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ABSTRACT 

It is demonstrated that the equilibrium two particle density 

matrix of a simple quantum liquid may profitably be re-expressed in terms 

of a Taylor expansion about the diagonal. The resulting arrays of Taylor 

coefficients are shown to have an intuitive physical significance. A 

set of three coupled nonlinear integrodifferential equations relating 

the three most important coefficients is derived. 

Approximating certain functions in terms of the straight-

forwardly calculable dilute gas two particle density matrix Taylor co-

efficients closes these equations, and they are solved numerically for 

normal liquid helium -4 and liquid para-hydrogen. Satisfactory results 

are obtained in both cases. In the case of liquid para-hydrogen a simpler 

relat~d theory is shown to also yield satisfactory results. 
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I. INTRODUCTION 

The density matrix or statisticai operator of an arbitrary 

N-dimensional system is simply a function of 2N+l variables when it 

is written in the Scrodinger repres.entation. These variables are the 

'" ",f N-dimensional coordinate vector x, its conjugate vector x and the 

time t. 
. -1 

In the equilibrium case, t is replaced by 8 = (kBT) . Even 

when 8 is effectively disposed of by restricting attention to the 

equilibrium state at a given temperature, the Schrodinger represen-

tationdensity matrix is a hopelessly unwieldy fundtion if N>l. 

In this paper we reduce the equilibrium problem from 2N 

'" ",f variables to N variables by replacing x and x by 

'" 1 '" 'V' Y - '2 (x+x) 

'" 1 '" "" z - '2 (x-x ) 

and Taylor expanding the logarithm of the density matrix in powers 

",. '" of z. We can then dispose of z by replacing the equilibrium equation 

for the density matrix by an equaivalent infinite coupled heirarchy 

of equations relating the non-vanishing even order Taylor coefficients 

'" which depend on y alone. 

SpeCifically, we do this with the equilibrium two particle 

reduced density matrix of the quantum mechanical Lennard-Jones fluid 

and the second equation of the quantum mechanical BBGKY heirachy which 

it must satisfy. The three particle density matrix is eliminated by 

means of a direct extension of the Kirkwood Superposition Approxima-

tion (KSA). The heirarchy is truncated by inserting approximate 

expressions for the three independent elements of the fourth rank 
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tensor. These approximate expressions are derived on the basis 

on the KSA and a simple approximate expression for the off-diagonal 

structure of the N particle density matrix in terms of the tensors 

of the dilute gas two particle density matrix which are easily 

calculable. (The details of this calculation and sample values will 

be presented elsewhere.) Applying one final approximation and symmetry 

arguments finally yields a closed set of three scalar integro-differen-

tial equations which comprize the quantum mechanical analogue of the 

Yvon-Born-Green (YBG) equation. In the classical limit, the first 

of these equations reduces to the classical YBG equation. The equa-

tions may be solved numerically for the radial distribution function 

(rdf) and the two independent elements of the second rank Taylor 

coefficient tensor. 

A simpler theory suggests itself: Why not simply approxi-

mate the second rank tensor and solve a single equation for the rdf? 

Simplifying even further by assuming that the second rank tensor is 

constant and isotropic yields the Maw-Kirkwood (MK) theory of simple 

quantum fluids l . 

We have applied all three of these approaches to both liquid 

4 4 He and liquid p-H2 .* In the case of liquid He , the three equation 

*p-H2 may safely be considered to be a simple fluid due to its small 
moment of inertia and the fact that its molecules can only exist in 
even J states. The small moment of inertia causes the J=O and 
J=2 states to be kBx52SoK apart in energy, thereby effectively 

restricting all molecules to the rigorously spherically symmetrical 
J=O state throughout the temperature range of greatest interest. 

... ' . 
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approach gives satisfactory results in the normal liquid range, but 

collapses at the A-transition line. This is due to the present 

theory's inability to deal with statistical exchanges which involve 

more than two particles. The two simpler approaches proved to be 

totally inadequate for describing liquid helium. These results 

are presented in Section VII. 

In the case of liquid p-H2, only the Mazo-Kirkwood approach 

proved unsuitable. Both of the approaches developed in this paper 

gave satisfactory and nearly identical results. This has the impor-

tant practical implication that tensors beyond the second rank may 

be ignored when dealing with any ordinary liquid other than helium. 

These results are presented in Section VIII. 

In both cases the calculated results are quite good at all 

liquid densities at which the liquids can coexist with their vapors. 

That is to say, up to the liquid density at the triple point in the 

case of p-H2, and up to the A-transition under own vapor pressure 

density in the case of He4. In contrast to this, the classical 

YBG equation gives rather poor results when it is applied to liquid 

argon at its triple point density. The reason for this is that the 

replusive kinetic energy effects in the quantum liquids make them 

tend to exist at lower densities thari do classical liquids. In the 

proper dimensionless units (which will be defined later) the triple 

point liquid density of p-H2 is 0.578, the vapor pressure A-point 

Ii quid density of He 4 is 0.367, and the triple point liquid density 

of argon is 0.845. All of the approximations which we introduce 
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become exact in the limit of low density. The low densities at 

which quantum liquids typically exist render these approximations 

valid when applied to these substances over the density ranges of 

greatest interest although they would doubtless collapse if 

applied at the higher densities which are typical of classical 

i.> liquids. 

A word on our tensor notation: In addition to the usual 

subscript notation, we use the so-called Gibbsian notation advocated 

2 by Drew as it allows us to express our results in a compact form. 

All tensors of non-zero rank are in boldface, and the 

left superscripts indicate the respective ranks. AII.tensorsof rank 

two or greater will be written with the superscripts throughout. 

In the case of scalars and vectors, the superscript will be used or 

not as convenient. In the case of the 
n~ 

f tensors, the superscripts 

also have the significance of function labels. 

Binary operators of the sort (6) (==:) indicate multiple 

contractions over indices. 

~~ is the gradient operator, and the subscript indicates 
x 

which set of variables it operates on. 

We write the second rank identity tensor as 

2'l1 '}/)J '}/)J ~ 
0 .. == 0 = 11 + JJ + ~~ 

1J 

Our only notational innovation is the use of the operator 

Sym { ~ which is linear and acts on unit polyads. It replaces 

a unit polyad by the sum all distinct unit polyads which may be 

obtained by permuting the argument polyad's indices: 
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( 'YVY ) 'VY\> 'VY\> 'VY\> 
11JJ J = IJJ + J1J + JJI 

'YVV\J 'YlIV\I vvvv 'YlIV\I ~ 'V\IV)J = 11JJ + IJIJ + 1JJ1 + JIIJ + JIJI + )J11 

II. FUNDAMENTAL PROPERTIES OF THE DENSITY MATRIX 

The density matrix is a Hermitian operator. Therefore, it 

'V 
undergoes complex conjugation when the sign of z is changed, which 

•• • 1 • 'V d'V 
IS equIvalent to Interclanglng x an Xl. As the Scrodinger represen-

tat ion of the density matrix is an ordinary complex function, it has 

a definable logarithm as long as it is nonvanishing. We will concern 

ourselves with the logarithm only in an infinitesmal neighborhood 

'V 'V 
about the locus x = Xl On this locus the non-vanishing value of 

the density matrix merely requires that the system have a non-vanishing 

probability of being found in any region of its configurational phase 

space and that its momentum representation vanish in the limit of 

infinite momentum. In as far as we have been able to determine, 

these restrictions are physically meaningless. 

Thus we may write 

'V 'V 'V 'V 'V .l~ 'V 'V 
p(x,xl;t) = p(y,z;t) = exp [f (y;t) + 1 t(y;t)·z o 

2~ 'V 'V2 3~ r\, 'V3 4~ 'V 'V4 
+ f (y; t) (£) z + i f (y; t) CD z + f (y ; t) G.J z + 

This form is not altered by going to the classical limit. 

(2.1) 

. ] 

In our variables, the definition of the Wigner distribution 

f 
. 3 , unct10n (wdf) is written as 

'V 'V I f N'V 'V 'V fw(y,p;t) = Ei\1f)N d zp(y,z;t) 
, 2i 'V 'V 

exp (--}\ p. z) 

The wdf is the direct anologue of the classical phase 

(2.2) 

space distribution function. It is perfectly proper to define tensor 
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ml)mEmts of the local momentum distribution by 

The inverse of (2.2) is 

p(y,~;t) = ;(dNp fw(y,p;t) exp (2i p.~) 
Hence, 

n <p (y;t» = 

Inserting the form (2.1) into the above, and solving the 

first four equations of the resulting heirarchy for the first four 

n:::::: 
f tensors yields 

1 ~ 
'\.0 

(y; t) 
2 '\.0 '\.0 

= -if <p(y;t» 

2 :::::: '\.0 2 '\.02 '\.0 '\.0 2 
f (y;t) =--Z[<p (y;t»- <p(v;t» ] 1\ . 

3:::::: '\.0 4 '\.03 '\.0 '\.0 '\.0 '\.02 '\.0 
f (y;t) =----3[<P (y;t»- 3<p(y;t»<p (y;t» 

31\ 
'\.0 3 

+ 2 <p(y;t» ] 

4 f (y;t) = 
2 '\.04 '\.0 '\.0 '\.0 '\.03'\.0 

3~4 [<p (y;t»- 4<p(y;t»<p (y;t» 

'\.02 '\.0 2 '\.02 '\.0 '\.0. 2 
-3<p (y;t» + 12 <p (y;t»<p(y;t» 

'\.0 '\.0 4 
-6 <p(y;t» ] 

The tensor factors of the right hand sides of these 

expressions are instantly recognizable as the first four semi-

4 invariants, or cumulants , of the local momentum distribution. And 

thus we arrive at an intuitive physical interpretation of our tensor 

heirarchy. 

... 
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In the case that the system has no magnetic forces, the 

Feynman path integral expression for the equilibrium density matrix 

shows that it is an everywhere real and non-negative function of 

'V 'V' 5 
x, x and 8 . 

This implies the form 
(2.3) 

'V 'V 'V 2~ 'V tt:::'l'V2 4~ 'V 'V4 
p(y,z;8) = exp[fo (y;8) + f(y;8) \liz + f(y;8) @z + . ] 

" I 

for the equilibrium density matrix. In the classical limit this 

becomes 

'V 'V 
P (y, z; 8) 

where 2M i~ the appropriate mass tensor. 

n~ 
Various relationships between the f tensors may easily 

be derived. The bulk of this paper is devoted to deriving some of 

them for the specific case of the two particle reduced density matrix 

in a liquid. Others will be presented in another publication. 

III. LIQUID STATE DENSITY MATRICES 

In this section we introduce thedensity matrices appropriate 

for the description of simple fluids and define the appropriate 

variables. The one which we shall be most concerned with is the 

reduced two particle density matrix, which is defined in terms of 

the N-particle density matrix as 

(3.1) 

where the integration is over the configuration space of the remaining 
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N-2 particles. for those particles whose coordinates are integrated 
. ~ ~ 

over R~ is set equal to R. inside the integral. We will also need 
1 1 

to deal with the one and three particle density matrices PI and P
3 

which are defined analogously. The reduced density matrices have 

the same general structure as P
N 

and are, of course, real, positive 

functions. The diagonal values of P
2 

are proportional to the values 

of the ordinary radial distribution function (rdf) expressed in the 

form g(I~2-~II). The constant of proportionality is somewhat 

arbitrary, and depends on how we choose to normalize our various 

density matrices. It is most convenient to simply set it equal to 

unity. This makes the diagonal values of P2 go to unity as 11\'2-1\'11 -+~. 

We furthe'r define PI and P3 to be consistent with this. 

We now proceed to define various variables which our 

arguments shall involve. 

relative 

defined 

~ 
R .. 

1J 

~ 
r .. 

1J 

I ~ ~ 
- -2(IC+R.) 

1 J 

:: It-I\'. 
1 J 

(3.2a) 

(3.2b) 

This is simply the transformation to center of mass and 

coordinates for the particles i 

analogously. 

~. I (~.+~. 
, 

- 2 ) 
1 1 1 

'to I (~. -~. 
, 

- 2 ) 
1 1 1 

~ .. I (~ .. +~ .. ') I (~.+~.) - 2 = 2 1J 1J 1J 1 J 

'to . I (~ .. -~ .. 
, I a.+'t.) - ) = 

1J 2 1J 1J 2 1 J 

j. 
~ 

and R .. 
1J 

~ 

and r.. are 
1) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 
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I\, I\, 
y.-y. 

1 J 

I\, I\, 

Z.-Z. 
1 J 

(3.3e) 

(3.3f) 

I\, 

The various y's may properly be considered projections 

• I\, 
onto the diagonal and the var10US z's, distances from the diagonal. 

In cases where the subscripts i and j appear together and are 

respectively equal to two and one we will, in general, not write them 

out as a matter of convenience. We will also have need for the 

following relations: 
I\, I\, I\, 

r = y+z 

1\" I\, I\, 

r = y-z 

't. = 't. . +-2
1 i'. . 1 1J 1J 

't. = 't .. --21 i' .. 
J 1J 1J 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

We will now proceed to determine some further properties 

of P2. We note that the logarithm of P2 may always be defined in 

the usual sense. The logarithm must obey the same symmetry require-

ments as does P2. We are particularly interested in the Taylor 

coefficients which we obtain by expanding the logarithm of P2 about 

. f I\, I\, the diagonal 1fl powers 0 z and Z. These Taylor coefficients are 

actually the elements of Cartesian tensors, and will be the fundamental 

objects of our analysis. 

The fundamental symmetry condition is that P2 be invariant 

under the simultaneous interchange ~l ! ~l' and ~2 ! ~2' since it 

is an equilibrium density matrix. We shall call this operation I. 

It is also possible to demonstrate that P2 must be invariant under the 
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simul taneous We shall call this 

operation II. (This symmetry is independent of statistical considera­

tions6 .) Operation I changes the signs of i: andZ, but leaves y and 

Y unchanged. This immediately leads us to conclude that only even 
'\, '\, 

powers and combinations of z and Z may appear. Therefore, all of 

the coefficient tensors are of even rank. If we require that the 

system be homogeneous, all dependence upon the position of the center 

of mass of particles. I and 2 must disappear. Since ~ is essentially 

• 'V 
this position, P2 must be 1ndependent of Y. If we further demand 

that the system be isotropic, these tensors can depend only on even 

'V 
powers of y. (cf. Eqns. (3.6c and e)). Thus the coefficients are 

'\, 

not affected by changing the sign of y. Operation II changes the 
'\, 'V 'V 'V 

signs of y and z but does not effect Y and Z. Hence, the only 
'V 

effect of II is to change the sign of z, and this means that only 
'V 

even powers of z may appear. We conclude that P2 may rigorously 

be written in the form 

(3.5) 

'V ~ 

As Y +~, the two particles must decouple if long range forces 

aren't involved. In this limit the tensors become independent of 

'V 
Y and, hence, constant. In particular, as y + 00, f + 0, consistent 

o 

with our choice of normalization for P2 . 

The last two tensors vanish in the limit of the dilute gas, 
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but in general they are non-vanishing. Thus we see that this density 

matrix is not, in general, factorable into relative and center of 

mass coordinate dependent portions as it is in the dilute gas limit. 

As all of these tensors are arrays of Taylor coefficients, 

they are invariant under all permutations of indices. The same 

holds true for the various tensor equations which we shall derive. 

The fact that they are all (spatial) functions of the three dimensional 

'" vector y alone further simplifies matters. 

A similar situation is encountered in the case of 

the various two point tensors dealt with in the theory of homogeneous 

turbulence. Therefore, the various tensors with which we deal must 

have the same formal properties as those which arise in the theory 

of homogeneous turbulence7 with the additional requirement that they 

be invariant under all permutations of indices. The most general 

forms of the tensors of zero through fourth rank which can arise are 

o 'V 
T(y) = A(y) (3.6a) 

1 i 'V i 
T (y) = Y B (y) (3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

where y _ Irl. 
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We see that the number of independent components in the 

various tensors is a simple function of rank: Zeroth and first rank 

tensors have one each, second and third rank two each, and fourth 

rank, three. 

The general forms presented in (3.6) are fundamental but 

rather too cumbersome to deal with unless it is absolutely necessary. 

In particular, the various independent components of the higher rank 

tensors have different dimensions. 

The most expedient alternative appears to be to ignore 

transformation properties unless absolutely necessary, and simply 

concentrate on specific elements in some convenient coordinate system. 

h h "h'" '}I We c oose t e system in wh1c y = 1y. (From now on we will drop 

most explicit mention of the dependence upon y and 8 in order to 

simplify the notation.) 

as 

In this system we may write our most important tensors 

2~ vv vv 'VV 
f = k 11 + k1 (JJ +kk) . II 

?j3V = JII m + (l_ 
y 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

All other elements vanish. All other tensors of a given 

rank must have the same structures. In the following, we will freely 

• 



~ 

" 

0 0 0 0 /4 2 U "s .~. ; 

9 ~Jl P:.'t:; ri:: ;;) 
Ii ~ 

-13-

refer to the ,,111' element" of one tensor or the "Sym{nn} elements" 

of another tensor and generally call them "specific elements". 

The independent elements of (3.7) are easily related to -- ~ ~ 
2:::::' 4- ·4= 

those of (3.6). The specific elements of f, f and f are analogously 

defined. 

In the limit y + 00, all of these tensors must be isotropic. 

Hence, the odd rank tenors vanish identically and 

h (00) 
I 

(3.8a) 

4::::: ~ 'Y\IVV 'VVVv 1 'VV'VV 'VV'V)., 'Vv.v:v 
f(oo) = hI (00) [1111+JJJJ+kkkk+3 Sym{llJJ+llkk+JJkk}] (3.8b) 

The absence of correlation also implies that the two particle 

density matrix must now factor into the product of two one particle 

density martrices: 

Eliminating ~ and ~ from (3.5) by use of (3.3d and f) and 

comparing the resulting expression with (3.9) immediately leads us 

to conclude that in this limit 

2::::: 
f = 

1 2::::: 
I fl (3.10a) 

2; = 4 
2::::: 

2 
2::::: 

(3.10b) f = f 
1 

4::::: 1 4::::: 
(3.10c) f = - f 

8 1 
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::::; 
4-

24 
4::::; 

3 
4::::; 

f = f = fl (3.l0d) 

4~ 
16 

4::::; 
2 

4::::; 
f = f = fl (3.l0e) 

This shows how the one particle density matrix is contained 

in the "tail" of the two particle density matrix. 

of course, have the structures (3.8a and b). This means that each 

is completely specified by one element. 

From (3.10a and b), it is easy to demonstrate that in 

'" the limit y -+ a{, both the average center of mass kinetic energy of 

the two particles and their average relative kinetic energy are 

equal to the average kinetic energy per particle 

IV. THE FUNDAMENTAL EQUATIONS 

where 

and 

The equilibrium equation for P2 is8 

'3'" '" '" H2P2- r i'2 + n )d R3 [V(r3l ) + V(r32 ), P3] = 0 

N 
n - V 

1\ 

H2 = 

= 

·fl2 
---v 410 

-1\2 
-~ 1,610 

~ ~2 t '" - -- V + VCr) R 211 r 

~ 112 2 vt '" '" - -- [V"'+2~""~"'+ ] + V(y+z) 
Z 811Y Y zz 

(3.11) 

(4.1) 

This form operates upon the unprimed coordinates and is 

appropriate for the first term of (4.1). The form which operates 

on ~, and is appropriate for the second term differs only in the 
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The solution of (4.1) for P2 is contingent upon our being 

able to find a suitable expression for P3 in terms of P2 and to 

provide the necessary boundary values. 

We choose to eliminate P3 by using the most direct 

quantum mechanical extension of the KSA 

which was also employed by Mazo and Kirkwoodl . We will need P3 

~ 
only with Z3 = 0, and will concern ourselves only with the scalar 

and quadratic .terms in the logarithm. Simple manipulations convert 

(4.2) into the form which is most convenient for our purposes: 

(4.3) 

where 
~. ~ 

2~ ~ 2~ 1 2- ~ 2-
f(y)- f(oo) + ~[ f(y)- f(oo)] (4.4) 

and 

g = exp f o 

is the ordinary radial distribution function. Of course, 
IV ~ ~ 

Y3l = .Y32 + Y 

We now insert (3.5) and (4.3) into (4.1), expand the potential terms 

~ 

about z = 0, and divide by P2 . Many of the integrals which arise 

from the integrated term in (4.1) vanish due to symmentry. This 



-16-

gives us an equation in the form of a Taylor expansion, the first 

'V 'V3 'V'V2 
three terms of which are proportional to z, z , and zZ These three 

coefficients are our fundamental equations in tensor form. Before 

writing them out, we introduce a simplifying change of variables 

'V 'V 'V 
-(w-y) = Y3l 

and note that 

'V V'V 'V 
lu-y 

'V 
The coefficient of z is proportional to 

the coefficient of ~3 is proportional to 

n I'V 1 I'V 'V I 'V3 'V + 24Jg( w )g( w-y ){VtilV(w) + 62te(~)[~'VV(~)-~'V 'VV(~_y)]}d3~ = 0 
w w-y 

(4.Sb) 

the coefficient of ~2 is proportional to 

112 4~ 4~ 2~ 2~ 
- -- [~. f +f'~f + f'~( f)] 

211 0 

n I'VI I'V 'VI ~~ 'V, ~e 'V ~ 'V 'V 'J.I" 'V 3'V 
+ -2Jg(~w )g( w-y ){vw~V(w) + f (w)[2V'V 'VV(w-y)+6v'VV(w)]}d w = 0 w-y w 

(4.Sc) 
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'V 
(Unlabeled functions and gradients depend on y.) 

All other coefficients of up to and including the third 

rank vanish. (4.Sa) is a vector equation and the other two, third 
2~ 2?::f 

rank tensor equations. fo' f and f together have a total of five 

independent elements; i.e., they are completely determined by five 
4~ 4~ 

scalar functions which depend only on y and S. f and f have a total 

of six independent elements. 
4= 2~ 

f does not appear and re is determined 
2~ 2~ 

by f and f (cf. (4.4)). We see that Eqns. (4.5) are equivalent 

to five scalar equations in eleven unknowns. In Section VI we will 

derive approximate expressions for the fourth rank tensors. Inserting 

these expressions into Eqns. (4.5) results in a ,closed set of five 

scalar equations in five scalar unknowns. 

Since these equations are of the coupled non-linear integro-

differential variety, it seems desireable to attempt to reduce the 

number. We note that in the limit n + 0 (4.5c) degenerates into 

o = 0 leaving (4.5a and b) as the fundamental equations for the 

dilute gas two particle density matrix. Since quantum liquids have 

rather low densities, we conclude that somehow disposing of (4.5c) 

is the simplification of choice. This view is strengthened by the 

observation that (4.5a and b) are coupled to (4.5c) only through the 
~ ~ 

2'"'"' 2-c 2-
appearance of -r (which contains f or, equivalently f) in (4.5b). 

The limited nature of this coupling suggests that introducing an 
~ 

approximation for 2f c into (4.5b) might be reasonably safe. 

In Section VI we shall see that a reasonable approximation 

is 
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(4.6) 

2:::;;d 2~ where f is the f of the dilute gas two particle density matrix 

at the given temperature. As we noted in the introduction, the 

2:::;;d elements of f are easy to calculate and may, therefore, be considered 

to be given functions. This gives us 

(4.7) 

and, given that we can obtain a suitable approximate expression for 

4~ 2~ 
f and provide the boundary value f (00), (4.5a and b) become equiva-

lent to a closed set of three scalar equations in three scalar unknowns. 

(We will not concern ouse1ves with (4.5c) any further.) 

If a suitable approximation is available for 21, we may 

further simplify matters by solving (4.5a) alone for fo or, equivalently 

g. (4.5a) is the fundamental equation with which Mazo and Kirkwood1 

began. The use of (4.5a) alone is the most direct extension of the 

classical YSG theory. 

Using (3.11) and the fact that in the classical limit 

3 Kre1 = 2 kST and is independent of y we see that in this limit 

Substituting this into (4.5a) quickly leads us to the 

classical YSG equation: 

V'log g + 8~V + n8fg( 1;:'I)g( 1;:'-yl)V'''N(~)d3;:' = 0 
w 

(4.8) 

The way in whichMazo and Kirkwood actually applied (4.5a) 

is summed up by the approximation 

2~ 
f ~ -
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which, upon being inserted into C4.Sa), yields an equation identical 

-1 to (4.8) except for the substitution of (kBTeff) for 8. We shall 

refer to Teff as "the effective temperature". Mazo and Kirkwood 

did not propose any ab initio method for evaluating it. 

In closing this section, we note that attempting to derive 

(4.Sb) by analogy to the usual "mean field force" derivation of 

(4.8) would result in the numerical coefficient of the ?j3V dependent 

integrated term being four times greater than it actually is. This 

"mean field dimunition effect" is due to the various coordinate 

transforms which enter into the correct derivation which we have 

actually employed. It gives us reason to hope that the additional 

error introduced by employing the extended KSA (4.1) in (4.Sb) is 

of limited magnitude. 

v. REDUCTION TO SCALAR EQUATIONS AND DIMENSIONLESS VARIABLES 

We will employ the usual Lennard-Jones potential function 

V(y) = 4£[Co)12 _(~)6] 
y y 

where 0 is the so-called collision diameter and £ is .the depth of 

the potential well. We will use them as our fundamental units of 

length and energy and the reduced mas's J.l = I as our fundamental 

unit of mass. Quantities expressed in these units will be referred 

to as "reduced" or "dimensionless." 

In our final result, all of these parameters, along with 

Ii. will be lumped together into powers of the DeBoer parameter 

A _ 



-20-

which is the dimensionless equivalent of it. We present 'the values 

4 of these various parameters for He and p-H2 in Table 1. 

The reduced equivalents of B and the number density n are 

t - £B 
3 

p - no 

Wjth few exceptions we will retain the same symbols for 

the various functions and variables in order to simplify the transition. 

The main exception is in regard to 2f . • 'V 'V 
W1th y = iy this tensor has 

the structure (3. 7b). We replace kU and kl by 

which are energies expressed in the unit C. The classical limit 

I values are equal to 2t We don't do this with the elements of 

2te, but rather express them in units of 0-
2 and retain the same 

symbol. From this point on we will concern ourselves with reduced 

quantities with no further comment. 

Now we proceed to sketch the reduction of Eqns. (4.5a and 

b) to scalar form. 
'V 'V 

We set y = 1y. The scalar equations which we 

will derive are simply the three distinct elements which appear in 

" . 'V 
(4.5a and b) when we fix y in this way (Le., the "specific elements" 

of (4.5a and b)). (4.5a) is clearly a vector equation whose terms 

'V are all parallel to y and, therefore, we need concern ourselves only 

with the l' component of each term. (4.5b) has two distinct specific 
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elements: The m element, and the element conunon to all of the unit 

'J.IV\I '\OOJ polyads in SymbJ] +lkkL At some points in these manipulations non-

equal expressions for these six elements may arise. Occasionally 

this is caused by a notational inconsistency to which both Gibbsian 

and "subscript" notation are prone. This problem is correctly 

disposed of by averaging the six elements after all tensor manipula-

tions are completed. This situation also arises from the fact that 

the integrand in (4.5b) is a tensor. We know that the proper 

structure must result when we perform the integration. However, 

it proves more convenient to force the synunetry on the integrand 

before performing the integration, as this greatly reduces the number 

and complexity of the integrals which must be dealt with. In parti-

cular,it reduces the integrals from three dimensions to two. We 

replace the integration variable .~ by the equivalent set of spherical·· 

coordinates defined by 

w = w cos a x 

w = w sin <P sin a y 

w = w cos <P sin a z 

with the substitution 

~ == cos e 

JTI sin ada = J 11 d~ 
o -

(We beg the reader's pardon for the double meaning assigned 

to the symbol~. Both meanings are established usage and should 

cause no confusion as they never occur together). 
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The scalar equivalent of (4.5a) is 

00 

+ lfPJ w2dwf-~lldllg(W)VI (w)g(1w2+y2_2YWll) = 0 
o 

The m element of (4.5b) is 

. 3 I e 3 e . e 
X [D(w) II . +C(w) ll+V (w) {llk1 (w) +ll [kn (w) -k1 (w)]} 

I I\, I\, 

V (!w-yl) {e 2 e e ]}] 11l1-Y'1 (llw-y) kl (w) +ll [kn (w) -k1 (w) = 0 

and the Sym {~ + ~} element is 

00 2 . . 
l\ J 2 fIl\,l\, - 8"" lfP w dw dllg(W)g(lw-yll 

o -1 

3 3 e e 
- i II [~I (w) - kl (w)]} 

I I\, I\, 

V (Iw-t) e 3 2 e e } Illi-'}I (llw{k1 (w) + i(l-ll ) [kn (w) -k1 (ill)] 

Y 2 e e e e} 
+ i ill [~I (w) -k1 (Ill) ]-kn (w) -k1 (w) )] = 0 

(5.1) 

(5.2a) 

(5.2b) 
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where 

C(w) 1 Vi vi 
- "2 (- -) w w2 

Dew) 1 Vii C - "6 

E (w) - l..- Vii 
12 

!.C 
6 

F(w) =-l..- vIII 
- 12 + !.C 

2 

Gl = 
" I ,2hl 6h3 
hI + -- - -, y Y 

G2= hi 4 h2 h3 
- "3 -+ 4-3 Y Y 

and kll e andk1 e are the two specific elements of 2fe. 

All we require to solve these three equations for g, ~I 

and Kl are suitable approximate expressions for hI' h2, and h3 

and the boundary value ~I (~) = K1(oo). To solve (5.1) alone for g, 

we need suitable approximate expressions for ~I and K1 . All this 

will be supplied in the following section and the Appendix. 

4~ 4 
We note that the elements of fappear multiplied by A , 

and that the mean field terms in (5.2a and b) contain the factor 

A2. As A<O.5 for both hydrogen and helium we find these observations 

reassuring. 

VI. APPROXIMATE EXPRESSIONS FOR THE TENsORS 

We begin with an approximate expression for the off-



-24-

diagonal portion of PN: 

(6.1) 

2:::=d 'I. @ rv2 4:::=d rv 6\ rv 4 
+ E [ f (y .. ) 2 z .. + f ly.·) ~/ z.. +. ..]} 

. . 1) 1) 1) 1J 
1<) 

h 4~f· . 1 h f h k f· h d· 1 were . 1S s1mp y t e ourt ran tensor 0 t e 1 ute gas two 

particle density matrix at the given temperature. The first term 

in the exponent is the ideal gas term. It is the only one which 

survives in the limit of the ideal gas or in the classical limit. 

2~ 4::;:d f andf -+ 0 as y .. -+ 00. The approximation is simply that we 
1) 

assume that the off-diagonal effects of a non-vanishing pairwise-

additive potential upon the logarithm of the N-particle density 

matrix are themselves pairwise-additive. This expression becomes 

exact in the limits of high temperature and low density. 

The assumption of pairwise additivity is a common one 

in the statistical theory of liquids. The pairwise additivity of 

the potential energy is in itself an approximation, although this 

is often forgotten. The KSA is also an assumption of pairwise 

additivity of a different sort. The general reason for invoking 

pairwise additivity (whether it is stated or not) is that liquid 

theory would be intractable without it. Such is also the case here, 

and we are again forced to put our faith in the low densities which 

are typical of quantum liquids. 

It is possible to show that a very similar form arises if 
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we assume that the system is in a pure state which may be described 

by a Jastrow wave function, which has been successfully applied 

to the study of the ground state of helium-4. 9 The only differences 

are that the two particle tensors are determined by the Jastrow pair 

factor function and that the ideal gas term does not appear.* 

In the following section we shall see that the present 

theory is incapable of adequately describing super,...fluid He 4 , and 

that the approximation (6.1) seems to be at fault. However, the 

reasonable success of Jastrowfunction methods in describing the 

ground state argues that it is not the assumption of pairwise additivity 

per se which failS, but rather our chOice of two particle tensors. 

Inserting (6.1) into (3.1), which is the fundamental 

definition of P2 in terms of PN, we obtain the expression 

+ 4fd (Y) CV~4l 

3N-6~ ~ N 2::::0 I\, /""'-.. 1\,2 2::::0 I\, .r' '.Y2 
xfd YNgN(YN)exp{~=3[ f (Yil)i,,?)Zl+ f (Yi2)(;)L.2 

+ 4fd(yil) (1) z:1 + 4fd(y i2) @ Z:~P 

where i'il a~d i'i2 have been replaced by-,t:l and-t:2,and all t:i's 

d 
1\". • 

an z .. s w1th neither 1 nor j equal to 1 or 2 have been set to 
1J 

zero. 

*This last observation seems to support the view that Jastrow wave­
function based methods are instrinsically limited to studying the 
ground state. 



-26-

The various 
n~ 

f tensors may easily be related to the appro-

priate multiple gradients of the logarithm of P2 by examining (3.5). 

Each one differs from the corresponding multiple gradient only by 

a numerical factor. From this point on the derivation is merely 

a mass exercise in partial differentiation, at the conclusion of 

'V 'V 
which we set z and Z equal to zero. All of the resulting expressions 

contain three particle integrals involving g3which is eliminated 

via the usual KSA. The expressions for the fourth rank tensors 

also contain four particle terms involving g4' which is eliminated 

via the appropriate extension of the KSA. 

'V 'V 'V I'" 'V 1 I'" '" 1 I'" 'V 1 g4(y,w,u) ~ g(y)g(w)g(u)g( w-y )g( u-y )g( w-u ) 

where the new variable ~ is defined analogously to ~ and is equal to 

The final results are 

(6.2a) 

(6.2b) 

~ ",. ~ '" '" I'" '" 1 3 + f (w) f (w-y)]}g(w)g( w-y )d w 

+ TtJ[ 2fd(~)2fd(~) + 2fd(~)2fU(~-y)]g(w)g(u) 

I'" '" j 1 'V 'V 1 I'" '" 1 3'" 3'" x g( w-y )g(u-y )[g( w-u )-l]d wd u (6.2c) 
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1 2~ ~. 2~ ~ ~ ~ ~ 3 - 2 f (w) f (w-y)}g(w)g(lw-y\)d w 

n2 2~ ~ ~ '" 2~ ~ 2~ ~ ~ 
+ ~ 11[3 f (w) f (u)- f (w) f (u-y)]g(w)g(u) 

I ~ ·~I I~ ~I I~ ~I 3~ ·3~ x g( .w-y )g( u-y )[g( w-u )-l]d wd u (6.2d) 

4;; ~ 4~F ~ 
fey) = 16 f- (y) (6.2e) 

Striking the leading terms from (6.2a and b) yields expres-

Sl'ons for 2~f~ and 2~fc. If th . t th . ese expressIons were exac, e approxl-

mation (4.6) would also be exact; this and low density are our argu-

ment s for it. 

The y + w limiting values of 2£ and 4£ are 

. n 2 2~ ~ 2~ ~ I ~ ~ I . 3~ 3~ 
+ 16 II f (w) f (u)g(w)g(u) [g( w-u )-l]d wd u 

(6.3a) 

(6.3b) 

These expressions also exhibit an unexpected smallness of 

the mean field terms. The mean field terms in (6.3a) and (6.3b) are, 

respectively, smaller by a factor of two and a factor of eight than 

an argument by analogy to C4.8) would lead us to expect. Also, such 

an argument would not predict the existence of the "cross terms" in 

(6.2c). 

If we choose to integrate (4.Sa) alone, (6.2a) provides 
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2~ 
the needed expression for f. If we choose to integrate both (4.5a 

4~ 
and b) together, (6.2c)·provides the needed expression for f, and 

(6 3) h d d . f 2~f (00). . a , t e nee e express10n or 

We will have no further use for (6.2b, d and e) and (6.3b) 

in this paper. 

In the Appendix we present scalar expressions for the 

specific elements of (6.2a and c) and (6.3a) which are suitable for 

use with the scalar equations derived in the preceding section. 
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VII. THE CALCULATED RESULTS FOR LIQUID He4 

Our formalism allows us to include the effects of two 

particle exchanges by simply calculating the required dilute gas 

tensors under the assumption of Bose or Fermi statistics. There 

is at present no way to include the effects of exchanges involving 

more than two particles. Except for the dotted lihe in Figure 

4, which was calculated under the assumption of Fermi statistics, 

all of the results presented in this section were calculated 

under the assumption of Bose statistics. 

Before proceeding further, we must confess to an error 

which crept in. We calculated the dilute gas data using A =0.4245 

ra.ther than the correct value 0.4259. In the remainder of the cal-

culation we did employ the correct value of A. We estimate that 

the error from this source is no·more than about 1% and thereby 

considerably smaller than the error from other sources. 

We begin with the rdf data in Figure 1, which refers to 

p = 0.364 and T = 2.4oK. This point lies on the boundary of the 

liquid-gas coexistence region and is near to the A~transition under 

own vapor pressure density. The experimental rdf was calculated 

from the X-ray scattering data of Gordon, Shaw and Daunt10 . Three 

types of calculated data-are presented. The best results are clearly 

those obtained by simultaneously integrating the three equations 

(5.1) and (5.2 a and b). The "one equation" results, obtained 

by integrating (5.1) alone are unacceptably poor, and the Mazo­

Kirkwood approach results, calculated using the value Teff = 9.50 K 
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obtained from the three equation data~ are terrible.. Al though 

the one equation results improve with increasing temperature and 

decreasing density, neither of the two simpler approaches yields 

acceptable results anywhere in the region T < WOK, P >0.311 and 

we will not consider them further in this section. 

The slight discrepancy between the three equation 

and experimental rdf's at y = 0.9 is due to an experimental arti-

fact. The discrepancy at y > 1.3 is more significant. It may 

best be described as a shift in the phase of the peaks of the 

rdf. In order to explain its origin we turn to Figure 2. Here 

we present the experimental and three equation values of the 

quantity 4~R2n [g (R) -1], where n is the number density and R 
o 

the interatomic separation in A. The experimental values are 

11 the neutron scattering results of Henshaw , and are for P = 0.462 

The calculated results are for P 
o 

= 0.467, T = 4.5 K 

o 
and T eff = 15.2 K. This density is slightly above the normal fluid 

superfluid-solid triple point density of P ~ 0.455. Presenting 

the rdf's multiplied R2 makes the small .outer peaks and troughs 

clearly visible, and the higher density accentates the error 

which we wish to examine. The oscillations in the experimental 

curve are seen to decrease rather slowly with R. The oscillations 

in the calculated curve die down much more rapidly and disappear 

completely at ll~ or, equivalently y = 4.3. The phase shift of 

the peaks is seen to be the result of this overly rapid decay. 
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In our calculations we arbitrarily set the rdf equal to 

unity for y ~ 4.3 and actually integrated the equations only ·for 

y < 4.3. This approximation seems to be the otigin of most of 

the discrepancy. We believe'that removing this approximation 
," 

would, at least at the lower densities, render the agreement with 

experiment almost perfect. Until this is done, it would be futile 

to try to calculate the isothermal compressibility which depends 

critically onthe rdf at large y, and we have not attempted this 

calculation. 

MOTe calculated rdf data for various temperatures and 

densities is presented in Tables 2-4, along with the values of the 

elements of 2; and 4; Instead of ·directly presenting the values 

of k II and kl .or KII and Kl' we have chosen to tabulate the 

"effective temperatures" 

£ Til == 2 C--) K II or 1 
kB 

Comparing Tables 2 and 3 reveals that the rdf and the 
4::::: 

elements of f are only weakly temperature dependent. It is possible 

to determine that the same is true of ~TII= Til - Til (co ) and ~Tl· 

It is easy to explain this in a ph~sically intuitive manner: Liquid 

helium is so quantum mechanical that "zero-point" effects largely 

overwhelm thermal effects. 

We present calculated pressure and internal energy data 

in Fi~ures 3 and 4. This data is for P = 0.380, which is slightly 

above the normal A- point and thus in the region of greatest 
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. 0 
interest. The experimental data for ~ 3 K is taken from Hill and 

Lounusmaa 12 and below 30 K, from Lounasmaa13 . 

The reference state for the internal energy is the 

infinitely dilute gas at absolute zero. (This is 59.5j/mole 

above the reference state employed by Hill and Lounasmaa12 and 

Lounasmaa 13.) In Figure 4 we also present internal energy data 

calculated under the assumption of Fermi statistics as the compar-

ison is instructive. Above the A-temperature the Bose calculated 

curve is in good agreement with experiment and above 30 K, the 

effect of statistics is small. Unfortunately, below the A-tem-

perature the Bose curve drop5 off more and more rapidly with 

decreasing temperature instead of quickly going to a low temper-

ature limit as do the experimental values. The Fermi curve goes 

through a minimum at the A-temperature and begins to increase 

again, which is absurd. The theory clearly collapses at the 

A··transition, and the collapse is apparently due to its present 

inability to deal with exchanges involving more than two particles. 

All this is consistent with the Bose-Einstein condensation theory 

of the A-transition, as it indicates that above the A-temperature 

only two particle exchanges are important, while.exchanges involv-

ing more particles suddenly become important at and below the 

transition. The low temperature collapse of the Fermi results 

bodes ill for any attempt to apply the theory in its present form 

to helium-3, although the very low densities which are typical of 

helium-3 might save the situation somewhat. 
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The low temperature statistical effects evident in the 

calculated data of Figure 4 enter through the kinetic energy term 

of the internal energy. In both cases the calculated potential 

energy proved to be virtually temperature indepenqent. (The Bose 

value of the potential energy is calculated to be -174.60 + O.OSj/ 

mole for 1.90K < T < 4.40 K.) 

In Figure 5 we present the calculated values of the 

quantity Teff -T for four densities. A slight maximum is apparent 

in the p = 0.380 curve at T 'V 2.70 K. This maximum is demonstrably 

the source of the low temperature behavior of the calculated Bose 

internal energy. The P = 0.467 curve exhibits a less pronounced 

maximum at T 'V 2.4oK. It is tempting to identify these maxima 

as indicat.ions of the proximity of theA-transition. (The higher· 

density is actually slightly above the superf1uid range of densities, 

but we may well expect the theory to be insensitive to this fine 

distinction.) The shift to lower temperature with increasing density 

is consistent with this interpretation. 

In Figure 6 we present the values of hI (~) = h2 (00) = 3h3 (00) 

at the same four densities. The virtual temperature independence 

is striking. 

We close this section with a brief comparison of our results 

. 14 
with the recent ground state results of Ka10s, Levesque and Verlet 

which appear to be the best ground state results available. Using 

two different methods, they calculated the effective temperature 
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of the ground state under zero pressure (p = 0.3648) to be 11.9 ~ O.loK. 

(These authors define the effective temperature somewhat differently. 

11.90 K is actually two-thirds of their differently defined value.) 

We can compare this value with our calculated effective temperatures 

for P =0.364. We do not explicitly present the P = 0.364 data, but 

the interested reader may construct it from the P = 0.380 curve of 

Figure 5 by noting that Teff (0.364) ~ Teff (0.380) -0.6oK. (Please 

note that here we are discussing Teff rather than Teff - T.) 

o For P = 0.364, our calculations indicate that Teff = 11.9 K 

corresponds to T ~ 4.8oK and that Teff ~ 9.30 K near the A-transition. 

This seems to indicate a minimum in the effective temperature ( or, 

equivalently, the average kinetic energy per particle) at constant 

density at or below the A-transition temperature. It seems safe to 

guess that it is at or very near the A-transition. The validity 

of this conclusion rests upon the accuracy of both calculations. 

The KLV result does actually seem to be about 0.90 K too high, but 

correcting this merely reduces the depth of the minimum to about 

1.7oK. We believe that our calculated effective temperatures are 

accurate to considerably better than 1.7oK and thereby accept the 

physical existence of the minimum. This minimum explains the 

well known.maximum in the density at constant pressure very near the 

A-transition. 

VIII. CALCULATED RESULTS FOR LIQUID p-HYDROGEN 

Para-hydrogen molecules are essentially all in the ground 

• 
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state when T < 50QK, but at higher temperatures~ rotational excita-

tions make a significant contribution to the internal energy. 

Before presenting our p-H2 results, we briefly describe how we 

calculated this contribution. 

Using data and formulas given by Davidson15 , we calculate 

the difference between the J = 0 and J = 2 rotational energies as 

being 4365.2j/mole or, equivalently, ~250K xk B. The gap between the 

J = 2 and J = 4 states is even greater, and it is clear that the only 

rotationally excited state which will contribute significantly is 

J = 2. 

Recalling that the J = 2 state is fivefold degenerate, we 

write the contribution of rotational excitations as 

E rot (j/mole) = 21826 exp (-525/T) 

1 + 5 exp (-525/T) 

This quantity varies from 'V lOOj/moleat lOOK down to 

<lj/mole below SOoK. At 1000K about 2.5% of the molecules are in the 

J = 2 state. We make no attempt to account for the lack of spherical 

symmetry of the excited molecules, as this effect is doubtlessly 

minute due to their small concentration. 

We will focus primarily upon data forp = 0.575 (approximately 

the liquid density at the triple point) and make occassional mention 

of data for p = 0.401 (a density about midway between the critical 

and triple point densities) and at p:= 0.234 (the critical point density). 

Most of the p-H2 results presented in this section were 
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calculated via both the three equation ~approach and the one 

equation approach. The difference between the two sets of results 

is everywhere small, in marked contrast to the case of He4 . For 

the most part we present the three equation results as they are 

more informative. The main exception are the one equation results 

which we present for p = 0.575 and T < 300 K. In this region we 

were unable to obtain satisfactory convergence in the three equation 

calculations with a reasonable expenditure of effort. However, the 

one equation approach did converge in this region and gave satisfac­

tory results. This fact along with other considerations lead us 

to believe that the non-convergence of the three equation calcula­

tion in this region was due to numerical instability rather than 

being indicative of the impending collapse of the theory. We 

(correctly) employed dilute gas data calculated under the assump­

tion of Bose statistics although statistical effects proved to be 

negligibly small. 

We also present some data obtained by applying the YBG 

equation in a purely classical manner and ignoring the contributions 

of rotational excitations. We compare these results with experimen­

tal data on argon which has been rescaled via the' law of corresponding 

states to make it refer to a hypothetical classical liquid which 

has the same intermolecular potential parameters as p-H2.This 

data allows us to conveniently examine the magnitude of the quantum 

effects and to compare the quality of our calculated results for 

" 
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p-H2 with that observed when the classical YBG equation is applied 

to argon. 

All of the experimental data on para-hydrogen is taken 

from the massive compilation of Roder, Weber and Goodwin.16 All 

argon data is from the compilation of Levelt. 17 

We begin with the rdf results of'Figures 7 and 8. Un­

fortunately, we were not able to find any experimental data with 

which to compare our calculated rdf's. X-ray scattering is difficult 

because of the small scattering cross-section and neutron scattering 

is complicated by the possibility of rotational excitations at the 

shorter wavelengths. We can only hope that our results will en-

courage someone to correct this deficiency. 

Figure 7 refers to p = 0.401 and T = 3loK. This point is 

just above the boundary of the liquid-gas coexistence region in 

temperature and Teff = 46.8oK .. The Mazo-Kirkwood rdf is typically 

that of a classical fluid. In contrast to this, the three equation 

rdf has much less pronounced maxima, and they oGcur at greater se­

parations. At the collision diameter, the three equation rdf is 

~ 0.7. In the region y < 1 considerable tunnelling is evident, and 

the second maximum is prominent only because of the deep minimum ' 

adjacent to it. As anticipated, this rdf has an appearance inter­

mediate between those of helium and classical fluids. The differences 

between the Mazo-Kirkwood and three equation rdf's grow more pronounced 

at lower densities, where the three equation rdf becomes exact and 
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and the Mazo-Kirkwood rdf grows even worse. We also present the 

rdf of the dilute gas at the same temperature. The maximum of this 

rdf is more pronounced than the first maximum of the three equation 

rdf because the thermodynamic temperature is considerably smaller 

than the effective temperature. 

Figure 8 refers to a ~oint at roughly the triple point 

density and about 190 K above it in temperature. o Teff = 58.4 K. 

We see that going to a higher density reduces the discrepancy be-

tween the MK rdf and the three equation rdf but does not eliminate 

it. This improvement is due to the fact that at higher den­

sities the mean field kinetic energy effects tend to predominate, 

thereby improving the validity of Mazo and Kirkwood's fundamental 

assumption. 

Figure 8 refers to the lowest temperature at which we 

completely trust the three equation results at p = 0.575. There-

fore, we have chosen it to compare the three equation and one 

equation results. The difference is seen to be rather small. 

Furthermore" it decreases rapidly with increasing temperature and 

decreasing density. 

Tables 5 and 6 present the three equation data of Figures 

7 and 8 in tabular form along with the values of the elements of 

2:t lj:t 
f and f 

2:t 
Table 7 presents one equation rdf and f data at a 

point which is very slightly above the triple point in temperature. 
2% 

Again the elements off are presented in the form of Trl andT1 
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The general impression given by the calculated rdf's and the elements 

'" 4'" . of f 1S one of very weak temperature dependence as was observed 

in the case of He4 . 6T" and 6T1 may also be determined to be weakly 

temperature dependent. The difference between the rdf's in Tables 

6 and 7 is due mostly to the fact that Table 6 contains three 

equation results and Table 7 one equation results. The one equation 

rdf at the temperature and density of Table 6 (which is presented 

in Figure 8) is nearly identical to the rdf of Table 7, but its 

peaks are slightly more pronounced despite the higher temperature. 

This physically unreasonable increase of structure with increasing 

temperature is exhibited by the P-H2 one equation approach results 

only for p = 0.575, T < 30oK. It is not exhibited by the lower 

density P-H2 or He4 data. It is, however, pronounced in the generally 

ill-fated He4 one equation results. We are forced to conclude that 

this behavior indicates that the one equation approach is near its 

limit of utility under these extreme conditions of temperature and 

density. 

In Figures 9 and 10 we present the values of T eff and 

hI (00) at three densities. The weak temperature dependence of the 

"quantum effects" is striking, as is' the ratio T eff to T in the 

vicinity of the triple point. 

Figures 11 and 12 compare :..our calculated results for 

the internal energy and pressure at p = 0.575 with experiment. We 

also present rescaled experimental data for argon and compare it with 
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results generated using the classical YBG equation. In Figure 11 

we also present our calculated values of the kinetic energy. The 

agreement between the one equation and three equation results is 

excellent. In particular, the one equation curves of Figure 11 would 

merge almost perfectly with the three equation curves if we were to 

extend them to higher temperature. In Figure 12 the quality of the 

agreement of the p-H
2 

energy values with experiment is better than 

that of the classically calculated argon values. The genesis of 

the present theory as an extension of the YBG equation to quantum 

liquids is clearly evidenced. The quality of the p-H2 and argon 

results is roughly equal at lower densities. 

IX. CONCLUSION 

In the preceeding section we demonstrated that the quality 

of our results for P-H2 at p = 0.575 is reasonably good and comparable 

to that observed when the classical YBG equation is applied to liquid 

argon. However, p = 0.575 is in the density range of greatest interest 

in the case of p-H2 while it is only about midway between the critical 

and triple point liquid densities in the case of argon. For this 

reason we feel justified in considering our P-H2 results to actually 

be better. In Section 7 we saw that the three equation approach also 

yielded a satisfactory description of normal liquid helium-4. And so 

it seems that the "first guess" theories presented here have proven 

themselves to be fairly successful when properly applied, although 

this is certainly not the case with the analagou~ classical YBG theory. 
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This is, of course, due to the lower densities typical of 

quantum liquids. We anticipate that this fact will prove 

equally beneficial to the future development of more sophisticated 

theories of simple quantum fluids. 

The fact that the one equation approach gives essentially 

the same results for p-H2 as does the considerably more complex 

three equati~n approach has important implications. The fundamental 

difference between the two approaches is in the way that approxi-

mation (6.1) enters into them. The one equation approach utilizes 

only the second rank portion of (6.1), and utilizes it rather 

directly. The three equation approach utilizes both the second 

and fourth rank portions of (6.1) but in a rather less direct 

manner. Also, the "mean field dimunition" and "multiplication by 

powers of A" effects pointed out in Sections 4, 5 and 6 are 

powerfully evident in the three equation approach but much less 

pronounced in the one equation approach. (They would be even 

more pronounced in higher order approaches.) Now, there is no 

reason to expect the fourth rank portion of approximation (6.1) 

to be any better than the second rank portion. We believe that 

the reason that the three equation approach succeeds in the case 

He 4 while the one equation approach fails· is that the various 

benefits of the three equation approach are capable of over-

whelming the fundamental shortcomings of applying (6.1) to this 

highly quantum mechanical substance. In the case of p-H2 , how-
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ever, the one equation approach is not significantly worse, 

and it seems that the benefits of the three equation approach 

are not essential. We believe that this indic~tes that the 

second rank portion of approximation (6.1) is sufficiently 

accurate to serve as a starting point for treating liquid p-H2 

and all liquids of equal or less pronounced quantum mechanical 

character. The slight improvements to be expected from employing 

the three equation approach can probably be achieved by appending 

some reasonably simple perturbation scheme onto the intrinsically 

simple and convenient one equation approach or its future analogues. 
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APPENDIX 

In this appendix we present scalar expressions for the 
2:t 4:t 

specific elements of the approximate expressions for f and f 

which we derived in Section 6. We present only the final res~lts. 

K" (y) = 
1 

2t 

2 
A 
2 

(Ala) 

1 A2 d 00 2 1 
= ~ - -2- [k1 (y) + 'I1'p fo w dw f_ 1diJg(w)g(/y2 + w2 - 2ywll ) 

{kt (w) + +0- /) [kf, (w) -kt (w)] }] (Alb) 

where k" 
d 

and kl 
d are the two specific elements of 

2:td 
f . 

K" 
(00) =K1 (00) 

1 2 2 . d 
2kd = --- 'I1'pA 

00 w dwg (w) [k" (w) + (w) 
2t 3 fo 1 (A2) 

:t 
We present the expressions for the elements of 4f as 

the elements of a formal vector 

'V 'V 'V 'V 

h = i hI + j h2 + k h3 

This notation is compact and well suited for numerical implementation. 
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"'hd TIp 00 2 1 [:::::: () "'a (y) + -4-10 w dw J_ 1 dll _ T2 ll'h (w) 

y)·k (ll, w, y) ] g (w) g ny -~I ) 
2 

. '" '" '" '" AS (u,w) g (u)g (w) g (I u-yl)g CI w-YI ) 

where ~ = ~ - ~ and t;d is the vector composed of the 
w u 

dilute gas values of hI' h2 and h3: 

tId = l' hd --+ J'h d + ~h3d 
I 2 

'Va 
the elements of hare 

a d I d)2 
hI = hI + -2- (kll 

4 
II 

+ _1_ (k
1 

d)2 
2 

1 d d 
+ 6 kll kl 

1-- 2 1 4 
2 - ~ 

3 1 2 3 4 
'-g--+ -~ +-r 

(A3) 



:::::: 
TS (lJU, lJW, cp)=. 

1 

1 

1 
3 

-4S-

2 
lJ w 

_1_S2 
2 W 

o 8 

2 2 2 
lJ u lJu lJw 

.l....s2 (~+ +2CP)S~S~ 2 u . 4 

2 
where Ccp = cos cp, Su = sin eu = 1 ~ lJ u' and so on. 

~, ':::=::: 

TS differs from TS only in the sign of the first term of the (3,4) 

or lower right corner element. 

'" k
d (u) d A (u,w) = kl (w) 1 

k
d (u) [ 

d d (w) 1 k" (w) - kl 

k
d (w) [ 

d d (u) k" (u) - kl 
1 

d 
[k" (u) 

d 
- kl (u) ] d 

[k" (w) 

~, 'V 

T2 and A2 are obtained by inserting 

Ccp = C2CP = cos (0) = 1 

u = I ~ -r I 
lJu = __ 1 __ . (wv -y) 

u 

] 

] 

d 
- kl (w) ] 
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:::::: '\.0 
into the expressions for TS and AS' 

_ '\.0 '\.0 '\.0 '\.0 
d = Iw - 2tw ~w -u+ y 

The form in which we have written the second term of the 
::::::, 

five dimensional integrand in (A3), which involves TS and d, is 

not that which is obtained by reducing (6.2c) to its specific 

elements in the most direct way. It is the result of some additional 

manipulations, and leads to significant computational economies. 
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TABLE 1 

2.556 10.22 

.2.928 37.0 

.. -24 
~ (g x 10 ) 

3.322 

1.673 

A 

0.4259 

0.2753 
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TABLE 2 

4 
He J p 

0 =0.380, T = 2.4 K 

Y g Til Tl hI h2 h3 

* 0.8 246.7 -17.1 -9.42(2) -5.15(1) 1. 57 (2) 

0.9 0.13 113.0 -0.1 -3.41(2) -1. 55 (1) 5.69(1) 

1.0 0.47 55.4 6.1 -1.32(2) -3.48 2.21(1) 

1.1 0.91 29.8 8.4 -5.56(1) 0.57 9.40 

1.2 1.25 17.8 9.2 -2.48(1) 2.02 4.39 

1.3 1. 39 12.2 9.6 -1.12(1) 2.56 2.29 

1.4 1. 34 9.9 10.0 -4.59 2.80 1.41 

1.5 1.18 9.4 10.2 -1.12 2.87 1.04 

1.6 1. 01 9.9 10.3 0.93 2.83 0.88 

1.7 0.90 10.5 10.3 2.25 2.75 0.83 

1.8 0.84 11.0 10.2 3.13 2.67 0.B1 

1.9 0.83 11.3 10.2 3.66 2.63 0.81 

2.1 0.91 11.1 10.1 3.67 2.65 0.86 

2.3 1.04 10.3 10.0 3.06 2.69 0.90 

2.5 l. 06 9.9 10.1 2.65 2.75 0.91 

2.7 1.00 10.0 10.1 2.67 2.79 0.94 

00 10.2 10.2 2.74 2.74 0.91 

*Indicates exponent; i.e. J - 9.42 (2) = - 942. 
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TABLE 3 

H 4 0 380 T = 7.90 K e , p = • , 

y g Til Tl hI h2 h3 

0.8 247.7 -12.3 -9.42(2) -4.83(1) 1. 54 (2) 

0.9 0.16 114.6 4.6 -3.41(2) -1.38(1) 5.45(1) 

1.0 0.55 57.5 10.9 -1.32(2) -2.53 2.04(1) 

1.1 1. 00 32.3 13.2 -5.49(1) 1.09 8.29 

1.2 1. 30 20.8 14.2 -2.37(1) 2.32 3.66 

1.3 1.37 15.7 14.7 -9.97 2.73 1.84 

1.4 1. 28 13.8 15.1 -3.39 2.88 1.14 

1.5 1.14 13.6 15.3 0.01 2.89 0.89 

1.6 1. 01 14.0 15.4 1.88 2.82 0~81 

1.7 0.94 14.6 15.3 2.99 2.75 0.82 

1.8 0.90 15.1 15.2 3.68 2.69 0.84 

1.9 0.90 15.4 15.0 4.04 2.68 0.87 

2.1 0.96 15.4 14.8 3.66 2.73 0.93 

2.3 1. 03 15.0 14.8 2.78 2.77 0.94 

2.5 1. 03 14.8 14.9 2.37 2.80 0.93 

2.7 1. 00 14.8 15.0 2.57 2.81 0.93 

00 14.8 14.8 2.79 2.79 0.93 
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TABLE 4 

H 4 0 467 T = 2. AOK e , p = ., 't 

y g Til Tl hI h2 h3 

0.8 247.1 -11.3 -9.42(2) -4.97(1) 1. 57 (2) 

0.9 0.17 113.7 4.5 -3.41 (2) -1.38(1) 5.72(1) 

1.0 0.59 56.3 10.1 -1. 32 (2) -2.13 2.23 (1) 

1.1 1.11 31.0 12.0 -5.53(1) 1.72 9.61 

1.2 1.46 19.5 12.8 -2.43(1) 3.15 4.62 

1.3 1. 52 14.5 13.2 -1. 04 (1) 3.73 2.58 

1.4 1.36 12.9 13.5 -3.53 4.09 1.77 

1.5 1.14 13.1 13.7 0.16 4.16 1.45 

1.6 0.96 13.9 13.6 2.42 3.99 1. 28 

1.7 0.86 14.7 13.5 3.90 3.77 1.20 

1.8 0.82 15.2 13.4 4.89 3.62 1.15 

1.9 0.83 15.4 13.4 5.39 3.58 1.13 

2.1 0.96 14.8 13.2 5.15 3.70 1.24 

2.3 1.10 13.5 13.3 4.33 3.74 1.27 

2.5 1. 05 13.5 13.6 3.60 3.84 1.26 

2.7 0.97 13.7 13.6 3.81 3.86 1.31 

00 13.6 13.6 3.75 3.75 1. 25 



y 

o . 8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.1 

2.3 

2.5 

2.7 

00 

o 0 u 0 ~ 2 U 2 6 '''} 
4;.. 

-53-

TABLE 5 

p-H2 ' P = 0.401, T = 

g Til 11 hl 

577.6 -8.1 -1.45(3) 

0.13 267.7 28.6 -5.25(2) 

0.69 136.1 41.4 -2.01(2) 

1. 38 79.6 45.6 -8.17(1) 

1. 66 55.3 47.1 - 3 '.28 (1) 

1. 54 46.1 47.9 -1.08(1) 

1. 31 43.8 48.3 -0.35 

1.11 44.3 48.5 4.58 

0.99 . 45.7 48.4 6.84 

0.92 47.2 48.0 7.96 

0.89 48.3 47.6 8.80 

0.91 48.9 47.1 9.59 

1. 01 48.8 46.6 8.67 

1.07 47.4 46.7 5.97 

1. 05 46.8 47.0 5.26 

1.01 47.0 47.2 6.15 

46.8 46.8 6.40 

31.0 o K 

h2 h3 

-6.53(1) 2.32(2) 

-1.49(1) 8.09(1) 

0.66 2.95(1) 

5.15 1.16(1) 

6.47 5.12 

6.78 2.82 

6.88 2.15 

6.82 2.05 

6.66 2.06 

6.42 2.10 

6.31 2.14 

6.35 2.23 

6.62 2.33 

6.62 2.21 

6.62 2.15 

6.55 2.15 

6.40 2.13 
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TABLE 6 

p-H2 ' P = 0.575 T = 33.5°K 

Y g Til T~ hI h2 h3 

o . 8 579.6 7.9 -1.45(3) -6.04(1) 2.32(2) 

0.9 0.17 270.4 41.9 -5.23(2) -1.12(1) 8.11(1) 

1.0 0.85 139.9 53.4 -1.99(2) 3.45 2.98(1) 

1.1 1. 59 85.0 57.1 -7.93(1) 7.31 1.21(1) 

1.2 1.77 62.9 58.7 -2.98(1) 8.53 5.74 

1.3 1. 54 55.8 59.6 -7.28 8.88 3.64 

1.4 1.25 55.0 60.0 3.40 9.35 3.20 

1.5 1.04 56.5 60.0 8.55 9.48 3.21 

1.6 0.91 58.5 59. 7 1.09(1) 9.22 3.15 

1.7 0.84 60.6 59.2 1.18(1) 8.71 3.05 

1.8 0.83 62.2 58.6 1.26(1) 8.63 3.03 

1.9 0.88 62.6 58.1 1.39(1) 8.95 3.19 

2.1 1.03 61. 5 57.7 1.15(1) 9.70 3.32 

2 : 3 1. 09 59.5 58.5 7.07 9~52 3.06 

2.5 1. 04 59.0 59.1 6.83 9.46 3.04 

2.7 0.98 59.2 59.1 9.07 9.36 3.09 

00 58.4 58.4 9.29 9.29 3.10 
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TABLE 7 

p-H
2 

,p = 0.575, T = 14.6°K 

y g Til ~ 

o . 8 587.1 -31. 0 

0.9 0.15 274.8 15.2 

1.0 0.72 141.5 33.3 

1.1 1. 36 83.0 40.4 

1.2 1. 61 56.2 43.1 

1.3 1. 52 43.8 44.2 

1.4 1.31 38.4 44.5 

1.5 1.12 36.6 44.6 

1.6 0.97 36.9 44.5 

1.7 0.89 38.4 44.4 

1.8 0.87 40.4 44.2 

1.9 0.89 \ 42.6 43.9 

2:1 0.99 45.7 43.5 

2. 3 1.06 44.9 43.4 

. . 
2.5 1.05 43.3 43.4 

2.7 1. 01 42.5 43.5 

00 43.2 43.2 
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FIGURE CAPTIONS 

Figure 1 
i 4 

Calculated and experimental rdf's of He at p = 0.364 

and 2.40K. Open circles, experimental. Heavy solid line, three 

equation results. Light solid line, one equation results. Dashed 

line, Mazo-Kirkwood approach results. 

Figure 2 2 4 The quantity 4nR n [g(R) - 1 ] for He. Open circles, 

o experimenta I values for p = 0 .. 462 and 4 .. 2 K.. So lid line, three 
. 0 

equation results for p = 0.467 and 4.5 K. 

Figure·3 Experimental and calculated pressure of He4 for p = 0.380. 

Open circles, experimental. Solid line, three equation results. 

Figure 4 4 Experimental and calculated internal energies of He 

for p = 0.380. Open circles, experimental. Solid line, three 

equation results with assumption of Bose statistics. Dashed line, 

three equation results with assumption of Fermi statistics. A tem-

perature indicated. 

Figure 5 ·4 
Three equation values of Teff -T of He at various densities. 

c.p. = critical point. I-v = liquid vapor coexistence boundary. 

A = A-line. s-l = solid -liquid II coexistence boundary. 

Figure 6 Th . 1 4 ree equat10n va ues of hI (~) of He at same densities 

as in Figure 5. 



. . 

o 0 u o o 6 

-57-

Figure 7.. Calculated rdf's of p-H2 at p = 0 .401 and 3loK. Heavy 

solid line, three equations. Dashed line , Mazo-Kirkwood approach. 

Light solid line, dilute gas result. 

Figure 8 Calculated rdf's of p-H2 of p = 0.575 and 33.50 K. Heavy 

solid line, three equations. Light solid line, one equation. Dashed 

line, Mazo-Kirkwood approach. 

Figure 9 Calculated effective temperature of p-H2 vs. thermodynamic 

temperature at three densities. Dashed line, classical limiting 

value. Low temperature portion of p = 0.575 curve from one equation, 

rest of data from three equations. 

Figure 10 hI (00) of p-H2 vs. thermodynamic temperature for three 

densities. The classical limiting value is zero. All data from 

three equation calculation. 

Figure 11 Internal and kinetic energies of p-H2 and Ar at p = 0.575. 

Open circles, experimental. Solid lines, calculated. p-H2 data cal­

culated from one equation, light line. Argon data rescaled as described. 

Figure 12 Pressures of p-H2 and Arat p = 0.575. Same representation 

as Figure 11. 
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r------------------LEGALNOTICE--------------------~ 

This report was prepared as an accoun t of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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