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Rapid parallel processing dynamics during hierarchical category decisions 
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Samuel D. McDougle (samuel.mcdougle@yale.edu) 
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Abstract 
Objects in the world are represented at multiple hierarchical 
levels of abstraction. For example, you can identify a four-
legged creature as an animal, or a dog, or specifically as a 
Cocker Spaniel. While there has been extensive work 
examining the relationships between hierarchical category 
levels, it is unclear how such representations interact during 
categorization. That is, do individuals process category levels 
serially or are category levels processed in parallel during 
categorization? Here, we had participants learn categorization 
rules for four categories of novel creatures. We examined 
patterns of errors that participants made in a forced response 
task, where we manipulated the amount of time participants 
had to make responses on a trial-by-trial basis. Our results 
indicate that participants process category levels in parallel, 
rather than serially resolving superordinate levels before 
subordinate levels. Parallel processing of category levels could 
underpin the remarkable flexibility with which we access and 
deploy category information. 

Keywords: hierarchy; concepts & categories; response 
dynamics; representation 

Introduction 
As we look around the world, we are constantly dividing up 
the environment into different concepts and categories and 
using knowledge of these concepts to guide our behavior. For 
example, our knowledge of the concept “pets” versus “wild 
animals” tells you not to flee when you see an animal sitting 
on your couch. Concepts and categories are described as 
hierarchical in that we can represent category information at 
multiple levels of abstraction, from broad, superordinate 
levels (e.g., animals or dogs) to more specific categories (e.g. 
Chihuahuas or English Cocker Spaniels) to individual 
exemplars (e.g., Rover or Ruby; Grill-Spector & Weiner, 
2014; Mahon & Caramazza, 2009; Mervis & Rosch, 1981; 
Rosch et al., 1976).  

Feature-based relational rules connect hierarchical levels 
of category knowledge (Frank et al., 2023; Mervis & Rosch, 
1981; Rosch et al., 1976; Theves et al., 2021). For example, 
if you have identified a dog, you might use ear or tail length 
(i.e., features) to further categorize that dog as a specific 
breed. Importantly, whether certain features are category-
diagnostic for a given subcategory is critically dependent on 
the superordinate category. That is, while ear and tail length 
are important for identifying dog breeds, they are irrelevant 
to identifying different horse breeds. Thus, categorization 
involves processing of information at multiple levels of a 

concept to correctly identify and use category-diagnostic 
features. 

But what are the dynamics of how hierarchical category 
representations are implemented in real time? Previous work 
has highlighted at least two possible dynamics that could 
emerge in a hierarchical categorization task: First, 
hierarchical decision making has long been thought of as a 
sequential, multi-step process. In this conceptualization, 
information is processed from “top to bottom;” processing at 
higher-order (i.e., more abstract) representational levels 
occurs before the processing of lower-order information 
(Braverman et al., 2014; Dux et al., 2006; Pashler, 1984). 
This “bottleneck” model would thus suggest that 
superordinate categorization is necessary for and precedes 
subordinate categorization. In other words, you first 
determine the superordinate category that an object belongs 
to in order to identify the relational rules necessary for 
subcategorization. In the context of our dog example, this 
view suggests that you need to first identify the superordinate 
category of “dog” before identifying the subordinate category 
of “English Cocker Spaniel.” This serial model is supported 
by findings that suggest certain category levels are processed 
more quickly than others (Iamshchinina et al., 2022; Macé et 
al., 2009; Rosch et al., 1976). Still, such work tends to 
compare RTs on blocks of superordinate category judgments 
(e.g. animal or non-animal?) to blocks of subordinate 
category judgments (e.g. dog or non-dog?), rather than 
characterizing the category decision within individual 
decisions. Thus, while this previous work does indicate that 
representational levels might be differentially accessible, it 
does not address whether category levels are processed 
sequentially or in parallel. 

In contrast to the classic serial model, research in the 
domain of cognitive control suggests that some hierarchical 
decisions are made by processing multiple levels in parallel. 
For example, Ranti and colleagues (2015) presented 
participants with a three-level hierarchical task that involved 
using different rules (e.g., color or shape) to determine the 
correct response to various visual stimuli. They analyzed 
participant errors to determine when decisions at each level 
of the task hierarchy were made. Rather than finding 
evidence of a serial, top-down process where participants 
sequentially resolved levels from top to bottom, their results 
indicated that participants were processing task levels in 
parallel. This behavioral finding has recently been supported 
by neural evidence that identified temporally overlapping 
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representations of task information at multiple levels of a 
hierarchical task during task execution (Cellier et al., 2022). 
While these studies are not aimed at category representations, 
there is evidence that hierarchical levels of category 
information are decodable from different regions of cortex 
(Iordan et al., 2015; Zhuang et al., 2023). Further, there is 
evidence that the structure and functional organization of the 
ventral temporal cortex, a large region of the brain involved 
in visual categorization, enables simultaneous activation of 
category information at multiple levels of abstraction (for a 
review: Grill-Spector & Weiner, 2014). Thus, it is possible 
that category levels could be processed in parallel, echoing 
findings in the cognitive control domain. 

In the following, we aim to characterize the decision-
making dynamics of hierarchical category representations in 
behavior. We address our primary question here by 
combining a novel categorization task with a “forced 
response” paradigm that is designed to reveal real-time 
decision-making dynamics (Ghez et al., 1997; Hardwick et 
al., 2019; McDougle & Taylor, 2019, Trach & McDougle, 
2023). Rather than focusing on natural categories where 
individuals might have varying expertise and represent 
diverse category structures, we trained participants on four 
novel categories of mammal-like creatures where category 
membership is determined by hierarchically contingent rules 
(Figure 1A and B; e.g., creatures with pink heads and black 
wings are category B and creatures with pink heads and pink 

wings are category A). We examined reaction times (RTs) 
and error rates during the categorization task to determine 
whether participants were representing the category structure 
hierarchically or with individual rules for each category. We 
then implemented the forced response paradigm and 
analyzed participant errors at different timepoints during 
categorization decisions to characterize decision dynamics on 
individual trials. This was accomplished by examining the 
probability of different types of errors as a function of 
preparation time to assess whether hierarchical category 
levels were processed serially or in parallel.  

  Our results suggest that category information at multiple 
hierarchical levels is rapidly and simultaneously available to 
the mind, even for newly-trained concepts. 

Methods 

Participants 
We recruited 27 Yale undergraduate students (N = 16 female, 
mean age = 19.1; range = 18-20) to participate in this study. 
All participants were recruited through the Introduction to 
Psychology subject pool and received course credit for their 
participation. We planned to exclude participants who did not 
show adequate learning of the category structure. To do this, 
we inserted two exemplars in each category that only 
included category-diagnostic features (i.e., could not be 

Figure 1. A) Depiction of feature values. Each of the four features had two possible values. Category structures were 
counterbalanced across participants. Head and legs were always used as superordinate features for each stimulus set. The 

unchosen feature served as the task-irrelevant feature. Wings and tails were subordinate features in the category structures.  
B) Example category structure with one exemplar per category. Superordinate feature: legs. Task-irrelevant feature: head. 
Subordinate features: wings and tails. Associated keyboard response is depicted under each exemplar. C) Illustration of 

category task. D) Illustration of forced response paradigm, adapted from Trach and McDougle (2023). 
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mistakenly attributed to another category based on the visible 
features) and excluded participants that did not reach 75% 
accuracy on these “easy” trials by the end of the task (N = 4 
exclusions). Thus, we were left with 23 subjects (N = 13 
female; mean age = 19.2; range = 18-20).  

Task Design 
Experimental sessions included 1) task training that 
familiarized participants with the creature categories and the 
basic procedure of the forced response task; 2) category 
training that consisted of two short sessions of practice with 
2 categories at a time; 3) the full category task; and 4) the 
forced response task. 

 
Stimulus design. Our stimuli consisted of 24 novel creatures 
created in “The Creature Garden” app (TinyBop, 2021). Each 
creature could vary in four anatomical features: the head, 
legs, wings, and tail (Figure 1A). Category membership was 
determined by two features in a hierarchically contingent 
manner: a “superordinate” feature (either head or leg) would 
dictate which other feature (wing or tail) was diagnostic of 
category membership (Figure 1B). We will use the term 
“superordinate feature” to refer to the body part that indicated 
which other feature was category-diagnostic and the term 
“subordinate feature” to refer to the other diagnostic body 
part for a given category. For example, Figure 1B shows a 
category structure where head color (black or pink) is the 
superordinate feature. In this arrangement, if the legs are 
green, then wings are the subordinate diagnostic feature and 
if the legs are red, then the tail is the category diagnostic 
feature. In addition to the task-relevant features, the 
remaining, unused feature (here, head) is never used for 
categorization. The inclusion of this feature allows for a 
greater diversity of exemplars. The exact category structure 
(i.e., which features were at the “top” versus “bottom”) was 
counterbalanced across participants. 

Each category consisted of six exemplars: four “full” 
exemplars that had all four features (head, legs, wings, tail) 
and two “core” exemplars that only included the category-
diagnostic features and the task irrelevant feature (e.g., head, 
legs, and wings but no tail). As mentioned earlier, accuracy 
on these core exemplars was used to exclude participants who 
did not sufficiently understand the category structure (see 
Participants). The core exemplar trials were excluded from 
other analyses, although we note that their inclusion does not 
alter the key results.  
 
Category task. Participants selected, with the right hand, the 
H, J, K, or L key to categorize each creature. Each key was 
deterministically associated with one of the four categories. 
We arranged category-key mappings such that categories that 
shared a superordinate feature were never associated with 
adjacent keys to limit the influence of motor clustering on 
responses (Collins & Frank, 2016). 

Participants were introduced to two categories at a time 
during two short practice blocks. Before the block began, 
they saw one exemplar for each category and the researcher 

listed the diagnostic features of each category. Researchers 
used a script to keep instructions consistent. During the task, 
participants saw an exemplar, made a response, and then got 
binary feedback as to whether their response was correct or 
not (Figure 1C). Participants practiced the categories mapped 
to the H and J keys in the first block, and the categories 
mapped to the K and L keys in the second block. This design 
meant that categories practiced together did not share 
superordinate features. Importantly, participants were not 
explicitly told the hierarchical structure of the task and thus 
could have simply learned four separate rules about category 
membership, rather than the latent relational structure. 

After participants completed the two practice blocks, they 
moved on to the main category task with all four categories. 
As in the practice blocks, they would see a stimulus on each 
trial, make a response, and get binary feedback on whether 
their response was correct or not. If they did not make a 
response within 2s, the next trial would begin. Participants 
saw 60 presentations or “iterations” of each category (i.e., 10 
presentations of each exemplar, ~240 trials total) over the 
course of the task. Trial sequences contained all pairwise 
transitions between categories and transitions between 
categories were all equally likely.  

 
Forced response task. We utilized a forced-response task to 
characterize categorization dynamics (Ghez et al., 1997; 
Hardwick et al., 2019; McDougle & Taylor, 2019; Trach & 
McDougle, 2023). In this task, we fixed trial duration by 
playing four beeps (400ms apart) on each trial and instructing 
participants to respond in synchrony with the last beep, even 
if they felt like they had to guess the correct action (Figure 
1D). Participants received feedback on both the accuracy 
(i.e., correct category choice) and timing of their response. If 
participants made their responses within 100ms of the cued 
time, they received positive timing feedback. We 
manipulated preparation time (PT) on a trial-by-trial basis by 
varying the stimulus onset during the trial window. PT varied 
continuously between 100ms and 1.2s across trials. Thus, 
participants had very little time to plan responses on some 
trials and plenty of time on other trials. The aim of this 
paradigm is to force participants to make responses at 
different points during their deliberation process. Thus, we 
can examine the probability of different types of responses as 
a function of PT to characterize decision-making dynamics 
within individual trials. Participants saw approximately 180 
iterations of each stimulus category in the forced response 
phase of the experiment (~30 iterations per exemplar; ~720 
trials total). PT in all analyses and figures includes both the 
planned preparation time (i.e., the programmed latency 
between stimulus onset and response cue) and the latency 
between the response cue and the participant’s response (i.e., 
their response time). 

Results 
Category task results. Participants learned the category 
structure and performed the task well (overall accuracy = 
90.1%, SD = 6.96%). Accuracy over the course of the task is 
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plotted in Figure 2A (note that this does not include practice 
blocks).  

We examined accuracy and RT switch costs to assess 
whether individuals were representing the relational structure 
of the task or if they were simply representing individual 
rules for each category. We expect larger switch costs with 
changes in the superordinate feature (relative to subordinate 
feature changes) if participants are representing the 
hierarchical structure of the task, relative to switch costs at 
the subordinate feature level. Previous work has shown that 
changes at superordinate levels of a hierarchical task tend to 
incur larger switch costs than changes at subordinate levels 
of the task  (e.g., Collins, 2017). In contrast, if participants 
learned individual rules for each category, switch costs 
should be relatively equivalent across category transitions.  

We compared the magnitude of accuracy and RT switch 
costs for superordinate versus subordinate category switches 
(Figure 2B,C): Switch costs were significantly larger for 
trials where the superordinate feature changed (Accuracy: M  
= -2.76%; RT: M = 239ms) as compared to trials where there 
was only a switch at the subordinate task level (Accuracy: M  
= +1.85%; RT: M = 48ms; Accuracy contrast: t(22) = 2.22, p 

= .0373; RT contrast: t(22) = 5.33, p < .001). Thus, we have 
evidence that participants were representing the latent 
structure in the task, rather than learning four individual 
category rules. 

We found further evidence of a hierarchically-structured 
task representation in the errors that participants made during 
the category task (Figure 2D): On trials where participants 
made the wrong response, they were significantly more likely 
to respond with the key that corresponded to the category that 
shared the superordinate feature with the target category 
(“subordinate error”) than they were to make a different error 
(“superordinate error”; t(22) = 2.88, p = .009). If participants 
had learned individual rules for each category, we would not 
expect this difference in error rate. We note that to do this 
analysis, we isolated error trials for each participant and 
calculated the proportion of incorrect responses that were 
superordinate versus subordinate errors; importantly, we 
divided the proportion of subordinate errors by two for this 
analysis as there are two responses that would lead to a 
subordinate error on each trial and only one response that is 
considered a superordinate error. The error analysis provides 
further evidence that participants learned the hierarchical 
structure of the task and mentally represented it as such. 
 
Forced response results. Participants then engaged in a 
forced response task with the same category structure and 
exemplars seen during training. Participants performed this 
difficult task well and frequently met the response deadline 
(average number of well-timed trials = 448; 64% of total 
trials; range = 225-543). Analyses include all trials where PT 
was less than 1.3s, and PT was calculated for each trial as the 
latency between stimulus onset and response. (We note that 
the key results hold when trials where the response deadline 
was not met within the +/- 100ms cushion were excluded.)  

To characterize decision dynamics, we analyzed the 
probability of different types of responses as a function of 
preparation time (PT). Specifically, we asked whether error 
patterns were consistent with a serial decision-making 
process, where superordinate category levels are resolved 
prior to subordinate category levels. If participants make 
category judgements in a serial, top-down manner, 
participants should, at short PTs, make more subordinate 
feature errors (i.e., the superordinate category was correctly 
identified, but not the subordinate feature) than superordinate 
feature errors (i.e., superordinate category was not correctly 
identified), as they putatively have had time to first resolve 
the top level of the category structure but not yet the bottom 
level (i.e., p(subordinate error) > p(superordinate error), 
Figure 3A, top row). In contrast, if the probability of 
superordinate and subordinate errors decrease uniformly 
across PTs, the pattern of results would suggest that category 
judgments are executed as a unified step and task levels can 
be processed in parallel during decision-making (Figure 3A, 
bottom row). 

We thus analyzed the evolving probability of different 
types of errors as a function of preparation time. We first 
coded each response as either a correct response, subordinate 

Figure 2. A) Accuracy by category iteration during the 
Category task. B) Accuracy switch cost (accuracy on switch 

trials – accuracy on repeat trials) for superordinate and 
subordinate feature switches. C) RT switch cost (RT on 
switch trials – RT on repeat trials) for superordinate and 
subordinate feature switches. D) Corrected probability of 

making a superordinate vs subordinate error on error trials. 
Probability of superordinate errors is divided by two here to 

correct for number of responses.  
* p < .05, ** p < .01, ***p < .001 
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error, or superordinate error. Importantly, there is only one 
action that corresponds to a correct response and one action 
that corresponds to a subordinate error on each trial, while 
there are two responses that can considered superordinate 
errors on each trial (Figure 1B). Thus, we coded the two 
different superordinate error responses separately and include 

a line for each in different shades of pink in Figure 3 to retain 
equivalent chance probabilities for each type of error. We 
used a 100ms sliding window to create smoothed curves that 
depict the evolution of response probabilities as a function of 
PT (Figure 3B). Inset bar graphs depict the corrected 
probability of superordinate errors (rather than raw 
probability) to compare with subordinate errors. 

Our results do not show evidence of a serial process where 
superordinate category features are processed before 
subordinate categories (Figure 3B). Instead, superordinate 
and subordinate errors decreased uniformly across the PT 
interval. We conducted t-tests between the probability of 
superordinate and subordinate errors in 400ms bins of short, 
mid, and long PTs: subordinate errors were not more frequent 
than superordinate errors in any bin (t(22) < 1.87, ps > .05). 
At very short PTs (<300ms), participants were at chance 
performance (25%), likely suggesting random guessing. 
After ~300ms of preparation, participants began to make 
more correct responses and the probability of both error types 
decreased at the same rate. At the longest PTs, accuracy was 
comparable to performance in the prior learning task where 
there was no response deadline, suggesting that the additional 
load of having to precisely time each response did not 
significantly affect participant performance. In contrast to 
serial models of categorical decision making that predict 
superordinate errors to decline more quickly than subordinate 
errors, our results suggest that hierarchical levels can be 
processed in parallel during real-time categorization 
decisions.  

Discussion 
Concepts and categories are essential to understanding the 
world around us and guiding behavior. The hierarchical 
structure of categories allows for the storage and use of 
category information at multiple levels of abstraction. Here, 
we investigated how hierarchically-structured, newly-learned 
category representations are implemented during decision-
making in real time. Specifically, we asked whether 
individuals serially use information at different hierarchical 
levels to make categorical decisions or whether hierarchical 
levels are processed in parallel. We addressed our questions 
of interest by using a “forced response” psychophysical 
method to characterize categorization decisions (Hardwick et 
al., 2019; McDougle & Taylor, 2019). We used variation in 
accuracy and RT and the types of errors that participants 
committed during de novo category learning to establish that 
participants were mentally representing the latent 
hierarchical structure in the task. We found evidence across 
all metrics that individuals were indeed representing the 
relational structure of the task (Figure 2), rather than learning 
individual rules for each category. Next, we used a forced 
response paradigm to characterize within-trial decision 
making dynamics. Our results in this task support the 
hypothesis that information across hierarchical levels can be 
processed in parallel, rather than sequentially from 
superordinate to subordinate (Figure 3). That is, we did not 
find evidence that superordinate category features ere 

Figure 3. A) Illustration of probability of correct trials 
and superordinate and subordinate errors at short, 

intermediate, and long PT. Top row depicts expected 
behavior if category levels are processed serially. 
Bottom row depicts expected behavior if category 

levels are processed in parallel. Note that probability 
of superordinate errors is corrected (by dividing in 

two) to equate chance probabilities between 
superordinate and subordinate errors.  B) Probability 

of response types as a function of PT. Inset bar graphs 
summarize probability of superordinate errors, 

subordinate errors, and correct trials in 400ms PT bins. 
Error shading represents 1 SEM.  
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processed before subordinate category features, despite being 
relevant for determining feature-based categorization rules. 

While this parallel processing dynamic might be surprising 
since the superordinate category determines the subordinate 
categorization rules, it closely resembles findings in the 
cognitive control domain (Cellier et al., 2022; Ranti et al., 
2015). At the neural level, researchers speculate that parallel 
processing of task levels during cognitive control tasks is 
enabled by a specialized gradient of “abstraction” in the 
prefrontal cortex (PFC; Badre, 2008; Badre & D’Esposito, 
2009; Badre & Nee, 2018). Theories concerning this “rostro-
caudal abstraction gradient” in the PFC posit that the PFC is 
organized such that increasingly rostral areas of cortex 
process increasingly abstract information (Badre & Nee, 
2018). For example, caudal regions of the PFC that are closer 
to motor hubs are involved in processing lower-order 
sensory-motor information, while more rostral regions might 
represent more abstract plans. Thus, information at different 
levels of abstraction can be simultaneously represented by 
adjacent areas of the cortex, rather than sequentially 
traversing each level. Similarly, there is evidence that 
hierarchical levels of categories are represented in different 
areas along the ventral visual pathway (Iordan et al., 2015) or 
in different regions of the brain (Zhuang et al., 2023). This 
organization could enable the processing of category levels 
simultaneously, a potentially adaptive strategy to allow 
flexible use of multiple levels of abstraction (Grill-Spector & 
Weiner, 2014).  

The design of the forced response task also allows for novel 
computational modeling to further describe cognitive 
dynamics during the decision-making interval (Hardwick et 
al., 2019; Ranti et al., 2015) For example, Ranti and 
colleagues (2015) used a simple hierarchical model to 
formalize response dynamics in their three-level cognitive 
control task. The model used forced response data to estimate 
the time it took to reach a decision at each level of the 
hierarchical task during response selection. In the current 
study, we would expect a similar model to estimate that 
superordinate and subordinate task levels are resolved in 
parallel during categorization. This remains to be tested.  

One limitation here is that the category structure was 
extremely simple and participants quickly achieved near-
perfect accuracy in categorization after only a brief 
instruction. Much work has shown that expertise affects 
categorization performance (Johnson & Mervis, 1997; Seger 
& Miller, 2010), so it is unclear if we would see different 
results here if we used a harder task. It is possible that a serial 
processing strategy would be apparent earlier in learning or 
with a more complex category structure, pushing individuals 
to serially attend to relevant stimulus features to make 
judgments. To further this investigate this possibility, we are 
conducting a variant of this task where participants do not 
receive instruction on the categorization rules, instead using 
only trial-by-trial feedback to discover the category structure. 
This task is more difficult for participants; however, our 
preliminary results corroborate the findings presented here: 
participants appear to process hierarchical levels in parallel. 

Future work could incorporate learning of much more 
complex category structure to study more fully the dynamics 
of multi-level categorization decisions.  

We opted to use novel categories to ensure de novo 
learning from all participants and to tightly control the 
category structure. However, this approach leaves some 
features of natural categories uninvestigated. In natural 
categories, hierarchical levels of categories are commonly 
referred to as superordinate, basic, and subordinate. Our 
novel categories do not have any “basic” category level, and 
there is no clear “prototypical” version of our stimuli. Mental 
representations of basic versus subordinate or superordinate 
category levels have received concentrated attention in the 
broader study of the psychology of concepts and categories. 
Such work often highlights a privileged role for basic 
category information: Basic level categories are accessed 
faster than sub- or superordinate categories (e.g., Macé et al., 
2009) and there is evidence that neural representations of 
basic categories are evident earlier than representations at 
other levels in neural signals (in macaques: Dehaqani et al., 
2016; preprint of work with humans: Greene & Rohan, 2022). 
While we did not find evidence of serial processing of task 
levels in our novel category structure, implementing our 
methods in a categorization task with natural categories that 
have a basic level as well could reveal how individuals 
implement structured category representation to move from 
basic levels to more specific or broader categories.  

Overall, this work marks a novel psychophysical approach 
to understanding the dynamics of categorization and action 
selection. Our results suggest that processing across category 
levels likely occurs in parallel, despite participants 
representing a hierarchical category structure. Ongoing work 
with computational models or neural recordings can further 
characterize this fundamental cognitive process. Future 
investigations could also utilize the methods presented here 
to understand natural category representations and dissect 
real-time dynamics of the basic category biases that are 
widely documented in the field. 
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