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Abstract

Nonrelativistic Naturalness in Aristotelian Quantum Field Theories

by

Ziqi Yan

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Petr Hořava, Chair

Some of the most fundamental questions in theoretical physics can be formulated as puz-
zles of naturalness, such as the cosmological constant problem and the Higgs mass hierarchy
problem. In condensed matter physics, the interpretation of the linear scaling of resistiv-
ity with temperature in the strange metal phase of high-temperature superconductors also
arises as a naturalness puzzle. In this thesis, we explore the landscape of naturalness in
nonrelativistic quantum field theories that exhibit anisotropic scaling in space and time.
Such theories are referred to as the “Aristotelian quantum field theories.” In the simple case
with scalars, we find that the constant shift symmetry is extended to a shift by a polyno-
mial in spatial coordinates, which protects the technical naturalness of modes with a higher
order dispersion ω ∼ kz (z is the dynamical critical exponent). This discovery leads to a
generalization of the relativistic Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem to
multicritical cases in lower critical dimension. By breaking the polynomial shift symmetries
in a hierarchy, we find novel cascading phenomena with large natural hierarchies between the
scales at which the values of z change, leading to an evasion of the “no-go” consequences of
the relativistic CHMW theorem. Based on these formal developments, we propose potential
applications both to the Higgs mass hierarchy problem and to the problem of linear resis-
tivity in strange metals. Finally, encouraged by these nonrelativistic surprises that already
arise in simple systems with scalars, we move on to more complicated systems with gauge
symmetries. We study the quantization of Hořava gravity in 2 + 1 dimensions and compute
the anomalous dimension of the cosmological constant at one loop. However, nonrelativistic
naturalness in gravity is still largely unexplored. Whether or not such nonrelativsitic twists
have any implications for important naturalness puzzles, such as the cosmological constant
problem, remains as an intriguing question.
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Chapter 1

Introduction

1.1 Principle of Technical Naturalness

The concept of naturalness has been a guiding principle in modern theoretical physics for
the past decades, which not only is behind many successes but also leads to some of the
most pressing fundamental questions. Perhaps the most famous naturalness problem is the
cosmological constant problem, where the value of the observed cosmological constant is many
orders much smaller than any known energy scales. In particle physics, the discovery of the
Higgs boson in 2012 [1, 2] led in a renewed focus the naturalness at the TeV scale: The
observed Higgs mass is again very small compared to any high particle-physics scale, be
it the quantum gravity scale, or the scale of grand unification, or some other scale of new
physics. This is famously known as the Higgs mass hierarchy problem. If one considers slow-
roll inflation in cosmology, another naturalness problem emerges as the eta problem: The
effective inflaton mass is required to be extremely small compared to the Hubble parameter
in a successful slow-roll scenario.

Remarkably, all these three fundamental problems, the cosmological constant problem,
the Higgs mass hierarchy problem and the eta problem in slow-roll inflation, are intimately
related to gravity. In principle, a quantum theory of gravity is responsible for an ultimate
answer. In the framework of effective field theory (EFT), however, these naturalness puzzles
can be phrased as questions about naturalness of various small parameters in quantum
field theories (QFTs) of scalars, insensitive of what the short-distance theories are. In fact,
important naturalness puzzles not only arise in particle physics and cosmology, but also exist
in condensed matter systems where the microscopic theory is defined on a discrete lattice.
For example, in high-Tc superconductors, the resistivity develops a linear dependence in
temperature in the strange metallic phase above the critical temperature Tc. This linear
dependence persists over a large range of scales by condensed matter standards and is stable
over a fairly large range of dopings. This surprisingly robust behavior begs for an explanation
in terms of a mechanism naturally protecting the observed hierarchy of scales [3].

The precise notion of naturalness is formulated by ’t Hooft in 1979, known as the principle
of technical naturalness [4]. Following the time-honored physical principle of causality and
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the hierarchy of energy scales from the microscopic to macroscopic phenomena, ’t Hooft
conjectured the following dogma:

— at any energy scale µ, a physical parameter or set of physical parameters αi(µ) is
allowed to be very small only if the replacement αi(µ) = 0 would increase the symmetry
of the system.

The essence of the naturalness problem of a light scalar with nonderivative self-interactions
(such as the Higgs) can be succinctly illustrated by considering a single relativistic scalar
Φ(xµ) in 3 + 1 dimensions with action

S =
1

2

∫
d4x

(
∂µΦ∂µΦ−m2Φ2 − 1

4!
λΦ4

)
, (1.1)

where m2 cannot be small independently of the value of λ: Both nonderivative terms in (1.1)
break the same, constant shift symmetry Φ → Φ + δΦ with δΦ = b, and therefore must be
of the same order of smallness (measured by ε� 1) relative to the naturalness scale M , i.e.,

m2 ∼ εM2, λ ∼ ε. (1.2)

This gives the following simple but important relation,

M ∼ m√
λ
, (1.3)

which then implies the naturalness problem: m cannot be made arbitrarily smaller than M
without λ being made correspondingly small to assure that the naturalness condition (1.3)
hold. At typical values of λ not much smaller than 1, m will be of the order of the naturalness
scale M , ruining the hierarchy.

It is conceivable that some puzzles of naturalness may only have environmental explana-
tions, based on the landscape of many vacua in the multiverse. However, before we give up
naturalness as our guiding principle, it is important to investigate more systematically the
landscape of naturalness : To map out the various quantum systems and scenarios in which
technical naturalness does hold, identifying possible surprises and new pieces of the puzzle
that might help restore the power of naturalness in fundamental physics.

1.2 The Aristotelian Spacetime

One area in which naturalness has not yet been fully explored is nonrelativistic gravity the-
ory [5, 6]. This approach to quantum gravity has attracted a lot of attention in recent years,
largely because of its improved quantum behavior at short distances, novel phenomenology
at long distances [7], its connection to the nonperturbative Causal Dynamical Triangulations
approach to quantum gravity [8, 9, 10], as well as for its applications to holography and the
AdS/CFT correspondence of nonrelativistic systems [11, 12, 13]. This area of research in
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quantum gravity is still developing rapidly, with new surprises already encountered and other
ones presumably still awaiting discovery. Mapping out the quantum structure of nonrela-
tivistic gravity theories, and in particular investigating the role of naturalness, represents an
intriguing and largely outstanding challenge.

Before embarking on a systematic study of the quantum properties of nonrelativistic
gravity, one can probe some of the new conceptual features of nonrelativistic quantum field
theories in simpler systems, without gauge symmetry, dynamical gravity and fluctuating
spacetime geometry. We start with one of the ubiquitous themes of modern physics: The
phenomenon of spontaneous symmetry breaking, in the simplest case of global, continous
internal symmetries. According to Goldstone’s theorem, spontaneous breaking of such sym-
metries implies the existence of a gapless Nambu-Goldstone (NG) mode in the system. For
Lorentz invariant systems, the relativistic version of Goldstone’s theorem is stronger, and we
know more: There is a one-to-one correspondence between broken symmetry generators and
the NG modes, whose gaplessness implies that they all share the same dispersion relation
ω = ck. On the other hand, nonrelativistic systems are phenomenologically known to exhibit
a more complex pattern: Sometimes, the number of NG modes is smaller than the number of
broken symmetry generators, and sometimes they disperse quadratically instead of linearly.
This rich phenomenology opens up the question of a full classification of possible NG modes.
A natural and elegant approach to this problem has been pursued in [14]: In order to classify
NG modes, one classifies the low-energy EFTs available to control their dynamics.

For clarity and simplicity, we focus on systems on the flat spacetime with Aristotelian
spacetime1 symmetries. The terminology “Aristotelian spacetime” is borrowed from [16].
We define this spacetime to be MD+1 = RD+1 with a preferred foliation F by fixed spatial
slices RD, and equipped with a flat metric. Such a spacetime with the preferred foliation F
would for example appear as a ground-state solution of nonrelativistic gravity with a zero
cosmological constant [6] and gauge symmetry given by the group of foliation-preserving
spacetime diffeomorphisms, Diff(MD+1,F) (or a nonrelativistic extension thereof [17]). It is
useful to parametrize M by coordinates (t,x = {xi, i = 1, . . . D}), such that the leaves of F
are the leaves of constant t, and the metric has the canonical form

gij(t,x) = δij, N(t,x) = 1, Ni(t,x) = 0. (1.4)

Here gij is the spatial metric on the leaves of F , N is the lapse function, and Ni the shift
vector.

We shall be interested in the QFTs on MD+1 that respect the group of symmetries of
the Aristotelian spacetime. It is natural to define the group of isometries of MD+1 to be
that subgroup of the foliation-preserving diffeomorphism group of MD+1 that respects the
constant metric on MD+1. This group is a direct product of the spatial Euclidean group

1It would be natural to refer to M with the flat metric (1.4) as the “Lifshitz spacetime”. Unfortunately,
this term already has another widely accepted meaning in the holography literature, where it denotes the
curved spacetime geometry in one dimension higher, whose isometries realize the Aristotelian symmetries
(1.5) plus the Lifshitz scaling symmetry (1.6) for some fixed value of z [15].
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parametrized by (Θi
j,Θ

i) and the one-dimensional non-compact group of time translations
parametrized by Θ; it acts on MD+1 via

x̃i = Θi
jx
j + Θi, t̃ = t+ Θ. (1.5)

The connected component of the group of isometries of our spacetime M with the flat
metric (1.4) is generated by (1.5), and we will refer to it as the “Aristotelian symmetry”
group. The full isometry group of this spacetime has four disconnected components, which
can be obtained by combining the Aristotelian symmetry group generated by (1.5) with
two discrete symmetries: The time-reversal symmetry T , and a discrete symmetry P that
reverses the orientation of space. We shall be interested in systems that are invariant under
the Aristotelian symmetry group. Note that this mandatory Aristotelian symmetry does not
contain either the discrete symmetries T and P .

At renormalization group (RG) fixed points, the Aristotelian spacetime symmetries (1.5)
are further extended by a one-parameter group of anisotropic scaling transformations

x̃i = bxi, t̃ = bzt, (1.6)

with b ∈ R+ a real non-zero constant scaling factor. The dynamical critical exponent z is an
important characteristic of the fixed point.

1.3 Outline of the Thesis

In Chapter 2 (published in [18, 19]), We investigate spontaneous global symmetry breaking
in the Aristotelian spacetime, and study technical naturalness of Nambu-Goldstone modes
whose dispersion relation exhibits a hierarchy of multicritical phenomena with Lifshitz scaling
and dynamical exponents z > 1. The mechanism is protected by an enhanced “polynomial
shift” symmetry in the free-field limit. (See [20] for a brief review.)

An immediate potential application of such NG modes of higher-order dispersion relations
is found in condensed matter theory. In Chapter 3 (to appear in [21]), we consider the case
in which the multicritical NG bosons play the role of acoustic phonons, associated with
spontaneous breaking of spatial Euclidean symmetries. We couple the multicritical acoustic
phonons to a Fermi liquid of nonrelativistic electrons, and study the physical properies of such
“multicritical metals” in the simplest, isotropic case. Both thermodynamic and transport
properties depend on the degree of multicriticality of the phonon sector and the dimension
of space. We calculate the resistivity of the metal as a function of temperature T , at the
leading order in the Bloch-Boltzmann transport theory. In particular, we point out that
the system of z = 3 phonons in 3 + 1 dimensions (which is their lower critical dimension),
minimally coupled to the Fermi surface, gives resistivity linear in T over a naturally large
hierarchy of scales.

Generic interactions break the polynomial shift symmetry explicitly to the constant shift.
In the considered examples, both the Φ4 self-interaction in (1.1) and the interaction between
multicritical phonons and electrons in Chapter 3 break the polynomial shift symmetries to no



CHAPTER 1. INTRODUCTION 5

shift symmetry at all. It is thus natural to ask: Given a Gaussian fixed point with polynomial
shift symmetry of degree P , what are the lowest-dimension operators that preserve this
symmetry, and deform the theory into a self-interacting scalar field theory with the shift
symmetry of degree P? To answer this (essentially cohomological) question, in Chapter
4 (published in [19]), we develop a new graph-theoretical technique, and use it to prove
several classification theorems. First, in the special case of P = 1 (essentially equivalent
to Galileons), we reproduce the known Galileon N -point invariants, and find their novel
interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N
vertices. Then we extend the classification to P > 1 and find a whole host of new invariants,
including those that represent the most relevant (or least irrelevant) deformations of the
corresponding Gaussian fixed points, and we study their uniqueness.

In Chapter 5 (published in [22]), we continue the study of the quantum properties of
Aristotelian QFTs with polynomial shift symmetries. We investigate the role of infrared di-
vergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner
(CHMW) theorem. We find novel cascading phenomena with large hierarchies between the
scales at which the value of n changes, leading to an evasion of the “no-go” consequences of
the relativistic CHMW theorem. We present a series of examples to illustrate the cascading
phenomena.

In Chapter 6 (to appear in [23]), we focus on the rich quantum properties of a toy
model introduced in Chapter 5: A renormalizable nonrelativistic scalar field theory in 3 + 1
spacetime dimensions with Aristotelian spacetime symmetries, and with linear shift sym-
metries. We show that its unique self-interaction coupling satisfies a non-renormalization
theorem to all loop orders. However, despite this non-renormalization of the coupling, the
self-interaction strength does depend on scales, as a result of the nontrivial renormalization
of the two-point function. We show that in contrast to the relativistic case, there are several
natural perspectives on the Callan-Symanzik equation and the process of the renormalization
group flow, associated with the observer’s freedom to choose how to relate time to space.

Finally, in Chapter 7 (published in [24]), using the simple toy model studied in Chapter
5 and Chapter 6 as a short-distance completion of the relativisitic EFT defined by (1.1),
we argue that this high-energy cross-over to nonrelativistic behavior naturally leads to light
scalars, and thus represents a useful ingredient for technically natural resolutions of scalar
mass hierarchies, perhaps even the Higgs mass hierarchy puzzle.

In Chapter 8 (to appear in [25]), we use the techniques and intuitions established in
the previous chapters about the Aristotelian QFTs to study more complicated systems. We
examine the renormalization group behavior in the nonlinear sigma model around a z = 2
anisotropic Lifshitz fixed point in 2 + 1 dimensions, focusing on the simple case of the SN−1

target manifold with full O(N) symmetry. We calculate the one-loop beta functions of all
coupling constants in this theory, and study its renormalization group structure. In the large
N limit, the beta functions to all loops are obtained by summing over cactus diagrams.

Up to now, we only considered Aristotelian QFTs of scalar fields, and intriguing surprises
about nonrelativistic naturalness already arise in these simple models. It remains a challeng-
ing question to explore the nonrelativistic naturalness in systems with gauge symmetries,
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particularly in gravity. In Chapter 9 (published in [26]), we study quantum corrections to
projectable Hořava gravity with z = 2 scaling in 2 + 1 dimensions. Using the background
field method, we utilize a non-singular gauge to compute the anomalous dimension of the
cosmological constant at one loop, in a normalization adapted to the spatial curvature term.

In Chapter 10 we conclude the thesis.
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Chapter 2

Multicritical Symmetry Breaking

Gapless Nambu-Goldstone modes [27, 28, 29, 30] appear prominently across an impres-
sive array of physical phenomena, both relativistic and nonrelativistic. (For reviews, see
e.g. [31, 32, 33, 34, 35].) They are a robust consequence of spontaneous symmetry break-
ing. Moreover, when further combined with gauge symmetries, they lead to the Higgs phe-
nomenon, responsible for controlling the origin of elementary particle masses.

The NG modes are controlled by Goldstone’s theorem: A spontaneously broken generator
of a continuous internal rigid symmetry implies the existence of a gapless mode. With
Lorentz invariance, the theorem implies a one-to-one correspondence between the generators
of broken symmetry and massless NG modes, but in the nonrelativistic setting, it leaves
questions [36, 37, 38]: What is the number of independent NG modes? What are their
low-energy dispersion relations?

In this chapter, we study the general classification of NG modes, and their naturalness, in
nonrelativistic theories with Aristotelian spacetime symmetries. Our study illustrates that in
Aristotelian QFTs, not only the short-distance behavior but also the concept of naturalness
acquires interesting new features.

2.1 Effective Field Theory and Goldstone’s Theorem

In [39, 40], elegant arguments based on effective field theory have been used to clarify the
consequences of Goldstone’s theorem in the absence of Lorentz invariance. The main idea
is to classify possible NG modes by classifying the EFTs available for describing their low-
energy dynamics. We start with the NG field components πA, A = 1, . . . , n, which serve as
coordinates on the space of possible vacua M = G/H in a system with symmetries broken
spontaneously from G to H ⊂ G. Our spacetime will be the flat RD+1 with coordinates
t, xi, i = 1, . . . , D, and we impose the Aristotelian spacetime symmetry consisting of all
Euclidean isometries of the spatial RD and the time translations. At the fixed points of the
renormalization group, this symmetry is enhanced by anisotropic scaling symmetry xi → bxi,
t→ bzt, with the dynamical exponent z characterizing the degree of anisotropy at the fixed
point.
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Arguments of [39, 40] suggest that the generic low-energy EFT action for the NG fields
πA with these symmetries is

Seff =
1

2

∫
dt dDx

{
ΩA(π)π̇A + gAB(π)π̇Aπ̇B

− hAB(π)∂iπ
A∂iπ

B + . . .
}
, (2.1)

where ΩA, gAB and hAB are backgrounds transforming appropriately under G, and “. . .”
stands for higher-order derivative terms. The term linear in π̇A is only possible because of
the special role of time. Lorentz invariance would require ΩA = 0 and gAB = hAB, thus
reproducing the standard relativistic result: One massless, linearly dispersing NG mode per
each broken symmetry generator. In the nonrelativistic case, turning on ΩA leads to two
types of NG bosons [39, 40]: First, those field components that get their canonical momentum
from ΩA form canonical pairs; each pair corresponds to a pair of broken generators, and gives
one Type-B NG mode with a quadratic dispersion. The remaining, Type-A modes then get
their canonical momenta from the second term in (2.1), and behave as in the relativistic
case, with z = 1. In both cases, higher values of z can arise if hAB becomes accidentally
degenerate [39].

We will show that in Aristotelian theories, hAB can be small naturally, without fine
tuning. When that happens, the low-energy behavior of the NG modes will be determined
by the next term, of higher order in ∂i. The argument can be iterated: When the terms of
order ∂4 are also small, terms with z = 3 will step in, etc. This results in a hierarchy of
multicritical Type-A and Type-B NG modes with increasing values of z. Compared to the
generic NG modes described by (2.1), these multicritical NG modes are anomalously slow
at low energies.

2.2 Type A and B Nambu-Goldstone Bosons

We are interested in the patterns of spontaneous symmetry breaking of global continuous
internal symmetries in the flat spacetime with the Aristotelian symmetries, as defined in the
introduction. Our analysis gives an example of phenomena that are novel to Goldstone’s
theorem in nonrelativistic settings, and can in principle be generalized to nonrelativistic
systems with even less symmetry.

An elegant strategy has been proposed in [14]: In order to classify Nambu-Goldstone
modes, we can classify the corresponding EFTs available to describe their low-energy dy-
namics. In this EFT approach, we organize the terms in the effective action by their increas-
ing dimension. Such dimensions are defined close enough to the infrared (IR) fixed point.
However, until we identify the infrared fixed point, we don’t a priori know the value of the
dynamical critical exponent, and hence the relative dimension of the time and space deriva-
tives – it is then natural to count the time derivatives and spatial derivatives separately.
Consider first the “potential terms” in the action, i.e., terms with no time derivatives. The
general statement of Goldstone’s theorem implies that non-derivative terms will be absent,



CHAPTER 2. MULTICRITICAL SYMMETRY BREAKING 9

and the spatial rotational symmetry further implies that (for D > 1) all derivatives will
appear in pairs contracted with the flat spatial metric. Hence, we can write the general
“potential term” in the action as

Seff, V =

∫
dt dDx

{
1

2
gIJ(π)∂iπ

I∂iπ
J + . . .

}
(2.2)

where gIJ(π) is the most general metric on the vacuum manifold which is compatible with all
the global symmetries, and . . . stand for all the terms of higher order in spatial derivatives.

If the system is also invariant under the primitive version T of time reversal, defined as
the transformation that acts trivially on fields,

T :

{
t → −t,
πI → πI ,

(2.3)

the time derivatives will similarly have to appear in pairs, and the kinetic term will be given
by

Seff,K =

∫
dt dDx

{
1

2
hIJ(π)π̇I π̇J + . . .

}
, (2.4)

where again hIJ is a general metric on the vacuum manifold compatible with all symmetries,
but not necessarily equal to the gIJ that appeared in (2.2); and . . . are higher-derivative
terms.

However, invariance under T is not mandated by the Aristotelian symmetry. If it is
absent, the Aristotelian symmetries allow a new, more relevant kinetic term,

S̃eff,K =

∫
dt dDx

{
ΩI(π)π̇I + . . .

}
, (2.5)

assuming one can define the suitable object ΩI(π) on the vacuum manifold so that all the
symmetry requirements are satisfied, and ΩI(π)π̇I is not a total derivative. Since ΩI(π)
plays the role of the canonical momentum conjugate to πI , if such Ω-terms are present in
the action, they induce a natural canonical pairing on an even-dimensional subset of the
coordinates on the vacuum manifold.

In specific dimensions, new terms in the effective action that are odd under spatial parity
P may exist. For example, in D = 2 spatial dimensions, we can add new terms to the
“potential” part of the action, of the form

S̃eff, V =

∫
dt dDx

{
1

2
ΩIJ(π) εij ∂iπ

I∂jπ
J + . . .

}
, (2.6)

where ΩIJ is any two-form on the vacuum manifold that respects all the symmetries.1 In
the interest of simplicity, we wish to forbid such terms, and will do so by imposing the P

1For example, if ΩI(π) suitable for (2.5) exist, one can take ΩIJ = ∂[IΩJ].
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invariance of the action, focusing on the symmetry breaking patterns that respect spatial
parity. This condition can of course be easily relaxed, without changing our conclusions
significantly.

This structure of low-energy effective theories suggests the following classification of NG
modes, into two general types:

• Type A: One NG mode per broken symmetry generator (not paired by ΩI). The
low-energy dispersion relation is linear, ω ∝ k.

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).
The low-energy dispersion relation is quadratic, ω ∝ k2.

Based on the intuition developed in the context of relativistic QFT, one might be tempted to
conclude that everything else would be fine tuning, as quantum corrections would be likely
to generate large terms of the form (2.2) in the effective action if we attempted to tune them
to zero.

2.3 The z = 2 Linear and Nonlinear O(N) Sigma Models

The naive intuition about fine-tuning summarized in the previous section is, however, incor-
rect. As we will illustrate in a series of examples by explicit calculations of loop corrections,
it turns out that the leading spatial-derivative term in (2.2) can be naturally small (or even
zero).

We will demonstrate our results by focusing on a simple but representative example of
symmetry breaking, the O(N) nonlinear sigma model (NLSM) with target space SN−1. (For
some background on Aristotelian scalar theories, see [5, 41, 42, 43, 44, 45].) Until stated
otherwise, we will also impose time reversal invariance, to forbid ΩA. The action of the
O(N)-invariant Aristotelian NLSM with a z = 2 scaling [43] is then

SNLSM =
1

2G2

∫
dtdDx

{
gABπ̇

Aπ̇B − e2gAB∆πA∆πB

− λ1

(
gAB∂iπ

A∂jπ
B
) (
gCD∂iπ

C∂jπ
D
)

− λ2

(
gAB∂iπ

A∂iπ
B
)2 − c2gAB∂iπ

A∂iπ
B

}
. (2.7)

Here
∆πA ≡ ∂i∂iπ

A + ΓABC∂iπ
B∂iπ

C , (2.8)

and gAB is the round metric on the unit SN−1, and ΓABC is its connection. Later we will use

gAB = δAB +
πAπB

1− δCDπCπD
. (2.9)

The Gaussian z = 2 RG fixed point is defined by the first two terms in (2.7) as G→ 0.
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To specify the canonical scaling dimensions at the z = 2 Gaussian fixed point, two natural
conventions suggest themselves. First, one can measure the scaling dimensions in the units
of spatial momentum – this is perhaps more prevalent in the literature, as it leads to simple
integer dimensions of most objects of interest. However, we find that in Aristotelian theories,
it is more appropriate to specify the scaling dimensions in the units of energy. It eases the
comparison when more than one Gaussian fixed points with integer z are involved. We define
scaling dimensions throughout in the units of energy,

[∂t] ≡ 1, [∂i] ≡
1

2
. (2.10)

Due to its geometric origin, the NG field πA is dimensionless,

[πA] = 0. (2.11)

The first four terms in SNLSM are all of the same dimension, so

[e2] = [λ1] = [λ2] = 0. (2.12)

We can set e = 1 by the rescaling of space and time, and will do so throughout this chapter.
All interactions are controlled by the coupling constant G, whose dimension is

[G] =
2−D

4
. (2.13)

Thus, the critical spacetime dimension of the system, at which the first four terms in (2.7)
are classically marginal, is equal to 2 + 1. The remaining term has a coupling of dimension

[c2] = 1, (2.14)

and represents a relevant deformation away from z = 2, even in the non-interacting limit
G → 0. Since c determines the speed of the NG modes in the k → 0 limit, we refer to
this term as the “speed term” for short. Given the symmetries, this relevant deformation is
unique.

We are mainly interested in 3 + 1 dimensions, so we set D = 3 from now on. We will
defer the discussion on the 3 + 1 dimensions to Chapter 8. Since this is above the critical
dimension of 2 + 1 and [G] is negative, the theory described by (2.7) must be viewed as an
EFT: SNLSM gives the first few (most relevant) terms out of an infinite sequence of operators
of growing dimension, compatible with all the symmetries. It is best to think of this EFT
as descending from some ultraviolet (UV) completion. For example, we can engineer this
effective NLSM by starting with the z = 2 linear sigma model (LSM) of the unconstrained
O(N) vector φI , I = 1, . . . , N , and action

SLSM =
1

2

∫
dtd3x

{
φ̇I φ̇I − e2∂2φI∂2φI − c2∂iφ

I∂iφ
I −

[
e1φ

IφI + e2(φIφI)2
]
∂iφ

J∂iφ
J
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− f1(φI∂iφ
I)(φJ∂iφ

J)− f2(φIφI)(φJ∂iφ
J)(φK∂iφ

K)

−m4φIφI − λ

2
(φIφI)2 −

5∑
s=3

gs
s!

(φIφI)s
}
. (2.15)

The first two terms define the Gaussian z = 2 fixed point. We again set e = 1 by rescaling
space and time. At this fixed point, the field is of dimension [φ] = 1/4, and the dimensions
of the couplings – in the order from the marginal to the more relevant – are:

[e] = [g5] = [e2] = [f2] = 0, [g4] = [e1] = [f1] =
1

2
, [g3] = [c2] = 1,

[λ] =
3

2
, [m4] = 2. (2.16)

This theory can be studied in the unbroken phase, the broken phase with a spatially
uniform condensate (which we take to lie along the N -th component, 〈φN〉 = v), or in a
spatially modulated phase which also breaks spontaneously some of the spacetime symmetry.
We will focus on the unbroken and the uniformly broken phase. In the latter, we will write
φI = (ΠA, v + σ). Changing variables to

φI = (rπA, r
√

1− δABπAπB) (2.17)

and integrating out perturbatively the gapped radial field r− v gives the NLSM (2.7) of the
gapless πA at leading order, followed by higher-derivative corrections. This is an expansion
in the powers of the momenta |k|/mgap and frequency ω/m2

gap, where mgap is the gap scale
of the radial mode.

The simplest example with a uniform broken phase is given by the special case of LSM, in
which we turn off all self-interaction couplings except λ, and also set c2 = 0 classically. This
theory is superrenormalizable: Since [λ] = 3, the theory becomes free at asymptotically high
energies, and stays weakly coupled until we reach the scale of strong coupling ms = λ1/3.
Since the speed term is relevant, our intuition from the relativistic theory may suggest that
once interactions are turned on, relevant terms are generated by loop corrections, with a
leading power-law dependence on the UV momentum cutoff Λ. In fact, this does not happen
here. To show this, consider the broken phase, with the potential minimized by

v =
m2

√
λ
, (2.18)

and set c2 = 0 at the classical level. The ΠA fields are gapless, and represent our NG modes.
The σ has a gapped dispersion relation, ω2 = |k|4 + 2m4. The Feynman rules in the broken
phase are almost identical to those of the relativistic version of this theory [46], except for
the nonrelativistic form of the propagators,

ω, k
A B =

iδAB
ω2 − |k|4 + iε

,
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A B

(a)

BA BA

(b)

A B A B

(e)(c) (d)

Figure 2.1: One-loop corrections to ΓAB of the NG modes in the broken phase of the super-
renormalizable LSM.

ω, k

=
i

ω2 − |k|4 − 2m4 + iε
. (2.19)

Because of the z = 2 anisotropy, the superficial degree of divergence of a diagram with L
loops, E external legs and V3 cubic vertices is

D = 8− 2E − 3L− 2V3. (2.20)

Loop corrections to the speed term are actually finite. If we start at the classical level by
setting c2 = 0, this relation can be viewed as a “zeroth order natural relation” (in the sense
of [46]): True classically and acquiring only finite corrections at all loops. We can even set
c2 at any order to zero by a finite local counterterm, but an infinite counterterm for c2 is not
needed for renormalizability.

How large is this finite correction to c2? At one loop, five diagrams (shown in Fig.2.1)
contribute to the inverse propagator

ΓAB(ω,k) ≡ (ω2 − |k|4 + Σ(ω,k))δAB. (2.21)

We can read off the one-loop correction to c2 = 0 by expanding

Σ = −δm4 − δc2k2 + . . . . (2.22)

Four of these diagrams give a (linearly) divergent contribution to δm4, but both the divergent
and finite contributions to δm4 sum to zero, as they must by Goldstone’s theorem. The next
term in Σ is then proportional to k2 and finite. It gets its only one-loop contribution from
diagram (d) in Fig. 2.1, whose explicit evaluation gives

δc2 =
27/4 · 5
63π5/2

[
Γ
(

5
4

)]2 λ
m
≈ 0.0125

λ

m
. (2.23)

Thus, the first quantum correction to c2 is indeed finite and nonzero. But is it small or large?
There are much higher scales in the theory, such as m and Λ, yet in our weak coupling limit
the correction to the speed term is found to be δc2 ∝ λ/m naturally. In this sense, δc2 is
small, and so c2 can also be small without fine tuning.
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We can also calculate δc2 at one loop in the effective NLSM. The Feynman rules derived
from (2.7) for the rescaled field πA/G involve a propagator independent of G (in which we
set c2 = 0), and an infinite sequence of vertices with an arbritrary even number of legs, of
which we will only need the lowest one. When the radial direction of φ is integrated out in
our superrenormalizable LSM, at the leading order we get (2.7) with G = 1/v, λ1 = 0 and
λ2 = 1. In this special case, the 4-vertex is

I3

I1

I4

I2

ω3,k3

ω1,k1

ω4,k4

ω2,k2

= −iG2
{

(ω1 + ω2)(ω3 + ω4) + (k1 + k2)2(k3 + k4)2
}
δI1I2δI3I4

+ 2 permutations. (2.24)

The first quantum correction to δc2 comes at one loop, from

(2.25)

which is cubically divergent. With the sharp cutoff at |k| = Λ, we get

δc2 =
G2Λ3

3π2
. (2.26)

This theory is only an EFT, and its natural cutoff scale Λ is given by m, the gap scale of
the σ. With this value of the cutoff, the one-loop result (2.26) gives

δc2 = O(λ/m), (2.27)

which matches our LSM result.
If one wishes to extend the control over the LSM beyond weak coupling in λ, one can

take the large-N limit, holding the ’t Hooft coupling λN fixed. In this limit, the LSM and
the NLSM actually become equivalent, by the same argument as in the relativistic case [47].
An explicit calculation shows that at large N , δc2 is not just finite but actually zero, to all
orders in the ’t Hooft coupling.

We will discuss in details about the RG structure of Aristotelian nonlinear sigma models
in Chapter 8.

2.4 Naturalness and Slow Nambu-Goldstone Modes

Now, we return to the question of naturalness of small δc2, in the technical context articulated
in [4]. As a warm-up, consider first our superrenormalizable LSM in its unbroken phase. The
leading contribution to the speed term in the inverse propagator of φI is now at two-loop
order, from

.
(2.28)
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This diagram is finite; even the leading constant, independent of ω and k, only yields a finite
correction to the gap m4. The contribution of order k2 is then also finite, and gives

δc2 =
ξλ2

m4
, (2.29)

with ξ a pure number independent of all couplings. But is this δc2 small?
Let us first recall a well-known fact from the relativistic λφ4 theory [4]: λ and m2 may be

simultaneously small, ∼ ε, because in the limit of ε→ 0, the system acquires an enhanced
symmetry – in this case, the constant shift symmetry,

φI → φI + aI . (2.30)

The same constant shift symmetry works also in our superrenormalizable Aristotelian LSM.
Restoring dimensions, we have

λ = O(εµ3), m4 = O(εµ4). (2.31)

Here µ is the scale at which the constant shift symmetry is broken (or other new physics
steps in), and represents the scale of naturalness : The theory is natural until we reach the
scale µ = O(m4/λ). This result is sensible – if we wish for the scale of naturalness to be much
larger than the gap scale, µ � m, we must keep the theory at weak coupling, λ/m3 � 1.
Now, how about the speed term? If we assume that c2 is also technically small, c2 ∼ ε,
this assumption predicts c2 = O(λ2/m4), which is exactly the result we found above in our
explicit perturbative calculation. It looks like there must be a symmetry at play, protecting
simultaneously the smallness of m4, λ as well as c2! We propose that the symmetry in
question is the generalized shift symmetry (2.30), with aI now a quadratic polynomial in the
spatial coordinates,

aI = aIijx
ixj + aIix

i + aI0. (2.32)

The speed term ∂iφ
I∂iφ

I is forbidden by this “quadratic shift” symmetry, while ∂2φI∂2φI is
invariant up to a total derivative.2 This symmetry holds in the free-field limit, and will be
broken by interactions. It can be viewed as a generalization of the Galileon symmetry, much
studied in cosmology [48], which acts by shifts linear in the spacetime coordinates.

As long as the coupling is weak, the unbroken phase of the LSM exhibits a natural
hierarchy of scales, c � m � µ, with the speed term much smaller than the gap scale.
The effects of the speed term on the value of z would only become significant at low-enough
energies, where the system is already gapped. Note that another interesting option is also
available, since there is no obligation to keep c small at the classical level. If instead we
choose c much above the gap scale m (but below the naturalness scale µ), as we go to lower
energies the system will experience a crossover from z = 2 to z = 1 before reaching the gap,

2A more minimalistic approach is to apply the linear shift symmetry, δφ(t,x) = a + aix
i, instead of

the quadratic shift symmetry. The c2 term is invariant under this symmetry, up to a total derivative, and
therefore protected from large quantum corrections.
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and the theory will flow to the relativistic λφ4 in the infrared. The coupling λ can stay small
throughout the RG flow from the free z = 2 fixed point in the UV to the z = 1 theory in
the infrared.

Now consider the same LSM in the broken phase. In this case, we are not trying to
make m small – this is a fixed scale, setting the nonzero gap of the σ. Moreover, the π’s are
gapless, by Goldstone’s theorem. We claim that c2 can be naturally small in the regime of
small λ,

λ = O(εµ3), c2 = O(εµ2), (2.33)

as a consequence of an enhanced symmetry. The symmetry in question is again the “quadratic
shift” symmetry, now acting only on the gapless NG modes in their free-field limit:

ΠA → ΠA + aAijx
ixj + . . . . (2.34)

It follows from (2.18) that the radius v of the vacuum manifold SN−1 goes to infinity with
ε → 0, v = O(m2/

√
µ3ε), and v → ∞ corresponds to the free-field limit of the π’s. Our

enhanced symmetry does not protect m from acquiring large corrections; we can view m
in principle as a separate mass scale, but it is natural to take it to be of the order of the
naturalness scale, m = O(µ). Altogether, this predicts

δc2 = O(λ/µ) = O(λ/m), (2.35)

in accord with our explicit loop result (2.23).
The technically natural smallness of the speed term in our examples is not an artifact

of the superrenormalizability of our LSM. To see that, consider the full renormalizable LSM
(2.15), first in the unbroken phase. As we turn off all self-interactions by sending ε→ 0, the
enhanced quadratic shift symmetry will again protect the smallness of c2 ∼ ε. In terms of
the naturalness scale µ, this argument predicts that in the action (2.15), all the deviations
from the z = 2 Gaussian fixed point can be naturally of order ε in the units set by µ:

e2 = O(ε), . . . , c2 = O(εµ2), λ = O(εµ3), m4 = O(εµ4). (2.36)

If we want the naturalness scale to be much larger than the gap scale, µ� m, all couplings
must be small; for example,

e2 = O(m4/µ4)� 1, (2.37)

etc. We then get an estimate

δc2 = O(e2µ
2) = O(

√
e2m

2)� m2. (2.38)

As in the superrenormalizable case, the speed term can be naturally much smaller than
the gap scale. This prediction can be verified by a direct loop calculation. The leading
contribution to δc2 comes from several two-loop diagrams, including

(2.39)
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with one e2 vertex. Each loop in this diagram is separately linearly divergent, giving

δc2 ∼ e2Λ2 = O(
√
e2m

2), (2.40)

in accord with our scaling argument.
The story extends naturally to the broken phase of the renormalizable LSM, although

this theory is technically rather complicated: The 〈φ〉 itself is no longer given by (2.18) but
it is at the minimum of a generic fifth-order polynomial in φIφI . It is thus more practical
to run our argument directly in the low-energy NLSM. The advantage is that even for the
generic renormalizable LSM (2.15), the leading-order NLSM action is of the general form
(2.7). The leading order of matching gives G = 1/v, with v the radius of the vacuum manifold
SN−1. The NLSM is weakly coupled when this radius is large. The enhanced “quadratic
shift” symmetry of the NG modes πA in their free-field limit implies G2 = O(ε/µ) and
c2 = O(εµ2) with λ1,2 = O(1), and predicts

c2 = O(G2µ3). (2.41)

The naturalness scale µ is set by the gap of the σ particle, which is generally of order m.
Thus, (2.41) implies that in the large-v regime of the weakly-coupled NLSM, the speed term
is naturally much smaller than the naturalness scale. This can be again confirmed by a direct
loop calculation: The leading contribution to δc2 comes from the one-loop diagram

.
(2.42)

This diagram is cubically divergent and its vertex gives a G2 factor, leading to δc2 ∼ G2Λ3.
Setting Λ ∼ µ confirms our scaling prediction (2.41). In the special case of our superrenor-
malizable LSM, we can go one step further, and use (2.18) and G = 1/v to reproduce again
our earlier result, δc2 = O(λ/m).

We have shown that Type-A NG modes can naturally have an anomalously slow speed,
characterized by an effective z = 2 dispersion relation. This construction can obviously
be iterated, leading to Type-A NG modes with higher dispersion of z = 3, 4, . . .. In such
higher multicritical cases, the smallness of all the relevant terms is protected by the enhanced
“polynomial shift” symmetry in the free-field limit, with aI now a polynomial in xi of degree
2z − 2. Our results also extend easily to Type-B NG modes, which break time reversal
invariance. Instead of their generic z = 2 dispersion, they can exhibit a z = 4 (or higher)
behavior over a large range of energy scales.

2.5 Polynomial Shift Symmetries

Since the polynomial shift symmetries act on the fields πI(t,x) separately component by
component, from now on we shall focus on just one field component, and rename it φ(t,x).

The generators of the polynomial shift symmetry of degree P act on φ by

δPφ = ai1...iPx
i1 · · · xiP + . . .+ aix

i + a. (2.43)
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The multicritical Gaussian fixed point with dynamical exponent z = n is described by

Sn =

∫
dt dx

{
1

2
φ̇2 − 1

2
ζ2
n (∂i1 . . . ∂inφ) (∂i1 . . . ∂inφ)

}
. (2.44)

In fact, it is a one-parameter family of fixed points, parametrized by the real positive coupling
ζ2
n. (Sometimes it is convenient to absorb ζn into the rescaling of space, and we will often

do so when there is no competition between different fixed points.)
The action Sn is invariant under polynomial shift symmetries (2.43) of degree P ≤ 2n−1:

It is strictly invariant under the symmetries of degree P < n, and invariant up to a total
derivative for degrees n ≤ P ≤ 2n− 1.

Morally, this infinite hierarchy of symmetries can be viewed as a natural generalization of
the Galileon symmetry, proposed in [49] and much studied since, mostly in the cosmological
literature. In the case of the Galileons, the theory is relativistic, and the symmetry is
linear in space-time coordinates. The requirement of relativistic invariance is presumably
the main reason that has precluded the generalization of the Galileon symmetries past the
linear shift: The higher polynomial shift symmetries in spacetime coordinates would lead to
actions dominated by higher time derivatives, endangering perturbative unitarity.

So far, we considered shifts by generic polynomials of degree P , whose coefficients ai1...i`
are arbitrary symmetric real tensors of rank ` for ` = 0, . . . , P . We note here in passing
that for degrees P ≥ 2, the polynomial shift symmetries allow an interesting refinement. To
illustrate this feature, we use the example of the quadratic shift,

δ2φ = aijx
ixj + aix

i + a0. (2.45)

The coefficient aij of the quadratic part is a general symmetric 2-tensor. It can be decom-
posed into its traceless part ãij and the trace part aii,

aij = ãij +
1

D
akkδij. (2.46)

Since this decomposition is compatible with the spacetime Aristotelian symmetries (1.5), one
can restrict the symmetry group to be generated by a strictly smaller invariant subalgebra
in the original algebra generated by aij. For example, setting the traceless part ãij of
the quadratic shift symmetry to zero reduces the number of independent generators from
(D+ 2)(D+ 1)/2 to D+ 2, but it is still sufficient to prevent ∂iφ ∂iφ from being an invariant
under the smaller symmetry. This intriguing pattern extends to P > 2, leading to intricate
hierarchies of polynomial shift symmetries whose coefficients ai1...i` have been restricted by
various invariant conditions. As another example, invariance under the traceless part has
been studied in [50]. In the interest of simplicity, we concentrate in the rest of this chapter on
the maximal case of polynomial shift symmetries with arbitrary unrestricted real coefficients
ai1...i` .

The invariance of the action under each polynomial shift leads to a conserved Noether
current. Each such current then implies a set of Ward identities on the correlation functions
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and the effective action. Take, for example, the case of n = 2 in (2.44): The currents for
the infinitesimal shift by a general function a(x) of the spatial coordinates xi are collectively
given by

Jt = a(x)φ̇, Ji = a(x)∂i∂
2φ− ∂ja(x)∂i∂jφ+ ∂i∂ja(x)∂jφ− ∂i∂2a(x)φ, (2.47)

and their conservation requires

J̇t + ∂iJi ≡ a(x)
{
φ̈+ (∂2)2φ

}
− (∂2)2a(x)φ = 0. (2.48)

The term in the curly brackets is zero on shell, and the current conservation thus reduces to
the condition (∂2)2a(x)φ = 0, which is certainly satisfied by a polynomial of degree three,

a(x) = aijkx
ixjxk + aijx

ixj + aix
i + a. (2.49)

Note that if we start instead with the equivalent form of the classical action

S̃2 =

∫
dt dx

{
1

2
φ̇2 − 1

2
(∂i∂iφ)2

}
, (2.50)

the Noether currents will be related, as expected, by

J̃t = Jt,
J̃i = a(x)∂i∂

2φ− ∂ia(x)∂2φ+ ∂2a(x)∂iφ− ∂i∂2a(x)φ (2.51)

= Ji + ∂j [∂ia(x)∂jφ− ∂ja(x)∂iφ] .

From these conserved currents, one can formally define the charges

Q[a] =

∫
Σ

dxJt. (2.52)

However, for infinite spatial slices Σ = RD, such charges are all zero on the entire Hilbert
space of states generated by the normalizable excitations of the fields φ. This behavior is
quite analogous to the standard case of NG modes invariant under the constant shifts, and
it simply indicates that the polynomial shift symmetry is being spontaneously broken by the
vacuum.

2.6 Refinement of the Goldstone Theorem

In its original form, Goldstone’s theorem guarantees the existence of a gapless mode when
a global continuous internal symmetry is spontaneously broken. However, in the absence
of Lorentz symmetry, it does not predict the number of such modes, or their low-energy
dispersion relation.

The classification of the effective field theories which are available to describe the low-
energy limit of the Nambu-Goldstone mode dynamics leads to a natural refinement of the
Goldstone theorem in the nonrelativistic regime. In the specific case of spacetimes with
Aristotelian symmetry, we get two hierarchies of NG modes:
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• Type A: One NG mode per broken symmetry generator (not paired by ΩI) The low-
energy dispersion relation is ω ∝ kn, where n = 1, 2, 3, . . ..

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).
The low-energy dispersion relation is ω ∝ k2n, where n = 1, 2, 3, . . ..

It is natural to label the members of these two hierarchies by the value of the dynamical
critical exponent of their corresponding Gaussian fixed point. From now on, we will refer to
these multicritical universality classes of Nambu-Goldstone modes as “Type An” and “Type
B2n”, respectively.

We conclude this chapter with the following comments:

1. While Type B NG modes represent a true infinite hierarchy of consistent fixed points,
the Type A NG modes hit against the nonrelativistic analog of the Coleman-Hohenberg-
Mermin-Wagner (CHMW) theorem: At the critical value of n = D, they develop in-
frared singularities and cease to exist as well-defined quantum fields. We will discuss
this behavior in details in Chapter 5.

2. Type A preserve T invariance, while Type B break T . (This does not mean that a
suitable time reversal invariance cannot be defined on Type B modes, but it would
have to extend T of (2.3) to act nontrivially on the fields.)

3. Our classification shows the existence of An and B2n hierarchies of NG modes described
by Gaussian fixed points, and therefore represents a refinement of the classifications
studied in the literature so far. However, it does not pretend to completeness: We find
it plausible that nontrivial fixed points (and fixed points at non-integer values of n)
suitable for describing NG modes may also exist. In this sense, the full classification
of all possible types of nonrelativistic NG dynamics – even under the assumption of
Aristotelian symmetries – still remains a fascinating open question.

4. For simplicity, we worked under the assumption of Aristotelian spacetime symmetry.
Obviously, this simplifying restriction can be removed, and the classification of multi-
critical NG modes in principle extended to cases whereby some of the the spacetime
symmetries are further broken by additional features of the system – such as spa-
tial anisotropy, layers, an underlying lattice structure, etc. We also expect that the
classification can be naturally extended to Nambu-Goldstone fermions associated with
spontaneous breaking of symmetries associated with supergroups. Such generaliza-
tions, however, are beyond the scope of this thesis.
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Chapter 3

Application: Linear Resistivity in Strange Metals

In the last chapter, we have demonstrated that Nambu-Goldstone modes produced by non-
relativistic spontaneous symmetry breaking can exhibit naturally higher-order dispersion
relations over a large hierarchy of scales. In flat noncompact space, the naturalness of this
behavior is protected by a polynomial shift symmetry. In this chapter, we present an im-
mediate application of these new technically natural Nambu-Goldstone modes. Since the
Aristotelian spacetime that we are working with throughout the thesis is fundamentally
nonrelativisitic, it is natural for us to first look for potential applications in the field of
condensed matter physics.

3.1 T -linear Resistivity in Strange Metals

As preluded in §1.1, the linear temperature dependence of the resistivity in the strange
metal phase above the critical temperature in high-Tc superconductors can be formulated
as a naturalness puzzle. Qualitatively, the relation between the resistivity ρ(T ) and the
temperature T is graphed for typical high-Tc superconductors in Figure 3.1. This behavior
persists over a large range of scales in temperature and also survives under a changing of
doping of 5 ∼ 10%. This robust behavior seeks for an effective field theoretical explanation:
Is there any mechanism which gives rise to the T -linear resistivity in metals in a technically
natural way?

In the standard BCS theory, the electron-phonon interactions is responsible for the su-
perconductivity. In the metallic phase above Tc, the resistivity from the electron-phonon
interactions is given by the Bloch-Grüneisen formula, which yields ρ(T ) ∼ T 5. This is far
off. How about other interactions? The electron-electron scatterings give ρ(T ) ∼ T 2 and the
interactions with impurities give ρ(T ) ∼ const. There is nothing that gives ρ(T ) ∼ T . Per-
haps the effective field theory that describes the low energy excitations have to be something
very different.

Notably, acoustic phonons are NG modes associated with spontaneous breaking of trans-
lational invariance. This opens up a curious question: What will happen in the BCS theory
if the role of the phonons is played by the Type An NG modes with n > 1? This is the
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T

ρ(T )

Tc

Figure 3.1: Temperature dependence of resistivity ρ(T ) in high-Tc superconductors.

question that we will be focusing on in the rest of this chapter: First we show how to gen-
eralize the polynomial shift symmetry when some spatial dimensions are compactified on a
torus or replaced by a periodic finite lattice. Then we consider the case in which the multi-
critical NG bosons play the role of acoustic phonons, associated with spontaneous breaking
of spatial Euclidean symmetries. We couple the multicritical acoustic phonons to a Fermi
liquid of nonrelativistic electrons, and study the physical properties of such “multicritical
metals” in the simplest, isotropic case. Both thermodynamic and transport properties de-
pend on the degree of multicriticality of the phonon sector and the dimension of space. We
calculate the resistivity of the metal as a function of temperature T , at the leading order in
the Bloch-Boltzmann transport theory. In particular, we point out that the system of z = 3
multicritical phonons in 3+1 dimensions (which is their lower critical dimension), minimally
coupled to the Fermi surface, gives resistivity linear in T over a naturally large hierarchy of
scales.

3.2 Polynomial Shift Symmetries and the Lattice

Having established in the previous chapter the possibility of a new symmetry in the contin-
uum theory, one can naturally ask whether there is a discretized version of this symmetry,
such that it can be implemented on the lattice and reproduce the continuous polynomial
symmetry as the continuum infinite-volume limit is taken.

There are several reasons why to ask this question. First, especially with condensed
matter applications in mind, it is useful to know whether lattice systems exist in which the
analog of the polynomial shift can be realized as an exact symmetry at the microscopic level,
at least in principle. Secondly, even if one is only interested in the continuum limit itself, it
is useful to know whether there is a lattice regularization of the theory which maintains the
lattice version of the polynomial shift symmetry before the continuum limit is taken. Besides,
one might be interested in taking continuum limits other than the infinite volume limit, for
example the limit in which the radius of the periodic lattice in one or more dimensions is
held fixed as the number of sites goes to infinity. Having a lattice version of the polynomial
shift symmetry will then yield automatically a natural continuum symmetry that works on
toroidal spatial compactifications.
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As an illustration of principle, we consider the theory in one spatial dimension, on a finite,
periodic lattice of N sites, labeled by the site index j = 0, . . . , N − 1. We are interested in
the dynamics of a single scalar field, represented by the real-valued φj at each site j of the
lattice, with periodic boundary conditions (i.e., we define φj+N ≡ φj for all j ∈ Z). We also
introduce the uniform lattice spacing a, which represents a natural microscopic scale in the
theory: The lattice sites are located at X = Xj ≡ aj. Similarly, N serves as an infrared
cutoff, and the radius of the spatial circle is given by R = Na/(2π): We have X = X+ 2πR.

The dual momentum lattice also consists of N points, labeled by integers k = 0 . . . , N−1,
arranged uniformly on a circle with periodic boundary conditions. Since the momentum K
dual to X is naturally quantized in the units of 1/R = 2π/(Na), the lattice sites of the dual
lattice are at Kk ≡ 2πk/(Na), implying that K = K + 2π/a: The radius of the momentum
circle is 1/a. For now, we will set a = 1 for simplicity.

The momentum modes φ̃k associated with the scalar field φj are given by the discrete
Fourier transform,

φ̃k =
N−1∑
j=0

φje
2πijk/N , (3.1)

with the inverse given by

φj =
1

N

N−1∑
k=0

φ̃ke
−2πijk/N . (3.2)

The constant shift symmetry is easily realized by the lattice degrees of freedom φj: The
simplest textbook example of a nearest-neighbor Hamiltonian describing lattice vibrations,

H =
N−1∑
j=0

(φj+1 − φj)2, (3.3)

is indeed manifestly invariant under the constant shift, φj → φj + α, with α ∈ R.
Moving on to polynomial shift symmetries of degree P > 0, we are facing our first issue:

The polynomial functions of the spatial coordinate X, even when discretized and evaluated
at the lattice sites Xj = aj, are not well-defined as uni-valued functions on the periodic
lattice. To find our way out, let us consider the action of our symmetries as they act in
the momentum space. In the continuum theory in D + 1 dimensions, the constant shift
symmetry φ(x)→ φ(x) +α acts on the momentum modes via φ(k)→ φ(k) +αδ(D)(k). The
polynomial shift symmetries of degree P similarly act on the momentum modes as shifts by
derivatives of degree P of δ(D)(k). Thus, the textbook Hamiltonian (3.3), when rewritten in
momentum space,

H =
N−1∑
k=0

sin2

(
πk

N

)
φ̃∗kφ̃k, (3.4)
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is invariant under the shift of φ̃k by the lattice delta-function δk at the origin,

δk =

{
1, k = 0;

0, k 6= 0.
(3.5)

simply because the coefficient sin2(πk/N) vanishes at k = 0, the only place where the
delta function δk is non-zero. The idea now is to extend this picture to higher polynomial
symmetries, and to simply define our lattice analog of the “polynomial shift symmetry of
degree P” in its momentum space representation as a shift of the momentum modes by the
properly discretized P -th order derivative of the momentum-space delta function.

As an example, consider the quadratic shift φ(x)→ φ(x) +αx2 of the continuum theory,
which translates in momentum space into φ(k) → φ(k) + α∆δ(D)(k) (∆ here denotes the
Laplacian in the k-space). We now define our lattice analog of this symmetry (in the one-
dimensinal case) via

φ̃k → φ̃k + α(δk+1 + δk−1 − 2δk), (3.6)

a shift by the discretized lattice version of the second derivative of the momentum-space
delta function at k = 0.

In order to construct a Hamiltonian invariant under (3.6), we just need to make sure that

the coefficient of φ̃∗kφ̃k vanishes not only at k = 0, but also at k = ±1. One natural way to
accomplish this is to write

H =
∑
k

sin2

(
πk

N

)
sin

(
π(k + 1)

N

)
sin

(
π(k − 1)

N

)
φ̃∗kφ̃k. (3.7)

This is manifestly real, invariant under k → −k, and invariant under the lattice P = 2 shift
symmetry defined in (3.6).

In the continuum infinite-volume limit a→ 0 and R→∞, we find sin2(2πk/N)→ K2, as
well as sin(2π(k± 1)/N)→ K. Thus, this limit correctly reproduces the z = 2 Hamiltonian
of the continuum theory on the decompactified spatial dimension,

H =

∫
dK K4φ∗(K)φ(K), (3.8)

known to be invariant under the quadratic shift symmetry φ(X)→ φ(X) +αX2 (which acts
via φ(K)→ φ(K) + αδ′′(K) in the momentum-space picture).

Note that (3.7) is of course not the only lattice Hamiltonian with the exact symmetry
(3.6) which gives this continuum limit. For example, the lattice Hamiltonian

H ′ =
∑
k

sin2

(
πk

N

){
sin2

(
πk

N

)
− sin2

( π
N

)}
φ̃∗kφ̃k (3.9)

is also invariant under (3.6). It gives the same continuum infinite-volume limit as (3.7), but
differs from (3.7) on the lattice by terms that are technically irrelevant in the limit.
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The generalization for arbitrary polynomial shift symmetry of degree 2n−2, with n ∈ N, is
straightforward. The symmetry is defined as a shift in momentum space by the corresponding
(2n−2)-th lattice derivative of δk at k = 0. The important point is that any such (2n−2)-th
order derivative has its support on sites in the range 1

− n+ 1 ≤ k ≤ n− 1 (3.10)

around the origin in momentum space. Our Hamiltonian (3.7) generalizes to

Hn =
∑
k

sin2

(
πk

N

) n−1∏
`=1

[
sin

(
π(k + `)

N

)
sin

(
π(k − `)

N

)]
φ̃∗kφ̃k, (3.11)

and H ′ of (3.9) to

H ′n =
∑
k

sin2

(
πk

N

) n−1∏
`=1

{
sin2

(
πk

N

)
− sin2

(
π`

N

)}
φ̃∗kφ̃k. (3.12)

Both Hn and H ′n are invariant under the lattice version of the shift symmetry of degree
2n− 2, and they both give the same continuum infinite-volume limit

H =

∫
dK K2nφ∗(K)φ(K). (3.13)

This process is easily genearlized to the square lattice in any spatial dimension D. In the
following discussion, we will take the long-wave limit and only work with the continuous
effective field theories.

3.3 Multicritical Phonons

For simplicity, we will work with the conventional jellium model of a metal in the Aristotelian
spacetime of 3 + 1 dimensions, in which the ionic lattice is replaced by a uniform mediem
and the Fermi surface of the electrons is assumed to be spherically symmetric; all umkalpp
processes are neglected, and the transverse components of phonons are omitted so that the
phonon field is a true scalar. With the scalar being of Type A1, this would be the simplest
model of a conventional BCS superconductor. In the following we construct theories in
which the phonons are replaced with NG modes of Type An with n > 1 and examine how
the standard physical properties of metals change. We will refer to such NG modes in metals
the “multicritical phonons.”

1This is more obvious for the more interesting case considered here, with the shift symmetries of even
degree, since an even-degree lattice derivative of any function fk defined on the sites k is again naturally a
function on these sites. Odd-degree shift symmetries would be implemented via odd-degree derivatives of
δk. It is more accurate to think of the odd-degree derivative of any function fk as a function on the links
between neighboring sites k and k+1, and label the link by the half-integer k+1/2. With this interpretation,
Eqn. (3.10) is correct also for shift symmetries represented by the odd-degree derivatives of δk.
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In the hydrodynamic description [51, 52], we model the phonon system by sound waves
in an isotropic Bose liquid without dissipation. Three distribution functions are required
to characterize an ideal fluid, namely, the pressure distribution p(x, t), the density function
f(x, t), and the velocity distribution v(x, t). We split the total density f(x, t) into an equi-
librium background density f0(x, t) plus the deviation from equilibrium which we denote by
Q(x, t),

f(x, t) = f0(x, t) +Q(x, t). (3.14)

From now on, we will assume that ρ0(x, t) = ρ0 is uniform in space and time, and that
Q(x, t) is small and slowly varied. The flow of the liquid is described by its velocity v(x, t).
We will assume that the flow is a potential flow,

v = ∇φ. (3.15)

For isotropic fluids, having v to be the gradient of a potential function will lead to purely
longitudinal phonons – hence, the condition that the flow be a potential flow eliminates the
transverse polarizations of the phonons. The system is assumed to satisfy the continuity
equation for mass, which in the linearized approximation is2

Q̇ ≈ −ρ0∇ · v = −ρ0∆φ. (3.16)

The Hamiltonian of the system, in the Gaussian approximation, is expected to be

H =

∫
dDx

(
1

2
f0v

2 + V(Q)

)
. (3.17)

The first term is just the standard kinetic energy of the liquid. The potential part V is to
be determined below; in standard hydrodynamics, one has

V =
c2
s

2f0

Q2. (3.18)

To quantize the theory, we assume the standard microphysics interpretation of ρ (or v)
as the coarse graining of the sum, over all particles, of the spatial delta functions weighted by
m (or k/m), one finds that Q and φ form a canonical pair, with Q a generalized coordinate
and φ its canonical momentum,

[φ(x), Q(x′)] = −i~δ(x− x′). (3.19)

Moreover, The Hamiltonian (3.17) can be rewritten in terms of the canonically normalized
creation and annihilaton operators

[ak, a
†
k′

] = δkk′ (3.20)

2Note that we are not proposing to replace the conventional continuity equation with a multicritical
version (such as for example Q̇ ∼ ∇ ·∆v).
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as
H =

∑
k

ωka
†
kak. (3.21)

Solving for (3.16) together with (3.19) gives

φ = C
∑
k

√
ωk

k

(
ake

i(k·x−ωkt) + a†ke
−i(k·x−ωkt)

)
(3.22)

and

Q = iC ′
∑
k

k
√
ωk

(
ake

i(k·x−ωkt) − a†ke
−i(k·x−ωkt)

)
. (3.23)

The overall constants C and C ′ only depend on f0, the total volume, and ~ – determine
them explicitly. The free propagator for Q will be

D(k, ω) ∼ k2

ω2 − ω2
k + iε

. (3.24)

Our intention is to describe multicritical phonons with a higher-order dispersion relation

ωk = ζnk
n, (3.25)

where k = |k|. In order to get the expected phonon dispersion relation, we must choose V
in (3.17) so that the Hamiltonian equations of motion reproduce this relation. Choosing

V =
1

2
ζ2
n∇n−1Q · ∇n−1Q ≡ 1

2
ζ2
n (∂i1 . . . ∂in−1Q) (∂i1 . . . ∂in−1Q) (3.26)

yields the desired dispersion relation. This means that in order to obtain the dispersion
relation characterized by the (integer) exponent n, we must impose the polynomial shift
symmetry of degree 2n− 4 on the field Q. In this case, the free propagator (3.24) has a pole
at ω = ζnk

n, and hence describes a multicritical phonon mode.
In this linearized approximation, we have expanded our theory around a fixed uniform

density f0, and obtained a description of the multicritical liquid in terms of the fluctuations
Q around this equilibrium density. Such a non-interacting limit defines a Gaussian fixed
point, with polynomial shift symmetry protecting the scaling with the dynamical exponent
z. When interactions are restored, generically they explicitly break the polynomial shift
symmetry. Indeed, in the full non-linear theory, we expect self-interaction terms to come
from f0 → f . While f0 is not acted on by the polynomial shift, f is.

The fixed point scaling is defined as follows:

[∂i] = 1, [∂t] = z, [Q] = (D − z)/2, (3.27)

holding f0 fixed (and hence of [f0] ≡ 0). Thus, we scale towards the state with uniform fixed
density f = f0, and not towards the naive empty state with f = 0. This interplay between
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the nonlinear structure of the theory versus the RG scaling near one of its fixed points is
somewhat reminiscent of a similar split in the theory of gravity, where in order to define the
Gaussian fixed point that describes free gravitons, one splits the spacetime metric into the
sum of a non-zero background which defines the inertia and the fluctuations describing the
propagating gravitons with the appropriate, background-dependent dispersion relation.

In a realistic crystal, there will be a finite number of oscillation modes. In the simplest
Debye model description of the crystal, one assumes homogeneity and isotropy as in our
discussion of multicritical hydrodynamics, and implements the finiteness of the total number
of degrees of freedom by cutting off the spatial momenta at the appropriate value k = kD, so
that the total number of states reproduces this finiteness. Since the counting of states inside
the sphere of radius kD is the same as in the standard Debye model of linearly dispersing
phonons, kD is the standard Debye momentum of the crystal.3 The cutoff on k translates into
a natural cutoff ω̃D on phonon frequencies, and the existence of the characteristic temperature
Θ̃D of the system. Due to the higher-order nature of the dispersion relation,

ω̃D = ωkD
≡ ζnk

n
D (3.28)

(and Θ̃D = ω̃D, in the units of ~ = 1 = kB) are not the standard Debye frequency and Debye
temperature, but depend on the order n of the dispersion relation. In our comparison to the
standard Debye model with the same Debye momentum kD, we have

ω̃D

ωD

=
ζn
cs
kn−1

D . (3.29)

Similarly, the density of states ρ(ω), defined via∫ ωk

0

ρ(ω)dω =

∫ |k|=k
0

dDk

(2π)D
, (3.30)

is not proportional to ωD−1 as in the standard Debye model, but given instead by

ρ(ω) ∝ ω(D−z)/z. (3.31)

Note that when the phonons with the n-th order dispersion are at their lower critical dimen-
sion, D = n, then the density of states is a constant across all values of ω. Consequently,
there are many more phonon states available near ω = 0 than in the standard Debye model
of linearly dispersing phonons.

Finally, we consider the interaction of the multicritical phonon system with a Fermi liquid
of nonrelativistic electrons. In order to illustrate the the main robust features caused by the
multicriticality of the phonons, we consider the simplest model, with the electrons modelled

3One can easily relax this condition, and allow Ñ 6= N . Consequently, the value of the Debye momentum
would also change, to k̃D = (Ñ/N)1/DkD. In this chapter, for simplicity, we will focus on Ñ = N and hence

k̃D = kD.
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Figure 3.2: The density of states ρ(ω) as a function of frequency in the multicritical Debye
model at the lower critical dimension, compared to the density of states in the standard
Debye model. (a) the case of ω̃D = ωD; (b) the regimes with ω̃D � ωD and ω̃D � ωD,
assuming fixed kD.

by a Fermi liquid of spinless screened quasiparticles with a spherical Fermi surface, coupled
to the multicritical Debye model of phonons characterized by their dispersion exponent n.
Thus, we are assuming that the range of length and time scales is such that the phonons
are well-approximated by a fixed value of n. Later on we will return to the question of what
happens at the lower or higher scales, where this assumption may no longer be valid. The
important point is that once such a hierarchy of scales open up, across which the photon
dispersion is characterized by fixed n > 1, such a hierarchy can be naturally protected by
the corresponding polynomial shift symmetry.

The coupling between electrons and our phonon liquid is taken to be minimal,4

Hint = g

∫
dDxQΨ†Ψ. (3.32)

In the language of the “lattice displacement field” Q, we are anticipating that Q = ∇ ·Q.
Thus, the minimal vertex between Q and the electrons will reproduce the calculations that
used the momentum-dependent vertex because the photon propagator is different in those
two pictures. Such standard coupling breaks the polynomial shift symmetry of the phonon
system all the way to the constant shifts of Q, in a way which however does not violate the
hierarchy of scales. Moreover, this coupling generates relevant deformations and produces a
natural pairing mechanism for the electrons.

To quantize the theory with the Yukawa coupling, we take the mode expansion of Ψ,

Ψ = C ′′
∑
k

ck e
i(k·x−ωt). (3.33)

4As an alternative, we could also consider non-minimal couplings, for example the shift-symmetry-
preserving coupling, of the form Ψ†Ψ∆#Q, with the appropriate power #. What is the appropriate #? If
we want an exact invariant, we need Ψ†Ψ∆2z−2Q. Intriguingly, if we allow the polynomial shift to act on
the chemical potential by a shift, we can have Ψ†Ψ∆2z−4Q, whose variation under the shift of degree 2z− 4
is a constant which can be compensated for by the shift of the chemical potential...
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Again, similar to C and C ′ in (3.22) and (3.23), the overall constant C ′′ only depends on
f0, the total volume and ~. Substitute (3.22), (3.23) and (3.33) into (3.32), we obtain the
well-known Fröhlich interaction,

Hint = −i
∑
k,bq

gq aq c
†
k+q ck + h.c., (3.34)

where the coupling gq is given by

gq = g
q
√
ωq

. (3.35)

3.4 Bloch-Grüneisen Formula and Resistivity in Strange Metals

In this section, we use the Bloch-Boltzmann kinetic theory of transport, to calculate the
resistivity of the fermions in the multicritical metal, caused by the interactions between the
electrons and the multicritical phonons in 3 + 1 demensions. In the low-temperature regime,
we find a power-law dependence on T . More generally, we obtain a natural generalization
of the well-known Bloch-Grüneisen formula (that computes the resistivity in metals) to the
multicritical case.

We start with a short review of the derivation of the standard Bloch-Grüneisen formula
[53, 54]. In Bloch-Boltzman theory, the Hamiltonian of the electron-phonon interaction in
(3.32) induces the transitions of the electrons between different Bloch states |k〉. Denote the
distribution function for the electrons by nk, and the distribution function for the phonons
by Nq. In the first Brillouin zone5, the electrons can be scattered via the following two
processes and their inverses:

• An electron at state |k〉 emits a phonon of momentum q and thus scatters into the
state |k′〉. The conservation law of momenta requires k = k′ + q.

• An electron at state |k〉 absorbs a phonon of momentum q and thus scatters into the
state |k′〉. The conservation law of momenta requires k + q = k′.

Furthermore, due to the Pauli principle, a transition can take place only to an unoccupied
state. Therefore, the collision function is

C(nk) =

∫
d3q

(2π)3

d3k′

(2π)3
|gq|2 (2π) δ (εk − εk′ − ωq) (2π)3 δ(3) (k− k′ − q)

×
[

(1− nk)nk′Nq − nk (1− nk′) (Nq + 1)
]

+

∫
d3q

(2π)3

d3k′

(2π)3
|gq|2 (2π) δ (εk + ωq − εk′) (2π)3 δ(3) (k + q− k′)

×
[

(1− nk)nk′ (Nq + 1)− nk (1− nk′)Nq

]
. (3.36)

5The Umklapp process has a zero contribution in a metal.
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Here, εk is the energy of the quasi-particle. We treat the phonon system as if it were in
thermal equilibrium, i.e.,

Nq = N (0)
q =

1

exp
(
ωq/T

)
− 1

. (3.37)

For multicritical phonons of Type An, ωq ≈ ζnq
n. We further denote the Fermi-Dirac distri-

bution by

n
(0)
k =

1

exp[(εk − εF )/T ] + 1
. (3.38)

Denote Φk the average extra energy that the quasi-particles have because of the transport
process. For small Φk we can write

nk ≈ n
(0)
k −

∂n
(0)
k

∂εk
Φk. (3.39)

At low temperatures, T � εF , with εF the Fermi energy, we have

nk ≈ n
(0)
k + δ(εk − εF ) Φk, (3.40)

Let us expand C(nk) in (3.36) with respect to Φk and Φk′ and write

C(nk) =
1

T

∫
d3k′

(2π)3
(Φk′ − Φk)Pk′k , (3.41)

where

Pk′k = 2π

∫
d3q |gq|2n(0)

k

(
1− n(0)

k′

) [
(N (0)

q + 1) δ(εk − εk′ − ωq) δ(3) (k− k′ − q)

+N (0)
q δ(εk − εk′ + ωq) δ

(3) (k− k′ + q)
]

(3.42)

is the equilibrium transition rate between states |k〉 and |k′〉. According to the principle of
microscopic reversibility, we have

Pk′k = Pkk′ . (3.43)

To compute the resistivity as a linear response, we consider the presence of an external
electric field E. We assume that there is no temperature gradient. The Boltzmann transport
equation is

− e (E · vk)
∂n

(0)
k

∂εk
= −C(nk) =

1

T

∫
d3k′

(2π)3
(Φk − Φk′)Pk

′

k , (3.44)

where vk is the drifting velocity of the electron. The resistivity ρ is defined to be the ratio
of the electric field E to the density of the current J it creates, namely

E = ρJ, (3.45)
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where we have assumed isotropy in the material. The electric current is

J =

∫
d3k

(2π)3
evk

(
nk − n

(0)
k

)
= −

∫
d3k

(2π)3
evk

∂n
(0)
k

∂εk
Φk. (3.46)

Applying the Boltzmann transport equation (3.44), we obtain

ρ =
E · J
J2

=
Cρ
T

∫
d3k

(2π)3

d3k′

(2π)3
(Φk − Φk′)

2Pk′k , (3.47)

where Cρ is an overall T -independent prefactor.
To proceed, we need an explicit expression for Φk. We have assumed that the Fermi

surface is spherical. This assumption requires that the drifting velocity vk of electrons be
parallel to k. Moreover, we make a further assumption that the scattering probability only
depends on the angle between k and k′, where k and k′ are respectively associated with
the incoming state |k〉 and the outgoing state |k′〉. Under these additional assumptions, we
obtain

Φk ∝ k cos θ (3.48)

in 3 + 1 dimensions, where θ is the angle between k and the electric field E. In two spatial
dimensions, a similar analysis gives Φk ∝ sin θ.

We would like to introduce a final assumption: The collisions between electrons and
multicritical phonons are dominated by the long wave phonon modes, and thus the scattering
can be treated as a quasi-elastic process [55, 56], i.e., in (3.42),

δ (εk − εk′ + ωq) ≈ δ (εk − εk′) . (3.49)

Under this additional assumption, the resistivity given in (3.47) takes the form

ρ = C ′ρ

∫ 2kD

µIR

(dq q) q2 |gq|2N (0)
q . (3.50)

Here, C ′ρ is a T -independent coefficient, gq is the vertex given in (3.35), and N
(0)
q is the

multicritical phonon distribution defined in (3.37). The infrared regulator µIR can be set to
zero in the absence of infrared divergences. Plugging (3.35) and (3.37) into (3.50), we obtain

ρ = C ′ρ g
2

∫ 2kD

µIR

dq
q5

ωq

1

exp(ωq/T )− 1
, (3.51)

where ωq = ζnq
n for Type An multicritical phonon. In the low temperature limit,

ζnµ
n
IR � T � ΘD = ζn(2kn)n, (3.52)

with ΘD the Debye temperature, we obtain the resistivity as a function of T ,

ρ(T ) ∼ T
6−n
n . (3.53)
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In the standard case of n = 1, this reproduces the standard Bloch-Grüneisen scaling ρ ∼ T 5.
More interestingly, in the case of the multicritical phonons at their lower critical dimension,
n = 3, we obtain ρ ∼ T .

Without the elastic approximation (3.49), the resistivity (3.47) takes a slightly more
complicated form,

ρ(T ) ∝
∫

d3k

(2π)3

d3k′

(2π)3
q2|gq|2N (0)

q δ(εk − εF )δ(εk − εk′ + ωq), (3.54)

which reduces to

ρ(T ) = C ′′ρg
2

∫ 2kF

0

dq
q5

sinh2[ωq/(2T )]
. (3.55)

Here, C ′′ρ is a T -independent coefficient. This modification does not alter the scaling in T in
(3.53).

The calculation can be repeated in any number of spatial dimensions D, generalizing
(3.53) to

ρ(T ) ∝ T
3+D−n

n . (3.56)

Type An multicritical phonons with n ≤ D suggests resistivity going as T 5 or T 2 (which
matches the scaling of the electron-electron contribution) or T in D = 3, and T 4 or T 3/2 in
D = 2.

3.5 Infrared Behavior and Cascading Phenomena

We study the IR behavior of (3.50) in this section. We consider the multicritical phonons
at their lower critical dimension, with n = 3 and

ωq = ζ3q
3. (3.57)

It is useful to define
ω⊗ = ζ3µ

3
IR � ΘD. (3.58)

The resistivity is evaluated to be

ρ(T ) =
C ′ρ g

2

3ζ2
3

T

∫ ΘD
T

ω⊗
T

dx
1

ex − 1

=
C ′ρ g

2

3ζ2
3

T log

(
T

ω⊗

)
+O(ω⊗), (3.59)

We have taken the low temperature limit ω⊗ � T � ΘD. This asymptotic expansion
contains a log divergence in ω⊗, which shows that ρ(T ) is sensitive to the IR regulator. This
IR regulator has a simple physical interpretation: We can choose ω⊗ to be the crossover scale
around which the theory flows to a n = 1 fixed point. Then, the n = 3 dispersion dominates
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Figure 3.3: The density of states ρ(ω) as a function of frequency with a crossover to n = 1
below ω⊗.

in the regime below the Debye frequency ΘD, and transits to n = 1 at the hierarchically
much smaller scale ω⊗, breaking the polynomial shift symmetries all the way to constant
shift. This breaking modifies the dispersion relation to6

ω2 = ζ2
3q

6 + c2
sq

2, (3.60)

where cs is the speed of sound for standard phonons with n = 1. At the crossover scale ω⊗,
the k6 and k2 terms in (3.60) become comparable. For clarity, we take

ω2
⊗ =

c3
s

ζ3

. (3.61)

This modified dispersion relation suggests the behavior of the density of states in Figure 3.3.
In low energies, our theory flows to the conventional BSC.

Does this modification in the IR spoil the T -linear dependence? Näıvely, it seems that
there is no linear term in T in (3.59) (but only a T log T term). However, a concrete answer to
this question requires explicit evaluation of the resistivity. Without affecting the qualitative
behavior, we assume a simple behavior for the dispersion relation:

• In the high energy regime ω⊗ < ωq < ΘD: ωq = ζ3q
3;

• In the low energy regime ωq < ω⊗: ωq = csq.

The resistivity is evaluated to be

ρ = C ′ρ g
2

(∫
0<ω<ω⊗

dq
q5

ωq

1

exp(ωq/T )− 1

∣∣∣∣
ωq=csq

+

∫
ω⊗<ω<ΘD

dq
q5

ωq

1

exp(ωq/T )− 1

∣∣∣∣
ωq=ζ3q

3

)

=
C ′ρg

2

ζ2
3

T

[
1

4
+

1

3
log(T/ω⊗)

]
+O(ω⊗). (3.62)

6In more general cases, one may also include an intermediate crossover to a n = 2 fixed. Including this
z = 2 fixed point modifies the dispersion relation to ω2 = ζ2

3k
6 + ζ2

2k
4 + c2sk

2.
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The linear dependence on T persists, but now receives a T log T correction.
The behavior of having the multicritical phonons crossover to lower n’s in the IR by

explicitly breaking the polynomial shift symmetries and thus protect a large hierarchy be-
tween energy scales is called to the cascading phenomena. In Chapter 5, we will study this
phenomena systematically by examining a series of examples.

Similarly, if we use (3.55) that takes into account the inelastic effects and again let the
theory crossover to a n = 1 fixed point in the IR, then (3.55) can be split into two parts as
in (3.62):

ρ =
C ′′ρg

2

T

(∫
0<ω<ω⊗

dq
q5

sinh2[ωq/(2T )]

∣∣∣∣
ωq=csq

+

∫
ω⊗<ω<ΘD

dq
q5

sinh2[ωq/(2T )]

∣∣∣∣
ωq=ζ3q

3

)

= C ′′ρg
2T

{
ω4
⊗

c6
+

1

3ζ2
3

[
1 + log

(
T

ω⊗

)]}
+O(ω⊗)

=
C ′′ρg

2

3ζ2
3

T

[
4 + log

(
T

ω⊗

)]
+O(ω⊗). (3.63)

Again, we obtain the T -linear dependence.

In conclusion, by considering the interacting between electron and multicritical phonons
protected by polynomial shift symmetries in the framework of the BCS theory, we obtain
a refined classification of EFTs that describe the low energy excitations. In particular, by
requiring that the high-energy behavior of acoustic phonons be described by multicritical
phonons of Type A3, we provide a technically natural explanation for the T -linear behavior
in 3 + 1 dimensions. What role this new mechanism could play in high-Tc superconductivity
remains as an intriguing open question.
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Chapter 4

Polynomial Shift Symmetries and Graph Theory

In Chapter 2, we have established a new infinite sequence of symmetries in scalar field theo-
ries, and have shown that they can protect the smallness of quantum mechanical corrections
to their low-energy dispersion relations near the Gaussian fixed points. The symmetries are
exact at the infrared Gaussian fixed point, and turning on interactions typically breaks them
explicitly. Yet, the polynomial shift symmetry at the Gaussian fixed point is useful for the
interacting theory as well: It controls the interaction terms, allowing them to be naturally
small, parametrized by the amount ε of the explicit polynomial symmetry breaking near the
fixed point.

Generally, this explicit breaking by interactions breaks the polynomial shift symmetries
of NG modes all the way to the constant shift (for example, the electron-phonon interaction
in (3.32)), which remains mandated by the original form of the Goldstone theorem (guar-
anteeing the existence of gapless modes). However, one can now turn the argument around,
and ask the following question: Starting at a given Type An or B2n fixed point, what are the
lowest-dimension scalar composite operators that involve N fields φ and respect the poly-
nomial shift symmetry of degree P exactly, up to a total derivative? Such operators can
be added to the action, and for N = 3, 4, . . . they represent self-interactions of the system,
invariant under the polynomial shift of degree P . More generally, one can attempt to clas-
sify all independent composite operators invariant under the polynomial shift symmetry of
degree P , organized in the order of their increasing dimensions.

These are the questions on which we focus in this chapter. In order to provide some
answers, we will first translate this classification problem into a more precise mathematical
language, and then we will develop techniques – largely based on abstract graph theory –
that lead us to systematic answers. For some low values of the degree P of the polynomial
symmetry and of the number N of fields involved, we can even find the most relevant
invariants and prove their uniqueness. In the following, we will start with the special case
of P = 1 (essentially equivalently to Galileons); we reproduce the known Galielon N -point
invariants, and find their nowvel interpretation in terms of graph theory, as an equal-weight
sum over all labeled trees with N vertices. Then we extend the classification to P > 1
and find a whole host of new invariants, including those that represent the most relevant
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(or least irrelevant) deformations of the corresponding Gaussian fixed points. The rigorous
mathematical treatment of the associated theorems is quite technical and involved, for which
we will mostly refer the readers to the appendix in our original paper [19]. This chapter is
also, however, self-contained, and can be read independently of [19].

4.1 Galileon Invariants

Consider a quantum field theory of a single scalar field φ(t,x) in D spatial dimensions and
one time dimension. Consider the transformation of the field which is linear in spatial
coordinates: δφ = aix

i + a0, where ai and a0 are arbitrary real coefficients. Other than the
split between time and space and the exclusion of the time coordinate from the linear shift
transformation, this is the same as the theory of the Galileon [49].

The goal is to find Lagrangian terms which are invariant (up to a total derivative) under
this linear shift transformation. We will classify the Lagrangian terms by their numbers
of fields N and derivatives 2∆. Imposing spatial rotation invariance requires that spatial
derivatives be contracted in pairs by the flat metric δij. Thus ∆ counts the number of
contracted pairs of derivatives. It is easy to find Lagrangian terms which are exactly invariant
(i.e., not just up to a total derivative): Let ∆ ≥ N and let at least two spatial derivatives
act on every φ. For the linear shift case, all terms with at least twice as many derivatives as
there are fields are equal to exact invariants, up to total derivatives. However, it is possible
for a term to have fewer derivatives than this and still be invariant up to a non-vanishing
total derivative. For fixed N , the terms with the lowest ∆ are more relevant in the sense
of the renormalization group. Therefore, we will focus on invariant terms with the lowest
number of derivatives, which we refer to as minimal invariants.

These minimal invariants have already been classified for the case of the linear shift.
There is a unique (up to total derivatives and an overall constant prefactor) N -point minimal
invariant, which contains 2(N − 1) derivatives (i.e., ∆ = N − 1). These are listed below up
to N = 5.

L1-pt = φ, (4.1a)

L2-pt = ∂iφ ∂iφ, (4.1b)

L3-pt = 3 ∂iφ ∂jφ ∂i∂jφ, (4.1c)

L4-pt = 12 ∂iφ ∂i∂jφ∂j∂kφ ∂kφ+ 4 ∂iφ ∂jφ ∂kφ ∂i∂j∂kφ, (4.1d)

L5-pt = 60 ∂iφ ∂i∂jφ ∂j∂kφ ∂k∂`φ ∂`φ+ 60 ∂iφ ∂i∂jφ ∂j∂k∂`φ ∂kφ ∂`φ

+ 5 ∂iφ ∂jφ ∂kφ ∂`φ ∂i∂j∂j∂k∂`φ. (4.1e)

These are not identical to the usual expressions (e.g., in [49]), but one can easily check that
they are equivalent.

We can represent the terms in (4.1) as formal linear combinations of graphs. In these
graphs, φ is represented by a •-vertex. An edge joining two vertices represents a pair of
contracted derivatives, one derivative acting on each of the φ’s representing the endpoints of
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the edge. The graphical representations of the above terms are given below:

L1-pt = •, (4.2a)

L2-pt = , (4.2b)

L3-pt = 3 , (4.2c)

L4-pt = 12 + 4 , (4.2d)

L5-pt = 60 + 60 + 5 . (4.2e)

The structure of the graph (i.e., the connectivity of the vertices) is what distinguishes graphs;
the placement of the vertices is immaterial. This reflects the fact that the order of the φ’s in
the algebraic expressions is immaterial and the only thing that matters is which contracted
pairs of derivatives act on which pairs of φ’s. Therefore, for example, the graphs below all
represent the same algebraic expression.

(4.3)

Similarly, the four graphs below represent the same algebraic expression.

(4.4)

A more nontrivial example is given by the following twelve graphs, which all represent the
same algebraic expression.

(4.5)

The graphs in the second line above appear to have intersecting edges. However, since there
is no •-vertex at the would-be intersection, these edges do not actually intersect.

There are three times as many graphs in (4.5) as there are in (4.4). It so happens
that the coefficient with which the first graph in (4.5) appears in L4-pt (4.2d) is also three
times the coefficient with which the first graph in (4.4) appears in L4-pt. This suggests that
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the coefficient with which a graph appears in a minimal term is precisely the number of
graphs with the exact same structure (i.e., isomorphic), just with various vertices and edges
permuted.

One simple way to state this is to actually label the vertices in the graphs. If the vertices
were labeled, and thus distinguished from each other, then all of the graphs in each one
of (4.3), (4.4) and (4.5) would actually be distinct graphs. Of course, this means that the
corresponding algebraic expressions have φ’s similarly labeled, but this labeling is fiducial
and may be removed afterwards. Note the simplicity that this labeled convention introduces:
L4-pt is the sum of all of the graphs in (4.4) and (4.5) with unit coefficients.

The graphs in (4.4) and (4.5) have an elegant and unified interpretation in graph theory.
These graphs are called trees. A tree is a graph which is connected (i.e., cannot be split
into two or more separate graphs without cutting an edge), and contains no loops (edges
joining a vertex to itself) or cycles (edges joining vertices in a closed cyclic manner). One
can check that there are exactly 16 trees with four vertices and they are given by (4.4) and
(4.5). Cayley’s formula, a well-known result in graph theory, says that the number of trees
with N vertices is NN−2.

For N = 3, the 33−2 = 3 trees are in (4.3), and we indeed find that L3-pt is the sum of all
three graphs with unit coefficients. The same can be said for L2-pt and L1-pt. Therefore, the
minimal terms for N = 1, 2, 3 and 4 are represented graphically as a sum of trees with unit
coefficients (an equal-weight sum of trees). If this were to hold for the N = 5 case, it would
strongly suggest that this may hold for all N .

There are 53 = 125 trees for N = 5. They can be divided into three sets such that the
trees in each set are isomorphic to one of the three graphs appearing in L5-pt (4.2e). There
are 60 graphs which are isomorphic to the first graph appearing in L5-pt; 12 of these are
listed below and the rest are given by the five rotations acting on each of these 12 graphs:

(4.6)

There are 60 graphs which are isomorphic to the second graph appearing in L5; 12 of these
are listed below and the rest are given by their rotations:

(4.7)

Finally, there are five graphs which are isomorphic to the third graph appearing in L5-pt,
which are simply the five rotations acting on that graph. Therefore, L5-pt is indeed the sum
with unit coefficients of all trees with five vertices!
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Thus, we arrive at the main result of this section:

— the unique minimal N-point linear shift-invariant Lagrangian term is represented
graphically as a sum with unit coefficients of all labeled trees with N vertices.

We refer the reader to [19] for a thorough proof of this theorem.

4.2 Beyond the Galileons

Now, we extend the linear shift transformation to polynomials of higher degree. We will
need to develop the graphical approach further in order to tackle this problem and numer-
ous technicalities will arise. However, a rather elegant and beautiful description of these
polynomial shift invariants will emerge.

Consider the problem of determining all possible terms in a Lagrangian that are invariant
under the polynomial shift symmetry:

φ(t, xi)→ φ(t, xi) + δPφ, δPφ = ai1···iPx
i1 · · ·xiP + · · ·+ aix

i + a. (4.8)

The a’s are arbitrary real coefficients that parametrize the symmetry transformation, and
are symmetric in any pair of indices. P = 0, 1, 2, . . . corresponds to constant shift, linear
shift, quadratic shift, and so on. Obviously, if a term is invariant under a polynomial shift
of order P , then it is also invariant under a polynomial shift of order P ′ with 0 ≤ P ′ ≤ P .

We will call a term with N fields and 2∆ derivatives an (N,∆) term. We are interested in
interaction terms, for which N ≥ 3. As previously mentioned, terms with the lowest possible
value of ∆ are of greatest interest. It is straightforward to write down invariant terms with
∆ ≥ 1

2
N(P + 1) since, if each φ has more than P derivatives acting on it, then the term is

exactly invariant. Are there any invariant terms with lower values of ∆? If so, then these
invariant terms will be more relevant than the exact invariants.

To be invariant, a term must transform into a total derivative under the polynomial shift
symmetry. In other words, for a specific P and given (N,∆), we are searching for terms L
such that

δPL = ∂i(Li). (4.9)

Here L is a linear combination of terms with N φ’s and 2∆ ∂’s, and Li is a linear combination
of terms with N − 1 φ’s. Such L’s are called P-invariants.

How might we determine such invariant terms in general? For a given (N,∆), the most
brute-force method for determining invariant terms can be described as follows. First, write
down all possible terms in the Lagrangian with a given (N,∆) and ensure that they are
independent up to integration by parts. Next, take the variation of all these terms under the
polynomial shift. There may exist linear combinations of these variations which are equal
to a total derivative, which we call total derivative relations. If we use these total derivative
relations to maximally reduce the number of variation terms, then the required P -invariants
form the kernel of the map from the independent Lagrangian terms to the independent
variation terms. Let us consider some examples of this brute-force procedure in action.
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Example 1: (P,N,∆) = (1, 3, 2). In this case, a general Lagrangian is made up of two
independent terms, after integrating by parts, given by

L1 = ∂iφ ∂jφ ∂i∂jφ, L2 = φ ∂i∂jφ ∂i∂jφ.

The variation under the linear shift symmetry (for P = 1) of these terms is given by

δ1(L1) = 2L×a , δ1(L2) = L×b ,

where L×a = ai ∂jφ ∂i∂jφ and L×b = akx
k ∂i∂jφ ∂i∂jφ. There is only one total derivative that

can be formed from these terms, namely

∂i(ai∂jφ ∂jφ) = 2L×a .

Therefore, there is a single invariant term for (P,N,∆) = (1, 3, 2), given by

L1 = ∂iφ ∂jφ ∂i∂jφ.

Example 2: (P,N,∆) = (3, 3, 4). In this case, a general Lagrangian is made up of four
independent terms, after integrating by parts, given by

L1 = ∂i∂jφ ∂k∂lφ ∂i∂j∂k∂lφ, L2 = ∂i∂jφ ∂i∂k∂lφ ∂j∂k∂lφ,

L3 = ∂iφ ∂j∂k∂lφ ∂i∂j∂k∂lφ, L4 = φ ∂i∂j∂k∂lφ ∂i∂j∂k∂lφ.

The variation under the cubic shift symmetry (for P = 3) of these terms is given by

δ3(L1) = 2L×a , δ3(L2) = L×b + 2L×c ,

δ3(L3) = L×d + L×e , δ3(L4) = L×f .

where

L×a = (6aijmx
m + 2aij)∂k∂lφ ∂i∂j∂k∂lφ

L×b = (6aijmx
m + 2aij)∂i∂k∂lφ ∂j∂k∂lφ

L×c = 6aikl∂i∂jφ ∂j∂k∂lφ
L×d = (3aimnx

mxn + 2aimx
m + ai)∂iφ ∂j∂k∂lφ ∂i∂j∂k∂lφ

L×e = 6ajkl∂iφ ∂i∂j∂k∂lφ
L×f = (amnpx

mxnxp + amnx
mxn + amx

m + a)∂i∂j∂k∂lφ ∂i∂j∂k∂lφ.

There are three independent total derivatives that can be formed out of these:

∂i[2(6aijmx
m + 2aij)∂k∂lφ ∂j∂k∂lφ− 6aijj∂k∂lφ ∂k∂lφ] = 2(L×a + L×b ),

∂i[6aijk∂j∂lφ ∂k∂lφ] = 2L×c ,

∂i[6aijk∂j∂k∂`φ ∂`φ] = L×c + L×e .
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It is a non-trivial exercise to find and verify this, and a more systematic way of finding the
total derivative relations will be introduced later.

Applying these relations, one finds a single invariant for (P,N,∆) = (3, 3, 4) term:

L1 + 2L2 = ∂i∂jφ ∂k∂lφ ∂i∂j∂k∂lφ+ 2∂i∂jφ ∂i∂k∂lφ ∂j∂k∂lφ.

Note that δ3(L1 + 2L2) = 2(L×a + L×b ) + 2(2L×c ), which is a total derivative.

It is clear that even for these simple examples, the calculations quickly become unwieldy,
and it becomes increasingly difficult to classify all of the total derivative relations. In the
following we will rewrite these results in a graphical notation which will make it easier to
keep track of the contractions of indices in the partial derivatives. In addition to the •-vertex
and edges we introduced in Section 4.1, we represent δPφ by a ⊗ (a ×-vertex). Note that
there are at most P edges incident to a ×-vertex since P + 1 derivatives acting on δPφ yields
zero, whereas an arbitrary number of edges can be incident to a •-vertex. Moreover, we
introduce another vertex, called a ?-vertex, which will be used to represent terms that are
total derivatives. We require that a ?-vertex always be incident to exactly one edge, and
that this edge be incident to a •-vertex or ×-vertex. This edge represents a derivative acting
on the entire term as a whole, and the index of that derivative is contracted with the index
of another derivative acting on the φ or δPφ of the •- or ×- vertex, respectively, to which
the ?-vertex is adjacent. Therefore, directly from the definition, any graph with a ?-vertex
represents a total derivative term. The expansion of this derivative using the Leibniz rule
is graphically represented by the summation of the graphs formed by removing the ?-vertex
and attaching the edge that was incident to the ?-vertex to each remaining vertex. This
operation is denoted by the derivative map ρ. The symbols N(•), N(×) and N(?) represent
the numbers of each type of vertex. Note that N = N(•) + N(×) does not include N(?)
since ?-vertices represent neither φ nor δPφ.

We define three special types of graphs: A plain-graph is a graph in which all vertices
are •-vertices. A ×-graph is a plain-graph with one •-vertex replaced with a ×-vertex. A
?-graph is a graph with one ×-vertex and at least one ?-vertex.

Note that the variation δP of a plain-graph under the polynomial shift symmetry is given
by summing over all graphs that have exactly one •-vertex in the original graph replaced
with a ×-vertex. To illustrate the graphical approach, we rewrite the examples mentioned
earlier in the section using this new graphical notation. Since the algebraic expressions have
unlabeled φ’s, the graphs in this section will be unlabeled.

Example 1 revisited: (P,N,∆) = (1, 3, 2). The two independent terms are written in the
graphical notation as

L1 = L2 =
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The variation under the linear shift symmetry (for P = 1) is given by

δ1

( )
= 2
×

δ1

( )
=
×

The only independent total derivative that can be formed out of these terms is

ρ

(
F×
)

= 2
×

As before, there is a single invariant for (P,N,∆) = (1, 3, 2) given by L1. In this case, the
graphical version of (4.9) is given by

δ1

( )
= 2
×

= ρ

(
F×
)

Example 2 revisited: (P,N,∆) = (1, 3, 2). The four independent terms are written in the
graphical notation as

L1 = L2 = L3 = L4 = (4.10)

The variation under the cubic shift symmetry (for P = 3) is given by

δ3

( )
= 2
×

δ3

( )
=
×

+ 2
×

δ3

( )
=
×

+
×

δ3

( )
=
×

The independent total derivatives that can be formed out of these terms are

ρ

(
2

F×
−

F×
)

= 2
×

+ 2
×

ρ

(
F×
)

= 2
×

ρ

(
F×
)

=
×

+
×
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Once again, there is a single invariant for (P,N,∆) = (3, 4) given by L1 +2L2. The graphical
version of (4.9) is given by

δ3

(
+ 2

)
= 2
×

+ 2
×

+ 4
×

= ρ

(
2

F×
−

F×
+ 2

F×
)

(4.11)

So far all we have done is rewrite our results in a new notation. But the graphical notation is
more than just a succinct visual way of expressing the invariant terms. The following section
illustrates the virtue of this approach.

4.3 New Invariants via the Graphical Approach

As shown in [19], the graphical approach allows us to prove many general theorems. In
particular, we have the following useful outcomes:

1. Without loss of generality, we can limit our search for invariants to graphs with very
specific properties.

2. There is a simple procedure for obtaining all the independent total derivative relations
between the variation terms for each P , N and ∆.

3. The graphical method allows a complete classification of 1-invariants.

4. The graphical method allows many higher P -invariant terms to be constructed from
lower P invariants.

We will expound upon the above points by presenting explicit examples. These examples are
generalizable and their invariance is proven in [19]. However, the reader can also check by
brute force that the terms we present are indeed invariant. We will now summarize points 1
and 2 and will return to point 4 in Section 4.5. Point 3 was discussed in Section 4.1. We will
refer the reader to the appendix in [19] for proofs and further details, but we will summarize
the main results in the following.

When building invariants, we need only consider loopless plain-graphs, since a loop rep-
resents ∂i∂i acting on a single φ and one can always integrate by parts to move one of the ∂i’s
to act on the remaining φ’s. Furthermore, a careful analysis shows that we can also restrict
to plain-graphs with vertices of degree no less that 1

2
(P + 1). This represents a significant

simplification from the procedure used in 4.2. For instance, in (4.10), the graphs L3 and L4

are immediately discarded.
Taking the variation of these terms yields ×-graphs and we need to determine the total

derivative relations between them. Since all plain-graphs we are considering are loopless, any
×-graphs involved in these total derivative relations are also loopless. The total derivative
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relations that we need to consider can be obtained with the use of graphs called Medusas.
A Medusa is a loopless ?-graph with all of its ?-vertices adjacent to the ×-vertex and such
that the degree of the ×-vertex is given by:

deg(×) = P + 1−N(?), (4.12)

where, again, N(?) is the number of ?-vertices. Note that because deg(×) ≥ N(?) for a
Medusa, (4.12) implies that N(?) ≤ 1

2
(P + 1) ≤ deg(×) for any Medusa. Furthermore, we

need only consider Medusas with ×-vertex and •-vertices of degree no less than 1
2
(P + 1).

From each of these Medusas, we obtain a total derivative relation, containing only loopless
×-graphs, by applying the map ρ and then omitting all looped graphs. We will denote this
map as ρ(0). In Section 4.4, we will give an introduction to the construction of such total
derivative relations from Medusas. Importantly, this procedure captures all relevant total
derivative relations.

In general, for given N and P , we call an invariant consisting of graphs containing the
lowest possible value of ∆ a minimal invariant. Minimal invariants are of particular interest
in a QFT, since they are the most relevant N -point interactions. In the following, as some
illustrative examples, we apply the graphical approach to classify all minimal invariants for
N = 4 and P = 2, 3.

The Minimal Invariant: (P,N,∆) = (2, 4, 5).

As our first example, let us find the minimal 2-invariant for N = 4. For P = 2, any
Medusa must have N(?) ≤ 1

2
(P + 1) = 3

2
, and thus there is exactly one ?-vertex in a P = 2

Medusa. Furthermore, we need only consider Medusas in which each vertex has degree at
least 2, since 1

2
(P+1) = 3

2
. Therefore, the counting implies that we need only consider P = 2

Medusas with ∆ ≥ N + 1. In particular, when N = 4, the minimal ∆ is 5 (representing
terms with 10 derivatives). In the following we show that there is exactly one 2-invariant
with ∆ = 5. The relevant Medusas are:

M1 =

F
×

M2 =

F
×

The resulting loopless total derivative relations are:

ρ(0)(M1) = 2
×

+
×

≡ 2L×a + L×e

ρ(0)(M2) =
×

+
×

+
×

≡ L×b + L×c + L×d

(4.13)

Note that, when acting on these P = 2 Medusas, ρ and ρ(0) are in fact the same.
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On the other hand, the invariants must be constructed out of plain-graphs containing
vertices of degree no less than 1

2
(P + 1) = 3

2
. The only possibilities are:

L1 = L2 = L3 = L4 = L5 =

The invariant cannot be constructed out of L5 since δ2(L5) is absent from the total derivative
relations (4.13). Hence, we need only consider the variations of L1, L2, L3 and L4.

We can now determine the 2-invariants. The total derivative relations allow us to identify
L×d ∼ −L

×
b − L×c and L×e ∼ −2L×a . Up to total derivatives,

δ2


L1

L2

L3

L4

 =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 1




L×a
L×b
L×c
L×d
L×e

 ∼


2 0 0
0 2 0
0 0 2
−2 −1 −1


 L×a

L×b
L×c

 (4.14)

The invariants form the nullspace of the transpose of the final 4 × 3 matrix in (4.14). The
nullspace is spanned by (1, 1, 1, 1). Therefore, there is one 2-invariant given by the linear
combination L1 + L2 + L3 + L4, i.e.,

+ + + (4.15)

Therefore, (4.15) gives the only independent minimal 2-invariant for N = 4.

The Minimal Invariant: (P,N,∆) = (3, 4, 6).

Next, let us consider P = 3, N = 4, for which each vertex degree must be at least
1
2
(P + 1) = 2. Again we would like to find the minimal invariant in this case. By counting

alone, it is possible to write down Medusas with ∆ = 5. In fact, a 3-invariant with N = 4
and ∆ = 5 would also be 2-invariant. The only possible 2-invariant with (N,∆) = (4, 5) is
(4.15). However, this is not a 3-invariant because it is impossible for some graphs contained
in it to appear in a 3-invariant. For example, by replacing a degree-2 vertex in L2 in (4.15)
with a ×-vertex, a ×-graph Γ× is produced; Γ× and the only P = 3 Medusa M that generates
Γ× are given below:

Γ× =
×

M =

FF
×

But M contains a •-vertex of degree lower than 2, and therefore (4.15) cannot be 3-invariant.
This sets a lower bound for ∆: ∆ ≥ 6. For ∆ = 6, the Medusas are:

M1 =

F
×

M2 =

F
×

M3 =

F
×

M4 =

F
×
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M5 =

F
×

M6 =

F
×

M7 =

FF
×

M8 =

FF
×

(4.16)

These give the following total derivative relations:

ρ(0)(M1) =
×

+
×

+
×

≡ L×a + L×b + L×c

ρ(0)(M2) =
×

+ 2
×

≡ L×d + 2L×e

ρ(0)(M3) =
×

+ 2
×

≡ L×f + 2L×g

ρ(0)(M4) =
×

+
×

+
×

≡ L×a + L×h + L×i

ρ(0)(M5) = 2
×

+
×

≡ 2L×e + L×j

ρ(0)(M6) =
×

+
×

+
×

≡ L×b + L×k + L×h

ρ(0)(M7) = 2
×

+
×

+ 4
×

+ 2
×

≡ 2L×` + L×m + 4L×n + 2L×o

ρ(0)(M8) = 2
×

+
×

+ 2
×

+ 4
×

≡ 2L×p + L×q + 2L×r + 4L×s

Then the invariants must be made up of plain-graphs whose variations are contained in the
total derivative relations above. In other words, the invariants are made from:

L1 = L2 = L3 = L4 = L5 =

L6 = L7 = L8 = L9 = L10 =
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We can now determine the 3-invaraints:

δ3



L1

L2

L3

L4

L5

L6

L7

L8

L9

L10



=



4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0





L×a
L×b
L×c
L×d
L×e
L×f
L×g
L×h
L×i
L×j
L×k
L×`
L×m
L×n
L×o
L×p
L×q
L×r
L×s



∼



4 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 −2 −4 −2 0 0 0
0 0 1 0 1 0 1 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0
−2 0 0 0 −2 0 0 0 0 1 0
0 0 −8 0 0 0 0 0 0 0 0
0 −1 0 0 −1 1 0 0 0 0 1
0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 −6 −6 −12





L×a
L×b
L×e
L×f
L×h
L×l
L×n
L×o
L×p
L×r
L×s


The nullspace of the transpose of this matrix is spanned by (3, 6, 24, 0, 6, 3, 12, 6, 3, 1), giving
the only invariant linear combination,

3 + 6 + 24

+ 6 + 3 + 12

+ 6 + 3 + (4.17)
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This gives the only independent minimal 3-invariant for N = 4.
Note that L4 does not appear in the invariant. Indeed, it can be discarded immediately,

since the unique Medusa associated with L4 is

FFF

×

This Medusa has an empty vertex, which violates the lower bound on vertex degree.

4.4 Medusas and Total Derivative Relations

We have seen that Medusas play a central role in the search for P -invariants. It is thus
worthwhile to discuss the key features of Medusas and to demonstrate how a total derivative
relation consisting of loopless ×-graphs is constructed from a Medusa. Given any Medusa,
ρ(0)(M) is in fact a total derivative relation, as can be seen from the following construction.

For fixed P and N , consider a Medusa M that contains N(?) ?-vertices. Then, by
definition, it has a ×-vertex of degree deg(×) = P +1−N(?). Since the maximal degree of a
×-vertex is P , graphs in ρ(M) contain at most N(?)− 1 loops. Form a ?-graph Γ(`) from M
by deleting ` ≤ N(?)− 1 ?-vertices in M and then adding ` loops to the ×-vertex. By this
definition, M = Γ(0). In the algebraic expression represented by Γ(`), the N(?)− ` ?-vertices
stand for N(?)−` partial derivatives acting on the whole term. Distributing N(?)−`−1 ∂’s
over all φ’s in this algebraic expression will result in a linear combination of total derivative
terms. In the graphical representation, this is equivalent to acting ρ on Γ(`) but keeping
fixed exactly one ?-vertex and its incident edge. Setting to zero all coefficients of graphs in
the resulting linear combination, except for the ones containing exactly ` loops, generates a
linear combination L(`) of ?-graphs, each containing exactly one ?-vertex. By construction,

ρ(0)(M) = ρ

N(?)−1∑
α=0

(−1)αL(α)

 . (4.18)

The algebraic form of the RHS of (4.18) is explicitly a total derivative relation. For a rigorous
treatment of the above discussion, refer to the appendix in [19].

As a simple example, we consider the Medusa M7 referred to in (4.16). We have

M7 =

FF
×

⇒ ρ(0)(M7) = ρ

( F
×

+ 2

F
×

−

F
×

)
For a second example, we consider (P,N,∆) = (5, 3, 6) and the Medusa

M =

FF
F×
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By (4.18), we obtain

ρ(0)(M) = ρ

(
2

F×
+ 2

F×
− 2

F×
+

F×
)
.

This Medusa is involved in a 5-invariant that we will construct in Section 4.5.

4.5 Superposition of Graphs

In Section 4.1, we discovered an intriguing construction of the minimal 1-invariant for given
N , which is a sum with equal coefficients of all possible trees with N vertices. A close study
of the P -invariants with P > 1 in Section 4.2 also reveals an elegant structure in these
invariants: They can all be decomposed as a superposition of equal-weight tree summations
and exact invariants. Recall that an exact invariant is a linear combination that is invariant
exactly, instead of up to a total derivative. In the graphical representation, a linear combi-
nation of graphs is an exact PE-invariant if and only if all vertices are of degree larger than
PE. Each graph in an exact invariant is itself exactly invariant.

Next we illustrate “the superposition of linear combinations” by explicit examples. When
appropriate, we will consider labeled graphs and only remove the labels at the end. Consider
two labeled graphs,

Γ1 = Γ2 =

The superposition of Γ1 and Γ2 is defined to be the graph formed by taking all edges in Γ2

and adding them to Γ1, i.e.,

Γ1 ∪ Γ2 =

The superposition of two linear combinations, LA =
∑kA

i=1 ai Γ
A
i and LB =

∑kB
i=1 bi Γ

B
i , of

plain-graphs ΓAi ,Γ
B
j with the same N , is defined as

LA ∪ LB ≡
kA∑
i=1

kB∑
j=1

ai bj ΓAi ∪ ΓBj .

In the following we present numerous examples of invariants constructed by superposing
equal-weight tree summations and exact invariants for various P ’s. In fact, we prove the
following theorem in [19]:

— for fixed N , the superposition of an exact PE-invariant with the superposition of Q
minimal loopless 1-invariants results in a P -invariant, provided PE + 2Q ≥ P .1

1Note that this theorem also applies when PE < 0, where we take an exact PE-invariant for PE < 0 to
mean any linear combination of plain-graphs. In particular, the plain-graph consisting only of empty vertices
is a PE-invariant for any PE < 0, and superposing this graph on any other is equivalent to not superposing
anything at all.
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Figure 4.1: All 16 trees for N = 4.

We conjecture that the above result captures all P -invariants, up to total derivatives. In
[19], we classified all exact invariants and all 1-invariants; therefore, it is straightforward to
construct the P -invariants in the above statement for any specific case. We now proceed to
construct several examples for minimal P -invariants to demonstrate how the superposition
construction works; further examples and relevant mathematical proofs can be found in [19].

Case 1: (P,N) = (3, 3).

For P = 3, the only independent minimal invariant for N = 3 is given in (4.11), which
can be written as a superposition of two equal-weight tree summations:

As we already pointed out, this 3-invariant happens to be the minimal 2-invariant as well.

Case 2: (P,N) = (3, 4).

In Section 4.3 we found that (4.17) gives the only independent minimal 3-invariant for
N = 4. It has the structure of a superposition of two sums with unit coefficients of all trees
in Figure 4.1. As mentioned in Section 4.1, there are two isomorphism classes of N = 4
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(a) Superposition of TA and Figure 4.1. (b) Superposition of TB and Figure 4.1.

Figure 4.2: Superposition of graphs in (4.19) on trees in Figure 4.1.

trees:

TA = TB = (4.19)

Superposing these graphs on the N = 4 trees produces the graphs in Figure 4.2. If T and
T ′ are isomorphic trees, then superposing T on the trees in Figure 4.1 produces 16 graphs
which are isomorphic to the 16 graphs formed by superposing T ′ on the same trees. There
are four trees in the isomorphism class of TA and twelve for TB. Therefore, we just have to
give the 16 graphs in Figure 4.2a weight 4 and the 16 graphs in Figure 4.2b weight 12 and
then add them all up. The result is (4.17) with an overall prefactor of 4. Again, we have
already shown that this is the unique minimal 3-invariant for N = 4.

Case 3: (P,N) = (5, 4).

The superposition of three equal-weight sums of N = 4 trees yields

4 + 12 + 108 + 432 + 288

+ 72 + 216 + 216 + 36 + 72

+ 72 + 144 + 144 + 612 + 144

+216 + 72 + 72 + 432 + 72

+ 72 + 72 + 216 + 192 + 108
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Note that the sum of the coefficients is 4096 = 163.
To facilitate the check of the invariance of the above linear combination, denoted as L,

we provide the linear combination of Medusas LM such that δ5(L) = ρ(0)(LM):

12

FFF

×
+ 72

FFF

×
+ 24

FFF

×
+ 72

FF
×

+ 72

FF
×

+ 144

FF
×

+144

FF
×

+ 216

FF
×

+ 72

F
×

+ 72

F
×

+ 72

F
×

+ 288

F
×

+432

F
×

+ 108

F
×

+ 216

F
×

+ 144

F
×

+ 216

F
×

In general, superposing χ minimal loopless 1-invariants and then identifying all isomor-
phism graphs (so that all vertices are considered to be identical) results in a P = 2χ − 1
invariants. It is quite difficult to see why this has to be true in the position space (whose
proof can be found in the appendix in [19]). However, after Fourier transforming into the mo-
mentum space, the above statement becomes transparent. Consider a degree-P polynomial
shift symmetry,

φ(t,x)→ φ(t,x) + ai1···iPx
i1 · · ·xiP + · · · . (4.20)

In momentum space, we have

φ̃(ω,k)→ φ(ω,k) + ai1···iP ∂ki1 · · · ∂kiP δ(k) + · · · . (4.21)

Moreover, the Feynman rule derived from a P -invariant operator with n vertices constructed
from χ copies of equal-weight sums of trees is simply

(εi1···ink
i1
1 · · ·kinn−1)2χ, (4.22)

where we applied the conservation law of momentum, kn = −k1 − · · · − kn−1 to elimintate
kn in the Feynman rule. This Feynman rule is manifestly invariant under the polynomial
shift symmetry (4.21).

In this chapter, we have seen that the graphical language is very efficient not only for
deriving theorems about our invariants, but also for stating the results. This graphical
technique is important for two reasons. First, it is quite powerful: The translation of the
classification problem into a graph-theory problem allows us to generate sequences of invari-
ants for various values of P , number N of fields, the number 2∆ of spatial derivatives, and as
a function of the spatial dimension D, in a way that is much more efficient than any “brute
force” technique. Secondly, and perhaps more importantly, the graphical technique reveals
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some previously hidden structure even in those invariants already known in the literature.
For example, the known Galileon N -point invariants are given by the equal-weight sums
of all labeled trees with N vertices! This hidden simplicity of the Galileon invariants is a
feature previously unsuspected in the literature, and its mathematical explanation deserves
further study. In addition, we also discovered patterns that allow the construction of higher
polynomials from the superposition of graphs representing a collection of invariants of a
lower degree – again a surprising result, revealing glimpses of intriguing connections among
the a priori unrelated spaces of invariants across the various values of P , N and ∆.
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Chapter 5

Cascading Multicriticality

In Chapter 2, we showed that the Type A-B dichotomy of nonrelativistic NG modes is further
refined into two discrete families, labeled by a positive integer n: Type An NG modes are
described by a single scalar with dispersion ω ∼ kn (and dynamical critical exponent z = n),
while Type B2n modes are described by a canonical pair and exhibit the dispersion relation
ω ∼ k2n (and dynamical exponent z = 2n). These two families are technically natural, and
therefore stable under renormalization in the presence of interactions [18]. As usual, such
naturalness is explained by a new symmetry. For n = 1, the NG modes are protected by the
well-known constant shift symmetry δφ(t,x) = b. The n > 1 theories enjoy shift symmetries
by a degree-P polynomial in the spatial coordinates,

δφ(t,x) = b+ bix
i + · · ·+ bi1...iPx

i1 · · ·xiP , (5.1)

with suitable P . Away from the Type An and B2n Gaussian fixed points, the polynomial shift
symmetry is generally broken by most interactions. The lowest, least irrelevant interaction
terms invariant under the polynomial shift were systematically discussed in Chapter 4 (also
see [19, 57]). Such terms are often highly irrelevant compared to all the other possible
interactions that break the symmetry.

Having established the existence of the multicritical Type A and B families of NG fixed
points, in this chapter we study the dynamics of flows between such fixed points in interacting
theories. We uncover a host of novel phenomena, involving large, technically natural hierar-
chies of scales, protected again by the polynomial shift symmetries. As a given theory flows
between the short-distance and the long-distance regime, it can experience a natural cascade
of hierarchies, sampling various values of the dynamical critical exponent z in the process.
Such cascades represent an intriguing mechanism for evading some of the consequences of
the relativistic Coleman-Hohenberg-Mermin-Wagner (CHMW) Theorem. In Chapter 3, we
already encountered a first example that exhibits this novel behavior, in the context of con-
densed matter physics. In this chapter, we will further illustrate the the novelties of this
cascading behavior with a series of examples.



CHAPTER 5. CASCADING MULTICRITICALITY 56

5.1 Relativistic and Nonrelativistic CHMW Theorem

First recall that in relativistic systems, all NG bosons are of Type A1, assuming that they
exist as well-defined quantum objects. Whether or not they exist, and whether or not the
corresponding symmetry can be spontaneously broken, depends on the spacetime dimen-
sion. This phenomenon is controlled by a celebrated theorem, discovered independently in
condensed matter by Mermin and Wagner [58] and by Hohenberg [59], and in high-energy
physics by Coleman [60]. We therefore refer to this theorem, in the alphabetical order, as
the CHMW theorem.

The relativistic CHMW theorem states that the spontaneous breaking of global con-
tinuous internal symmetries is not possible in 1 + 1 spacetime dimensions. The proof is
beautifully simple. 1 + 1 is the “lower critical dimension,” where φ is formally dimension-
less at the Gaussian fixed point. Quantum mechanically, this means that its propagator is
logarithmically divergent, and we must regulate it by an IR regulator µIR:

〈φ(x)φ(0)〉 =

∫
d2k

(2π)2

eik·x

k2 + µ2
IR

(5.2)

≈ − 1

2π
log(µIR|x|) + const. +O(µIR|x|).

The asymptotic expansion in (5.2), valid for µIR|x| � 1, shows that as we take µIR → 0, the
propagator stays sensitive at long length scales to the IR regulator. We can still construct
various composite operators from the derivatives and exponentials of φ, with consistent and
finite renormalized correlation functions in the µIR → 0 limit, but the field φ itself does not
exist as a quantum object. Since the candidate NG mode φ does not exist, the corresponding
symmetry could never have been broken in the first place, which concludes the proof.

Going back to the general class of Type An NG modes, we find an intriguing nonrela-
tivistic analog of the CHMW theorem. The dimension of φ(t,x) at the An Gaussian fixed
point in D + 1 dimensions – measured in the units of spatial momentum – is

[φ(t,x)]An =
D − n

2
. (5.3)

The Type An field φ is at its lower critical dimension when D = n. Its propagator also
requires an infrared regulator. There are many ways how to introduce µIR in this case, for
example by

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + k2D + µ2D
IR

, (5.4)

or by

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + (k2 + µ2
IR)D

. (5.5)
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Either way, as we try to take µIR → 0, the asymptotics of the propagator again behaves
logarithmically, both in space

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2Γ(D/2)
log(µIR|x|) + . . . for |x|D � t (5.6)

and in time,

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2D Γ(D/2)
log(µDIRt) + . . . for |x|D � t. (5.7)

Most importantly, the propagator remains sensitive to the infrared regulator µIR. Conse-
quently, we obtain the nonrelativistic, multicritical version of the CHMW theorem for Type
A NG modes and their associated symmetry breaking:

— The Type An would-be NG mode φ(t,x) at its lower critical dimension D = n exhibits
a propagator which is logarithmically sensitive to the infrared regulator µIR, and therefore
φ(t,x) does not exist as a quantum mechanical object. Consequently, no spontaneous
symmetry breaking with Type An NG modes is possible in D = n dimensions.

By extension, this also invalidates all Type An would-be NG modes with n > D: Their
propagator grows polynomially at long distances, destabilizing the would-be condensate and
disallowing the associated symmetry breaking pattern.

In contrast, the dimension of the Type B2n field is

[φ(t,x)]B2n
=
D

2
,

and the lower critical dimension is D = 0. Hence, in all dimensions D > 0, the Type B2n

NG modes are free of infrared divergences and well-defined quantum mechanically for all
n = 1, 2, . . ., and the Type B nonrelativistic, multicritical CHMW theorem is limited to the
following statement:

— the Type B2n symmetry breaking is possible in any D > 0 and for any n = 1, 2, . . ..

5.2 Cascading Multicriticality

Whereas in the relativistic case, all NG modes must always be of Type A1, in nonrelativistic
systems the existence of the Type An and B2n families allows a much richer dynamical
behavior.

For example, with the changing momentum or energy scales, a given NG mode can change
from Type An (or B2n) to Type An′ (or B2n′) with n 6= n′, or it could change from Type A
to Type B. The hierarchies of scales that open up in this process are naturally protected by
the corresponding polynomial symmetries. One of the simplest cases is the Type An scalar
with n > 1, whose polynomial shift symmetry of degree P is broken at some momentum
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scale µ to the polynomial shift symmetry of degree P − 2, by some small amount ε � 1.
This breaking modifies the dispersion relation to

ω2 ≈ k2n + ζ2
n−1k

2n−2, (5.8)

with ζ2
n−1 ≈ εµ2. Here, as in [4], we identify µ as the scale of naturalness. At a hierarchically

much smaller scale, µ⊗ ≡ µ
√
ε, the system exhibits a crossover, from Type An above µ⊗ to

Type An−1 below µ⊗. The technical naturalness of the large hierarchy µ⊗ � µ is protected
by the restoration of the polynomial shift symmetry of degree P as ε→ 0.

In the special case of n = D, this crossover from Type AD to Type AD−1 yields an
intriguing mechanism for evading the naive conclusion of our CHMW theorem. For a large
range of scales close to µ, the would-be NG mode can exhibit a logarithmic propagator.
The hierarchically smaller scale µ⊗ � µ then serves as a natural IR regulator, allowing the
NG mode to cross over to Type AD−1 at very long distances. Therefore, the mode is well-
defined as a quantum mechanical object, despite the large hierarchy across which it behaves
effectively logarithmically.

An interesting refinement of this scenario comes from breaking the polynomial symmetries
hierarchically, in a sequence of partial breakings, from a higher polynomial symmetry of
degree P to symmetries with degrees P ′ < P , P ′′ < P ′, . . ., all the way to constant shift.
This gives rise to a cascading phenomenon, with a hierarchy of crossover scales µ � µ′ �
µ′′ � . . ., separating plateaux governed by the fixed points with the dynamical exponent
taking the corresponding different integer values. Again, such cascading hierarchies are
technically natural, and protected by the underlying breaking pattern of the polynomial
symmetries.

Before we illustrate this behavior in a series of examples, it is worth pointing out one
very simple yet important feature of large hierarchies in nonrelativistic theories. Consider a
theory dominated over some range of scales by the dispersion relation ω ≈ kn, with n > 1.
If we open up a large hierarchy of momentum scales µ� µ′ (say by N orders of magnitude),
this hierarchy of momentum scales gets magnified into an even larger hierarchy (by nN
orders of magnitude) in energy scales.

A Type-A Hierarchy. The first model that we use to illustrate the hierarchy is a relatively
well-known system in 2 + 1 dimensions: The z = 2 Gaussian model of a single Aristotelian
scalar field φ(t,x), with a derivative 4-point self-interaction turned on [48, 61]:

S2 =
1

2

∫
dtd2x

{
φ̇2 − (∂2φ)2 − c2∂iφ∂iφ− g(∂iφ∂iφ)2

}
.

This action contains all the marginal and relevant terms of the z = 2 fixed point consistent
with the constant shift symmetry and the reflection symmetry φ → −φ. At the z = 2
Gaussian fixed point, g is classically marginal, and breaks the polynomial shift symmetry
of this fixed point to constant shift. Quantum corrections at one loop turn g marginally
irrelevant [48].
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This system allows a natural hierarchy of scales, stable under quantum corrections. At
the naturalness scale µ, we can break the polynomial shift symmetry of the z = 2 fixed
point to constant shifts by a small amount ε0 � 1. This implies g ∼ ε0 and c2 ∼ ε0µ

2,
relations which can be shown to be respected by the loop corrections. In particular, c2 can
stay naturally small, much less than µ2. The dispersion relation changes from z = 2 close to
the high scale µ, to z = 1 around the much lower scale µ1 ≡ µ

√
ε0 � µ.

A Type-A/Type-B Hierarchy. The above example illustrates the cascading mechanism
in the Type A case. Type B systems can form their own hierarchies, in the obvious gener-
alization of the Type A cascades exemplified above. There is no analog of the lower critical
dimension and the CHMW limit on n. Type A NG modes can also exhibit a flow to Type
B. This behavior, albeit not new (see e.g. [62]), can be embedded as one step into the more
general technically natural hierarchies of Type A or B as discussed above. In particular, the
crossover to Type B can provide a new IR regulator of the Type A cascade at the lower
critical dimension.

We shall illustrate this on the simplest Type A1 example, although the full story is, of
course, more general. Consider two would-be Type A NG fields, φ1,2(t,x), in the vicinity of
the z = 1 Gaussian fixed point

S1 =
1

2

∫
dtdDx

{
φ̇2

1 + φ̇2
2 − c2

1(∂iφ1)2 − c2
2(∂iφ2)2

}
.

For simplicity, we will set c1 = c2 = 1, although this is not necessary for our argument.
Besides the rotations and translations of the two scalars, note two independent Z2 symmetries
– the field reflection,

R : (φ1, φ2)→ (φ1,−φ2), (5.9)

and the time reversal,
T : t→ −t, φ1,2(t,x)→ φ1,2(−t,x). (5.10)

We can now turn on the Type B kinetic term,

S ′ = S1 + Ω

∫
dtdDx

(
φ1φ̇2 − φ2φ̇1

)
. (5.11)

Ω now provides an IR regulator for the propagator. At that scale, the field reversal R and
the time reversal T are broken to their diagonal subgroup. At energy scales below Ω, one
of the would-be Type A NG modes survives and turns into the Type B NG mode, while
the other would-be Type A mode develops a gap set by Ω. Note that in 1 + 1 dimensions,
the “no-go” consequences of the relativistic CHMW theorem are again naturally evaded by
this hierarchy: A NG mode exists quantum mechanically after all, and symmetry breaking
is possible, despite the fact that above the scale Ω, the two would-be Type A modes exhibit
the logarithmic two-point function suggesting that symmetry breaking may not be possible.

The hierarchy between the Type A and Type B behavior is also protected by symmetries.
In fact, the system has multiple symmetries that can do this job. One can rely on the
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breaking pattern of the discrete symmetries R and T mentioned above. If the Type A
system is Lorentz invariant, one can use Lorentz symmetry breaking to protect small Ω.
More interestingly, without relying on the discrete or Lorentz symmetries, one can introduce
a shift symmetry linear in time,

δφ1,2 = b1,2t. (5.12)

While the Type A kinetic term is invariant under this symmetry, the Type B kinetic term
is not. Breaking the linear shift symmetry to constant shifts allows the Type-A/Type-B
crossover scale to be hierarchically smaller than the naturalness scale.

In these two examples, we have seen that the multicritical Type An and B2n NG modes
can experience technically natural cascading hierarchies of scales, protected by a hierarchy
of polynomial shift symmetries. Perhaps the most interesting case is Type A with n = D,
which according to our CHMW theorem exhibits logarithmic sensitivity to the IR regulator.
In the relativistic case, this would prevent the symmetry breaking. We have shown that the
Type AD modes can experience a cascade to Type An with n < D (or to Type B), which
provides a natural IR regulator, thus making the symmetry breaking possible after all.

5.3 Prelude: Scalar Field Theory with Linear Shift Symmetry

In rest of this chapter, we introduce a new scalar field theory with linear shift symmetry,
which not only illustrates the cascading hierarchy with multiple crossovers, but also exhibits
additional intriguing renormalization properties of independent interest. The full analysis of
the quantum properties of this theory will be discussed in details in Chapter 6; here we will
only give a brief prelude of this theory and focus on the cascading behavior. In Chapter 7,
we will apply this theory to address the Higgs mass hierarchy problem.

We impose two discrete symmetries: φ(t,x) → −φ(t,x), and time reversal T : (t,x) →
(−t,x), acting trivially on φ, T : φ(t,x) = φ(−t,x). For our main interest, T is a bit of
an overkill: It will be an “accidental” symmetry anyway. In 3 + 1 dimensions, the Gaussian
fixed point with z = 3 is described by

S3 =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2

}
. (5.13)

We have normalized the field φ to set the coefficient in front of the kinetic term φ̇2 to the
canonical value of 1/2, and the coefficient in front of the (∂3φ)2 term has been set to 1/2 by
the rescaling of space. The scalar field at the z = 3 Gaussian fixed point is dimensionless,

[φ] = 0. (5.14)

Thus, in 3 + 1 spacetime dimensions, φ is at its lower critical dimension. In Chapter 3, this
z = 3 fixed point is used to explain the T -linear resistivity in strange metals.

Next, we turn to the classification of all classically marginal and relevant interaction
terms up to total derivative. First of all, just as in the relativistic non-linear sigma model
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in 1 + 1 dimensions, there would be an infinite number of such couplings. In order to reduce
consistently to a finite number of independent couplings, we impose (at least) the constant
shift symmetry. The sole exception will be the addition of the non-derivative quadratic gap
term m2φ2, which of course breaks the constant shift symmetry explicitly, but does so in the
“softest possible way” without generating any self-interactions violating the constant shift
symmetry.1

There are four marginal interaction terms invariant under the constant shift. It is con-
venient to represent them in the “loopless basis”2. We find three independent terms at four
points,

O(1)
4 = ∂i∂j∂kφ ∂iφ ∂jφ ∂kφ = , (5.15)

O(2)
4 = ∂iφ ∂i∂jφ ∂j∂kφ ∂kφ = , (5.16)

O(3)
4 = ∂i∂jφ ∂i∂jφ ∂kφ ∂kφ = , (5.17)

(5.18)

and one at six points:

O6 = (∂iφ∂iφ)3 = . (5.19)

The z = 3 fixed point has three relevant terms which respect the constant shift symmetry:
Two of them modify the free, Gaussian part of the theory,

∂iφ ∂iφ, ∂i∂jφ ∂i∂jφ, (5.20)

and the third one gives a four-point self-interaction,

W ≡ (∂iφ∂iφ)2. (5.21)

Hence, the general action involving all the marginal and relevant couplings with constant
shift symmetry (plus the gap term) can be written as

S =
1

2

∫
dt d3x

{
φ̇2 −

3∑
s=0

ζ2
s (∂i1 . . . ∂isφ)2 − wW −

3∑
I=1

λ
(I)
3 O

(I)
3 − g3O3

}
. (5.22)

We have used the collective notation for ζs, with ζ0 ≡ m and ζ1 ≡ c. The engineering
dimensions of various parameters are

[ζ2
2 ] =

2

3
, [c2] =

4

3
, [m2] = 2. (5.23)

1The low-energy observer with the relativistic prejudice might be inclined to call this term the “mass
term,” but we find the notion of a “gap term” more accurate.

2This refers to the terminology used in Chapter 4, as inherited from graph theory. The “loopless basis”
is a representation in which whenever a ∂2 ≡ ∂i∂i term acting on one φ is encountered, it is eliminated by
one integration by parts. In the graphical representation, this means that the two end of an edge never join
to the same vertex.
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The couplings λ
(I)
3 and g3 are all dimensionless.

Renormalization group properties of any Aristotelian scalar field theory will depend on
possible hidden symmetries of the model. We already used the constant shift symmetry
above, to restrict the number of independent marginal and relevant terms to a finite num-
ber. However, the structure of symmetries of the infinite hierarchy of Aristotelian-invariant
operators that can appear in the action and are built out of n copies of φ and some number
∆ of pairs of derivatives ∂i · · · ∂i · · · is much more intricate. In our case of z = 3 in 3 + 1
dimensions, polynomial shift symmetries pick out one renormalizable self-interaction term.
We define infinitesimal polynomial shift transformations of φ,

φ(x, t)→ φ(x, t) + δφ(x, t), (5.24)

where
δφ(x, t) = bi1···iPx

i1 · · ·xiP + . . .+ bix
i + b0. (5.25)

The task of classifying all terms invariant under the polynomial shift transformation (5.25)
of degree P up to a total derivative represents an intriguing mathematical problem, which
effectively leads to new graph-theory cohomology groups. This problem was set up, and
solved for some lower values of P and low-enough number of fields and derivatives, in Chapter
4.

Among all the 4-point and 6-point interaction terms in (5.22), there is a unique term
which is invariant under linear shifts, up to a total derivative. As shown in Section 4.1, for
a given number n of fields, there is a unique invariant under linear shift symmetry with the
lowest number of derivatives (in high enough spacetime dimensions); moreover, this term
has a very simple graphical representation – it is simply given by the equal-weight sum over
all spanning trees with n vertices, when we treat the vertices as distinguishable. Following
this rule, for n = 4 we thus get our unique 4-point 1-invariant,

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

. (5.26)

When we again treat the vertices as indistinguishable, this sum becomes

12O ≡ 4 + 12 = 4 O(1)
4 + 12 O(2)

4

= 4 ∂i∂j∂kφ ∂iφ ∂jφ ∂kφ+ 12 ∂iφ ∂i∂jφ ∂j∂kφ ∂kφ. (5.27)
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Finally, here is the theory that will be the subject of our case study. Its action is given
by (5.22), in which we set

λ
(1)
3 = λ3, λ

(3)
3 =

λ3

3
, (5.28)

and all other non-Gaussian couplings to zero:

λ
(2)
2 = 0, g3 = 0, w = 0. (5.29)

The total action is

S =
1

2

∫
dt d3x

{
φ̇2 − ζ2

3 (∂i∂j∂kφ)2 − ζ2
2 (∂i∂jφ)2 − c2∂iφ ∂iφ−m2φ2

− λ3

(
∂iφ ∂i∂jφ ∂j∂kφ ∂kφ+

1

3
∂iφ ∂jφ ∂kφ ∂i∂j∂kφ

)}
, (5.30)

This model has intriguing renormalization group properties, which will be discussed in detail
in Chapter 6. There is no wave-function renormalization of φ, and both λ3 and c2 satisfy
a non-renormalization theorem to all orders in λ3. This does not mean that the theory can
be weakly coupled at all scales: The coefficient ζ2

3 in (5.30) – which we set equal to 1 in the
classical limit – is logarithmically divergent starting at two loops, and therefore ζ3 runs with
the RG scale. The effective coupling in the two-on-two scattering amplitude is not λ3 but
λ ≡ λ3/ζ

3
3 , which runs due to the running of ζ3. The two-loop beta function reveals that λ

increases with increasing energy.
Having illustrated the quantum corrections, we can now study cascading hierarchies of

symmetry breaking in this model, and confirm their technical naturalness. At some high
scale µ, which will be our naturalness scale, and which we keep below µs, consider the
following hierarchical breaking of polynomial symmetries: First, break the P = 4 symmetry
of the z = 3 Gaussian fixed point to the P = 2 symmetry of the z = 2 fixed point by some
small amount ε2 � 1. Then break P = 2 to P = 1 by an even smaller amount ε1 � ε2.
This pattern corresponds to

ζ2
3 ≈ 1, ζ2

2 ≈ µ2ε2, c2 ≈ µ4ε1, λ3 ≈ ε1. (5.31)

The dispersion relation cascades from z = 3 at high energy scales, to z = 2 at intermediate
scales, to z = 1 at low scales.3 Both the large hierarchies in (5.31) and the cascading behavior
of the dispersion relation are respected by all loop corrections, and therefore are technically
natural. This follows by inspection from the properties of the quantum corrections discussed
above.

Our original motivation for this study of technical naturalness and hierarchies in sponta-
neous symmetry breaking came from quantum gravity and high-energy physics, especially in

3We can also break the linear shift symmetry to constant shifts, by some amount ε0 � ε1. This would

generate the remaining classically marginal operators O(a)
4 , O6 and the relevant operatorW, with coefficients

of order ε0 in the units of µ.
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the context of nonrelativistic gravity [5, 6]. Besides extending our understanding of the gen-
eral “landscape of naturalness,” we expect that our results could find their most immediate
applications in two other areas: In condensed matter physics, and in effective field theory
of inflationary cosmology [63, 64, 65]. Both areas treat systems with nonrelativistic, Aris-
totelian symmetries similar to ours. In condensed matter, we have seen in Chapter 3 that the
multicriticality of NG modes will affect their thermodynamic and transport properties: The
Type A3 modes at the lower critical dimension will exhibit resistivity linear in temperature T
over the range of T dominated by the z = 3 dispersion (up to T log T corrections due to self-
interactions). In the context of inflation, our self-interacting scalar field theories represent
a new nonrelativistic variation on the theme of the Galileon [66], an extension of the z = 2
ghost condensate [67, 68], and of the z = 3 cosmological scalar theory of Mukohyama [7, 69].
Eventually, we are hoping that the lessons learned in the nonrelativistic arena will give new
insights to the fundamental puzzles of naturalness in high-energy physics and gravity: The
cosmological constant problem and the Higgs mass hierarchy problem.
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Chapter 6

Nonrelativitic Renormalization: A Case Study

In this chapter, we continue the case study of the Aristotelian scalar field theory in 3 + 1
dimensions introduced in the previous chapter. This theory exhibits intriguing quantum
properties. Our focus is on the interplay between their renormalization group properties and
the polynomial shift symmetries.

We consider the nonrelativistic quantum field theory of a single real scalar field φ(x, t)
in 3 + 1 spacetime dimensions, whose action is given by (5.22), 1

S =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2 − ζ2

2 (∂i∂jφ)2 − c2∂iφ ∂iφ−m2φ2 − λ3O
}
, (6.1)

where

O = ∂iφ ∂i∂jφ ∂j∂kφ ∂kφ+
1

3
∂iφ ∂jφ ∂kφ ∂i∂j∂kφ. (6.2)

This is the theory that will be the subject of our case study. This theory is renormalizable.
Its short-distance behavior is controlled by the z = 3 Gaussian fixed point, where z is the
dynamical critical exponent. Around this fixed point, λ3 is a classically marginal coupling.
Our statement of renormalizability in particular implies that no other combination of terms
with up to four fields and up to six derivatives, besides the ones already in (6.2), are generated
by loop corrections; this statement is an immediate consequence of the hidden linear shift
symmetry of the system,

φ(t,x)→ φ(t,x) + bix
i + b. (6.3)

The self-interaction term O may look familiar, it is closely related to one of the Galileons
[66], at least formally. Physically, the role of the term is quite different: In the relativistic
Galileon theory, the four-point self-interaction term is highly irrelevant from the viewpoint
of the free relativistic massless scalar field theory, of dimension ten in mass units. In the
theory with φ → −φ symmetry, it is the lowest-dimension, least-irrelevant self-interaction
that preserves spacetime linear shift symmetry, and the theory is naturally viewed as an

1We simplify our notation by writing (∂i1 . . . ∂isφ)(∂i1 . . . ∂isφ) ≡ (∂i1 . . . ∂isφ)2, etc.
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effective field theory. In contrast, our spatial linear-shift invariant O is marginal, and in
fact the only such invariant in a renormalizable theory with linear shift invariance. More-
over, the relativistic version of this term that appears in the relativistic Galileon contains
six spacetime derivatives, which results in a very different dynamics and in particular a very
different Hamiltonian. However, some formal features (for example, the structure of a non-
renormalization theorem that we prove in this chapter) are somewhat similar between the
two theories. Similar structures, including higher polynomial shift symmetries, have emerged
in the study of amplitudes [70, 71].

In the following, we will show that the unique self-interaction coupling λ3 satisfies a
non-renormalization theorem to all loop orders. However, despite this non-renormalization
of the coupling, the self-interaction strength does depend on scales, as a result of the non-
trivial renormalization of the two-point function. In contrast to the relativistic case, there
are several natural perspectives on the Callan-Symanzik equation and the process of the
renormalization group flow, associated with the observer’s freedom to choose how to relate
time to space.

6.1 Observer-dependent Relations Between Space and Time

Throughout the thesis, we have been following the “additive convention” for referring to
dimensions, whereby [. . .] is defined to be the exponent of the fundamental unit of scale (in
our case, energy). This convention is common in high-energy physics, and more generally
whenever one keeps track of only one type of dimension.

Occasionally it will prove illuminating to revert to a more elementary picture, in which
the units of measurement of time and space are unrelated to each other. In this more
fundamental picture, we have two independent dimensions: L for length of space, T for
time. We will therefore express the dimension dim(O) of any object O multiplicatively, as
the appropriate powers of T and L (instead of the additive convention, referring only to the
scaling exponent as in the case of [. . .]). with the power of L and T being the length and
time dimension os the corresponding object. We can still choose to normalize the field such
that its kinetic term φ̇2 appears with the canonical prefactor of 1/2, implying

dim(φ) =
T 1/2

L3/2
. (6.4)

Given this dimension of φ, the (∂i∂j∂kφ)2 term in the action is no longer of the same dimen-
sion as φ̇2, and we need to introduce its own coupling ζ2

3 , of dimension

dim(ζ2
3 ) =

L6

T 2
. (6.5)

Setting ζ2
3 = 1 would be one particular way how to relate time and space dimensions. It

would reproduce the z = 3 scaling and reduce dim( ) to the dimensions at the z = 3 fixed
point [. . .].
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It is important to note that the relation between time and space is observer dependent,
and conversion factors may depend on the prejudice of a given observer as to the “correct”
or “most natural” interpretation of the dynamics. We shall see several examples of such
distinct observers, and distinct physical perspectives of the same system, throughout this
chapter.

Different observers differ by their choice of a conversion factor that relates time and space.
For example, when we wrote (6.1), we took the perspective of a “short-distance” observer,
and chose to relate space to time by setting ζ3 = 1. In contrast, a low-energy observer may
have the prejudice to interpret the system as approximately relativistic, and relate space to
time by setting c = 1.

6.2 Hamiltonian Formalism and Vacuum Instability

Using the antisymmetric ε tensor, it is possible to re-write the interaction term (up to total
derivatives) in a more compact form, as

λ3

2

∫
dt d3x

(
∂iφ ∂i∂jφ ∂j∂kφ ∂kφ+

1

3
∂iφ ∂jφ ∂kφ ∂i∂j∂kφ

)
=
λ3

4!

∫
dt d3x εijkε`mn∂iφ ∂j∂`φ ∂k∂mφ ∂nφ. (6.6)

The equation of motion is:

φ̈− (∂2)3φ+ ζ2
2 (∂2)2φ− c2∂2φ− ζ2

0φ−
λ3

6
εijkε`mn ∂i∂`φ ∂j∂mφ ∂k∂nφ = 0. (6.7)

Applying the Legendre transformation to (6.1), the Hamiltonian is

H =
1

2

∫
d3x

{
φ̇2 + (∂i∂j∂kφ)2 + ζ2

2 (∂i∂jφ)2 + c2(∂iφ)2 +m2φ2
}

+Hint, (6.8)

where

Hint =
λ3

4!

∫
d3x εijkε`mn∂iφ ∂j∂`φ ∂k∂mφ ∂nφ. (6.9)

The energy is not bounded from below, for either sign of λ. We now demonstrate this by
explicit constructions.

First, we consider the field configuration that is rotationally symmetric in its spatial
coordinates, i.e.,

φ(x, t) = φ(r, t), r = |x|. (6.10)

Plugging this ansatz into (6.9), we obtain

Hint =
πλ3

3

∫ ∞
0

(φ′)4 ≥ 0, (6.11)
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where

φ′ ≡ ∂

∂r
φ(r, t). (6.12)

The Hamiltonian is unbounded from above but bounded from below.
Next, we consider field configurations that break the spatial rotational symmetry. As a

simple example, we take the ansatz

φ(x, t) = P (ρ, t)Z(x3, t), ρ = |x|. (6.13)

Here, x3 is the third component of x. Plugging this ansatz into (6.9), we obtain

Hint = 2πλ3HZHP , (6.14)

where

HZ ≡
∫ ∞

0

dx3 Z
2(Z ′)2 ≥ 0, HP ≡

∫ ∞
0

dρP 2P ′P ′′, (6.15)

and

Z ′ ≡ ∂

∂x3

Z(x3, t), P ′ ≡ ∂n

∂ρn
P (ρ, t), n = 1, 2. (6.16)

If we require that

P (ρ, t) =
ρ0ρ

ρ2 + ρ2
0

, (6.17)

then,

HP = − 1

20ρ2
0

≤ 0. (6.18)

Therefore, there exist both configurations such that Hint is greater or smaller than zero.
By scaling φ up, the size of Hint can always surpass the quadratic terms and dominate the
Hamiltonian. Hence, we reach the conclusion that the Hamiltonian is unbounded neither
from below or above.

Assume that the couplings ζ2
2 , c2 and m2 have been chosen such that the dispersion

relation is positive definite, then the theory is perturbatively stable around 〈φ〉 = 0. However,
at nonzero λ, this state is non-perturbatively unstable, with the decay probability controlled
by a bounce instanton [72, 73]. To derive the instanton action and hence the vacuum decay
rate, we look for least-action solution of the equations of motion in imaginary time τ = it,

∂2
τφ− (∂2)3φ+ ζ2

2 (∂2)2φ− c2∂2φ− ζ2
0φ−

λ3

6
εijkε`mn ∂i∂`φ ∂j∂mφ ∂k∂nφ = 0. (6.19)

This type of equations of motion is sufficiently complicated and the analytic form of the
dominant instanton is not known, but its contribution to the decay rate of the vacuum will
be

Γvac ∝ exp

(
−C
λ3

)
, (6.20)
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with C positive and of order one. Is this factor C finite? Not if an IR regulator is absent,
in which case the instanton action would in fact diverge logarithmically with the size of
spacetime. However, C is finite in the presence of any IR regulator, even just ζ2

2 6= 0, which
in any case we know will be generated by quantum corrections.

It is often assumed that the least-action instanton will be the one with the largest group
of spacetime symmetries. In relativistic systems, such instantons would be spherically sym-
metric in Euclidean spacetime, with symmetry SO(D + 1). In our case, the imaginary-time
version of the Aristotelian spacetime still carries a preferred foliation by Euclidean leaves of
constant τ , and the system is anisotropic between space and time. The largest spacetime
symmetry that one can expect is thus the group SO(D) of spatial rotations, times the Z2

time-reversal symmetry.
Further note that the energy is conserved, and through the slice of τ = 0 should be

zero. Interestingly, for SO(3) invariant solutions, this can be used to show that when λ > 0
such an SO(3)-invariant instanton cannot exist, simply because Hint ≥ 0 with the ansatz of
spatial rotational invariance (see (6.11)). However, an instanton solutions can (and probably
does) exist for λ < 0. The least-action instanton for λ > 0 must break spatial rotational
symmetry, and we therefore expect its action to be larger than the action of the spherically
symmetric instanton for the other sign of λ. This is sufficient for suppressing the tunneling.

If one wishes, the vacuum instability can be cured by embedding the model in a theory
with the symmetries reduced to constant shifts. As a simple example at the classical level,
we can turn on the marginal O6 operator, in which case the action becomes

S =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2 − λ3O − g3O6

}
. (6.21)

We note that the potential

V ≡ 1

2

∫
d3x

{
(∂i∂j∂kφ)2 + λ3O + g3O6

}
(6.22)

can be written as a sum of complete squares for sufficiently large g3: If λ > 0 and λ6 = λ2/36,
then

V =
1

2

∫
d3x

{(
∂i∂j∂kφ+ 1

6
λ3 ∂iφ ∂jφ ∂kφ

)2
+ λ3

(
∂iφ ∂i∂jφ

)2
}
> 0; (6.23)

If λ3 < 0 and g3 = 5λ2
3/18, then

V=
1

2

∫
d3x

{
1

10

[
∂i∂j∂kφ− δ(ij∂k)∂

2φ+
5λ3

3
∂iφ ∂jφ ∂kφ

]2

− λ3

15

(
δ(ij∂k)∂`φ ∂`φ

)2 − λ3

(
∂iφ ∂j∂kφ

)2}
, (6.24)

where the symmetrization between spatial indices is defined to be (ijk) = ijk + jki + kij. By
construction, for any g3 ≥ 5λ2

3/18, the potential V can be written as a sum of squares. This
condition is sufficient but not necessary: the bound on g3 can be relaxed by considering a
more general sum of complete squares while rewriting V .
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6.3 Quantum Corrections and Properties of Loop Diagrams

We will be interested in perturbation theory around uniform phases, not modulated phases.
We assume that ζ2

2 , c2 and m2 are all positive definite.
First, the propagator

i

ω2 − (k2)3 − ζ2
2 (k2)2 − c2k2 −m2 + iε

(6.25)

contains all the couplings that are present in the Gaussian limit of the theory. It depends
on the spatial momentum k only through its magnitude, which we will denote by k ≡ |k|
from now on.

The Feynman rules of this model involve one four-vertex, which can be simplified using
the momentum conservation k4 = −k1 − k2 − k3 to

ω3,k3

ω1,k1

ω4,k4

ω2,k2

= −iλ
[
k2

1k
2
2k

2
3 + 2(k1 · k2)(k2 · k3)(k3 · k1)

− k2
1(k2 · k3)2 − k2

2(k3 · k1)2 − k2
3(k1 · k2)2

]
. (6.26)

Note that in this vertex each momentum appears quadratically, with no subleading terms.
We can write it even more compactly with the use of the fully antisymmetric εijk tensor: If
for any three momenta k,p,q we define [kpq] ≡ εijkkipjqk, our vertex becomes simply

− iλ[k1k2k3]2. (6.27)

This simple vertex structure is intimately related to the underlying symmetries: When
translated into momentum space, the linear shift symmetry δφ(t,x) = bix

i + b becomes
a shift of the Fourier modes φ(t,k) by

δφ(t,k) = bi
∂

∂ki
δ(k) + b δ(k). (6.28)

Acting with this symmetry on any of the legs of the vertex produces zero, as the vertex is
purely quadratic in each of the outside momenta.

Consider the 2N -point function of φ with external momenta k1,k2, · · · ,k2N . All four-
vertices in a 1PI loop diagram Γ2N contain at least two internal legs. Therefore, for all four-
vertices that contain external legs, one can always apply momentum conservation to eliminate
one of the internal momenta. As a consequence, by (6.27), the momentum associated with
each external leg will appear quadratically in the Feynman rule, and any 1PI diagram will
be of the form

Γ2N =
(
ki11 k

j1
1

)(
ki22 k

j2
2

)
· · ·
(
ki2N2N k

j2N
2N

)
Ii1j1i2j2···i2N j2N (k1,k2, · · · ,k2N), (6.29)
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which is at least of 4N -th order in the external momenta. By power-counting, the superficial
degree of divergence of the factor I is D = 6− 4N .

Equation (6.29) can be viewed as a direct consequence of the Ward-Takahashi (WT)
identity for 1PI functional Γ[φ] from the linear shift symmetry. Let us consider the partition
function Z[J ], a functional of the current J ,

Z[J ] =

∫
Dφ exp

{
−S[φ] +

∫
dt d3x J(t,x)φ(t,x)

}
(6.30)

We would like to derive the WT identity by requiring that Z[J ] be invariant under the linear
shift symmetry. The action S[φ] is invariant under the transformations (6.3) by design, and
the only variation comes from the source term:

0 = δZ[J ] =

∫
dt d3x J(t,x)(bix

i + b)Z[φ]. (6.31)

It is useful to rewrite (6.31) as

0 =

∫
dt d3x J(t,x)

∫
dt′ d3x′(bix

′i + b)
δ

δφ(t′,x′)

(
δW [J ]

δJ(t,x)

)
, (6.32)

where we have introduced W [J ] ≡ lnZ[J ], the generating functional of connected correlation
functions. To derive the WT identity for the 1PI functional Γ[φ], we perform the following
Legendre transformations,

Γ[φ] = −W [J ] +

∫
dt d3x J(t,x)φ(t,x), φ(t,x) =

δW [J ]

δJ(t,x)
. (6.33)

Then (6.32) gives the WT identity for Γ[φ],∫
dt d3x(bix

i + b)
δΓ[φ]

δφ(t,x)
= 0. (6.34)

In the momentum space, we have∫
dω d3k

[
bi∂iδ

(3)(k) + b δ(3)(k)
] δΓ[φ̃]

δφ̃(ω,k)
= 0, (6.35)

where φ̃ denotes the Fourier modes of φ. This implies that a 2N -point 1PI function Γ2N has
to appear at least quadratically for the momenta carried by all external legs. This condition
is satisfied by (6.29), which contains the fewest number of momenta.

Nonrenormalization Theorems. We now show that the theory with λ3 as the only
nonzero self-interaction is self-contained under renormalization and the parameters c2, m2

and λ3 are not renormalized to any order in λ3.
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We first consider a two-point 1PI diagram Γ2 of φ with external momenta k1 and k2,
with k1 = −k2 = k. This is the special case with N = 1 in (6.29):

Γ2 =
(
ki1kj1

)(
ki2kj2

)
Ii1j1i2j2(k). (6.36)

The expression starts only at k4, and will not contribute to k2 and the constant – not only
via divergent terms, but will not even produce a finite correction. Thus, c2 and m2 are not
renormalized. This statement is again true to all orders in perturbation theory in λ3. This
proves the nonrenormalization theorems for c2 and m2.

The superficial degree of divergence of the factor I in (6.36) is D = 2, which means that
Γ2 is quadratically divergent in the UV cutoff. We will deal with this divergence momentarily
in this section.

Analogously, in the special case when N = 2, Γ4 starts at the eighth order in the external
momenta, implying that, at any loop order, there are neither divergent nor finite quantum
corrections to λ3. (The operator O contains 6 derivatives.) This proves the nonrenormal-

ization theorem for λ3. Furthermore, none of the operators W , O6 or O(I)
4 ’s (containing no

more than six derivatives) that would break the linear shift symmetry are generated by the
loop corrections.

In general, for N > 1, the superficial degree of divergence of the factor I in (6.29) is
D = 6 − 4N < 0. Therefore, once the one-loop divergent correction to the propagator has
been canceled by their own counterterm, the one-loop corrections to Γ2N for N > 1 will all
be finite. As usual, one then iterates this procedure, using the one-loop corrected propagator
and four-point function to generate the two-loop correction to the propagator, and so on.
Therefore, the factor I in (6.29) is finite to all loops for N > 1.

The only primitive divergent diagrams are those that contribute to the 1PI two-point
function. Now, we compute the loop corrections to the propagator. First note that there
is no wavefunction renormalization to all orders in perturbation theory, because all loop
corrections will be proportional to at least k4, as shown explicitly in (6.36).

We have noted that the factor I in (6.36) is quadratically divergent in the UV cutoff.
Therefore, the coefficient ζ2

2 in front of the k4 term will receive a quadratic divergence.
Moreover, expanding I in a Taylor series of k yields a logarithmically divergent correction
to the coefficient ζ2

3 (which is set to 1 classically) in front of the k6 term.
First, we consider the one-loop diagram. Just as in the case of relativistic φ4 theory, the

loop integral is manifestly independent of ω,k. However, in our case, even more is true: This
diagram vanishes identically,

η,p

ω,k

=
1

2

∫
dη

2π

d3p

(2π)3

i(−iλ3[kkp]2)

η2 − ω2
p + iε

≡ 0, (6.37)

simply because the numerator [kkp]2 ≡ 0 is identically zero due to the antisymmetry of the
bracket in its three arguments.
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The first nonzero quantum correction to the inverse propagator comes at two loops. There
is just one 1PI diagram, which we will refer to as the “sunset diagram:”

ω,k ω,k
(6.38)

The sunset diagram is carefully examined and evaluated in Appendix B. The result is

iλ2
3k

4
(
Ak2 log Λ +BΛ2 + finite

)
, (6.39)

where Λ is the sharp cutoff places on the momenta carried by the internal legs. Coefficients
A and B are real numbers estimated numerically in (B.42) and (B.27), respectively, A < 0
and B > 0. The finite term is non-singular at k2 = 0 assuming that at least one of the
infrared-regulating couplings c2 or ζ2

2 is non-zero, as shown in Appendix B. There is no
contribution such as (log Λ)2 in (6.39), due to the simple fact that any subdiagram in the
sunset diagram except for itself is finite.

In summary, even though there is no wavefunction renormalization of φ, two of the
Gaussian couplings – ζ2

2 and ζ2
3 – do get renormalized when λ3 is turned on. However, λ3

itself satisfies a nonrenormalization theorem, to all loops.

6.4 Elementary Processes

In this section, we consider some elementary processes in the ∂6φ4-theory. In Section 6.2, we
have discussed the vacuum decay and bounce instantons. In the following, we discuss two
more processes: Particle decays and two-on-two scatterings. More details about scattering
amplitudes in Aristotelian spacetime can be found in Appendix A.

Particle decay. The φ quanta exhibit an intriguing perturbative instability in the Aris-
totelian spacetime: Self-decay processes are kinematically allowed and a single particle ac-
quires a non-zero decay width Γ. The lowest contribution to Γ comes from the imaginary
part of the sunset diagram. By taking the cutting rule, this describes the decay of a single
particle into three copies of itself.

As a simple example, consider an incoming particle with momentum k decaying into three
copies of itself, with momentum k/3 + qi, with i = 1, · · · , 3, q1 + q2 + q3 = 0 and |qi| = q.
Around the z = 3 fixed point, we assume the dispersion relation to be ω =

√
k6 +m2. Then,

the conservation law of energy enforces

√
k6 +m2 = 3

√(
k2

9
+ q2

)3

+m2, (6.40)

which can be satisfied for any k with

k ≥
(

81m2

10

) 1
6

. (6.41)
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The φ quantum is absolutely stable at k ≈ 0 below the threshold. At small |k|, there
is a very sharp long-lived resonance. At large k, the decay width Γ can be obtained by
calculating the imaginary part of the sunset diagram, which gives

Γ ∼ λ2
3

ζ5
3

k3. (6.42)

In the more fundamental picture in which space and time are a priori unrelated, dim(ζ3) =
L3/T and dim(λ3) = L9/T 3. Therefore, dim(Γ) = 1/T , as expected. A more thorough
exposition of decay rate calculation in Aristotelian spacetime can be found in Appendix A.

Particle scattering. We consider the two-on-two scattering. The incoming particles carry
momenta k1 and k2; the outgoing particles carry momenta k′1 and k′2. At the tree level,

dσ =
d3k′1
(2π)3

d3k′2
(2π)3

λ2
3[k1k2k

′
1]4

2ωk12ωk2 |v1 − v2|
1

(2ω′k1
)(2ω′k2

)

× (2π)4δ
(
ω1 + ω2 − ω′1 − ω′2

)
δ(3)
(
k1 + k2 − k′1 − k′2

)
. (6.43)

Here vi = dωk1/dk
‖
1, i = 1, 2, with k

‖
i the component of ki parallel to the total incoming

momentum k1 + k2. In the more fundamental picture in which space and time are a priori
unrelated, dim(λ3) = L9/T 3. Therefore, dim(dσ) = L2, as expected.

6.5 Renormalization from the High-Energy Perspective

Unlike in relativistic theories, there are at least two natural classes of observers already at
the microscopic level:

• The Aristotelian observers fix the coordinates (t,y) once and for all, find the non-
renormalization of λ3 but also the running of ζ2

3 , which lead to the running of the
effective coupling λ.

• The Wilsonian observers, during the process of integrating out a shell of modes, rescale
the system to restore the normalization condition ζ2

3 = 1. This involves a rescaling of
the spatial coordinates which depends on the RG scale. Their effective coupling runs.

When these two observers compare their notes with the Aristotelian observers, both see the
same physics but in a slightly rescaled coordinate system.

In this section, we take the perspective of the Aristotelian observer use the Callan-
Symanzik equations to compute the beta functions. To begin with, we define the normaliza-
tion conditions. Consider Γ(n)(ω1,k1; . . . , ωn,kn). Γ(2) is only a function of ω ≡ ω1 = −ω2

and k2 ≡ k2
1 = k2

2. We impose four normalization conditions

Γ(2)(ω, k2)
∣∣
?

= m2,
∂Γ(2)(ω, k2)

∂k2

∣∣∣∣
?

= c2, (6.44)
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1

2

∂2Γ(2)(ω, k2)

(∂k2)2

∣∣∣∣
?

= ζ2
2 ,

1

3!

∂3Γ(2)(ω, k2)

(∂k2)3

∣∣∣∣
?

= 1. (6.45)

These normalization conditions are chosen such that at the normalization point ?, the inverse
propagator reproduces the expected behavior near the z = 3 fixed point.

Our selection of the appropriate normalization point ?, and our choice of the renormalized
couplings m2, ζ2 and c in the normalization conditions, will depend on the nature of any
particular physics question we may address. For example, in a theory with a gap m, one
natural choice of the normalization condition is the on-shell normalization. However, due
to the presence of higher order terms in spatial momentum in the propagator, sometimes
it is more convenient to choose an off-shell condition. A particularly useful choice for the
normalization point ? is

? : (ω2, k2) = (−M6, 0), (6.46)

where M is the renormalization scale associated with the normalization point ?, [M ] = 1/3
(dim(φ) = 1/T 1/3). We will stick to this normalization condition in the following discussion.

The four-point function gives the normalization of λ3. Similarly to the two-point function,
we must choose a normalization point ?, and then impose appropriate conditions guarantee-
ing that the four-point function reproduces the expected vertex structure. However, thanks
to the nonrenormalization theorem for λ3, we do not have to spend much time on this.2

In terms of the bare couplings, the action is

S =
1

2

∫
dt d3x

{
φ̇2

bare − ζ2
3,bare(∂i∂j∂kφbare)

2 − ζ2
2,bare(∂i∂jφbare)

2 − λ3,bareObare

}
, (6.47)

where Obare is given by O in (6.2) with φ replaced with φbare. We have set m2 and c2 to zero
by invoking the nonrenormalization theorems. The renormalized action is

S =
1

2

∫
dt d3x

{
φ̇2 − ζ2

3 (∂i∂j∂kφ)2 − ζ2
2 (∂i∂jφ)2 − λ3O

− δZ φ̇2 − δ3(∂i∂j∂kφ)2 − δ2(∂i∂jφ)2 − δλO
}
. (6.48)

We have introduced physical couplings, ζ3, ζ2 and λ3, and counterterms, δZ , δ3 and δ2.
Around the normalization point ?, the theory is regulated by the nonzero ω2 in the IR. For
simplicity, we would like to set ζ2 to zero at the tree level. Since there is no field renormal-
ization, δZ = 0. δλ can be set to zero trivially, due to the nonrenormalization theorem for
λ3. To determine δ2 and δ3, we introduce the following renormalization conditions:

1

2

∂3Γ(2)(ω, k2)

(∂k2)2

∣∣∣∣
?

= 0,
1

3!

∂3Γ(2)(ω, k2)

(∂k2)3

∣∣∣∣
?

= ζ2
3 . (6.49)

The correction to the inverse two-point function up to two loops is given by

iΠ(2)(ω,k) = + ⊗ + · · · . (6.50)

2If one wishes, we could normalize to the equilateral tetrahedron point. (See Section 8.4 for details.)
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All other loop diagrams that contribute up to the two-loop order vanish. In (B.52), the
sunset diagram is evaluated to be

ω,k ω,k
=
iλ2

3

ζ4
3

k4
{
Ak2 log

(
ζ

1
3
3 Λ/|ω|

1
3

)
+BΛ2 + finite

}
, (6.51)

where
A ≈ −1.13× 10−6 < 0, B > 0, (6.52)

and Λ is a UV momentum cutoff, [Λ] = 1/3 (dim(Λ) = 1/L). The counterterm is given by

ω,k ω,k
⊗ = −iδ3k

6 − iδ2k
4. (6.53)

Summing over the geomertic series, we obtain the exact inverse propagator:

Γ(2) = ω2 − ζ2
3k

6 + Π(2)(ω,k). (6.54)

Imposing the renormalization conditions (6.49), we obtain

δ2 =
λ2

3

ζ4
3

BΛ2, δ3 =
λ2

3

ζ4
3

A log
(
ζ

1
3
3 Λ/M

)
. (6.55)

Note that the argument of the log has dimension 1 in either measures ([. . .] or dim( )), as
desired. The two-point Green’s function is

G(2)(ω,k) =
i

ω2 − ζ2
3k

6
[
1− ζ−6

3 λ2
3A log

(
M/|ω| 13

)]
+O(λ3

3)
. (6.56)

From the Callan-Symanzik equation,(
M

∂

∂M
+ β

∂

∂λ3

+ γ̃ζ2
3

∂

∂ζ2
3

+ 2γ

)
G(2) = 0, (6.57)

we obtain

β ≡ dλ3

d logM
= 0 +O(λ3

3), γ = 0 +O(λ3
3), (6.58)

and

γ̃ ≡ d log ζ2
3

d logM
=
λ2

3

ζ6
3

A+O(λ3
3). (6.59)

This is interpreted as the anomalous dimension for ζ3.
Next, we consider the four-point Green’s function. Up to two-loop, the only divergent

contribution to the four-point Green’s function comes from the non-amputated diagram

(6.60)
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The four-point Green’s function is thus

G(4)(ωi,ki) =
(
−iλ3[k1k2k3]2

)
G(2)(ω1,k1)G(2)(ω2,k2)G(2)(ω3,k3)G(2)(ω4,k4). (6.61)

From the Callan-Symanzik Equation,(
M

∂

∂M
+ β

∂

∂λ3

+ γ̃ζ2
3

∂

∂ζ2
3

+ 4γ

)
G(4) = 0, (6.62)

we obtain
β = 0 +O(λ4

3), γ = 0 +O(λ4
3). (6.63)

This result is expected: Since there is no field renormalization, γ = 0 should hold to all loop
orders. Moreover, by the nonrenormalization for λ3, β = 0 holds to all loop orders.

By applying the Callan-Symanzik equation for computing the beta functions, we fix the
coordinates (t,x) once and for all, which defines the Aristotelian observers. Those observers
find the non-renormalization of λ3 but also the running of ζ2

3 , indicated by (6.58). This leads
to the running of the dimensionless quantity λ, with respective to the smallness of which the
theory can be expanded perturbatively.

The dispersion relation runs with changing energy. With increasing energy, ζ3 decreases.
The dispersion relation is

ω2 = ζ2
3k

6 + ζ2
2k

4. (6.64)

We have introduced ζ2 as an IR regulator. Running to the UV, ζ3 decreases, and the
dispersion relation “closes up.”

Despite the nonrenormalization theorem for λ3, the physics does depend on the scale.
In fact, the theory is not defined perturbatively with respect to λ3, but instead an effective
coupling constant

λ ≡ λ3

ζ3
3

. (6.65)

Even though there holds the nonrenormalization theorem for λ3, the coefficient ζ3 receives
renormalization, and thus the effective coupling λ runs. To show that λ is indeed the effective
coupling constant of the theory, we present the following arguments:

• The coupling λ3 is a dimensionless quantity at the z = 3 fixed point, i.e., [λ3] = 0.
However, in a more elementary picture where the time and space have independent
dimensions T and L, respectively, the coupling λ3 develops a dimension dim(λ3) =
L9/T 3, which is not unit. In contrast, the quantity λ is dimensionless in both measures:
[λ] = 0, dim(λ) = 1.

• The actual expansion parameter of our perturbation theory is not λ3 but λ: A Feynman
diagram with 2N external legs and L loops can be written as

λ
L(
ζN+1

3 λ
N−1) I(Λ, ω/ζ3

)
. (6.66)

Therefore, the loop-wise expansion is characterized by an expansion series of the effec-
tive coupling λ.
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• The scattering cross-section as a physical observable is controlled by λ: For a tree level
process, in the limit that the IR regulators are zero, the dispersion relation is ω = ζ3k

3,
and the two-on-two cross section σ can be read off from (6.43):

dσ = λ
2

{
d3k′1
(2π)3

d3k′2
(2π)3

[k1k2k
′
1]4(2π)4δ(k3

1 + k3
2 − k′1

3 − k′1
3) δ(3)(k1 + k2 − k′1 − k′2)

48k3
1k

3
2k
′
1

3k′2
3|k1k

‖
1 − k2k

‖
2|

}
,

where it is again λ that controls the size of σ.

By (6.58) and (6.63), the beta function for λ is

β = −3

2
Aλ

3
. (6.67)

Because A < 0, λ increases with increasing energy, and the theory becomes strongly coupled
at very high scales.

It is intriguing to note that the running of the λ coupling to large values does not neces-
sarily imply that the theory is UV incomplete. Recall that a single particle with momentum
k with respect to the rest frame acquires a non-zero decay width. At large k, the decay rate

behaves asymptotically as Γ ∼ ζ3λ
2
k3, in terms of the effective coupling λ. The spectral

function A(ω,k) for the self-interaction characterized by λ is given by [74]

A(ω,k) =
1

π

ωkΓ

(ω2 − ω2
k)2 + ω2

kΓ2
. (6.68)

At large k and not very small ζ3, ωk ∼ ζ2
3k

3. With increasing k, λ runs until it becomes of

order 1, and the ratio ωk/Γ ∼ λ
2

also approaches order 1, implying that the φ resonance
becomes very wide. The scattering of individual quanta with very high k makes no sense:
They decay rapidly into multiple soft quanta beforehand. Therefore, at high energies, the
large values of λ anticipated by the RG equations cannot by measured by any two-on-two
scattering, because there are only softer quanta that are available to scatter. It is possible
that the theory self-completes in the UV via some non-Wilsonian mechanism similar to
classicalization [75, 76]: Instead of the appearance of new degrees of freedom in the high
energies, an arbitrarily small length scale is forbidden to probe due to the self-decay process,
and the soft quanta may form a classical condensate. Since the speed of light c characterizes
the scale above which the theory exhibits perturbative instability, it is conceivable that
the UV physics above the momentum scale

√
c is dual to the IR physics below

√
c; this is

reminiscent of the UV/IR connection in the context of gravity.

6.6 Renormalization from the Wilsonian Perspective

From the perspectives of a Wilsonian observer, during the process of integrating out a shell
of modes, one also rescales the system to restore the normalization condition ζ2

3 = 1.
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In the Wilsonian approach, we consider the action

S =
1

2

∫
dt d3x

{
φ̇2 − (∂i∂j∂kφ)2 − λO

}
, (6.69)

where λ will eventually turn out to be equivalent to λ3/ζ
3
3 for the Aristotelian observers. In

the previous sections, we applied the sharp cutoff on internal momenta, p, q and K ≡ p+q,
and evaluated the sunset diagram. The sharp cutoffs are |p|, |q|, |K| < Λ. Choose a fraction
0 < f < 1. In the Wilsonian approach, we integrate out the high energy modes by restricting
the momentum integral to be over the range{

(p,q) : 0 < |p|, |q|, |K| < Λ
}
\
{

(p,q) : 0 < |p|, |q|, |K| < fΛ
}
. (6.70)

The integration over this precise momentum shell is impractical to perform. However, we
can take the advantage of the known result for the log divergence in the sunset diagram over
the range {(p,q) : 0 < |p|, |q|, |K| < Λ},

η,p

ω,k ω,k
ν,q

= iλ
2=(Λ), =(Λ) = Ak6 log

(
ζ

1
3
3 Λ/|ω|

1
3

)
+ · · · . (6.71)

The high energy contribution to the low energy effective action from the integration over the
momentum shell (6.70) is

λ
2[=(Λ)−=(fΛ)

]
= −λ2

Ak6 log f + · · · . (6.72)

The effective action obtained from integrating over the momentum shell can be written as

Seff =
1

2

∫
dt d3x

{
φ̇2 − f∆(∂i∂j∂kφ)2 − λO

}
, (6.73)

where
∆ ≡ λ

2
A+O(λ

3
). (6.74)

To compare with the original action (6.69), we taking the following rescaling in (6.73):

k′ ≡ f−1k, t′ ≡ f zt, x′ ≡ fx, φ′ ≡ f−γφ. (6.75)

Here z is the dynamical critical exponent and γ is the anomalous dimension of the scalar
field. The rescaled action is

Seff =
1

2

∫
dt′ d3x′

{
f 2γ+z−3(∂t′φ

′)2 − f 2γ−z+3+∆(∂′i∂
′
j∂
′
kφ
′)2 − λ′O′

}
, (6.76)

where
λ
′
3 ≡ λf 4γ−z+3. (6.77)
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Here, ∂′i ≡ ∂/∂(x′)i. Requiring that the action (6.76) take the same form as (6.69), we obtain

z = 3 +
1

2
λ

2
A+O(λ

3
), γ = −1

4
λ

2
A+O(λ

3
), (6.78)

and

λ
′
= λ+

3

2
λ

3
A log(1/f) +O(λ

4
). (6.79)

Since A < 0, as one integrates out the high momentum shell, the coupling λ decreases and
the field φ develops a positive anomalous dimension. z < 3, CHMW theorem is fine. The
beta function for λ is defined to be

β =
dλ

d log f
= −3

2
λ

3
A+O(λ

4
). (6.80)

This result matches (6.67) with ζ3 = 1.
From the perspectives of the Wilsonian observer, the effective coupling λ runs, and the

theory also becomes strongly coupled at very high momentum scales. More interestingly,
the anisotropy between space and time also changes, due to the rescaling of the spatial
coordinates that depends on the RG scale. This is reflected in the correction to z in (6.78).
When they compare their notes with the Aristotelian observers, both see the same physics
but in a slightly rescaled coordinate system; such a rescaling of the coordinate system is the
most evident by comparing the actions used by different observers.

According to the Aristotelian observer, the action can be written as

S =
1

2

∫
dt d3x

{
φ̇2 − ζ2

3

(
∂i∂j∂kφ

)2 − λ3O
}

(6.81)

We take the rescaling of spatial coordinates,

x′ ≡ x

ζ
1/3
3

; (6.82)

together with a rescaling of the field φ,

φ′ ≡ ζ
1/2
3 φ, (6.83)

we obtain a rescaled action,

S ′ =
1

2

∫
dt d3x

{
φ̇2 −

(
∂′i∂
′
j∂
′
kφ
′)− λO′} , (6.84)

where λ = λ3/ζ
3
3 , ∂′i ≡ ∂/∂x′i and O′ is the same as O with ∂ replaced by ∂′ and φ replaced

by φ′. This action S ′ is exactly the one taken by the Wilsonian observer.
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6.7 Large N Expansion

In this section, we consider the O(N) extension: φI , I = 1, · · · , N . There is a unique
dressing of the vertex by vector indices, and a unique O(N) theory of an N -component
scalar. In the momentum space, it is easy to see that there is a unique four-vertex, written
as a direct product between the vertex structure given in (6.27) and Kronecker symbols with
their indices symmetrized:

− i[pqk]2
(
δIJδKL + δIKδJL + δILδJK

)
(6.85)

In the position space, one can construct this unique four-vertex in the graphical repre-
sentation, by adding a graphical structure representing the contractions between fields φ’s in
(5.26): Denoting the contraction between two fields, (φI . . . φI), by a dashed link, the unique
invariant under the linear shift symmetry in its graphical representation is

+ + +

+ + + +

+ + + +

+ + + + (6.86)

Treating the vertices as indistinguishable, this sum becomes

4 Õ ≡ 4
{

+ + +
}

= 4
[
(∂iφ · ∂i∂j∂kφ)(∂jφ · ∂kφ) + (∂iφ · ∂j∂kφ)(∂kφ · ∂i∂jφ)

+ (∂iφ · ∂i∂kφ)(∂jφ · ∂j∂kφ) + (∂iφ · ∂jφ)(∂i∂kφ · ∂j∂kφ)
]
. (6.87)

Using the antisymmetric ε tensor, we can rewrite this interaction term (up to total deriva-
tives) in a more compact form, as

λ3

2

∫
dt d3x Õ =

λ3

8

∫
dt d3x εijkε`mn(∂iφ · ∂j∂`φ)(∂k∂mφ · ∂nφ)

=
λ3

8

∫
dt d3x εijkε`mn(∂iφ · ∂`φ)(∂j∂mφ · ∂k∂nφ). (6.88)

The action can be written as

S =
1

2

∫
dt d3x

{
φ̇ · φ̇− ζ2

3 ∂i∂j∂kφ · ∂i∂j∂kφ− λ3 Õ
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− ζ2
2 ∂i∂jφ · ∂i∂jφ− c2∂iφ · ∂iφ−m2φ · φ

}
. (6.89)

In the following, we show that the quantum correction to the propagator vanishes com-
pletely in the large N limit. Let us first take the rescaling of the field φI : φI → N

1
2φI , and

define the ’t Hooft coupling, λt = λ3N . Therefore,

S =
N

2

∫
dt d3x

{
φ̇ · φ̇− ζ2

3 ∂i∂j∂kφ · ∂i∂j∂kφ− λt Õ

− ζ2
2 ∂i∂jφ · ∂i∂jφ− c2∂iφ · ∂iφ−m2φ · φ

}
. (6.90)

Then, the propagator becomes

δIJ

N

i

ω2 − ζ2
3k

6 − ζ2
2k

4 − c2k2 −m2
. (6.91)

The four-vertex is
−Nλt[pqk]2

(
δIJδKL + δIKδJL + δILδJK

)
. (6.92)

Consider an amputated Feynman diagram with V vertices, I internal legs L independent
loops. Note that L = I − V + 1. Each propagator will contribute one power of N and each
vertex will contribute one power of 1/N . Summing over N fields φI in a loop will contribute
an extra N to the Feynman diagram. If there are ` loops that are summed over in a Feynman
diagram, then the overall power in N is

V − I + ` = 1− L+ `. (6.93)

The diagram is of the leading order N if and only if there is way of contracting the indices
of the fields φI such that ` = L. Requiring ` = L forbids any overlapping subdiagrams
and restricts the diagrams to be of the cactus-type, in which there is no internal leg that is
contained in more than one loop.

Diagrammatically, the full propagator is denoted by a thick line and can be written as a
geometric series of 1PI diagrams,

= + 1PI + 1PI 1PI + · · · , (6.94)

where 1PI is a sum of all 1PI cactus diagrams. This induces the recursive relation

1PI = (6.95)

which vanishes identically due to the linear shift symmetry, in analogy of (6.37). This implies
a nonrenormalization theory in the large N limit for the couplings ζ2

3 and ζ2
2 , in addition to

the nonrenormalization theorems for c2, m2 and λt. We conclude that the theory is scale
invariant if the relevant deformations ζ2

2 , c2 and m2 are turned off.
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Moreover, both the nonperturbative decay rate of the vacuum and the perturbative decay
width vanish in the large N limit:

Γvac ∝ exp
(
−NC/λt

)
→ 0, Γ ∼ 1

N
ζ3λ

2

t |k|3 → 0, (6.96)

where λt ≡ λt/ζ
3
3 . The theory becomes absolutely stable in the large N limit.

Looking for holographic duals [77, 78] for this theory in the large N limit might be
instructive. Because of the O(N) symmetry in the boundary theory, we expect the possible
bulk theory defined in one higher dimensions to be a nonrelativsitic version of Vasiliev
theories. Developing such holographic duals will be useful for further understanding both
holography and nonrelativistic field theories. It is also intriguing to note that the relevant
terms with coupling constants ζ2

2 , c2 and m2 are free to turn on, which may correspond to
interesting deformations in the bulk gravity theory.
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Chapter 7

Application: A Naturally Light Higgs

In Chapter 5, we have seen that nonrelativistic scalar field theories can exhibit a natural
cascading hierarchy of scales, protected by a hierarchy of polynomial shift symmetries. Using
the toy model that we introduced in Chapter 6, we argue that a high-energy cross-over to
such nonrelativistic behavior naturally leads to light scalars, and thus represents a useful
ingredient for technically natural resolutions of scalar mass hierarchies, perhaps even the
Higgs mass hierarchy puzzle.

The 2012 discovery [1, 2] and the observed properties of the Higgs boson suggest that the
Standard Model may be self-contained up to a very high scale. This intriguing possibility
brings the naturalness puzzles back into renewed focus (see e.g. [79, 80]), and invites us to
look for new ideas about naturalness. There are two perspectives on naturalness:

• Technical naturalness by ’t Hooft. This is the notion that we have presented in §1.1
and have been working with throughout the thesis. This criteria of naturalness states
that a parameter may be naturally small if setting it to zero leads to an enhanced
symmetry.

• Naturalness criteria by Dirac. This is a stronger version of naturalness, which simply
requires that there be no “unexplained” small numbers in Nature.

We would like to emphasize that our philosophy in through is to search for mechanisms
which produce technical naturalness: explaining the permissibility of small numbers, but
not necessarily their origin.

In the previous chapters, we have learned that the concept of technical naturalness ex-
hibits many surprises in nonrelativistic settings. New symmetries emerge [18], and they
protect new hierarchies of Nambu-Goldstone bosons with cascading scales of partial sym-
metry breaking [22]. In this chapter, we apply this phenomenon to relativistic scalars such
as the Higgs, and investigate the possibility of a crossover to nonrelativistic physics at high
energy scales and its influence on the naturalness of a small Higgs mass.

For gravity, nonrelativistic physics with possible fundamental anisotropies between space
and time is beneficial for improving the short-distance behavior, possibly leading to a UV
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complete theory [5, 6]. In contrast, there seem to be no similar benefits from viewing the
Standard Model (SM) as a low-energy effective description of an underlying fundamentally
nonrelativistic theory: The SM is already renormalizable and nearly UV complete (assuming
that one can remedy the growth of the hypercharge coupling at high energies). However, an
embedding of the SM into a nonrelativistic theory may be of interest, if it provides a way
out of the Higgs mass hierarchy problem without ruining the observed Lorentz symmetry at
accessible energies.

The essence of the naturalness problem of a light scalar with nonderivative self-interactions
(such as the Higgs) can be succinctly illustrated by considering a single relativistic scalar
Φ(xµ) in 3 + 1 dimensions with action

S =
1

2

∫
d4x

(
∂µΦ∂µΦ−m2Φ2 − λ

12
Φ4

)
. (7.1)

We have presented this example in §1.1: Both nonderivative terms in (1.1) break the same,
constant shift symmetry Φ→ Φ + δΦ with δΦ = b, and therefore must be of the same order
of smallness (measured by ε� 1) relative to the naturalness scale M ,

m2 ∼ εM2, λ ∼ ε. (7.2)

This gives the following simple but important relation,

M ∼ m√
λ
, (7.3)

which then implies the naturalness problem: m cannot be made arbitrarily smaller than M
without λ being made correspondingly small to assure that the naturalness condition (1.3)
hold. At typical values of λ not much smaller than 1, m will be of the order of the naturalness
scale M , ruining the hierarchy. Note that this naturalness problem is present already before
gauging.

Finding new ways around relations (1.2) without putting technical naturalness in jeop-
ardy is the main goal of this chapter.

7.1 A Toy Model

For simplicity, and to highlight the novelties associated with nonrelativistic naturalness,
let us consider a simple toy model first: The theory of a real scalar field φ(t,y) in 3 + 1
dimensions, y = (yi, i = 1, . . . , 3), with Aristotelian spacetime symmetry. Our model was
introduced in Chapter 5 and studied further in Chapter 6, and we summarize the relevant
key points in the following.

We start with the free theory controlled at short distances by the Gaussian fixed point
with dynamical exponent z = 3. The action is

S2 =
1

2

∫
dt d3y

{
φ̇2 − ζ2

3∂i∂j∂kφ ∂i∂j∂kφ− ζ2
2∂i∂jφ ∂i∂jφ− c2∂iφ ∂iφ−m2φ2

}
. (7.4)



CHAPTER 7. APPLICATION: A NATURALLY LIGHT HIGGS 86

The first two terms define the Gaussian z = 3 fixed point, and the remaining three terms are
its relevant Gaussian deformations. Classically, we can set ζ2

3 = 1 by a one-time rescaling of
space-time coordinates. We measure the dimensions in the units of energy; with the scaling
of the z = 3 fixed point, we have,

[t] = −1, [yi] = −1/3, [∂i] = 1/3, (7.5)

and the field φ is dimensionless (i.e., at its lower critical dimension). The dimensions of the
relevant Gaussian couplings are

[ζ2
2 ] = 2/3, [c2] = 4/3, [m2] = 2. (7.6)

To this free action, we add interaction terms Sint whose choice depends on the desired
symmetries; in the simplest model, we take

Sint = −λ3

2

∫
dt d3yO − λ0

4!

∫
dt d3yφ4, (7.7)

where

O = ∂iφ ∂i∂jφ ∂j∂kφ ∂kφ+
1

3
∂iφ ∂jφ ∂kφ ∂i∂j∂kφ. (7.8)

The four-point six-derivative self-coupling constant λ3 is marginal ([λ3] = 0). With Higgs
applications in mind, we also added the nonderivative φ4 self-interaction. In our microscopic
theory, its coupling is relevant, [λ0] = 2. Our theory with the interaction term given by (7.8)
is power-counting renormalizable, since at the z = 3 fixed point O is the only marginal or
relevant interaction term invariant under the linear shift symmetry. (With the symmetry
reduced to the constant shifts, there would also be one relevant and three additional marginal
interaction terms.) Our theory with the interaction term given by (7.8) is power-counting
renormalizable, since at the z = 3 fixed point O is the only marginal or relevant interaction
term invariant under the linear shift symmetry. With the symmetry reduced to the constant
shifts, there would also be one relevant and three additional marginal interaction terms.

The theory with the linear-shift invariant interaction given by the λ3 term in (7.7) (and
with λ0 = 0) exhibits intriguing quantum properties.The quantum behavior has been studied
in details in the last chapter, and we will only briefly summarize the relevant part here. There
is no wave-function renormalization of φ, and both λ3 and c2 satisfy a non-renormalization
theorem to all orders in λ3. This does not mean that the theory can be weakly coupled at all
scales: The coefficient ζ2

3 in (7.4) – which we set equal to 1 in the classical limit – is logarith-
mically divergent starting at two loops, and therefore ζ3 runs with the renormalization-group
scale. The effective coupling in the two-on-two scattering amplitude is not λ3 but λ ≡ λ3/ζ

3
3 ,

which runs due to the running of ζ3. The two-loop β function reveals that λ increases with
increasing energy.

The theory exhibits interesting instabilities. First, note that the contribution of the λ3

term in (7.7) to the Hamiltonian is unbounded both below and above. Assuming that the
couplings in (7.4) have been chosen such that the dispersion relation is positive definite,
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the theory is perturbatively stable around 〈φ〉 = 0. However, at nonzero λ3, this state is
non-perturbatively unstable, with the decay probability controlled by a bounce instanton
[72, 73]. The analytic form of the dominant instanton is not known, but its contribution
to the decay rate of the vacuum will be Γvac ∝ exp(−C/λ), with C positive and of order
one (assuming at least one of the infrared-regulating couplings m2, c2 or ζ2

2 is non-zero). If
one so desires, this vacuum instability can be cured by embedding this model into a (more
complex but stable) theory with the symmetries reduced to constant shifts [23].

The φ quanta also exhibit an intriguing perturbative instability in the Aristotelian space-
time: A single particle with a large enough momentum k with respect to the rest frame
acquires a non-zero decay width Γ. This is the usual phenomenon of quasiparticle damping
known from condensed matter. The leading contribution to Γ arises at two loops, and at
large k goes as Γ ∼ ζ3λ

2|k|3. The φ quantum is absolutely stable at k ≈ 0; at small |k| above
the threshold, we find a very sharp long-lived resonance. With increasing |k|, λ runs until it
becomes ∼ 1 and the φ resonance becomes very wide. The scattering of individual quanta
with very high |k| makes no sense: They decay rapidly into multiple soft quanta beforehand.
Thus, one cannot simply argue that the running of the λ coupling to large values makes
the theory UV incomplete: These large values of λ cannot be measured by any two-on-two
scattering; only softer quanta are available to scatter and the theory may self-complete in
a mechanism reminiscent of classicalization [75, 76]. In this chapter, we do not need any
such completion and will use this model only up to a very high naturalness scale where the
coupling will still be small.

7.2 Nonrelativistic vs Relativistic Observers and Naturalness

While the theory is unambiguously defined by its microscopic behavior around the z = 3
fixed point, its physical properties will look somewhat different to different observers.

Unlike in relativistic theories, there are at least two natural classes of observers already at
the microscopic level. The Aristotelian observers fix the coordinates (t,y) once and for all,
find the non-renormalization of λ3 but also the running of ζ2

3 , which lead to the running of the
effective coupling λ. The Wilsonian observers, during the process of integrating out a shell
of modes, rescale the system to restore the normalization condition ζ2

3 = 1. This involves a
rescaling of the spatial coordinates which depends on the RG scale. Their effective coupling
runs. When they compare their notes with the Aristotelian observers, both see the same
physics but in a slightly rescaled coordinate system.

At low energies, the lowest-derivative terms dominate. The higher-derivative terms are
suppressed, and the system develops an accidental approximate Lorentz symmetry, with
small Lorentz-violating corrections. Observers at those energies will find it natural to inter-
pret the system relativistically. We shall refer to such observers as “low-energy relativistic
observers.” While for the microscopic observers c2 is a relevant coupling, for the low-energy
relativistic observers c appears to be a constant of nature, insofar as they cannot detect
deviations from the constancy of c due to the small Lorentz-violating terms. Given their
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relativistic prejudice, their natural coordinate frame is

x0 = t, xi = yi/c. (7.9)

Note that this gives the correct dimensions of a relativistic coordinate system, [x0] = [xi] =
−1. In these coordinates, the low-energy relativistic observer finds the action of our system
to be

S =
1

2

∫
d4x

{
∇µΦ∇µΦ−m2Φ− 1

12
λhΦ

4

− ζ̃2
3 (∇i∇j∇kΦ)2 − ζ̃2

2 (∇i∇jΦ)2 − λ̃3Õ
}

(7.10)

where ∇µ ≡ ∂/∂xµ, Φ = c3/2φ is the scalar field properly rescaled to match the perspective

of the relativistic observer, and Õ is given by (7.8) with ∂ replaced by ∇ and φ by Φ. The
low-energy parameters are given in terms of the microscopic parameters as follows. For the
relativistic observer, the mass m of Φ is equal to the gap parameter m of the microscopic
theory, and its nonderivative self-coupling is given by

λh = λ0/c
3. (7.11)

The remaining couplings in (7.10) are given in terms of the microscopic parameters by

ζ̃2
3 = ζ2

3/c
6, ζ̃2

2 = ζ2
2/c

4, λ̃3 = λ3/c
9; (7.12)

from the low-energy perspective, they represent irrelevant terms which violate Lorentz in-
variance.

In accord with the principles of causality, we require that technical naturalness hold at the
level of the microscopic, nonrelativistic theory. Technically natural hierarchies with varying
degrees of complexity are possible [22]. In the simplest, one ε controls the breaking of the
linear shift symmetry to no shift symmetry at all, and all couplings are of order ε in units of
the naturalness momentum scale µ. However, this crude pattern may be naturally refined:
λ3 and ζ2

2 preserve linear shifts and can be controlled by their own smallness parameter:
λ3 ∼ ε2 and ζ2

2 ∼ ε2µ
2. At this stage, quantum corrections to c2 will not be generated

(due to the nonrenormalization theorem), and can be kept of order ε1 � ε2. Finally, the
nonderivative terms break constant shift symmetry, and can be of order ε0 � ε1. We thus
obtain a technically natural cascading hierarchy of scales. This cascade is associated with a
natural hierarchy of crossover scales: At very high scales (around µ), the system is dominated
by the z = 3 scaling, then it crosses at lower scales to a z = 2 regime, followed by another
crossover to the z = 1 regime, until it finally reaches the lowest scales set by the gap m.
Next we need to examine how this cascading hierarchy appears from the viewpoint of the
low-energy relativistic observer.

We begin at the microscopic level, with the following, technically natural hierarchy of
couplings,

ζ2
3 ∼ 1, λ3 ∼ ε2, ζ2

2 ∼ ε2µ
2,
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c2 ∼ ε1µ
4, m2 ∼ λ0 ∼ ε0µ

6, (7.13)

and
ε0 � ε1 � ε2 � 1. (7.14)

What are the sizes of the couplings that the low-energy relativistic observer will see? Plugging
(7.13) into (7.11) and (7.12), and introducing the naturalness energy scale M ≡ µ3, we obtain

m2 ∼ ε0M
2, λh ∼ ε0/ε

3/2
1 (7.15)

for the scalar mass and self-coupling, and

ζ̃2
3 ∼

ε2
0

ε3
1

1

m4
, ζ̃2

2 ∼
ε0ε2

ε2
1

1

m2
, λ̃3 ∼

ε3
0ε2

ε
9/2
1

1

m6
(7.16)

for the irrelevant nonrelativistic corrections.
This is the central result of this chapter: In contrast to the standard relativistic relations

(1.2), we now have a new small parameter ε1 which controls c2, modifies the relations to
(7.15), and makes a technically natural large hierarchy of scales with sizable values of the
coupling λh ∼ 1 possible.

Finally, we would like to address another question: How important is it to embed the
Higgs into a z = 3 theory? Can we choose the simpler z = 2 short-distance behavior, perhaps
improving the prospects of a realistic gauging? Interestingly, the answer is no, if we insist on
λh in (7.15) to be ∼ 1: In the absence of z = 3 terms, the leading nonrelativistic corrections
originate from ζ2

2 ∼ 1, and they become important at unacceptably low energies � m. The
z = 2 observer would be almost as mystified about the naturalness of a light Higgs as the
relativistic observer. Thus, z = 3 is the lowest value of z in the microscopic system for which
our mechanism with relations (7.15) and λh ∼ 1 can work, without generating large Lorentz
violations at low energies.

7.3 Towards the Higgs and the Standard Model

Now we would like to couple this naturally light scalar to the rest of the SM. We will assume
the Higgs-less part of SM to be exactly relativistic until the coupling to the Higgs; the
coupling will induce violations of Lorentz invariance that we wish to keep naturally small
in order to conform to the stringent experimental bounds on Lorentz violations [81], and
without spoiling the mass hierarchy.

For simplicity, we will continue working within the logical structure of our toy model,
but the results are more universal, robust and model-independent. First, as noted in Section
6.7, our toy model can be extended to a unique theory with global SO(N) symmetry with
φ in the N . The case of N = 4 will correspond to the candidate Higgs; with the flip of the
m2 sign, φ will develop a condensate 〈φ〉 = m/

√
λ0 ∼ 1.
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Phenomenologically, we would like m ∼MEW of the order of the electroweak scale, while
M ∼ MX of the order of some high scale MX , such as the Planck scale or a GUT scale.
To illustrate our mechanism, we will try to go the whole hog and realize a hierarchy across
15 orders of magnitude, between the electroweak scale and the Planck scale. For numerical
simplicity, we take m ∼ 1 TeV and M ∼ 1018 GeV. At the same time, we want the Higgs
self-coupling λh not too much smaller than ∼ 1.

As a very simple and concrete example, take the following “10-20-30” model:

ε2 ∼ 10−10, ε1 ∼ 10−20, ε0 ∼ 10−30. (7.17)

From (7.15), we obtain
m/M ∼ 10−15, λh ∼ 1, (7.18)

precisely as desired! (Smaller λh, say ∼ 0.1, are easily arranged by small changes of (7.17).)
Moreover, the irrelevant Lorentz-violating couplings (7.16) are pushed above the TeV scale:

ζ̃2
3 ∼

1

m4
, ζ̃2

2 ∼
1

m2
, λ̃3 ∼ 10−10 1

m6
. (7.19)

The ζ̃2 couplings yield small nonrelativistic modifications of the Higgs dispersion relation
ω2 = m2+k2 by higher power terms |k|4 and |k|6, representing the first observable signatures
of the “new physics” that cures the hierarchy problem: the Higgs sector exhibits a crossover
towards z > 1 at scales of order m ∼ 1 TeV. Pushing the nonrelativistic corrections to
higher scales should be possible in slightly more sophisticated versions of our simplest 10-20-
30 scenario; for example, making λh < 1 further suppresses the size of ζ̃2

3 , since ζ̃2
3 ∼ λ2

h/m
4;

and ζ̃2
2 can be suppressed by simply choosing a smaller ε2.

We can couple the scalar φ to several species of relativistic fermions Ψf (t,y), whose two
chiralities we assume to be in distinct representations to prevent bare masses (as in the SM).
In the microscopic theory, their dimension is [Ψf ] = 1/2. Their relativistic kinetic term
written in nonrelativistic coordinates is∑

f

∫
dt d3y (Ψ†f Ψ̇f + cfΨfγ

i∂iΨf ). (7.20)

Before coupling to φ, all fermions see the same limiting speed, which we set equal to cf =
c. When we couple the fermions to φ, their dispersion relation acquires nonrelativistic
corrections from Higgs loops; we need these to be small, without spoiling the Higgs mass
hierarchy. The most relevant coupling of Ψf to φ is the Yukawa term∑

f

Yf

∫
dt d3y ΨfφΨf . (7.21)

When non-zero, the Yukawa couplings Yf break the constant shift symmetry of φ, and one
may expect them all to be bounded from above by the parameter ε0 which controls all the
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other terms breaking the constant shift symmetry in the Higgs sector. (This is in the units
of µ3, since [Yf ] = 1.) However, there is some wiggling room: Detailed estimates of the
Higgs loop corrections show that we can increase the range of the Yukawas to include the
window from ε0 to

√
ε0, without spoiling the smallness of m2 and λ0. This requires that we

also include the nonrelativistic terms ζ3fΨγ
i∂i∂

2Ψ with ζ3f . 1 to the action (which will
be generated by the Higgs loops anyway). This increase in the range of the Yukawas works
because the corrections to m2 and λ0 due to fermionic loops are at least quadratic in Yf ’s.
Thus, the window of naturalness for the non-zero Yukawas has been extended to include
ε0µ

3 . Yf .
√
ε0µ

3, self-consistently requiring that ζ3f ∼ Y 2
f /m

2 for each fermion.
The low-energy relativistic observer rewrites the theory in terms of the naturally normal-

ized fermions ψf (x
µ) = c3/2Ψf (t,y), and sees the Yukawa terms as∑

f

yf

∫
d4xΦψfψf , (7.22)

with yf = Yf/c
3/2. The naturalness window for the Yukawas as seen by the relativistic

observer extends to
yf . ε

1/2
0 /ε

3/4
1 . (7.23)

This extension past the naive bound yf . ε0/ε
3/4
1 is crucial: In our 10-20-30 scenario,

the naive bound would require yf . 10−15, excluding all fermions. The extended bound
(7.23) requires yf . 1, a range which naturally accommodates the masses of all the known
fermions, from the top quark at the upper bound, down to the likely values of the neutrino
masses not too far above the naive bound. Thus, in the 10-20-30 scenario, all the SM fermion
masses can be Dirac masses, in a technically natural way.

Next we couple the system to relativistic Yang-Mills fields. In the microscopic theory,
this is done by covariantizing the derivatives to

Dtφ ≡ φ̇+ iea0φ, Diφ = ∂iφ+ ieaiφ. (7.24)

We normalize the gauge fields such that when rewritten in the nonrelativistic language, their
standard relativistic action is∫

dt d3y
[1

2
(∂ia0 − ȧi + . . .)2 − (c2/4)(∂iaj − ∂jai + . . .)2

]
. (7.25)

Thus, we have [ai] = 0, [a0] = 2/3, and the gauge coupling is relevant, [e] = 1/3. The
low-energy relativistic fields Aµ and the Yang-Mills coupling are related to these microscopic
variables by Ai = c3/2ai, A0 = c1/2a0, and g2

YM = e2/c.
What is the size of the Yang-Mills coupling gYM seen by the low-energy observer? The

microscopic gauge coupling e breaks the constant shift symmetry of φ. Hence, the gauge
loops can be expected to correct m2 by ∼ e2µ4. To maintain naturalness, this would require
e2 ∼ ε0µ

2; the low-energy observer would then find the Yang-Mills coupling

gYM = e/c1/2 ∼ ε
1/2
0 /ε

1/4
1 . (7.26)
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Unfortunately, if these estimates are accurate (i.e., in the absence of additional cancellations
or hidden symmetries), it would be very difficult to make gYM ∼ 1 while keeping λh ∼ 1.
In particular, in our simple 10-20-30 model the natural values of the gauge couplings come
out unrealistically small, gYM ∼ 10−10, implying unrealistically light gauge bosons. It is at
present unclear whether these estimates can be improved to achieve a scenario with more
realistic values of gYM; this question would require a more detailed analysis of the interplay
between polynomial shift symmetries and gauge symmetries, which will appear in [82].

In this chapter, we have presented a new mechanism leading to naturally light scalars
whose nonderivative self-couplings can be large. Our results have been based on rather
conservative estimates of the quantum corrections, ensuring but not necessarily optimizing
naturalness. These estimates can certainly be further tightened, refined by invoking more
symmetries, or otherwise improved. In particular, it should be noted that we have not relied
on (nor included) the omnipresent loop suppression factors involving powers of ∼ 1/(16π2).
A more detailed investigation is needed before we can conclude whether our mechanism is a
useful ingredient for resolving the Higgs mass hierarchy puzzle in the SM. It is clear, however,
that our results about naturalness are relevant to other scalar fields, with or without gauge
invariance, including the inflaton.
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Chapter 8

Aristotelian O(N) Nonlinear Sigma Model

In this chapter, we apply the techniques and intuitions that we have established in the
previous chapters about the Aristotelian QFTs to a more complicated system: Aristotelian
nonlinear sigma model (NLSM) with a nonlinearly realized O(N) symmetry. This type of
models has been mentioned in Section 2.3 to illustrate the naturalness of NG modes with
higher-order dispersion relations. However, the details of the RG structure of Aristotelian
NLSM remains as a challenging task. In this chapter, we continue this study and map out
the RG structure of the Aristotelian O(N) NLSM in 2 + 1 dimensions.

One motivation for studying Aristotelian NLSMs comes from gravity. One may view the
NLSM as a simple proxy for a gravity theory, without the added details of gauge invariance.
The relativistic NLSM is a widely used toy model in high energy physics. For example,
the NLSM with an arbitrary worldsheet is crucial to the construction of string theories.
Moreover, in analogy with string theory, the 2 + 1 dimensional NLSM at a Lifshitz fixed
point, with dynamical critical exponent z = 2, and with a dynamical worldvolume can be
used as a building block for a membrane theory [5]. The ground state of such a bosonic
membrane theory considered in [5] at quantum criticality produces the partition function of
the bosonic string theory in one lower dimension. However, again, the details of the quantum
behavior of this membrane theory have not been explored.

Interest in Aristotelian NLSMs also arises from condensed matter physics. Systems with
dynamical critical exponent z 6= 1, which lack Lorentz invariance, have been commonly
discussed in many contexts ranging from quantum ferromagnets [83] to systems which are
closely related to topological order [84]. Some particularly interesting classes of models
with z = 2 are (generalized) Rokhsar-Kivelson models or quantum Lifshitz models in 2+1
dimensions [85, 86, 87]. An interesting feature of these models is the existence of a quantum
multicritical point from which one can access a rich variety of phases. At the so-called
Rokhsar-Kivelson (RK) points, the ground state wave functions (wave functionals) are given
in terms of the Boltzmann weight of two-dimensional classical statistical mechanics models.
For example, the original RK model studies the quantum dimer, an effective model which
describes quantum spin liquid ground states. The ground state of this model is given in terms
of the equal superposition of all dimer configurations. In particular, the O(N) NLSM has
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been widely studied in the context of critical phenomena and in condensed matter physics
[88, 83]. O(N) NLSMs with anisotropic scaling between time and space appear in numerous
condensed matter contexts, such as the study of phase transitions and critical phenomena.
For example, the O(N) NLSM around a z = 2 Lifshitz fixed point, which is of interest in
this chapter, can arise as a low-energy effective field theory of the quantum spherical models
with competing interactions, which is important for describing phase transitions in some
condensed matter systems [89, 90, 91].

In spite of the recent effort, for example in [43, 92], the full renormalization group flow of
the O(N) NLSM at the z = 2 Lifshitz fixed point in 2+1 dimensions remains unknown. This
z = 2 fixed point is protected by the quadratic shift symmetry [18] in the weak coupling limit.
In this work, we provide a complete analysis of the RG flow of this theory in the full space
of marginal and relevant couplings. One may view the present work as the first step towards
a more ambitious goal: to generalize to the Aristotelian case the landmark calculation by
Friedan of the one-loop beta function for a 1 + 1 dimensional relativistic sigma model with
target space an arbitrary Riemannian manifold [93].

In Section 8.1 we construct the classical action for the NLSM around a z = 2 Lifshitz
fixed point in 2 + 1 dimensions and discuss the boundedness of energy. In Section 8.2 we
calculate the one-loop beta functions and study the RG structure. Unlike the relativistic
NLSM, the NLSM around a z = 2 fixed point is not generically asymptotically free in the
UV, but instead exhibits a more intricate RG structure. In particular, there exists an RG
trajectory characterized by the detailed balance condition. In Section 8.8 we extend our
control of the NLSM to the nonperturbative region by taking the large N limit. In terms of
the ’t Hooft coupling, the exact beta functions (to all loops) can be computed by summing
over all cactus diagrams recursively, and they coincide with the one-loop beta functions in
the large N limit, as in the relativistic case.

8.1 The Classical Theory

The target space of our anisotropic nonlinear sigma model is SN−1 equipped with the max-
imally symmetric metric. The model will be invariant under two classes of symmetries: the
target-space isometry group O(N), and the “worldvolume”1 spacetime Aristotelian symme-
try group.
where λ is a positive real constant scaling factor and z is the dynamical critical exponent.
In addition, we will require both time and space reversal invariance.

One way to parametrize SN−1 is by using the fields by n ≡ (nα), α = 1, ..., N , and
requiring them to satisfy the constraint

n · n = 1. (8.1)

This system of fields makes the symmetries more manifest, but it is redundant in view of
(8.1). We will mostly switch to a suitable set of N − 1 independent fields, representing a

1In 1 + 1 dimensions this “worldvolume” reduces to the conventional worldsheet.
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local coordinate system on SN−1, by writing

n = (π1, . . . , πN−1, σ) (8.2)

where
σ =
√

1− π · π. (8.3)

In this representation, π ≡ (πI), I = 1, . . . , N − 1, is a local coordinate system on SN−1,
covering the target manifold everywhere except at one point. We will call π the “Goldstone
fields”.

To write down an explicit action, we assume a z = 2 scaling in the UV regime. We will
therefore focus on terms in the Lagrangian that are classically marginal or relevant around
the Gaussian z = 2 fixed point in 2 + 1 dimensions.2 We will measure dimensions in the
units of spatial length L and time T ,

[∂i] = L−1, [∂t] = T−1. (8.4)

Since the magnitude of n is constrained to equal 1, it is natural to assign to n the classical
scaling dimension of zero. In this measure, [n] = 1. At the z = 2 Gaussian fixed point, the
dimension of the time derivative is twice the dimension of the spatial derivative,

T = L2. (8.5)

At this z = 2 fixed point in 2 + 1 dimensions, classically marginal Lagrangian terms have
scaling dimension 4 in L−1, relevant operators have lower scaling dimension, and irrelevant
ones have higher scaling dimension. We classify all independent classically marginal and
relevant operators, up to total derivatives. To accomplish this, it is useful to note a few
consequences of the imposed symmetries.

First, our requirement of time reversal invariance implies that the number of time deriva-
tives in each term is even. Together with the condition of marginality or relevance, this
means that each term contains either two time derivatives (and therefore no spatial deriva-
tives), or no time derivatives. The full action in terms in imaginary time t (i.e., in Euclidean
signature) is thus given by

S =
1

g2

∫
dt d2x (K + V) , (8.6)

where g is a coupling constant, the kinetic term K contains the terms with two time deriva-
tives, and the potential term V contains the terms with no time derivatives. Immediately,
one concludes that K must be purely quadratic. In fact, there is one unique kinetic term,

K =
1

2
ṅ · ṅ. (8.7)

2More generally, we could allow for separate scaling in time and space, and only lock the corresponding
scales together at a later stage. This “double scaling” would require a revision of some of the fundamentals
of QFT. For example one would have to generalize the renormalization group to a two-parameter family of
flows. The O(N) invariant sigma model may be used as a playground for testing the viability of such ideas
in a simple and controlled setting.
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Next, we classify all contributions to the potential V . There is one unique marginal term
quadratic in n,

O =
1

2
∂2n · ∂2n, (8.8)

and one unique relevant term quadratic in n,

W =
1

2
∂in · ∂in. (8.9)

All other possible quadratic terms are related to the ones above via integration by parts.
Insofar as boundary terms or global topological issues can be ignored, this completes the
classification of quadratic terms.

This leaves terms that contain four spatial derivatives but include more than one inner
product in the internal O(N) index. Two of these terms contain only first spatial derivatives,

U1 =
1

8
(∂in · ∂in)2 , U2 =

1

4
(∂in · ∂jn) (∂in · ∂jn) . (8.10)

These are independent of each other for N > 2, and independent of the quadratic terms
classified above, and therefore represent new interaction terms that can appear in the action.
In addition, there are terms with at least one second derivative:

(∂in · ∂jn) (n · ∂i∂jn) , (n · ∂i∂jn) (n · ∂i∂jn) , (∂in · ∂in)
(
n · ∂2n

)
,
(
n · ∂2n

)2
.

The constraint n · n = 1 implies

n · ∂i∂jn = −∂in · ∂jn, (8.11)

which can be used to reduce the above four terms to (8.10).
Finally, all terms with a third derivative and two inner products vanish identically, given

the fact that the inner product not containing the third derivative must have only one spatial
derivative, and that

∂in · n = 0. (8.12)

To summarize, the full action, including all the independent marginal and relevant terms,
is given by

S =
1

g2

∫
dt d2x

{
K + ζ2

[
O + η1U1 + η2 U2

]
+ c2W

}
=

1

2g2

∫
dt d2x

{
ṅ · ṅ+ ζ2

[
∂2n · ∂2n+

η1

4
(∂in · ∂in)2 +

η2

2
(∂in · ∂jn) (∂in · ∂jn)

]
+ c2∂in · ∂in

}
. (8.13)

This action is the same as the model examined in [43]. From the low-energy point of view,
when c2 > 0, the relevant term W supplies the missing part of the relativistic Lagrangian
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for the SN−1 nonlinear sigma model in 2 + 1 dimensions, expected to induce a flow in the
infrared to the Gaussian fixed point with z = 1. When c2 < 0, we expect the ground state to
take the form of a modulated phase, spontaneously breaking spatial translation and rotation
symmetries [94, 95]. We will focus on the c2 ≥ 0 case throughout this chapter. The classical
dimensions of the fields and couplings are

[n] = 1, [g2] = [ζ] =
L2

T
, [η1] = [η2] = 1, [c] =

L

T
. (8.14)

Around the z = 2 fixed point, where T = L2, it is more conventional to define the scaling
dimension, which is the power of L−1 of the ordinary dimension. The scaling dimensions of
g2, ζ, η1 and η2 are all 0, and c has scaling dimension 1.

For stability, we require that the potential term V be bounded from below. In the
following we identify the conditions on the couplings that ensure that V is a sum of complete
squares, which is a sufficient condition for the positive definiteness of the potential.3 We
focus on the case N > 2 in this section. Let us write the most generic potential which is a
sum of complete squares as

V =
1

2

I∑
s=1

[
asδij∂

2n+ bs∂i∂jn+ csδij
(
n · ∂2n

)
n+ ds (n · ∂i∂jn)n

]2
, (8.15)

where as, bs, cs and ds, s = 1, . . . , I are real numbers. In (8.15) we have dropped the relevant
deformation W , which is taken to be positive since we have assumed c2 > 0. By applying
the identity (8.11), we obtain∫

dt d2xV =
1

2

∫
dt d2x

∑
s

{
As∂

2n · ∂2n+Bs (∂in · ∂in)2 + Cs (∂in · ∂jn) (∂in · ∂jn)
}
,

where

As = (as + bs)
2 + a2

s, Bs = 2
[
c2
s + (bs + ds + 2) cs + ds

]
, Cs = (bs + ds)

2 − b2
s. (8.16)

We further require
∑

sAs > 0, i.e., not all as and bs are zero. This condition is necessary for
maintaining a physical dispersion relation dominated by the quadratic scaling. Classically,
we normalize ζ to 1 by rescaling space and time coordinates. Then, comparing with (8.13),
we obtain

η1 =
4
∑

sBs∑
sAs

, η2 =
2
∑

sCs∑
sAs

. (8.17)

Analyzing this set of equations result in the following bounds on η1 and η2:

η2 ≥ −4, η1 + η2 ≥ −4, η1 + 2η2 ≥ −4. (8.18)

3This condition may not be necessary. We leave the more general case for future work.
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Figure 8.1: The potential is a sum of squares if (η1, η2) is in the white region. This ensures
that the Hamiltonian is bounded from below in this region.

These are necessary conditions for the potential V to be expressed in terms of (8.15). The
converse statement is also true: any η1, η2 satisfying these bounds can be written as a sum
of squares.

Figure 8.1 shows the region in the η1-η2 plane where the energy is certainly bounded
from below since the potential can be written as a sum of squares. At this point, we cannot
exclude the possibility of a piece of the shaded region where the energy is bounded from
below but the potential is not a sum of squares of the form (8.15). However, it is conceivable
that in the shaded region the theory may exhibit interesting nonperturbative instabilities
and consist instead of bounce instanton solutions [72, 73].

Finally, when expressed in terms of the non-redundant field π, the terms in the action
take the following form. First, we have the terms which will contribute to the propagator –
the two marginal terms that define the Gaussian fixed point,

ṅ · ṅ = π̇ · π̇ +
1

4

[
∂t(π · π)

]2
1− π · π

, (8.19)

and

∂2n · ∂2n = ∂2π · ∂2π +
1

1− π · π

[
1

2
∂2(π · π) +

1

4

∂i(π · π)∂i(π · π)

1− π · π

]2

, (8.20)

and the relevant deformation

∂in · ∂in = ∂iπ · ∂iπ +
1

4

∂i(π · π)∂i(π · π)

1− π · π
. (8.21)

In addition, we have the two independent marginal terms that will only generate interactions,

(∂in · ∂in)2 =

{
∂iπ · ∂iπ +

1

4

[
∂i(π · π)

]2
1− π · π

}2

, (8.22)
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and

(∂in · ∂jn)2 =

[
∂iπ · ∂jπ +

1

4

∂i(π · π)∂j(π · π)

1− π · π

] [
∂iπ · ∂jπ +

1

4

∂i(π · π)∂j(π · π)

1− π · π

]
. (8.23)

This form of the action in terms of the non-redundant components of the Goldstone field π
makes the O(N) symmetry less manifest, but it will be more practical for deriving Feynman
rules and dealing with explicit loop calculations.

8.2 The Quantum Theory

We first focus on the quantum corrections near the Gaussian UV fixed point. In this regime,
the theory is weakly coupled, and the standard techniques of perturbation theory and Feyn-
man diagrams are applicable.

Before any serious loop calculation, we discus some formal aspects of the perturbative
theory. We seek a regularization scheme that preserves the O(N) symmetry. We will use
dimensional regularization with minimal subtraction. One additional benefit of this scheme
is that it automatically removes power law divergences. Nevertheless, dimensional regu-
larization captures all logarithmic divergences, including those which arise as subleading
divergences to power law divergences. Thus, we will be able to systematically focus only on
the logarithmic divergences, which will simplify the loop calculation. Power law divergences,
which are important for examining issues of naturalness, will be treated separately in Section
8.7.

Around the z = 2 fixed point, the propagator is

DI1I2(ω,k) =
g2

ω2 + ζ2k4 + c2k2
δI1I2 , (8.24)

where k = |k|. The relevant deformation c2k2 acts as a natural O(N)-invariant IR regulator.
The theory is free of IR divergences and is thus well-defined in perturbation theory. This
is in contrast to the relativistic NLSM in two dimensions, where a lattice regularization is
required for the IR divergence in order to preserve the O(N) symmetry.4

The renormalizability of the z = 2 anisotropic NLSM follows in close analogy with the
relativistic case. The action can be Taylor expanded with respect to the Goldstone fields π
parametrizing the coset space O(N)/O(N − 1) which has the topology of a (N − 1)-sphere
SN−1 of unit radius. Since the scaling dimension of n is zero, the classical scaling dimension
of π should also be zero, and the theory is borderline renormalizable by power counting. In
terms of the Goldstone fields πI , the O(N − 1) symmetry is linearly realized, which restricts
the counterterms to be O(N − 1) invariant. However such counterterms can in general
violate the nonlinearly realized O(N)/O(N−1) symmetry. Regularizing the theory in a way
that preserves the O(N) symmetry of the action, a set of Ward-Takahashi (WT) identities

4Alternatively, one introduces a Zeeman term sourcing σ, which explicitly breaks the O(N) invariance.
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can be derived, as a consequence of the O(N) symmetry of the correlation functions. This
calculation is in complete analogy with the relativistic NLSM (see [88] for details). By
solving the WT identities, it can be shown that the renormalized action is O(N)-invariant,
but that the radius of SN−1 is also renormalized, which corresponds to a field rescaling. This
demonstrates the renormalizability of the z = 2 anisotropic NLSM.5

In the following, we will apply dimensional regularization to calculate the RG equations
by analytic continuation to D + 1 dimensions, where D = 2− ε. When we move away from
2 + 1 to (2− ε) + 1 spacetime dimensions, the classical dimension of g2 shifts:

[g2] =
L2−ε

T
, (8.25)

and the dimensions of all other parameters remain the same.
Recall the action derived in (8.13), which we write in terms of bare parameters:

S =
1

g2
0

∫
dt dDx

{
K0 + ζ2

0

[
O0 + (η1)0 (U1)0 + (η2)0 (U2)0

]
+ c2

0W0

}
. (8.26)

Here, we have introduced the subscript 0 to emphasize that all couplings and fields are bare.
The subscript 0 on the operators is short-hand notation for the same subscript on the π’s
contained in those operators. Note that we will work in Euclidean signature henceforth. The
renormalized action in D + 1 dimensions can be written as

S =
1

µεg2Zg

∫
dt dDx

{
K + ζ2Zζ

(
O + η1Z1Z U1 + η2Z2Z U2

)
+ c2ZcW

}
, (8.27)

where µ is a momentum scale used to absorb the change in the dimension of g2,

n =
(
πI , σ

)
(8.28)

and σ =
√
Z−1 − π · π.

There are in total 6 counterterms, Zg, Zζ , Z1, Z2, Zc and Z, corresponding to g, ζ, η1, η2,
c and the radius of SN−1, respectively. Explicitly breaking the O(N) symmetry by giving
a mass to πI or adding the Zeeman term

∫
dt d2xhσ, with h sourcing σ, results in no new

renormalization constant. The bare fields and parameters are related to the renormalized
ones via

π0 = Z1/2π, ζ2
0 = Zζζ

2, c2
0 = Zcc

2;

g2
0 = µεZgZg

2, (η1)0 = Z1η1, (η2)0 = Z2η2.
(8.29)

8.3 Feynman Rules

For developing the Feynman rules, it is useful to work directly in the broken phase with the
π representation, which is intrinsic to the target manifold and does not invoke its embedding

5The proof of the renormalizability of the z = 2 NLSM is discussed in detail in [92].



CHAPTER 8. ARISTOTELIAN O(N) NONLINEAR SIGMA MODEL 101

into a higher dimensional space. In order to determine the propagator and the infinite series
of 2j-point vertices, we expand all terms in the Lagrangian in powers of π and its derivatives.
We will be able to read off all of the one-loop renormalization properties of the theory by
focusing on the two-point and four-point Green’s functions only. Higher order correlation
functions will just yield identical renormalization equations. The highest order in π that
we would have to keep in this case is sixth-order, since this contributes to the one-loop
renormalization of the four-point Green’s function.

Keeping terms up to the sixth order in π, we obtain

K = K(2) + ZK(4) + Z2K(6) + · · · , (8.30a)

O = O(2) + ZO(4) + Z2O(6) + · · · , (8.30b)

for the two terms that contribute to the z = 2 Gaussian fixed point. Here,

K(2) =
1

2
π̇ · π̇, K(4) =

1

8
[∂t (π · π)]2 , K(6) =

1

16
∂t(π · π) ∂t

[
(π · π)2

]
, (8.31a)

O(2) =
1

2
∂2π · ∂2π, O(4) =

1

8

[
∂2(π · π)

]2
, O(6) =

1

16
∂2(π · π) ∂2

[
(π · π)2

]
. (8.31b)

For the relevant deformation that induces the flow towards z = 1 in the Gaussian limit,

W =W(2) + ZW(4) + Z2W(6) + · · · , (8.32)

where

W(2) =
1

2
∂iπ · ∂iπ, W(4) =

1

8
∂i(π · π) ∂i(π · π), W(6) =

1

16
∂i(π · π) ∂i

[
(π · π)2

]
. (8.33)

The two remaining marginal terms are

U1 = U (4)
1 + ZU (6)

1 + · · · , U2 = U (4)
2 + ZU (6)

2 + · · · , (8.34)

where

U (4)
1 =

1

8
(∂iπ · ∂iπ)2, U (6)

1 =
1

16
(∂iπ · ∂iπ)∂j(π · π) ∂j(π · π), (8.35a)

U (4)
2 =

1

4
(∂iπ · ∂jπ)(∂iπ · ∂jπ), U (6)

2 =
1

8
(∂iπ · ∂jπ)∂i(π · π) ∂j(π · π). (8.35b)

Write Z = 1 + δ, Zg = 1 + δg and so on. We split up the action into the bare action, in
which all of the Z factors are set to 1,

S
(2)
bare =

1

µεg2

∫
dt dDx

{
K(2) + ζ2O(2) + c2W(2)

}
, (8.36a)

S
(4)
bare =

1

µεg2

∫
dt dDx

{
K(4) + ζ2

[
O(4) + η1U (4)

1 + η2U (4)
2

]
+ c2W(4)

}
, (8.36b)
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S
(6)
bare =

1

µεg2

∫
dt dDx

{
K(6) + ζ2

[
O(6) + η1U (6)

1 + η2U (6)
2

]
+ c2W(6)

}
, (8.36c)

and the remainder, collectively called the counterterm action,

S
(2)
ct =

1

µεg2

∫
dt dDx

{
−δgK(2) + (δζ − δg)ζ2O(2) + (δc − δg)c2W(2)

}
, (8.37a)

S
(4)
ct =

1

µεg2

∫
dt dDx

{
(δ − δg)K(4) + (δ + δc − δg)c2W(4)

+ ζ2
[
(δ + δζ − δg)O(4) + (δ + δ1 + δζ − δg)η1U (4)

1 + (δ + δ2 + δζ − δg)η2U (4)
2

]}
. (8.37b)

There is no need to write down the sixth-order counterterm action because we will only
calculate the one-loop renormalization of the propagator and the four-point vertices, not the
six- or higher-point ones.

Next, we present the Feynman rules for the propagator, the four-point vertices and the
six-point vertices. The propagator is

DIJ = I J
ω,k

ω,k
=

µεg2δIJ

ω2 + ζ2k4 + c2k2
. (8.38)

Denote the Feynman rule for the 4-point vertex as

V
(4)
I1I2I3I4

(ωi,ki) =

I3

I1

I4

I2

ω3,k3

ω1,k1

ω4,k4

ω2,k2

, (8.39)

where the symbol (ωi,ki) is short for (ω1,k1; ω2,k2; ω3,k3; ω4,k4). We will suppress the I
indices in V (4) in general. Then,

V (4)(ωi,ki) = − 1

µεg2

[
V

(4)
K + ζ2

(
V

(4)
O + η1V

(4)
1 + η2V

(4)
2

)
+ c2V

(4)
W

]
, (8.40)

where

K(4) : V
(4)
K = (ω1 + ω2)2 δI1I2δI3I4 + (2↔ 3) + (2↔ 4), (8.41a)

O(4) : V
(4)
O = |vk1 + vk2|4 δI1I2δI3I4 + (2↔ 3) + (2↔ 4), (8.41b)

U (4)
1 : V

(4)
1 = (vk1 · vk2)(vk3 · vk4) δI1I2δI3I4 + (2↔ 3) + (2↔ 4), (8.41c)

U (4)
2 : V

(4)
2 =

[
(vk1 · vk3)(vk2 · vk4) + (vk1 · vk4)(vk2 · vk3)

]
δI1I2δI3I4

+ (2↔ 3) + (2↔ 4), (8.41d)
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W(4) : V
(4)
W = |vk1 + vk2|2 δI1I2δI3I4 + (2↔ 3) + (2↔ 4). (8.41e)

Similarly, denote the Feynman rule for the 6-point vertex as

V (6)(ωi,ki) =
I1

I2 I3

I4

I5I6

ω1,k1

ω2,k2 ω3,k3

ω4,k4

ω5,k5ω6,k6

= − 1

µεg2

[
V

(6)
K + ζ2

(
V

(6)
O + η1V

(6)
1 + η2V

(6)
2

)
+ c2V

(6)
W

]
, (8.42)

where

K(6) : V
(6)
K = (ω1 + ω2)2 δI1I2δI3I4δI5I6 + · · · , (8.43a)

O(6) : V
(6)
O = |vk1 + vk2|4 δI1I2δI3I4δI5I6 + · · · , (8.43b)

U (6)
1 : V

(6)
1 = (vk1 · vk2)(vk3 + vk4) · (vk5 + vk6) δI1I2δI3I4δI5I6 + · · · , (8.43c)

U (6)
2 : V

(6)
2 =

[
vk1 · (vk3 + vk4)

][
vk2 · (vk5 + vk6)

]
δI1I2δI3I4δI5I6 + · · · , (8.43d)

W(6) : V
(6)
W = −|vk1 + vk2|2 δI1I2δI3I4δI5I6 + · · · . (8.43e)

Here, “· · · ” denotes the sum of fourteen terms obtained by permuting the numerical sub-
scripts of the first term,

(4↔ 5) + (4↔ 6) + (2↔ 3) + (2↔ 3, 4↔ 5) + (2↔ 3, 4↔ 6)

+ (2↔ 4) + (2↔ 4, 3↔ 5) + (2↔ 4, 3↔ 6)

+ (2↔ 5) + (2↔ 5, 3↔ 6) + (2↔ 5, 4↔ 6)

+ (2↔ 6) + (2↔ 6, 3↔ 5) + (2↔ 6, 4↔ 5). (8.44)

We will also need the Feynman rules for the counterterms. The counterterm contribution
to two-point vertex is

V
(2)

c.t. = I J
ω,k

ω,k
⊗ = − 1

µεg2
δIJ
[
−δgω2 + (δζ − δg)ζ2k4 + (δc − δg)c2k2

]
, (8.45)

The counterterm contribution to the four-point vertex is

V
(4)

c.t. =

I3

I1

I4

I2

ω3,k3

ω1,k1

ω4,k4

ω2,k2

⊗
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= − 1

µεg2

[
(δ − δg)V (4)

K + (δ + δc − δg)c2V
(4)
W

+ ζ2(δ + δζ − δg)V (4)
O + (δ + δ1 + δζ − δg)η1V

(4)
1 + (δ + δ2 + δζ − δg)η2V

(4)
2

)]
. (8.46)

8.4 Renormalization Conditions

We define the physical couplings ζ∗, c∗, g∗, η
∗
1 and η∗2 at the fiducial point where the external

frequencies and momenta are zero. Since the field will be renormalized, the n-point Green’s
functions at the chosen fiducial point should be defined with respect to a new field πI∗ instead
of the original field π, where

πI∗ = rπI , (8.47)

with r a coefficient determined by the renormalization conditions.
First, we define the inverse propagator to be ΓI1I2(ω, k2). We impose the following three

renormalization conditions,

∂ΓI1I2(ω, k2)

∂ω2

∣∣∣∣
ω=0, k2=0

=
1

µεg2
∗
δI1I2 , (8.48a)

1

2

∂2ΓI1I2(ω, k2)

(∂k2)2

∣∣∣∣
ω=0, k2=0

=
ζ2
∗

µεg2
∗
δI1I2 , (8.48b)

∂ΓI1I2(ω, k2)

∂k2

∣∣∣∣
ω=0, k2=0

=
c2
∗

µεg2
∗
δI1I2 . (8.48c)

Next, we would like to define the renormalization conditions for the amputated four-point
1PI vertex

ΓI1I2I3I4(ωi,ki) = Γs(ωi,ki)δ
I1I2δI3I4 + Γt(ωi,ki)δ

I1I3δI2I4 + Γu(ωi,ki)δ
I1I4δI2I3 . (8.49)

Denote the following four-point configuration by ?:

? : ω1 = ω2 = −ω3 = −ω4 =
1

2
ω;

k1 = −k2 = p, k3 = −k4 = q, p · q = 0. (8.50)

Note that

V
(4)
K (?) = ω2δI1I2δI3I4 , (8.51a)

V
(4)
O (?) =

(
p2 + q2

)2 (
δI1I3δI2I4 + δI1I4δI2I3

)
, (8.51b)

V
(4)

1 (?) = p2q2δI1I2δI3I4 , (8.51c)

V
(4)

2 (?) = p2q2
(
δI1I3δI2I4 + δI1I4δI2I3

)
, (8.51d)

V
(4)
W (?) =

(
p2 + q2

) (
δI1I3δI2I4 + δI1I4δI2I3

)
. (8.51e)
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The following renormalization condition will fix the field renormalization:

∂Γs(?)

∂ω2

∣∣∣∣
ω=p2=q2=0

=
1

µεg2
∗
, (8.52)

We need two additional conditions to define η∗1 and η∗2,

∂2Γs(?)

∂p2∂q2

∣∣∣∣
ω=p2=q2=0

=
ζ2
∗

µεg2
∗
η∗1, (8.53)

∂2Γt(?)

∂p2∂q2

∣∣∣∣
ω=p2=q2=0

=
ζ2
∗

µεg2
∗

(η∗2 + 2) . (8.54)

For convenience, we henceforth choose to set ζ? = 1 by rescaling space and time coordinates.

8.5 One-Loop Beta Functions

The one-loop correction to the inverse propagator is

ν,q

ω,k
I1 I2

= − δI1I2

4πζµε

{[
ω2 + ζ2k4 + (1− η) c2k2

](1

ε
+ `

)}
+ f, (8.55)

where

` ≡ log

(
ζµ

c

)
, (8.56)

and

η ≡ Nη1 + (N + 2)η2 + 8

4
. (8.57)

Here, f denotes finite pieces to be absorbed by counterterms.
The one-loop correction to the four-point vertex comes from the “candy diagram” and

the “quadrupus diagram” (here, the candy diagram stands for the sum of the s-, t- and
u-channels),

+ (8.58)

Let Ω ≡ ω1 + ω2 and K ≡ k1 + k2. The quadrupus diagram is

I1 I4

I3I2

ω1,k1 ω4,k4

ω3,k3ω2,k2

ν,q
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=
1

2

∫
dν

2π

dDq

(2π)D
V

(6)
I1I2I3I4I5I6

(ω1,k1;ω2,k2;ω3,k3;ω4,k4; ν,q;−ν,−q)DI5I6(ν,q). (8.59)

The s-channel candy diagram is

I1

I2

I3

I4

ω1,k1

ω2,k2

ω3,k3

ω4,k4

ν,q

ν + Ω
q + K

=
1

2

∫
dν

2π

dDq

(2π)D
V

(4)
I1I2I5I6

(ω1,k1;ω2,k2; ν,q;−ν − Ω,−q−K)

×DI5I7(ν,q)DI6I8(ν + Ω,q + K)

× V (4)
I3I4I7I8

(ω3,k3;ω4,k4;−ν,−q; ν + Ω,q + K). (8.60)

Here Ω = ω1 + ω2 and K = k1 + k2. The t- and u-channel results can be obtained by
cycling the indices. Summing over the three candy diagrams and one quadrupus diagram
and keeping track of the 1/ε contributions, we obtain

+

= − 1

32πζµε

[
8N
(
V

(4)
K + ζ2V

(4)
O

)
+ ζ2

(
f1η1V

(4)
1 + f2η2V

(4)
2

)
+ 8(η −N)c2V

(4)
W

](1

ε
+ `

)
+ f, (8.61)

where f1 and f2 are functions of η1 and η2 given by

f1 = − 1

η1

[
(2N + 3)η2

1 + 4(N + 3)η1η2 + (N + 10)η2
2 + 8η1 + 48η2 − 16

]
, (8.62a)

f2 = − 1

η2

[
η2

1 + 8η1η2 + (N + 10)η2
2 + 24η1 + 32η2 + 80

]
. (8.62b)

The two-point 1PI contribution to the one-loop order is

Π δI1I2 = + ⊗ , (8.63)

where

Π = − 1

µεg2

{[
g2

4πζ

(
1

ε
+ `

)
− δg

]
ω2 +

[
g2

4πζ

(
1

ε
+ `

)
+ δζ − δg

]
ζ2k4

+

[
(1− η)g2

4πζ

(
1

ε
+ `

)
+ δc − δg

]
c2k2

}
+O

(
g2
)
. (8.64)
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Switching to the physical fields π∗, the geometric sum in the Schwinger-Dyson equation gives
the exact physical inverse propagator,

ΓI1I2(ω, k2) =
1

r2µεg2

(
ω2 + ζ2k4 + c2k2 − µεg2Π

)
δI1I2 . (8.65)

We require r = 1, g∗ = g, ζ∗ = ζ and c∗ = c at ` = 0 (i.e., µ = c∗/ζ∗). Then, the
renormalization conditions in (8.48) imply

δζ = 0 +O
(
g4
)
, (8.66a)

δg =
g2

4πζε
+O

(
g4
)
, (8.66b)

δc =
g2η

4πζε
+O

(
g4
)
, (8.66c)

and

g2
∗ = r2g2

(
1− g2`

4πζ

)
+O

(
g6
)
, (8.67a)

1 = ζ2
∗ = ζ2 +O

(
g4
)
, (8.67b)

c2
∗ = c2

(
1− g2` η

4πζ

)
+O

(
g4
)
. (8.67c)

Therefore we observe that there is no renormalization to ζ at the one-loop level.
In terms of the physical field π∗, the amputated four-point 1PI function is

ΓI1I2I3I4(ωi,ki) = − 1

r4µεg2

[
1 +

Ng2

4π

(
1

ε
+ `

)
+ (δ − δg)

](
V

(4)
K + V

(4)
O

)
− η1

r4µεg2

[
1 +

g2f1

32π

(
1

ε
+ `

)
+ δ + δ1 − δg

]
V

(4)
1

− η2

r4µεg2

[
1 +

g2f2

32π

(
1

ε
+ `

)
+ δ + δ2 − δg

]
V

(4)
2

− c2

r4µεg2

[
1 +

(N + η)g2

4π

(
1

ε
+ `

)]
V

(4)
W +O

(
g2
)
. (8.68)

The renormalization conditions in (8.52) imply

δ = −(N − 1)g2

4πε
+O

(
g4
)
, δi =

(8N − fi)g2

32πε
+O

(
g4
)
, i = 1, 2, (8.69)

and

g2
∗ = r4g2

(
1− Ng2`

4π

)
+O

(
g6
)
. (8.70)
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Together with (8.67a) we obtain

r = 1 +
(N − 1)g2`

8π
+O

(
g4
)
, (8.71)

which is related to the anomalous dimension of π via

γ ≡ d log r

d`
=

(N − 1)g2

8π
+O

(
g4
)
. (8.72)

Moreover,

g2
∗ = g2

[
1 +

(N − 2)g2`

4π

]
+O

(
g6
)
. (8.73)

Since g∗ is the physical coupling defined at a fiducial point, it is independent of `. Hence,
the beta function for g is

βg2 ≡ dg2

d log µ
= −(N − 2) g4

4π
+O

(
g6
)
. (8.74)

We further require η∗i = ηi, i = 1, 2 at ` = 0. The renormalization conditions in (8.53) set

η∗i = η1

[
1− (8N − fi) g2`

32π

]
, i = 1, 2. (8.75)

The terms O(4) and W(4) serve as consistency checks.
Requiring that c∗ in (8.67c) and η∗i in (8.75) be independent of `, and taking (8.74) into

account, we obtain the following set of RG equations:

βηi ≡
dηi

d log µ
=
Fig

2

32π
+O

(
g4
)
, i = 1, 2, (8.76a)

γc2 ≡
d log c2

d log µ
=

g2

16π

[
Nη1 + (N + 2)η2 + 8

]
+O

(
g4
)
, (8.76b)

where

F1 = (2N + 3)η2
1 + 4(N + 3)η1η2 + (N + 10)η2

2 + 8(N + 1)η1 + 48η2 − 16, (8.77)

F2 = η2
1 + 8η1η2 + (N + 10)η2

2 + 24η1 + 8(N + 4)η2 + 80. (8.78)

If one also keeps track of terms linear in ε, the only beta function that is modified is βg2 :

βg2 = ε− (N − 2)g4

4π
+O

(
g4
)
. (8.79)

In the next section we will demonstrate that βηi = 0 if η1 = −4 and η2 = 0, in which case
the theory is said to be at the detailed balance (if c is tuned to be zero). If one further set

g2 = g2
c ≡

√
4πε

N − 2
, N 6= 2, (8.80)
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then the theory becomes scale invariant at the one-loop level. In the large N limit this
scale invariance becomes exact. A systematic study of the critical exponents associated with
this Wilson-Fisher fixed point and its application in condensed matter systems is of future
interest.

A particularly simple case is when N = 2, which provides a consistency check of the beta
functions we calculated previously. In this case, one can parametrize the field in terms of an
angular variable:

n = (cos θ, sin θ) , (8.81)

which has unit Jacobian on the circle and therefore introduces no nontrivial measure terms
to the path integral. Then,

ṅ · ṅ = θ̇2, ∂2n · ∂2n =
(
∂2θ
)2

+ (∂iθ ∂iθ)
2 , ∂in · ∂in = ∂iθ ∂iθ,

(∂in · ∂in)2 = (∂in · ∂jn) (∂in · ∂jn) = (∂iθ ∂iθ)
2 . (8.82a)

The action becomes

S =
1

2g2

∫
dt d2x

{
θ̇2 + ζ2

[
∂2θ ∂2θ +

η

2
(∂iθ ∂iθ)

2
]

+ c2∂iθ ∂iθ
}
, (8.83)

which demonstrates that the self-interaction of the field θ is characterized not by η1 and η2

separately, but by the particular combination η given in (8.57). In particular, η = 0 describes
a Gaussian fixed point.

Of course, one can transform to angular coordinates analogously for any N ≥ 3 as well,
but there would be nontrivial measure terms in that case and the action does not simplify
as it does for the N = 2 case.

The above analysis is borne out in the previous calculations of the beta functions. In
2 + 1 dimensions, at N = 2, the beta function of g vanishes. This is in analogy with the
relativistic NLSM in 1 + 1 dimensions. However, the renormalization group flows of c2, η1

and η2 are nontrivial:

γc2 =
g2

8π
(η1 + 2η2 + 4) +O

(
g4
)
, (8.84)

βη1 =
(
7η2

1 + 20η1η2 + 12η2
2 + 24η1 + 96η2 − 16

) g2

32π
+O

(
g4
)
, (8.85)

βη2 =
(
η2

1 + 8η1η2 + 12η2
2 + 24η1 + 48η2 + 80

) g2

32π
+O

(
g4
)
. (8.86)

However, when N = 2, η1 and η2 are no longer independent couplings. Indeed, as found
above, the appropriate coupling is η. One finds

βη =
1

2
βη1 + βη2 =

9

16π
g2η2. (8.87)
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In particular, when η is set to zero, all beta functions vanish. Boundedness of the Hamiltonian
from below requires η ≥ 0, or η1 + 2η2 + 4 ≥ 0.

At the Gaussian fixed point with η = 0, one can set the relevant coupling c2 to be
naturally small, in which case one has the purely z = 2 Gaussian fixed point action. This
action enjoys a quadratic shift symmetry [18],

θ → θ + bijx
ixj, (8.88)

where bij is a symmetric tensor and xi are spatial coordinates. This is the underlying
symmetry that protects the smallness of c2 and η simultaneously. This theory describes a
natural Type A Nambu-Goldstone boson (NGB) with a quadratic dispersion relation. These
types of NGB do not violate time reversal symmetry and each is associated with one broken
symmetry generator.

8.6 Asymptotic Trajectories

In this subsection we study the structure of the RG trajectories described by the RG equa-
tions (8.74) and (8.76). We will focus on the marginal operators in the action. In fact, the
relevant deformation can be set to zero naturally in the weak-coupling limit, where the free
theory is protected by a quadratic shift invariance. We will address this in more detail later
in Section 8.7. The canonically normalized action is

Smarginal =
1

2

∫
dt d2x

{(
π̇ · π̇ + ∂2π · ∂2π

)
+
u3

4

[
[∂t (π · π)]2 +

[
∂2 (π · π)

]2]
+
u1

4
(∂iπ · ∂iπ)2 +

u2

2
(∂iπ · ∂jπ) (∂iπ · ∂jπ) + · · ·

}
, (8.89)

where we defined

u1 ≡ η1g
2, u2 ≡ η2g

2, u3 ≡ g2 ≥ 0. (8.90)

These are the couplings that control the strength of various interactions. For the one-loop
approximation to be valid, we require that u1, u2, u3 � 1. The corresponding one-loop RG
equations are

u̇i = Mi, i = 1, 2, 3, (8.91)

where

u̇i ≡
dui
dt
, t ≡ `

32π
, i = 1, 2, 3. (8.92)

and

M1 = (2N + 3)u2
1 + 4(N + 3)u1u2 + (N + 10)u2

2 + 24u1u3 + 48u2u3 − 16u2
3,

M2 = u2
1 + 8u1u2 + (N + 10)u2

2 + 24u1u3 + 48u2u3 + 80u2
3, (8.93)

M3 = −8(N − 2)u2
3 ≤ 0.
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Here we denoted the RG time by t, which is not to be conflated with the ordinary time or
the Mandelstam t variable. The solution for u3 is

u3(t) =
u30

1 + 8(N − 2)u30t
. (8.94)

We have taken the initial RG time to be zero at which point u3 takes the value u30. N = 2
is a special case discussed earlier.For N > 2 and any u30 ≥ 0, we have that u3 → 0 in the
UV (t → ∞) and u3 will become strongly coupled as it flows towards the IR. For N > 2,
the equations have only one fixed point, the Gaussian fixed point at (u1, u2, u3) = (0, 0, 0).

We would like to study the behavior of the above set of RG equations around the Gaussian
fixed point with u1 = u2 = u3 = 0. Our approach is to search for the simple RG trajectories
that are straight rays. We then linearize around these simple RG trajectories to discover
the behaviour of the nearby trajectories. This allows us to determine the stability of these
simple trajectories as they approach the fixed point. We refer the readers to [96] for more
details on RG equations with more than two couplings and [97] for quasi-linear systems, but
we will review this procedure briefly here.

Let us start by examining this simple family of RG trajectories that are straight rays
that either point towards or away from the Gaussian fixed point. We parametrize these
trajectories as

u1 =
u10

1− at
, u2 =

u20

1− at
, u3 =

u30

1− at
, (8.95)

where a 6= 0 and ui0, i = 1, 2, 3 are constants and at least one of ui0 is nonzero. Furthermore,
ui0 are the values that ui take at the initial RG times t = 0. Depending on whether a is
positive or negative, we divide these straight-line rays into two types, namely:

• UV asymptotic trajectories (UVAT): For a < 0. The range of t is
(

1
a
,∞
)
. The theory

approaches the critical point at t → ∞, i.e., the theory is asymptotically free in the
UV along any UVAT.

• IR asymptotic trajectories (IRAT): For a > 0. The range of t is
(
−∞, 1

a

)
. The theory

approaches the critical point at t→ −∞, i.e., the theory is asymptotically free in the
IR along any IRAT.

Plugging (8.95) back into (8.91), we obtain

aui0 = Mi

∣∣∣
uj=uj0

, i, j = 1, 2, 3, (8.96)

with M given in (8.93). It is always possible to rescale a by making a different choice of the
initial RG time t = 0 along the RG trajectory. In what follows, we always choose a = −1
for the UVATs and a = 1 for the IRATs.

Next, to analyze the stability of an asymptotic trajectory, we take a small deviation vi,
i = 1, 2, 3 away from the trajectory as follows:

ui =
ui0 + vi
1− at

. (8.97)
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Substituting this change of variables back into (8.91), we obtain the linearized equations

dvi
dτ

=
3∑
j=1

(
∂Mi

∂uj

∣∣∣∣
uk=uk0

− aδji

)
vj +O

(
v2
)
, i, j, k = 1, 2, 3. (8.98)

where τ ≡ − 1
a

ln(1− at).
The dimension of the manifold of stability around a UVAT is the number of negative eigen-
values of the matrix ∂M i

∂uj

∣∣
uk=uk0

+ δij. For an IRAT, this is the number of positive eigenvalues

of the matrix ∂M i

∂uj

∣∣
uk=uk0

−δij. The stability manifold will always contain the trajectory itself.

We solve the equations −ui0 = Mi

∣∣∣
uj=uj0

, with Mi given in (8.93). We will omit the

subindex 0 in the following and simply write −ui = Mi. There are two solutions for u3:

u3 = 0, u3 =
1

8(N − 2)
. (8.99)

Subtracting the u2- from the u1-equation allows one to solve for u2 in terms of u1 and u3:

u2

[
1− 4(N + 1)u1

]
= 2(N + 1)u2

1 + u1 − 96u2
3. (8.100)

We now examine the solutions to this equation. Note that at the special value u1 = 1
4(N+1)

this equation degenerates and u2 drops out entirely. The solution u3 = 0 does not satisfy
the resulting equation, in this case. The solution u3 = 1

8(N−2)
does work, but only at the

particular value N = 8. In this special case, one finds two real solutions for u2 to either the
u1- or u2-equation after plugging in the specific values for u1 and u3. The solutions are

N = 8 : (u1, u2, u3) =

(
1

36
,
−5±

√
7

81
,

1

48

)
. (8.101)

Having dispensed of the special case u1 = 1
4(N+1)

, we now assume u1 6= 1
4(N+1)

. Solving

for u2 in (8.100) and plugging back into the UVAT equations yields an equation for u1 and
u3. When u3 = 0, the remaining equation for u1 reads

u1

[
1− (N − 17)u1 − 4(N − 2)(N + 1)u2

1 + 4(N − 2)(N + 1)2u3
1

]
= 0. (8.102)

Here, u1 = 0 just yields the trivial solution. On the other hand, the cubic equation has one
real solution for N ≤ 47 and three real solutions for N ≥ 48, which is determined by noting
that the discriminant of the cubic equation has a zero at N ≈ 47.55.

For u3 = 1
8(N−2)

6= 0, the same analysis of the corresponding cubic equation shows that
there is one real solution for N = 3, 4, 5, whereas for N = 6, 7 and N > 8, there are 3
real solutions for u1, each with a corresponding value of u2. In the special case of N = 8,
two of the solutions for u1 coincide, leaving just two real solutions for u1, namely u1 = 5

36

and u1 = 1
36

. The value u1 = 5
36

has the corresponding u2 value u2 = −1
9
. The value
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u1 = 1
36

is actually the special case considered earlier in (8.101), which has two values of u2

and therefore there are still three real solutions for N = 8 in this case. In addition to the
solutions to the cubic equation, we find one other solution that exists for all N ≥ 2:

(u1, u2, u3) =
1

8(N − 2)
(−4, 0, 1). (8.103)

In fact, this solution corresponds to imposing a detailed balance condition. This condition
often reduces to the requirement that the part of the action that depends only on spatial
derivatives take the form of the square of the equation of motion of an associated Euclidean
theory in one lower dimension.

In the case of our sigma model, requiring that the theory satisfy the detailed balance con-
dition with respect to the relativistic SN−1 nonlinear sigma model means that the potential
term should be

1

2g2

∫
dt d2x gIJ(π)∆πI∆πJ , (8.104)

where

gIJ(π) = δIJ +
πIπJ

1− π · π
(8.105)

is the round metric on the unit SN−1 in the πI coordinate system, and ∆ is the covariant
Laplacian on the Goldstone fields,

∆πK ≡ ∂2πK + ΓKIJ∂iπ
I∂iπ

J . (8.106)

Since the Riemannian connection of gIJ is given by

ΓKIJ = δIJπ
K +

πIπJπK

1− π · π
= gIJ(π)πK , (8.107)

the expression for ∆πK simplifies to

∆πK =
(
∂2 +W

)
πK . (8.108)

Comparing ∂2n ·∂2n and gIJ(π) ∆πI ∆πJ , we find that these two terms differ by an additive
factor of W2. Hence, in terms of the fields n, the theory at detailed balance corresponds to
the action

Sdb =
1

2g2

∫
dt d2x

{
ṅ · ṅ+ ζ2

[(
∂2n · ∂2n

)
− (∂in · ∂in)2]} . (8.109)

This is a special case of our general action, with

η1 = −4, η2 = 0, c = 0, (8.110)

which is indeed the u3 6= 0 UVAT that exists for all N in (8.103).
When u3 6= 0, it is instructive to consider the flow in (η1, η2, u3) space. Since the beta

functions of η1 and η2 are proportional to u3 = g2 in (8.76), the slices at fixed u3 > 0 in
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the three-dimensional RG phase diagram are identical to each other except for their RG
time scale. Therefore, it is sufficient to analyze the flow lines projected onto any such plane.
In Figure 8.2, we plot the RG flow in this plane as well as the nullclines when βη1 = 0
(solid curve) and when βη2 = 0 (thick dashed curve). These nullclines intersect at points
on UVATs. Note the horizontal alignment of two of these intersections at the special value
N = 8 in agreement with the previous analysis. There is also an interesting switching in
the branching pattern of the βη1 = 0 nullcline from N = 14 and N = 15. For N = ∞,
the βη2 = 0 nullcline limits to two horizontal lines at η2 = 0 and η2 = −8 and the four
intersection points become (η1, η2) = (0, 0), (−4, 0), (4,−8) and (8,−8).6 The RG structure
becomes even more transparent in the η+-η2 plane, where η+ = η1 + η2, which is presented
in Figure 8.3. In Figure 8.3, arrows on the flow lines point towards the UV. Solid curve is
βη1 = 0 nullcline, thick dashed curve is βη2 = 0 nullcline. Their intersections are points on
UVATs with stability manifolds of dimension 1 (green), 2 (blue) and 3 (red). The vertical
black line for N = 8 shows the horizontal alignment of two trajectories. The branching
pattern of the solid nullclines switches between N = 14 and N = 15. The theory is UV
complete along the stream line on the η1-η2 plane that connects the upper blue point and
the green point.

In summary, we have found three UVATs for 3 ≤ N ≤ 5, five for 6 ≤ N ≤ 47 and seven
for N ≥ 48. Let us now analyze the stability of these trajectories as we approach the fixed
point.

The stability matrix for each UVAT has at least one eigenvalue of −1 (the stable direction
corresponding to moving along the trajectory towards the fixed point). It turns out that in
this case, the UVATs with u3 = 0 always have at least one unstable direction (the stability
matrix always turns out to have an eigenvalue of −1). Presumably this corresponds to the
unstable flow towards negative u3.

The detailed balance UVAT with (u1, u2, u3) = 1
8(N−2)

(−4, 0, 1) has a stability matrix

with eigenvalues (−1,− N
N−2

, 1) and therefore always has a 2-dimensional stability manifold.
We can analyze the stability of the other trajectories numerically. These are indicated in
Figure 8.2 by red, blue or green dots. A red dot indicates a trajectory with a stability
manifold of dimension 3 (the two dimensions of the plane are attractive towards the point
and the direction, u3 = g2, perpendicular to the plane is the direction of the trajectory itself,
which is always attractive). The blue dots indicate trajectories with stability manifolds of
dimension 2. The green dot indicates a trajectory with stability manifold of dimension one.

Putting all these results together, we get the following:

• For 3 ≤ N ≤ 5, there are three UVATs. The u3 = 0 solution has a one-dimensional
stability manifold. The trajectory (u1, u2, u3) = 1

8(N−2)
(−4, 0, 1) (detailed balance) has

6Some UVATs lie outside the region where the potential is a sum of squares. Some flows leave and others
enter this region. Perhaps the region is augmented in an N -dependent way. Otherwise, in some regions of
parameter space, it would seem that the theory predicts its own IR or UV demise.
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(a) N = 5 (b) N = 6

(c) N = 8 (d) N = 14

(e) N = 15 (f) N =∞

Figure 8.2: RG flow lines projected in the η1-η2 plane.
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(a) N = 5 (b) N = 8

(c) N = 15 (d) N =∞

Figure 8.3: RG flow lines projected in the η+-η2 plane, η+ = η1 + η2.

a two-dimensional stability manifold (blue dot). The other u3 = 1
8(N−2)

solution (red

dot) has a three-dimensional stability manifold.

• For 6 ≤ N ≤ 47, there are five UVATs. The u3 = 0 solution and the u3 = 1
8(N−2)

trajectory indicated with a green dot have one-dimensional stability manifolds. There
are two trajectories with two-dimensional stability manifolds (blue dots). There is one
trajectory with a three-dimensional stability manifold (red dot).

• For N ≥ 48, there are seven UVATs. In addition to the case 6 ≤ N ≤ 47, there are now
two more u3 = 0 solutions. One of these has a one-dimensional manifold of stability
and the other has a two-dimensional manifold of stability.

The four UVATs plotted on the η1-η2 plane in Figure 8.2 will approach the Gaussian fixed
point when u3 decreases along the RG flow towards the UV, which indicates the potential
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existence of a UV asymptotically free region. However, most of the RG trajectories that
approach the Gaussian fixed point in the UV will escape the sum-of-square region for large
enough RG time, except for the UVAT at detailed balance and the green UVAT, and by
continuity every point along the stream line on the η1-η2 plane that connects these two
points. In the large N limit, this arc lies along the dashed curve.

Solving the equations ui = Mi with the restriction u3 ≥ 0 gives only one solution for u3,
which is u3 = 0. One solves for u2 in terms of u1:

u2 =
u1 − 2(N + 1)u2

1

1 + 4(N + 1)u1

. (8.111)

There is no solution for which the denominator above vanishes. Plugging this back into the
IRAT equations yields, as before, a cubic equation for u1, which has one real solution for
3 ≤ N ≤ 47 and three real solutions for N ≥ 48.

In summary, there is one IRAT for 3 ≤ N ≤ 47 and three IRATs for N ≥ 48. The
fact that we have always found at least one IRAT means that there are some values of the
couplings for which the theory is not asymptotically free.

The stability matrix for each IRAT has at least one eigenvalue of 1 (the stable direction
corresponding to moving along the trajectory from the fixed point). Since u3 = 0, the IRATs
always have at least one unstable direction (the stability matrix always has an eigenvalue
of −1). We can analyze the stability of the each trajectory numerically, with the following
results.

• For 3 ≤ N ≤ 47, there is one IRAT having a one-dimensional manifold of stability (an
isolated trajectory). Nearby trajectories do not originate from the free fixed point.

• For N ≥ 48, there are three IRATs, one having a two-dimensional manifold of stability
and two having a one-dimensional manifold of stability.

We emphasize that the above discussion is only valid in the regime in the vicinity of the
critical point, where all (u1, u2, u3) couplings are sufficiently small. There are however two
novelties that do not arise in relativistic theories:

• Self-decay processes are kinematically allowed in theories with higher z’s. However,
at the one-loop level, there is no diagram contributing to the decay rate, and thus a
one-particle state is stable at one-loop level. At two-loops, there will be nonzero decay
rate from the imaginary part of the sunset diagram . In the deep UV this decay
rate will be comparable to the energy scale and there will not exist any long-living
particles, unless the theory is asymptotically free, in which case the decay rate will
be suppressed by the smallness of the coupling. It is possible that the theory UV
completes in a non-Wilsonian way in the regime where the theory is strongly coupled,
for example, by decaying into many soft quanta and creating some classical object
reminiscent of the classicalization phenomenon [75].
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• In the deep IR, the relevant operator W becomes more and more dominant and the
theory cascades towards z = 1 [18]. At the momentum scale much smaller than c,
the theory becomes approximately relativistic. This natural flow towards a relativistic
fixed point in the IR is guaranteed by the quadratic shift symmetry in play.

In Figure 8.2, there are trajectories leaving or entering the shaded region, in which the
action cannot be written as a sum of complete squares. In fact, there exists a large region
within which the trajectories are asymptotically free in the UV but run across the sum-of-
squares border. This indicates possible nonperturbative instabilities since the potential is
not guaranteed to be bounded from below. However, the decay rate for the theory to leave
a false vacuum is presumably suppressed by the smallness of the coupling constant g2 as in
[23], for example.

On the other hand, it is still possible that the configurations in the shaded region do not
actually exhibit instability. In the case that at some energy scale ΛUV the RG trajectory
signals UV instability, the effective description as a NLSM may break down before reaching
ΛUV and the theory should be already replaced by its UV completion; in the case that at
some energy scale ΛIR the RG trajectory signals IR instability, the theory may have cascaded
to a lower value of z beforehand.

8.7 The Power Law Divergence

By power counting, the one-loop correction to the two-point Green’s function is quadratically
divergent. Higher power law divergences will be cancelled by the path integral measure.7

In the above analysis, we applied dimensional regularization so all power law divergences
are regularized to zero. However, to examine issues of naturalness, it is necessary to ex-
plicitly calculate the size of these power law divergences. In the sharp cutoff regularization
scheme, the quadratic divergence is cancelled by introducing the corresponding counterterm.
The contribution from the relevant term W can naturally be set to zero if and only if the
quadratically divergent contribution to c2 vanishes exactly.

To extract the quadratic divergence in the two-point Green’s function, let us introduce
the UV cutoff Λ for the momentum. Then,

= −k
2Λ2

8π
δI1I2 [Nη1 + (N + 2)η2 + 8] = −ηk

2Λ2

2π
δI1I2 . (8.112)

Therefore, c2 can be set to zero naturally if and only if

Nη1 + (N + 2)η2 + 8 = 4η = 0, Nβη1 + (N + 2)βη2 = 4βη = 0. (8.113)

When N = 2, η = 0 implies βη = 0 and so the vanishing of the quadratic divergence is
preserved under RG flow. However, this is no longer true at any other value of N and in

7The role that the measure terms play here is qualitatively very similar to the relativistic case [88].
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general c2 does indeed receive a quadratic divergence8:

δc2 =
ηg2Λ2

2π
=
g2Λ2

8π
[Nη1 + (N + 2)η2 + 8] . (8.114)

Despite the quadratic divergence to c2, it is however natural to set c to zero in the weak
coupling limit. If we view the NLSM as a low energy effective field theory, we can apply
the enhanced quadratic shift symmetry (8.88) on πI in the free-field limit. The symmetry
transformation in analogy of (8.88) is

πI → πI + bIijx
ixj. (8.115)

We further define the naturalness scale µ at which the quadratic shift symmetry is broken.
Then, restoring the dimensions, we have

g2 = O(ε) , c2 = O
(
εµ2
)
, (8.116)

which predicts
c2 = O

(
g2µ2

)
. (8.117)

In the small g2 regime of the weakly-coupled NLSM, c2 can be naturally much smaller than
the naturalness scale. We refer the readers to [18] for further details.

Based on (8.116), we can argue that the theory flows towards a relativistic theory in the
deep IR, with the nonrelativistic effects being relevant only at the momentum scale set by
c. From a low energy perspective, due to one’s prejudice favoring Lorentz symmetry, it is
convenient to introduce a redefinition of spacetime coordinates,

yi ≡ c−1xi, ∇i ≡
∂

∂yi
. (8.118)

Therefore, the effective action from the relativistic observer’s perspective is

S̃ =
c2

2g2

∫
dt d2y

{
∇µn · ∇µn

+
ζ2

c4

[
∇2n · ∇2n+ η1 (∇in · ∇in)2 + η2 (∇in · ∇jn) (∇in · ∇jn)

] }
, (8.119)

where,

∇µ =

(
∂

∂t
,∇i

)
. (8.120)

The new coupling is g2/c2 = O (1/µ2). The nonrelativistic effects come from the second line
in (8.119) become negligible at the momentum scale much lower than c.

8A similar result is reported in [43], in which δc2 is claimed to be zero for all N ’s at η1 = 4 and η2 = −4
(note the differences in our notations). However, these values of η1 and η2 are not preserved under RG flow,
which invalidates the claim to asymptotic freedom in [43].



CHAPTER 8. ARISTOTELIAN O(N) NONLINEAR SIGMA MODEL 120

It is also interesting to examine the quadratic divergence at the detailed balance point,
where we have η1 = −4 and η2 = 0 given by (8.103) and the beta functions for η1 and η2

vanish. The quadratic divergence (8.112) is still present for N > 2,

=
k2Λ2

2π
(N − 2) δI1I2 . (8.121)

This quadratic divergence can be exactly cancelled by adding in fermionic degrees of freedom
and making the theory supersymmetric [98].

8.8 The Large N Limit

We can extend control over the theory beyond weak coupling in g by considering the large
N limit with the ’t Hooft coupling λt = g2N held fixed. In terms of the physical field π∗,
the action is

S =
N

µεZgλt

∫
dt d2x

{
K∗ + ζ2Zζ

(
O∗ + η1Z1ZU∗1 + η2Z2ZU∗2

)
+ c2ZcW∗

}
. (8.122)

In terms of π, the operators can be expanded to all orders as follows:

K =
1

2
π̇ · π̇ +

1

8

∞∑
n=0

Zn+1 (π · π)n [∂t (π · π)]2 , (8.123)

O =
1

2
∂2π · ∂2π +

1

8

∞∑
n=0

Zn+1 (π · π)n ∂2 (π · π)
{
∂2 (π · π) + Z (n+ 1) [∂i (π · π)]2

}
+

1

64

∞∑
n=0

Zn+1 (n+ 1) (n+ 2) (π · π)n [∂i (π · π) ∂i (π · π)]2 , (8.124)

W =
1

2
∂iπ · ∂iπ +

1

8

∞∑
n=0

Zn+1 (π · π)n ∂i (π · π) ∂i (π · π) , (8.125)

U1 =
1

8
(∂iπ · ∂iπ)2 +

1

16

∞∑
n=0

Zn+2 (π · π)n
[
∂i(π · π)

]2
(∂jπ · ∂jπ)

+
1

128

∞∑
n=0

Zn+3 (n+ 1) (π · π)n [∂i(π · π) ∂i (π · π)]2 , (8.126)

U2 =
1

4
(∂iπ · ∂jπ)2 +

1

8

∞∑
n=0

Zn+2 (π · π)n ∂i (π · π) ∂j (π · π) (∂iπ · ∂jπ)

+
1

64

∞∑
n=0

Zn+3 (n+ 1) (π · π)n [∂i (π · π) ∂i (π · π)]2 . (8.127)
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The operators with the subscript “∗” can be obtained by replacing π with π∗/r. To leading
order in the large N limit, only cactus diagrams need be summed over, which can be done
recursively.

In the following we derive the beta functions to all loops by summing over all cactus
diagrams. First, we focus on the two-point Green’s function. There are only two interactions
contributing in the large N limit,

(∂iπ∗ · ∂iπ∗)2 , (∂iπ∗ · ∂jπ∗) (∂iπ∗ · ∂jπ∗) . (8.128)

The propagator is

=
δI1I2

N

r2µεZgλt
ω2 + Zζζ2k4 + Zcc2k2

. (8.129)

The four-point vertex is

−NZZζζ
2

r4µεZgλt

(
Z1η1 U (4)

1 + Z2η2 U (4)
2

)
, (8.130)

where a superscript (4) indicates the part of the potential involving the four-point interaction.
Diagrammatically, the exact two-point function can be written as a geometric series of 1PI
diagrams,

=
δI1I2

N

µελ∗
ω2 + ζ2k4 + c2k2

= + 1PI + 1PI 1PI + · · · , (8.131)

where 1PI is a sum of all 1PI cactus diagrams. Therefore, one derives the recursive relation

1PI = (8.132)

Denote the amputated 1PI two-point function as δI1I2Π. Then, (8.132) implies

Π =
N

16πζ

ZZζ
r2µεZg

(Z1η1 + Z2η2) c2k2

(
1

ε
+ `

)
, (8.133)

where

` ≡ log

(
ζ∗µ

c∗

)
. (8.134)

Therefore,

=
δI1I2

N

r2µεZgλt

ω2 + ζ2Zζk4 +
(
Zcc2k2 − µεZgλt

N
Π
) . (8.135)

There is no divergence to be absorbed by Zg or Zζ . Take r = 1, λ∗ = λ and c∗ = c at ` = 0.
The renormalization conditions in (8.48) imply

Zg = 1, Zζ = 1, (8.136)
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and
λ∗ = r2λt, 1 = ζ∗ = ζ. (8.137)

Moreover,

c2
∗ = Zcc

2 − λt
16πζ

Z (Z1η1 + Z2η2) c2

(
1

ε
+ `

)
. (8.138)

Now, we compute the four-point Green’s function for πI∗ . The tree level vertex is

= − NZ

r4µελt

[
K(4) +O(4) + Z1η1 U (4)

1 + Z2η2 U (4)
2 + Zcc

2W(4)
]
. (8.139)

Since Zc has been obtained from the two-point calculation and the W vertex does not
contribute to any divergent corrections of other four-point terms, K(4), O(4), U (4)

1 and U (4)
2 ,

we will thus exclude theW(n), n ≥ 4 interactions in the following calculation. We start with
the infinite sum of multi-headed quadrupus diagrams:

= + + + · · · (8.140)

all of which are of the cactus-type. There are exactly two types of vertices that have nonzero
contributions to such multi-headed quadrupus diagrams:

(π∗ · π∗)n [∂t (π∗ · π∗)]2 , (π∗ · π∗)n
[
∂2 (π∗ · π∗)

]2
. (8.141)

An n-headed quadrupus diagram yields

− N

µελt

Zn+1

r2n+4

{
λ∗
4π

(
1

ε
+ `

)}n [
K(4) +O(4)

]
, n ≥ 1. (8.142)

Then,

= − NZ

r4µελt

1

1− Zλ∗
4πr2

(
1
ε

+ `
) [K(4) +O(4)

]
− NZ

r4µελt

[
Z1η1 U (4)

1 + Z2η2 U (4)
2

]
. (8.143)

The exact four-point vertex at large N comes from the sum of all cactus diagrams

= + + + · · · = + (8.144)

where

= − N

µελ∗

[
K(4) +O(4) + η1U (4)

1 + η2U (4)
2

]
. (8.145)
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Further note that

=
NZ

32πµε
λt
λ∗

(
1

ε
+ `

){[
2Z1η1(η∗1 + η∗2) + Z2η2(2η∗1 + η∗2)

]
U (4)

1

+ Z2η2η
∗
2 U

(4)
2

}
. (8.146)

The renormalization condition (8.52) requires

Z =
λ∗

λt
[
1 + λ∗

4π

(
1
ε

+ `
)] , (8.147)

where we have applied r2 = λ∗/λt from (8.137). At ` = 0 we have λ∗ = λt and thus

Z =
1

1 + λt
4πε

, (8.148)

which further implies

λ∗ =
λt

1− λt
4π
`
, r2 =

1

1− λt
4π
`
. (8.149)

Take η∗i = ηi, i = 1, 2 at ` = 0. The renormalization conditions in (8.53) require

Z1 =
1 + λt

32πε
η2

η1
(η1 + η2)

1− (η1+η2)λt
16πε

Z2, Z2 =
1

1− η2λt
32πε

1

Z
, (8.150)

and

η∗1 =
1− λt

32π
η2

η1
(η1 + η2)`

1 + λt
16π

(η1 + η2)`

η∗2
η2

η1, η∗2 =
1

1 + η2λt
32π

`

λt
λ∗
η2. (8.151)

Set c∗ = c at ` = 0. Plugging (8.147) and (8.150) back into (8.138) gives

Zc =
1

1− λt
16πε

(η1 + η2)
, (8.152)

and

c2
∗ =

c2

1 + (η1+η2)λt
16π

`
. (8.153)

Finally, require the physical coupling to be independent of ` in (8.137), (8.149), (8.150) and
(8.153), we obtain the exact beta functions,

βλt = −λ
2
t

4π
, (8.154)

βη1 =
λt

32π

(
2η2

1 + 4η1η2 + η2
2 + 8η1

)
, (8.155)
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βη2 =
λt

32π
η2(η2 + 8), (8.156)

γc2 =
λt

16π
(η1 + η2), (8.157)

while the anomalous dimension for π is given by

γ ≡ d log r

d`
=
λt
4π
. (8.158)

These exact RG equations match the one-loop beta functions in Section 8.5. This matching
is exactly the same as occurs in the large N limit of the relativistic NLSM.

From (8.148), (8.150) and (8.152) it is clear that the couplings that control the strength
of the operators are λt, u1 ≡ η1λt, u2 ≡ η2λt and c2. Note that

βu1 =
1

32π

(
2u2

1 + 4u1u2 + u2
2

)
, (8.159a)

βu2 =
1

32π
u2

2. (8.159b)

It is convenient to change into the set of couplings (u, u2, λt), where u ≡ u1 + u2, in terms of
which the beta functions are

βλt = −λ
2
t

4π
, βu =

u2

16π2
, βu2 =

u2
2

32π2
, (8.160)

which can be solved exactly by

λt =

(
1

λt0
+

t

4π

)−1

, u =

(
1

u0

− t

16π

)−1

, u2 =

(
1

u20

− t

32π

)−1

, (8.161)

where λt0, u0 and u20 are initial conditions for λt, u and u2, respectively. The theory is
asymptotically free in the UV only if u0 ≤ 0 and u20 ≤ 0. However, the conditions given in
(8.18) that allow the potential to be written as a sum of squares require

u2 ≥ −4λt, u ≥ −4λt, u+ u2 ≥ −4λt. (8.162)

If one starts with λt0 ≥ 0, u0 ≤ 0 and u20 ≤ 0 that respect the above inequalities, even
though the second inequality will be always preserved, the other two inequalities will be
violated at a sufficiently large t, unless u20 = 0 is satisfied exactly. Additionally, in the
large N limit, the decay rate is at least suppressed by N−1. In conclusion, the theory is
asymptotically free in the UV if one starts with the initial data that satisfies

0 ≥ u10 ≥ −4λt0, u20 = 0. (8.163)

It is also interesting to note that the quadratically divergent contribution to c2 is

δc2 =
Λ2

8π
(u1 + u2) . (8.164)
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Furthermore, δc2 in (8.164) is exactly zero if and only if u1 + u2 = 0, which is preserved by
the RG flow. Setting u1 = −u2 ≡ −ũ,

βũ =
1

32π
ũ2. (8.165)

In order for the entire flow to satisfy the bounds on η1 and η2 given in (8.18), we require
ũ ≥ 0. In the IR, λt increases while u1 and u2 decrease to zero, and the theory becomes

S =
N

λt

∫
dt d2x {K +O} . (8.166)

Again, there is a hidden quadratic shift symmetry protecting this action. To make this
symmetry manifest, we consider the NLSM as a low energy effective field theory which is
completed by a linear sigma model (LSM) in the UV. This has been addressed in [18], which
we review in the following. Consider the LSM in 2 + 1 dimensions for a O(N) vector field
φα, α = 1, 2, · · · , N in the broken phase with a spatially uniform condensate, which we take
to lie along the N -th component such that 〈φN〉 = v. Let us write

φα =
(
ΠI , v + Σ

)
, I = 1, 2, · · · , N − 1. (8.167)

We further require ΠI satisfying the quadratic shift symmetry,

ΠI → ΠI + aIijx
ixj, (8.168)

similarly to (8.88). This restricts the LSM to be

SLSM =
1

2

∫
dt d2x

{
φ̇ · φ̇+ ∂2φ · ∂2φ

}
. (8.169)

In terms of the variables,
φα = r

(
πI ,
√

1− π · π
)
, (8.170)

and integrating out the gapped radial field r − v in (8.169) gives (8.166) classically. In the
large N limit, these two theories become the same at the quantum level.

In this chapter we discussed aspects of the 2 + 1 dimensional nonlinear sigma model at
a z = 2 Lifshitz fixed point. After constructing the theory in Section 8.1, we examined the
conditions imposed on the couplings by requiring that the potential be a sum of complete
squares. Then, we studied the one-loop quantum behavior of the system and obtained
the beta functions for all couplings. A perturbatively stable asymptotically free region is
identified. Due to the quadratic shift symmetry that simultaneously protects the smallness of
the coupling constant g and the speed of light c, the theory can naturally flow towards a z = 1
fixed point in the IR and appears to be relativistic for low energy observers. The detailed
balance condition is preserved under RG flow if c = 0. At detailed balance, the theory can be
supersymmetrized, borrowing from the methods of stochastic quantization, which enjoys the
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Parisi-Sourlas supersymmetry [98]. In the equilibrium limit, this theory corresponds to the
topological harmonic sigma model [99]. The connection between the nonrelativistic NLSM
and the topological harmonic sigma model is somewhat analogous to the connection between
the (2+1) dimensional Rokhsar-Kivelson model and the 2-dimensional statistical mechanical
models of dimers. Finally, we extended the beta function calculation to all loop order in
the large N limit by summing over all cactus diagrams, which is further cross-checked in a
nonperturbative manner by applying the steepest descent method.

In (2− ε)+1 dimensions, there exists a scale-invariant fixed point at the critical coupling
constant if the theory is also taken to be at detailed balance. This conformal fixed point
may be important for the study of critical phenomena in Aristotelian-type theories.

Another interesting future direction is to include topological terms. In (2+1) dimensions,
the O(5) and O(4) NLSMs can be augmented with the Wess-Zumino-Witten (WZW) term,
and the θ term, respectively. These theories have been discussed, e.g., in the context of decon-
fined quantum criticality, the quantum spin Hall effect (topological insulators), and graphene.
(See, for example, [100, 101, 102, 103]). While the effect of the Wess-Zumino-Witten term
in (1+1)-dimensional NLSMs and principal chiral models have been well-understood, e.g., it
is known that the O(3) NLSM in (1+1) dimensions with a topological θ term (θ = π) flows
to a nontrivial fixed point, i.e., a SU(2)1 WZW theory [104], relatively little is known in
higher dimensions. It is noted that one cannot develop a controlled RG calculation of the
relativistic O(5) NLSM in (2+1) dimensions with the WZW term [105]. On the other hand,
the Aristotelian O(N) NLSM studied in this work may provide a natural and convenient
platform to study the effects of the topological term. It is expected that there is a nontrivial
fixed point describing a (2+1)-dimensional CFT. 9

9In a recent work [106], the effects of the WZW term in a relativistic NLSM in (2+1) dimensions were
studied in the large N limit. To have a well-controlled RG calculation and a well-defined topological term,
they chose to work with Grassmannian manifolds as their target space.
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Chapter 9

Quantization of Hořava Gravity in 2 + 1 Dimensions

Throughout the thesis, we mainly worked with Aristotelian QFTs of scalars. Even in this
very simple case, mapping out the role of technical naturalness in nonrelativistic systems
with Aristotelian spacetime symmetries has led to many surprises. In this last chapter of the
thesis, we extend our study of nonrelativistic naturalness to systems with gauge symmetries,
in particular to gravity. In these more complicated systems with gauge symmetries, we
expect more interesting surprises to appear.

The Aristotelian spacetime is the ground-state solution to Hořava gravity. Considerable
effort has been devoted to the study of Hořava gravity since it was introduced in [5, 6].
Being renormalizable by näıve power counting, Hořava’s theory constitutes a candidate for
an ultraviolet-complete theory of quantum gravity. In spite of some work [107, 108, 109, 110],
nonetheless, as yet there have been no fully satisfactory quantum computations; in fact,
perturbative renormalizability of one version — the “projectable” model — was established
only recently [111].

The purpose of the present chapter is to take a step forward in understanding quantum
corrections to Hořava gravity by making a careful computation of a one-loop quantity working
in non-singular gauges. (What we mean by this is explained in Sections 9.2 and 9.4.) More
specifically, the model we consider is z = 2 projectable Hořava gravity in 2 + 1 dimensions,
and the quantity we compute is the anomalous dimension of the cosmological constant.1

Hořava gravity is constructed so that, at high energies, the classical action has anisotropic
scale invariance with the dynamical critical exponent z:

t→ bz t, x→ bx. (9.1)

As our interest is in z = 2, we take the engineering dimensions of the time and space

1In anisotropic models, the effective coefficients of the temporal and spatial kinetic terms can scale
differently — i.e., the dispersion relation runs with scale. This running can be captured by fixing the
form in which either the energy or the spatial momentum appears in the dispersion relation. We compute
the anomalous dimension of Λ with respect to a normalization condition that fixes the form of the spatial
momentum contribution.
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coordinates to be

[t] = −1, [x] = −1

2
. (9.2)

In this convention, energy is of dimension one. The z = 2 theory is renormalizable in 2 + 1
dimensions [111].

The spacetime manifold is equipped with a foliation by leaves of codimension one, corre-
sponding to the surfaces of constant time. Its geometry is naturally parametrized using the
ADM variables – a spatial scalar N (the lapse), a spatial vector Ni (the shift), and a spatial
metric gij. The classical scaling dimensions of the fields are

[N ] = 0, [Ni] =
1

2
, [gij] = 0. (9.3)

The gauge symmetries are the diffeomorphisms that preserve the foliation. We parametrize
the infinitesimal transformations by (Z,X i),

δt = Z(t), δxi = X i(t,x) , (9.4)

that act on the fields by

δN = ∂t(Z N) +Xk∇kN, (9.5a)

δN i = ∂t(Z N
i) + (∂t −Nk∇k)X

i +Xk∇kN
i, (9.5b)

δgij = Zġij +∇iXj +∇jXi. (9.5c)

A proper understanding of Hořava gravity requires a careful treatment of its gauge fixing.
To this end, it is useful to begin with the simplest model possible. It is tempting to begin
with the conformal case in 2 + 1 dimensions, because it has no local propagating degrees
of freedom. Unfortunately, not only does it require the “non-projectable” version of the
theory, which has second class constraints and their attendant difficulties, but also it raises
the thorny issue of gauge anomalies for the Weyl symmetry.

A more modest starting point is “projectable” Hořava gravity in 2 + 1 dimensions. Pro-
jectability is the condition that N = N(t) be a function of time but not of space, so that it
is constant on each spatial slice. We assume this condition for the remainder of this chapter.
The 2 + 1 dimensional projectable case is more than just a toy model for understanding the
qualitative behavior of the more realistic 3+1 dimensional non-projectable theory. Mapping
out the renormalization group structure of the projectable theory is important to further
understand the phases of gravity, both in the context of Hořava gravity and the Causal
Dynamical Triangulation approach to quantum gravity [112, 113].

The action is written in terms of quantities invariant under those diffeomorphisms pre-
serving the foliation of spacetime, namely scalars built from the intrinsic and extrinsic curva-
tures of the leaves of the foliation and their covariant derivatives. The intrinsic curvature of
a two-dimensional leaf is completely determined by its spatial Ricci scalar R. The extrinsic
curvature is captured by the tensor

Kij =
1

2N
(ġij −∇iNj −∇jNi), (9.6)
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where ∇i is the covariant derivative with respect to gij. The most general z = 2 action
invariant under (9.5) is

S =
1

κ2

∫
dt d2xN

√
g
{
KijK

ij − λK2 − γR2 + ρR− 2Λ
}
, (9.7)

where K = gijKij. Since
∫
d2x
√
gR is a topological invariant in two dimensions, ρ does not

appear in the local equations of motion, but only in the global Hamiltonian constraint arising
from time reparametrization symmetry. As a result ρ cannot contribute to the perturbative
beta function, and so we drop this term in what follows.2

In general dimension, projectable Hořava gravity has a transverse traceless tensor mode
and a scalar mode. Requiring the tensor polarizations to have a good dispersion relation
around flat space then implies that γ > 0. Requiring the dispersion of the scalar also to be
healthy imposes the constraint

λ <
1

2
or λ > 1. (9.8)

In 2 + 1 dimensions, however, there are no tensor modes. We then have the option of setting
γ to be negative when 1

2
< λ < 1. The propagating spectrum of the theory is then healthy,

at least classically. We do not worry about this explicitly in what follows, although our final
result makes sense in this parameter region.

In this chapter, we will compute contributions to the effective action using the background
field method. In this method, fields are split into a sum of two terms: a classical background
value, and quantum fluctuations of typical size ~1/2. For the action (9.7), the role of ~ is
played by κ2. This leads us to expand

N = N + κn, N i = N
i
+ κni, gij = gij + κhij, (9.9)

where N , N
i

and gij are background fields and n, ni and hij are fluctuations around the
given background. Gauge transformations can also be expanded in powers of κ,

Z = Z + κ ζ, X i = X
i
+ κ ξi, (9.10)

with (Z,X
i
) the background diffeomorphisms, and (ζ, ξi) the physical gauge symmetries of

the quantum fluctuations. Due to the projectability condition, we can use (Z,X
i
) to set

N = 1, N
i

= 0. (9.11)

In this gauge, the action of ζ and ξi (to linear order in κ) is

δn = ζ̇ +O(κ), (9.12a)

2On the other hand, it may very well contribute to the full non-perturbative beta function through
instanton corrections. Also note that, while it cannot contribute to the perturbative beta function, in
principle ρ itself may have a non-zero perturbative beta function that depends only on the other couplings
in the theory. For dimensional reasons, however, its beta function vanishes at one loop. (See Section 9.6.)
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δni = ξ̇i +O(κ), (9.12b)

δhij = ∇iξj +∇jξi +O(κ) . (9.12c)

Here, ∇i denotes the Christoffel connection for gij. We can use ζ to set n ≡ 0; since n is
independent of space and so has only one degree of freedom per spatial slice, it does not
contribute divergences. For our purposes, therefore, we can ignore the contribution from n
to the path integral.

In the following, we will work only on backgrounds that are time-independent. We
express the partition function in terms of functional determinants by integrating out the
quantum fluctuations ni and hij, and the gauge-fixing ghost modes. The one-loop effective
action is then evaluated using heat kernel techniques. This will allow us to compute some
(but not all) of the one-loop beta functions in the theory. To fully understand the RG
properties of the theory at weak coupling (and in particular, determine whether the theory
is asymptotically free), it is necessary to evaluate the heat kernel on background geometries
with a time-dependent metric. We leave this to future work.

Previous work on the one-loop effective action in gravity with anisotropic scaling [114]
overlooked crucial contributions from the gauge-fixing sector of the theory, a problem exacer-
bated by dropping from the partition function altogether singular determinants that did not
cancel out in their analysis. We show that such confusion can be avoided by an appropriate
choice of gauge. The gauge-fixing methods we developed have, in the meantime, appeared in
a more general form in the work of [111], which applied them to show the renormalizablility
of projectable Hořava gravity. We take advantage of their more general gauge in Section 9.2
for reasons of clarity, although the bulk of our computation uses our more restrictive original
gauge.

Section 9.1 and Section 9.2 develops the gauge-fixing method and field parametrizations
we use in the remainder of this chapter in the simpler context of linearized theories. Before
embarking on the gravitational calculation, we begin in Section 9.1 with a warm-up – free
U(1) gauge theory in D + 1 dimensions with z = 2 scaling at short distances. One natural
choice in this context, used in [115], is temporal gauge. Here, we utilize a gauge choice that
manifestly respects the z = 2 scaling symmetry. Generalizing this gauge-fixing procedure to
the gravitational case will lead us in Section 9.2 to the same sort of gauge-fixing condition
used by [111] in proving perturbative renormalizability of projectable Hořava gravity. Sec-
tion 9.3 uses these results to compute the dependence of the one-loop effective action on the
cosmological constant, which illustrates how the effective action can depend on gauge, and
how to extract the correct gauge-invariant effective action.

Section 9.4 turns to computations in curved space using the background field method.
There, we compute the partition function on static on-shell curved backgrounds (R = const,
∂tgij = 0) supported by non-vanishing Λ. Working with an on-shell background enables
us to systematically disentangle the physical and unphysical modes and observe explicitly
the cancellation of the unphysical modes among themselves. We give an explicit expression
for the physical dispersion relation, which generalizes the flat space result. We normalize
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the gravitational field such that γ/κ4 is constant at all energy scales. With respect to this
choice of normalization condition, we are able to determine the anomalous dimension of Λ.
Extracting the beta functions for γ, λ and κ requires working on backgrounds that depend
on time, which we leave to future research.

9.1 Aristotelian U(1) Gauge Theory

In gauge theories exhibiting an anisotropic scaling symmetry of the form (t,x) 7→ (b t, b1/zx),
it is desirable to choose a gauge-fixing condition that respects this symmetry. This is espe-
cially true in models at their critical dimension, for which standard gauges – in particular,
Lorenz gauge – may not be renormalizable.

In some simple cases (e.g., free Maxwell theory), there is no problem with singular gauges,
such as the temporal or Coulomb gauges, which are in fact invariant under the scaling
symmetry for any value of z. When the theory is coupled to gravity, however, such gauges
can become problematic. For example, in temporal gauge the Faddeev-Popov determinant is
det(∂t). While in the flat case this determinant can be dropped, in the gravitational case it
couples non-trivially and should not be ignored. However, such operators have no dependence
on large spatial momenta, leading to uncontrolled ultraviolet divergences. Moreover, this
problem persists in both dimensional regularization and heat-kernel based methods. Such
gauges therefore give rise to ambiguities, which need to be resolved in a manner consistent
with BRST symmetry. From a more pedestrian perspective, our strategy ensures that the
gauge-fixing Lagrangian, which is quadratic in the gauge-fixing condition, is of the same order
in derivatives as the original Lagrangian. Thus, the two can be combined more seamlessly.

In the first two sections, our goal is to introduce3 such gauges in linearized z = 2 gravity.
In this section, we illustrate the process in free anisotropic U(1) gauge theory. This serves
as a warm-up to the second case of z = 2 projectable Hořava gravity in 2 + 1 dimensions
linearized around flat space in the next section. We will apply these results to make a
simple quantum computation. Section 9.4 will be concerned with the generalization to static
backgrounds in the background field method.

We begin with free U(1) gauge theory in D+1 dimensions exhibiting z = 2 scaling in the
UV and z = 1 in the IR. The gauge field is a U(1) connection on Aristotelian spacetime [23].
The time and space components, A0 and Ai (i = 1, · · · , D), have gauge transformations,

δA0 = ζ̇ , δAi = ∂iζ, (9.13)

with ζ(t,x) an arbitrary scalar function. The invariant field strengths are

Ei = Ȧi − ∂iA0, Fij = ∂iAj − ∂jAi. (9.14)

3The gauges we use in this chapter also appeared in the work of [111], where they were used to demon-
strate the perturbative renormalizability of projectable Hořava gravity. We originally arrived at them as
a way to remove singular behavior in the background field formalism while preserving anisotropic Weyl
invariance.
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At the ultraviolet z = 2 Gaussian fixed point, the engineering dimensions of the gauge fields
are

[A0] =
D

4
, [Ai] =

D

4
− 1

2
. (9.15)

The basic most generic action with this scaling in the UV that is invariant under both the
spacetime and gauge symmetries (including parity and time-reversal) is

S =

∫
dt dDx

{1

2
EiEi −

1

4
∂kFij∂kFij −

1

4
v2FijFij

}
, (9.16)

where v is the “speed of light” in the infrared.
In components, the action becomes

S =
1

2

∫
dt dDx

{
∂iA0∂iA0 + ȦiȦi − 2Ȧi∂iA0 − Ai

(
∂2 − v2

) (
δij∂

2 − ∂i∂j
)
Aj

}
=

1

2

∫
dt dDx

(
A0 Ai

)
S(2)

(
A0

Aj

)
, (9.17)

where

S(2) =

(
−∂2 ∂j∂t
∂t∂i Oδij + (∂2 − v2)∂i∂j

)
, (9.18)

and O is the generalized d’Alebertian operator,

O = −∂2
t − ∂4 + v2∂2. (9.19)

A natural z = 2 generalization of the Lorenz gauge is given by the gauge-fixing functional

f [A] = Ȧ0 − (−∂2 + v2)∂iAi. (9.20)

To quantize the theory with this gauge-fixing, we should further introduce a pair of fermionic
ghosts (b, c), a bosonic auxiliary field Φ, and the fermionic BRST differential s acting on the
fields as

sA0 = ċ, sAi = ∂ic, sb = Φ, sΦ = sc = 0. (9.21)

A generalizedRξ gauge-fixing action based on (9.20) can now be obtained from a gauge-fixing
fermion of the form

Ψ =

∫
dt dDx b

{1

2
DΦ− f [A]

}
. (9.22)

Note that, unlike standardRξ gauge, if we wish to avoid introducing dimensionful parameters
then D must be a differential operator of dimension one. The BRST-exact action is

sΨ =

∫
dt dDx

{1

2
ΦDΦ− Φf [A] + bOc

}
, (9.23)
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The resulting BRST-invariant gauge-fixed action is

SBRST = S + sΨ , (9.24)

giving the quantum partition function

Z =

∫
D{A0, Ai, b, c,Φ} eiSBRST . (9.25)

As in the case of the standard Rξ-gauge procedure, the partition function is independent of
D.

Setting D = −∂2+v2 is a particularly nice choice, as it eliminates the cross-terms between
A0 and Ai, after integrating out Φ. Redefining the A0 field via A0 →

√
DA0 results in a

Jacobian JA0 = (detD)1/2, which cancels the factor of (detD)−1/2 produced by the integral
over Φ. The action then becomes

SBRST[A0, Ai, b, c] =

∫
dt dDx

{
− 1

2
A0OA0 +

1

2
AiOAi + bOc

}
. (9.26)

The overall sign in front of the piece quadratic in A0 in (9.26) is negative, so we must Wick
rotate A0 when we rotate t. The partition function evaluates to

Z = (detO)−
D−1

2 . (9.27)

This represents D − 1 physical propagating modes with dispersion relation

ω2 = k4 + v2k2. (9.28)

Before we move on to Hořava gravity, we make the following comment. As in the Lorentz-
invariant theory, one can diagonalize the kinetic operator of (9.17) explicitly in field space,
without gauge-fixing. There is one pure gauge mode on which the operator vanishes com-
pletely. There is also one unphysical mode which gets a wrong-sign dispersion relation. The
rest of the modes should then reproduce the correct dispersion relation (9.28).

9.2 Hořava Gravity Around Flat Space

We now turn to the linearization of z = 2 projectable Hořava gravity in (2 + 1) dimensions
around flat space, with gij in (9.9) set to δij. The flat background is on-shell if the cosmo-
logical constant Λ is set to zero. However, since we are also interested in the Λ dependence
of the off-shell effective action, we will allow for a nonzero Λ.

The action is that of (9.7), with ρ = 0. The quadratic part4 of the action is

Squad =

∫
dt d2x

{1

4

(
ḣijḣij − λḣ2

)
− ḣij∂inj + λ ḣ∂ini +

1

2
∂inj∂inj −

(
λ− 1

2

)
(∂ini)

2

4Since we are interested in the effective action, we drop the linear part, which is non-vanishing when
Λ 6= 0.
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− γ(∂i∂jhij − ∂2h)2 +
Λ

4
(2hijhij − h2)

}
=

1

2

∫
dt d2x

(
ni hik

)
S(2)

(
nj
hj`

)
, (9.29)

where h ≡ hii, and the matrix S(2) is the second functional derivative of the action. Explicitly,

S(2) =

(
S

(2)
nn S

(2)
nh

S
(2)
hn S

(2)
hh

)
, (9.30)

with

S(2)
nn = −δij∂2 + (2λ− 1)∂i∂j, (9.31a)

S
(2)
nh =

[
S

(2)
hn

]†
=

1

2

(
δij∂` + δi`∂j − 2λδj`∂i

)
∂t, (9.31b)

S
(2)
hh = −1

4

(
δijδk` + δi`δjk − 2λδikδj`

)
∂2
t +

Λ

2
(δijδk` + δi`δjk − δikδj`)

− 2γ
[
δikδj`∂

4 − (δik∂j∂` + δj`∂i∂k)∂
2 + ∂i∂j∂k∂`

]
. (9.31c)

Intuitively, one can think of this theory as “adding a spatial index” to the U(1) gauge theory
of the previous section: ni is analogous to A0, and hij to Ai. Likewise, the gauge-fixing
functional fi, ghost fields bi and ci, and bosonic auxiliary field Φi all carry a spatial index.
The BRST differential s acts as

sni = ċi, shij = ∂icj + ∂jci, sbi = Φi, sΦi = sci = 0. (9.32)

In analogy with the U(1) theory, we choose the gauge-fixing fermion

Ψ =

∫
dt d2x bi

{1

2
DijΦj − fi

}
, (9.33)

where Dij is some spatial differential operator of dimension one, and fi is a gauge-fixing
functional. As pointed out in [111], the most general such operator is

Dij = −u1δij∂
2 − u2 ∂i∂j , (9.34)

where u1 and u2 are constants.
The analog of the gauge-fixing condition (9.20) reads fi = ṅi − Dijkhjk, where Dijk is a

spatial differential operator of energy dimension 3
2

(e.g., containing three spatial derivatives).
Forcing the cross-terms between ni and hij to vanish upon integrating out Φi uniquely
determines Dijk to be Dijk = Dij∂k − λδjkDi`∂`:

fi = ṅi −Dij(∂khjk − λ∂jh)

= ṅi + u1 ∂
2∂jhij + u2 ∂i∂j∂khjk − λu ∂2∂ih, (9.35)
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where u = u1 + u2. As before, the final result is independent of the particular choice of Dijk.
The analog of the BRST-exact action (9.23) is

S ′ = sΨ =

∫
dt d2x

{1

2
ΦiDijΦj − Φifi[h, n] + biOijcj

}
, (9.36)

where

Oij = −δij∂2
t +Dik

[
δjk∂

2 − (2λ− 1)∂j∂k
]

= δij
(
−∂2

t − u1∂
4
)

+ 2
[(
λ− 1

2

)
u1 + (λ− 1)u2

]
∂2∂i∂j. (9.37)

We can immediately read off the ghost partition function,

Zghost = detOij = (detOg)(det Õg), (9.38)

where

Og = −∂2
t − 2u(1− λ)∂4, Õg = −∂2

t − u1∂
4. (9.39)

The rest of the action, after integrating out Φi, called the “effective” part, reads

Seff[ni, hij] =
1

2

∫
dt d2x

{
− niS(2)

ij nj + hijS
(2)
ijk`hk`

}
, (9.40)

where

S
(2)
ij = D−1

ik Okj, (9.41a)

S
(2)
ijk` =

1

4
(δikδj` + δi`δjk)(−∂2

t + 2Λ)− 1

4
δijδk`(−2λ∂2

t − 4λ2Dmn∂m∂n + 8γ∂4 + 2Λ)

− 2γ∂i∂j∂k∂` + 2γ(δij∂k∂` + δk`∂i∂j)∂
2

+
1

4
(Dik∂j∂` +Di`∂j∂k +Djk∂i∂` +Dj`∂i∂k)

− λ

2

[
δij(Dkm∂` +D`m∂k) + δk`(Dim∂j +Djm∂i)

]
∂m. (9.41b)

Note that various field components need to be Wick-rotated as well as the time when per-
forming the path integral. The contribution of ni to the partition function is

Zn =
(
detS

(2)
ij

)−1/2
= (detDik)1/2 (detOij)−1/2 . (9.42)

Next, we compute the contribution to the partition function from hij. We first decompose
hij as

hij = Hij +
1

2
hδij, (9.43)
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where Hii = 0. We decompose Hij further as

Hij = H⊥ij + ∂iηj + ∂jηi +

(
∂i∂j −

1

2
δij∂

2

)
σ, (9.44)

with constraints

H⊥ii = 0, ∂jH
⊥
ij = 0, ∂iηi = 0. (9.45)

In two spatial dimensions, the transverse traceless component H⊥ij has no local degrees of
freedom, and in flat space is forced by boundary conditions to vanish. Furthermore, in two
dimensions, one can parametrize ηi as

ηi = εij∂jη. (9.46)

Thus, Hij is finally parametrized as

Hij = (εik∂j + εjk∂i) ∂kη +

(
∂i∂j −

1

2
δij∂

2

)
σ. (9.47)

We require the Jacobian for this change of variables. The Jacobian for (9.43) is a constant.
The Jacobian for (9.47) is computed in Appendix D,

JH =
[
det(−∂2)

]2
. (9.48)

We can eliminate this Jacobian altogether by changing variables from η and σ to

η̃ = ∂2η, σ̃ = ∂2σ. (9.49)

The action for η̃ is just

Sη̃ =
1

2

∫
dt d2x η̃ S

(2)
η̃ η̃, (9.50)

where
S

(2)
η̃ = −∂2

t − u1∂
4 + 2Λ = Õg + 2Λ. (9.51)

Therefore, the contribution of η̃ to the partition function is

Zη̃ =
(

detS
(2)
η̃

)−1/2

=
1√

det
(
Õg + 2Λ

) . (9.52)

Meanwhile, h and σ̃ remain coupled via the action

Shσ̃ =
1

2

∫
dt d2x

(
h σ̃

)
S

(2)
hσ̃

(
h
σ̃

)
, (9.53)
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where

S
(2)
hσ̃ =

1

2

−(1
2
− λ
)
∂2
t −

[
γ + 2

(
1
2
− λ
)2
u
]
∂4

[
γ −

(
1
2
− λ
)
u
]
∂4[

γ −
(

1
2
− λ
)
u
]
∂4 −1

2

[
∂2
t + (2γ + u)∂4 − 2Λ

]
 . (9.54)

The matrix S
(2)
hσ̃ is diagonal only for the choice

u =
γ

1
2
− λ

. (9.55)

For general gauge parameters, S
(2)
hσ̃ can’t be diagonalized locally. When Λ = 0, however, the

determinant itself factorizes neatly,

Zhσ̃
∣∣∣
Λ=0

=
1√(

detOg
)(

detOphys

) , (9.56)

where
Ophys = −

(
1
2
− λ
)
∂2
t − 2γ

(
1− λ

)
∂4. (9.57)

The operator Ophys is independent of the gauge-fixing parameters u1 and u2.
In summary, the modes corresponding to the various dispersion relations are

h, σ̃, ni and ghost : Og = −∂2
t − 2

(
1− λ

)
u∂4, (9.58a)

η̃, ni and ghost : Õg = −∂2
t − u1∂

4, (9.58b)

h, σ̃ : Ophys = −
(

1
2
− λ
)
∂2
t − 2γ

(
1− λ

)
∂4. (9.58c)

For these to have the right sign dispersion relation requires

u1 > 0, (1− λ)u > 0. (9.59)

Note that the “nice gauge” of [111] is when all three of the dispersions, including the un-
physical ones, are actually identical. This condition is satisfied if and only if

u1 = 2γ
1− λ
1
2
− λ

, u =
γ

1
2
− λ

. (9.60)

Finally, the total on-shell partition function is the product of (9.38), (9.42), (9.52), (9.56)
and the extra factor of (detDij)−1/2 from integration over Φi. The result simplifies greatly,

Z
∣∣
Λ=0

=
1√

detOphys

. (9.61)

This represents one physical degree of freedom, with dispersion relation

ω2 = 2γ
1− λ
1
2
− λ

k4. (9.62)
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This dispersion relation is healthy when λ > 1 or λ < 1
2
. Note that this degree of freedom is

a linear combination of h and σ̃. Therefore, it will not be captured entirely if one neglects
everything except the trace component of hij, as was done in [114]. When λ > 1 (and
γ > 0), the overall sign in front of (9.61) is negative and we must Wick rotate the field5

corresponding to Ophys.
Once again, this dispersion relation can be derived without regard to a specific gauge-

fixing procedure, as in the case of the U(1) gauge theory.

9.3 Effective Action with a Nonzero Cosmological Constant

Let us calculate the contribution to the determinants of first order in Λ. Our object of study
is the effective action Γ(ϕ), where ϕ denotes the expectation values of all fields Φ of the
gravitational theory. Expanding in ~,

Γ(ϕ) = S(ϕ) + ~Γ1(ϕ) +O(~3/2) , (9.63)

by standard methods the one-loop quantum effective action takes the form6

Γ1(ϕ) =
i

2
tr logS(2)(ϕ) , (9.64)

where

S(2)(ϕ) =
δ2S(Φ)

δΦδΦ

∣∣∣∣
Φ=ϕ

(9.65)

is the second functional derivative of S. Since this is a gauge theory, we must also include
ghost contributions after gauge-fixing, leading to the standard expression

Γ1(ϕ) =
i

2
tr logS(2) − i tr logDghost . (9.66)

Note that the only dimensionful parameter present is Λ itself, with dimension [Λ] = 2. As
a result, the only contribution Λ can have to the logarithmic divergence (and therefore to
the one-loop beta functions) is proportional to Λ. To evaluate it, it therefore suffices to
evaluate the first derivative of the partition function Z with respect to Λ. Separating out
the Λ dependence of S(2),

S(2) = M + ΛM (Λ) , (9.67)

we can write

log detS(2) = tr logS(2) = tr logM + Λ tr
(
M−1M (Λ)

)
+O(Λ2) . (9.68)

5In general, this field is some combination of h and σ̃. In the “nice” gauge (9.60), this field is just h.
6This is not sufficient to define a gauge invariant effective action [116]. The full treatment of defining a

gauge invariant off-shell effective action is beyond the scope of this thesis. Instead, we will make use of a
field redefinition gij → C gij , which will turn out to be sufficient for our purposes.
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M (Λ) has contributions only from the η̃ and (h, σ̃) sectors. Collecting the corresponding
objects, from (9.50) and (9.53), we have

M =

(
Mη̃ 0

0 Mhσ̃

)
, M (Λ) =

(
M

(Λ)
η̃ 0

0 M
(Λ)
hσ̃

)
, (9.69)

where

Mη̃ = −∂2
t − u1∂

4, M
(Λ)
η̃ = 2, M

(Λ)
hσ̃ =

1

2

(
0 0
0 1

)
, (9.70)

Mhσ̃ =
1

2

−(1
2
− λ
)
∂2
t −

[
γ + 2

(
1
2
− λ
)2
u
]
∂4

[
γ −

(
1
2
− λ
)
u
]
∂4[

γ −
(

1
2
− λ
)
u
]
∂4 −1

2

[
∂2
t + (2γ + u)∂4

]
 . (9.71)

Evaluating the relevant traces, we obtain the integral form

tr
[
M−1M (Λ)

]
=

∫
dt d2x

3∑
I=1

AI

∫
dω d2k

(2π)3
GI(ω,k), (9.72)

with propagators

GI(ω,k) =
1

ω2 − α2
Ik

4
(9.73)

and constants

α2
1 = u1, α2

2 = 2u(1− λ), α2
3 = 4γ

1− λ
1− 2λ

; (9.74)

A1 = 2, A2 =
1

1− λ
, A3 =

1− 2λ

1− λ
. (9.75)

Here, I = 1 corresponds to the η̃ contribution, while I = 2, 3 arise from the (h, σ̃) sector.
Later on in this chapter we will use heat kernel methods, which preserve diffeomorphism

invariance. It is difficult to use the heat kernel here, however, because we have not diag-
onalized Mh,σ̃. (Note, however, that in the diagonal “nice” gauge this is not a problem.)
Although it breaks gauge symmetry and modifies the infrared behavior of the theory, to
extract the coefficient of the logarithmic divergence it suffices to use a cutoff regularization.
We integrate over all ω and introduce a cutoff k∗ in k. In addition, the denominators have
an implicit +iε, specifying the appropriate Wick rotatation ω = iωE. The integrals evaluate
to ∫

dω d2k

(2π)3
GI(ω,k) =

1

4πi

log k∗
αI

+ (finite) , (9.76)

giving the final result

∂

∂Λ
log detS(2)|Λ=0,div =

log k∗
4πi

{
2
√
u1

+
1

1− λ
1√

2u(1− λ)
+

1

2
√
γ

(
1− 2λ

1− λ

)3/2
}
. (9.77)
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The contribution of Λ to the effective action (9.66) is therefore

Γ1,div(R = 0) =
log k∗

8π

{
2
√
u1

+
1√
2u

1

(1− λ)3/2
+

1

2
√
γ

(
1− 2λ

1− λ

)3/2
} ∫

dt d2x Λ. (9.78)

This is obviously gauge-dependent. As we will discuss in Section 9.6, this gauge dependence
should be eliminated by a field strength redefinition for the background metric gij,

gij → C gij. (9.79)

We will utilize this field redefinition in the subsequent section in order to extract the key
gauge-independent information.

9.4 Time-independent Curved Background

In time-independent backgrounds (ġij = 0), the background values of the extrinsic curvature

and the Riemann tensor are Kij = 0 and R
i

jk` = R
i

jk`(x), respectively. In two spatial
dimensions, the Riemann tensor is determined by the scalar curvature,

R
i

jk`(x) =
1

2
R
[
δik gj`(x)− δi` gjk(x)

]
. (9.80)

By dimensional analysis, the only divergence sensitive to∇iR that can appear in the effective
action is �R, which is a total derivative. Therefore, it suffices to take R to be constant.

Consider the action (9.7) with the coupling constant ρ set to zero,

S =
1

κ2

∫
dt d2xN

√
g
{
KijK

ij − λK2 − γR2 − 2Λ
}
. (9.81)

We now expand each term in this action to quadratic order in κ. With

Kij =
1

2
κ
(
ḣij −∇inj −∇jni

)
+O

(
κ2
)
, (9.82)

we have

N
√
gKijK

ij =
1

4
κ2
√
g
(
ḣijḣ

ij − 4∇i
njḣij + 2∇i

nj∇inj + 2∇i
nj∇jni

)
+O

(
κ3
)
, (9.83a)

N
√
gK2 =

1

4
κ2
√
g
(
ḣ2 − 4ḣ∇i

ni + 4∇i
ni∇

j
nj

)
+O

(
κ3
)
. (9.83b)

Moreover,

N
√
g R2

=
√
g R

2
+ κ
√
g R

[
2∇i

(∇j
hij −∇ih)− 1

2
Rh
]
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+ κ2
√
g

{(
∇i∇jhij −∇

2
h
)2

+R
2(3

4
hijhij − 1

8
h2
)

+R
[

3
2
∇khij∇khij −∇ihjk∇khij + 2∇ih∇jhij − 2(∇jhji)

2

− 1
2

(
∇ih

)2
+ 2hij∇i∇jh− 2hij

(
∇j∇kh

k
i +∇k∇jh

k
i −∇

2
hij
)]}

+O(κ3) , (9.84)

and
N
√
gΛ =

√
gΛ
{

1 + 1
2
κh+ κ2

8

(
h2 − 2hijhij

)}
+O(κ3). (9.85)

The action can be put on-shell by imposing the equation of motion for the background
field gij. This essentially sets the cosmological constant to be

Λ =
1

2
γR

2
. (9.86)

Plugging (9.86) back into the action eliminates the tadpole terms linear in κ. The on-shell
action is

S =
1

κ2

∫
dt d2xN

√
g
{
KijK

ij − λK2 − γ
(
R2 +R

2)}
. (9.87)

Considering such an on-shell action enables us to observe explicit cancellations between
ghosts and non-physical modes, reducing the computation of the effective action to that of
a single scalar functional determinant.

We offer one caveat: since we do not impose the constraint equation generated by the
gauge choice n = 0, by “on shell” we actually mean the background satisfies the gij equations
of motion. To render the background (9.86) fully on-shell requires imposing the further
condition ρ = 2γR. As noted in the introduction, however, neither the lapse nor the value
of ρ affects the local divergences, and therefore we can ignore both in the computation at
hand.

We now turn to the problem of gauge-fixing. We will apply the BRST formalism. Instead
of classifying the most general gauge-fixing conditions, let us take a more minimalistic ap-
proach and construct a gauge-fixing condition such that the cross terms between ni and hij
cancel in the BRST action. For this purpose, it is sufficient to set the gauge-fixing functional
fi to

fi = ṅi −D1∇
j
hij −D2∇ih . (9.88)

Here D1 and D2 are local operators of dimension one, which we will take to be linear
combinations of the diffeomorphism-invariant objects R and � ≡ ∇ig

ij∇j. As we reviewed in
Section 9.2, equation (9.88) is not the most general gauge choice consistent with background
diffeomorphism invariance: for example, one may also include in fi terms of the form

∇i∇j∇kh
jk . (9.89)
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In the zero curvature limit, this extra term is the same as the u2 term in (9.35). In the
flat case, if one requires that nonphysical modes have a right sign dispersion relation, the
conditions derived in (9.59) must be satisfied. For λ > 1, a nonzero u2 is indispensable
for these conditions to hold. On an on-shell background, the one-loop contributions from
nonphysical modes cancel exactly in the partition function, and it is not necessary to include
(9.89) in the gauge-fixing condition. When on-shell, we can focus on λ < 1

2
and adopt the

simpler gauge-fixing condition in (9.88). Evaluating the partition function will result in a
gauge invariant expression that is analytically continuable to λ > 1.

BRST quantization proceeds by introducing a ghost field ci associated to the generator
of infinitesimal diffeomorphisms. The BRST differential s acts on the physical fields in the
same way as the linearized diffeomorphisms in (9.12):

sni = ċi +O(κ), shij = ∇icj +∇jci +O(κ). (9.90)

We also require a cohomologically trivial BRST pair (bi,Φi), with fermi and bose statistics
respectively. The ghost sector has BRST variations

sbi = Φi , sΦi = 0 , sci = O(κ) . (9.91)

Gauge-fixing actions are given by the BRST differential of a gauge-fixing fermion. We
take the gauge-fixing fermion

Ψ = −
∫
dt d2x

√
g bi
{
ṅi −D1∇

j
hij −D2∇ih−

1

2
DΦi

}
, (9.92)

which gives the BRST-exact action

sΨ = −
∫
dt d2x

√
gΦi

{
ṅi −D1∇

j
hij −D2∇ih−

1

2
DΦi

}
+

∫
dt d2x

√
g bi
{
c̈i −D1∇

j∇icj −D1�ci − 2D2∇i∇
j
cj

}
. (9.93)

This action is associated to a gauge-fixing condition of the form (9.88), except that we have
replaced the δ-function type by a gauge of generalizedRξ type. We have introduced auxiliary
fields Φi of dimension 1

2
and a local operator D of dimension 1. We choose the following

expression for the operator D:
D = −u1(�+ vR). (9.94)

We intentionally keep the real parameters v and u1 which depend on the gauge choice.
Physical results must be independent of their values, giving a check of the final result.

The full BRST-invariant action is

SBRST = S + sΨ = S + Sg.f. + Sghost, (9.95)

where

Sg.f. = −
∫
dt d2x

√
gΦi

{
ṅi −D1∇

j
hij −D2∇ih−

1

2
DΦi

}
, (9.96)
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and

Sghost = −
∫
dt d2x

{
ḃiċ

i −
(
∇iD1bj + gij∇kD2b

k
)(
∇i
cj +∇j

ci
)}
. (9.97)

The BRST partition function is

ZBRST =

∫
D{ni, hij, bi, ci,Φi} eiSBRST . (9.98)

Next, let us integrate out the auxiliary field Φi in SBRST. Since Φi only appears in Sg.f.,
we can focus on the following piece in the partition function,

ZΦ ≡
∫

DΦi e
iSg.f. . (9.99)

Here, Φi is not dynamical and can be eliminated by imposing its equation of motion,

Φi = D−1
(
ṅi −D1∇

j
hij −D2∇ih

)
. (9.100)

The resulting action after eliminating Φi in Sg.f. is

−1

2

∫
dt d2x

√
g
(
ṅi −D1∇

j
hij −D2∇

i
h
)
D−1

(
ṅi −D1∇

k
hik −D2∇ih

)
. (9.101)

From now on, we will take Sg.f. to denote the expression (9.101), even though it is different
from the original expression in (9.96).

Integrating out Φi in the partition function (9.99) also contributes a functional determi-
nant. To evaluate this determinant, we first make the change of variables

Φi = ∇iφ+ εij∇
j
φ̃, (9.102)

with εij =
√
g εij the covariant Levi-Civita symbol for g. The Jacobian is given by (D.10) in

Appendix D,
J = det

(
−�
)
. (9.103)

In terms of φ and φ̃, the part of (9.96) that is quadratic in Φi can be written as

S
(2)
Φi

=
1

2

∫
dt d2x

√
g
{
φ∇iD∇

i
φ+ φ̃∇iD∇

i
φ̃
}
. (9.104)

To derive that the cross term between φ and φ̃ is zero, we used the form (9.94) of D and
applied Identity 1 in Appendix C. Therefore,∫

D{φ, φ̃} eiS
(2)
Φi = (detΦiD)−1/2 , (9.105)
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where the functional determinant is evaluated to be

detΦiD =
[
det
(
∇iD∇

i)]2

. (9.106)

Therefore, the final expression for the Φi contribution (9.99) is

ZΦ = JΦe
iSg.f. , (9.107)

where Sg.f is given by (9.101) and

JΦ =
det
(
−�
)√

detΦiD
=

1(
det |u1|

)
det
[
−�−

(
v + 1

2

)
R
] . (9.108)

We applied Identity 1 for the second equality in (9.108).
Finally, we determine the operators D1 and D2 in (9.92) by requiring that the cross terms

between ni and hij cancel in the sum S + Sg.f., with Sg.f. set to the expression in (9.101).
The kinetic contribution in the action S comes from

SK =
1

κ2

∫
dt d2x

√
g
{
KijK

ij − λK2
}
.

The part contained in SK that is quadratic in terms of the fluctuations is

1

4

∫
dt d2x

√
g
{
ḣijḣ

ij − λḣ2 − 4ṅi
(
∇j
hij − λ∇ih

)
+ 2

[
∇i
nj∇inj +∇i

nj∇jni − 2λ(∇i
ni)

2
]}

. (9.109)

The cross terms in SK are

−
∫
dt d2x

√
g ṅi

(
∇j
hij − λ∇ih

)
. (9.110)

The contributions to the cross terms from Sg.f. are∫
dt d2x

√
g ṅi

(
D−1D1∇

j
hij +D−1D2∇ih

)
(9.111)

These two contributions, (9.110) and (9.111), cancel if

D1 = −1

λ
D2 = D. (9.112)

Since D has been defined in (9.94), this fixes both D1 and D2.
The integration over the ghosts in the partition function can be treated separately. From

(9.97) we obtain

Sghost = −
∫
dt d2x

{
ḃiċ

i −
(
∇iD1bj + gij∇kD2b

k
) (
∇i
cj +∇j

ci
)}

. (9.113)
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We would like to evaluate the partition function

Zghost ≡
∫

D{bi, ci} eiSghost . (9.114)

Let us reparametrize the ghosts ci and the anti-ghosts bi by

ci = ∇ic+ εij∇
j
c̃, bi = ∇ib+ εij∇

j
b̃. (9.115)

Similar to (9.103) but for fermions instead of bosons, these changes of variables give rise to
the Jacobian

Jghost =
1[

det
(
−�
)]2 . (9.116)

In terms of the fields b, b̃, c and c̃, the ghost action becomes

Sghost =

∫
dt d2x

√
g
{
b�Og c+ b̃�Õg c̃

}
, (9.117)

where

Og = −∂2
t − 2u1

[
(1− λ)�+ 1

2
R
] [
�+

(
v + 1

2

)
R
]
, (9.118)

Õg = −∂2
t − u1

(
�+R

) [
�+

(
v + 1

2

)
R
]
. (9.119)

Therefore,
Zghost =

(
detOg

)(
det Õg

)
. (9.120)

Now, we would like to come back to examine the non-ghost part in the action SBRST,
namely, the combined contribution from S + Sg.f..

It is useful to take the following decomposition of the metric fluctuation hij such that

hij = Hij +
1

2
gijh, (9.121)

where Hij is a traceless 2-tensor, and

Hij = H⊥ij +∇iηj +∇jηi +∇i∇jσ −
1

2
gij�σ, (9.122)

where
gijH⊥ij = 0, ∇j

H⊥ij = 0, ∇i
ηi = 0. (9.123)

Note that the quantum field H⊥ij is both traceless and divergenceless. In 2 + 1 dimensions,
H⊥ij encodes only global information about the geometry of the spatial slice (the moduli of
the Riemann surface), and carries no local degrees of freedom. Therefore, we can drop H⊥ij
without affecting the beta functions. The constraint on ηi can be solved by parametrizing
ηi as

ηi = εij∇
j
η. (9.124)
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The Jacobian from the transformation (9.122) is computed in (D.15),

JH = det
[
�
(
�+R

)]
. (9.125)

Under the decomposition (9.122), we have

S + Sg.f. = Sn + Sη + Shσ, (9.126)

where

Sn =
1

2

∫
dt d2x

√
g ni

{
gij
[
−u−1

1

(
�+ vR

)−1
∂2
t −�

]
−∇j∇i

+ 2λ∇i∇j
}
nj, (9.127a)

Sη =
1

2

∫
dt d2x

√
g η�

(
�+R

){
− ∂2

t − u1

(
�+R

) [
�+

(
v + 1

2

)
R
] }
η, (9.127b)

Shσ =
1

4

∫
dt d2x

√
g h
{
−
(

1
2
− λ
)
∂2
t − γ

(
�+R

)2 − 2u1

(
1
2
− λ
)2
�
[
�+

(
v + 1

2

)
R
]}
h

+
1

8

∫
dt d2x

√
g σ�

(
�+R

){
− ∂2

t − 2γ�
(
�+R

)
− u1

(
�+R

) [
�+

(
v + 1

2

)
R
]}
σ

+
1

2

∫
dt d2x

√
g σ�

(
�+R

) {
γ
(
�+R

)
− u1

(
1
2
− λ
) [
�+

(
v + 1

2

)
R
]}
h. (9.127c)

The full one-loop BRST partition function can be written as

ZBRST = JΦ JH ZghostZnZη Zhσ, (9.128)

where

Zn =

∫
Dni e

iSn , Zη =

∫
Dη eiSη , Zhσ =

∫
D{h, σ} eiShσ . (9.129)

For u1 > 0 (and λ < 1
2
), we must Wick rotate ni as well as the time when performing the

path integral.
First, let us focus on Zn. We decompose ni into scalar components ν and ν̃ as follows,

ni = ∇i

[
�+

(
v + 1

2

)
R
]
ν + εij∇

j[
�+

(
v + 1

2

)
R
]
ν̃ . (9.130)

We choose this particular decomposition in order to make the action (9.127a) local. The
corresponding Jacobian is

Jn = det
{(
−�
) [
�+

(
v + 1

2

)
R
]2}

. (9.131)

Under this parametrization, we obtain

Sn = − 1

2u1

∫
dt d2x

√
g

{
ν�

[
�+

(
v + 1

2

)
R
]
Og ν + ν̃�

[
�+

(
v + 1

2

)
R
]
Õg ν̃

}
. (9.132)
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Collecting these results gives the partition function of ni,

Zn =

(
det |u1|

)
det
[
−�−

(
v + 1

2

)
R
]√(

detOg
)(

det Õg
) . (9.133)

Contributions from η, σ and h can be read off of the actions (9.127b-9.127c) (in the h, σ
sector the differential operator is a 2 × 2 matrix, whose determinant we take directly) and
give

Zη =
1√

det
[
� (�+R)

] 1√
det Õg

, (9.134a)

Zhσ =
1√

det
[
� (�+R)

] 1√(
detOg

)(
detOphys

) , (9.134b)

where

Ophys = −
(

1
2
− λ
)
∂2
t − 2γ

(
�+R

) [
(1− λ)�+ 1

2
R
]
. (9.135)

9.5 Reduction to Physical Spectrum

Let us collect the results that we have derived above. The BRST partition function ZBRST

is given by

ZBRST = JΦ JH ZghostZnZη Zhσ, (9.136)

where,

JΦ =
1(

det |u1|
)

det
[
−�−

(
v + 1

2

)
R
] , JH = det

[
�
(
�+R

)]
, (9.137)

and

Zghost =
(
detOg

)(
det Õg

)
, (9.138a)

Zn =

(
det |u1|

)
det
[
−�−

(
v + 1

2

)
R
]√(

detOg
)(

det Õg
) , (9.138b)

Zη =
1√

det
[
�
(
�+R

)] 1√
det Õg

, (9.138c)

Zhσ =
1√

det
[
�
(
�+R

)] 1√(
detOg

)(
detOphys

) . (9.138d)
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The operators Og, Og̃ and Ophys take the form

Og = −∂2
t − 2u1

[
(1− λ)�+ 1

2
R
] [
�+

(
v + 1

2

)
R
]
, (9.139a)

Õg = −∂2
t − u1

(
�+R

) [
�+

(
v + 1

2

)
R
]
, (9.139b)

Ophys = −
(

1
2
− λ
)
∂2
t − 2γ

(
�+R

) [
(1− λ)�+ 1

2
R
]
. (9.139c)

The full BRST partition function reduces to

ZBRST =
1√

detOphys

. (9.140)

It is reassuring that the final result is gauge independent and all singular prefactors simply
cancel. This partition function counts exactly one physical degree of freedom. On the other
hand, on an off-shell background there is no reason to expect the result to reduce to a single
functional determinant, and the analysis would be more difficult.

While the preceding discussion is formally correct, some care must be taken with analytic
continuation to ensure that the path integral converges properly. Requiring that Õg give rise
to a sensible dispersion relation gives u1 > 0; for Og, this requires that λ < 1. However, both
of these operators drop out in the final BRST partition function, and the singular behavior
for Og (when λ > 1) can be fixed by modifying the gauge-fixing condition (9.88). Working

on-shell gives us the luxury of ignoring this issue: both the operators Og and Õg cancel out
in the final BRST partition function.

All that remains is the determinant of Ophys in (9.140), whose evaluation requires an
appropriate choice of contour. The coefficient of ∂2

t in Ophys has a healthy sign for λ < 1/2,
in which case the standard contour will do. For λ > 1 on the other hand, when we perform
Wick rotation we must also rotate the field; this is perhaps not surprising, since a similar
rotation must be done for the scale factor in general relativity to get a well-defined Euclidean
path integral.

In momentum space, we obtain the following dispersion relation for the physical degree
of freedom:

ω2 = 2γ
1− λ
1
2
− λ

(
k2 −R

){
k2 − 1

2 (1− λ)
R

}
. (9.141)

Note that there are values such that the right-hand side is negative, indicating instability.
On the sphere (R > 0), at most one unstable mode can arise, namely the zero-momentum
mode which is unstable for λ > 1.7 More troubling is the case where λ > 1 and R < 0,
since as λ→ 1+, the range of momenta with unstable dispersion will grow arbitrarily large.
Nonetheless, provided that the UV scale is much larger than R/(1 − λ) this will not affect
the divergences of the theory, and so for the purposes of computing the beta function we can
ignore any instabilities in the low momentum modes.

7In fact, the zero-momentum mode is always projected out when we take into account the lapse constraint.
We should note, however, that our background only satisfies the lapse constraint for a particular choice of ρ.
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9.6 Evaluation of the Heat Kernel and Renormalization

It remains to compute the determinant of (9.140), which we will do using zeta function
regularization. The real time quantum effective action is

Γ(ϕ) = S(ϕ) + ~Γ1(ϕ) +O(~2), (9.142)

where

Γ1(ϕ) =
i

2
tr log

{
S(2)/k4

∗
}
, (9.143)

and

S(2) ≡ −
(

1
2
− λ
)−1Ophys = ∂2

t + 2γ
1− λ
1
2
− λ

(
�+R

) [
�+

R

2 (1− λ)

]
. (9.144)

Here, we have introduced a (spatial) momentum scale k∗, with [k∗] = 1
2
.

The zeta function ζ(s) for the operator S(2) is defined in terms of the eigenvalues λm of
S(2) by

ζ(s) = k4s
∗

∑
m

1

λsm
, (9.145)

so that

log detS(2) = − d

ds
ζ (s)

∣∣∣∣
s=0

= −ζ ′(0). (9.146)

To evaluate divergences, we will use the standard heat kernel representation

ζ (s) =
k4s
∗

Γ(s)

∫ ∞
0

dτ τ s−1 Tr e−τ S
(2)

, (9.147)

which gives us the following representation of the one-loop effective action,

Γ1 =
1

2i
ζ ′(0)

=
1

2

d

ds

∣∣∣∣
s=0

k4s
∗

Γ(s)

∫
dt d2x

∫ ∞
0

dτ τ s−1 I(τ ; t,x), (9.148)

where
I(τ ; t,x) = −i 〈t,x| e−τ S(2) |t,x〉. (9.149)

Our background is a product geometry R×M2, so we decompose |t,x〉 = |t〉⊗|x〉. Expanding
|t〉 in Fourier modes allows us to write

I(τ ; t,x) = −i
∫
dω

2π
eiωte−τ∂

2
t e−iωt IAV(τ ; x) . (9.150)

Here we have defined IO(τ ; x) = 〈x|e−τ O|x〉 for any spatial differential operator O and set

A = 2γ
1− λ
1
2
− λ

, V =
(
�+R

) [
�+

R

2 (1− λ)

]
. (9.151)



CHAPTER 9. QUANTIZATION OF HOŘAVA GRAVITY IN 2 + 1 DIMENSIONS 150

Note that the ω-integral converges after Wick rotation (t̃ ≡ it, ω̃ ≡ −iω). Performing the
integral over the frequency,∫ ∞

−∞

dω

2π
e−iωte−τ∂

2
t eiωt = i

∫ ∞
−∞

dω̃

2π
e−τω̃

2

=
i√
4πτ

, (9.152)

we obtain

I(τ ; t,x) =
1√
4πτ
IAV(τ ; x). (9.153)

By rescaling τ → τ/A, we obtain

Γ1 =
1

2

∫
dt d2x

d

ds

∣∣∣∣
s=0

k4s
∗

AsΓ(s)

∫ ∞
0

dτ τ s−1I(τ ; t,x), (9.154)

and

I(τ ; t,x) =
A

1
2

√
4πτ
IV(τ ; x) . (9.155)

The spatial term IV can be evaluated by using the results of [117], which computed the
divergent contributions due to operators of the form

V = �
2

+ V ij∇i∇j + T i∇i +X. (9.156)

In our case,

V ij = gijR
3
2
− λ

1− λ
, T i = 0, X =

R
2

2 (1− λ)
. (9.157)

Expanding IV in powers of τ defines the Seeley-Gilkey coefficients,

IV(τ ; x) =
√
g
∞∑
m=0

am(x)τ
m−1

2 . (9.158)

The logarithmic divergence comes from the m = 2 term. The computation of the Seeley-
Gilkey coefficient a2 of [117] yields for T i = 0,

a2 =
1

16
√
π

{
1

16

(
gijVij

)2
+

1

8
VijV

ij +
1

6

(
gijVij

)
R− 1

3
VijR

ij − 2X

}
=

γ2R
2

8
√
πA2

. (9.159)

The log divergence can be evaluated by introducing a cutoff µ−4 for the τ -integral, which
gives

d

ds

∣∣∣∣
s=0

k4s
∗ A

1
2
−s

Γ(s)

∫ µ−4

0

dτ τ s−1 →
√
A log

(
k4
∗

Aµ4

)
+ (finite) . (9.160)

Inserting this into the expression for Γ1 gives the one-loop logarithmic divergence of the
effective action on our background:

Γ1,log

(
γR

2
= 2Λ

)
=

√
2γ

32π

( 1
2
− λ

1− λ

) 3
2

log k∗

∫
dt d2x

√
g R

2
. (9.161)
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So far, we have evaluated the one-loop effective action over two different background
geometries, both of which are described by a time-independent metric:

• The Aristotelian spacetime with a nonzero cosmological constant Λ 6= 0. This back-
ground geometry is off-shell, i.e., the background metric does not satisfy the associated
background equations of motion. The effective action was evaluated in (9.78). The
covariant expression is

Γ1,log

(
R = 0

)
= YΛ

∫
dt d2xN

√
g 2Λ, (9.162)

where

YΛ ≡
1

16π

{
2
√
u1

+
1√
2u

1

(1− λ)
3
2

+
1

2
√
γ

(
1− 2λ

1− λ

) 3
2

}
log k∗ +O

(
κ2
)

(9.163)

contains gauge dependence. Although (9.163) was computed using a sharp cutoff,
the coefficient of the logarithmic divergence is universal, so we can use this result in
studying the logarithmic divergence that arose in zeta function regularization.

• A background geometry with a time-independent metric but a nonvanishing Riemann
tensor. We study the on-shell action with Λ set to be

Λ =
1

2
γR

2
. (9.164)

The effective action is given in (9.161):

Γ1,log

(
γR

2
= 2Λ

)
= Y

∫
dt d2xN

√
g γR

2
, (9.165)

where

Y ≡ 1

32π

√
2

γ

( 1
2
− λ

1− λ

) 3
2

log k∗ +O
(
κ2
)
. (9.166)

This result is on-shell, and therefore guaranteed to be gauge-independent.

Since YΛ is gauge-dependent, we cannot use YΛ by itself to extract physically meaningful
information. Our goal will be to eliminate this gauge dependence and identify a physical
quantity that can be extracted from Y .

We begin by examining the effective action evaluated on an off-shell time-independent
background. We expand to one-loop order, keeping only the logarithmic divergence:

Γ = S + Γ1,log + · · · , (9.167)

where

S =
1

κ2

∫
dt d2xN

√
g
{
KijK

ij − λK2 − γR2 − 2Λ
}
. (9.168)
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Note that Kij = 0 for a time-independent background. From (9.162) and (9.165), we obtain

Γ1,log =

∫
dt d2xN

√
g
{
γ(Y − YΛ)R

2
+ 2YΛΛ

}
. (9.169)

The effective action Γ on a time-independent background can be written as

Γ =
1

κ2

∫
dt d2xN

√
g
{
−γ
[
1− κ2(Y − YΛ)

]
R

2 − 2Λ
(
1− κ2YΛ

)}
+ · · · . (9.170)

As we noted, the näıve off-shell effective action (9.170) depends on our choice of gauge
parameters. In fact, as a function on the space of background metrics, the effective action
is gauge-independent, but the parametrization of field space can depend on gauge. Such
dependence can therefore be removed by a field redefinition. (For example, see [118, 116].)
In general, these field redefinitions could include curvature terms. In our case, however, for
dimensional reasons it suffices to rescale the metric. Under the rescaling,

gij → C gij , (9.171)

we have √
g → C

√
g, Kij → CKij, R→ C−1R, Λ→ Λ. (9.172)

Under this rescaling, the effective action becomes

Γ =
1

κ2

∫
dt d2xN

√
g
{
−C−1

[
1− κ2(Y − YΛ)

]
γR

2 − 2C
(
1− κ2YΛ

)
Λ
}

+ · · · . (9.173)

To extract beta functions requires specifying a normalization condition that fixes the field

rescaling. First, let us choose the normalization condition such that the coefficient of the R
2

term is set to one. This fixes the field rescaling C to be

C =
γ

κ2

[
1− κ2(Y − YΛ)

]
, (9.174)

thereby turning the effective action into

Γ =

∫
dt d2xN

√
g
{
−R2 − 2(1− κ2Y )Ω

}
+ · · · , (9.175)

where we have defined

Ω ≡ γΛ

κ4
. (9.176)

Indeed, the gauge-dependent contribution YΛ drops out altogether from this last expression.
The factor (1−κ2Y ) can be absorbed into the renormalization of Ω. We are working in bare
perturbation theory, so that the physical coupling Ωph is related to the bare coupling Ω by
Ωph = (1− κ2Y )Ω. Then, the anomalous dimension of Ω is

δΩ ≡ −
d log Ωph

d log k∗
=

1

16π

√
κ4

2γ

( 1
2
− λ

1− λ

) 3
2

+O(κ4). (9.177)
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It is interesting to note that the running of Ω is independent of any field rescaling defined
in (9.171). A simple analysis is helpful for understanding this observation. Throughout
this chapter, we have taken the scaling dimensions of time and spatial coordinates to be −1
and −1

2
, respectively. In a more fundamental picture introduced in Section 6.1, however,

we assign two independent dimensions, T to time, and L to length of space. In this latter
convention, we have

dim(κ2) = T−1L2, dim(γ) = T−2L4, dim(Λ) = T−2. (9.178)

Therefore,
dim(Ω) = T−2, (9.179)

which suggests that Ω is independent of a rescaling of spatial coordinates. Further note that
the rescaling of gij can be absorbed completely into a rescaling of spatial coordinates. Hence
Ω should not change under the field redefinition of the spatial metric.

As we have seen in (9.177), an off-shell time-independent background provides us with
only one piece of RG information. There are, however, three couplings, κ, γ and Λ, in
the action evaluated on a time-independent background. Since we have the freedom of
choosing a normalization condition to fix the field redefinition, not all these three couplings
are independent. By an appropriate choice of the normalization condition, we can at least
separate the flow of one coupling constant. Again, we would like to adapt a normalization
condition to the spatial curvature term and extract the beta function for the cosmological
constant.

Instead of using (9.174), let us first take C to be

C = κ2
[
1 + κ2C1 +O(κ4)

]
, (9.180)

thereby turning the effective action (9.173) into

Γ =

∫
dt d2xN

√
g
{
−
[
1− κ2(Y − YΛ + C1)

] γ
κ4
R

2 − 2
[
1− κ2(YΛ − C1)

]
Λ
}

+· · · . (9.181)

Note that dim(γ/κ4) = 1 by (9.178), which motivates us to take a simple choice of the
normalization condition by fixing γ/κ4 to be constant at all scales. Then,

C1 = YΛ − Y, (9.182)

and the gauge-independent effective action becomes

Γ =

∫
dt d2xN

√
g
{
− γ

κ4
R

2 − 2(1− κ2Y )Λ
}

+ · · · . (9.183)

In bare perturbation theory, we require that the physical couplings γph, κph and Λph satisfy

γph

κ4
ph

=
γ

κ4
, Λph = (1− κ2Y )Λ. (9.184)
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Therefore, the beta function for γ/κ4 vanishes, while the anomalous dimension for the cos-
mological constant is

δΛ ≡ −
d log Λph

d log k∗
=

1

16π

√
κ4

2γ

( 1
2
− λ

1− λ

) 3
2

+O(κ4). (9.185)

For γ > 0 and λ > 1 or λ < 1
2
, δΛ is real and positive. It is interesting to note that

when λ = 1
2
, which is required for Weyl symmetry, δΛ vanishes at one-loop order. When λ

approaches 1, which is required for Lorentz symmetry to be realized, the one-loop expression
for δΛ blows up, reflecting the strong coupling problem of the λ→ 1 limit [119]. Of course, we
are still far from determining if the theory is asymptotically free. One will have to evaluate
the heat kernel for time-dependent background geometries to map out the full RG structure.

As a final comment, we note that there is no logarithmically divergent contribution to
the coupling in front of the term ∫

dt d2xN
√
g R. (9.186)

This can be seen as follows. Since the UV properties are controlled by the terms with the
most derivatives, we can view Λ purely as a coupling constant and expand in a power series of
Λ. Since ρ does not contribute to the differential operator Ophys, Λ is the only dimensionful
parameter that can arise in the one-loop divergence. The contribution of lowest dimension,
linear in Λ, has dimension two, and so cannot appear in the coefficient for R. Hence, (9.186)
cannot appear at all in the logarithmic divergence at one loop.

9.7 Discussions and Outlooks

This chapter dealt with the computation of quantum corrections in the simplest version of
critical Hořava gravity, the z = 2 projectable theory in 2 + 1 dimensions. Working in a
gauge with two free parameters, we computed the quantum effective action in two different
cases. The first was flat space with Λ 6= 0; this is an off-shell background, and we saw that
the näıve result was gauge dependent. This gauge dependence is however ephemeral: the
effective action in gauge theory can be gauge-dependent, provided the gauge dependence can
be eliminated by a field redefinition.

On the other hand, for an on-shell background field an infinitesimal field redefinition
leaves the value of the action invariant (since the action is stationary under any variation),
and therefore the result (if correct) must be gauge independent. Working on the time-

independent on-shell background R × S2 or R × H2 with γR
2

= 2Λ, we find a gauge-
independent effective action, as expected. Using this action, we are able to extract one of
the one-loop beta functions.

The main result here is therefore equation (9.185), which captures the flow of the cosmo-
logical constant Λ at one loop order in z = 2 Hořava gravity in 2 + 1 dimensions, as defined
relative to a metric normalization such that γ/κ4 is constant at all scales.
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We focused on the flow of this variable for several reasons, which are all rooted in the fact
that our computation is based on the effective action for on-shell, time-independent back-
grounds. Working on-shell has several advantages, notably the automatic gauge invariance
of the quantum effective action. We furthermore saw an explicit reduction of the partition
function to only the physical degree of freedom in the one-loop partition function. This
simplification can be traced to the on-shell condition. In this way, the computation of the
on-shell effective action could be reduced to the functional determinant of a single scalar
operator.

Time independence had the further virtue of allowing us to reduce our computations to
known properties of the heat kernels of higher order relativistic differential operators. And
as a background field computation, of course, this can all be done using only the divergences
in a single “vacuum bubble” diagram, without having to compute vertices explicitly.

One pays a price for working on time-independent backgrounds, however: divergences
in the effective action proportional to Kij are invisible. This means that out of the four
couplings8 of the model — λ, κ, γ and Λ — that played a role here, we can only determine
the flow of one. (Note that not all of these coefficients are physically meaningful. For
example, in the text we rescaled gij to make one coupling take a value of our choosing.)

In order to compute the remaining beta functions, one must relax one of these restrictions.
The full computation can in principle be done entirely on-shell, provided we allow time-
dependent backgrounds. This approach runs into one of two possible difficulties. The first is
that of finding explicit classical backgrounds on which to work. The simplest backgrounds
are cosmological backgrounds of FLRW type, in which case Kij is pure trace. Imposing
the trace constraint reduces the number of beta functions that can be computed by one; to
obtain the complete flow of the theory would still require backgrounds on which Kij is not
pure trace.

If we accept this limitation, we run into the second complication, that in pure Hořava
gravity such backgrounds are de Sitter-like. As a result they suffer from large contributions
to the effective action from temporal boundaries (the boundary area grows at about the
same rate as the bulk volume), which makes it difficult to distinguish the boundary and bulk
contributions to the effective action.

Even after overcoming these difficulties there remains a potentially troublesome point.
Our methods expressed the determinant in the (h, σ̃) sector as a product,

detOhσ̃ = det(OgOphys) = (detOg)(detOphys), (9.187)

after which we cancel against Og coming from the ghost sector. This requires the product
identity det(AB) = (detA)(detB), but this identity runs into difficulties in the infinite-
dimensional case. These can be surmounted straightforwardly when [A,B] = 0 (as was the
case for us), but it is more problematic when [A,B] 6= 0, as occurs in the time-dependent
case, and leads to ambiguities in the result. (For one discussion of this issue, see [120].)

8There is a fifth, ρ, but as we saw above it receives no logarithmic divergences at one loop.
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These problems point to a general need for more flexible methods to compute loop effects
in Hořava gravity. In the end, it may turn out that the only viable method is to work on
perturbative backgrounds, performing explicit expansions of the heat kernel of a matrix
differential operator.

For many purposes, the most interesting class of Hořava gravities are the non-projectable
theories, which relax the constraint ∇iN = 0 and allow N = N(t,x) to depend on space.
For example, in phenomenological applications the non-projectable variant requires much
less fine tuning to be consistent with observational constraints [121, 122]. From a more
conceptual point of view, the “conformal” variants – those invariant under anisotropic Weyl
symmetry [5] — are also of considerable interest. We here briefly summarize the extension
of our methods to these models, and discuss some of the new challenges that arise.

The novelty arising in the non-projectable theory is that once N has local fluctuations,
it gives rise to a new constraint. Because the number of additional constraints equals the
number of additional fields (one in both cases) the number of propagating degrees of freedom
remains unchanged, but the details of the spectrum and the gravitational interaction are
modified.

In the computation of the one-loop effective action, the non-projectability leads to two
new features that should be handled carefully. The first is that N cannot be set to 1 by a
gauge transformation, and therefore needs to be incorporated appropriately into the gauge-
fixing conditions. The second is that the second-class constraint is non-linear, and so its
measure needs to be defined carefully. The question of whether the right approach is to
solve directly for the Dirac bracket, or to use the ghost formalism of [123], or whether there
exists a simple prescription giving the correct contributions to the path integral, we leave
for future work.

Now for the conformal case. For certain choices of parameters in the gravitational action,
an additional local symmetry arises: anisotropic Weyl invariance. This is a symmetry under
a Weyl scaling

N 7→ ΩzN Ni 7→ Ω2Ni gij 7→ Ω2gij (9.188)

where Ω = Ω(t,x) is an arbitrary function. In this case, at the classical level the second-class
constraint of N is replaced by a first-class constraint, which eliminates the scalar degree of
freedom entirely. The question of whether this symmetry can survive at the quantum level is
of considerable interest, particularly in 2+1 dimensions, where conformal Hořava gravity has
no propagating degrees of freedom and therefore provides a useful analog of three dimensional
Einstein gravity, with its importance in addressing the conceptual issues of quantum gravity.

In some ways, the conformal case bears similarities to the projectable theory, in that we
can gauge fix N = 1 if we like. On the other hand, to answer questions about the preservation
of conformal symmetry, it is important to choose a gauge-fixing condition that is invariant
under background Weyl transformations.9 In particular, if we want to study whether Weyl
symmetry is anomalous, we should not gauge-fix N = 1, and instead work in a more general
background gauge. This requires us to modify the gauge-fixing conditions.

9This is analogous to the situation in relativistic Weyl gravity in 3 + 1 dimensions, see [124].
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One important difference in the conformal case is that to preserve background Weyl
symmetry, the gauge fixing must respect z = 2 scaling. The type of gauge fixing used here
and in [111] makes this possible. It is this consideration that initially led us to the gauge-
fixing used earlier in the chapter. We note that background Weyl invariance requires some
new features in the gauge-fixing condition, in particular in that N and n must be included
to construct an appropriate Weyl-invariant object.

Beyond its interest as a toy model, the study of the conformal theory is relevant to the
problem of quantum membranes [5]. The path integral for relativistic quantum membranes
is not renormalizable, putting a theory of fundamental relativistic quantum membranes out
of reach. This is reflected in the Polyakov action formalism in the non-renormalizability
of three-dimensional gravity. With z = 2 scaling, on the other hand, the Polyakov action
becomes power-counting renormalizable. In this picture, the critical membrane theory would
become conformal Hořava gravity coupled to a z = 2 non-linear sigma model. The crucial
question of whether such critical membrane theories exist, or whether a Weyl anomaly spoils
criticality, we leave to future research.
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Chapter 10

Conclusions

In this thesis, we examine the naturalness puzzles phrased in a simple model: Relativistic
EFTs of a single scalar. We take an intriguing twist to such relativistic EFTs by consid-
ering nonrelativistic short-distance completions that preserve Lorentz invariance in the low
energies. In this study, we discover a series of surprises in the study of Aristotelian scalar
field theories, which leads to some new ingredients for some of those long-standing puzzles
of naturalness.

In the context of spontaneous symmetry breaking, we study Aristotelian linear and non-
linear sigma models and classify nonrelativsitic NG modes. We find that the constant shift
symmetry is extended to polynomial shift symmetries, which protects the technical natural-
ness of NG modes with a higher-order dispersion. This discovery leads to a generalization of
the relativistic CHMW theorem to multicritical cases in lower critical dimension. By break-
ing the polynomial shift symmetries in a hierarchy, we find novel cascading phenomena with
large hierarchies between the scales at which the values of z change, leading to an evasion of
the “no-go” consequences of the relativistic CHMW theorem.

With potential applications to naturalness puzzles in mind, we continue to a case study of
a 3+1 dimensional self-interacting single-scalar field theory with linear shift symmetry around
a z = 3 Gaussian fixed point, which exhibits a nonrenormalization theorem for the speed of
light. At high energies the theory becomes strongly coupled and exhibits increasingly large
decay width and may self-complete in a mechanism reminiscent of classicalization. In the
large-N limit, itsO(N) vector extension defines a stable and conformal theory, which suggests
possible higher-spin holographic duals. It will be also fascinating to understand what role
the polynomial shift symmetries could play in the context of the AdS/CFT correspondence.

Based on this case study and taking advantages of the cascading scales of the partial
symmetry breaking, we propose a “10-20-30” model in which a high-energy cross-over to such
nonrelativistic behavior may provide a useful ingredient for a technically natural resolution
of the Higgs mass hierarchy problem: The scalar in this theory is naturally light! Introducing
Yukawa couplings to fermions in this 10-20-30 scenario, the masses of all Standard Model
fermions can be Dirac in a technically natural way. Such self-interacting scalar field theories
also represent a new nonrelativistic variation on the models of inflation.
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After establishing the polynomial shift symmetry in the continuum theory, we discretize
this symmetry on a periodic lattice, aiming for potential applications in condensed matter
systems. We then generalize the EFT classification of the electron-phonon interactions in
metals by replacing the acoustic phonons by multicritical phonons with a higher dispersion,
protected by these new discrete symmetries. By calculating the resistivity of the metal as a
function of temperature T in the Bloch-Boltzmann transport theory, we find that the system
of z = 3 multicritical phonons, which cascades to conventional z = 1 phonons in low energies,
gives resistivity linear in T (with a T log T correction) in 3 + 1 dimensions. This provides
new insights into the study of strange metals and probably the high-Tc superconductivity.

The classification of lowest-dimensional operators invariant under the polynomial shift
symmetry of degree P is an intricate cohomological question in the sense of the coset con-
struction. However, in a novel graph-theoretical representation that we develop, the struc-
ture of such invariants reveals its elegancy: In the P = 1 case (essentially Galileons), they
are interpreted as an equal-weight sum over all labeled trees with fixed vertices; higher P -
invariants are constructed from superposing graphs that represent invariants of lower P’s.
Some special cases of such new higher P -invariants are connected to the study of the soft
limits in EFTs.

To illustrate the naturalness of NG modes with higher-order dispersion relations, we used
intensively Aristotelian O(N) nonlinear sigma model. The study of Aristotelian NLSMs is
interesting on its own from both the formal side and condensed matter physics. We apply
the techniques picked up along our studies of Aristotelian scalar field theories to the 2 + 1
dimensional O(N) NLSM at a z = 2 Lifshitz fixed point and obtain its full one-loop beta-
functions. In the large-N limit, we solve this theory to all loops by summing over cactus
diagrams recursively. This calculation can be viewed as a first step towards the generalization
to the Aristotelian case of the landmark calculation by Friedan of the one-loop beta function
for a 1 + 1 dimensional relativistic NLSM; such generalization may form a useful building
block of a nonrelativistic M-theory. On the other hand, the Aristotelian O(N) NLSM may
provide new features to critical phenomena. Moreover, turning on Wess-Zumino terms in
such Aristotelian NLSMs may also introduce interesting twists to the study of topological
insulators.

Another motivation for our systematic study of scalar field theories with Aristotelian
symmetry comes from the attempt to understand the quantum behaviors of Hořava gravity.
Mapping out the quantum structure of nonrelativistic gravity theories and investigating the
role of naturalness in the context of gravity remain an outstanding challenge, which could
benefit the study of AdS/CFT correspondence for nonrelativistic systems, as well as our un-
derstanding of the phase structure revealed in the Causal Dynamical Triangulation approach
in quantum gravity. A prototype example is the 2 + 1 dimensional Hořava gravity at a z = 2
Lifshitz fixed point, which is also potentially useful as a worldvolume theory for describing
membranes at quantum criticality. We study quantum corrections to projectable Hořava
gravity with z = 2 scaling in 2 + 1 dimensions. Using the background field method, we uti-
lize a non-singular gauge to compute the anomalous dimension of the cosmological constant
at one loop, in a normalization adapted to the spatial curvature term. It will be interesting
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to generalize this calculation to nonprojectable cases, which could be important for both
formal and phenomenological reasons. Despite of these efforts, nonrelativistic naturalness
in Aristotelian QFTs beyond single scalars and its implications to important naturalness
puzzles, such as the cosmological constant problem, remains largely mysterious and deserves
future exploration.
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Appendix A

Scattering Amplitudes in Aristotelian Spacetime

In this appendix, we study the decay rates and the scattering cross-sections in the Aristotelian
spacetime. We will revert to the more fundamental picture where space and time are a priori
unrelated, and will keep track of the double dimensions dim( ) (introduced in Chapter 6) of
all quantities throughout.

A.1 Decay Rates

The derivation of the decay rates follows closely the derivation in the relativistic case, which
we review as follows. We enclose the system in a cubic box with volume V ; finite time length
T . We work in general 3 + 1 dimensions. Mode expansion of the real field Φ(t,x):

Φ(t,x) =
1√
V

∑
k

1√
2ωk

{
ake

−i(ωk−k·x) + a†ke
i(ωkt−k·x)

}
. (A.1)

Commutation relation:
[ak, a

†
k′

] = δk,k′ . (A.2)

To compute the decay rate of a particle with frequency ωk and momentum k in the Aris-
totelian spacetime, we need to compute the transition amplitude for the process k→ {kf} ≡
k1, · · · ,kn (frequencies are ωk, {ωf} = {ωk1 , · · · , ωkn}):

A =
1

V
n+1

2

∑
k,{kf}

1√
(2ω)

∏
f (2ωf )

∫
dt d3x (iM) 〈{kf}|a†k1

· · · a†knak|k〉

× exp

{
i
(
ωk −

∑
f

ωf

)
t− i

(
k−

∑
f

kf

)
· x
}

=
iM

V
n+1

2

√
(2ω)

∏
f (2ωf )

(2π)4δ
(
ωk −

∑
f

ωf

)
δ(3)
(
k−

∑
f

kf

)
. (A.3)
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Here M is the amplitude, M = M(k → {kf}). Note that within the finite Aristotelian
spacetime with 4-volume V T , we have[

(2π)4δ
(
ωk −

∑
f

ωf

)
δ3
(
k−

∑
f

kf

)]2

= (2π)4δ
(
ωk −

∑
f

ωf

)
δ(3)
(
k−

∑
f

kf

)
V T,

and the differential decay width is given by the product of the transition rate |A|2/T and
the number of the final states:

dΓ ≡ |A|
2

T

∏
f

V d3kf
(2π)3

, (A.4)

Hence, the differential decay width in the Aristotelian spacetime is

dΓ=
1

2ωk

(∏
f

d3kf
(2π)3

1

2ωkf

)
|M(k→ {kf})|2(2π)4δ

(
ωk −

∑
f

ωf

)
δ(3)
(
k−

∑
f

kf

)
. (A.5)

Since it gives the probability of decay per unit time, its dimension is dim(Γ) = 1/T .

A.2 Example: Self-decay in 2 + 1 Dimensions

The calculation for the imaginary part of the sunset diagram to obtain the decay rate in
the ∂6Φ4 theory is quite involved and it is difficult to have analytical control on it. (It is,
however, not difficult to use standard method to estimate the decay width in high energies,
and the result is given in (6.42).) To illustrate the structure of the self-decay rate more
explicitly, let us consider the following simpler theory in 2 + 1 dimensions, in which the
decay rate can be computed analytically:

S =
1

2

∫
dt d2x

{
φ̇2 −

(
∂i∂jφ

)2 − c2∂iφ ∂iφ−m2φ2 − λ3∂iφ ∂jφ ∂i∂jφ
}
. (A.6)

This action describes a renormalizable QFT, due to its underlying linear shift symmetry. We
have turned on the gap term that breaks the linear shift symmetry in the softest way. The
λ3-term breaks the reflection symmetry φ → −φ. Up to total derivatives, the interaction
with a λ3 coupling can be written as∫

dt d3x ∂iφ ∂jφ ∂i∂jφ =
1

3

∫
dt d3x εijεk`∂iφ ∂jφ ∂k∂`φ. (A.7)

It is convenient to write the Feynman propagator as

i

ω2 − (ωk − iε)2
, (A.8)

where ω2
k = k4 + c2k2 +m2 > 0 for a positive m2. The 3-vertex is

− iλ3 {(k · p)(k · q) + (p · q)(p · k) + (q · k)(q · p)} . (A.9)
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Applying the conservation law of momenta, q = −k− p, we obtain

− iλ3

{
k2p2 − (k · p)2

}
= −iλ3[kp]2, (A.10)

where [kp] = εijk
ipj.

Consider the one-loop correction to the propagator,

η,p

ω,k ω,k

η + ω,p + k

= iM, (A.11)

where

iM =
1

2

∫
dη

2π

d2p

(2π)2

i2
{
−iλ3[kp]2

}2[
η2 − (ωp − iε)2

][
(η + ω)2 − (ωp+k − iε)2

] . (A.12)

We impose the positive energy condition that ω > 0. We are interested in the imaginary
part ofM, which is associated with the decay width. We start with performing the integral
over η along the real axis. We take the analytic continuation of η to the complex plane. The
integrand has two poles in the upper half complex plane, namely,

η = −ωp + iε, −ω − ωp+k + iε. (A.13)

We complete the integration contour by including a semicircle that encloses the upper half
plane. By Cauchy’s theorem, we obtain

M = −λ
2
3

4

∫
d2p

(2π)2

[kp]4

ωpωp+k(ω − ωp + ωp+k)

×
{

ωp+k

ω − ωp − ωp+k + 2iε
+

ωp

ω + ωp + ωp+k − 2iε

}
. (A.14)

By the Sokhotski-Plemelj theorem,

1

x± iε
= P

(
1

x

)
∓ iπδ(x), (A.15)

we obtain

ImM = −πλ
2
3

4

∫
d2p

(2π)2
[kp]4

ωpδ(ω + ωp + ωp+k)− ωp+kδ(ω − ωp − ωp+k)

ωpωp+k(ω − ωp + ωp+k)
.

Because ω > 0, we obtain

ImM =
πλ2

3

8

∫
d2p

(2π)2

[kp]4

ωpωp+k

δ(ω − ωp − ωp+k), (A.16)
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which can be rewritten as

ImM = −λ
2
3

4

∫
dη

2π

d2p

(2π)2
[kp]4(−2πi)θ(E1)δ(E2

1 − ω2
p)(−2πi)θ(E2)δ(E2

2 − ω2
p+k), (A.17)

where E1 = −η and E2 = η+ω, the exactly the energies of the two outgoing on-shell particles.
The expression (A.17) is expected from the usually optical theorem: The imaginary part of
the one-loop diagram is equal to the square of the absolute value of the amplitude into two
particles.

Next, we would like to evaluate (A.16) and calculate the decay width. Let us start with
writing p as

p = −uk− q, k · q = 0. (A.18)

Therefore,

ω =
√
k4 + c2k2 +m2, (A.19)

ωp =
√

(u2k2 + q2)2 + c2(u2k2 + q2) +m2, (A.20)

ωp+k =

√[
(1− u)2k2 + q2

]2
+ c2

[
(1− u)2k2 + q2

]
+m2. (A.21)

We denote q ≡ |q|. Note that when u > 1 or u < 0, ωp+ωp+k > ω, violating the conservation
law of energy, ω = ωp + ωp+k, imposed by the Dirac delta in (A.16). Therefore, we can at
least restrict the integration range over u to 0 ≤ u ≤ 1. Then, (A.16) can be further rewritten
as

ImM =
λ2

3k
5

32π

∫ 1

0

du
q4

ωpωp+k

(
∂qωp + ∂qωp+k

)∣∣∣∣
q=q0

, (A.22)

where q0 is the real solution of q such that the conservation law of energy holds, i.e.,

ω − ωp − ωp+k

∣∣
q=q0

= 0. (A.23)

For the value of u at which there is no real solution for q, the integrand in (A.22) is understood
to be set to zero.

At high energies, q2 � c2 and q4 � m2, we obtain the asymptotic behavior

ImM =
λ2

3

1024
k4 +O(k2). (A.24)

In this high momentum limit, ωk ∼ k2, and the total decay width is

Γ =
1

ωk

ImM =
λ2

3

1024
k2 +O(k0). (A.25)

At low momentum, the behavior is more complicated. When k4 < 4m2, the integral
(A.22) is exactly zero, since there is no real solution q0, and the decay width is zero; therefore,
the particle is absolutely stable at momentum with k4 < 4m2. At k4 = 4m2, there is a unique



APPENDIX A. SCATTERING AMPLITUDES IN ARISTOTELIAN SPACETIME 165

solution q0 = 0 if and only if u = 1
2
; when k4 > 4m2, the integral in (A.22) yields nonzero

value.
In the limit m → 0, the imaginary part of M is nonzero for any k > 0 (and for any u

with 0 < u < 1). In the low momentum limit, k � c, we have

ImM =
3
√

3λ2
3

4480πc6
k10 +O(k7). (A.26)

In this low energy limit with m set to 0, ωk ∼ ck, and the total decay width is

Γ =
3
√

3λ2
3

4480πc7
k9 +O(k6). (A.27)

At k = 0, the particle is absolutely stable.

A.3 Cross-sections

The scattering cross-section can be straightforwardly written down as follows,

dσ =
1

2ωk12ωk2 |v1 − v2|

(∏
f

d3kf
(2π)3

1

2ωkf

)∣∣M(k1,k2 → {kf})
∣∣2

× (2π)4δ
(
ω −

∑
f

ωf

)
δ(3)
(
k−

∑
f

kf

)
. (A.28)

Here k1 and k2 denote the incoming momenta and {kf} denotes the outgoing momenta. We
have defined the “longitudinal velocities,” v1 and v2, with

vi ≡
dωki

dk
‖
i

, , i = 1, 2, (A.29)

with k
‖
i is the component of ki that is parallel to the direction of the total incoming momen-

tum k1 + k2. Just as in the relativistic case, the cross-section is of dimension [σ] = L2.
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Appendix B

Evaluation of The Sunset Diagram

In this appendix, we evaluate the following “sunset diagram” defined in Chapter 6 (refer to
(6.38)),

η,p

ω,k ω,k
ν,q

=
1

3!

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

i3(−iλ[kpq])2

(η2 − ω2
p)(ν2 − ω2

q)[(ω + η + ν)2 − ω2
k+p+q]

.

(B.1)
Performing the Wick rotation by taking η → iη, ν → iν and ω → iω, the sunset diagram in
(B.1) becomes

ω,k ω,k
= iλ2=, (B.2)

where

= ≡ 1

3!

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

[kpq]4

(η2 + ω2
p)(ν2 + ω2

q)[(ω + η + ν)2 + ω2
k+p+q]

. (B.3)

We will henceforth stick to this imaginary time convention throughout the discussion in this
appendix. It is convenient to define k ≡ |k|, p ≡ |p|, q ≡ |q| and K ≡ |K|.

Relevant couplings in the dispersion relation ωk provide an IR regulator. Most generically,

ω2
k = ζ2

3k
6 + ζ2

2k
4 + c2k2 +m2. (B.4)

The integral = is finite in the IR as long as at least one of the IR-regulating terms, ζ2, c, or
ζ0, is turned on. It is sufficient to show that (B.3) is IR finite if c and ζ0 are zero but ζ2

2 is
nonzero, such that

ωk = k4(k2 + ζ2
2 ). (B.5)

Let us examine the integral (B.3) at zero frequency, ω = 0. Apply (B.20) to perform the
integrals over the frequencies in (B.3), we obtain

= =

∫
d3p

(2π)3

d3q

(2π)3

[kpq]4

4ωp ωq ωk+K

1

ωp + ωq + ωk+K



APPENDIX B. EVALUATION OF THE SUNSET DIAGRAM 167

<

∫
d3p

(2π)3

d3q

(2π)3

[kpq]4

4ωp ωq ωk+K

1

2
√
ωp ωq

<
1

8

∫
d3p

(2π)3

d3q

(2π)3

[kp(k + K)][k(k + K)q][kpq]2

p3q3|k + K|2
. (B.6)

It is understood that the integrals over p and q are cut off appropriated in the UV. To show
that = is convergent in the IR, it is sufficient to show that the integrand in the second line
in (B.6) is nonsingular:

[kp(k + K)][k(k + K)q][kpq]2

p3q3|k + K|2
≤ k4. (B.7)

This proves that =/k4 is finite with the choice of ωk in (B.5). A similar proof shows that the
integral is IR finite if ζ2, c and m are set to zero but the external frequency ω is nonzero.

The integral = has a superficial quadratically UV divergent. We would like to study the
behavior of = around the fiducial point in the imaginary time, ω2 = M6 and k2 = 0. One
can take a first look at the UV divergences by expanding the integral in a Taylor series in
k2:

=(ω2,k) = =0 + =1k
2 + =2k

4 + =3k
6 + · · · , (B.8)

where ω̃ ≡ ω/ζ3. By inspection, we see that =0 and =1 vanish identically. The first non-zero
coefficients are =2 and =3, which can be expected to be quadratically and logarithmically
divergent with the spatial momentum cutoff, respectively. All the higher-order terms denoted
by “· · · ” will be finite.

Since we are setting the renormalization condition around ω2 = M6 6= 0, for practical
purposes, we will treat ω2 as an IR regulator and set ζ2

2 , c2 and m2 to zero. Under the change
of variables,

η → ζ3η, ν → ζ3ν, (B.9)

(B.3) can be written as

= ≡ 1

3!ζ4
3

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

[kpq]4

(η2 + p6)(ν2 + q6)[(ω̃ + η + ν)2 + |k + p + q|6]
. (B.10)

For simplicity, we will set ζ3 to 1 in the following calculation. The dependence on ζ3 can
be easily recovered in the final results. Let us define K ≡ p + q and X ≡ p× q. Expanding
with respective to the smallness of k6/ω2 in =, we obtain the expression of =2 and =3 in
(B.8):

=2 =
1

6k4

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

(k ·X)4

(η2 + p6)(ν2 + q6)
[
(ω + η + ν)2 +K6

] , (B.11)

=3 =
1

2k6

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

(k ·X)4

(η2 + p6)(ν2 + q6)
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×
{

12(k ·K)2K8

[(ω + η + ν)2 +K6]3
− 4(k ·K)2K2 + k2K4

[(ω + η + ν)2 +K6]2

}
. (B.12)

In order to evaluate these divergent terms =2 and =3, we first choose our cutoff prescription.
We will start with applying a sharp cutoff Λ on the spatial momenta carried by internal legs
in the sunset diagram, restricting the range of integration in (B.3) to be

−∞ < η, ν <∞, 0 ≤ p, q,K ≤ Λ. (B.13)

Later in Appendix B.3, we will investigate the application of the Pauli-Villars regularization
to (B.3).

B.1 The k4 Counterterm

First we evaluate =2, the divergent coefficient of the k4 term in (B.8). The following identity
is useful for reducing the index structure:∫

d3p d3qX iXjXkX`F (p, q,K) =
1

15
δijk`

∫
d3p d3qX4F (p, q,K) , (B.14)

where F (p, q,K) is an arbitrary function of p, q and K, and

δijk` ≡ δijδk` + δikδj` + δi`δjk. (B.15)

Applying (B.14) to (B.11) yields

=2 =
1

30

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

X4

(η2 + p6)(ν2 + q6)
[
(ω + η + ν)2 +K6

] . (B.16)

Next, we derive some useful integrals for performing the η and ν integrals on (B.16).
Define

J(ω, x, y) ≡
∫ ∞
−∞

dω′
1

(ω′2 + x2)[(ω′ + ω)2 + y2]
, (B.17)

where ω, x and y are real numbers and x, y > 0. We further take the analytical continuation
of ω′ in (B.17) to the complex plane. The integrand has two poles in the upper half plane,
namely:

ω′ = ix, −ω + iy. (B.18)

We complete the integration contour by including a semicircle that encloses the upper half
plane. By Cauchy’s theorem, we obtain

J(ω, x, y) = 2πi

{
1

(2ia)[(ω + ix)2 + y2]
+

1

[(ω − iy)2 + x2](2iy)

}
=

π

ω + i(x− y)

{
1

x[ω + i(x+ y)]
+

1

y[ω − i(x+ y)]

}
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=
π(x+ y)

xy[ω2 + (x+ y)2]
. (B.19)

Applying (B.19) recursively, we obtain (assuming x, y, z > 0)

I1(ω, x, y, z) ≡
∫

dη

2π

dν

2π

1

(η2 + x2)(ν2 + y2)[(ω + η + ν)2 + z2]

=

∫
dη

2π

1

2π

J(ω + η, y, z)

η2 + x2

=

∫
dη

2π

y + z

2yz(η2 + x2)[(ω + η)2 + (y + z)2]

=
y + z

4πyz
J(ω, x, y + z)

=
x+ y + z

4xyz[ω2 + (x+ y + z)2]
. (B.20)

Applying (B.20) to (B.16), we obtain

=2 =
1

120

∫
d3p

(2π)3

d3q

(2π)3

X4

p3q3K3

p3 + q3 +K3

[ω2 + (p3 + q3 +K3)2]
. (B.21)

It is useful to further rewrite (B.21) as

=2 =
1

120

∫
d3p

(2π)3

d3q

(2π)3

X4

p3q3K3

1

p3 + q3 +K3

− 1

120

∫
d3p

(2π)3

d3q

(2π)3

X4

p3q3K3

ω2

ω2 + (p3 + q3 +K3)2

= =0,2 + finite, (B.22)

where

=0,2 =
1

120

∫
d3p

(2π)3

d3q

(2π)3

X4

p3q3K3

1

p3 + q3 +K3
(B.23)

is power-counting quadratically divergent in Λ. Note that the integral over q is convergent in
the UV, we will thus extend the domain for q to q ∈ [0,∞). Applying the following change
of variable in (B.23),

x ≡ q

p
, (B.24)

we obtain

=0,2 .
1

120

∫
d3p

(2π)3

d3x

(2π)3

x sin4θ

pK
3

1

1 + x3 +K
3 =

C0,2

120(2π)4
Λ2, (B.25)
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where K =
√

1 + x2 + 2x cos θ and θ is the angle between p and q. Furthermore,

C0,2 =

∫ ∞
0

dx

∫ π

0

dθ
x3 sin5θ

K
3
(

1 + x3 +K
3
) . (B.26)

Numerical evaluation yields C0,2 ≈ 0.254. Hence,

=0,2 = BΛ2 + finite, (B.27)

where B is a positive real number and

B .
C0,2

1920π4
≈ 1.36× 10−6. (B.28)

The precise value for B largely depends on how one chooses the UV cutoff and does not have
a universal meaning. However, the sign of B is insensitive to the choice of cutoff.

B.2 The k6 Counterterm

Next we evaluate =3, the divergent coefficient of the k6 term in (B.12). To reduce the index
structure in (B.12), in addition to the identity (B.14), we note the following identity:∫

d3p d3qX iXjXkX`KmKnF (p, q,K)

=
1

210

(
7δijk`δmn − δijk`mn

) ∫
d3p d3qX4K2F (p, q,K) , (B.29)

where F (p, q,K) is an arbitrary function of p, q and K, and

δijk`mn ≡ δijk`δmn + δmjk`δin + δimk`δjn + δijm`δkn + δijkmδ`n. (B.30)

Applying (B.14) and (B.29) to (B.12), we obtain

=3 =
1

70

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3

X4K4

(η2 + p6)(ν2 + q6)

×
{

12K6

[(ω + η + ν)2 +K6]3
− 11

[(ω + η + ν)2 +K6]2

}
. (B.31)

To perform the integrals over the frequencies η and ν for (B.31), we derive the following
integrals from (B.20):

I2(ω, x, y, z) =

∫
dη

2π

dν

2π

1

(η2 + x2)(ν2 + y2)[(ω + η + ν)2 + z2]2

≡ − 1

2z

∂

∂z
I1(ω, x, y, z)
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=
ω2(x+ y) + (x+ y + 2z)(x+ y + z)2

8xyz3 [ω2 + (x+ y + z)2]2
, (B.32)

and

I3(ω, x, y, z) =

∫
dη

2π

dν

2π

1

(η2 + ω2
x)(ν

2 + y2)[(ω + η + ν)2 + z2]3

= − 1

2z

∂

∂z
I2(ω, x, y, z)

=
3ω2(x+ y)

[
ω2 + 2(x+ y + z)(x+ y + 2z)

]
16xyz5

[
ω2 + (x+ y + z)2

]3
+

(x+ y + z)3
[
3(x+ y)2 + 9(x+ y)z + 8z2

]
16xyz5

[
ω2 + (x+ y + z)2

]3 . (B.33)

Applying (B.32) and (B.33) to (B.31), we obtain

=3 =
1

280

∫
d3p

(2π)3

d3q

(2π)3

X4K

p3q3

{
12(p3 + q3 +K3)3[

ω2 + (p3 + q3 +K3)2
]3

− (p3 + q3 +K3)(2p3 + 2q3 + 11K3)

K3
[
ω2 + (p3 + q3 +K3)2

]2 − p3 + q3

K6
[
ω2 + (p3 + q3 +K3)2

]}. (B.34)

Here =3 is a function of ω and some the momentum cutoff scale Λ. The divergent part in
=3 is by power counting logarithmic in Λ. Since the sunset diagram does not contain any
divergent subdiagrams, we expect =3 to take the form,

=3 = A log
(
Λ/|ω|

1
3

)
+ finite, (B.35)

where A is a constant to be evaluated in the following.
First, we evaluate A by a shortcut method: We set ω to zero but introduce an IR cutoff

for p such that µIR ≤ p ≤ Λ. Since the integral over q is convergent, we also extend the
integral over q to q ∈ [0,∞). Then, (B.34) is simplified to

=3 =
1

280

∫
d3p

(2π)3

d3q

(2π)3

X4

p3q3K5

K6 − 3K3(p3 + q3)− (p3 + q3)2

(p3 + q3 +K3)3
. (B.36)

Applying the following change of variable in (B.36):

x ≡ q

p
, (B.37)

we obtain

=3 =
1

280

∫
d3p

(2π)3

d3x

(2π)3

x sin4 θ

p3K
5

K
6 − 3K

3
(1 + x3)− (1 + x3)2(

1 + x3 +K
3
)3
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=
C3

2240π4
log

(
Λ

µIR

)
, (B.38)

where θ is the angle between p and q and K =
√

1 + x2 + 2x cos θ. Furthermore,

C3 =

∫ ∞
0

dx

∫ π

0

dθ sin5θ
x3

K
5

K
6 − 3K

3
(1 + x3)− (1 + x3)2(

1 + x3 +K
3
)3 . (B.39)

The integral in (B.39) can be performed numerically, yielding

C3 ≈ −0.24715. (B.40)

Therefore,
=3 = A log Λ + finite, (B.41)

where

A =
C0,3

2240π4
≈ −1.13× 10−6. (B.42)

Next, we perform the integral (B.34) for nonzero ω2. We find it the most convenient to
modify the integration domain for p and q into{

(p,q) : 0 ≤ p2 + q2 ≤ Λ2
}
. (B.43)

Rewrite (B.34) as

=3 =
1

2240π4

∫
dp dq

∫ π

0

dθ sin5 θ G3(ω2, p, q,K). (B.44)

where θ is the angle between p and q, K =
√
p2 + q2 + 2pq cos θ, and

G3(ω2, p, q,K) ≡ p3q3K

{
12(p3 + q3 +K3)3[

ω2 + (p3 + q3 +K3)2
]3 − (p3 + q3 +K3)(2p3 + 2q3 + 11K3)

K3
[
ω2 + (p3 + q3 +K3)2

]2
− p3 + q3

K6
[
ω2 + (p3 + q3 +K3)2

]}. (B.45)

Then, we apply the following change of variables:

p = Λ` cosψ, q = Λ` sinψ, (B.46)

where
0 ≤ ` ≤ 1, 0 ≤ ψ ≤ π

2
. (B.47)

Therefore,

=3 =
1

2240π4
C
(
Λ/|ω|

1
3

)
, (B.48)
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where the function C(x) is given by

C(x) ≡
∫ 1

0

d`

`

∫ π
2

0

dψ

∫ π

0

dθ sin5 θ G3

(
(x`)−6, cosψ, sinψ, K̃

)
, (B.49)

where K̃ ≡
√

1 + cos θ sin(2ψ). From the result we derived by the shortcut method in (B.41),
we expect that limx→0[C(x)/ log x] be equal to C3 defined in (B.39), due to the universality
of the logarithmic divergences. By numerical evaluation, we obtain

lim
x→∞

C(x)

log x
≈ −0.24715. (B.50)

This is indeed the same numerics by evaluating C3 in (B.39). Finally, we obtain

=3 = A log
(
Λ/|ω|

1
3

)
+ finite, (B.51)

with A given by (B.42). Combining this result with (B.27) and recovering the dependence
on ζ3, we obtain

ω,k ω,k
=
iλ2

ζ4
3

k4
{
Ak2 log

(
ζ

1
3
3 Λ/|ω|

1
3

)
+BΛ2 + finite

}
, (B.52)

where
A ≈ −1.13× 10−6, B . 1.36× 10−6. (B.53)

B.3 The Pauli-Villars Regularization

We would like to apply the Pauli-Villars regularization by taking the following substitution
of the propagator in (B.55):

1

ω2 + ω2
k

→ 1

ω2 + ω2
k

− 1

ω2 + ω2
k + Λ6

. (B.54)

Then, (B.55) becomes

= ≡ 1

3!

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3
[kpq]4

×
(

1

η2 + ω2
p

− 1

η2 + ω2
p + Λ6

)(
1

ν2 + ω2
q

− 1

ν2 + ω2
q + Λ6

)
×

[
1

(ω + η + ν)2 + ω2
k+p+q

− 1

(ω + η + ν)2 + ω2
k+p+q + Λ6

]
. (B.55)

Taking ω2
p = p6, ω2

q = q6 and ω2
k+p+q = |k + p + q|6, expanding (B.55) in a Taylor series in

k2, and reducing the index structure we obtain

=(ω2,k) = =2k
4 + =3k

6 + · · · , (B.56)
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where

=2 =
1

30

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3
X4

×
(

1

η2 + p6
− 1

η2 + p6 + Λ6

)(
1

ν2 + q6
− 1

ν2 + q6 + Λ6

)
×
[

1

(ω + η + ν)2 +K6
− 1

(ω + η + ν)2 +K6 + Λ6

]
, (B.57a)

=3 =
1

70

∫
dη

2π

dν

2π

d3p

(2π)3

d3q

(2π)3
X4K4

×
(

1

η2 + p6
− 1

η2 + p6 + Λ6

)(
1

ν2 + q6
− 1

ν2 + q6 + Λ6

)
×
{

12K6

(
1

[(η + ν + ω)2 +K6]3
− 1

[(η + ν + ω)2 +K6 + Λ6]3

)
− 11

(
1

[(η + ν + ω)2 +K6]2
− 1

[(η + ν + ω)2 +K6 + Λ6]2

)}
. (B.57b)

Note that =2 is a convergent integral and only contribute to finite pieces. We will then focus
on =3. Applying the integrals (B.32) and (B.33), we obtain

=3 =
1

2240π4

∫
dp dq

∫ π

0

dθ sin4θ G3(ω2, p, q,K,Λ), (B.58)

where θ is the angle between p and q, K =
√
p2 + q2 + 2pq cos θ, and

G3(ω2, p, q,K,Λ) = p6q6K4
{
f(p, q,K)− f(pΛ, q,K)− f(p, qΛ, K)− f(p, q,KΛ)

+ f(p, qΛ, KΛ) + f(pΛ, q,KΛ) + f(pΛ, qΛ, K)− f(pΛ, qΛ, KΛ)
}
. (B.59)

We have introduced the following definitions:

pΛ ≡
(
p6 + Λ6

) 1
6 , qΛ ≡

(
q6 + Λ6

) 1
6 , KΛ ≡

(
K6 + Λ6

) 1
6 , (B.60)

and

f(x, y, z) =
1

x3y3z9

{
12K6(x3 + y3 + z3)3[
ω2 + (x3 + y3 + z3)2

]3 +
(x3 + y3)(9K6 − 11z6)

2z6
[
ω2 + (x3 + y3 + z3)2

]
+

(x3 + y3 + z3)
[
9K6(x3 + y3)− 11z6(x3 + y3 + z3)

]
z3
[
ω2 + (x3 + y3 + z3)2

]2
}
. (B.61)

It is useful to take the following change of variables:

p = Λ` cosψ, q = Λ` sinψ, (B.62)
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where
0 < ` <∞, 0 < ψ <

π

2
. (B.63)

Then,

=3 =
1

2240π4
C
(
Λ/|ω|

1
3

)
. (B.64)

where

C(x) ≡
∫ ∞

0

d`

`

∫ π
2

0

dψ

∫ π

0

dθ sin5 θ G3

(
(x`)−6, cosψ, sinψ, K̃, `−1

)
. (B.65)

Here, K̃ ≡
√

1 + cos θ sin(2ψ). Numerical evaluation yields

lim
x→∞

C(x)

log x
≈ −0.24715. (B.66)

As expected, this is the same as (B.50).
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Appendix C

Useful Formulas in Hořava Gravity

In this appendix, we prove a number of formulas which are useful in expanding out the action
of Hořava gravity around curved space, in order to facilitate the derivations in Chapter 9.
The identities are understood to hold under integration and thus we set all total derivatives
to zero. Finally, we take the background to have constant curvature R.

Recall that we decompose the spatial metric fluctuation as

hij = Hij +
1

2
h gij, (C.1)

where h = gijhij and gijHij = 0. Furthermore, we decompose Hij as

Hij = H⊥ij +∇iηj +∇jηi +
(
∇i∇j −

1

2
gij�

)
σ, (C.2)

where gijH⊥ij = 0, ∇j
H⊥ij = 0 and ∇i

ηi = 0. In two dimensions, we set H⊥ij to zero and

ηi = εij∇
j
η for some scalar η.

Identity 1. �∇iΦ = ∇i

(
�+ R

2

)
Φ, where Φ is a scalar.

Identity 2. ∇j
Hij = εij∇

j
(�+R)η + 1

2
∇i(�+R)σ.

This identity is derived below:

∇j
Hij = εjk∇

j∇i∇
k
η + εik�∇

k
η +

(
∇j∇i∇j − 1

2
∇i�

)
σ

= εjk
(
∇i∇

j∇k
+R

k j

` i∇
`)
η + εij�∇

j
η +

(
∇i∇

j∇j −R
k j

j i∇k − 1
2
∇i�

)
σ

= εjk
R
2

(
gkjg`i − δki δ

j
`

)
∇`
η + εij�∇

j
η + 1

2
∇i�σ − R

2
(gkjgji − δki δ

j
j )∇kσ

=
(
�+ R

2

)
∇j
η + 1

2
∇i(�+R)σ

= εij∇
j
(�+R)η + 1

2
∇i(�+R)σ. (C.3)
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Identity 3. ∇i∇j
Hij = 1

2
�(�+R)σ. This follows immediately from Identity 2.

Identity 4. ∇i�
n∇i

Φ = �
(
�+ R

2

)n
Φ, where Φ is a scalar and n is a non-negative integer.

In practice, we will only need this identity up to n = 2. However, it is not much more
difficult to prove it in general via induction using Identity 1.

Identity 5. Hij∇
i
�
n∇kH

jk = ηOη+ 1
4
σOσ, where O = �(�+R)2

(
�+ R

2

)n
. This follows

directly from Identities 2 and 4.

Identity 6. For vectors Φi and Φ̃i,

Φi∇j�
n+1∇j

Φ̃i = Φi

(
�+ R

2

)
∇j�

n∇j
Φ̃i +R

(
Φi∇

j
�
n∇i

Φ̃j − Φi∇
i
�
n∇j

Φ̃j

)
, (C.4a)

Φi∇
j
�
n+1∇i

Φ̃j = Φi

(
�+ R

2

)
∇j
�
n∇i

Φ̃j +R
(
Φi∇j�

n∇j
Φ̃i − Φi∇

i
�
n∇j

Φ̃j

)
. (C.4b)

From (C.4) we obtain

Φi

(
gij∇k�

n+1∇k
+∇j

�
n+1∇i)

Φ̃j

= Φi

(
�+ 3

2
R
)n+1(

gij�+∇j∇i)
Φ̃j − 2R

n∑
m=0

Φi

(
�+ 3

2
R
)n−m∇i

�
m∇j

Φ̃j. (C.5)

Identity 7. Applying Identity 6 on the vectors ηi = εij∇
j
η and ∇iσ yields

ηi∇j�
n∇j

ηi + ηi∇
j
�
n∇i

ηj = η�(�+R)(�+ 2R)nη, (C.6a)

σ∇i∇j�
n∇j∇i

σ − 1
2
σ�

n+2
σ = 1

2
σ�(�+R)(�+ 2R)nσ. (C.6b)

Identity 8. Hij�
n
H ij = 2ηOη + 1

2
σOσ, where O = �(� + R)(� + 2R)n. This follows

directly from Identity 7.
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Appendix D

Jacobians in Path Integrals

Here, as an appendix to Chapter 9, we review the computation of a partition function under
the change of variables Φ = FΨ, for some linear differential operator F that is often, but
not always, local. The path integral for Φ is defined with respect to a measure on the space
of field configurations, which in the background field method we take to be covariant with
respect to background diffeomorphisms. It is natural to define the measure in terms of a
metric GΦ on this space. For example, if Φi has a spatial index, the inner product of two
infinitesimal variations δΦ(1) and δΦ(2) takes the form

GΦ(δΦ(1), δΦ(2)) = 〈δΦ(1), δΦ(2)〉Φ =

∫
dt d2x

√
g gijδΦ

(1)
i δΦ

(2)
j . (D.1)

The path integral can schematically be written1∫
dΦ
√

detGΦ e
iSΦ . (D.2)

The metric is not covariant under a change of variables; instead, the measure transforms as

dΦ
√

detGΦ = dΨ
√

detGΨ

√
detOF , (D.3)

where
OF = G

−1

Ψ F
ᵀ
GΦF. (D.4)

The operator OF is computed by setting

〈δΦ, δΦ〉Φ = 〈δΨ,OF δΨ〉Ψ . (D.5)

The Jacobian is then expressed as JF =
√

detOF .
As an example, let us consider the Jacobian for the transformation

Φi = ∇iφ+ εij∇
j
φ̃ . (D.6)

1More correctly, GΦ should be taken as the metric induced from the canonical path integral by integrating
out canonical momenta. This gives GΦ in terms of the path integral kinetic term.



APPENDIX D. JACOBIANS IN PATH INTEGRALS 179

The natural metric for Φi is the one given above, while that for φ and φ̃ is

〈δφ(1), δφ(2)〉φ =

∫
dt d2x

√
g δφ(1)δφ(2), (D.7a)

〈δφ̃(1), δφ̃(2)〉φ̃ =

∫
dt d2x

√
g δφ̃(1)δφ̃(2). (D.7b)

In the text we are primarily interested in the case where g is time-independent and whose
spatial slice is a symmetric space. Then

〈δΦ, δΦ〉Φ = 〈δφ,−�δφ〉φ + 〈δφ̃,−�δφ̃〉φ̃ . (D.8)

Therefore,

OF = −�
(

1 0

0 1

)
, (D.9)

and
J =

√
detOF = det(−�) . (D.10)

For another example, let us conside the Jacobian for the transformation defined in (C.2),

Hij =
(
εjk∇i∇

k
+ εik∇j∇

k
)
η +

(
∇i∇j −

1

2
gij�

)
σ . (D.11)

Note that Hij is traceless. A natural metric on the space of traceless tensors is

〈δH(1), δH(2)〉H =

∫
dt d2x

√
g δH

(1)
ij g

ikgj`δH
(2)
k` . (D.12)

For the scalar modes η and σ we define

〈δη(1), δη(2)〉η =

∫
dt d2x

√
g δη(1)δη(2), (D.13a)

〈δσ(1), δσ(2)〉σ =

∫
dt d2x

√
g δσ(1)δσ(2). (D.13b)

Then, applying Identity 8, we obtain

〈δH, δH〉H = 〈δη, 2�
(
�+R

)
δη〉η + 〈δσ, 1

2
�
(
�+R

)
δσ〉σ. (D.14)

(In general there is an η-σ cross-term involving ∇iR, but this vanishes on the backgrounds
used in Chapter 9.) Therefore, the associated Jacobian is

JH = det
[
�
(
�+R

)]
. (D.15)
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tization of Hořava gravity in 2+1 dimensions. 2017.

[27] Yoichiro Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based
on an analogy with superconductivity. 1. Phys. Rev., 122:345–358, 1961.



BIBLIOGRAPHY 182

[28] Yoichiro Nambu. Quasiparticles and gauge invariance in the theory of superconduc-
tivity. Phys. Rev., 117:648–663, 1960.

[29] J. Goldstone. Field theories with superconductor solutions. Nuovo Cim., 19:154–164,
1961.

[30] Jeffrey Goldstone, Abdus Salam, and Steven Weinberg. Broken symmetries. Phys.
Rev., 127:965–970, 1962.

[31] Steven Weinberg. The quantum theory of fields. Vol. 2: Modern applications. Cam-
bridge University Press, 1996.

[32] Adriaan M. Schakel. Boulevard of broken symmetries: effective field theories of con-
densed matter. World Scientific, 2008.

[33] C.P. Burgess. Goldstone and pseudo-Goldstone bosons in nuclear, particle and con-
densed matter physics. Phys. Rept., 330:193–261, 2000.
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