch. The particle horizon is the proper distance today to the particles

at redshift z = ∞. Recalling that the comoving distance is defined as the proper

distance today, the particle horizon is simply given as DC(∞). The value they get is

rSD0/rph0 = 1.05, [BGF17]. What they don’t do is integrate over shells the quantity

M/R. While the interest and motivation are similar, the technique in this work of

integrating over shells is fundamentally different.

3.3 Cosmological Integral

In the previous section, we found that the näıve integral of shells over a constant-

density universe resulted in a value for IN exactly equal to unity. However, for an

expanding and evolving universe composed of multiple species of mass-energy (such

as matter, radiation, and dark energy) it is clear that the assumption of constant

density is far from realistic. This section will focus on a more careful handling of

the integral with respect to a cosmological model of the universe. Recalling the

expression we want to integrate:
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I =

∫
4

3

GdM

c2R
. (3.5)

The parameters we will need to consider in cosmological terms include the density

of the universe at its various epochs, the appropriate distance to the mass-energy at

those epochs, as well as the volume element at those epochs. We will also need to

consider the upper limit to the integral, as it is not a truncated edge as was handled

in the näıve integral.

As noted in Section 1.4, cosmologists have defined a number of distance measures

to effectively handle questions of distance related to the evolving geometry of the

universe. Each of these distance measures is related to redshift, z. Redshift, you

may recall, is an actual observable that astronomers can measure. For this reason,

it makes more sense to shift our integration over distance to one over redshift rather

than a radial coordinate. The use of redshift will provide a natural upper limit to

the integral of z → ∞.

Schutz remarks that ”the most convenient ways to measure the range to a distant

object is [with light]” [Sch09]. This is the fundamental principle of determining the

distance to the Moon in Lunar laser ranging. Within the Solar system, as well as

terrestrially, this is performed by sending a light signal out to an object, which reflects

it back to the sender. The time is measured for the signal to go out and return. By

multiplying that time by the speed of light and dividing by two, we can determine

the distance to that object. For cosmological distances, we cannot send a light signal

out and back, but we do have a way to determine the time it takes for the light to

leave a distance source and reach us. It is the look-back time. By multiplying that

time by the speed of light, we can define the distance we will need for our integral.

Recall from Section 1.4 that the light travel distance is given by:

DT (z) = DH

∫ z

0

dζ

(1 + ζ)E(ζ)
. (3.6)
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Defining the mass of our shell, as we did in the naive integral, as dM = ρ(z)dV

we simply need to determine the volume elements and density of a shell at redshift

z. We do have expressions for these two values. Reprinting them from Section 1.4

we have:

ρ(z) =
3H2

0

8πG
[E(z)]2 =

3H2
0

8πG

∑
x

Ωdx
x,0, (3.7)

dVP = DH
D2

C

(1 + z)3E(z)
dΩdz. (3.8)

But because the universe is flat, the integration over the solid angle will simply

return 4π. Combining all this together, we get the mass element to be:

dM = ρ(z)dVP (z) →
3H2

0 [E(z)]2

8πG
· 4πDHD

2
C

(1 + z)3E(z)
dz. (3.9)

This reduces to:

dM → 3H2
0E(z)DHD

2
C

2G(1 + z)
dz. (3.10)

We have now satisfactorily defined dM and R as functions of redshift. So it may

seem like we are ready to plug everything in and start integrating, but we aren’t

quite done yet. We can note that in EIH there are five terms that depend on the

velocity or acceleration of the B particles—the points on the shell in our integrations.

These are the B, C, G, J , and K terms. Additionally, scrolling through Chapter 2

you may notice that all the other terms were zero for all three cases. This leaves a

factor in the numerator of each term with a dimensionality of length. But because

the universe was smaller when the shell at redshift z left its mark on the local gravity

fields, we also need to modify and reduce these velocities and accelerations by the

scale factor, a = (1 + z)−1. This means we need an extra factor of (1 + z)−1 in our

integrand along our expressions for R and dM .

All together, our integral will be:
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I =
4

3

∫ ∞

0

G

c2

[
3H2

0E(ζ)DHD
2
C

2G(1 + ζ)3

]
dζ

(1 + ζ)DT

. (3.11)

After some canceling of factors, it reduces to:

I = 2

∫ ∞

0

H2
0

c2

[
E(ζ)

2G(1 + ζ)4

][
DHD

2
C

DT

]
dζ. (3.12)

As a reminder the Hubble time, DH , is equal to c/H0, and the comoving distance,

DC , is given by:

DC = DH

∫ z

0

dζ

E(ζ)
. (3.13)

This makes the factor of DHD
2
C/DT equal to:

DHD
2
C

DT

=
c2

H2
0

[
∫ z

0
dζ/E(ζ)]2∫ z

0
dζ/(1 + ζ)E(ζ)

. (3.14)

Plugging this in we get our final integral:

I = 2

∫ ∞

0

dζE(ζ)

(1 + ζ)4
[
∫ ζ

0
dζ ′/E(ζ ′)]2∫ ζ

0
dζ ′′/(1 + ζ ′′)E(ζ ′′)

. (3.15)

In order to simplify the notation a little I’ll collect the ratio of the inner integrals

into the factor:

DI(z) =
[
∫ z

0
dζ/E(ζ)]2∫ z

0
dζ/(1 + ζ)E(ζ)

. (3.16)

I will also wrap the whole integrand up into the following function:

µ(z) =
E(z)

(1 + z)4
DI(z). (3.17)

Thus, our integral will simply look like this:

I = 2

∫ ∞

0

dζµ(ζ). (3.18)
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3.4 Integration Results

Now that we have a carefully considered the integral under cosmological condi-

tions, what does it integrate to? The E(z) function—which contains all the evolution-

ary behavior for any cosmological model—can be found in the integral three times.

This makes the integral—and its evolutionary behavior—depend on the model used.

Because ΛCDM is the accepted standard (vanilla) cosmological model, it makes sense

to first evaluate the integral using it. For ΛCDM, this integral evaluates to:

IΛCDM = 0.94 (3.19)

It is rather remarkable that this is of order unity. The universe seems to have

nearly enough mass to supply what we call inertial mass and have our inertial frames

tied to the distant galaxies. If my assertions are correct that this integral should be

unity, then ΛCDM does a good job at getting most of the way there. But, just as

ΛCDM already has some observable issues as outlined in Section 1.4, perhaps this is

another “tension” that could be resolved by adjusting the model of ΛCDM. Indeed,

as we will explore in the next chapter, maybe this “discrepancy” can shed light on

how one might approach a more self-consistent gravitational and cosmological model.

It is helpful to see how the integral grows as we lower its upper bound. Plotted

in Figure 3.2 is the integral I but truncated at an upper limit of z, marked on the

horizontal axis. The curves in the plot represent the same set of alternate universe

compositions as described in Table 1.2. This figure has a few features that are worth

mentioning.

First, each case is asymptotic to some constant value—indicating that the integral

is well-behaved as z −→ ∞. Those values are the numbers printed in the legend next

to each label. This should be fairly intuitive for all but the Λ-only case, because

DC and DT will approach finite constant values as z −→ ∞. Then the integrand is

simply E(z)/(1 + z)4. Since the highest dilution parameter is 4 for radiation the
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integrand will go like (1 + z)−2 or smaller as z −→ ∞. Naturally, integrals of those

types will be finite. For the Λ-only case, it is easy to show that the integrand is

z2/(1 + z)4 ln(1 + z), which will also produce a finite result. Furthermore, all the

values they integrate to are of order unity.

Second, the largest contribution to the integral in each scenario made is between

z = 1 to z = 10. I find it quite interesting that these integrals have their greatest

contribution during this epoch regardless of their make-up. Additionally, it seems

like the overall initial sum of the Ω parameters does not have an overall impact on the

integral’s trajectory in the plot. Take for instance the matter only case and the “No

Lambda” case. Both are very much matter dominated (one of them by definition).

However, the total density Ω for the two cases is 0.3112 and 1 respectively. Despite

this fairly large difference between the two initial conditions, their values are identical

to a few parts in 103. They are so close, it is difficult in the figure to even notice the

orange line tucked under the brown line.

3.5 Integral for Observer at Arbitrary Z

We’ve made the argument that this integral should be of order unity. But, that

argument should not just be true for the current epoch. Indeed, if there were sufficient

reason for this integral to be equal to one today, then the same arguments should

hold for any epoch. In this vein, another thing we should look at is how this integral

changes if it starts out at some other epoch Z. The most straightforward way to

do this is to simply update the Ωx,0 parameters in the integral to Ωx,Z . Recalling

Equation 1.25, the updated density parameters are given by:

Ωx,Z =
Ωx,0(1 + Z)dx

[E(Z)]2
. (3.20)

We can then update the E function to be:
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EZ(zrel) =

√∑
x

Ωx,Z(1 + zrel)dx , (3.21)

where zrel is the redshift an observer would make from their epoch Z. By simply

plugging this into the original integral in place of E(z) we get a new integral IZ .

The limits of the new integral will be the same, and the integrating variable will

simply be over zrel. For clarity, any parameter, function, etc. that is relative to some

epoch Z will be labeled with its epoch as a subscript. One way we can imagine

this is as if some other graduate student at redshift Z were trying to do a similar

calculation, they would use the results from their Planck satellite for Ωx,0 to initialize

their integral. Their Ωx,0 would simply be equal to our Ωx,Z .

Figure 3.3 show the results of these IZ integrals for the same Ωx,0 values as given

in Table 1.2. This plot has a few notable features. First, all single component

universes’ integrals, IZ , are constant3 for all Z. This should make some sense if

we refer to Equation 3.20. For any single component universe with X species of

mass-energy, ΩX,0 is equal to one, while all the others are equal to zero. Therefore,

[E(Z)]2 is simply equal to the numerator ΩX,0(1 + Z)dX , which is constant. A less

mathematical but more physics-minded approach to understand this is that single

component universes never encounter a time when their behavior changes because of

a swap in the dominant species.

Something else we can notice is that for the mixed universes, they remain fairly

constant to the far right and left of the plot. The small evolution at high redshift,

z well into the radiation dominated epochs, makes it so that any adjustments to

cosmology to flatten out the curves need not be drastic. They take on the most

change near and between the transitions of the dominant species. These transitions

are given by the two dotted vertical lines in the plot. The left-most is the Λ-Matter

transition, while the other is the Matter-Radiation transition. It is also interesting

3The small bump on the radiation line near Z = 104 appears to be an artifact from the numerical
integration.
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to note that the “Standard” universe matches up very well with the “No Lambda”

universe to the right of the Λ-Matter transition. Then both those compositions

match up with the “Radiation” universe.
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z

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

I

I as integrated from 0 to z
Standard 0.941
Matter 1.051
Radiation 1.545
Curvature 0.808
Lambda 0.575
No Lambda 1.052

Figure 3.2: This is the integral I but truncated on its upper limit from ∞ to z. Each
curve represents a different model with differing compositions of mass-energy at the
current epoch. These models and their compositions are enumerated in Table 1.2. In
the legend are the full values I integrates to with the proper upper limit of z → ∞.
The orange curve for the “Matter” universe is plotted, however it is nearly identical
to the brown dotted “No Lambda” curve and can be difficult to see. The horizontal
dash-dotted line is used to mark a line for I = 1. The vertical dotted lines represent
the transitions from radiation to matter dominated epochs (right line) and matter
to dark energy dominated epochs (left line). The red vertical line is the redshift of
the CMB, zls = 1100.
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Z

0.6

0.8

1.0

1.2

1.4

1.6

I Z

IZ for Various Uinverse Compositions
Standard 1.54
Matter 1.05
Radiation 1.55
Curvature 0.81
Lambda 0.58
No Lambda 1.54

Figure 3.3: This is a plot of I as evaluated from the epoch Z. This plot essentially
demonstrates how I evolves in time from high Z to the present epoch. Each curve
represents a different model with differing compositions of mass-energy at the current
epoch. These models and their composition are enumerated in Table 1.2. In the
legend the values IZ as Z → ∞ are reported. At Z ≈ 1 the blue “Standard” curve
joins and then becomes nearly identical with the brown dotted “No Lambda” curve.
The “Standard,” “No Lambda,” and “Radiation” curves all evaluate to the same
value as Z → ∞. The vertical black dotted lines represent the transition epochs
from matter to dark energy (left line) and radiation to matter (right line). The red
vertical line is the redshift of the CMB, zls = 1100.
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Chapter 4

Investigation of a Possible

“Correction” to the Cosmological

Integral

In the previous chapter we determined that the integration of the important

quantity Θ ≡ 4GM/3c2R over the volume of the universe is of order unity under the

assumptions of ΛCDM. At every turn, I’ve also been quick to point out that the fact

that these integrals come out to order unity is very important. It is also important to

note that in the previous chapters, we were simply working within the context of GR

and ΛCDM—two theories that are well-supported by experiment and observation.

This chapter will ask “what modifications are needed to make the integral equal to

one, as we strongly suspect it must be?” Moreover, we will explore ways to ensure

that this integral evaluates to unity for all epochs.
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4.1 Changes to E(z)

One of the first places we can look to change this integral is by changing the E(z)

function. A natural first step might be simply to change one of the density parameters

Ωx or a dilution parameter dx. Tweaking any single one of these parameters or any

combination to give I = 1 for the current epoch is certainly a straightforward task.

One alternative theory to ΛCDM is wCDM. Simply put, this theory hypothesizes

that the equation of state parameter for dark energy is not equal to −1, as in ΛCDM,

but has some value w ̸= −1. In 2021 D’Amico, Senatore and Zhang using early and

late epoch observations set limits on the equation of state parameter to w = −1.02±
0.03 [DSZ21]. Using this value for w in the integral yields nearly the same result as

ΛCDM, and only increases the integral (in the correct direction) by about 2× 10−4.

However, the failure of wCDM to completely fix the integral to unity is mostly due

to the fact that this fix would only really affect the integration during Λ dominated

epochs, Z ≤ 0.3. Again referring to Figure 3.2, most of the contributions to the

integral come from a redshift interval between 1 and 10—well before dark energy

dominates. Therefore, making changes that really only effect E(z) for z < ZM−→Λ

won’t contribute much to the interval. Setting the integral equal to one, we could

numerically solve for w. Doing this yields a result of w = −3.5, nowhere close to

D’Amico’s result.

Another strategy might seek to modify the ratio of ΩΛ,0/ΩM,0. Noting that in

Figure 3.2 the “No Lambda” Curve rises above unity we can expect that lowering

the amount of dark energy relative to matter in the current epoch will raise the value

I toward one. This does work, but to get the integral to unity ΩΛ,0/ΩM,0 would have

to be lowered from the Planck experiment’s value of 2.214±0.008 [AAA+20] to 0.74.

A value that low would mean that we are in a matter dominated era, which is simply

not consistent with observation under ΛCDM’s framework.

Even if either of these adjustments to E(z) were aligned well—or even close—
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to observation, they would both suffer from the problem that they are fixes to the

current epoch’s value of I. What we truly want is an integral that is equal to one

and invariant relative to the epoch for which it is integrated for. A simple fix or

correction to any static value within E(z) will fail in a universe with multiple types

of mass-energy. But, from Figure 3.3 and some analytic solutions we can infer that

single component universes satisfy the condition that the integral is a constant for

all initiating epochs. So we can ask “for what constant equation of state parameter,

w, in the context of a single component universe will the integral I be equal to

one?” Noting from Figure 3.3 that matter alone gives a constant integral value of

1.05 and Λ alone gives a value of 0.58, we can expect w to be between wM = 0

and wΛ = −1. Testing single component universes between these values finds that

an equation of state parameter of w = −0.05 will accomplish this goal to a part in

104. This would give a dilution parameter of d = 2.85. This would have to be a

substance that is very much like matter. But, a matter filled universe was already

inconsistent with observations of nearby supernovae—so much so that ΛCDM was

developed to account for the discrepancy. But, at least matter is a substance we

are familiar with, to some extent, and this test isn’t producing an equation of state

parameter for something truly exotic.

4.2 Changing the Gravitational Coupling Between

Epochs

Referring to our original setup of a test mass at the center of a thin shell, one

thing we may want to adjust is the gravitational coupling strength between them. For

this, I propose to introduce a dimensionless function ξ(t). Normally, the gravitational

interaction is mediated by Newton’s constant GN . But for massive bodies separated

by cosmic distances, this may not be fully correct. It has long been recognized
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that the dark energy (and/or dark matter) may be an artifact of misunderstanding

how gravity works at cosmic scales. The proposed replacement for the gravitational

coupling between two masses at epochs z1 and z2 is:

G = ξ(z1)ξ(z2)GN , (4.1)

where GN is our familiar Gravitational constant from Newton’s theory.

It is also worth pointing out that Brans and Dicke note that models with vari-

able gravity are fundamentally identical to models with variable gravitational mass

[BD61]. The variable mass they are referring to is a more fundamental notion of

mass, like say the proton mass. Not a mass change by other more mundane means

such as accretion. This means that in the quantities ξ(z1) and ξ(z2) could be in-

terpreted as scaling factors of the gravitational masses of the bodies at the different

redshifts. In a more fundamental sense, this leads to a realization that the quantity

we measure and use as G is simply chosen in such a way as to make gravitational

mass and inertial mass equal to each other. From this point of view, the value of

G is empirically determined: any experimenter would assign its value based on the

inertial properties of mass. If the inertial properties vary cosmologically, in order

to keep our integral equal to one, then local assignments of G would simply follow

along. Then in a very real sense, having the gravitational coupling change within the

integral to generate inertial forces could be a natural way to invoke Mach’s Principle

with our integral, as G has no fundamental connection to quantities like the electron

charge, Planck’s constant, the speed of light, etc.

I can appreciate that some may be hesitant splitting a constant by taking the

square root of G. But it is worth pointing out that
√
G is a common quantity,

particularly in defining the “natural” Planck units. The Planck length lp, mass mp,

and time tp, all contain a factor of
√
G in their formulation. Often the Planck mass

is simply defined as M2
P = 1/G, by setting c and ℏ both to one. Rewriting the

expression as
√
GMP = 1, it becomes more clear that G is more of a proportionality
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constant chosen such that this product is equal to one (or ℏc if you don’t set them

to one).

Now back to the integral, if we plug our new expression for the gravitational

coupling between epochs into our integral we get:

I ′ = 2

∫ ∞

0

dζξ(0)ξ(ζ)µ(ζ) = 1. (4.2)

The prime on the I ′ is simply to note that this is not our original integral, I, instead

it is one constructed so that by definition it is equal to one. The function ξ(t) is a

scalar value varying with epoch. Since we want our integral to be equal to one for

any epoch, Z, we can write this integral more generally as:

I ′ = 2ξ(Z)

∫ ∞

0

dζrelξ(ζrel)µZ(ζrel), (4.3)

where ζrel is the redshift relative to Z and µZ(ζrel) is in terms of EZ(ζrel). For visual

clarity, I will drop the rel subscript from the ζ variables for the remainder of this

text.

The natural question now is, how can we determine this function? One helpful

first step is to recall that for any single component universe the integral without

this correction factor is constant across redshift (see Figure 3.3). Furthermore, for

mixed universes we know that beyond some transition redshift the universe will

remain dominated by a single species. For ΛCDM radiation dominates at high z. So

beginning at some redshift of Z0 ≫ ZR, with ZR the redshift where radiation becomes

subdominant, the ξ(z) function becomes constant: ξ(Z0) =const.= ξ(z > Z0).

I ′R = 2ξ(Z0)

∫ ∞

0

ξ(Z0)dζµZ(ζ) = 1. (4.4)

But this integral is simply equal to our original integral I—in the context of constant

G—multiplied by two factors of ξ(Z0). Labeling the original integral for a radiation

dominated epoch as IR, no prime, we get:
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I ′R = [ξ(Z0)]
22

∫ ∞

0

dζµZ(ζ) = [ξ(Z0)]
2IR = 1. (4.5)

Again by construction this is equal to one, so for some redshift Z0 ≫ ZR we get:

ξ(Z0 ≫ ZR) =
1√
IR

. (4.6)

With this information we can pin the high z behavior of ξ. Now let’s make a

small step forward in time δt to some later epoch Z1 = Z0− δZ. The integral will be

identical to Equation 4.3, but we will have some knowledge about ξ(ζ) for ζ > Z0.

Given this, we can break up the integral into two parts:

I ′Z1
= ξ(Z1)

[
2

∫ δZ

0

dζξ(ζ)µZ(ζ) + 2

∫ ∞

δZ

dζξ(ζ)µZ(ζ)

]
. (4.7)

In the above equation we completely know everything in the second term, so we

can simply perform that integral. I will introduce the quantity γ to hold it and

simplify the notation:

γ = 2

∫ ∞

δZ

dζξ(ζ)µZ(ζ). (4.8)

For this initial step ξ(ζ) in the γ expression simply equals I
−1/2
R , but for subse-

quent steps in determining the full ξ function this will not be the case. But more

importantly, we will have determined the ξ function for all epochs covered by γ.

For the left term in Equation 4.7 if we choose δZ small enough such that ξ(ζ)

doesn’t change much on that interval we can set it equal to a constant ξ(Z1). This

makes the left term equal to:

2

∫ δZ

0

dζξ(Z1)µZ(ζ) = 2ξ(Z1)

∫ δZ

0

dζµZ(ζ) =
ξ(Z1)

β
, (4.9)

where I introduce the symbol β−1 to be equal to the integral in the above equation.

Again, β is a completely known function and we can calculate it. Given this, our

integral looks like this:
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I ′Z1
= ξ(Z1)[ξ(Z1)β

−1 + γ] = 1. (4.10)

Again, β and γ are completely determined from the previous step of evaluating the

integral from Z0.

The above expression is simply a quadratic equation:

[ξ(Z1)]
2 + ξ(Zl)βγ − β = 0. (4.11)

Taking the positive root, its solution is:

ξ(Z1) =
βγ

2

[√
1 +

4

βγ2
− 1

]
. (4.12)

We now have a way to make incremental steps in time from some radiation

dominated epoch Z0 ≫ ZR to the present epoch. Given the density parameters

at some epoch and their respective equation of state parameters1, this process can

be done to uniquely ξ(z) for a given FLRW-like model of the universe. Performing

this iterative building up of the ξ(t) function for ΛCDM yields the curve found in

Figure 4.1. In and of itself, this curve is very interesting. First, it is of order unity

and only varies absolutely by about 25% across the age of the universe, increasing

from 0.8 to 1.07. There are three flat regions—perhaps not surprising—when each

species of mass-energy is fully dominant. The transitions between the flat regions

happen around the epochs of transition. The function is monotonically increasing

with time, decreasing in redshift. This implies that gravitational coupling was weaker

in the past.

We can test if this function performs its required task of making the integral I ′

equal to one for any epoch. Figure 4.2 gives those results. In that figure we can see

the function is very nearly unity for all epochs and only deviates from unity by a

1They don’t necessarily need to be constant in time either, so long as you know how they evolve
in time.
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)

Gravitational Coupling Parameter (Z)

Figure 4.1: Numerically determined ξ(z). The red points are the directly calculated
values for ξ(z), while the blue lines are interpolated values used for numerical inte-
gration of I ′Z in Figure 4.2. The vertical black dotted lines represent the transition
epochs from matter to dark energy (left line) and radiation to matter (right line).
The red vertical line is the redshift of the CMB, zls = 1100. The discontinuous bump
at about Z ∼ 3500 is suspected of being a numerical artifact and not representative
of the model.

few tenths of a percent. This is better by up to two orders of magnitude from the

uncorrected I integrals. The largest swings in the plot come from epochs where ξ is

changing most rapidly.

In both Figures 4.2 and 4.1, we can also see a small bump in the curve at a redshift

of z ∼ 3500. This is likely not a real feature of the model, but rather a numerical

artifact from the integration. It appears in roughly the same spot as the bump we

saw in Figure 3.3 when looking at how IZ (no prime) behaves in a radiation-only

universe. You may recall in that case, IZ was evaluated analytically to be a constant,
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so its bump can only be explained by a numerical artifact. We believe this bump is

similar in nature as it occurs at about the same epoch2.

10 2 10 1 100 101 102 103 104 105

Z

0.994

0.995

0.996

0.997

0.998

0.999

1.000

I′ Z

Integral I ′ with Gravitational "Correction" (z)

Figure 4.2: I ′Z with the gravitational coupling parameter ξ(z) determined by numeri-
cal integration. I ′ by construction should be equal to one, indicated by the horizontal
dashed line. The vertical black dotted lines represent the transition epochs from mat-
ter to dark energy (left line) and radiation to matter (right line). The red vertical line
is the redshift of the CMB, zls = 1100. The discontinuous bump at about Z ∼ 3500
is suspected of being a numerical artifact and not representative of the model.

While it may seem distasteful to vary the strength of gravity in this multistep

way, recall the guiding idea: if mass-energy distribution of the universe determines

inertial frames and inertial mass, and G is the emergent constant of proportionality,

then transitions in the universe may be expected to imprint on G. Moreover, this

2All the calculations done use similar methods in Python. Other investigations have been per-
formed to identify the cause of these bumps. While these efforts have obviously not solved the
problem, they also don’t reveal this to be a true property of the model.
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dissertation is one of exploration, rather than asserting a new cosmology, completely

rendered. Rather, I hope to introduce a tool by which other questions can be asked of

any cosmological theory. If a scientist wants to test Mach’s Principle, then they may

be able to use the above technique to tease out new insights into a given cosmology,

or perhaps provide an opportunity to question assumptions about any given cosmol-

ogy. The assumption we brought into question was the concept of an unchanging

gravitational coupling for all time, G(t) = GN .

4.3 Comparison With Supernova Data

A natural next step after proposing this model with variable coupling parameter

ξ(z) is to compare this with observational data. While there are a number of ways

astronomers probe cosmology, the classic comparison of cosmology in the nearby

universe has been the use of type Ia supernovae. Type Ia supernovae are a type of

standard candle in cosmology, a source with known intrinsic luminosity, L. Recall

from Section 1.4.3, that by measuring the bolometric flux, S, of a standard candle it

can be used to directly probe H by two luminosity distance relations:

DL =

√
L

4πS
, (4.13)

and

DL = (1 + z)2DA = (1 + z)DC = DH(1 + z)

∫ z

0

dζ

E(ζ)
. (4.14)

We can consider how an increasing gravitational parameter might influence these

observations. I’ll use subscripts v and c to distinguish between quantities with a

variable G from those with it as a constant. If G was weaker in the past then

Gv(z) < Gc. But the Hubble parameter is proportional to the square root of G,

and thus proportional to the gravitational parameter ξ. So Hv(z) < Hc(z). The

same proportionality holds for the E(z) function as well, Ev(z) < Ec(z). But,
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the comoving distance element δDC is inversely proportional to E(z). Therefore,

δDC,v(z) > δDC,c(z), which leads to DC,v(z) > DC,c(z). And since the luminosity

distance is simply the comoving distance multiplied by a factor of (1 + z), finally:

DL,v(z) > DL,c(z). (4.15)

To quantitatively modify this expression we will take out the gravitational pa-

rameter ξ(z) (which remember is proportional to
√

G(z)) and multiply it by the

density ρ(z). Since E(z) can be written as
√∑

x ρx(z)/ρc, multiplying the density

by ξ(z) has the effect of modifying E by a simple overall multiplication. Our new E

function is simply:

E ′(z) = ξ(z)E(z), (4.16)

where I use the prime to denote that this is a modified E function that provides a

modified I ′ integral. Thus, our modified luminosity distance will be:

D′
L = DH(1 + z)

∫ z

0

dζ

ξ(ζ)E(ζ)
. (4.17)

Figure 4.3 plots the distance modulus of type Ia supernova data up to 2006 as

reported by Riess et al. in 2007, [RSC+07]. A fitted model of ΛCDM (green dotted

line), and ΛCDMwith a variable gravity (blue dashed line) are also plotted. The

luminosity distance used for the variable gravity is that given by Equation 4.17, with

the ξ(z) function provided by the results plotted in Figure 4.1. The value of ξ(0)

is 1.07, and decreases overall by ∆ξ = 0.09 for the redshift interval the supernovae

span. Figure 4.4 plots the residuals of the supernova data with ΛCDM. The variable

G model is also plotted with a blue dashed line.

The difference between ΛCDM and the variable Gmodel is small. So small in fact

that one might have trouble distinguishing between them in Figure 4.3. Referring to

the more clear Figure 4.4 we can see that the variable G model is clearly above—if

only by a small amount—ΛCDM. This confirms that DL with an increasing gravi-
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tational parameter would be greater than with constant gravity. The smallness of

the change is rather remarkable, considering that ξ varies by about 8%. To compare

some statistical measures between the two models, for ΛCDM χ2
ΛCDM=0.976, while

the variable G model has χ2
varG = 0.980. With a difference between χ2 values only in

the thousandths place, this makes them statistically nearly identical. 1−CDF(χ2) is

0.63 and 0.65 for the variable G and ΛCDM models, respectively. It is worth noting

that H0 is a fitted parameter to the data. The value of H0 given by the variable G

model was about 6% smaller than the ΛCDM fit. This is largely accounted for by

the fact that ξ(0) is 1.07 and not one.

Having a new tool in the integral I ′ gives us some room to play around with

some parameters. One parameter to vary is the ratio r = ΩΛ/ΩM . The value of

r for ΛCDM is 2.215. Recall from Section 4.1 the value of r to get the original

integral I to be equal to one for the current epoch was 0.74. For this reason, various

values of r between 2.215 and 0.74 were modeled. For each value, the supernova data

were compared with the output from a constant gravity ΛCDMr model with the given

ratio, setting ΩΛ and ΩM while keeping ΩR fixed. The supernova were also compared

with a variable G model with the same value r, ΛCDMξr. For ΛCDMξr, ξ(z) was

determined in the same manner outlined as in Section 4.2. Table 4.1 shows the

results from these tests. For all r values χ2 was smaller when including a variable

G compared to ΛCDMr. More remarkable was that for a wide range of r = 1,

1−CDF(χ2) was within a statistically acceptable range as to not rule out ΛCDMξr

in and of itself. Additionally, as r decreased ξ(0) became closer to one, and ∆ξ

decreased. Indicating a more self-consistent initial value along with a smaller overall

change in G, both nice things to have in a model. One thing that doesn’t work out

so well is eliminating dark energy. Setting r to zero gives a ξ2 value of 2.02.

What the results of this section show us is that adding a variable G to cosmology

can do some of the work dark energy was intended to cover, such as aligning with su-

pernova magnitudes. A variable G also doesn’t break from supernova observations—
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Table 4.1: Table of results from modeling ΛCDMr and ΛCDMξr and comparing this
with the supernova data set used in Figure 4.3. r is the ratio of the Λ and matter
density parameters, ΩΛ,0/ΩM,0. ξ(0) is the value of the gravitational parameter ξ in
the current epoch. ∆ξ is the quantity ξ(0)− ξ(zmax), where zmax is the highest value
of redshift in the supernova data set. This quantity simply makes a measure of how
much ξ changes over the span of the data set. Also reported are the χ2 values with
a variable gravity “w/ξ” and without “no ξ.” The next column reports one minus
the cumulative distribution function of χ2 for the variable gravity model (the same
quantity for constant gravity was examined but these values fell off quickly over the
span of r explored and so were not reported).

χ2 χ2 1− CDF(χ2)
r ξ(0) ∆ξ w/ξ no ξ w/ξ

2.215 1.07 0.09 0.98 0.98 0.63
1.75 1.06 0.07 0.97 1.00 0.68
1.25 1.04 0.06 1.01 1.07 0.43
0.74 1.02 0.04 1.16 1.24 0.01
0 0.98 4× 10−5 2.02 2.02 0

anchors to our late time experimental probes of cosmology. In fact, variable G can

do better than ΛCDM alone. For instance, the smallest χ2 value in Table 4.1 is for

a variable gravity with r = 1.75. One intriguing question we had at the beginning of

this process was, could a variable gravity replace dark energy? Within the context

of this work, I would say the answer is a solid no. Dark energy—what ever it may

be—seems to still be required to account for supernova being dimmer than expected.

In this section, I can see how one might walk away with the impression that cos-

mologists have never considered the concept of a variable gravity. This is certainly

not the case. Variable gravity in the context of cosmology is not a new concept.

One theory that was attractive in the 1960s was Jordan-Brans-Dicke Theory (JBD)

(Brans 2014 [Bra14]). In 1961 Brans and Dicke proposed—based on work by Jordan

and his group—an alternative scalar–tensor theory to Einstein’s General Relativity

[BD61]). JBD contained a variable gravitational parameter based on the matter
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distribution of the universe, and in 1968 Greenstein developed this theory into a

cosmological model [Gre68a], [Gre68b]. MTW reference JBD cosmology and ad-

mit “[they] are qualitatively the same and quantitatively almost the same as the

standard hot big-bang model. However, no motivation or justification is evident for

abandoning general relativity” [MTW73]. In the past decade, the uncovering of the

Hubble Tension under the ΛCDM model has given rise to a renewed interest in JBD

to account for these tensions. As an example, Peracaula et al. find that JBD—a

variable-strength gravity model, recall—combined with a cosmological constant can

ease ΛCDM tensions [PGVdCPMP19]. Apart from JBD, other cosmologies with

variable mass/gravity have been proposed. In fact, the gold medal winners of the

H0 Olympics mentioned in Section 1.4.2 are a pair of proposals by Sekiguichi and

Takahashi that both include a time varying effective electron mass, me [ST21].

The point I am trying to make in this section is simply that a gravitational

parameter that is increasing in time is consistent—at least qualitatively—with ob-

servations of an accelerating universe. I only do this because in the previous section

I demonstrate a way to use Mach’s Principle to tease out a possible function for

G(t) and it appears to be weaker in the past. I also don’t want to make the claim

that this is THE way to find G(t), rather I think my method could provide useful

insights into a more complete and self-consistent approach to developing or refining

any theory of cosmology. I think exploring what the integral I evaluates to for some

of the different models mentioned in this work could be very interesting. How close

are the integrals to unity? If they aren’t equal to unity, what parameters can be

changed to bring it closer to unity? How might those changes affect comparisons

with observations? Do the models that have made the podium in the H0 Olympics

evaluate I to be closer to unity? Maybe the integral I could be a new event!
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4.4 Conclusion

In Chapter 2 I introduce a way to determine the acceleration of a test particle at

the center of a thin shell of mass under the gravitational influence of the shell in three

different kinds of motion. I do this only using the Einstein-Infeld-Hoffman Equations.

I also show how the resulting accelerations are qualitatively—if not numerically—

similar to the accelerations one would expect from an observationally equivalent

non-inertial frame. Using the results from Chapter 2, in Chapter 3 I extend the

shell integration to a volume filling the universe taking careful account of the density

and distances involved from cosmology. I showed these result in accelerations that

are near unity relative to inertial accelerations. It appears that no such integration

has been performed yet in the literature. Finally, in Chapter 4, I invoke Mach’s

Principle by requiring the integral to equal unity. I explore different approaches to

make this happen. In particular, I demonstrate a way to determine the gravitational

coupling between two bodies at different cosmological redshifts. I then use this model

of ΛCDM with a variable gravitational constant and compare this with supernova

distance modulus data. I find that this modified model matches observations at least

as well as ΛCDM and in some cases possibly outperforms it. My hope is that the

methods outlined in this dissertation can be used to evaluate cosmological models

and help to reveal new insights into improving them.
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Figure 4.3: Supernova data prior to 2006 in comparison with ΛCDM model and a
modified ΛCDM with variable G. The vertical axis represents the distance modulus
µ. The red dots along with their error bars are the distance modulus of the supernova
as reported by Riess et al. in 2007, [RSC+07]. The green dotted line is a model
fit of ΛCDM with (ΩΛ,ΩM ,ΩR) = (0.6889, 0.3111, 0.0001). The blue dashed line
represents a modified ΛCDM model using D′

L (Eq. 4.17) rather than DL (Eq. 1.35)
to fit H(z). The ξ(z) function used is that as provided in Figure 4.1. Note that the
green dotted line is just barely visible under the below the dashed blue line. The
thin vertical dotted line represents the transition from matter dominated epochs to
Λ dominated epochs.
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Figure 4.4: Residuals of supernova data prior to 2006 in comparison with ΛCDM
model. A modified ΛCDM with variable G is also plotted as compared with vanilla
ΛCDM. The red dots along with their error bars are the residuals of the distance
modulus of the supernova as reported by Riess et al. in 2007, [RSC+07]. The green
dotted line is a model fit of ΛCDMwith (ΩΛ,ΩM ,ΩR) = (0.6889, 0.3111, 0.0001). The
blue dashed line represents a modified ΛCDM model using D′

L (Eq. 4.17) rather than
DL (Eq. 1.35) to fit H(z). The ξ(z) function used is that as provided in Figure 4.1.
The thin vertical dotted line represents the transition from matter dominated epochs
to Λ dominated epochs. Note two data points around z = 0.4 and z = 0.6 are above
the boundaries of the plotted region.
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Appendix A

Useful Math and Worked out

Integrals

A.1 Isotropic r̂ integral

This is an integral of the form:

I =

∫
Ω

dΩf(r)r̂ (A.1)

Since f(r) is only a function of the radial coordinate it can be pulled from the

integral. Additionally, we can expand the following two parts of the integral:

∫
Ω

dΩ =

∫ π

0

dθ

∫ 2π

0

dϕ sin θ, (A.2)

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ, (A.3)

Using those substitutions we can rewrite the integral as:

I = f(r)

∫ π

0

dθ

∫ 2π

0

dϕ[sin2 θ cosϕx̂+ sin2 θ sinϕŷ + sin θ cos θẑ]. (A.4)
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The first and second terms evaluate to zero,
∫ 2π

0
dϕ cosϕ =

∫ 2π

0
dϕ sinϕ = 0. This

leaves the integral as:

I = f(r)

∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos θẑ. (A.5)

The integral over ϕ is simply 2π. A simple u substitution of u = sin θ and du =

cos θdθ yields:

I = 2πf(r)

∫ sinπ

sin 0

udu. (A.6)

This of course is equal to zero. Therefore, we find the original integral to be equal

to zero.

I =

∫
Ω

dΩf(r)r̂ = 0 (A.7)

This should be relatively intuitive in that for every direction there will be an

equal magnitude vector in the integral in the opposite direction.

A.2 Powers of Sine

This involves integrals of the form:

I =

∫
Ω

dΩ sinn θr̂. (A.8)

Substituting r̂ = sin θx̂+ sin θ sinϕŷ + cos θẑ we get:

I =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ sinn θ(sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ). (A.9)

For the first and second terms,
∫ 2π

0
dϕ cosϕ =

∫ 2π

0
dϕ sinϕ = 0. Leaving:
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I =

∫ 2π

0

dϕ

∫ π

0

dθ sinn+1 θ cos θẑ. (A.10)

The integral over ϕ is simply 2π. And, a simple u substitution of u = sin θ and

du = cos θdθ yields:

I = 2πẑ

∫ sinπ

sin 0

un+1du = 0. (A.11)

And of course the upper and lower limits are equal to each other so the whole

integral is equal to zero:

I =

∫
Ω

dΩ sinn θr̂ = 0 . (A.12)

A.3 Definite Scalar Integrals of
∫
dθ sin3 θ

Integral #297 from [Sel75] is:

I =

∫
(sin3 ax)dx = − 1

3a
(cos ax)(sin2 ax+ 2). (A.13)

For a = 1 and the limits of integration as θ = [nπ,mπ] with both n and m as

integers:

I = −1

3
[cos θ(sin2 θ + 2)|mπ

nπ . (A.14)

For the first term sin(mπ) = sin(nπ) = 0. Which leaves:

I =
2

3
[cos(nπ)− cos(mπ)]. (A.15)

For limits of integration [0, π] this yields:

I =
2

3
[1− (−1)] =

4

3
. (A.16)
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For limits of integration [0, 2π] this yields:

I =
2

3
[1− 1] = 0. (A.17)

A.4 Cosine Product with Phase

These are integrals of the form:

I =

∫ 2π

0

dθ cos(θ + δ) cos θ. (A.18)

Using the product to sum rules for cosine, we can rewrite the first cosine and get:

I =

∫ 2π

0

dθ[2 cos θ cos δ − cos(θ − δ)] cos θ (A.19)

= 2 cos δ

∫ 2π

0

dθ cos2 θ −
∫ 2π

0

dθ cos(θ − δ) cos θ. (A.20)

Above, the first integral on the left evaluates to π/2. For the second integral we

can use a u substitution: u = θ − δ, dθ = du and the limits become 0 → −δ and

2π → 2π − δ.

I = π cos δ −
∫ 2π−δ

−δ

du cos(u+ δ) cosu. (A.21)

Now the second term on the RHS looks nearly identical to the original integral,

save for the limits. But since the integrand is still periodic on the interval of 2π and

the difference between the limits is still 2π, then the integral should still be equal to

I. We then get:

I = π cos δ − I, (A.22)

2I = π cos δ. (A.23)
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This makes the overall integral equal to:

I =

∫ 2π

0

dθ cos(θ + δ) cos θ =
π

2
cos δ . (A.24)

When δ = π/2 then this clearly is equal to zero. But in the original integral this

would mean that the phase shifted cosine product would be cos(θ + π/2), but this

is of course equal to sin θ. We can then infer that the following integral is equal to

zero:

∫ 2π

0

dθ sin θ cos θ =
π

2
cos

(
π

2

)
= 0. (A.25)

Thus:

I =

∫ 2π

0

dθ cos(θ + δ) cos θ = 0, with δ =
π

2
. (A.26)

A.5 Integral of cylindrical unit vector ρ̂ over a

shell

These are integrals of the form:

I =

∫
Ω

dΩf(r, θ)ϱ̂. (A.27)

With ρ̂ being the radial unit vector in cylindrical coordinates. Expanding the

surface element we get the double integral:

I =

∫ π

0

sin θdθf(r, θ)

∫ 2π

0

dϕϱ̂. (A.28)

We then convert the ϱ̂ into rectilinear coordinates with ϱ̂ = cosϕx̂ + sinϕŷ to

get:
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I =

∫ π

0

sin θdθf(r, θ)

∫ 2π

0

dϕ(cosϕx̂+ sinϕŷ). (A.29)

But the integral of cosine and sine over a full period is zero. So both terms in

the second integral are zero. Thus:

I =

∫
Ω

dΩf(r, θ)ϱ̂ = 0. (A.30)

A.6 Integral of sin θ cos θ

For integrals of the form:

I =

∫ b

a

dθ sin θ cos θ. (A.31)

Using the following u substitution u = sin θ and du = cos θdθ we get:

I =

∫ sin b

sin a

udu. (A.32)

This of course is simply equal to:

I =

[
u2

2

∣∣∣∣sin b

sin a

. (A.33)

Which is:

I =

∫ b

a

dθ sin θ cos θ =
1

2
[sin2 a− sin2 b] . (A.34)

Since the integrals we deal with are either on the interval θ = [0, π] or θ = [0, 2π],

this makes the integrals simply equal to zero.

89



Appendix B

Detailed Integrations of Specific

Terms

Many of the terms in the EIH integral require some detailed calculations that

would distract from the flow of the thesis. For this reason, I have included some of

the more complicated integrals in this appendix.

B.1 Linear Acceleration Case:1 J term

The J 1 term in the linear acceleration Case:1 is:

J 1 =
1

2

G

c2
R2σ

∫
Ω

dΩ
r̂(r̂ · a)

R
. (B.1)

If we use the common substitution for r̂ as:

r̂ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ. (B.2)

The inner-product within the integral ofJ 1 simply becomes r̂·(ax̂) = a sin θ cosϕ.

Plugging this into J 1 as well as the expansion of r̂ we get:
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J 1 =
1

2

G

c2
Rσ

∫ 2π

0

dϕ

∫ π

0

sin θdθ(a sin θ cosϕ)(sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ).

(B.3)

For each term the integrals over ϕ are as follows:

1stTerm −→
∫ 2π

0

dϕ cos2 ϕx̂ = πx̂, (B.4)

2ndTerm −→
∫ 2π

0

dϕ cosϕ cos sin ŷ = 0, (B.5)

3rdTerm −→
∫ 2π

0

dϕ sinϕẑ = 0. (B.6)

From Appendix A.3, the integral over θ in the first term is simply:

∫ π

0

sin3 θdθ =
4

3
. (B.7)

All told, the solution for this term is:

J 1 =
2

3

G

c2
Rσπax̂ . (B.8)

B.2 Coriolis Case:2 C Term

For the C2 term we require vA · v. This is given as:

vA · v = −vARω sin θ(x̂ · ϕ̂) (B.9)

= −vARω sin θ[x̂ · (− sinϕx̂+ cosϕŷ)] (B.10)

= −vARω sin θ sinϕ. (B.11)

Inputting this into the C2 term we get:
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C2 = −4
G

c2

∫ ∞

ϵ

d3x̄
ρ(x̄)[vA · v(x̄)]

r̄2
r̂ (B.12)

= 4
G

c2

∫
Ω

dΩ
σvARω sin θ sinϕ

R2
r̂ (B.13)

= 4
G

c2
σvAω

R

∫
Ω

dΩ sin θ sinϕr̂ (B.14)

= 4
GvAω

c2R

∫ 2π

0

dϕ

∫ π

0

dθ sin θR2 sin θ sinϕ(sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ)

(B.15)

= 4
GvAωR

c2

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θ sinϕ(sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ).

(B.16)

The ẑ term reduces to zero due to the integration of sinϕ over a full revolution.

Additionally, the x̂ term reduces to zero because of the integration over a full rev-

olution in ϕ from the product sinϕ cosϕ. This leaves only the ŷ term remaining

as:

C2 = 4
GvAωR

c2

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θ sin2 ϕŷ. (B.17)

Using integral number #296 from [Sel75] yields:

∫ 2π

0

dϕ sin2 ϕ =

[
ϕ

2
− 1

4
sin 2ϕ

∣∣∣∣2π
0

= π. (B.18)

And from section A.3 that the integral over θ will reduce to 4/3. So overall for

the C2 term we get:

C2 =
16

3

πGvAωR

c2
ŷ . (B.19)
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B.3 Coriolis Case:2 G Term

Recalling the G2 term as:

G2 = −G

c2

∫ ∞

ϵ

d3x̄
ρ(x̄)

r̄2
r̂ · (4vA − 3v(x̄))[vA − v(x̄)] (B.20)

For the G2 term we need to determine r̂ ·(4vA−3v)[vA−v]. Distributing the dot

product over the first parenthesis we get 4r̂ ·vA−3r̂ ·v. The second term reduces to

zero as v = vϕ̂ and r̂ ·ϕ̂ = 0. While the first term becomes 4vAr̂ · x̂ = 4vA sin θ cosϕ.

Making the G2 term become:

G2 = −G

c2

∫
Ω

dΩ
4vAσ sin θ cosϕ

R2
(vAx̂− ωR sin θϕ̂). (B.21)

Evaluating the left term in the above expression we get:

G2,left =
4v2Aσ

R2

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θR2 cosϕx̂. (B.22)

This of course evaluates to zero due to the integration over ϕ. Therefore:

G2 =
4GvAσω

Rc2

∫
Ω

dΩ sin2 θ cosϕϕ̂ (B.23)

=
4GvAσω

Rc2

∫ 2π

0

dϕ

∫ π

0

dθ sin θR2 sin2 θ cosϕ(− sinϕx̂+ cosϕŷ). (B.24)

The integral over θ yields a factor of 4
3
(for details see section A.3) leaving:

G2 =
16GvAσωR

3c2

∫ 2π

0

dϕ(− sinϕ cosϕx̂+ cos2 ϕŷ). (B.25)

Here the x̂ term evaluates to zero and the ŷ evaluates to π, so:

G2 =
16

3

GvAσωπR

c2
ŷ. (B.26)
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It is worth noting here that the G2 term is identical in magnitude and direction to

the C2 term. Additionally, hidden between the term is a BAC-CAB rule. Specifically,

in the C2 after some of the terms integrate to zero, the final unit vectors can be

written as r̂(x̂ · ϕ̂). Similarly, within the G2 term we can write it as ϕ̂(x̂ · r̂). All

other factors in between the two terms are identical, with the exception that the

G2 term has a negative sign in front. Thus, using the BAC-CAB rule in reverse,

we could show that in the end these two integrals could combine to form a single

integral that contains the vector triple product x̂ × (r̂ × ϕ̂). This implies that the

Coriolis case is completely governed by gravitomagnetism.

B.4 Centrifugal Case:3 B Term

We are left to evaluate the following integral for the B3 term in Case:3:

B3 = 4
G

c2
R2σs

∫
Ω

dΩ sin θ cosϕr̂ (B.27)

After expanding out r̂ and the integral we get:

B3 = 4
G

c2
R2σs

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θ cosϕ(cosϕ sin θx̂+ sinϕ sin θŷ+ cos θẑ). (B.28)

The third term will have an integral over cosϕ from 0 to 2π. This of course is

equal to zero. The second term will have the product of sinϕ cosϕ integrated over

ϕ = [0, 2π]. Appendix A.6 has details on how this term will also be evaluated to

zero.

Therefore, the only term left makes B equal to:

B3 = 4
G

c2
R2σs

∫ 2π

0

dϕ cos2 ϕ

∫ π

0

dθ sin3 θx̂. (B.29)

The antiderivative of cos2 ϕ is 1
2
(ϕ+sinϕ cosϕ), the second term in the antideriva-

tive will be zero because of the sine factor. So the integration over ϕ will yield a
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factor of π. For the integration over θ we can once again use Appendix A.3 to yield

a factor of 4/3. Replacing s with xA/R, we have:

B3 =
16π

3

Gσω2RxA

c2
x̂ . (B.30)

B.5 Centrifugal Case:3 D Term

For the D3 term in the centrifugal case we have this integral to solve:

D3 = −3

2

G

c2
R2σ

∫
Ω

dΩ
(sωR sin θ sinϕ)2

R2
r̂. (B.31)

With r̂ = cosϕ sin θx̂ + sinϕ sin θŷ + cos θẑ, the integral will have three terms.

Evaluating the integral over ϕ for each of them yields:

D3 = −3

2

G

c2
R2σs2ω2

∫ 2π

0

dϕ

∫ π

0

dθ sin3 θ sin2 ϕ(cosϕ sin θx̂+ sinϕ sin θŷ + cosϕẑ).

(B.32)

From Appendix A.3 the integrals over ϕ for the first and second terms are simply

0. From the same appendix, we know that for the third term the integral over θ is

equal to 4/3. This leaves the term as:

D3 = −2
G

c2
R2σs2ω2

∫ 2π

0

dϕ sin2 ϕ cosϕẑ. (B.33)

With the u substitutions of sinϕ −→ u and cosϕdϕ −→ du we get:

D3 = −2
G

c2
R2σs2ω2

∫ sinπ

sin 0

u2duẑ. (B.34)

Which of course equals zero:

D3 = 0 . (B.35)
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B.6 Centrifugal Case:3 G Term

In the centrifugal case, we were able to simplify its G3 term to be:

G3 = −3
G

c2
σ

∫
Ω

dΩsωR sin θ sinϕv. (B.36)

Now recalling that v = ωR(sin θϕ̂+ sŷ), the integral we now need to solve is:

∫
Ω

dΩ sin θ sinϕ(sin θϕ̂+ sŷ) =

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θ sinϕ(sin θϕ̂+ sŷ). (B.37)

The second term in the integral has an integration over ϕ only of sinϕ for a full

period. This of course is equal to zero. The first term requires an integral of sin2 θ

over θ. We can use Appendix A.3 to find it equal to 4/3. Now our integral looks

like:

∫
Ω

dΩ sin θ sinϕ(sin θϕ̂+ sŷ) =
4

3

∫ 2π

0

dϕ sinϕϕ̂. (B.38)

The conversion of ϕ̂ into rectilinear unit vectors is ϕ̂ = − sinϕx̂+ cosϕŷ makes

the integral:

4

3

∫ 2π

0

dϕ sinϕϕ̂ =
4

3

∫ 2π

0

dϕ sinϕ(− sinϕx̂+ cosϕŷ). (B.39)

The integral over a full period of sin2 ϕ is simply π, while the integral over a full

period of sinϕ cosϕ is simply zero. This makes the whole integration simply equal

to −4π/3x̂. Altogether, the final form of G is:

G3 = 4π
Gσω2RxA

c2
x̂ . (B.40)
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B.7 Centrifugal Case:3 J Term

In the centrifugal case the J 3 term is:

J 3 = −1

2

G

c2
R2σω2s

∫
Ω

dΩ sin θ cosϕr̂. (B.41)

Expanding out the r̂ and the integral we get:

J 3 = −1

2

G

c2
R2σω2s

∫ 2π

0

dϕ

∫ π

0

dθ sin2 θ cosϕ(sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ).

(B.42)

The third term has an integral of cosϕ over a full period and is therefore 0. The

second term has an integral over sinϕ cosϕ over a full period. By Appendix A.6 this

is also zero. What remains is:

J 3 = −1

2

G

c2
R2σω2s

∫ 2π

0

dϕ

∫ π

0

dθ sin3 θ cos2 ϕx̂. (B.43)

From Appendix A.3 we get that the integral over sin3 θ is simply 4/3. Then the

integral of cos2 ϕ over a full period is simply equal to π. This brings the total integral

to:

J 3 = −2π

3

G

c2
R2σω2sx̂ (B.44)

Plugging in s = xA/R we get:

J 3 = −2π

3

G

c2
Rσω2xAx̂ . (B.45)
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Appendix C

Analytic Solution for IR

There is an interesting “bump” in the Radiation curve in Figure 3.3 that happens

around Z ≈ 3500. The aim of this section is to demonstrate that the curve should

be flat for all Z, and this bump is nothing but a numerical artifact. The integral

(equation 3.2) to generate all the curves in Figure 3.3 was solved numerically for

each point on the curves. That integral is:

I = 2

∫ ∞

0

dζE(ζ)

(1 + ζ)4
[
∫ ζ′

0
dζ/E(ζ ′)]2∫ ζ

0
dζ ′′/(1 + ζ ′′)E(ζ ′′)

(C.1)

We can rewrite this a bit for some clarity by recalling that the quantity in square

brackets in the numerator is simply the comoving distance, DC(ζ)/DH . Additionally,

the integral in the denominator is the light travel distance DT (ζ)/DH . The factors

of the Hubble distance DH all cancelled with each other, leaving the overall integral

dimensionless. Furthermore, the E(ζ) functions are all given in reference to some

epoch Z, and for a single component universe can be written as:

EZ(z) =
√
Ωx,Z(1 + z)dx =

√
Ωx,Z(1 + z)dx/2. (C.2)

For radiation this is simply ER,Z =
√
ΩR,Z(1 + z)4. Given this simple form of
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E(z), we can evaluate the distance integrals analytically. For the comoving distance

we have:

DC,R(z)

DH

=

∫ z

0

dζ√
ΩR,Z(1 + z)2

=
1√
ΩR,Z

(
z

1 + z

)
. (C.3)

The light time travel distance becomes:

DT,R(z)

DH

=

∫ z

0

dζ√
ΩR,Z(1 + z)3

=
1

2
√
ΩR,Z

[
(1 + z)2 − 1

(1 + z)2

]
. (C.4)

Plugging these values into Equation C.1 we get:

IR,Z = 2

∫ ∞

0

dζ

√
ΩR,Z(1 + ζ)2

(1 + ζ)4

[
1√
ΩR,Z

(
ζ

1 + ζ

)]2[2√ΩR,Z(1 + ζ)2

(1 + ζ)2 − 1

]
(C.5)

A number of factors cancel from the integrand, including all factors of
√
ΩR,Z .

The simplified equation is:

IR,Z = 4

∫ ∞

0

dζ
ζ2

(1 + ζ)2[(1 + ζ)2]− 1]
(C.6)

The antiderivative for the integral provided by WolframAlpha is:

1

1 + ζ
+ 2 ln

(
1 + ζ

2 + ζ

)
(C.7)

Evaluated at ζ = ∞ the first term is zero while the second term becomes 2 ln(1)

which is also zero. Evaluated at ζ = 0 the first term is simply 1, while the second

term becomes − ln 4. Multiplying by the overall factor of 4 the integral is:

IR,Z = 4(ln 4− 1) ≈ 1.55 . (C.8)

This is constant for the integral as evaluated from any epoch Z. Because this is

a constant, the bump in Figure 3.3, must be the result of the numerical integration.

Furthermore, since a similar integration technique was used to generate the ξ(Z)
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function as presented in Figure 4.1, it is reasonably assumed that the “glitch” in

that plot is the result of a numerical instability in that region.
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