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ABSTRACT

It is demonstrated that the equilibrium two particle density
matrix of a simple quantum liquid may profitably be re-expressed in terms
of a Tayldr éxpansion about the diagdnal. The resulting arrays of Taylor

coefficients are shown to have an intuitive physical significance. A

set of three coupled nonlinear integrodifferential equations relatiﬁg

the three most important coefficients is derived. o

Approximating certain functions in terms of the straight-

forwardlyvcalculable dilute gas two particle density'matrix Taylor co-

efficients closes these equations, and they are solved numerically'for
normal liquid helium -4 and liquid para—hydrogen. Satisfactory results

are obtained in both cases. In the case of liquid para-hydrogen a simpler

-related theory is shown to also yield satisfactory results.



,
Y

0UU04202588

INTRODUCTION

The density matrix or statistical operator df an arbitrary
N~dimensional system is Simply a function of 2N+1 variables wheh it
is written in the Scrodinger representation. These variables are the
N-dimensional coordinate vector 2; its conjugatelvectqr 2' and the
time t. In the equilibrium case, t is replaced by B = (kBT)';.. Even
when B is effectively disposed of by restricting_aftention to the
eQuilibfium state at a given temperature, the SchrSdinger represen-
tatiqn'density matrix is a hopelessly unwieldy fundtion if N>1.

In this papér we reduce the‘equilibrium problem from 2N

t
variables to N variables by replacing ; and ; by

ot

y = = (x+x )

y:

N D=

n ot
z (x-x )

mn

\

and Taylor expanding the logarithm of the density matrix in powers 

of Z. We can then dispose of 7 by replacing tﬁe equilibrium-equatipn
for the density matrix by an equaivaient infinite coupled heirarchy.
of equations relating the non-vanishing even order Taylor coeffiCients
which depend on y alone.

Specifically, we do this with the equiiibrium two particle
reduced density matrix of the quantum mechanical Lennard-Joﬁes fluid
and the second equation of thé quéntum mechaniéal BBGKY heirachy Wﬁich
it must satisfy. The three particle density matrix is eliminated by

means . of a direct extension of the Kirkwood Superposition Approxima-

. tion (KSA). The heirarchy is truncated by inserting approximate

expressions for the three independent elements of the fourth rank
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tensor. These approximate expressions are derived on the basis

on the KSA and.a simple approximate expression for'the off-diagonal
structure of the N particle density matrix-in terms of the tensors

of the dilute gas two particle density matrix'which are easily
calculable. (The details of this calculation and sample values will

be presented elsewhere.) Applying one final approximation and symmetry
arguments finally yields a closed set of three scalar intégfo—differen-
fial equations which comprize the quantum mechanical analogue of the
Yvon-Born-Green (YBG) equatidn. In the classiéél limit, the first

of these equations reduces to the classical YBG.eqﬁation. The equa-
tions may be sdlved numerically for the radial distribution function
(rdf) and»the two independent elements of the second rank Taylor
coefficient tensor.

A simpler theory sﬁggests itself: Why not simply approxi-
mate the gécond rank tensor and sol&e a single equation for the rdf?
.Simplifying even further by assUming that the second rank tensor is
constant and isotropic yields the Mazo-Kirkwood (MK) theory of simple

quantum fluidsl,

We have applied all three of these approaches to both liquid

He4 and liquid p—Hz.* In the case of liquid He4,'the three equation

*p-Hp may safely be considered to be a simple fluid due to its small
moment of inertia and the fact that its molecules can only exist in
even J states. The small moment of inertia causes the J=0 and

J=2 states to be ka525°K apart in energy, thereby effectively
restricting all molecules to the rigorously spherically symmetrical
J=0 state throughout the temperature range of greatest interest.
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approach'gives satisfactory results in the normal liquid range, but
collapses at the A-transition line.  This 1is due to the present
theory's ihability to deal with statistical exchanges which involve
more thaﬁ two particles. The two simpler approaches proved to be
totally iﬁadequate for describing liquid helium. These results

are presented in Section VII.

In the case of liquid p—H2, only the Mazo-Kirkwood approach
proved unsuitable. - Both of the épproaches developed in this paper
gave satisfactory and nearly identical results. This has the impor-
tant practical implication that tensors beyond the second fank may.

be ignored When'dealing with any ordinary liquid other than helium.

These results are presented in- Section VIII.

In both cases the calculated results are quite good at all
]iqﬁid densities at which the liquids can coekist'with their vapors..
That ié to say, up to the liquid densit} at the triple point in the
case of p-H,, and up to the A-transition under OWNn Vvapor pressure

density in the case of He4. In contrast to this, the classical

'YBG equation gives rather. poor results when it is applied to liquid

argon at its triple point density. The reason for this is that the

" replusive kinetic energy effects in the quantum iiquids make them

tend to exist at lower densities than do classical liquids. In the
proper dimensionless uhits (which will be defined later) the triple
point liquid density of p—H2 is 0.578, the vapor pres;ure A-point

liquid density pf He4 is 0.367, and.the triple'b&int‘liquid density

of argon is 0.845. All of the approximations which we introduce
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become ekaét in the limit of low density. The iow densities at
wﬁich qﬁantum liquids typicélly exist render these approximatioﬁs
valid when applied to these substances over the density ranges of
greatest interest alth0ugh they would doubtless 7 collapse if
- applied at the higher densities which are typical of classical
liquids. |

A word on our tensor notation: In addition to the usual
subscript notation, we use the so-called Gibbsian notation advécéted
by Drew2 as it allows us to express our results in a compact form.

A1l tensors of non-zero rank are in boldface, and the

left superscripts indicate the respective ranks._ All: tensors of rank

two or greater will be written with the superséripts throughout.
In the case of scalars and vectors,.the superscript will be used or
not as éonvenient. In the case of the ﬁ? tensors, the superscripts
also have the significance of function labels.

Binary operators of the sort (:)(E:) indicate multiple
contractions over indices. | |

V; is the gradient operator, and the.subscript indicates
which set 6f variables it operates on.

We write the second rank identity tensor as

Gij = 23 =17 + }? + KK

Our only notational innovation is the use of the operator
Syvm {- ’} which is linear and acts on unit polyads. It replaces
a unit polyad by the sum all distinct unit polyads which may be

obtained by permuting the argument polyad's indices:
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Sym 1133{ = 1] + J1) + JJ1
' {mmwm} VY MY MAY VALY AN AN
Sym | 113)) = 113) + 1J1J + 1331 + Ji1) + Jij1 + JJi1

FUNDAMENTAL PROPERTIES OF THE DENSITY MATRIX
The density matrix is a Hermitian operator. Therefore, it

undergoes complex conjugation when the sign of 7 is changed, which

. . s . N W ' e
-is equivalent to interchanging x and x'. As the Scrodinger represen-

tation of the density matrix is an ordinary complex function, it-has
a definable logarithm as long as it is ndnvanishing. We:will concerﬁ
ourselves with the logarithm only in an infinitesmal neighborhood
about the locus X = X'. On this locus the non-vanishing valuevof
the density matrix merely requires that the system have a non—vénishing
probability of being found in any region of its configuratignal phase
space and thét its momentum representation vanish in the limit of
infinite momentum.  In as far as we have been able to determine,
these restrictions are physically meaningless..
| Thus we may write
p(6,X"5t) = oY,
G0 oR - 1TGneR s Tho@it ...

This form is not altered by going to the classical limit.

"
Z

0 = exp £, 050 + ¥ @)

In our varlables, the def1n1t10n of the ngner d1str1but10n
function3 (wdf) is written as

’\J’\:

£,008:0) = gV [dEeG 50 e F 5D @2

The wdf is the direct anologue of the classical phase

space distribution function. It is perfectly prbper to define tensor
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_ : -
moments of the local momentum distribution b

' o N v aon
P Y. eys = fﬁ P P £u(Y,P5t)
(y;t)> = o™

J & £ (Y,p5t)

The inverse of (2.2) is ‘
N s o
o (¥, 73t) = /(q P £,0,P;t) exp (3 P-2)
Hence,
: '3 n 4" '\1. . ,
(gi_ %‘) D(Y,Z,t) '%‘ - /

0
n,
p(y,0;t)

<p(y;t)> =

Inserting the form (2.1) into the above, and solving the
first four equations of the resulting heirarchy for the first four
g tensors yields

1 2 '
¥ G = 5 B0

2 % 2 2 2
£ (¥;t) =-£§{<§ 3 t)>— <p(¥it)>"]
3F Gio LB Gio- 350> 0>
+ 2 <p(¥;t)>7]
YE Gin = 00— 40h0>p G
3R

3PP (3057 + 12 Bt ><p () >
NN 4
-6 <p(y;t)>"]
The tensor factors of the right hand sides of these
expressions are instantly recognizable as the first four semi-
invariants, or cumulants4, of the local momentum distribution. And

thus we arrive at an intuitive physical interpretation of our tensor

heirarchy.
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In the case that the system has no magnetic forces, the
Feynman path integral expression for the equilibrium density matrix

shows that it is an everywhere real and non-negative function of

oA

X,X .and 85;

This implies the form :
: (2.3) -

0 (v.7:8) = exp[£ (:8) + F3:0 @7 + FFm @' + . . 1

1

for the.equilibrium density matrix. In the classical limit this

becomes

o(Y,Z;8) = exp[-BV(Y) - _%__2ﬁ(:)g2]"
R°8 .

where 2M is the appropriate mass tensor.

-~

Various relationships between the "f tensors may easily

be derived. The bulk of this paper is devoted to deriving.some_of

them for the specific case of the two particle reduced density matrix

in a liquid. Others will be presented in another publication.

LIQUID STATE DENSITY MATRICES

- In this section we introduce thedensity matrices appropriate

for the description of simple fluids and define the appropriate

~variables. The one which we shall be most concerned with is the

‘reduced two particle density matrix, which is defined in terms of

the N-particle density matrix as
o oayx 1 [ 3N-6 e
o, (R LK. K Ry58) = ;ﬁ:E-J(d. R oy (R, R38) (3.1)

where the integration is over the configuration:space of the remaining
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N-2 partiéles. for those particles whose éoordinatés are integrated
ovér ﬁi is set equal to &i inside the integral. We will also need
to deal with the one and three partiélé density.matrices Ch énd Py
which‘arerdefined'analogously. The reduced deﬁsity matrices have

the same general structure as p_. and are, of course, real, positive

N
functions.'_The diagonal values of 52 are proportional to the values

of the ordinary radial distribution function (rdf) expréssed in the
form g(]ﬁzéﬁll). The constant of proportionélity is somewhat

arbitrary, and dépendé on how we choose to normalize our various
density.matrices. It is most convenient to simply set it equal to
unity. This makes the diagonal values of P, 80 to unity as ]ﬁz—ﬁll + ®,
We further define Py and»p3 to be consistent with fhis.

We now proceed to define various variables which our

arguments shall involve.

v 1l v o - .

Ry; = E{ﬁi+Rj) . ‘, (3.2a)
r\l —

T s &i_ﬁj - (3.2b)

"This is simply the transformation to center of mass and

1 t

. . . . . v Y
relative coordinates for the particles i and j. Rij and rij are

defined analogously.

¥, = %—(ﬁi+ﬁi') ‘; - (3.3a)
_1 ' 4 :
2iy:.§-(ki-ki ) | - | (3.3b)
_1 | o
;= 5—(§ij+ﬁij ) = 5-(?i+?j) (3.3c)
o1 Vo1 y.
{5 =3 (Rij-ﬁij‘) = 3 (%i+bj) (3.3d)



v = 1(m +7 "y < ? Q‘ | | 3.3
Yij = 335455 ) = Yi-Y; | (3.3e)
v _ 1 vl oy oy

le = i(rlj-rij ) = Zl ZJ (S.Sf)

. " y . .
The various y's may properly be considered projections
N . .
onto the diagonal and the various z's, distances from the diagonal.
In cases where the subscripts i and j appear together and are -

respectively equal to two and one we will, in general, not write them

»

"out as a matter of convenience. We will also have need for the

followiﬁg relations:

¥ o= y+Z | | o (3.4a)
o= yr o ~ (3.4b)
%i = Qij+%-%ij : | (3.4¢)
;- 2ij'%'%ij o - (B.4d)

We will now proceed to determine some further properties
of pz. We note that the logarithm of p, may always be defined in
the usual sense. The logarithm must obey the same symmetry require-

ments as does CPE We are particularly interested in the Taylor

. coefficients which we obtain by expanding the logarithm of pz'about

the diagonal in powers of 7 and 7. These Taylor coefficients are
actually the elements of Cartesian tensors, and will be the fundamental
objects of our analysis.

The fundamental symmetry condition is that P,y be invariant

| | ' . ' .
under the simultaneous interchange B + K and K, > K since it
- 1«1 2« 2

is an equilibrium density matrix. We shall call this operation I.

It is also possible to demonstrate that Py must be invariant under the
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. Y Voot Nt .
simultaneous interchange R, > R Rl. 7z R2 . We shall call this

1< 72
operation I1. (This symmetry is independent of statistical considera-
tibnsé;) Operatidn I changes the signs of b1 and'%, but,leaveS';_and '
Y unchanged. This immediately leads us to conclﬁde thaf only even
powers and combinations of 7 and 7 may appear. Therefore, all of
the coefficient tensors are of even rank. If we require‘that the
gystem be homogeneous, all dependence upon the position of the center
of mass of particles 1 and 2 must disappear. Since Y is essentialiy
tﬁis position, p, must be independent of Y. If we further demahd
that the system be isotrépic, these tensors can depend only on even
powers'of ;. (cf. Eqns. (3.6c and‘e)). Thus the coefficients are
nbt affected by changing the Sign of ;. Opexation I1 cﬁanges the
Signs of ; and g but does not effect ? and %. Hence, the only
effect of II is to change the sign of g, and.this means that on1yv

" : :
even powers of z may appear. We conclude that Py may rigorously

be written in the form

Y, VI,V n 2 N2 4= ~ P LV
pz(y,z,%;ﬁ) = exp[f_(¥,8) + “£(¥,8) (D" + "£(¥;ip) @Dz
2% 2 4= n n2y2 | A= 4
G @~ Gie @Y < @t ¢ L L ]
(3.5)
As ; + «, the two particleé must découple if long range forces
aren't involved. In this limit the tensors become independent of
; and, hence, constant. In particular, as ; > o fo -+ 0, consistent
with our choice of normalization for Py-

" The last two tensors vanish in the limit of the dilute gas,
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but in general they are non-vanishing. Thus we see that this density
matrix is not, in general, factorabie'info relative and éenter of
mass coordinate'dependent portionsias it is in the dilute. gas limit.
As all of these tensors are arréys of Taylor coefficients,
they are invariant under all permutations of indiées. The same
holds true for the various tensor equations which we shall derive.
The fact that they are all (spatial) functions of the three dimensionai
vector ; aloqe further simplifies matters.
A similar situgtion is encountered iﬁ,the case of i
the various th point tensors dealt with in the theory of homogeneous
turbulence. ' Therefore, the various tensors with which we deal must
have the éameiformal properties as those which arise in the theory
of homogéneous turbulence7 with the additional requirement that they
be 1nvar1ant under all permutatlons of indices. The most general

forms of the tensors of‘zero through fourth rank which can arise are

1 = Ay | (3.6a)
Yo' = vl | . (3.6b)
2183 = yiylew) « 68 pey) L (5.60)

3 . e : . 3 k
™r$ =y ey

+ [yradkayd stk Keldyp (3.6d)

1 kl : k1

LSy =yt 6

. [ylyjékl . yl kajl . ylylajk |
: k. i k 1k ’ '
CeylyReth e ydyleth L ks J]H(y) (3.6e)

N [Gljakl . dlkGJl . GJk 11]1( )

wheré y = I;l.
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We see that the number of independent components in the
various tensors is a simple funétion of rank: Zeroth and first rank
tensors have one each, second and third rank two_each, and fourth
rank, three.

The general forms preseﬁted in (3.6) are'fundamental but
rather too cumbersome to deal with unless it'iS'absdlutely necessary.
In particular, the various independent components bf the.higher_rank
tensors have different dimensions.

The most expedient alternative appears to be to ignore
transformation properties unless absolutely necessary, and simply
concentrate on specific elements in some éonvenient coordinaté éystem.
We choose thé system in which ? = %y. (From nowvon we will drop
most explicit mention of the dependence upon ; and B ‘in order to
simplify the notation.)

In this system we may write our most important tensors

as
Y =$vl (3.7a)
% - k1 + 1 374K ' | (3.7b)
Il | '
Wy - V“I T o+ (¥— - !§J[Sym{%??} + Sym{%ﬁt}] (3.7¢)
| y

4~ ' -
£ = n 110 + hz[}???+ﬁﬁﬁﬁ+%-Sym{??ﬁﬁ}]
* hS[Sym{????} + Sym{Y1KK}] (3.7d)

All other elements vanish. All other tensors of a given

rank must have the same structures. In the following, we will freely
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A ' VY
refer to the '"i11 element" of one tensor or the "Sym{ll}}} elements"
of another tensor and generally call them '"specific elements'.

The independent elements of (3.7) are easily related to

i

e

f and 4f are analogously

defined.
' Y - . .
In the limit y -~ =, all of these tensors must be isotropic.

Hence, the odd rank tenors vanish identically and

k.l. (“‘) = k” (=)

hy(=) = hy(=) = 3hy(=)

Fle) = Ky (=) %5 - (3.8a)
47 n(Y k)] (3.8b)

T+ TTKK+YTRK

£) = h (=) [Yi’i’i&”mﬁ{f(ﬁé% Sym{1?
The absence of correlation also implies that the two particle
density matrix must now factor into the product of two one partiéle
density martrices:
Iyl > e o
2% Y2 2 4% . 4 4
= exp[E, @ Q+L5) + £, (8) @ L) + . .1 (3.9)
Eliminating 7 and 2 from (3.5) by use of (3.3d and f) and
comparing the resulting expression with (3.9) immediately leads us

to conclude that in this limit

C%F . %2?1 o - (3.10a)
T4 %o 2_’?1’ . (3.10b)
a¥ - % 4“f’1 (3.10¢c)
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=24 F-3% - © (3.10d)

|

Hhil
f

16 YF = 2 4% . ' - (3.10e)

This shows how the one particle density matrix is contained

o~ A

in the "tail" of the two particle density matrix. 2¥1 and 4f1 must,
of course, have the structures (3.8a and b). This means that each
is completely specified by one element.

From (3.10a and b), it is easy to demonstrate that in

the limit ; + o', both the average center of mass kinetic energy of

the two particies and their average relative kinetic energy are

equal to the average kinetic energy per particle

o 2 ~
Ky 2 K (=) = - o B2 = - 5“—‘— ky (=) (3.11)

THE FUNDAMENTAL EQUATIONS

The equiiibrium equation for Py is8

L3y " Y _
|-12p2-p21~12 +nid RS[V(rSI) + V(r32), 03] =0 . ) (4.1)
where
ozl
'
and
A - g . h %
Hz"?ﬁv S TEVE
- ﬁi_v % ’ﬁz V%+2$m-%m+v% + V m;m
T T16m’ Z T 551['y y z 7] (y+2)

This form operates upon the unprimed coordinates and is

- appropriate for the first term of (4.1). The form which operates

on X' and is appropriate for the second term differs only in the



signs of z ana %g.

" The solption of (4.1) for 0, is contingeﬁt ﬁpon'our being
able to find a suitable expression for Py in termé of Py and to
provide the necessary boundary values.

We éhoose to eliminate Pz by using the mqst direct
quantum méchanical extension of the KSA

01,200, (2,3)0,(1,3) -‘ (4.2)
P3L1:23) = T (D6, (3)

which was also employed by Mazo and Kirkwoodl. -We will-need'ps
only with %3 = (0, and will concern ourselves only with the scalar
and quadratic terms in the logarithm. Simple manipulations convett
'(4.2) into the' form which is most convenient for our purposes:

Ny ’ 4" N

2

x expl [T (75,0 + 1@ [y 242
+[2?€(§32)-2?e(§31)](:)%% ) ' (4.3)
where |
M = B G 2 T - + HEGD FE@) @)
and | o |

g =‘exp fo

is the ordinary radial distribution function. Of coursé,

Y

_ (VIS + N
Y3 T2 v
We now insert_(3.5) and (4.3) into (4.1), expand the potential terms

about 7 = 0, and divide by Py- Many of the integrals which arise

from the integrated term in (4.1) vanish due to symmentry. This
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gives us an equation in the form of a Taylor expansion, the first
o - : Y w2

three terms of which are proportional to z, z”, and zZ”. These three

coefficients are our fundamental equations in tensor form. Before

writing them out, we introduce a simplifying change of variables

,\J_
w =

V32
n
'(N-Y) = y$1
and note that
Vo = T
© Y32
%J’\/ vo= - V’\A :
w=-y )'31
1a% = ra%y,

The coefficient of_; is proportional to
; —ﬁz x ™ n, o N, L3
- 73-[3- £+ f-%fo]+VV+nfg(qu)g(|m-y|)$$V(w)d =0 (4.53)

v N3 oL .
the coefficient of z3 is proportional to

p—

2 ~ 2 3 x
SR oY AR F e L RYED L WY
2u o 6

+ 2 (BDeE-yh ¥y @ « CE@ @ -y w@E-HDa%s - o
~ (4.5b)

the coefficient of %%2 is proportional to

s~ ~

2 ~ = —~ =
. [%'4f + 4f'9fo + 2?-3(2f)]

. gfg(l$|)g(|$-?l){$§V($j . Z?b($)[2?3_;V($-§)+6V$V($)]}d3$ =0

(4.5¢)



- of six independent elements. 4? does not appear and

The limited nature

diw' wd

OO0 0420 2. A

-17-

(Unlabeled functions and gradienté depend on ;.)"

All other coefficients of up to and:inCIUding the third
rank vanish. (4.5a) is a vector equifion and- the other two, third
rank tensor equations. fo’ 2? and 2;togeﬁher havé‘a total of five
independent elements; i.e., they are completely_determinsé byvfive
'scalar functions which depend only on y and 8. 4? and 4.'Ehave a total
% is determined

~

: by 2? and Zf (cf. (4.4)). We see that Eqns. (4.5) are equivalent

to five scalar equations in eleven unknowns. In Section VI we will
derive approximate expressioné for the fourth rank tensors. Inserting
these expressions into Eqns. (4.5)'resu1t$ in a,cldsed.set of five
scalar eqﬁations in five scalar unknowns.

Since these equations are of the coupled nonélinearvintegro-

~differential variety, it seems desireable to attempt to reduce the

" number. We note that in the limit n + 0 (4.5c) degenerates into

0.= 0 leaving (4.5a and b) as the fundamental éﬁuations for tﬁe
dilute gaé two particlé density matrix. Since quantum liquids have
rather low densities, Qe cohclude that somehow disposing of-(415c)
is the simplification of choice. This view is strengthened by the

observation that (4.5a and b) are coupled to (4.5c) only through the

(=2

v appearanéé of Z?e (which contains ch or, equivalently.zf) in (4.5b).

of this coupling suggests that introduting an

~~

approximation for'zfc into'(4.5b) might be reasonably safe.
 In Section VI we shall see that a reasonable approximation

is -
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N
R

= 4 (°FC-2F, I (4.6)

where Z?d is the Z?C of the dilute gas two particle density matrix

at the given temperature. As we noted in the introduction, the
elements of Z?Q are easy to calculate andvmay,therefqre, be considered

to be given functions. This gives us

.2"§’»e.z

255 . 7 | 4.7

and, giveﬁ that we can obtain a suitable.appfoximate expression fdr
4? and provide the boundary value 2? (), (4.5a énd b) become equiva-
lent to a closed set of three scalar‘equations in three scalar unknowns.
(We will not concern ouselves with (4.5¢) any further.)

If a suitable approximation is availéble for 2?, we may
further simplify matters by solving (4.5a) alone fdr.fo or, equivalently
g. (4.5a) is the fundamental equation with which Mazo and Kirkwoodi
began. The‘use of (4.5a) alone is the most direct extension of the

classical YBG theory.

Using (3.11) and the fact that in the classical limit

rel © %—kBT and is independent of y we see that ih this limit
.. 2y 2ukpT o
=- g 8-
hog +

Substituting this into (4.5a) quickly leads us to the‘

classical YBG equation:

Viog g + BW + ang(|$|)g(|$-')"'|)%'u'\;V($)d3$ 0 ' (4.8)

The way in which Mazo and Kirkwood actually applied (4.5a)
is summed up by the approximation
ZukBT

ﬁZ

eff 2?

¥~
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which, upon being inserted into (4.5a), yields an equation identical

to (4 8) except for the substltutlon of (k ff) -1 for B. We shall

refer,to Teff'as ""the -effective temperature'. :»Mazo and Kirkwood
did not propose any ab initio method.for evaluafing it.

In closing this section, we note that attempting to derive
(4.5b) by ahalqu'to the usual "mean field force'" derivation of |
(4.8) would result in the numerical coefficient of the WSV dependent
integratedvterm being four times greatervthan it actually is. This
nmean field dimunition effecf" i$1due to the yarieus Coordihafe |
transforms which enfer(into the cofreet derivatioh whieh we ‘have
: actually employed. ‘It gives us reason to hopeithat the additional
error- 1ntroduced by employing the extended KSA (4.1) in (4. Sb) is

of 11m1ted magnltude

REDUCTION TO SCALAR EQUATIONS AND DIMENSIONLESS VARIABLES
We will employ the usual Lennard-Jones potential fﬁnction _

Vo) = 4 e -(%)6]

wﬁere o is the so-called collision diameter and ¢ is the depth of
thelpotential well. We will use them as our fﬁndamental units. of
- length and energy and the reduced mass u,; g-és our fundameﬁtal
pnit‘of @ass; Quantities*expreséed in these unite will be feferred
fo as 'reduced'" or "dimensionless."

In our final result,»all of these perameters, alehg;with
R will be lumped together into powers of the DeBoer parametef

4

A= T

av2ue
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which is the dimensionless equivalent of 1. We present the values
of these various parameters for He4 and p--H2 in Table 1.

+

The reduced equivalents of B and the number density n are

t = eB
P = No
With few exceptions we will retain the same symbols for
the various functions and variables in order to simplify the transition.

~ N LY
The main exception is in regard to 2f. With y = iy this tensor has

the structure (3.7b). We replace k”and klby

2
_ 1
K" ) = - Aue k” )
2
KO -k ”

which are energies expressed in the unit €. The classical limit

values are equal to l—-. We don't do this with the elements of

2t

e but rather express them in units of o2 and retain the same
symbol. From this.point on we will concefn ouréelves_with reduced
quantities with no further comment.

Now we proceed to sketch the reductioﬁ'pf Egns. (4.Sa and
b) to scalar form. We set ? = }y. The scalar equations which we
will derive ére'simply the three distinct elements which appeaf in
(4.5a and b) when we/fixAy in this way (i.e., the "specific elements" .
of (4.5a and b)). (4.5a) is clearly a vector equation whose terms

are all parallel to 9 and, therefore, we need concern ourselves only

with the 1 component of each term. (4.5b) has two distinct specific
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elements: The %%% element, and the element common to all of the unit
pdlyads in Sym{%}}+¥ﬁﬁ}. At soﬁe”points in thése_ﬁanipulations non-
requal expfessioﬁs for these Six‘elemenfs may arise. Occasionally
this is;caUSed by a notationai;inconsistency.fo which both Gibbsian
~and "subscript'" notation are proné.. This problem is correcily
disposed of by éveraging the six element§ after all tensor manipulé-
tions are'completed. This situation also arises from the fact that
the integfand in (4.5b) is a tensor. We know that the proper
structure ﬁust résult_when we perform the intégfation. However,
it proves more convenient‘to force the symmetry on thevintegfand
before performing the integration, as th?s greatly reduces fhe number
and complexity of the integralé whichimustvbé deaitvwith. In parti-
cular, it reduces the integrals from three dimenSions to two. We
replace the integration variablé ; by thevéquivalent set of spherical .

coordinates defined by

g .
i

w cos O
X .
w,. = w sin ¢ sin 0
S 4
w, = cos ¢ sin 6

with the substitution
U = cos 9

1
-1

s

fo sin 6d6 = S dup
(We beg the reader's pardon for the double meaningiassigned
"to the symbol u. Both meanings are established usage and should

cause no confusion as they never occur together).
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The scalar equivalent of (4'.A5a).i‘s>"

. 2 B S S
Ky + 5 (%) + £ + 5V ‘ (5.1)

" ol /22
+ ﬂpj ® dw}_iudug(w)\_/ (W) g(Vw™+y -2ywu ) =
The 111 element of -(4'.5b) is

4 2 2 , 1 '
At |
Do, +f b 1k - Al A 'jow_zdw [ dug(@g(d-3)
| X[D(m)u 3ic(wyueV! (w) {uk] (@) +u> [kIl (u)) kl (w)]} (5.2a)

v (!r‘*\’,m')( {k +1° [k k }
T HWw-Y) | (u)) H [" (w) - 1 (“’)] I =

and the Sym {1JJ + 1kk} element is

| . : 24l l
3,40 I, 2 YA
2t 6 E gl e 3 K (K K- =g (5 - /2
(2 1 v
-5 npj w dw[ 1dug(w)g(|w'>’!)'
o .

XU3(F (@) n sE (@) u3ev| O MOEE SO

3w - 4y O B . (5.2b)

—r%,ﬁ’;,(—) (ot *@)+ 2147 1 8@ -k C@) 1)

+ {u2[k,,e(@)-kle(w)]-k,,e(w)-klecw)})] =0
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where | |

Cw) a—é—(;u"l— g

D) 5-%- AR
 5®)5%§wy %C
P z'—%i-v”I +2C

Gls h1| +'E;l - f;§ 

G,= hsl - %-'E§-+’4 E%.

énd k”e ana:kle are the two. specific elements of 2??.

| All ye_requife to solvé these three equétions for g¥ ﬁ|
.and Ki-are'Suitable approximate expressions for hl,.hz, and h3
and the boundary value ﬁi(w).= Kl(w], To solve (511) aldne for g,
we need suitable épproximate expressions for ﬁrvand Kl; All this
willlbe supplied in the following section and the Appendix.

fWe note‘that the elements of 4?'appear multiplied by A4,
and that tﬂe mean field termsvin (5.2a and b) contain tﬁe facfor
_ Az. As A<0.5 for'béth hydrogen and helium-we find thesg'observatiohs

reassuring.

VI. APPROXIMATE EXPRESSIONS FOR THE TENSORS

We begin with an approximafe eXpreSsion for the off-
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diagonal portion of PN
2 o N
fVN N,8)~gN(Y )exp{- 6(:)2 ? | (6.1)

. 2"‘d’\ )@ +4"'d"’ )@ . .]}

1<J

where 4?6 is simply the fourth rank tensor of the dilute gas two
particle density matrix a; the given temperature. The first term
in the exponent is thé ideal gas term. It is the only one which
survives in'fhe 1limit of the ideal gas or in the classical limit.
2§d and- 4?d +~ 0 as 9ij + o, The approximation‘is'simply_that wé
assume that the off—diagdﬁal éffects of a non-vanishing pairwise-
additive potential upon the logarithm of the N-particle density
matrix are themselves pairwise-additive. This expression becomes
exact in the limits of high temperature and low density.

lThe»assumptién of pairwise additivity is a common one
in the statistical theory of liquids. The pairwise additivity of
the potential energy is in itseif aﬁ approximation,‘although this
is often forgotteﬁ. The KSA is also an assumption of pairwise
a&ditivity of a different sort. The general reason for invoking
pairwise additivity (whether it is stated or ﬁot),is that 1iquid
theory would be intractable without it. Such is also the case here,
and we afe again forced to put our faith in the low densities which
are typ1cal of quantum liquids.

It is p0551b1e to show that a very similar form arlses if
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we assume that the system is in a ﬁure state wﬁich may be described
by a Jastrow wave function, which has. been successfully applied

to the study of the ground stafe of helium—4;9_ The only differences
are thét the twb particle tensors are determiﬁgdlby the Jastrow pair

: factor function and.ﬁhat the ideal gas term does- not appear.*

In the following section we shéll see that the preéent
theory is incapable of adequately déscribing supér;fluid He4, and
that the approximation (6.1) seems to be at fault. However, the
reasonaﬁle.success of Jastrow function methods in deséribing'the
ground state argues that it is not the assumptioh of pairwiSe.additivity
per se. which fails, but rather our choice,ofvtwo particle tensoiér

Ihéerting (6.1) into:(s.l), which is the fundamental

definition of P in terms of Pye e obtain the.expression

1 2% N2 2 2F 274 v, o 2
pz N 5 exp[- §@17° - ; GCD f (y)Lg)z
: ﬁ B A
4~d m
» @7
N . S
xS 3N 6?

2 g2 2 | a2
NgN(? )exp{f RGO E i) @75

JEG @Y - G Z)O?“]}-

where %il'éﬁd Z. have been replaced by- 2 and 22, and all % s

v .
and zij's with neither i nor J equal to 1 or 2 have been set to

. Zzero.

 *This last observation seems to support the view that Jastrow wave- -
function based methods are instrinsically 11m1ted to studying the
ground state. S
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+

The various n? tensors may easily be_related to the appro--
priéte multiple gradients of thé logarithm of pz by examining (3.5).
Each one differs from the corresponding multiplé.gradieht only by
a numerical factor. From this point.én the deri?étion is merely |
a mass‘exércise in parfial-&ifferentiation, gt the conclusion of
which we set 7 and 2 equal to zero. -Ali of the reéulting expressions
contain three particle integrals invélving gs.which is eliminated
via the usual KSA. The eXpressiéns for the fourth rank tensors
also contain four particle tgrms involving g4 which is eliminated

via the appropriate extension of the KSA.

av

g, .5, %) =~ g eweela-yheg([5-¥hea-3h

: . W . ' v .
where the new variable v is defined analogously to w and is equal to

-?42.' The final results are
7 n '
G ~ - ;;- .G +-2?“F(% |
_— Bm i ' (6.2a)
P~ f\'
= . 2B 45, “F () + Ef (w)g(w)g(|w )’|)d
h°B
e = -2 w4 BTG | o (6.2b)

SEG TG - % @ )ZI"(w)

e GG Dawa - yhau

w2 ) N
CA L EOEG  BEOFEENH I

x g([5-¥ pgClS-y D IgC5-¥ ) -11a%a% o 6.20)
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T = nf{34“d(”) S @12

- 3 BOFEMHIWedi-Ydd

Z?d N 2~d N 2~d

5 (V)-"£" (W) £ (v- Y)]g(w)g(v)

(6.2d)

T = 16 B (6.2¢)

. Striking the leading terms-from (6.2a and b) yieids expres—.

sions for
mation (4.

ments for

the mean field terms.

ch and ch If these expre551ons were exact, the approx1-

6) would also be exact this and low density are our argu-

it.
N . ¥y 4%

The y » « limiting values of “f and‘ f are

“Fo) = - B 3 e (6.3a)
2 1l

T = PG » G )]?}g(w)dSX"

o 2 . (6.3b)
2~d W 2~d

+ T I E (U)g(w)g(U)[g(I 3h- 1]d3m 5

These expressions also exhibit an unexpected smallness of

The mean field terms in (6.3a) and (6.3b) are,

respectively, smaller by a factor of two and a factor of eight than

an argument by analogy to (4.8) would lead us to expect.

Also, such

an argument would not predict the existence of the 'cross terms" in

(6.2¢).

"If we choose to integrate (4.5a) aloné, (6.2a) provides'
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1~

thé heédéd'expression for 2?. If wé chooéé to ihtegrate both (4.5a
and b) togefher, (6.2c) provides the needed éxpression for 4?, and
(6.3a), the needed expression for 2? (m). 

We will have no further use for (6.2b, d and.e) and (6.3b)
in this paper. -

In the Appendix wé present scalar expressions for the
Specific elements of (6.2a and c¢) and (6.3a) which are suitable for

use with the scalar equations derived in the preceding section.
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THE CALCULATED RESULTS FOR LIQUID He?

our formalism allows us to include the effects of two

f»particle exchanges by simply calculating the required dilute gas

tensors under the assumption of Bose or Fermi S£atistics. There
iébat present no way to include the effects of éxchanges involving
more than two particles. " Except for the dotted line in Figuré

4, which was calculated under the assumption of Fermi statistics,
all of the results presented in this section were calculated

under the.assumption of Bose statistics.

Before proceeding further, we must confess to an error

" which crept in. We calculated the dilute gas data using A = 0.4245

rather than the correct value 0.4259. In the remainder of the cal-
culation we did employ the correct value of A. We estimate that

the error from this source is no more than about 1% and thereby

" considerably smaller than the error from other sources.

' We begin with the rdf data in Figure 1, which refers to

0 = 0.364 and T = 2.4°K. This point lies on the boundary of the

liquid-gas coexistence region and is near to the A-transition under

own vapor pressure density. The experimental rdf was calculated

from the X—ray'scattering data of Gordon, Shaw and Dauntlo. Three

ﬂtypéS'of calculated data-are presented. The best results are clearly

:thése obtained by simultaneously integrating the three equations

{5.1) and‘(S.2 avand b). The "one equatidn" resu1ts, obtained

by integrating (5.1) alone are unacceptably poor;'and the Mazo-

_Kirkwood'approéch results, calculated using the value Teff = 9.5°K
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obtained ffom the thfee'equation data, aré-£erri51e,"Althoﬁgh
the one équation results improve with increasihg témpefature_and'
decreasing density, neither of the two simpler approacheS‘yields
acceptable results anywhere in the region T < 10°K, P >0.311 and
we will not consider them further in thiS‘section;

- The slight discrepancy between the fhfee equation
" and experimental rdf'é at y = 0.§ is due to an éxperimental arti;
fact. The discrepancy at y 2_1.3 is more significant. It may
best be described as a shift in the phase of the peaks of‘the
rdf. In order to explain its origin we turn to Figure 2. Here
we'present the experimental and three equation values of thé
quantity 41R%n [g (R) -1], where n is the number density and R
thevinteratbmic separation in R; The experimentai’values are
the neutron scattering results of Henshawll, and are for P = 0.462
aﬁd T = 4}2°K._ The calculatéd results are forv0.= 0.467, T =_4§5°K
and Tee ='15.20K. This density is slightly abo&e the normal fluid
superfluid—éolid triple point density of p ~ 0.455; Presenting
the rdf's multiplied R2 makes the small outer peaks and'troﬁghs f
élearly yisible, and the higher density acéentates fhe error
which we'Qish to examine. The oscillations in_the experimental
curve are seen to decrease rather slowly_with R. The oscillations
‘in the calculated curve die &own much mofe rapidly and disappear
completely at 112 6r, equivalently y = 4.3. The phase shift of

the peaks is seen to be the result of this overly rapid decay.

\
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In our calculations we arbitrarily set the rdf edual to
unity fof y > 4.3 and actually in;egrated the equations only‘fof
y < 4.3. This approximation seems'to.bé the origin of most of
the discrepancy. We/believe'that removingvthié abprOximation
would, at least at the lower densities, render the'agreementFWith
experiment almost perféct. ‘Until this is done,ﬂit would be futile
to try tb calculate the isothermal éompressibility which depends
critically onthe rdf at large y, and we héve not aftempted this

calculation.

More calculated rdf data for various temperatures and

densities is presented in Tables 2-4, along with the values of the

4

o~

elements of °f and "f . Instead of directly presenting the values
of kll and k| or Kl' and K;, we have chosen to tabulate the

"effective temperatures"

T =2 £ K,
1152 7 remd

Comparing Tables 2 and 3 reveals that the rdf and the
clements Qf 4?£are 6n1y weakiy temperature dependent. It isvpossibie
_fo determine that the same is true of AT||'$ T['— T”(oo ) aﬁdvATl.

It is easy to explain this in a physically intuitive manner: Liquid
helium is so quantum mechanical that "zero—poian effects largeiy
overwhelm thermél effects. |

We present calculated‘ﬁressure and internal energy data
in'Figures.S‘and 4. This data is for ¢ = 0.380, which is slightly

above the normal A- point and thus in the region of greatest
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interest. The experimeﬁtaludata.for t} 3°K is taken from Hill and
Lounusmda12 and below 39K, from Lounasmaals.

The reference state for the internal eﬂergy is the
infinitely dilute gas at abéolute zero. (This is 59.5j/mole

12

above the reference state employed by Hill and Lounasmaa and

Lounasmaa 13.) In_Figpre 4 we also present internal energy data
calculated under the assumption of Fernmi stétistics as the compar-
ison is instructive. Above the A-temperatﬁre thé_Bose'calculated
curve is in good agreement with experiment and above 39K, the:
effect of statistics is small. -Unfoftunately, below the A-tem-
perature the Bose curve drops off more and more I‘épidly wif,h
decreasing témperature' instead of quickly going to a low temper-
ature limit as do the experimental values. The Fermi curve goes
~through a minimum at the A-temperature and begins to increase
again, which is absurd. The theory clearly céllapses at the
A~transitioﬁ, and the collapse is appareﬁtly.dﬁe>fb its present
inabiiity to deal with exchanges inﬁolving more than two particles.
.'Ali this is éonsistent with the Bose-Einstein condensation théory
of the A-fransition, és it indicates that above the A-temperature
only two .particle exchanges are important, whilé:exthanges.involv—‘
ing more particles suddenly become important at aﬁd Below the
transition. The‘low temﬁerature‘collapse of the Fermi results
bodes ill for any attempt to apply the theory in its present form
to helium-3, although the very low densities which,are typical of

helium-3 might save the situation somewhat.
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The low temperature statistical'effeqtsnevident in the
calculated data of Figure 4 enter through the kinetic energy term
~of the internal energy. In both cases the calculatedvpotential
energy proved.to be virtually'temperatufe indepehdent. (The‘BoSe'
value of .the potential energy is calculated to be ;174.60 :'0.0Sj/
mole for 1.99K < f < 4.4°K.)

in Figure 5 we present the calculated values of the
rquantity’Teff -T for four densities. A slight maximum is apparent
in the o = 0.380 curve at T ~ 2.7°K. This maximum is demonstrably
the source.of.the low temperature behavior of fhe‘calculated BOsé
ihternal'eﬁergy. The p = 0.467 curve exhibits a leés prénounced _
maximum at T ~ 2.49K. It is tempting to identify these maxima
as indications of the proximity of the A-transition. (The higher
density is actually slightly above the superfluid rahge of denSities,»
but we may well expect the theory to be insensitiﬁe‘to this fine
distinctioﬁ.j The shift to lqwer temperature with‘increasing density
is cOnsisteﬁt with this interpretatidn.

| .In-Figure 6 we preSent the values of hl (=) = h2 (=) = Shg (?)

at the same four densities. The virtual temperaturé indepen&eﬁce
is striking. | |

We close this section with a brief COmpafison‘of our results
with the recent ground.state results of Kalos, Levesque and Verletl4
which appear to be the best ground state resu1t§ available. USing

‘two different methods, they calculated the effective temperature
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of the ground state under zerb pressure (p = 0.3648) to be 11.9 :‘O.IOK.
(These authors define the effective teﬁpefature Somewhét differently._t
11.9°K is actually two-thirds of their differénfly defined value.) 

We can compare this value with our calculated effective temperétures
for o =>0.364. We do not explicitly present the P = 0.364 daté, but
the interested reader may construct it from the o = 0.380 curve of
Figure 5 by noting that Tgege (0.364) = Teeg (0;3805 -O.6°K. (Please
note that here we are discussing Tegff rather than Teff - T.)

For o = 0.364, our caiculatipns indicate. that Teff = 11.9%K
corresponds to T v 4.89K and that Teff v 9.3%K near the A-transition.
This seems to indicate a minimum in the effective temperature ( or,
equivalently; the average kinetic energy per particle) at constant
density at or below the A-transition temperature. It seems safe to
guess that it is at or very near the A-trénsition. .The validity
of this conclusion rests upon the accuracy of both calculations.

The KLV result does actually seem to be about O.QbK too high, but
correcting this merely reduces the depth of thé*minimum to about
1.79K. We. believe that our calculated effective témperatures are
accurate to coﬁsiderably better than 1.7°K and thereby accept the
physical existence of the minimum. This minimum explains the

well known maximum in the density at constant pressure very near the

A-transition.

CALCULATED RESULTS FOR LIQUID p-HYDROGEN

Para-hydrogen molecules are essentially all in the ground
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state when T < 50°K, but at highef temperatures, rotational excita-
tions make a significant contribution fo the internal energy.
Before presenting our p-H2 results, we bfiefly deséfibé ﬁow we '
calcqlated fhis contribution.

.'Using'data and formulas given by Davidsonls, we calculate
the difference between the J = 0 and J = 2 rotationélvenergies as
being 4365;2j/m01e or, equivalently, 525°K xkg. The gap between the
J=2and J = 4 states is even greatef, and it is clear that the only
rotationally excited state which will contributeisignificantly is
J = 2.

Recalling that the J = 2 state is fivefold degenerate,‘we_
write the contribution of rotational excitations as

21826 exp (-525/T)
1 + 5 exp (-525/T)

| E ot (j/mole) =

This quantity varies from ~ 100j/mole ‘at 100K down to
<1j/mole below 50°K. At 100°K about 2.5% of the molecules are in the
J = 2 state. We make no attempt to account for the lack of.sphericél
symmetry of the eXcited molecules, as this effect is doubtlessly
minute dug to their small concentratioﬁ. |
We will focus primarily upon data for‘h = 0.575 (approximately
the 1iquid density at the triple point) and make occassional mention
\of data for p = 0.401 (a density about midway betﬁeéﬁ fhe critical
and triple point densities) and at p = 0.234 (the critical'pdiﬁt density).

Most of the p-H, results presented in this section were

2



-36-

calculated via both the three equation --épproéch and fhe one
equafion‘approach. The difference between the two sets of results
is eVeryWhere small, in marked contrast to the case of He4. For
the most pért we pfesent the three equation results as they are

more informative. The main exception are the one eqﬁation results
which we present for p = 0.575 and T < 30°K. In this region wé

were unable to obtain satisfactory convergence in tﬁe three equation
calculations with a reésbnable expenditure of effort. However, thé
one equation approach did converge in this regioﬁ and géVe satisfac-
tory results. This fact along with other considerations lead us

‘to believe that the non-convergence of the three equation calcﬁla—f
tion in this region was due to numerical instability rather than
being indicative of the impending collapse of the theory. We
(correCfly).employed dilute gas data caléulated-under the assump-
tion of Bose statistics although stafistical effects proved to be
negligibly émall.

" We also present some data obtained by applying the YBG
equation in a purely cléssical manner and ignoring the contributions
of rotational excitations. We compare these resﬁlts with expgrimen-
tal data on'afgon which has been.rescaled via the"léw of corresponding
states to make it refer to a hypothetical classicai liquid which
has the same intermolecular potential parameteré as p—H2. This
data allows us to conveniently examine the magnitude of the quantum

effects and to compare the quality of our calculated results for
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p-H, with that observed when the classical YBG.éqﬁation'is applied
to argon;'

All of the experimental data on.para-hydrpgen is taken
from the:massive compilation of Roder, Weber and Goodwin..'16 All
“argon data ié.from the compilation of Levelt,17

We begin with the Tdf results of:Figﬁres 7‘and 8. Un-
fortunately, we were not able to find any experimental data wifh
which to comparé our calculated rdf's. X-ray scétféring is difficult
‘because of the small scattering cross-section and neutron scattering
is cbmplicated.by the possibility of rotational excitations atktﬁe
- shorter wavelengths.  We can only hope that our results will én-

‘courage someone to correct this deficiency.
"Figure 7 refers top = 0.401 and T = 31°K. This point is
just abo?é the boundary of the liquid-gas coexisfénce region in
temperaturé and Tgff = 46.80K. .The Mazo-Kirkwood rdf is typically
that of a ciassical fluid. In contrast to this, théfthree,equation
rdf has much iess pronounced maxima, and they occur at greater‘se-
paratioﬁs; At the collision diameter, the three'eqﬁation rdf is
T 6.7. In thévregion y <1 considerabie tunnelling is evident, and
fhe secdnd'maximum is promineﬁt_bnly because of the deep minimum;
adjacent té'itf As aﬁticipated,vthis rdf has ah.appéaranée inter-
mediate betwéen those of helium and classical fluidsé The diffefénces

between the Mazo-Kirkwood and three equation rdf's grow more ‘pronounced

at lower densities, where the three equation rdf becomes exact and
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and the Maid-Kifkwood rdf grows even worse. We'aiso present the
rdf of the dilute gas at the same temperature. The makimum of this
rdf is more pronouncéd than the first maximum of the three equation
rdf because the thermodynamicvtemperature is considerably smaller
than the effective temperature. .
Figure 8 refers to a point at roughly the triple point
density andiabout 199K above it in temperature. Teff = 58.4°K.
Wé see that going to a higher densify reduces the discrepancy be-
tween the MK rdf and the three equation rdf but does not eliminate
it. This ihprovement is due to the fact that at»higher.den-
vsitiesvfhe mean field kinetic energy effects tend to predominate,
-thereby improving the validify of Mazé and Kirkwood's fundameﬁtal
assumptioﬁ. |
~ “Figure 8 refers to the lowest temperature at which we

completely trust the three equation results at p = 0.575. There-
fore, we have chosen it to compare the three equation and one
equation reéults. The difference is seen to be rather small.
Furthermore;;'it decreases rapidly with increasing temperature and
decreasing density.

~Tables 5 and 6 present the three equation data of Figures

7 and 8 in tabular form along with the values of the elements of

) Lo
2% RV
£

2 ,
f and Table 7 presents one equation rdf and f data at a

point which is very slightly above the triple point in temperature..

: 2% '
Again the elements of £ are presented in the form of Trl and‘Tl



0 0uv042026085

-39-

The general impression given by the calculated_rdf's and the elements
o A

uy oL .
of f is one of very weak temperature dependence as was observed

in the case.of He4- AT” and ATL may also be determined to bevweakly
temperature dependent. The difference betweén the'Tdf'S in Tables
6 and 7 is due mostly to the fact that Table'6:coﬁtains three -
equation results and Table 7 one equation results. The one equation
rdf at the temperature and density of Table 6 (which is_presented.
in Figure 8) is nearly identical to the rdf of Table 7, but its
peaks are slightly more pronounced despite the higher temperature.
This physicélly unreasonable increase of structure;with increasing
temperature is exhibited by the P-H2 one equation approach resﬁlts
gglz_for'p = 0.575, T < SOOK.-It is not exhibited_by the lower‘
density p-Hé or He4 data. It is, however, pronounced in the generally
ill—fated‘He4 one equation results. We are forced to conclﬁde that
this behavior indicates that the one equatidn approéch is near its
1imit of ﬁtility under these extreme conditions of temperature and
density;zb |

In Figures 9 and 10 we presént the values of Teff and
h1 () af tﬁree densities.. The.weak temperéturé dependen;e éf the -
hquéntum effeéts",is striking, as is‘the ratio Teff to T in the
Vicinity of the.triple point, | “

Figures 11 and'12 qompare;pur calculated reéuits for ‘
the internalvenergy and pressure at p = 0.575 witﬁ expériment.  We

also present rescaled experimental data for argon and compare it with
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results genérated.using the classical YBG equation. In Figure 11
we also preéent-our calculated values of the kinetic energy. The
agreement between the one equation and three eQuation results is
excellent. :In particular, the one equation cufves of Figure»ll would
merge almost perfectly with the three equation cufves if we were to
extend them to higher temperature. In Figure 12;the quality of the
agreement of the p~H2 energy values with experiment is better than
that of the classically calculated argbn values. The genesis of
the present theory as an extension of the YBG equation to quantum
liquids is clearly evidenced. The quality of the p—H2 and argon
results is roughly equal at lower densities.
CONCLUSION

In the preceeding section we demonstrated that the quality}

of our results for p-H2 at p = 0.575 is reasonably gbod and comparable

“to that observed when the classical YBG equation is applied to liquid

argon. However, P = 0.575 is in the density range of greatest interest

in the case of p-H, while it is only about midway between the critical

2

and triple point liquid densities in the case of argon. For this
reason we éeel justified in considering our P—H2 results to actually
be better. 1In Section 7 we saw that the three equation ébproach also
yielded a satisfactory description of normal liquid helium-4. And So
it seems that the "first guess' theories presented here have proven

themselves to be fairly successful when properly applied, although

this is certainly not the case with the analagous’ classical YBG theory.
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This is, of course, due to the lower densities typical of
quantum liquids. We anticipate that this fact will prove
equally benéficial to the future devgldpment.Of.mOre sophisticated
theories of.simple quantum fluids.
The fact';hat the one équation apprdéch{gives esséﬁtiaily

the same results for p-H, as does the considerably more complex

2
three equati&h approach has important implicatibnsp The fundémental
difference between the twc approaches is in tﬁe wéy that apprdxi-
mation (6.1) enters into them. The one equatioﬁ aﬁproach utilizes
only the second rénk portion of (6.1), and utilizes it rather
difectly:_ The'fhrée equation approach utilizés’both the second

and fourth rank portions of (6.1) but in a rather‘iess direct.
manner. AiSo, the "mean field dimunition' and Vﬁultiplication by
powers of A" effects pointed out in Sections 4, 5 and 6 are

powerfully evident in the three equation approach bht much less
pronounced'in the one equation approach. (They would be even

more pronounced in higher order approaches.) NOW;»there is no

- reason to expect the fourth rank portion of appfoximation (6.i).

to be any better than the second rank portion. Wé'believe that

'the reason that the three equation approach suécgeds in the case
He4 while the one equation approach fails is that ﬁhe various
benefits of the three.eqﬁation approach are capablé of over-
Whelming‘thé fundamental shortcominés of applying (5.1) fo this

highly'quahtum mechanical substance. In the case of p—HZ, how-
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ever, fhe one equation approach is not significantly worse,

and it seems that the benefits of the three equation approaﬁh

are not essential. We believe that this indicates that the
‘second rank portion of apprqximation (6Q1) is sufficiently
accurate to serve as a starting point for tregting'liquid p—H2
andball liquids of equal or less pronounced quantum mechanical
characteri' The slight improvements to be expected from employing
the three equation approach can probably be achieved by appending
some reasonably. simple perturbation scheme onto fhe intfinsically,

simple and convenient one equation approach or its future analogues.
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APPENDIX

In this appendix we present scalar expressions for the
' P4 a%

specific elements of the approximate expressions for 2f and f

which we derived in Section 6. We present only the final results.

1

' 2 d w 2 o ,
{kf (+ v [k?, (w)-kj_‘ @1}1] o (Ala)
2 [+] .
1 A d 2 1 y
Kp ) = i A [k - ) + 7o/ wde [ dug(w)g( W2 + w2 2ywn )
a 2, d d .
(k@ + L)) I @K @137 (A1b)

: T ' A
where klld and kld are the two specific elements of 2fd.

K” (=) ‘= 'Kl ()

=P —

1 2oL 2 rod S .d
— - "2 e W ‘dmg (w) [kl'(w)\+ Zkl (w) ] (AZ)

N

We present the expressions for the elements of 4f-35

the elements of a formal vector o |
. - N .

ihy+3 h2 + k h3

This notation is compact and well suited for numerical implementation.

N
h =
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® vl R .
Ko =7 o) v 2207 w2 £ el T, 052 ()

1

; T2 (u, w, y)'xz (v, w, y) 1 g (W) g {ly -ul)

102

4

+

o °° 1 '
7 o Sgulde fidu foadu fod ¢ N (A3)
: Cu oy o . _ ~ ! ‘ o
x{le 0F8)-11 Tyl sm,0) (g (@-11 Tg G ,u )} |
Ay (v,0) g (Mg @ g UT-FDg 45-31)

where ¢ = ¢w - 4, and gd is the vector composed of the

dilute gas'values of hy, h2 and h3:

nd _v.,d, v d o d
h™ =1 h1 + th + kh3

Na
the elements of h are

a_ .. d 1 d.2

d. 2
hizhds 1 k5

2= T
a_,d_ 1 d, d
hy She c N R
4
1-2p "+ 6u”-6u
: 2
3.2,.3 .4 1.2, 3,4 3., 3%
A e & g T
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1 My My Hy Mo
| - 2.2
¥ 1 2 1 <2 : 1 1 S
TS (MU,uw,di)"; 1 _Z—_Sw v TSU T+ ——8—-—C2¢)SU w
1 1,1,2 14132 1o, .55
=5 T2 rrYe 120 712 Y 3 Mo
1 1y 262 +y 282
+ —[uy"Sy THy Sy
- 12
h C %’ S =sin6 =1 - uz and So on
where p = cos ¢, o= o LN on.

T5 differs from TS only in the sign of the first term of the (3,4)

or lower right corner element.

K () = SRORTRO
K ) LK@ -k @]
gf @ [ kfl(u) T ROR
GO SEOR NSO R ON

1 : :
T2 and Kz are obtained by inserting

C¢ = C2¢ ='cas (0) =1

v= |-yl

by = = (¥ )
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~

into the expressions for T5 and.xs.
d—=—|a;—2"t‘muw ',\\)"‘l"f;'

~ The form in which we have written the second term of the

.~ .

. . ]
five dimensional integrand in (A3), which involves T5 and d, is

not that'which is obtained by.reducing (6.2¢) to its specific.
elements. in the most direct way. It is the result of some additional

manipulations, and leads to significant computational economies.
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TABLE 1
3 24
o (&) (%K) (g x 10777 A
B : _
2.556 10.22 3.322 0.4259
2.928 37.0 1.673 . 0.2753



0.47
0.91
1.25
1.39

1.34
1.18
1.01
0.90
0.84
0.83
0.91

1.04

*Indicates exponent ;

246.7

113.0

9.

"10.
11.
11.
11.
10.

9.
10.

- 10.

55.4

29.8

17.8

12.2

9

0

2
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TABLE 2

- 0.380, T =
T B
171 -9
-0.1 -3
6.1 -1
8.4 -5
9.2 -2
9.6 -1
10.0 -4
10.2 -1
10.3 0
10.3 2
10.2 3
10.2 3
10.1 3
10.0 3
10.1 2
10.1 2
10.2 2
ie., - 9.42

3

2.4%K
h

4202)"  -s.
.41(2) -1
.32(2) -3.
.56(1) 0.
.48(1) - 2.
J12(1) 2.
59 2.
.12 2
.93 2.
.25 2.
.13 2.
.66 ' 2
.67 2.
.06 2
.65 2
67 .2
.74 2.

(2) = - 942.

15(1)

.55(1)

48

57

02

56

80

.87

83

75

67

.63

65

.69

.75

.79

74

.57(2)
.69(1)
.21(1)
.40
.39
.29
.41
.04
.88
.83
.81
.81
.86
.90
.91
.94

.91
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8
.

0.16

-~ 0.55

- 0.96

1.28

.00
.30

.37

.14

.01

0.94

0.90

0.90

1.03

1.03

1.

00

£
e

He?, o = 0.380, T

T

247.7
114.6
57.5
32.3
20.8
15.7
13.8
13.6
12.0
14.6
15.1
15.4
15.4
15.0

14.8

- 14.8

14.8
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TABLE 3

-12.3

10.9
113.2
14.2
14.7
15.1
15.3
15.4
15.3
15.2
15.0
14.8
14.8
14.9
15.0

14.8

7.9%

.42(2)
.41(2)
.32(2)
.49(1)
.37(1)
.97
.39
.01
.88
.99
.68
.04
.66
.78
.37
.57

.79

.83(1)
.38(1)
.53
.09
.32
.73
.88
.89
.82
{75
.69
.68
.73
.77
.80
;81

.79

1.
5.

2.

54 (2)
45(1).

04 (1)

29
.66
.84
.14
.89
.81
.82
.84
.87
.93
o4
.93
.93

.93



0.

.9

17
.59
1
.46
.52
.36
.14
.96
.86
.82
.83
96
10
.05

.97

247.
113.
56.
31.
19.
14.
12.
13.
13.
14.
15.
15.
14.
13.
13.
13.

13.

He4, p
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TABLE 4

= 0.467, T =
Ty hy
-11.3° -9
4 -3
10.1 -1
12.0 -5
12.8 -2
13.2 -1
13.5 -3
13.7 0
13.6 2
13.5 3
13.4 4
13.4 5
13.2 5
13.3 4
13.6 3
13.6 3
13.6 3

2.4°K

.42(2)

41(2)
.32(2)

.53(1)

.43(1) -
.04(1) }
.53
.16
.42
.90
.89
.39
.15
.33
.60
.81

.75

.97(1)
.38(1j
.13
.72
.15
.73
.09
16
.99
.77
.62
.58
.70
.74
.84
.86

.75

1.

5.

2

57(2)

72(1)

.23 (1)
.61
62
.58
.77
.45
.28
.20
15
13
.24
.27
.26
.31

.25
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TABLE 5

p-H, , p = 0.401, T = 31.0°K

Ty

577.6

267.7

©136.1

79.6

55,3

46.1
43.8

4y,3

45,7

u7.2
48.3
48.9
48.8

B7.4

- 46.8
47,0

' 46.8

T
-8.1
28.6
B1.4
45.6
47.1

47.9

- 48.3

48.5
48 .4
48.0

L7.6

47.1

46.6
46.7
47.0
47.2

46.8

hy

-1.45(3)
-5.25(2)
-2.01(2)
-8.17(1)
-3.28(1)
-1.08(1)
-0.35
4,58
5.8
7.96

8.80

5.97

5.26

h2_

-6.53(1)

-1.49(1)

5.78

6.82

hy
2.32(2)
8.09(1)
2.95(1)
1.16(1)
5.12

2.82



y g
.8 -

9 0.17
0 0.85
.1 1.59
20 1.77
.3 1.54
4 1.25
5 1.ou
.6 0.91
.7 0.8
.8 0.83
.9 0.88
1 1.03
2.3 1.09
5 1.0%
7 0.98
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TABLE 6

p-H, , p = 0.575

T

579.
- 270.
139.
85.
62.
55.
55.
56.
58.
60.
62.
62.
_B1.
59.
59.
59.
58.

o]
7.9
41.9
53. 4
57.1
58.7
59.6
60.0

60.0

59.7

59.2
58.6
58.1
57.7
58.5
59.1

59.1

58.4

~1.45(3)

h

T =

1

-5.23(2)

-1.99(2)

-7.93(1)

-2.98(1)

-7.28

3.

8.

140

55

1.09(1)

1.18(1)

1.26(1)

1.39(1)

1.15(1)

7.

6.

<!

07
83

.07

9.

29

33.5°K
h,
~6.04(1)
~1.12(1)
3.u5
7.31
b5
8.88
9.35
9.48

9.22

hy

2.32(2)
8.11(1)
2.98(1).

1.21(1)

5.74

3.10
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TABLE 7

, . P = 0.575, T =
£ Ty

- 587.1
0.15 274. 8
0.72 141.5
1.36 83.0
1.61 56. 2
1.52 43.8
1.31 38.4
1.12 36.6
0.97 36.9
0.89 384
0.87 4oy
0.89 ' 42,6
0.99 45,7
1.06 4.9
1.05 43.3
1.01 42.5

43.2

-31.0
15.2
33.3
Bo.u4

431
Y. 2
4.5
by, 6
4L .5
T
By, 2
43.9

y3.s
43y
L3.4
43.5

43.2
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FIGURE CAPTIONS

Figure 1  Calculated and éxperimehtal rdf's of_He4iat p = 0.364
and 2.4%. Open cifcles,'experimental. -Heavy sdlid line, three
equation results. ‘Light solid line, one equation results. Dashed

line, Mazo-Kirkwood approach results.

Figure 2  The quantity 4nR2n [g(R) - 1] for He4. Open circles,
éxperimeﬁtal values for p = 0.462 and'4a2°K,_ Solid line, three

equation results for p = 0.467 and 4.5%.

Figure-3 '~ Experimental and calculated pressure of He4 for p = 0.380.

Open circles, experimental. Solid line, three equation results.

Figure 4 Experimental and calculated internal energies of He4

for p = 0.380. Open circles, experimental. Solid line, three
equation results with assumption of Bose statistics. ‘Dashed'line,
three equation resuits with assumption of Fermi statistics. A tem-

‘perature indicated.

. - . _ 4 . s
Figure 5 Three equation values of Teff -T of He at various densities.
c.p. = critical point. 1-v = liquid vapor coexistence boundary.

A = A-line. s-1 = solid-liquid II coexistence boundary.

Figure 6 Three equation values of h1 {(«) of He4 at same densities

as in Figure 5.
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Figure 7  Calculated rdf's of»p-H2 at p = 0.401 and 31°K. Heavy
solid line; three equations. Dashed line , Mazo-Kirkwood approach.

Light solid line, dilute gas result.

Figure 8 Calculated rdf's of p—H2 of p = 0.575 and 33,5°K. Heavy
solid line, three equations. Light solid line,:one equation. Dashed

line, Mazo-Kirkwood approach.

Figure 9 F_Calculated effective temperature of p-H2 vs. thermodynamic
temperature at three densities. Dashed line, classical limiting
value. Low temperature portion of p = 0.575 curve from one equation,

rest of data from three equations.

Figure 10 hi (=) of p-H2 vs. thermodynamic temperature for three
densities. " The classical limiting value is zero. All data from

three equation calculation.

Figure 11 Internal and kinetic energies of p-H2 and Ar at p =.0.575.
Open circles, experimental. Solid lines, calculated. p—H2 data cal-
culated from one equation, light line. Argon data rescaled as described.
| Figure 12'_Pfes$ures of p—H2 and Ar at p = 0.575. Same representation

‘as Figurell.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or Implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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