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Abstract

How can molecular expression experiments be interpreted with  >104 measurements per chip? 
How can one get the most quantitative information possible from the experimental data with 
good confidence? These are important questions whose solutions require an interdisciplinary 
combination of molecular and cellular biology, computer science, statistics, and complex 
systems analysis.

The explosion of data from microarray techniques present the problem of interpreting the 
experiments. The availability of large-scale knowledge bases provide the opportunity to 
maximize the information extracted from these experiments. We have developed new methods of 
discovering biological function, metabolic pathways, and regulatory networks from these data 
and knowledge bases. These techniques are applicable to analyses for biomedical engineering, 
clinical, and fundamental cell and molecular biology studies.

Our approach uses probabilistic, computational methods that give quantitative interpretations of 
data in a biological context. We have selected Bayesian statistical models with graphical network 
representations as a framework for our methods. As a first step, we use a naïve Bayesian 
classifier to identify statistically significant patterns in gene expression data. We have developed 
methods which allow us to a) characterize which genes or experiments distinguish each class 
from the others, b) cross-index the resulting classes with other databases to asses biological 
meaning of the classes, and c) display a gross overview of cellular dynamics. We have developed 
a number of visualization tools to convey the results. We report here our methods of 
classification and our first attempts at integrating the data and other knowledge bases together 
with new visualization tools. 

We demonstrate the utility of these methods and tools by analysis of a series of yeast cDNA 
microarray data and to a set of cancerous/normal sample data from colon cancer patients. We 
discuss extending our methods to inferring biological pathways and networks using more 
complex dynamic Bayesian networks. 
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Introduction

New techniques for interpreting molecular expression experiments are needed in the face of 
massively parallel acquisition of these patterns with techniques such as cDNA microarrays(Jan 
1999). The quantities of data preclude complete analysis by inspection. We are pursuing new 
methods of analysis which will utilize the full value of these data and knowledge bases for 
biological and biomedical research. Our ultimate goal is to discover new biological pathways, 
networks, and regulatory mechanisms, to identify new molecular expression mechanisms leading 
to cancer and other developmental phenomena, and to build predictive models of biological 
systems.

We have several concerns which are guiding our selection and development of methods.

Criteria for Selecting and Developing Methods

Automate pattern identification in the data due to the large volume 
of data

Integrate heterogeneous information types to infer interactions in 
complex systems

Support hypothesis testing and inference using quantitative 
statistical measures

Treat many-to-many mappings between genes and 
pathways/networks

Integrate hierarchical levels of information and views of function

Model the underlying stochasticity of biological processes

Utilize learning algorithms that account for missing information in 
a principled way

Require extensibility of the methods from coarse-level 
characterization to more intricate interactions

We have developed a road map of goals with roughly increasing sophistication of analysis. We 
have invented and selected methods of analysis which provide a development path with 
increasing sophistication, building on the first proof-of-principle steps, and yielding useful 
discoveries and predictions at each phase.
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A Path to Enlightenment

Clustering/Classification discovering patterns within the 
data, generating statistical 
descriptions of expression 
patterns, quantifying 
distinguishing characteristics 
of the patterns

Integration find patterns which signify 
function, regulation, etc. which 
are known from other 
knowledge bases, combine 
classification results with other 
discriminative methods 
(support vector machines, etc)

Inference discover new category 
members and network links 
using classification and 
analysis of integrated 
knowledge

Model Extension classification methods of  
a)continuous data with discrete 
variables, and b)including
more complex conditional 
dependencies in the statistical 
model between elements and 
across time

Hypotheses Testing supporting the domain expert 
(biologists and biomedical 
researchers), provide 
likelihood of hypothesized 
relationships and factors given 
the integrated data and 
knowledge bases

Reverse Engineering find network and pathway 
links, look for causality, build 
predictive models

We have implemented significant portions of the first three phases in a working prototype of the 
analysis. Investigations into the 'model extension' phase and beyond are ongoing. This report 
focuses on the first three phases of development.

Background

Microarray technology for 'omics' studies is a rapidly expanding field. An excellent review of 
microarray technology at the beginning of 1999 is the special issue of 'Nature Genetics' 
(Supplement Jan 1999). The applications include fundamental studies of eukaryotic cellular 
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dynamics (DeRisi 1997; Chu 1998; Eisen 1998; Spellman 1998; Spellman 1998), and signature 
expression patterns of cancerous tissues (Alon 1999; Perou 1999). There are several published 
methods noted below which approach the problem of extracting meaningful patterns of co-
expression from large-scale microarray data. These methods do not meet all of the criteria which 
we have identified. Some methods of clustering and classification are complementary to 
probabilistic networks in their capabilities and are potentially very useful in combination.

Graphical models and probabilistic networks have been the subject of research in the machine 
learning community for many years. The literature on these subjects is voluminous. For excellent 
reviews, see references (Heckerman 1997; Jensen 1998). Graphical models allow the 
representation of complex statistical relationships in an intuitive way. They also provide one 
framework for describing the statistical operations and assumptions used in analysis. 
Probabilistic networks are statistical descriptions of data and hidden variables. The structure and 
parameters of the network can be learned by a variety of methods. Bayesian networks are 
probabilistic networks whose structure and parameters are improved by an algorithm which starts 
with a prior network and uses the new data. Using Bayesian networks, it is possible to 
incorporate domain-specific expert knowledge into the analysis in a principled manner in the 
prior network. One can also use minimal information priors on the network to learn patterns and 
structure a priori.

Existing Methods of Expression Array Analysis

The published methods of clustering gene expression patterns to date include heirarchical 
clustering (Eisen 1998), Fourier analysis for cell-cycle time series (Spellman 1998), k-means 
(Tavazoie 1999) and self-organised maps (Golub 1999; Tamayo 1999). While useful for an 
inspection analysis of the data, these methods do not provide a framework for a full statistical 
analysis or constrained extensions in complexity of the description of the data. Some methods 
are well suited to emphasizing particular features in the data of a carefully constructed series of 
experiments, for example the Fourier analysis for cell-cycle regulated genes. A more rigorous 
and generalized statistical treatment will yield rich interpretations of the data.

Most integration and inference efforts to date have involved visual inspection of the clusters, e.g. 
to identify genes which change during sporulation of yeast(Chu 1998) or to find similarity by 
tissue type(Alon 1999; Golub 1999; Perou 1999). Tavazoie and co-workers used their clusters as 
a basis for discovering upstream promoter sequences (Tavazoie 1999), as did Spellman, et 
al(Spellman 1998). 

There are published papers addressing the problem of inferring network architecture using 
boolean networks(Liang 1998), coupled continuous non-linear differential equations(Chen 
1999), and neural networks(Weaver 1999). We propose using a generalized statistical framework 
which  allows a maximally rich, quantitative interpretation of the data and carries measures of 
uncertainty and partial certainty.

Our Approach: Graphical Models + Probabilistic Networks

Graph theory provides a unifying framework for encoding statistical relationships and 
operations. It is the union of statistics and computer science. The discovery and evaluation of 
complex statistical relationships can be implemented using machine learning techniques, 
automatically identifying statistically significant features among collections of heterogeneous 
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types of information. See the excellent reviews (Heckerman 1997; Jensen 1998) for a more 
complete description of Bayesian networks and associated techniques.

The Value of Probabilistic Networks

The theory of probabilistic networks is used to automate pattern identification in data, provide 
quantitative measures of cross-correlation, assess complex hypotheses and decisions against 
known data, and reverse engineer network structure all within the same framework while 
accounting for missing and noisy data in a principled way. This allows the application of 
increasingly sophisticated analyses. 

The Value of Graphical Model Representations

Graphical models are intuitive visual representations of statistical relationships encoded by 
probabilistic networks. The nodes represent variables and the arrows represent influences 
between variable values. More specifically, a node represents a probability distribution of the 
variable value and the arrows specify possible conditional dependancies. The lack of an arrow 
signifies conditional independence: two variables not connected by an arrow are specified to be 
independent given the values of all common parent nodes.  In other words, with no arrow, there 
is no direct influence of one variable on the other, but there may be indirect influence through an 
another factor.The graphical model gives only a qualitative view of the relationships. The 
quantitative aspects are determined by the parameters of the network model. One can think of 
each node as having a table of functionals which in some way combine the inputs to produce the 
output probability of the variable. This conditional probability table specifies a node-variable's 
dependence on all possible combinations of the parent variables' distributions. The 
dimensionality of the conditional probability matrix, or transition matrix, is determined by the 
number of arrows coming into the node.

P(cj|h,S)

P(Ek|cj,h,S)

E1 E2

c

E3

Nodes represent variables
which may take a range of
discrete or continous values
and whose values may be
observed, hidden, or partially
hidden

Arrows represent conditional
dependencies of child nodes
on parent node values 

h

A Simple Graphical Model

These models, representing networks of statistical relationships, provide a framework for 
compactly communicating statistical assumptions, operations, and results of inferences. This 
becomes particularly important when more complex relationships are treated. For example, some 
node-variables can represent molecular concentrations measured from array-expression data, 
other nodes can represent common promoter sites, and the arrows can represent in control of 
specific gene transcription through these sites.
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General Approach

The classifier searches for a statistical model that best predicts the data. More specifically, we 
search for the maximum a postori (MAP) model h  given the data E  and the space of all possible 
models S  using the form,

P h | E, S( ) =
P E | h, S( )P h | S( )

P E,S( )
B a y e s '  R u l e

U s i n g  B a y e s '  r u l e ,  m o d e l s  m a y  b e  c o m p a r e d  b y  e v a l u a t i n g  h o w  w e l l  t h e  m o d e l  p r e d i c t s  t h e  d a t a ,  
i . e .  t h e  l i k e l i h o o d  of  t h e  d a t a  g i v e n  t h e  m o d e l .

Expt 1 Expt 2 Expt 3 Expt 4 Expt 5
Gene 1 -0 .96 0.05 0.87 -0 .17 -1 .2
Gene 2 -0 .89 -0 .67 0.12 0.74 0.98
Gene 3 1.11 -0 .07 -0 .99 -0 .13 1.02
. . . ... ... ... ... ...

1
2

3
4

5

-2

-1

0

1

2

Experiment

Expression Level

M
o

d
e

l
P

ro
b

a
b
.
D

is
t.

E1 E2

c

E3 E4 E5

D i s c r e t e  d i s t r i b u t i o n  n o d e  i n d e x e s
c l a s s  p a t t e r n s .  I t  i s  n o t  o b s e r v e d ,  b u t
inferred from fitting to data

Continuous distribution nodes have different
parameter sets indexed by parent discrete node
value, i.e. conditional probability distributions

These nodes represent distributions
of observations

The “naive” model makes minimal
assumptions about relationships between the
data observed. Note the lack of arrows between
data points, indicating conditional
independance, 
given 
the 
class 
index


c=1

c=2

c=3

E1 E2

c

E3 E4 E5+

Prior network
structure

Data

Improved/learned
network parameters1:? 1:3

L e a r n i n g  N e t w o r k  P a r a m e t e r s  f r o m  D a t a

G i v e n  a  n e t w o r k  s t r u c t u r e ,  w e  c a n  u s e  B a y e s '  r u l e  t o  i m p r o v e  o n  t h e  e s t i m a t e  o f  t h e  m o d e l  
p a r a m e t e r s  u s i n g  t h e  d a t a .  S e e  t h e  a p p e n d i c e s  f o r  r e f e r e n c e s  a n d  a  m o r e  d e t a i l e d  d e s c r i p t i o n  o f  
th e  m e t h o d s .

N a ï v e  B a y e s  c l a s s i f i e r

O u r  f i r s t  m o d e l  i s  a  F i n i t e  M i x t u r e  M o d e l .  T h i s  m o d e l  i s  a l s o  c a l l e d  a  n a ï v e  B a y e s  c l a s s i f i e r  
b e c a u s e  i t  a s s u m e s  v e r y  f e w  c o n d i t i o n a l  d e p e n d e n c i e s  b e t w e e n  t h e  d a t a ,  y i e l d i n g  a  v e r y  s i m p l e  
g r a p h i c a l  n e t w o r k  s t r u c t u r e .  I t  is  a i m e d  a t  d i s c o v e r i n g  p a t t e r n s  i n  t h e  d a t a  w i t h o u t  s p e c i f y i n g  
w h a t  t h o s e  p a t t e r n s  s h o u l d  b e .  W e  h a v e  d e v e l o p e d  a  s e t  o f  t o o l s  w r i t t e n  w i t h  M A T L A B  a n d   
i n t e g r a t e d  w i t h  a  c l a s s i f i e r  p r o g r a m  c a l l e d  A U T O C L A S S( C h e e s e m a n  1 9 9 0 ).  T h e  m o d e l  c o n s i st s  
o f  a  s e t  o f  c l a s s e s  t h a t  d e f i n e  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  f u n c t i o n s  ( p d f s )  d e s c r i b i n g  t h e  d a t a .  T h e  
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optimum number of classes and parameters for the pdfs are learned using a combination of a 
Monte Carlo search through the model space and an Expectation Maximization (EM) search for 
locally optimum parameters. The simplest search mode does not search for covariance between 
statistical parameters or attributes. This method of finding classes of attribute (expression) 
patterns in the data can be interpreted as a graph-theoretical tree of probabilistic relationships. 
The graph-theory approach to Bayesian networks provide a path to expanding the complexity of 
the learned relationships to covariance and beyond. See the Appendix and the references therein 
for details of the mathematical development.

Naïve Bayes Graphical Model

The graphical model of the naïve Bayes classifier is simple. The model contains one variable 
representing a class-index (c ) and the others representing observed data ( E ). In this network, the 
class-index is discrete and enumerates the classes. The data nodes can be either discrete or 
continuous. The discrete data nodes contain tables of conditional probabilities, one set for each 
value of the class-index. Continuous data nodes contain tables of conditional probability 
distributions.  For example, using a multivariate normal distribution, there is one pair of mean 
and standard deviation parameters for each of the discrete parent's index. 

Data


Classes


Model

P(c
j|h,S)


P(E
k|c
j,h,S)


E1 E2

c

E3

h

The Naïve Bayes Classifier

The Autoclass Implementation of the Naïve Bayes Classifier

The actual model which autoclass implements is slightly more complex because of the way it 
treats missing data: every 'data' attribute has a discrete variable input which has the states 
'observed' or 'not observed' to handle missing data. Other methods exist for evaluating partially 
observed network states when looking for optimum parameters or when learning node-value 
probabilities given a set of observations. AUTOCLASS also implements block-covariance and 
supports discrete, enumerated data nodes. We have not used these features in the initial 
applications.

The Toy Dataset - illustrating the method

Data is made up for illustration with 3 distinct patterns and random additive noise. The artificial 
data is composed of 3 different patterns with 300,200,and 100 respective cases generated from 
the sum of three different template patterns and an additive random noise function. The 
classification results are real. The software algorithm identified the best statistical model of the 
data to have 3 classes with the correct probability distributions. Each class defines a probability 
distribution across each attribute (experiment) and is indexed by the variable C. Data are plotted 
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with color matching the highest class membership probability. The learned class probability 
distribution functions are plotted in the 3rd dimension. Colors indicate class for each distribution.

One feature of the Bayesian network is the use of priors: probabilities which are assigned before 
taking into account the new observations. The priors explicitly describe the assumptions and 
expectations used in the models. The naïve Bayes classifier assumes minimal information. All 
models are equally likely a priori, regardless of the number of classes. Also, all classes in a 
model are equally likely. This prior builds in penalties for increased complexity because 
introducing an additional class reduces the prior likelihood of every class. This mechanism 
which prevents over fitting of the data also accounts for the number of observations, i.e. the 
amount of evidence. With fewer observations it is likely that there will be fewer classes because 
the strength of evidence for a new class must outweigh the cost of reducing the likelihood of all 
other classes.  The figure demonstrates the results of a classification run where there are a total of 
600 observations vs. a run with only 6 observations. Under-classification can occur if there are 
few examples of a class present in the data.
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Two Models Learned from Small and Large Datasets

Fewer samples result in fewer classes being identified, more samples begin to outweight prior estimates and 
assumptions

One useful feature for interpreting the model results is the marginal likelihood of the model 
given the data. This is an evaluation of the global description of the data by the model and 
determines a goodness of fit. The usefulness of the model likelihood becomes apparent when 
comparing the best identified models. If the models are sufficiently similar in their effectiveness 
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in describing the statistics of the data, their marginal likelihoods will be similar. In the case of 
insufficient evidence, several models may be found equally likely. This situation thus easily 
identified.
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Two models with Essentially Equal Likelihoods

The model marginal likelihood is a measure of goodness of fit to the data. The single trace in the graph of 
expression levels falls mostly into different classes in the two models.

Methods, Testing, and Results

Classifications and analysis of the data were performed for two systems: yeast cell cycle series 
and cancerous/normal human colon tissues.

Applications to Yeast Gene Expression Analysis

Clustering and Classification: Finding Patterns and Distinguishing Features in the 
Data

The published differential gene expression data for the budding yeast Saccharomyces 
Cerevisiae(DeRisi 1997; Chu 1998; Eisen 1998; Spellman 1998; Spellman 1998) provides 
relative mRNA concentrations for each of ~6000 open reading frames (ORFs) across 78 
experiments. These data are from genome-wide expression studies of the cell-division-cycle, 
sporulation, the diauxic shift, and mutant strains.
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The differential expression data in the yeast experiments were reduced in the following way: the 
raw intensity data were corrected for background and then were reduced to a normalized form

I =
Icy5 − Icy3

Icy5 + Icy3

This form has the same advantages as the log-ratio method enumerated by Eisen, but also has the 
additional features that 1) it minimizes the errors associated with background subtraction from 
low intensity signals, and 2) it constrains the expression levels to a domain of -1 to +1. To reduce 
complication in this first analysis, genes for which there were more than 10% missing 
measurements (>7) were removed from the data set. The resulting data set contains 5687 genes 
with 2846 bad or 'missing' data points. In contrast to other methods, no pre-selection of the data 
based on expression levels was necessary, nor did we shift or rescale the expression patterns.

Attribute # Experiment Attribute # Experiment Attribute # Experiment
1 Clb2_2 27 cdc15_080 53 elu150
2 Cln3_2 28 cdc15_090 54 elu180

3 Cln3_1 29 cdc15_100 55 elu210
4 gal+- 30 cdc15_110 56 elu240
5 Alpha000 31 cdc15_120 57 elu270

6 Alpha007 32 cdc15_120 58 elu300
7 Alpha014 33 cdc15_130 59 elu330
8 Alpha021 34 cdc15_140 60 elu360

9 Alpha028 35 cdc15_150 61 elu390
10 Alpha035 36 cdc15_160 62 spo00
11 Alpha042 37 cdc15_160 63 spo005

12 Alpha049 38 cdc15_170 64 spo020
13 Alpha056 39 cdc15_180 65 spo050
14 Alpha063 40 cdc15_190 66 spo070

15 Alpha070 41 cdc15_200 67 spo090
16 Alpha077 42 cdc15_210 68 spo115
17 Alpha084 43 cdc15_220 69 spo_ndt80
18 Alpha091 44 cdc15_240 70 spo_delete_early

19 Alpha098 45 cdc15_250 71 spo_delete_mid
20 Alpha105 46 cdc15_270 72 diaux1
21 Alpha112 47 cdc15_290 73 diaux2

22 Alpha119 48 elu000 74 diaux3
23 cdc15_010 49 elu030 75 diaux4
24 cdc15_030 50 elu060 76 diaux5

25 cdc15_050 51 elu090 77 diaux6
26 cdc15_070 52 elu120 78 diaux7

Gene Attribute Vector with Corresponding Experiments

Our classification was on the genes using the experiments/samples as attributes of that gene. The 
immediate result is a grouping of the genes by similarity of expression patterns. 45 statistically 
distinguishable patterns were found using the AUTOCLASS classification program from the full 
data set. 
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Class # Class Weight Class # Class Weight

1 244 24 128

2 228 25 118
3 222 26 115

4 218 27 115

5 210 28 115
6 189 29 109

7 184 30 107
8 173 31 100

9 166 32 98

10 161 33 98
11 158 34 91

12 156 35 88
13 154 36 84

14 152 37 79
15 147 38 76

16 145 39 57

17 145 40 42
18 144 41 39

19 142 42 38
20 142 43 36

21 139 44 36

22 135 45 33
23 131

Class Weight for each class

Autoclass identified 45 patterns of expression. The class weight is the sum of the probabilities of membership in that 
class over all genes. If all genes had a probability of only 1 or 0, then the class weight reduces to the numberof genes 

in the class. 

0 10
 20
 30
 40
 50
 60
 70


1

0.8


0.6


0.4


0.2


0

0.2


0.4


0.6


0.8


1

Class patterns,Yds04ac01md01, Classes:40;


0 10
 20
 30
 40
 50
 60
 70


1

0.8


0.6


0.4


0.2


0

0.2


0.4


0.6


0.8


1

Class patterns,Yds04ac01md01, Classes:43;


Expression Pattern Distributions Across Experiments for Classes 43 and 45

The horizontal axis is experiment number. The vertical axis is expression level. The solid plot represents the mean at 
each experiment. The dotted lines represent the width of the distribution of expression levels , 1-sigma from the

mean. 
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distinguishing features of the class pattern 

prototypical expression pattern (distribution means) class #43 of the 45 identified

Genes with high class
membership
probability are very
similar to the
prototypical
expression pattern
(and not similar to
other class patterns)

Genes can have
fractional
membership in
multiple 
classes


Experiments using different reference values and
conditions can be reliably incorporated by specifying
conditional independance relationships between experiments in
the network model

New Methods for Gene Expression Analysis and Display

The figure was generated using our tools and includes several novel and informative features. 
We can generate a display like this for each of the classes identified. This figure shows results 
for class number 43 of the 45 identified. The large image in the middle represents the expression 
levels in the manner of (Eisen 1998). Each row represents a gene and each column an 
experiment/chip. Red indicates increased expression and green indicates decreased expression 
compared to some reference state. The genes have been reordered based on their probability of 
belonging to this class-pattern in descending order. The experiments are grouped by study. The 
colored bars across the bottom of the figure show this grouping of experiments. The alpha-arrest, 
elutriation, cdc15, sporulation, and diauxic shift studies are all time series. This initial model 
does not make use of any temporal relationships and the columns can be ordered arbitrarily. 
Across the top is the prototypical pattern that defines this class. It is the mean value of the PDF 
in this class for each experiment. The width of the distribution is not represented here, but is used 
for the joint-density analysis discussed below. Across the bottom is a relative influence term 
which shows which experiments/attributes distinguish this class from the rest of the data set. 
This graph allows one to find the experiments which generated the most distinguishing features 
of this pattern. The y-axis is the cross-entropy between the class PDF and the PDF of a single 
class model describing the entire data set. Down the left side is a plot of the class membership 
probability for each gene. It provides a measure of the similarity of each gene to the class 
expression distribution. The y-scale of this plot shows how many genes are displayed. Only 
genes with a probability greater than 10% are shown in this figure. Note that the class probability 
is continuous and allows a gene to belong to more than one expression pattern class or to no 
class. The small box in the lower left is a bar chart of the mean relative influence of each study 
on distinguishing this pattern from the rest of the data set. The blue text and green arrows are 
only included in this figure to label the important features of the display. 



15

O
R

F

0 0.5




1

1

43




Class Probability




R
el

at
iv

e
In

flu
en

ce

Yds04ac01md01


 class #40



Class Pattern




A
lp

C
lb

C
ln

cd
c

di
a

el
u

ga
l

sp
o

Experiments




C
lb

C
ln ga

l
A

lp
cd

c
el

u
sp

o
di

a
M

ea
n

R
el

at
iv

e
In

flu
en

ce

Patterns are identified
without specifying
kinds of patterns or
distance metrics - this
is called
unsupervised
learning. Prior
assumptions about
the statistical model
are encoded in the
network structure.

Gene Expression Pattern Displayed by Class Membership 

specific cell cycle modulations dominate this pattern but was identified without specifying a cyclic structure as input 
to the search

Several of the identified patterns capture cell cycle modulations with different peak times and 
phases. The figure shows one such pattern which is referred to as class #40. There are 42 genes 
which fall strongly into this class (and no other) and hence have a pattern very similar to each 
other. The relative influence shows the peaks and dips at certain points in the cell cycle are the 
distinguishing features of this pattern.

ORF Gene Protein Function (YPD)
YPL127C   HHO1       Histone H1;chromatin/chromosome structure
YBL003C   HTA2      Histone H2A
YDR225W   HTA1      Histone H2A
YBL002W   HTB2      Histone H2B
YDR224C   HTB1      Histone H2B
YBR010W   HHT1       Histone H3
YNL031C   HHT2      Histone H3
YBR009C   HHF1      Histone H4
YNL030W   HHF2      Histone H4
YER095W   RAD51     DNA repair and recombination
YMR199W   CLN1      G1/S-specific cyclin that interacts with Cdc28p protein kinase to control events at START
YPL256C   CLN2      G1/S-specific cyclin, interacts with Cdc28p protein kinase to control events at START
YIL123W   SIM1      Protein involved in the aging process and in regulation of the cell cycle
YDL055C   PSA1      may supply cell-wall precursors for budding, known cell-cycle regulated;cell wall generation and maintenance
YIL140W   SRO4      Membrane glycoprotein localized at site of bud emergence, required for axial budding pattern
YJL158C   CIS3      protein localized at surface of growing buds
YLR300W   EXG1      beta-1,3-glucanase,major isoform involved in cell wall beta-glucan assembly
YLR342W   FKS1      Component of beta-1,3-glucan synthase
YMR307W   GAS1      may cross-link glucans and chitin;Glycophospholipid-anchored surface glycoprotein
YMR215W   GAS3 specific function unknown
YMR305C   SCW10 hydrolase
YNL283C   WSC2      Protein required for maintenence of cell wall integrity and for the stress response
YOL007C   CSI2 Protein involved in chitin synthesis
YER001W   MNN1      carbohydrate metabolism;membrane protein;Alpha-1,3-mannosyltransferase
YFL045C   SEC53     Phosphomannomutase, involved in the synthesis of GDP-mannose and dolichol-phosphate-mannose
YER070W   RNR1      Nucleotide metabolism;Ribonucleotide reductase (ribonucleoside-diphosphate reductase) large subunit
YGL225W   GOG5      Golgi GDP-mannose transporter, in nucleotide-sugar transporter (NST) family of membrane transporters
YKL008C   LAC1 Protein required with Lag1p for ER-to-Golgi transport of GPI-anchored proteins
YER003C   PMI40     protein modification;Mannose-6-phosphate isomerase
YLR121C   YPS3 GPI-anchored aspartyl protease
YML027W   YOX1      Homeodomain protein that binds leu-tRNA gene
YOR248W         function unknown
YPL163C   SVS1      specific function unknown;Serine- and threonine-rich protein required for vanadate resistance
YOR247W   SRL1 function unknown;Protein with similarity to Svs1p
YKR012C         function unknown
YGR189C   CRH1 function unknown; resides in chitin rich areas of cell wall
YKR013W   PRY2      function unknown;Protein expressed under starvation conditions
YNL300W         function unknown;Protein with weak similarity to Mid2p
YNR009W         function unknown
YOL019W         function unknown
YDR451C         function unknown;Protein with similarity to bacterial leucyl aminopeptidase

 

chromatin reorganization
and structure

cell cyclins

cell wall generation
and maintenance

carbohydrate
metabolism

unknown
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Genes with >90% probability of belonging to class 40

Genes can be sorted based on class membership and inspected for similarities in function. We 
provide more quantitative means to do this analysis is shown below.

Integrating Knowledge Bases

The classes can be used in combination with other information to extract information on cellular 
dynamics. Integrating the expression data and classes with other knowledge bases is facilitated 
by the use of the gene-attribute vector and the classification results, which groups genes 
according to likelihood of belonging to one of many attribute-value patterns identified. One 
method of integrating the expression classes with categorical databases, and thus assign some 
meaning to the classes found, is to look for enrichment of a functional category in a single class. 
An important feature to our approach is that a gene can be labeled as belonging to more than one 
functional category and class. 

Fr
ac

tio
na

lC
la

ss
m

em
be

rs
hi

p

0

0.1




0.2




0.3




0.4




0.5




0.6




0.7




0.8




0.9




1

Fractional Class Membership by Category


Yds04Ms03ac01md01,cat name filter ’
’, min cat members 6



threshold fraction 0.25




(2
44

)
1

(2
28

)
2

(2
22

)
3

(2
18

)
4

(2
10

)
5

(1
89

)
6

(1
84

)
7

(1
73

)
8

(1
66

)
9

(1
61

)
10

(1
58

)
11

(1
56

)
12

(1
54

)
13

(1
52

)
14

(1
47

)
15

(1
45

)
16

(1
45

)
17

(1
44

)
18

(1
42

)
19

(1
42

)
20

(1
39

)
21

(1
35

)
22

(1
31

)
23

(1
28

)
24

(1
18

)
25

(1
15

)
26

(1
15

)
27

(1
15

)
28

(1
09

)
29

(1
07

)
30

(1
00

)
31

(9
8)

32
(9

8)
33

(9
1)

34
(8

8)
35

(8
4)

36
(7

9)
37

(7
6)

38
(5

7)
39

(4
2)

40
(3

9)
41

(3
8)

42
(3

6)
43

(3
6)

44
(3

3)
45

(Class Weight) Class Number




(12)  ENERGY;fermentation  




(11)  ENERGY;gluconeogenesis  




(25)  ENERGY;glycolysis  




(8)  ENERGY;pentosephosphate pathway  




(11)  TRANSCRIPTION;tRNA transcription;tRNA modification  




(18)  CELLULAR ORGANIZATION;extracellular/secretion proteins  




(11)  METABOLISM;phosphate metabolism;phosphate utilization  




(6)  SIGNAL TRANSDUCTION;morphogenesis;key kinases  




(6)  ENERGY;betaoxidation of fatty acids  




(6)  ENERGY;glyoxylate cycle  




(31)  ENERGY;metabolism of energy reserves (glycogen, trehalose)  




(60)  ENERGY;respiration  




(17)  ENERGY;tricarboxylicacid pathway  




(6)  TRANSPORT FACILITATION;purine and pyrimidine transporters  




(162)  PROTEIN SYNTHESIS;ribosomal proteins  




(20)  CELL GROWTH, CELL DIVISION AND DNA SYNTHESIS;cell cycle checkpoint proteins  




(32)  CELLULAR ORGANIZATION;organization of chromosome structure  




(53)  TRANSCRIPTION;rRNA transcription;rRNA processing  




(6)  METABOLISM;nitrogen and sulphur metabolism;nitrogen and sulphur transport  




(8)  METABOLISM;nucleotide metabolism;regulation of nucleotide metabolism  




(7)  CELL RESCUE, DEFENSE, CELL DEATH AND AGEING;other cell rescue activities  




(86)  PROTEIN DESTINATION;proteolysis;cytoplasmic degradation  




class 43

class 
40

Identified expression
patterns tend to cluster
genes by biological role,
giving a global overview
of the dynamics of cell
function

Fraction of Genes in Each Class by MIPS Category

In the figures, orange-white represents a strong enrichment of genes of a particular category in a 
class. The categories are displayed along the vertical axis and the classes along the horizontal 
axis. The categories are reordered to place those with similar class memberships together. The 
MIPS-database category is a yeast gene annotation describing the biological function or role of 
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the encoded protein(Mewes 1999). The transcription factors were extracted from the YPD 
database(Hodges 1999). Due to the large number of classes and categories, we use filters to 
display only the most significant categories or members. In the figure above, only categories 
with at least 6 genes and which have at least one class fraction of >= 25% are displayed.
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(2)  BCK2;inducing  


(5)  HTA1;inducing  



(5)  HTA2;inducing  


(5)  HTB1;inducing  



 (2)  SIT4;inducing  


(2)  SPT4;inducing  



(2)  SPT5;inducing  


(2)  SPT6;inducing  


(6)  SPT10;inducing  



(6)  SPT21;inducing  


 (8)  ACE2;inducing  



(8)  SWI5;inducing  


(2)  CNA1;inducing  


(2)  CNB1;inducing  


(8)  GCR2;inducing  


(2)  PDC2;inducing  


(3)  REG1;repressing  



 (7)  SNF6;inducing  


(2)  MET31;inducing  



(2)  MET32;inducing  


 (5)  MET4;inducing  


(9)  IME1;inducing  


(5)  IME2;inducing  


(3)  RIM11;inducing  



(3)  RIM15;inducing  


(3)  GRR1;inducing  


(3)  RGT1;repressing  



(3)  STD1;repressing  


 (2)  RGT2;inducing  



(3)  NDD1;inducing  




regulates chromatin
assembly genes

regulates cell-cycl ins

regulates glycolytic
pathway genes

regulates genes
required for
sporulation

regulates glucose
induced/repressed genes

Genes regulated by
common transcription
factors fall strongly into
the same expression
pattern classes. More
complex probabilistic
networks will incorporate
these factors explicitly and
use them to uncover new
regulatory network
components.

The integration of prior
knowledge into the
networks will allow full
exploitation of the
information present in the
expression 
data.


Gene Transcription Factors and Class Membership

Inference

Using class membership probabilities and the cross-indexing information, we can associate the 
function of known genes with those whose functions are not assigned. For example, class 25 of 
the yeast gene model contains a very high fraction of ribosomal proteins. If we examine the 
genes with membership probabilities which are >10% we find 120 genes. Of those genes, only 4 
are not readily identifiable as ribosomal proteins or translation factors. However, 11 genes are of 
unknown function or only annotated by interspecies sequence homology.
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Selected genes from class 25

Gray entries are genes with unknown function. Yellow entries have assigned functions, but are not ribosomal. There 
are 105 ribosomal gene in this class (not shown).

Finally, cross-indexing the cell-cycle indexed genes from (Spellman 1998) allows a comparison 
of our classes to those determined by Fourier analysis. There are several classes which 
correspond very well to cell-cycle peak assignments. The splitting into several classes is not 
surprising considering the number of experiments included in classification which were not cell-
cycle experiments. For example, the G1 genes are mostly split between classes 26 and 37. 
Inspection of their class patterns and attribute influences show that the genes are modulated 
together in cell-cycle experiments and diverge during sporulation.
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Applications to tumorous and non-tumorous Colon Tissue Gene Expression

Expression data for normal and cancerous colon tissues (Alon 1999) were classified by patient 
and tumor type using the expression values of the genes as an attribute vector. There are 62 
samples including 40 cancerous and 22 non-cancerous ones. There are 1988 genes measured per 
sample. The colon tissue data were normalized to the mean value of each chip as described in the 
original publication(Alon 1999). In contrast to other methods, no pre-selection of the data was 
necessary, nor did we shift or rescale the expression patterns across experiments.

We have identified a set of significantly different expression patterns which group the tissue 
samples. Four classes were identified based only upon gene expression data. The table shows the 
make-up of each class with each tissue. The class members are collected in the colored boxes. 
The gray colored samples in the list are non-tumorous tissue samples. Classes 1 and 4 consist 
almost entirely of tumorous samples. These classes are identified based only on gene-expression 
and did not include the tumorous/non-tumorous label. Therefore, the classification identifies two 
gene-expression patterns indicative of tumorous cells.

ORF class 1 class 2 class 3 class 4 ORF class 1 class 2 class 3 class 4
tumor;patient_01 1 0 0 0 tumor;patient_03 0 1 0 0
tumor;patient_02 1 0 0 0 normal;patient_03 0 1 0 0
normal;patient_02 1 0 0 0 normal;patient_04 0 1 0 0
tumor;patient_04 1 0 0 0 tumor;patient_05 0 1 0 0
tumor;patient_06 1 0 0 0 normal;patient_05 0 1 0 0
normal;patient_06 1 0 0 0 tumor;patient_07 0 1 0 0
tumor;patient_11 1 0 0 0 normal;patient_07 0 1 0 0
tumor;patient_14 1 0 0 0 tumor;patient_08 0 1 0 0
tumor;patient_15 1 0 0 0 normal;patient_08 0 1 0 0
tumor;patient_16 1 0 0 0 tumor;patient_09 0 1 0 0
tumor;patient_17 1 0 0 0 normal;patient_09 0 1 0 0
tumor;patient_18 1 0 0 0 tumor;patient_10 0 1 0 0
tumor;patient_19 1 0 0 0 normal;patient_10 0 1 0 0
tumor;patient_20 1 0 0 0 tumor;patient_12 0 1 0 0
tumor;patient_22 1 0 0 0 normal;patient_12 0 1 0 0
tumor;patient_23 1 0 0 0 normal;patient_27 0 1 0 0
tumor;patient_25 1 0 0 0 tumor;patient_35 0 1 0 0
tumor;patient_27 1 0 0 0 normal;patient_01 0 0 1 0
tumor;patient_28 1 0 0 0 normal;patient_11 0 0 1 0
tumor;patient_37 1 0 0 0 normal;patient_28 0 0 1 0
tumor;patient_38 1 0 0 0 normal;patient_29 0 0 1 0

tumor;patient_30 0 0 1 0
normal;patient_32 0 0 1 0
tumor;patient_33 0 0 1 0
normal;patient_33 0 0 1 0
normal;patient_34 0 0 1 0
normal;patient_35 0 0 1 0
normal;patient_36 0 0 1 0
tumor;patient_36 0 0 1 0
normal;patient_39 0 0 1 0
tumor;patient_40 
 0 0 1 0
normal;patient_40 0 0 1 0
tumor;patient_13 0 0 0 1
tumor;patient_21 0 0 0 1
tumor;patient_24 0 0 0 1
tumor;patient_26 0 0 0 1
tumor;patient_29 0 0 0 1
tumor;patient_31 0 0 0 1
tumor;patient_32 0 0 0 1
tumor;patient_34 0 0 0 1
tumor;patient_39 0 0 0 1

Class Membership for Colon Tissue Gene Expression Classes

The colored blocks indicate classes of samples. Gray boxes indicate non-tumorous colon tissue. Other samples are 
tumorous tissue. Note that classes 1 and 4 (yellow and orange) are both almost entirely tumorous samples.

Which genes are responsible for the distinction between the two tumor classes? We can use 
statistical tests on the classification results to identify which genes (attributes) were most 
significant in distinguishing the classes (of samples) from each other, thereby gaining insight into 
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the important players in the tumorous samples. We calculate the joint probability between classes 
for each attribute. A joint probability of zero indicates gene expression levels which are 
completely separated and distinct, while a joint probability of one indicates identical 
distributions of expression levels. See the appendix for a more detailed description of the joint 
probability.
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Hsa.1732 ;U12255; Fc receptor hFcRn mRNA, complete cds.     


Hsa.33   ;M64110; mRNA, complete cds.                       


Hsa.1732 ;U12255; Fc receptor hFcRn mRNA, complete cds.     


Hsa.1687 ;R73052; "Homo sapiens growtharrestspecific prote


Hsa.2700 ;X82494; for fibulin2.                            


Hsa.11850;T93284; COMPLEMENT C1S COMPONENT PRECURSOR (Homo s


Hsa.15101;T75577; 1DMYOINOSITOLTRISPHOSPHATE 3KINASE B (


Hsa.2344 ;X86693; for hevin like protein.                   


Hsa.2097 ;M36634; intestinal peptide (VIP) mRNA, complete cd


Hsa.11712;T61446; PUTATIVE DNA BINDING PROTEIN A20 (Homo sap


Hsa.1221 ;T60155; "ACTIN, AORTIC SMOOTH MUSCLE (HUMAN);.    


Hsa.11582;T61333; METALLOPROTEINASE INHIBITOR 3 PRECURSOR (G


Hsa.11616;T60778; MATRIX GLAPROTEIN PRECURSOR (Rattus norve


Hsa.1288 ;T53889; COMPLEMENT C1R COMPONENT PRECURSOR (HUMAN)


Hsa.10755;R78934; ENDOTHELIAL ACTINBINDING PROTEIN (Homo sa


Hsa.1832 ;J02854; LIGHT CHAIN 2, SMOOTH MUSCLE ISOFORM (HUMA


Hsa.37937;R87126; "MYOSIN HEAVY CHAIN, NONMUSCLE (Gallus gal


Hsa.1682 ;M92843;                                           


Hsa.1479 ;X12496; for erythrocyte membrane sialoglycoprotein


Hsa.1241 ;M19159; heatstable alkaline phosphatase (PLAP1) 


Hsa.14478;R38758; SYNAPTIC VESICLE PROTEIN 2 (Rattus norvegi


Hsa.878  ;T61609; LAMININ RECEPTOR (HUMAN);.                


Hsa.489  ;T47144; JN0549 RIBOSOMAL PROTEIN YL30.            


Hsa.5444 ;T48804; 40S RIBOSOMAL PROTEIN S24 (HUMAN).        


Hsa.7395 ;R10066; PROHIBITIN (Homo sapiens)                 


Hsa.951  ;M36981; NDP kinase (nm23H2S) mRNA, complete cds. 


Hsa.539  ;U14971; protein S9 mRNA, complete cds.            


Hsa.6555 ;H18451; MITOCHONDRIAL TRANSCRIPTION FACTOR 1 PRECU


Hsa.832  ;T51023; HEAT SHOCK PROTEIN HSP 90BETA (HUMAN).   


Hsa.904  ;R42798; A34421 MALEENHANCED ANTIGEN  ;.         


Hsa.490  ;T70062; "Human nuclear factor NF45 mRNA, complete 


Hsa.853  ;R42501; INOSINE5’MONOPHOSPHATE DEHYDROGENASE 2 (


Hsa.9218 ;T51858; EUKARYOTIC INITIATION FACTOR 4B (Homo sapi


Hsa.929  ;M94556; PROTEIN MITOCHONDRIAL PRECURSOR (HUMAN);. 


Hsa.4996 ;R37428; "Human unknown protein mRNA, partial cds. 


Hsa.7203 ;R96357; POLYADENYLATEBINDING PROTEIN (Xenopus lae


Hsa.7    ;H72234; DNA(APURINIC OR APYRIMIDINIC SITE) LYASE 


Hsa.8068 ;T57619; 40S RIBOSOMAL PROTEIN S6 (Nicotiana tabacu


Hsa.689  ;T62878; CYTOCHROME C OXIDASE POLYPEPTIDE IV PRECUR


Hsa.8833 ;R93337; HOMEOTIC GENE REGULATOR (Drosophila melano


Hsa.481  ;D10523; for 2oxoglutarate dehydrogenase, complete


Hsa.8010 ;R15447; CALNEXIN PRECURSOR (Homo sapiens)         




The figure displays the attributes that are most significant in distinguishing class 4 from the other 
classes. The more intense colors represent highly distinguishing genes, i.e. a smaller joint density 
between the distributions. The sign indicates the direction of change of the mean expression 
level: positive (red) indicates an up-regulation relative to the class 4 distribution, negative 
(green) indicates down-regulation relative to class 4. 

Future Work

Model Extension

We are pursuing further extensions of these methods to more complex statistical descriptions. 
The statistical models described so far have only used real-valued variables described by normal 
distributions to describe the observations. The software toolboxes already accommodate 
mixtures with discrete variables, which can be useful for including information such as blood 
type or transposon site. The models we have described so far are simple in terms of network 
structure and the statistical correlations encoded. We are extending the methods to dynamic 
Bayesian networks to further develop hypothesis testing and reverse engineering applications.
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Extension to more complex networks

Model Queries

We are developing additional methods to extract useful information from the data models, 
including finding joint probabilities of various kinds. In addition, we are exploring supervised 
classification methods labelled nodes, e.g. training with a pre-determined number of classes with 
observed labels such as 'ALL' and 'AML'.

Implementation Issues

Finding the optimal solution to the network structure and parameter values is a computationally 
demanding task. Also of concern is computing the results of queries to the network - Bayesian 
estimation from the model requires the calculation of large, multi-dimensional integrals. Ideally, 
other constraints can be put on the network parameters and structure to allow further 
probabilistic inference. The scalability of the methods with more data samples, more variables, 
and network complexity is essential. We have implemented multidimensional adaptive Monte 
Carlo methods based on the VEGAS algorithm(Press 1995).

Expt 1 Expt 2 Expt 3 Expt 4 Expt 5
Gene 1 -0 .96 0.05 0.87 -0 .17 -1 .2
Gene 2 -0 .89 -0 .67 0.12 0.74 0.98
Gene 3 1.11 -0 .07 -0 .99 -0 .13 1.02
. . . ... ... ... ... ...
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Appendices

Finite Mixture Model - Principal Equations

The following discussion is based largely on the references (Cheeseman 1990; Hanson 1990; 
Potts 1996).

S  is a finite space of all possible models

h  is a particular model, embedded in S , characterized by:

 a set of classes C  with J  members, c1KcJ

 an inter-class probability distribution function τ  and it’s parameters υ , specifying 
p c j |υ ,τ ,h,S( )

Each class specifies a set of probability distribution functionals T  and their parameters V  for 
each of K  attributes, Tj : tj1KtjK  and  Vj : vj 1Kv jK

The observed data set is E  with I  cases of observations E1 KEI  of the K  attributes, e1,1KeI ,K

Gene Attribute Vector

The gene attribute vector used for learning the model is, at minimum, a set of real-numbered 
expression levels. These attributes have an uncertainty associated with the experimental 
measurements. The uncertainty in the data is accounted for in the learning procedure by not 
allowing the width of the class-attribute pdf  to be less than this uncertainty. The attribute-vector 
can also include other types of information, such as category membership, alternative pdfs, etc. 
Augmenting the expression patterns with such information is potentially very useful. We call a 
particular observation of the attribute vector an attribute instance. The results of the classification 
are a set of identified attribute-value patterns, called classes, which have a high likelihood of 
describing naturally occuring groupings in the attribute vectors observed.

Probability Distribution Functions

Each class describes a probability distribution for each attribute. For example, if tjk  specifies a 

normal distribution over real number attribute k  for class j , then the probability of observing the 
i th case datum for that attribute eik   would be defined by the normal functional form

P eik | cj ,vjk ,t jk( )=
1

2πσ jk

e
− 1

2

eik −µ jk

σ jk









2

with specified parameters

vjk :σ jk ,µ jk
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Similarly, pdfs for enumerated data types and other distributions can be specified. Currently we 
are only working with real-valued data and normal distributions.

Likelihood of Observing the Data

The probability of observing a single case, given the class, the pdf form and it’s parameters, is a 
product over all attributes

P Ei | cj ,Vj ,Tj( )= P eik | cj ,vjk ,t jk( )
k
∏

The joint probability of the data with the class, given the model and all of the model parameters 
and specifications, is

P Ei ,cj | Vj ,Tj ,ν,τ, h, S( )= P cj |ν,τ,h,S( )P Ei | cj ,Vj ,Tj( )
= P cj |ν,τ,h,S( ) P eik | cj , vjk , tjk( )

k
∏

The total probability of observing a single case, then, is the sum of the joint over all classes

P Ei | V,T,C,ν,τ ,h,S( ) = P cj |ν,τ ,h,S( )P Ei | Vj ,Tj( )
j
∑

= P cj |ν,τ ,h,S( ) P eik | vjk , t jk( )
k
∏



j

∑

and the total probability of observing the entire data set, given the model, is the product of the 
probabilities of each observation

P E | V,T ,C,υ ,τ ,h,S( ) = P cj | ν,τ, h, S( ) P eik | vjk ,tjk( )
k
∏



j

∑
i
∏

Learning the Model

Learning the model involves a two-level search. The highest level is to find the MAP model 
form conditioned on the data

P T ,C,τ ,h | E,S( ) =
P T,C,τ,h | S( )P E | T,C,τ, h, S( )

P E | S( )

A s s u m i n g  t h a t  t h e  m o d e l  s p a c eS  i s  f i x e d ,  P E | S( ) is a constant. We also introduce a uniform 
prior on the probability of the model given the model space: all models are equally likely a 
priori. This allows us to simplify the above equation to
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P(T ,C,τ ,h | E,S) ∝ P(E | T ,C,τ ,h,S) = dVdνP E,V,υ | T,C,τ, h, S( )∫∫
The lower level search is to find the MAP parameter values, conditioned on the data, given the 
model form

P V,υ | E,T ,C,τ ,h,S( ) =
P E,V,ν | T,C,τ, h, S( )

P E | T,C,τ,h, S( )

=
P E,V,ν | T,C,τ,h,S( )

dVdνP E,V,ν | T ,C,τ ,h,S( )∫∫
T h e  p r o b l e m  o f  l e a r n i n g  t h e  m o d e l  n o w  c o n s i s t s  o f  m a x i m i z i n g   t h e  j o i n t  p r o b a b i l i t y  o f  t h e  d a t a  
a n d  t h e  m o d e l p a r a m e t e r  v a l u e s ,P E,V,ν | T,C,τ,h,S( ) and evaluating its integral over all 
possible parameter values. We can explicitly write out the form of this equation

P E,V,ν | T,C,τ,h,S( ) = P(V,υ | T, C,τ, h, S)P E | V,T ,C,υ ,τ ,h,S( )
= P(V,υ | T, C,τ, h, S) P Ei ,Cj | Vj ,Tj ,h,S( )

j
∑

i
∏

= P(V,υ | T, C,τ, h, S) P cj |ν,τ,h,S( ) P eik | vjk ,tjk( )
k
∏

j
∑


i

∏
We again assume a minimum information form for the prior expectations on the parameters

P(V,υ | T ,C,τ ,h,S) = P υ | τ, h, S( ) P vjk | tjk , h, S( )
jk
∏

There is an implicit penalty for adding more classes into the model which is represented by   
P cj | ν,τ ,h,S( ). Because the sum of all class probabilities must be unity, increasing the number 

of classes lowers the prior probability of each class. Unless the additional classes lead to a higher 
probability of the observations, the joint will be smaller.

We maximize the joint probability P E,V,ν | T,C,τ,h,S( ) using a variation of the EM algorithm 
of Dempster and Titterington(Dempster 1977; Titterington 1985) with one additional 
assumption: that each case in the training set belongs to some class. This allows us to use a 
normalized class membership probability P Ei ,Cj | Vj ,Tj , h, S( ) to update the parameter estimates.

The algorithm is

1. Start with guessed parameters V

2. evaluate P Ei ,Cj | Vj ,Tj , h, S( ) explicitly

3. re-estimate parameters V using a sum weighted over class membership, e.g. 
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µ jk
' =

P eik ,cj( )µ jk
i
∑

P eik ,cj( )
i
∑

4. plug the resulting parameter estimates to evaluate the joint probability in step 2 and repeat

The algorithm will find a local maximum in the joint probability and thus in the MAP parameter 
values. Because there are many local minima, the learning algorithm must guess many initial 
parameter values and optimize. The overall model fitness for each optimum set of parameters 
may be evaluated by the integral of P E,V,ν | T,C,τ,h,S( ). The evaluation of this integral is 
difficult because of the high dimensionality of the parameter space and must be approximated. 
The integral is approximated by making use of the fact that the best optima of the model form 
and parameters result in an integral over the joint probability which is dominated by the integral 
over the region of the optimum parameters

dVdν∫∫ P E,V,ν | T,C,τ,h, S( ) ~ P E,V,ν | T,C,τ,h,S( )
R
∫∫

Where the region R  is a region surrounding the locally maximum parameter values. This 
integral is reported as the model marginal and can be used to find the best models. 

The Attribute Influence

The attribute influence Ajk  is a useful parameter for distinguishing which attributes best 

distinguish the class from the data set as a whole. This is done by taking the cross-entropy of the 
model in question with a single class model h0  which describes the entire data set.

Ajk = P eik | v jk ,tjk ,cj ,h,S( )log
P eik | vjk ,tjk ,c j ,h,S( )
P eik | v0k ,t0k, c0,h0, S( )i

∑
T h e  M a r g i n a l  J o i n t  P r o b a b i l i t y  o f  C l a s s e s  f o r  F e a t u r e  S e l e c t i o n  ( J P C F )

T h e  m a r g i n a l  j o i n t  p r o b a b i l i t y  o r  j o i n t  d e n s i t y  o f  s t a t e s  i s  a  u s e f u l  m e a s u r e  f o r  f i n d i n g  a t t r i b u t e s  
w h i ch  m o s t  d i s t i n g u i s h  a  c l a s s  f r o m  o t h e r  c l a s s e s .  I t  c a n  b e  i m a g i n e d  a s  m e a s u r i n g  t h e  o v e r l a p  o f  
t w o  p r o b a b i l i t y  d i s t r i b u t i o n s .  W e  c a l c u l a t e  t h e  m a r g i n a l  j o i n t-p r o b a b i l i t y  a s  a n  i n t e g r a l  o f  t h e  
p r o d u c t  o f  t h e  c l a s s  m e m b e r s h i p  o v e r  a l l  v a l u e s  o f  t h e  a t t r i b u t e ,k .  W e  e s t i m a t e  t h i s  i n t e g r a l  
u s i n g  B a y e s  r u l e  a n d  M o n t e  C a r l o  m e t h o d s .
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jpcf cj 1,c j2 | k( )≡ P c j1 ,cj 2 | k,h, S( )= P(cj 1,c j2 ,ek | h, S)dek∫
= P cj1 ,cj 2 | ek ,h,S( )∫ P(ek | h,S)dek

= P cj1 | ek , cj 2 ,h,S( )P cj 2 | ek ,h,S( )P(ek | h, S)∫ dek

= P cj1 | ek , h,S( )P c j 2 | ek , h, S( )∫ P(ek | h, S)dek

=
P ek | c j1, h,S( )P c j1 | h,S( )

P ek | h, S( ) ⋅ P ek | c j2 , h,S( )P c j 2 | h,S( )
P ek | h,S( )∫ P(ek | h, S)dek

=
P ek | c j1, h,S( )P ek | c j2 , h, S( )

J P ek | cjc ,h,S( )
c=1

J∑∫ dek

where ek  is the value for attribute k, only.

The jpcf is always between zero and one. We add further information to the display of the jpcf by 
giving it a sign: a positive sign means that the mean of class j2 is higher than the mean of class 
j1; a negative sign indicates the reverse.

A crude but fast approximation to the integral above can be implemented with implicit 
importance sampling using the observed data as the samples. In this case, the marginal joint is 
approximately,

jpcf ≈ 1

N

P eik | k,c j1, h,S( )P eik | k,cj 2 ,h, S( )
P e

ik
| k,c jc ,h, S( )

c

∑ 


2

i =1

N∑
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Jpcf of class 1 vs all other classes by attribute for test data

Brighter colors represent most significant differences. Red indicates that the mean expression level is higher in class 
n than class 1, green the opposite. Black indicates identical attribute distributions.

Test data and model distributions

Class number 1 is red. Classes two and three are green and blue, respectively. 

We can use the marginal joint probability recursively to find which attributes are most important 
in distinguishing one class from all of the others by calculating the marginal probability for class 
j1. This summed joint density measure is can be expressed as,
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jpcf (cj 1 | k) ≡ P c j1 | k,h,S( )
= P cj1 ,cj 2 | k, h,S( )

j 2
∑

= 1
J

jpcf cj1 ,cj 2 | k( )
j 2

J∑
Those attributes which have a low jpcf are the most distinguishing attributes. and the 
attribute/class combinations with the smallest values of jpcf are the most important.

Similarly, we can compare the patterns of overlap between classes using the jpc by using all of 
the attributes,

jpcf cj 1,c j2( )≡ P c j1,c j 2 |, h,S( )=

=
P e | cj1 ,h,S( )P cj1 | h, S( )

P e | h,S( ) ⋅ P e | c j 2 ,h,S( )P c j 2 | h,S( )
P e | h,S( )∫ P(e | h, S)de

=
P e | cj1 ,h,S( )P e | c j2 , h,S( )

J P e | c jc , h,S( )
c=1

J∑∫ de
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where

P e | cjc ,h,S( )= P ek | cjc ,h,S( )
k

∏
Note that the integral in the jpc is multidimensional, spanning the k-dimensional space of 
attribute values. This integral is estimated by Monte Carlo methods or by implicit importance 
sampling.

Cross-indexing with categories

One method of integrating the expression classes with categorical databases, and thus assign 
some meaning to the classes found, is to look for enrichment of a functional category in a single 
class. We want to find the fraction of genes falling into each class for each category. 
Combinations of functional categories co-occurring in a class pattern may also be useful. We 
define the enrichment R M,C( ) to be the sum of the class probabilities over all of the genes that 
are members of the category, normalized so that the sum across all classes for a single category 
is one. This can be written as a matrix multiplication,

R(M,C) = P E | C,V,Tν,τ ,h,S( )× P E,M( )

where P E, M( ) is a category membership matrix with each row corresponding to a functional 
category, each column corresponding to a single gene, and each entry being 1 or 0 for member or 
non-member. 

Enrichment =

class1 class2 L
categ1 ⋅ ⋅ ⋅
categ2 ⋅ ⋅ ⋅

L ⋅ ⋅ ⋅















=

gene1 gene2 L
categ1 1 0 ⋅
categ2 0 0 ⋅

L ⋅ ⋅ ⋅















×

class1 class2 L
gene1 0.95 0.05 ⋅
gene2 0 0.99 ⋅

L ⋅ ⋅ ⋅















Dataflow and Software

Matlab routines have been written which perform the operations and generate the visualizations 
described above. There are also routines that create input files for AUTOCLASS  and read the 
output files for further analysis. There are 3 major types of data structures defined: datasets, 
classes, and categories. Datasets are loaded using specific formats. Classes are results of 
AUTOCLASS search or predict operations. Categories are databases of labels for genes or 
samples. There are a variety of routines for combining and sorting these structures and for 
generating displays of the results.
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Raw  data files

Churawload
Spellrawload

DeRisirawload
Rubinrawload

[r1;r2;r3…]

geneXconvertaw

geneX2AC

geneXloadACrp

Autoclass

datasets

geneXreorderdata

MIPS ,PIR,KEGG

MIPSgeneload, KEGGgeneload
YPDgeneload, Spellcycgeneload

Sctransfacld, Lrgeneload

MIPSgenesort, Lrgenesort
KEGGgenesort, YPDgenemunge
YPDgenesort, Spellcycgenesort

Lrgenesort

categories

Summary data files

geneXload

_dsxx
_lrxx
_chdxx

_dsxxacyymdzz
classes

geneXreorderAC

Ms,Ks, 
Ys,Ss,Ps,L


r

geneXreordercateg

geneXloadACpd

Autoclass Input
 Databases

geneXACreportgeneXACrun

Autoclass Output
 Databases

geneXACpredict

Mszz,Kszz,Yszz,
Sszz,Psxx

geneXAC2db

Software Components and Dataflow into the Internal Storage Objects

Boxes represent collections of matlab routines. Labels in boxes are names of principle functions. Hexagons 
represent internal storage objects. Round-cornered boxes are routines external to matlab. Cylinders are databases.
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geneXplot
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geneXhistclass
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Fig


geneXplotdata
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classes
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Fig


__lnk
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_dnd
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geneXcrosscate
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Fig


geneXplotcrosscate
g
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geneXdumpclass


txt


geneXcrossclass


Fig


geneXplotcrossclas
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geneXgraphclass


Fig


geneXAC2txt


txt


geneXgraphclassmode
l


Fig


geneXdumpjtden


txt


geneXdata2txt


txt


Data Analysis Routines

Output types include graphical figure displays and text files.




