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Abstract 

We examined the effect of cognitive noise on human game 
playing abilities. Human subjects played a guessing game 
against an ACT-R model set at different noise levels. Counter 
to the normal effect for noise (i.e., to increase randomness) 
increasing noise over certain ranges increased the win rate in 
both the ACT-R model and in the humans. We then attempted 
to model the human results using ACT-R, Q-Learning, neural 
networks, and Simple Recursive Neural Networks. Overall, 
ACT-R produced the best match to the data. However, none 
of these models were able to reproduce a secondary counter 
intuitive human win rate effect.  
 

Noise, or randomness, plays an important role in cognitive 
modelling. In problem solving it is often necessary to add 
noise to a model to get it to explore possible solutions rather 
than freezing onto a single approach. In memory models, 
noise often plays a role in modelling errors of omission and 
commission (e.g. Anderson & Lebiere, 1998). Noise is also 
used to model the ability of humans to purposefully behave 
stochastically (e.g., Treisman & Faulkner, 1987). In these 
cases, the role of noise is to create and/or increase 
randomness in behaviour. However, adding noise to a 
component within a system can also have the opposite 
effect.  That is, adding noise can, under the right conditions, 
decrease randomness (i.e. the system’s behaviour moves 
away from chance).  

The best-known example of this is stochastic resonance 
(SR). SR refers to a class of models that produces the effect 
of reducing randomness by adding noise. Importantly, SR 
has been implicated in neural functioning (see chapter 22 of 
Ward, 2002 for a review) and has also been shown to 
influence decision making in perceptually based tasks (see 
chapter 21 of Ward, 2002, for a review). However, there is 
no agreed upon, precise definition of when a system should 
be classed as SR. For experimental results it is often the 
case that a result is assumed to be SR if adding noise to a 
system reduced the level of randomness of the system in 
some way. This is the sense in which we use the term SR. 
However, the important point is not the technical definition 
but whether or not noise can function in this way for the 
cognitive system, as it is known to do for the neural and 
perceptual systems.   

Games, Randomness, and Cognitive Noise 
In game theory, the ability to behave randomly or pseudo-
randomly often plays a central role. This is because 
increasing the level of randomness in a player’s moves 

decreases the ability of the opponent to predict these moves. 
If we assume that increasing noise in a cognitive model will 
always increase the level of randomness in its behaviour 
then there is a direct link between cognitive noise levels and 
the level of randomness in a game. However, if adding noise 
can, under certain conditions, reduce the level of 
randomness, then the relationship between cognitive noise 
and randomness is not so straightforward. 

We investigated this by looking at the relationship 
between cognitive noise and the ability to predict your 
opponent in the game of Paper, Rock, Scissors (henceforth 
PRS). PRS was chosen for this study because the game 
theory solution is very simple; just play randomly, 1/3 
paper, 1/3 rock, 1/3 scissors. The reason for this is that any 
deviation from this strategy would leave the player open to 
exploitation from an opponent who could detect the 
deviation. The expected outcome for this strategy over time 
is for both players to play at chance; 1/3 wins, 1/3 losses, 
and 1/3 ties. If adding noise to the cognitive system of a 
player increases the randomness of their playing then adding 
noise should cause the rate of win, losses and ties to move 
towards the chance rate. In contrast, an SR effect would 
cause one or both players to move away from the chance 
rate as more noise is added. Typically, such an effect would 
occur over only a limited range of the noise parameter. 

Another reason that PRS is a good choice is that the 
cognitive processes underlying PRS play have been 
previously studied. Human PRS play has been successfully 
modelled using neural networks (West & Lebiere, 2001) and 
ACT-R (Lebiere & West, 1999). In both cases the basic 
strategy was the same: to attempt to win through the 
detection of sequential dependencies. Specifically, each 
player tries to predict what their opponent will play next by 
detecting sequential dependencies in past moves. Both the 
neural network model and the ACT-R model, when 
compared to human data, indicated that people use their 
opponent's last two moves to predict the current move.  We 
refer to this as a lag 2 model. Simpler models, which use 
only the last move, were termed lag 1 models. 

The effect of cognitive noise on this strategy seems 
straightforward: as noise is added to the sequential 
dependency mechanism the player should become less able 
to predict their opponent's moves. Also, as their moves are 
increasingly determined by the noise they should become 
increasingly hard to predict.  Eventually the cognitive 
system will become completely swamped with noise and all 
the moves will be random. That is, the win/loss/tie rates for 
both players will converge towards the chance rates. With 
sufficient noise this outcome is unavoidable. However, if an 
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SR effect exists then the relationship between the level of 
noise and the level of randomness will not be monotonic. 
That is, for some regions of noise, increasing noise will 
cause the win/loss/tie rates to move away from chance. 

Humans Versus ACT-R 
Testing for stochastic resonance in humans is difficult 
because it is problematic to add precise amounts of noise to 
their mental processes. We approached this issue by having 
human subjects play against an ACT-R model with different 
amounts of noise. Previous experiments (Lebiere & West, 
1999; West & Lebiere, 2001) have shown that humans tend 
to beat the ACT-R model when it is set to detect sequential 
dependencies at lag 1, while they tend to tie or lose if the 
model uses the last two moves (lag 2) to predict the next 
move. They also found that human players were much more 
motivated when they were winning, so we chose the lag 1 
version for this experiment. 

The ACT-R model learns sequential dependencies by 
observing the relationship between what happened and what 
came before on each trial. After each round, a record of this 
is stored in the ACT-R declarative memory system. Each 
time the same sequence of events is observed it strengthens 
the activation of that sequence in memory. Thus, activation 
levels reflect the past likelihood of a sequence occurring. 
Noise is added (via the standard ACT-R activation noise 
parameter) when the model attempts to retrieve the 
sequence with the highest activation level in order to predict 
the opponent’s next move. For example, if the opponent’s 
last move was P and the model was set to use information 
from just the previous move (lag 1), the model would 
choose from PR, PS, and PP based on activation levels, then 
use the retrieved sequence to predict the opponent’s next 
move. Thus, if PS had the highest activation this would 
predict that the opponent will play S next, and so the model 
would play R (which beats S). The model would then see 
what the opponent actually did and store a record of it (e.g., 
assume the opponent played S, the model would then store 
PS), which would strengthen the activation of that sequence.  

Previous research has shown that when two players use 
the strategy of detecting sequential dependencies against 
each other, the result is that both players produce a series of 
short-lived sequential dependencies (West & Lebiere, 
2001).  Adding noise to the ACT-R model increases the 
likelihood that a mistake will be made, in that it increases 
the chance that the most active sequence may not be chosen. 
Thus, if the model ‘knows’ the right answer, adding noise 
increases the chance that it will fail to retrieve it. When 
noise causes a failure to retrieve the most active sequence, it 
also introduces noise (i.e., false information) into the signal 
sent to the opponent. This causes the opponent to store false 
information that is not predictive of the player’s sequential 
dependencies (which are embodied in the activation levels), 
and so introduces noise into the opponent’s learning 
process. Thus we tested for two sources of noise: internally 
generated noise in the ACT-R model, and noise in the signal 
provided to the human players. 

For all the experiments, each human subject played 
against the ACT-R model at different noise levels. Each 
game was 150 trials and the order was randomized. To test 
the significance of the noise manipulation we used a least 

squared regression to examine the human scores across 
trials and the ACT-R score across trials. The slope of the 
regression produced an estimate of the win and loss rates for 
each noise level. 

The thick lines in Figure 1 and Figure 2 show the results 
for our first experiment. In Figure 1, we see that as the 
model noise increased from 0 to 0.5, the human win rate 
decreased towards chance.  At the same time, Figure 2 
shows that the model’s win rate (which is the same as the 
human’s loss rate) increased dramatically. Importantly, 
between a noise level of 0.2 and 0.5, increasing the amount 
of noise caused the win rate to significantly increase in a 
direction away from chance (p<0.001).  This is a clear 
example of an SR effect within the model. The model was 
able to predict the human players better as noise was added, 
within this noise range. 

The data also revealed an SR effect within the human 
players.   When the model’s noise was increased from 0.5 to 
0.75, the humans significantly increased their win rate away 
from chance (p<0.001). The increased noise in the ACT-R 
model caused increased noise in the information being 
received by the human players, which in turn caused an 
increase in their ability to predict the model’s performance. 

To replicate the human SR effect, we repeated the 
experiment focusing in on the noise range that produced this 
effect. As the thin line in Figure 1 illustrates, the effect for 
the humans was even stronger in this experiment, possibly 
because we came closer to capturing the peak of it. Again, 
the movements away from chance were significant 
(p<0.001). 

Finally, to be sure of the effect, we re-ran the experiment 
using only experienced players (n = 8) who had been able to 
win in the previous experiment, and focused in on two noise 
levels that would maximize the effect. Again we found a 
significant increase in the human hit rate (p<0.001). In this 
case, probably due to the use of experienced players, every 
subject individually produced the effect.  As far as we 
know, this is the first direct demonstration of SR effects at 
the cognitive level in human subjects.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Human win rate (model loss rate) at different 
levels of model noise for three different experiments.   
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Figure 2: Human loss rate (model win rate) at different 
levels of model noise for three different experiments.   

Modeling Human Performance 
We developed a number of fundamentally different models 
of the human performance versus ACT-R, and tested them 
at various parameter settings. In practice, this approach can 
have a number of different outcomes. First, a model may 
simply not match well with the human data, no matter what 
changes are made to its parameter settings.  This falsifies the 
model.  Second, a model may match well over a wide range 
of plausible parameters settings (or, indeed, over all 
parameter settings).  It is our experience that this happens 
surprisingly often (see Stewart, West, & Coplan, 2004 for 
an example).  Third, a model may match the human data 
well, but only over a particular narrow range of settings. If 
there is no way to explain or justify those parameter settings 
then there is a possibility that the fit is due to capitalizing on 
chance and it is difficult to draw any conclusions about the 
validity of the model. Fourth, a model may inherit 
recommended settings for its parameters that have been 
found to work in a wide range of situations.  In this case, 
there is a prediction that the standard settings should work 
well in the new situation, and as the parameters are moved 
away from that norm, the accuracy should decrease.  

We compared the human data shown in the previous 
section to models falling into five major classes: Game 
Theory, ACT-R, Associative Neural Net, Simple Recursive 
Neural Net, and Q-Learning. To do the comparisons, we ran 
the various models against the same opponent that the 
humans played: an ACT-R lag 1 model with varying 
degrees of noise.  For each level of noise in the opponent, 
we ran 100 simulations of the two agents playing 150 
rounds of PRS. 

For each model class, we created a large number of sub-
models by adjusting the internal parameters.  A variety of 
settings for each parameter were chosen, and the models 
were run for each combination of settings. All models were 
implemented in Python, and the source code is available at 
<http://ccmlab.ca/prs>. 

 
The Game Theory Model 
This is the simplest model, and inspired by the pure game-
theory solution to PRS.  This model chooses its actions 
randomly, without regard to the actions of the opponent.  

This is not expected to be a good match to the human 
results, but is included so as to have a baseline for 
comparison.  It has no parameters. 
 
The ACT-R Model 
This model is as previously described.  It has a single 
parameter (the level of noise), and the general 
recommendation is to set this value to 0.25.  This gives us a 
prediction that the model should be optimal at or near that 
setting.   

We also examined a number of variations on the basic 
ACT-R model.  The original ACT-R PRS model was 
created in ACT-R 4. An important aspect of this model was 
that it used the architecture in a very direct way to detect 
sequential dependencies. ACT-R 5 introduced a change in 
the architecture such that implementing the version 4 model 
in ACT-R 5 could not be achieved in a simple and direct 
way. So we created a version 5 model that used the ACT-R 
5 architecture in the most direct way. The difference 
amounts to this: in version 4 only the chunk describing what 
actually happened is strengthened, while in version 5 the 
chunk describing what the model thought was going to 
happen is also strengthened. This makes sense, as both of 
these chunks play an important role and are focused on. 

In both ACT-R 4 and 5, there is the option to enable 
‘partial matching’, allowing for memory retrieval errors.  
We varied this and found that it caused either no significant 
effect or a deleterious effect. These results are not otherwise 
reported. 

We also tried making use of ACT-R’s ‘optimized 
learning’ system.  This approximation of the learning 
system is used in ACT-R models to save computing time, 
but, similar to Sims and Gray (2004), we found that it 
significantly altered the results. Because there is no 
theoretical story behind the optimized version we only 
report on the results from the full, non-optimized version.  
 
Associative Network 
This model has been used previously to model PRS playing 
(West & Lebiere, 2001).  Here, a network is used whose 
weights form a payoff matrix for performing a given action 
given the previous moves by the opponent.  The weights are 
then modified based on whether or not this choice results in 
a win.  The rewards and punishments were set equal to the 
game payoffs (i.e., +1 for winning and -1 for losing) so the 
only free parameters are the number of rounds of history to 
use (i.e. the 'lag' of the network, in the same sense as the 
ACT-R model), and whether the system treats ties as neutral 
(payoff = 0) or as losses (payoff = -1). West and Lebiere 
(2001), using different experimental manipulations, found 
that a lag 2 network that treated ties as losses most closely 
modeled the human data. 
  
Simple Recursive Neural Network 
An SRNN is a variant of the standard neural network that is 
specifically designed to predict the next element in a 
sequence (Elman, 1990).  It does this by adjusting its 
connection weights via the back-propagation of error 
learning algorithm (Rumelhart et al, 1986), and by having a 
separate set of inputs that are set to the values of its own 
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internal hidden nodes.  This allows the network to learn its 
own representation of past events, and thus to find patterns 
that are not artificially limited to being of a certain length.  
This is in contrast to the models seen thus far which are set 
to be either lag 1 or lag 2. 

The important parameters for an SRNN are the learning 
rate and number of hidden nodes.  We also varied the 
number of times the network was trained on the previously 
seen data.  This allowed the network to adjust more quickly 
to short-term patterns. Payoffs were set in the same way as 
the associative network. 
 
Q-Learning 
Here, we made use of the classic reinforcement-learning 
algorithm as defined in (Watkins, 1989). This is an action-
selection algorithm that makes decisions based on a current 
sensory state (in this case, the last 1 or 2 moves by the 
opponent) and an experientially learned estimation of the 
long-term rewards (as measured by wins and losses) for 
overall strategies.  Importantly, it is capable of learning 
strategies that involve short-term loss for long-term wins. 

However, it has three parameters (the learning rate, the 
future-discount rate, and the exploration rate), and these do 
not have suggested values.  Furthermore, we had the option 
of treating ties in the game as either losses or neutral (as in 
the SRNN and associative networks), and we could set it to 
be either lag 1 or lag 2. This resulted in a large number of 
possible parameter settings. 

Modeling Results 
To establish that a given model matches with the known 
human data, we performed equivalence testing.  This is 
similar to a standard t-test, but the null hypothesis is that the 
two means are different, rather than being equal.  In the 
results that follow, the p-values indicate the probability that 
the model data and the human data have means that differ 
by more than 2.5%. 

For each model, we measured the average win and loss 
rates when that model played against the ACT-R lag 1 
model with the 9 different levels of noise studied in the 
human data.  This gave us 18 p-values per model.  We 
combined the p-values using Fisher’s rule, resulting in a 
single p-value indicating the probability that the model and 
the humans had different mean scores.  This means that a p-
value of less than 0.05 indicates 95% certainty that the 
model is within 2.5% of the human data. 

In total, we investigated 223 separate parameter settings.  
 
The Game Theory Model 
Since it is well known that humans are generally bad at 
performing randomly (e.g. Neuringer, 1986), it was 
expected that this model would act as a benchmark for 
comparison.  As expected, the match was not significant 
(p>0.05).  
  
Q-Learning 
No matter what combinations of parameter settings were 
tried, we were unable to find a Q-Learning model that 
matched the human data, according to our criteria.  All p-

values were above 0.05.  However, the best version of the 
model came close to significance. It was a Lag-2, treating 
ties like losses, with learning rate of 0.5, exploration of 0.1, 
and future discount rate of 0.95, which achieved a p-value 
of 0.052. Most settings were significantly worse. 
 
Associative Network 
This model was also unable to match the human data at the 
0.05 significance level.  Its best result was also with a Lag 
of 2, and treating ties as losses (the same result as found in 
West & Lebiere, 2001). 
  
Simple Recursive Neural Network 
For the SRNNs, we found one model that matched the 
human data, according to our criteria.  With 3 hidden nodes, 
a learning rate of 0.1, and repeating the training 100 times, 
the model achieved a p-value of 0.02.  This gives us a 98% 
certainty that the model plays within 2.5% of the human 
performance.  However, since there were 50 SRNN models 
investigated, the fact that one was found to match with 98% 
confidence would be expected, even if none of the models 
matched.  This means that we should be wary of accepting 
the SRNN as a model of human performance on this task.   
 
ACT-R 
Almost half of the ACT-R models investigated were found 
to be good matches (p < 0.05) to the human data.  This is a 
remarkable result, indicating that we can model the human 
data accurately without parameter tweaking. However, the 
best matches were in the range of 0.25-0.28.  This compares 
favorably to the recommended noise setting of 0.25. 
 

Table 1:  The Top 10 ACT-R Models 
p-value Noise Lag Version 
<0.01 0.28 2 5 
<0.01 0.25 2 5 
<0.05 0.28 2 4 
<0.05 0.28 1 4 
<0.05 0.5 2 4 
<0.05 0.3 2 5 
<0.05 0.3 2 4 
<0.05 0.25 1 4 
<0.05 0.5 1 5 
<0.05 0.7 1 4 

The SR Effects 
All of these results were based on an overall fitting of the 
model data to the human data. As discussed earlier, in the 
human versus ACT-R data there were two SR effects. As 
noise was added, the first effect was a relatively large effect 
benefiting the ACT-R player. The second effect was a 
relatively small effect benefiting the human player. 
Disappointingly, none of the models we tested produced the 
second effect.  

To determine if this effect could be produced with highly 
specific parameter settings, we ran a (1,5)-Evolutionary 
Strategy (a relative of a standard Genetic Algorithm, but 
more suited for parameter optimization) on all the models to 
try to get this effect. However, this failed to get the effect in 
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any of the models, indicating that none of the models is 
ultimately correct. All of the models became swamped by 
the noise in the output of the lag 1 ACT-R model and went 
to chance rates around the point where the human SR effect 
occurred. 

Discussion 
In this study we tested four different classes of cognitive 
models. Qualitatively, all of them (with the right parameter 
settings) were able to match the human win rate for the first 
SR effect to some degree. That is, it was possible to produce 
a model that initially could beat the lag 1 ACT-R model, but 
lost this ability as noise was added. One way to interpret this 
is that the model is able to predict the opponent (the ACT-R 
lag 1) and so wins above chance; however, the opponent 
cannot predict the model's moves and so wins at chance. 
Because one wins above chance and the other at chance, ties 
occur at a level below chance. As noise is added to the 
opponent it becomes more difficult for the model to predict 
it and its win rate and the tie rate converge towards chance. 
In this situation, everything moves towards chance as noise 
is added. This is a standard randomness effect as opposed to 
an SR effect. However, this is not what happened for the 
ACT-R lag 1 model that the human subjects played against. 
The human win rate went down, but the model’s win rate 
(the human loss rate) increased away from chance, 
producing an SR effect (see Figure 2). 

The mechanism for this first SR effect may reside in the 
fact that the interaction between two players using the 
sequential dependencies strategy causes the players to 
generate short lived sequential dependencies (West & 
Lebiere, 2001). If the opponent can detect one of these, it 
can be exploited, but after it disappears the opponent needs 
to let it go and find the next one. Thus unlearning is as 
important as learning. Under these conditions, during the 
unlearning stage it can actually be an advantage not to select 
the most active chunk, because it now represents a wrong 
prediction. Of course it is also a disadvantage not to select 
the most active chunk once a sequential dependency has 
been learned and is still valid. However, if learning is more 
transitory than unlearning, the overall effect would be to 
increase the win rate.  

Another possibility is that the dynamic interaction that 
creates the sequential dependencies is affected. It is 
important to realize that the sequential dependencies are not 
generated by the individual players but through the 
interaction between them. Thus it is possible for changes in 
the behaviour of one player to affect the sequential 
dependencies outputted by the other player. In most cases 
adding noise would increase the chance of choosing the next 
most active chunk. It is theoretically possible that this could 
affect the interaction such that the opponent would output 
stronger sequential dependencies and thus be easier to 
predict. The dynamic interaction between the players forms 
a complex coupled system that is not easily unpacked.  

With this in mind, Figure 3 shows the results for the best 
performing ACT-R model  (version 5, lag 2, noise = .28). It 
models the human win rate well, but the loss rate is much 
flatter than the human loss rate. However, the small initial 

rise away from chance in the loss rate is significant 
(p<0.001), so the model did succeed in replicating the 
effect, although it produced only a muted version of it. The 
problem seems to be that the randomness effect was too 
large and the SR effect was too small. Interestingly the best 
performing models for the Associative Networks and Q-
Learning (not shown) also produced a muted version of the 
first SR effect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Performance of the best ACT-R model (lag 2, 
noise 0.28, version 5) playing against the same opponent the 

human subjects played against. 
 
Overall, when the models were examined across the entire 

data set, only ACT-R and SRNN were able to outperform 
the random game theory model in terms of matching the 
human data. However, SRNN could do this only for a very 
limited set of parameter settings that did not have a 
theoretical justification, and also failed to reproduce the first 
SR effect. Thus it is questionable whether the SRNN model 
should be regarded as better than the Associative Network 
and Q-Learning models. In contrast, ACT-R was able to 
outperform the random model over a wide range of 
parameter settings, worked best for parameter settings at or 
near the value found to work in most ACT-R models, and 
produced the first SR effect.  

The fact that the ACT-R model performed well in this 
study, and also in other studies using different games 
(Lebiere, Wallach, & West 2000; Lebiere, Gray, Salvucci, 
& West, 2003), indicates that it is accurately capturing a 
significant portion of the cognitive functions involved in 
human game playing. However, the ACT-R model we used 
was falsified, along with all the other models, because it 
could not produce the second SR effect. This is part of the 
normal process of developing and refining models. Some 
(e.g., Roberts & Pashler, 2000) have suggested that 
cognitive models are not falsifiable and therefore not 
scientific. Our results show that this is not the case, as the 
current version of the ACT-R model has clearly been 
falsified. However, we hope that with further study we will 
be able to develop an ACT-R model that will produce both 
SR effects and thus shed more light on the phenomenon. 

The second SR effect requires an explanation. It was 
interesting that the second effect occurred as the first effect 
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was ending. We speculate that this marked a transition from 
the first SR effect to a normal randomness effect in the 
ACT-R model. One possibility is that at this point the 
increasing randomness component in the signal from the 
ACT-R model caused the human subjects to be less ‘locked 
in’ when they detected a sequential dependency. We have 
some simulation results indicating that this can produce an 
advantage. Another possibility, as with the first SR effect, is 
that the dynamic interaction that created the sequential 
dependencies was affected, causing the ACT-R model to 
output stronger sequential dependencies. Further analysis 
(beyond the scope of this paper) is required to understand 
the mechanisms for both the first and second SR effects. 

Another interesting question is the extent to which SR 
effects can occur in ACT-R models. The ACT-R lag 1 
model produced a large SR effect when interacting with the 
human players, but only a muted effect when playing 
against the ACT-R lag 2. This raises the question of whether 
a large effect is possible using ACT-R to model both 
players. Figure 4 shows a lag 2 ACT-R model set at 
different noise levels playing against a lag 1 ACT-R model 
fixed at a somewhat low noise level (noise = 0.10). This 
result demonstrates that large SR effects are possible using 
just ACT-R players (this is also demonstrated in Lebiere 
and West, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Performance of an ACT-R lag 2 model against 

the same opponent the humans played against.  Unlike the 
other graphs, here we vary the amount of noise in the lag 2 

model, not in the opponent.     

Conclusions 
As far as we can ascertain, this is the first conclusive 
demonstration that adding noise can produce an SR-like 
effect in the human cognitive system. Although we could 
not model both SR effects found in the human data, three 
out of the five cognitive models we tested did produce the 
first SR effect.  This indicates that SR effects are a property 
of current models of cognition. This means that adding 
noise to a cognitive system should not automatically be 
assumed to increase the randomness of that system’s 
behaviour. This is particularly true for systems involved in 
dynamic interactions with competition and feedback. 
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