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Abstract

How can molecular expression experiments be interpreted with >10* measurements per chip?
How can one get the most quantitative information possible from the experimental datawith
good confidence? These are important questions whose solutions require an interdisciplinary
combination of molecular and cellular biology, computer science, statistics, and complex
systems analysis.

The explosion of data from microarray techniques present the problem of interpreting the
experiments. The availability of large-scal e knowledge bases provide the opportunity to
maximize the information extracted from these experiments. We have devel oped new methods of
discovering biological function, metabolic pathways, and regul atory networks from these data
and knowledge bases. These techniques are applicable to analyses for biomedical engineering,
clinical, and fundamental cell and molecular biology studies.

Our approach uses probabilistic, computational methods that give quantitative interpretations of
datain abiological context. We have selected Bayesian statistical models with graphical network
representations as a framework for our methods. As afirst step, we use a naive Bayesian
classifier to identify statistically significant patternsin gene expression data. We have devel oped
methods which allow us to @) characterize which genes or experiments distinguish each class
from the others, b) cross-index the resulting classes with other databases to asses biological
meaning of the classes, and c) display a gross overview of cellular dynamics. We have devel oped
anumber of visualization tools to convey the results. We report here our methods of
classification and our first attempts at integrating the data and other knowledge bases together
with new visualization tools.

We demonstrate the utility of these methods and tools by analysis of a series of yeast CDNA
microarray data and to a set of cancerous/normal sample data from colon cancer patients. We
discuss extending our methods to inferring biological pathways and networks using more
complex dynamic Bayesian networks.
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I ntroduction

New techniques for interpreting molecular expression experiments are needed in the face of
massively parallel acquisition of these patterns with techniques such as cDNA microarrays(Jan
1999). The quantities of data preclude complete analysis by inspection. We are pursuing new
methods of analysis which will utilize the full value of these data and knowledge bases for
biological and biomedical research. Our ultimate goal is to discover new biological pathways,
networks, and regulatory mechanisms, to identify new molecular expression mechanisms leading
to cancer and other developmental phenomena, and to build predictive models of biological
systems.

We have several concerns which are guiding our selection and devel opment of methods.

Criteriafor Selecting and Devel oping M ethods

Automate pattern identification in the data due to the large volume
of data

Integrate heterogeneous information types to infer interactionsin
complex systems

Support hypothesis testing and inference using quantitative
statistical measures

Treat many-to-many mappings between genes and
pathways/networks

Integrate hierarchical levels of information and views of function

Model the underlying stochasticity of biological processes

Utilize learning algorithms that account for missing information in
a principled way

Require extensibility of the methods from coarse-level
characterization to more intricate interactions

We have developed aroad map of goals with roughly increasing sophistication of analysis. We
have invented and selected methods of analysis which provide a development path with
increasing sophistication, building on the first proof-of-principle steps, and yielding useful
discoveries and predictions at each phase.



A Path to Enlightenment

Clustering/Classification discovering patterns within the
data, generating statistical
descriptions of expression
patterns, quantifying
distinguishing characteristics
of the patterns

Integration find patterns which signify
function, regulation, etc. which
are known from other
knowledge bases, combine
classification results with other
discriminative methods
(support vector machines, etc)

Inference discover new category
members and network links
using classification and
analysis of integrated
knowledge

Model Extension classification methods of
a)continuous data with discrete
variables, and b)including
more complex conditional
dependenciesin the statistical
model between elements and
acrosstime

Hypotheses Testing supporting the domain expert
(biologists and biomedical
researchers), provide
likelihood of hypothesized
relationships and factors given
the integrated data and
knowledge bases

Reverse Engineering find network and pathway
links, look for causality, build
predictive models

We have implemented significant portions of the first three phases in aworking prototype of the
analysis. Investigationsinto the 'model extension' phase and beyond are ongoing. This report
focuses on the first three phases of devel opment.

Background
Microarray technology for 'omics' studiesis arapidly expanding field. An excellent review of

microarray technology at the beginning of 1999 is the special issue of 'Nature Genetics
(Supplement Jan 1999). The applications include fundamental studies of eukaryotic cellular
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dynamics (DeRisi 1997; Chu 1998; Eisen 1998; Spellman 1998; Spellman 1998), and signature
expression patterns of cancerous tissues (Alon 1999; Perou 1999). There are several published
methods noted below which approach the problem of extracting meaningful patterns of co-
expression from large-scale microarray data. These methods do not meet all of the criteriawhich
we have identified. Some methods of clustering and classification are complementary to
probabilistic networks in their capabilities and are potentially very useful in combination.

Graphical models and probabilistic networks have been the subject of research in the machine
learning community for many years. The literature on these subjects is voluminous. For excellent
reviews, see references (Heckerman 1997; Jensen 1998). Graphical models alow the
representation of complex statistical relationshipsin an intuitive way. They also provide one
framework for describing the statistical operations and assumptions used in analysis.
Probabilistic networks are statistical descriptions of data and hidden variables. The structure and
parameters of the network can be learned by a variety of methods. Bayesian networks are
probabilistic networks whose structure and parameters are improved by an agorithm which starts
with aprior network and uses the new data. Using Bayesian networks, it is possible to
incorporate domain-specific expert knowledge into the analysis in a principled manner in the
prior network. One can aso use minimal information priors on the network to learn patterns and
structure a priori.

Existing Methods of Expression Array Analysis

The published methods of clustering gene expression patterns to date include heirarchical
clustering (Eisen 1998), Fourier analysis for cell-cycle time series (Spellman 1998), k-means
(Tavazoie 1999) and self-organised maps (Golub 1999; Tamayo 1999). While useful for an
inspection analysis of the data, these methods do not provide aframework for afull statistical
analysis or constrained extensions in complexity of the description of the data. Some methods
are well suited to emphasizing particular features in the data of a carefully constructed series of
experiments, for example the Fourier analysis for cell-cycle regulated genes. A more rigorous
and generalized statistical treatment will yield rich interpretations of the data.

Most integration and inference efforts to date have involved visual inspection of the clusters, e.g.
to identify genes which change during sporulation of yeast(Chu 1998) or to find similarity by
tissue type(Alon 1999; Golub 1999; Perou 1999). Tavazoie and co-workers used their clusters as
abasis for discovering upstream promoter sequences (Tavazoie 1999), as did Spellman, et

al (Spellman 1998).

There are published papers addressing the problem of inferring network architecture using
boolean networks(Liang 1998), coupled continuous non-linear differential equations(Chen
1999), and neura networks(Weaver 1999). We propose using a generalized statistical framework
which alowsamaximally rich, quantitative interpretation of the data and carries measures of
uncertainty and partial certainty.

Our Approach: Graphical Models + Probabilistic Networks

Graph theory provides a unifying framework for encoding statistical relationships and
operations. It isthe union of statistics and computer science. The discovery and evaluation of
complex statistical relationships can be implemented using machine lear ning techniques,
automatically identifying statistically significant features among collections of heterogeneous
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types of information. See the excellent reviews (Heckerman 1997; Jensen 1998) for amore
compl ete description of Bayesian networks and associated techniques.

The Value of Probabilistic Networks

The theory of probabilistic networks is used to automate pattern identification in data, provide
guantitative measures of cross-correlation, assess complex hypotheses and decisions against
known data, and reverse engineer network structure all within the same framework while
accounting for missing and noisy datain a principled way. This allows the application of
increasingly sophisticated analyses.

The Value of Graphical Model Representations

Graphical models are intuitive visual representations of statistical relationships encoded by
probabilistic networks. The nodes represent variables and the arrows represent influences
between variable values. More specifically, a node represents a probability distribution of the
variable value and the arrows specify possible conditional dependancies. The lack of an arrow
signifies conditional independence: two variables not connected by an arrow are specified to be
independent given the values of all common parent nodes. In other words, with no arrow, there
isno direct influence of one variable on the other, but there may be indirect influence through an
another factor.The graphical model gives only a qualitative view of the relationships. The
guantitative aspects are determined by the parameters of the network model. One can think of
each node as having atable of functionals which in some way combine the inputs to produce the
output probability of the variable. This conditional probability table specifies a node-variable's
dependence on all possible combinations of the parent variables' distributions. The
dimensionality of the conditional probability matrix, or transition matrix, is determined by the
number of arrows coming into the node.

Nodes represent variables
which may take a range of
discrete or continous values
and whose values may be
observed, hidden, or partially
hidden

P(lh,S)
PR
P(Elc,h.9)

Arrows represent conditional
dependencies of child nodes
on parent node values

A Simple Graphical Model

These models, representing networks of statistical relationships, provide aframework for
compactly communicating statistical assumptions, operations, and results of inferences. This
becomes particularly important when more complex relationships are treated. For example, some
node-variables can represent molecular concentrations measured from array-expression data,
other nodes can represent common promoter sites, and the arrows can represent in control of
specific gene transcription through these sites.



General Approach

The classifier searches for a statistical model that best predicts the data. More specifically, we
search for the maximum a postori (MAP) model h given the data E and the space of al possible
models S using the form,

< <
phEg="ERIPOIS) 5 a y e s R u e
P(E,9
U s i n g B ay e s ' rul e, modell s m
i . e . f h #£h i K a t ah g o d e o t h e m o
D i s cr et e d i Cattinuous distritiution nddesihave different n o d e i n d e x e
c | a s s p a t t e paametersetsindexetl byt parentidissretenode ot o b s er v e ¢
inferred from fitting to data value, i.e. conditional probability distributions

Prior network
structure

/ I mproved/learned

Expt 1 Expt 2 Expt 3 Expt 4 Expt 5 - .
[Gene 1 -0.96 005 087 -017 -1.2 These nodes represent distributions

Data Gene 2 -0.89 -0.67 0.12 0.74  0.98 of observations
[Gene 3 1.11  -0.07 -0.99 -0.13 1.02

Model Probab. Dist.

L e ar n i n g N et w o r K P ar a m e
G i v e n a n et w o r Kk s t r uct urwr e, W
p ar a m et e r s u s i n g t h e d a t a S
th e m e t h o d s
N a T v e B a y e s c | a s s i f i e r
O u r f i r s t m o d e | i s a F i n i t e
b e ¢c a u s e it a s s u m e s v e r vy f e w
g r ap h i c¢c asl aniemt ev do r ak't sdtirsuccot vu er rei.
w h a t t h o s e p at t e r n s s h o u |l d b
i n t e g r a e d w i t i C a ece.lsaéelsnms & trf sm @
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optimum number of classes and parameters for the pdfs are learned using a combination of a
Monte Carlo search through the model space and an Expectation Maximization (EM) search for
locally optimum parameters. The simplest search mode does not search for covariance between
statistical parameters or attributes. This method of finding classes of attribute (expression)
patterns in the data can be interpreted as a graph-theoretical tree of probabilistic relationships.
The graph-theory approach to Bayesian networks provide a path to expanding the complexity of
the learned relationships to covariance and beyond. See the Appendix and the references therein
for details of the mathematical development.

Naive Bayes Graphical Model

The graphical model of the naive Bayes classifier is simple. The model contains one variable
representing a class-index (c) and the others representing observed data ( E). In this network, the
class-index is discrete and enumerates the classes. The data nodes can be either discrete or
continuous. The discrete data nodes contain tables of conditional probabilities, one set for each
value of the class-index. Continuous data nodes contain tables of conditional probability
distributions. For example, using a multivariate normal distribution, thereis one pair of mean
and standard deviation parameters for each of the discrete parent's index.

The Naive Bayes Classifier

The Autoclass Implementation of the Naive Bayes Classifier

The actual model which autoclass implements is slightly more complex because of the way it
treats missing data: every 'data attribute has a discrete variable input which has the states
‘observed' or 'not observed' to handle missing data. Other methods exist for evaluating partially
observed network states when looking for optimum parameters or when learning node-value
probabilities given a set of observations. AUTOCLASS also implements block-covariance and
supports discrete, enumerated data nodes. We have not used these featuresin theinitia
applications.

The Toy Dataset - illustrating the method

Datais made up for illustration with 3 distinct patterns and random additive noise. The artificia
datais composed of 3 different patterns with 300,200,and 100 respective cases generated from
the sum of three different template patterns and an additive random noise function. The
classification results are real. The software algorithm identified the best statistical model of the
datato have 3 classes with the correct probability distributions. Each class defines a probability
distribution across each attribute (experiment) and is indexed by the variable C. Data are plotted
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with color matching the highest class membership probability. The learned class probability
distribution functions are plotted in the 3rd dimension. Colors indicate class for each distribution.

One feature of the Bayesian network is the use of priors: probabilities which are assigned before
taking into account the new observations. The priors explicitly describe the assumptions and
expectations used in the models. The naive Bayes classifier assumes minimal information. All
models are equally likely a priori, regardless of the number of classes. Also, all classesina
model are equally likely. This prior buildsin penalties for increased complexity because
introducing an additional class reduces the prior likelihood of every class. This mechanism
which prevents over fitting of the data also accounts for the number of observations, i.e. the
amount of evidence. With fewer observationsit islikely that there will be fewer classes because
the strength of evidence for a new class must outweigh the cost of reducing the likelihood of all
other classes. The figure demonstrates the results of a classification run where there are atotal of
600 observations vs. arun with only 6 observations. Under-classification can occur if there are
few examples of a class present in the data.

Model Probability Distributions Model Probability Distributions
for all 2 class(es), model marginal exp(-155.358) for all 3 class(es), model marginal exp(-11930.1)
tdat01, tdatdlac01mdol tdat04, tdato4ac01md01l

~ Model Probab. Dist.

~ Model Probab. Dist.

Expression Level -4 1 .
Experiment Expression Level 21
Experiment

Two Models Learned from Small and Large Datasets

Fewer samples result in fewer classes being identified, more samples begin to outweight prior estimates and
assumptions

One useful feature for interpreting the model resultsis the marginal likelihood of the model
given the data. Thisisan evaluation of the global description of the data by the model and
determines a goodness of fit. The usefulness of the model likelihood becomes apparent when
comparing the best identified models. If the models are sufficiently similar in their effectiveness
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in describing the statistics of the data, their marginal likelihoods will be similar. In the case of
insufficient evidence, several models may be found equally likely. This situation thus easily
identified.

Model Probability Distributions Model Probability Distributions
for all 3 class(es), model marginal exp(12156.3) for all 3 class(es), model marg. exp(12163.9)
tdat05, tdat05ac01md0l tdat05, tdat05ac01md02

~ Model Probab. Dist.
~ Model Probab. Dist.

Expression Level 21 Expression Level 21
Experiment Experiment

Two models with Essentially Equal Likelihoods

The model marginal likelihood is a measure of goodness of fit to the data. The single trace in the graph of
expression levels falls mostly into different classes in the two models.

Methods, Testing, and Results

Classifications and analysis of the data were performed for two systems: yeast cell cycle series
and cancerous/normal human colon tissues.

Applications to Yeast Gene Expression Analysis

Clustering and Classification: Finding Patterns and Distinguishing Features in the
Data

The published differential gene expression data for the budding yeast Saccharomyces
Cerevisiag(DeRisi 1997; Chu 1998; Eisen 1998; Spellman 1998; Spellman 1998) provides
relative mRNA concentrations for each of ~6000 open reading frames (ORFs) across 78
experiments. These data are from genome-wide expression studies of the cell-division-cycle,
sporulation, the diauxic shift, and mutant strains.
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The differential expression datain the yeast experiments were reduced in the following way: the
raw intensity data were corrected for background and then were reduced to a normalized form

C)’5+|Cy3

Thisform has the same advantages as the log-ratio method enumerated by Eisen, but also has the
additional featuresthat 1) it minimizes the errors associated with background subtraction from
low intensity signals, and 2) it constrains the expression levelsto adomain of -1 to +1. To reduce
complication in thisfirst analysis, genes for which there were more than 10% missing
measurements (>7) were removed from the data set. The resulting data set contains 5687 genes
with 2846 bad or 'missing’ data points. In contrast to other methods, no pre-selection of the data
based on expression levels was necessary, nor did we shift or rescale the expression patterns.

Attribute # Experiment Attribute # Experiment Attribute # Experiment

1 Clb2_2 27 cdcl5 080 53 elul50

2 CIn3 2 28 cdcl5 090 54 elul80

3 Cin3 1 29 cdcl5 100 55 elu210

4 gal+- 30 cdcl5 110 56 elu240

5 Alpha000 31 cdcl5 120 57 elu270

6 Alpha007 32 cdcl5 120 58 elu300

7 Alpha014 33 cdcl5 130 59 elu330

8 Alpha021 34 cdcl5 140 60 elu360

9 Alpha028 35 cdcl5 150 61 elu390

10 Alpha035 36 cdcl5 160 62 spo00

11 Alpha042 37 cdcl5 160 63 spo005

12 Alpha049 38 cdcl5 170 64 spo020

13 Alpha056 39 cdcl5 180 65 spo050

14 Alpha063 40 cdcl5 190 66 spo070

15 Alpha070 41 cdcl5 200 67 spo090

16 Alpha077 42 cdcl5 210 68 spoll5

17 Alpha084 43 cdcl5 220 69 spo_ndt80
18 Alpha091 44 cdcl5 240 70 spo_delete early
19 Alpha098 45 cdcl5 250 71 spo delete mid
20 Alphal05 46 cdcl5 270 72 diaux1

21 Alphall2 47 cdcl5 290 73 diaux2

22 Alphal1l9 48 elu000 74 diaux3

23 cdcl5 010 49 elu030 75 diaux4

24 cdcl5 030 50 elu060 76 diaux5

25 cdcl5 050 51 elu090 77 diaux6

26 cdcl5 070 52 elul20 78 diaux7

Gene Attribute Vector with Corresponding Experiments

Our classification was on the genes using the experiments/samples as attributes of that gene. The
immediate result is a grouping of the genes by similarity of expression patterns. 45 statistically
distinguishable patterns were found using the AUTOCLASS classification program from the full
data set.
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Class # Class Weight Class # Class Weight

1 244 24 128
2 228 25 118
3 222 26 115
4 218 27 115
5 210 28 115
6 189 29 109
7 184 30 107
8 173 31 100
9 166 32 98
10 161 33 98
11 158 34 91
12 156 35 88
13 154 36 84
14 152 37 79
15 147 38 76
16 145 39 57
17 145 40 42
18 144 41 39
19 142 42 38
20 142 43 36
21 139 44 36
22 135 45 33
23 131

Class Weight for each class

Autoclass identified 45 patterns of expression. The class weight is the sum of the probabilities of membership in that
class over all genes. If all genes had a probability of only 1 or 0, then the class weight reduces to the numberof genes
in the class.

Class patterns,Yds04ac01mdO01, Classes:40; Class patterns,Yds04ac01md01, Classes:43;
T T T T T T T T T T T T

Expression Pattern Distributions Across Experiments for Classes 43 and 45

The horizontal axisis experiment number. The vertical axisis expression level. The solid plot represents the mean at
each experiment. The dotted lines represent the width of the distribution of expression levels, 1-sigmafrom the
mean.
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Genes with high class
mem bership
probability are very /
similar to the —— |
prototypical

expression pattern

(and not similar to
other class patterns)

ORF

Genes can have

fractional

membership in\‘

multiple classes[| 3t . J
0 05 1

Class Probability

58I §53 2 t
Experiments using different reference values and Experiments

Relative
Influence

Mean
Relative
Influence

Clb
elu
spo
dia

conditions can be reliably incorporated by specifying Cross-entropy of class attribute-mean
conditional independance relationships between experiments in with all attribute-values indicates
the network model distinguishing features of the class pattern

New Methods for Gene Expression Analysis and Display

The figure was generated using our tools and includes severa novel and informative features.
We can generate adisplay like thisfor each of the classes identified. This figure shows results
for class number 43 of the 45 identified. The large image in the middle represents the expression
levelsin the manner of (Eisen 1998). Each row represents a gene and each column an
experiment/chip. Red indicates increased expression and green indicates decreased expression
compared to some reference state. The genes have been reordered based on their probability of
belonging to this class-pattern in descending order. The experiments are grouped by study. The
colored bars across the bottom of the figure show this grouping of experiments. The alpha-arrest,
elutriation, cdcl5, sporulation, and diauxic shift studies are all time series. Thisinitial model
does not make use of any temporal relationships and the columns can be ordered arbitrarily.
Across the top is the prototypica pattern that defines this class. It is the mean value of the PDF
in this class for each experiment. The width of the distribution is not represented here, but is used
for the joint-density analysis discussed below. Across the bottom is arelative influence term
which shows which experiments/attributes distinguish this class from the rest of the data set.
This graph allows one to find the experiments which generated the most distinguishing features
of this pattern. The y-axisis the cross-entropy between the class PDF and the PDF of asingle
class model describing the entire data set. Down the |eft side is a plot of the class membership
probability for each gene. It provides a measure of the similarity of each gene to the class
expression distribution. The y-scale of this plot shows how many genes are displayed. Only
genes with a probability greater than 10% are shown in this figure. Note that the class probability
is continuous and allows a gene to belong to more than one expression pattern class or to no
class. The small box in the lower left isabar chart of the mean relative influence of each study
on distinguishing this pattern from the rest of the data set. The blue text and green arrows are
only included in thisfigure to label the important features of the display.
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Gene Expression Pattern Displayed by Class Membership

specific cell cycle modulations dominate this pattern but was identified without specifying a cyclic structure as input
to the search

Severa of the identified patterns capture cell cycle modulations with different peak times and
phases. The figure shows one such pattern which is referred to as class #40. There are 42 genes
which fall strongly into this class (and no other) and hence have a pattern very similar to each
other. The relative influence shows the peaks and dips at certain pointsin the cell cycle are the
distinguishing features of this pattern.

ORF Gene Protein Function (YPD)
YPL127C HHO1 Histone H1;chromatin/chromosome structure
'YBLOO3C HTA2 Histone H2A
. . . YDR225W HTAL Histone H2A
chromatin reorganization ve.oew  nre2 Histone H28
= YDR224C HTB1 Histone H2B
and structure  verowow w1 Histone H3
YNLO31C HHT2 Histone H3
'YBRO09C HHF1 Histone H4
'YNLO30W HHF2 Histone H4
YERO95W RAD51 DNA repair and recombination
R YMR199W CLN1 G1/S-specific cyclin that interacts with Cdc28p protein kinase to control events at START
cell cy clins  ypLasec CLN2 G1/S-specific cyclin, interacts with Cdc28p protein kinase to control events at START

YIL123W Protein involved in the aging process and in regulation of the cell cycle
may supply cell-wall precursors for budding, known cell-cycle wall g and
Membrane glycoprotein localized at site of bud emergence, required for axial budding pattern
protein localized at surface of growing buds

beta-1,3-glucanase,major isoform involved in cell wall beta-glucan assembly

Component of beta-1,3-glucan synthase
may cross-link glucans and chitin;
specific function unknown

hydrolase

Protein required for maintenence of cell wall integrity and for the stress response

cell wall generation
and maintenance

hored surface

C’dl'bOhy drate Protein involved in chitin synthesis

YEROOIW  MNN1 protein;Alpha-1,
metabolism ¥Fiossc  secss Phosphomannomutase, involved in the synthesis of GDP- and dolichol-phosph
YERO7OW  RNRL Nucleotide reductase reductase) large subunit
YGL225W  GOGS Golgi GDP in nucleotide-sug porter (NST) family of P
'YKLO08C LAC1 Protein required with Laglp for ER-to-Golgi transport of GPI-anchored proteins
YER003C  PMI40 protein modification;Mannose-6-phosphate isomerase
YLR121C YPS3 GPl-anchored aspartyl protease
YMLO27W  YOX1 Homeodomain protein that binds leutRNA gene
YOR248W function unknown
YPL163C  Svsl specific function unknown;Serine- and threonine-rich protein required for vanadate resistance
YOR247W  SRL1 function unknown;Protein with similarity fo Svsip
YKRO12C function unknown
unknown  yemmsec  cre function unknown; resides in chitin rich areas of cell wall

YKRO13W  PRY2 function unknown;Protein expressed under starvation conditions
YNL300W function unknown;Protein with weak similarity to Mid2p
YNROOSW function unknown
YoLoiow function unknown
YDRA51C function unknown;Protein with similarity to bacterial leucyl aminopeptidase
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Genes with >90% probability of belonging to class 40

Genes can be sorted based on class membership and inspected for similarities in function. We
provide more quantitative meansto do this analysis is shown below.

Integrating Knowledge Bases

The classes can be used in combination with other information to extract information on cellular
dynamics. Integrating the expression data and classes with other knowledge bases is facilitated
by the use of the gene-attribute vector and the classification results, which groups genes
according to likelihood of belonging to one of many attribute-val ue patterns identified. One
method of integrating the expression classes with categorical databases, and thus assign some
meaning to the classes found, isto look for enrichment of afunctional category in asingle class.
An important feature to our approach is that a gene can be labeled as belonging to more than one
functional category and class.

Fractional Class Membership by Category
Yds04Ms03ac01md01,cat name filter ”, min cat members 6
threshold fraction 0.25

(12) ENERGY;fermentation 1
(25) ENERGY:glycolysis 09
(8) ENERGY;pentosephosphate pathway
(11) TRANSCRIPTION;tRNA transcription;tRNA modification -10.8
(18) CELLULAR ORGANIZATION;extracellular/secretion proteins
(11) METABOLISM;phosphate metabolism;phosphate utilization 107
(6) SIGNAL TRANSDUCTION;morphogenesis;key kinases
(6) ENERGY;betaoxidation of fatty acids Jos
(6) ENERGY;glyoxylate cycle
(31) ENERGY;metabolism of energy reserves (glycogen, trehalose)

(60) ENERGY;respiration

(17) ENERGY;tricarboxylicacid pathway

Fractional Class membership

(6) TRANSPORT FACILITATION;purine and pyrimidine transporters

(162) PROTEIN SYNTHESIS;ribosomal proteins

120) CELL_GROWTH, CELL DIVISION AND DNA SYNTHESIS;cell cycle checkpoint proteins
mﬂ» (32) CELLULAR ORGANIZATION;organization of chromosome structure

(53) TRANSCRIPTION;rRNA transcription;rRNA processing

bl
w

0.2

(6) METABOLISM;nitrogen and sulphur metabolism;nitrogen and sulphur transport

(8) METABOLISM;nucleotide metabolism;regulation of nucleotide metabolism

o
e

(7) CELL RESCUE, DEFENSE, CELL DEATH AND AGEING;other cell rescue activities

(86) PROTEIN DESTINATION;proteolysis;cytoplasmic degradation

(Class Weight) Class Number

Fraction of Genesin Each Class by MIPS Category

In the figures, orange-white represents a strong enrichment of genes of a particular category in a
class. The categories are displayed along the vertical axis and the classes along the horizontal
axis. The categories are reordered to place those with similar class memberships together. The
MIPS-database category is a yeast gene annotation describing the biological function or role of
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the encoded protein(Mewes 1999). The transcription factors were extracted from the YPD
database(Hodges 1999). Due to the large number of classes and categories, we usefiltersto
display only the most significant categories or members. In the figure above, only categories
with at least 6 genes and which have at least one class fraction of >= 25% are displayed.

Fractional Class Membership by Category
Yds04Ys02ac01md01,cat name filter ", min cat members 2
threshold fraction 0.51

regulates cell-cyclins (2) BCK2;inducing 1
(5) HTAL;inducing
(5) HTAZ;inducing
(5) HTBL;inducing 10.9
regulates chromatin (g) ;;2:::32::3
assembly genes (2) SPTS:inducing {08
(2) SPT6;inducing
(6) SPT10;inducing
(6) SPT21;inducing 107
(8) ACEZ2;inducing
(8) SWIS5;inducing
2) CNAL;inducing =06
2) CNBLinducing
8) GCR2;inducing
2

regulates glycolytic PDC2;inducing

pathway genes (8) REGL;repressing
c T (7) SNF6;inducing
MET31;inducing

)
) MET32;inducing
5

)

)

)

)
) MET4;inducing
regulates genes (9) IMEL;inducing
aarired for (5) IME2;inducing

required for

. (3) RIM1L;inducing
sporulation 3) RIM1Sinducing

)

3) GRR1;inducing

3) RGT1;re| SS|
regulates glucose ¢ repressing
. © © (3) STDL;repressing
induced/repressed genes (2) RGT2inducing
3) NDDL;inducing

Gene Transcription Factors and Class Membership

[S) o
S (5
Fractional Class membership

3)
2
(2

(

0.3

(
(
¢
(
(
)

(Class Weight) Class Number

Inference

Using class membership probabilities and the cross-indexing information, we can associate the
function of known genes with those whose functions are not assigned. For example, class 25 of
the yeast gene model contains avery high fraction of ribosomal proteins. If we examine the
genes with membership probabilities which are >10% we find 120 genes. Of those genes, only 4
are not readily identifiable as ribosomal proteins or translation factors. However, 11 genes are of
unknown function or only annotated by interspecies sequence homology.
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ORF Gene Class 25 membership prob. MIPS Brief ID (updated 11/30/99)

YDR417C NONE 1.00 questionable ORF

YGL102C NONE 1.00 questionable ORF

YJL188C NONE 1.00 questionable ORF

YKLO56C NONE 1.00 strong similarity to human IgE-dependent histami ne-releasing factor
YLLO44W NONE 1.00

YLRO61W NONE 1.00 questionable ORF

YLRO76C NONE 1.00 questionable ORF

YNL119W NONE 1.00 weak similarity to M.jannaschii hypothetical protein MJ1257
YPL142C NONE 1.00 questionable ORF

YELO26W NONE 1.00 strong simil arity to high mobil ity group-like protein Nhp2p
YHR193C EGD2 1.00 simi larity to human alpha-NAC

YLR339C NONE 1.00 questionable ORF

YLR150W STM1 1.00 speci fic affinity for guanine-rich quadruplex nucleic acids
YPLO37C EGD1 1.00 GAL4 DNA-binding enhancer protein

YLR293C GSP1 1.00 GTP-bindi ng protein of the ras superfamily

YALO38W CDC19 0.94 pyruvate kinase

Selected genes from class 25

Gray entries are genes with unknown function. Y ellow entries have assigned functions, but are not ribosomal. There
are 105 ribosomal gene in this class (not shown).

Finally, cross-indexing the cell-cycle indexed genes from (Spellman 1998) allows a comparison
of our classes to those determined by Fourier analysis. There are several classes which
correspond very well to cell-cycle peak assignments. The splitting into several classesis not
surprising considering the number of experiments included in classification which were not cell-
cycle experiments. For example, the G1 genes are mostly split between classes 26 and 37.
Inspection of their class patterns and attribute influences show that the genes are modul ated
together in cell-cycle experiments and diverge during sporulation.

Fractional Class Membership by Category
Yds04Ps02ac01md01,cat name filter ”, min cat members 0
threshold fraction 0.00

—1
(107) M/GL F 109
r 0.8
(281) G1 F 07
r 106

(66) S 0.5

0.4

Fractional Class membership

o
w

(113) s/G2

0.2

(185) G2/M 0.1

SN ION PRGNSO DOOHNOTOON OASHNNBIIBOL BRI TO

PR DOOOIIIIIT
FONOCDTOO;

RSN S S A R S I RN NG SR IO T OO0t
NNNNNAAAAODIODINT S I T TN MONAA—AAO SO DO DOBII-LOTMHOND

(Class Weight) Class Number
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Applications to tumorous and non-tumorous Colon Tissue Gene Expression

Expression data for normal and cancerous colon tissues (Alon 1999) were classified by patient
and tumor type using the expression values of the genes as an attribute vector. There are 62
samples including 40 cancerous and 22 non-cancerous ones. There are 1988 genes measured per
sample. The colon tissue data were normalized to the mean value of each chip as described in the
original publication(Alon 1999). In contrast to other methods, no pre-selection of the data was
necessary, nor did we shift or rescale the expression patterns across experiments.

We haveidentified a set of significantly different expression patterns which group the tissue
samples. Four classes were identified based only upon gene expression data. The table shows the
make-up of each class with each tissue. The class members are collected in the colored boxes.
The gray colored samples in the list are non-tumorous tissue samples. Classes 1 and 4 consist
almost entirely of tumorous samples. These classes are identified based only on gene-expression
and did not include the tumorous/non-tumorous label. Therefore, the classification identifies two
gene-expression patterns indicative of tumorous cells.

ORF class 1 class 2 class 3 class 4 ORF class 1 class 2 class 3 class 4

tumor;patient_01
tumor;patient_02
normal;patient_02
tumor;patient_04
tumor;patient_06
normal;patient_06
tumor;patient_11
tumor;patient_14
tumor;patient_15
tumor;patient_16
tumor;patient_17
tumor;patient_18
tumor;patient_19
tumor;patient_20

tumor;patient_23
tumor;patient_25
tumor;patient_27
tumor;patient_28

tumor;patient_03
normal;patient_03
normal;patient_04
tumor;patient_05
normal;patient_05
tumor;patient_07
normal;patient_07
tumor;patient_08
normal;patient_08
tumor;patient_09
normal;patient_09
tumor;patient_10
normal;patient_10
tumor;patient_12
normal;patient_12
normal;patient_27
tumor;patient_35
normal;patient_01
normal;patient_11

PR ERPRPREPRPRRPREPREPRPRERRRRERRRERER
OO0O0OO0OO0OO0OO0DO0DO0OO0OO0OO0OO0OO0O0O0O0O0O0O0Oo
OCO0OO0OO0OO0OO0OO0DO0OO0OO0OO0OO0OO0OOO0OOO0 OO
O0OO0OO0OO0OO0OO0OO0DO0OO0OO0OO0OO0O0O0O0OO0O0 OO

tumor;patient_22

tumor;patient_37
tumor;patient_38

normal;patient_28
normal;patient_29
tumor;patient_30
normal;patient_32
tumor;patient_33
normal;patient_33
normal;patient_34
normal;patient_35
normal;patient_36
tumor;patient_36
normal;patient_39
tumor;patient_40
normal;patient_40
tumor;patient_13
tumor;patient_21
tumor;patient_24
tumor;patient_26
tumor;patient_29
tumor;patient_31
tumor;patient_32
tumor;patient_34
tumor;patient_39

OO0 0000000000000 000O000000O0O00O00O0O0O0O0O0O0O0O0O0O0 O O
OO0 0000000000000 O0O0O0OO0OO0OO000ORRERRRERERERERERRERERERERRER R
OC0OO0OO00O0O0O0ORRRRRERPRERPRERERPREPPPRPRLOOOOOOOOOOOOOOOO O
PR RPPRPPRPREPRPPRPOOOOO0OO0OO0OO0OO0OO0OO0O000O0O0O0000O0OO0O0O00O0O0OO0O O O

Class Membership for Colon Tissue Gene Expression Classes

The colored blocks indicate classes of samples. Gray boxes indicate non-tumorous colon tissue. Other samples are
tumorous tissue. Note that classes 1 and 4 (yellow and orange) are both almost entirely tumorous samples.

Which genes are responsible for the distinction between the two tumor classes? We can use
statistical tests on the classification results to identify which genes (attributes) were most
significant in distinguishing the classes (of samples) from each other, thereby gaining insight into

19



the important players in the tumorous samples. We calcul ate the joint probability between classes
for each attribute. A joint probability of zero indicates gene expression levels which are
completely separated and distinct, while ajoint probability of one indicates identical

distributions of expression levels. See the appendix for a more detailed description of the joint
probability.

of attributes between class 04 and all others
Cr03ac0101ac0101, t hreshol d fraction 0.20

Hsa. 1732 ; U12255; Fc receptor hFcRn nRNA, conplete cds.

Hsa. 33 ; MB4110; nRNA, conpl ete cds.

Hsa. 1732 ; U12255; Fc receptor hFcRn mRNA, conplete cds.

Hsa. 1687 ; R73052; "Honp sapi ens growt harrestspecific prote

Hsa. 2700 ; X82494; for fibulin2. -
Hsa. 11850; T93284; COVPLEMENT C1S COVPONENT PRECURSOR (Honp s

Hsa. 15101; T75577; 1DMWYO NOSI TOLTRI SPHOSPHATE 3KI NASE B (

Hsa. 2344 ;X86693; for hevin like protein.

Hsa. 2097 ; M36634; intestinal peptide (VIP) nRNA conplete cd E
Hsa. 11712 T61446; PUTATI VE DNA BI NDI NG PROTEI N A20 (Honp sap

Hsa. 1221 ; T60155; "ACTI N, AORTI C SMOOTH MUSCLE ( HUMAN) ;

Hsa. 11582 T61333; METALLOPROTEI NASE | NHI Bl TOR 3 PRECURSCR (G

Hsa. 11616; T60778; MATRI X GLAPROTEI N PRECURSOR (Rattus norve X
Hsa. 1288 ;T53889; COVPLEMENT ClR COMPONENT PRECURSOR ( HUMAN)

Hsa. 10755; R78934; ENDOTHELI AL ACTI NBI NDI NG PROTEI N (Honp sa

Hsa. 1832 ;J02854; LIGHT CHAIN 2, SMOOTH MUSCLE | SOFORM ( HUMA

Hsa. 37937 R87126; "MYCSI N HEAVY CHAI N, NONMUSCLE (Gal | us gal

Hsa. 1682 ; MP2843; '
Hsa. 1479 ; X12496; for erythrocyte menbrane sial ogl ycoprotein

Hsa. 1241 ; ML9159; heat st abl e al kal i ne phosphat ase (PLAP1)

Hsa. 14478; R38758; SYNAPTI C VESI CLE PROTEIN 2 (Rattus norvegi

Hsa. 878 ;T61609; LAM NI N RECEPTOR ( HUMAN) ;

Hsa. 489 ;T47144; JNO549 RI BOSOVAL PROTEI N YL30

Hsa. 5444 ; T48804; 40S RI BOSOVAL PROTEIN S24 ( HUVAN) .

Hsa. 7395 ; R10066; PROHI BI TIN (Honmp sapi ens)

Hsa. 951 ; MB6981; NDP ki nase (nnR23H2S) nRNA, conplete cds. .
Hsa. 539 ; U14971; protel n S9 nRNA, conpl ete cds.

Hsa. 6555 ; H18451; M TOCHONDRI AL TRANSCRI PTI ON FACTOR 1 PRECU

Hsa. 832 ;T51023; HEAT SHOCK PROTEI N HSP QOBEl'A ( HUMAN) .

Hsa. 904 ; R42798; A34421 MALEENHANCED ANTI GEN .
Hsa. 490 ;T70062; "Human nucl ear factor NF45 nRNA corrpl ete

Hsa. 853 ; R42501; | NOSI NE5' MONOPHOSPHATE DEHYDROGENASE 2 (

Hsa. 9218 ; T51858; EUKARYOTI C | NI TI ATI ON FACTOR 4B (Hormp sapi

Hsa. 929 ; MP4556; PROTEI N M TOCHONDRI AL PRECURSOR ( HUMAN) ; X
Hsa. 4996 ; R37428; "Human unknown protein nRNA, partial cds.

Hsa. 7203 ; R96357; POLYADENYLATEBI NDI NG PROTEI N ( Xenopus | ae

Hsa. 7 s H72234; DNA(APURINIC OR APYRIM DI NI C SI TE) LYASE

Hsa. 8068 ; T57619; 40S RI BOSOVAL PROTEIN S6 (N cotiana tabacu

Hsa. 689 ;T62878; CYTOCHROME C OXI DASE POLYPEPTI DE |V PRECUR .
Hsa. 8833 ; R93337; HOVEOTI C GENE REGULATOR ( Drosophil a nel ano

Hsa. 481 ;D10523; for 2oxoglutarate dehydrogenase, conplete

Hsa. 8010 ; R15447; CALNEXI N PRECURSOR (Honp sapi ens)

() down regulated<<< Joint Density >>>(+) up regulated

Class Number

The figure displays the attributes that are most significant in distinguishing class 4 from the other
classes. The more intense colors represent highly distinguishing genes, i.e. asmaller joint density
between the distributions. The sign indicates the direction of change of the mean expression
level: positive (red) indicates an up-regulation relative to the class 4 distribution, negative
(green) indicates down-regulation relative to class 4.

Future Work

Model Extension

We are pursuing further extensions of these methods to more complex statistical descriptions.
The statistical models described so far have only used real-valued variables described by normal
distributions to describe the observations. The software toolboxes already accommodate
mixtures with discrete variables, which can be useful for including information such as blood
type or transposon site. The models we have described so far are ssmple in terms of network
structure and the statistical correlations encoded. We are extending the methods to dynamic
Bayesian networks to further develop hypothesis testing and reverse engineering applications.
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Time Series Correlation
Encode temporal relationships across experiments Network Fragments

and more complex relationships

(4 \ between genes and other factors
E)EHE) E)E)

Time Series Time Series

Expt 1 Expt 2 Expt 3 Expt 4 Expt 5
‘Gene 1 -0.96 0.05 0.87 -0.17 -1.2
Gene 2 -0.89 -0.67 0.12 0.74 0.98
‘Gene 3 1.11 -0.07 -0.99 -0.13 1.02

Dynamic Bayesian Networks
learn full regulatory and signaling networks

Time Point 1 2 3 4

Bold arrows highlight a regulatory loop over time

Extension to more complex networks

Model Queries

We are developing additional methods to extract useful information from the data models,
including finding joint probabilities of various kinds. In addition, we are exploring supervised
classification methods |abelled nodes, e.g. training with a pre-determined number of classes with
observed labels such as'ALL" and 'AML".

Implementation Issues

Finding the optimal solution to the network structure and parameter values is a computationally
demanding task. Also of concern is computing the results of queries to the network - Bayesian
estimation from the model requires the calculation of large, multi-dimensional integrals. Ideally,
other constraints can be put on the network parameters and structure to allow further
probabilistic inference. The scalability of the methods with more data samples, more variables,
and network complexity is essential. We have implemented multidimensional adaptive Monte
Carlo methods based on the VEGASS al gorithm(Press 1995).

21



References

Alon, U., Barkai, N., Notterman, D.A., Gish, K., et a. (1999). “Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays.” Proceedings of the National Academy of Sciences of the United States
of America 96(12): 6745-6750.

Cheeseman, P., Kdllay, JK., Sef, M., Stutz, J., et a. (1990). "Autoclass. A Bayesian
classification system”. Readings in Machine L earning. San Mateo, CA, Morgan Kaufmann
Publishers: 296-306.

Chen, T., He, H.L. and Church, G.M. (1999). “Modeling gene expression with differential
equations.” Pacific Symposium on Biocomputing 120(7): 29-40.

Chu, S, DeRisl, J., Eisen, M., Mulholland, J., et al. (1998). “ The transcriptional program of
gporulation in budding yeast.” Science 282(5389): 699-705.

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). “Maximum likelihood from incompl ete
data via the EM algorithm.” Journal of the Royal Statistical Society, Series B 39(1): 1-38.

DeRisl, J.L., lyer, V.R. and Brown, P.O. (1997). “ Exploring the metabolic and genetic control of
gene expression on a genomic scale.” Science 278(5338): 680-6.

Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998). “Cluster analysis and display
of genome-wide expression patterns.” Proceedings of the National Academy of Sciences of the
United States of America 95(25): 14863-14368.

Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., et a. (1999). “Molecular classification of
cancer: Class discovery and class prediction by gene expression monitoring.” Science
286(5439): 531-537.

Hanson, R., Stutz, J. and Cheeseman, P. (1990). Bayesian Classification Theory, NASA Ames
Research Center.

Heckerman, D. (1997). “Bayesian Networks for Data Mining.” Data Mining and Knowledge
Discovery 1: 79-119.

Hodges, P.E., McKee, A.H.Z., Davis, B.P., Payne, W.E., et a. (1999). “Yeast Proteome
Database (YPD): a model for the organization and presentation of genome-wide functional
data.” Nucleic Acids Research 27: 69-73.

Jensen, F. (1998). An Introduction to Bayesian Networks. Santa Clara, Springer.

Liang, S., Fuhrman, S. and Somogyi, R. (1998). “ Reveal, a general reverse engineering
algorithm for inference of genetic network architectures.” Pacific Symposium on Biocomputing
95(1): 18-29.

22



Mewes, H., Heumann, K., Kaps, A., Mayer, K., et a. (1999). “MIPS. a database for protein
sequences and cpmplete genomes.” Nucleic Acids Research 27: 44-48.

Perou, C.M., Jeffrey, S.S,, van de Rijn, M., Rees, C.A., et a. (1999). “Distinctive gene
expression patterns in human mammary epithelial cells and breast cancers.” Proceedings of the
National Academy of Sciences of the United States of America 96(16): 9212-7.

Potts, J.T. (1996). Seeking Parallelismin Discovery Programs, The University of Texas at
Arlington.

Press, W., Teukolsky, S., Vetterling, W. and Rannery, B. (1995). Numerical Recipesin C. New
Y ork, Cambridge University Press.

Spellman, P.T., Sherlock, G., Futcher, B., Brown, P.O., et a. (1998). “Identification of cell cycle
regulated genesin yeast by DNA microarray hybridization.” Molecular Biology of the Cell
9(SUPPL .): 371A.

Spellman, P.T., Sherlock, G., Zhang, M.Q., lyer, V.R., et a. (1998). “Comprehensive
identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray
hybridization.” Molecular Biology of the Cell 9(12): 3273-97.

Supplement, S. (Jan 1999). Nature Genetics 21(1 Supplement).

Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., et a. (1999). “Inter preting patterns of gene
expression with self-organizing maps. methods and application to hematopoietic differentiation.”
Proceedings of the National Academy of Sciences of the United States of America 96(6): 2907-
12.

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J,, et a. (1999). “ Systematic determination of
genetic network architecture [ see comments].” Nature Genetics 22(3): 281-5.

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical Analysis of Finite
Mixture Distributions. New Y ork, John Wiley & Sons.

Weaver, D.C., Workman, C.T. and Stormo, G.D. (1999). “Modeling regulatory networks with
weight matrices.” Pacific Symposium on Biocomputing 94(23): 112-23.

23



Appendices

Finite Mixture Model - Principal Equations

The following discussion is based largely on the references (Cheeseman 1990; Hanson 1990;
Potts 1996).

S isafinite space of all possible models
h isaparticular model, embedded in S, characterized by:

aset of classes C with J members, c,...c;

an inter-class probability distribution function z and it’s parameters v, specifying
p(cj |u,r,h,S)

Each class specifies a set of probability distribution functionals T and their parameters V for
eachof k attributes, T, :t; t, and V, 1v;; v

The observed data set is E with | cases of observations E, ...E, of the K attributes, €,,...€,

Gene Attribute Vector

The gene attribute vector used for learning the model is, at minimum, a set of real-numbered
expression levels. These attributes have an uncertainty associated with the experimental
measurements. The uncertainty in the datais accounted for in the learning procedure by not
allowing the width of the class-attribute pdf to be less than this uncertainty. The attribute-vector
can aso include other types of information, such as category membership, alternative pdfs, etc.
Augmenting the expression patterns with such information is potentially very useful. We call a
particular observation of the attribute vector an attribute instance. The results of the classification
are aset of identified attribute-value patterns, called classes, which have a high likelihood of
describing naturally occuring groupings in the attribute vectors observed.

Probability Distribution Functions

Each class describes a probability distribution for each attribute. For example, if t, specifiesa

normal distribution over real number attribute k for class j, then the probability of observing the
i th case datum for that attribute e, would be defined by the normal functional form

2
~ 1 &k Hik
1 2| Ok

P(qk |Cj’ij'tik):ﬁe
]

with specified parameters

Vik = Ojs Hig
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Similarly, pdfs for enumerated data types and other distributions can be specified. Currently we
are only working with real-valued data and normal distributions.

Likelihood of Observing the Data

The probability of observing asingle case, given the class, the pdf form and it’s parameters, isa
product over all attributes

P(E |C1’Vj'Tj): 1:[P(e,k|cjvvjk,tjk)

The joint probability of the data with the class, given the model and al of the model parameters
and specifications, is

PE.c |V.T,v7.hS)=P(C |v.o.hSPE Ic;.V,.T)
= P(cj |v, r,h,S)lI[ P(e]k c, vjk,tjk)

Thetotal probability of observing a single case, then, isthe sum of the joint over all classes

P(E IV.T.Cvir,09) = P(C e hSP(E V. T,)

= Z[P(cj | v,r,h,S)l:[ P(Qk |ij'tik)]

and the total probability of observing the entire data set, given the model, is the product of the
probabilities of each observation

P(EIV.T.Co,z,h9) =]] Z[P(c,- | v.z.h, S)l:[ P Ivjk,t;k)}

Learning the Model

Learning the model involves atwo-level search. The highest level isto find the MAP model
form conditioned on the data

P(T,C,7,h| P(E | T,C,z,h S)

P(T,C,z,h|E,9 = PE|

A s s u m i 8 g <89 likacansat Weadsdinrodueeaunifoom o d e
prior on the probability of the model given the model space: all models are equally likely a
priori. This allows us to smplify the above equation to
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P(T,C,z,h|E,S) < P(E|T,C,7,h,9 = [[dVdvP(EV,0 | T,C,z,h S

The lower level search isto find the MAP parameter values, conditioned on the data, given the
model form
P(EV,v|T,C,7,h )
P(E|T,C,z,h,9
P(EV,v|T,C,z,h,S)
~ [[avedP(E,V,vIT,Cr,h9

P(V,v|ET,C,z,h,§=

T h e p r o] b
a n ¢ P(EVa|T,C,z,ht8) and eva lming its integnal over all e
possible parameter values. We can explicitly write out the form of this equation

P(E,V,v|T,C,7,h,S) = P(V,0|T,C,z,h P(E |V,T,C,v,7,h,S)
=P(V,0|T,.C,sh [ [X. P(E.C |V, T,.h,5)
i

=P(V,0|T.Ch 9] [Z P(c, v, .h S TP (e IV ,tjk)}

We again assume a minimum information form for the prior expectations on the parameters

P(V,0|T,C,z,hS =P(v| ,h [ Py It. 0 S)
ik

Thereis an implicit penalty for adding more classes into the model which is represented by
P(cj | v,z, h,S). Because the sum of all class probabilities must be unity, increasing the number

of classes lowers the prior probability of each class. Unless the additional classes |ead to a higher
probability of the observations, the joint will be smaller.

We maximize the joint probability P(E,V, v |T,C,r,h,S) using avariation of the EM algorithm

of Dempster and Titterington(Dempster 1977; Titterington 1985) with one additional
assumption: that each case in the training set belongs to some class. Thisallows usto use a

normalized class membership probability P(E G |V, T,h, S) to update the parameter estimates.

The algorithmis

1. Start with guessed parameters V
2. evduate P(E,C |V,,T,,hS) explicitly

3. re-estimate parameters V using a sum weighted over class membership, e.g.
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- ZP(Qk’Cj)Ujk
s ZP(qk,cj)

4. plug the resulting parameter estimates to evaluate the joint probability in step 2 and repeat

The algorithm will find alocal maximum in the joint probability and thus in the MAP parameter
values. Because there are many local minima, the learning agorithm must guess many initial
parameter values and optimize. The overall model fitness for each optimum set of parameters
may be evaluated by theintegra of P(E,V,v|T,C,,h,S). Theevaluation of thisintegral is
difficult because of the high dimensionality of the parameter space and must be approximated.
The integral is approximated by making use of the fact that the best optima of the model form
and parametersresult in an integral over the joint probability which is dominated by the integral
over the region of the optimum parameters

[[avdvP(EV,v|T.C,7,h, 9~ [[ P(EV,v| T,C.7,h,S)
R

Where theregion R isaregion surrounding the locally maximum parameter values. This
integral is reported as the model margina and can be used to find the best models.

The Attribute Influence

The attribute influence A, isauseful parameter for distinguishing which attributes best

distinguish the class from the data set as a whole. Thisis done by taking the cross-entropy of the
model in question with asingle class model h, which describes the entire data set.

P(Qk |ij’tjkacj1h,S)
I:)(Qk |V0k ’tokl CO!hoy S)

A = ZP(qk IVt ;. h, S)log

T h e M a r

T h e m a r

w h h i m c o S t

t w o] p -p rr 0O O
p r 0 d u k C t W
u S [ n g B
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ipcf (c1.¢,, 1K)=P(c1.c, [k, s):jp(cjl,cjz,ek |h, S)de,
:.' P(c..Cp, le,h.SP(e [h.Sde,
- .' P(C. 1602 N SP(C;. e h.S)P(e, [h Sde,

- .' P(c. le.h.S)P(c;, |&.h SP(e, |, de,

- P 16,0, S)P(c,1 [h,S) P(e.Icp. h,S)P(c;, [ h.S)
. P(e [hSd
) P ny I

r Ple, |c,,,h,S)Ple |c,,h S
(ek C\]]l ) (ek CJZ )dek

JZ P(& Ic..h.S)
c=1

where €, isthevalue for attribute k, only.

The jpcf is always between zero and one. We add further information to the display of the jpcf by
giving it asign: a positive sign means that the mean of classj2 is higher than the mean of class
j1; anegative sign indicates the reverse.

A crude but fast approximation to the integral above can be implemented with implicit
importance sampling using the observed data as the samples. In this case, the marginal joint is
approximately,

Y, P(ew 1kcip h.S)Pey 1k.cp.h, 9)
2

(Z P(e, Ik.C., S)j

C

1
oof ~ L
Jpc N
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Joint Density
of attributes between class 01 and all others
t dat 04ac0101ac0101, t hr eshol d fraction 1.00

exp_1; gene_001

exp_2; gene_002

exp_3; gene_003

exp_4; gene_004

() down regulated<<< Joint Density >>>(+) up regulated

exp_5: gene_005

Class Number

Jpcf of class 1 vs all other classes by attribute for test data

Brighter colors represent most significant differences. Red indicates that the mean expression level is higher in class
n than class 1, green the opposite. Black indicates identical attribute distributions.

Model Probability Distributions
for all 3 class(es), model marginal exp(11930.1)
tdat04, tdat04ac01mdol

~ Model Probab. Dist.

Expression Level 2 1

Experiment

Test data and model distributions

Class number 1 isred. Classes two and three are green and blue, respectively.

We can use the marginal joint probability recursively to find which attributes are most important
in distinguishing one class from all of the others by calculating the marginal probability for class
J1. This summed joint density measure is can be expressed as,
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ipcf (¢ 1K) = P(c; [ k,.S)
:Zz“P(cjl,cj2 [k h,S)
J

:%:zszcf(cjl,cjz 1K)

Those attributes which have alow jpcf are the most distinguishing attributes. and the
attribute/class combinations with the smallest values of jpcf are the most important.

Marginal Joint Density
of attributes by cla:
tdat 04ac0101ac0101, threshol d fraction 1.00

Class Number

Similarly, we can compare the patterns of overlap between classes using the jpc by using all of
the attributes,

jpcf (ijcjz = P(le’ci2 | h’S):

_ (Plcu.h.SP(. 1hS) Plelc,,.h.SP(c;, |h.S)
B j P(e|h,S) ' P(e|h,S) Plelh, Syde

_ P(e|cjl,h,S)D(elcjz,h,S)O|e
- J

JZ P(elcjc,h,S)
c=1
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where
P(e| cic,h,S)= HP(q |cjc,h,S)
k

Note that the integral in the jpc is multidimensional, spanning the k-dimensional space of
attribute values. Thisintegral is estimated by Monte Carlo methods or by implicit importance
sampling.

Cross-indexing with categories

One method of integrating the expression classes with categorical databases, and thus assign
some meaning to the classes found, isto look for enrichment of a functiona category in asingle
class. We want to find the fraction of genesfalling into each class for each category.
Combinations of functional categories co-occurring in a class pattern may aso be useful. We
define the enrichment R(M, C) to be the sum of the class probabilities over all of the genes that
are members of the category, normalized so that the sum across all classes for a single category
isone. This can be written as amatrix multiplication,

R(M,C)= P(E|C,V,Tv,7,h,S)x P(E,M)

where P(E, M) is a category membership matrix with each row corresponding to a functional
category, each column corresponding to asingle gene, and each entry being 1 or O for member or
non-member.

( classl class2 - [ genel gene2 - [ classl class2 -

, | categl | lcategl 1 0 | lgenel 095 005 |
Enrichment = = X

Lcategz . . . J Lcategz 0 0 J Lgenez 0 0.99 J

Dataflow and Software

Matlab routines have been written which perform the operations and generate the visualizations
described above. There are also routines that create input filesfor AUTOCLASS and read the
output files for further analysis. There are 3 magjor types of data structures defined: datasets,
classes, and categories. Datasets are |loaded using specific formats. Classes are results of
AUTOCLASS search or predict operations. Categories are databases of labels for genes or
samples. There are avariety of routines for combining and sorting these structures and for
generating displays of the results.
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Raw datafiles| | Summary datafiles

b

Autoclass [ nput
Databases

Spellrawload [geneXACrun|

| geneXACreport |

DeRisirawload

laad

Autoclass

Ruhi
~uoHt

geneXreorderAC

geneXAC2db

genexXACpredict

MIPSgeneload, KEGGgeneload
Y PDgenel oad, Spellcycgeneload
Sctransfacld, Lrgeneload

|

MIPSgenesort, Lrgenesort
KEGGgenesort, Y PDgenemunge
Y PDgenesort, Spellcycgenesort
Lrgenesort

Software Components and Dataflow into the Internal Storage Objects

Boxes represent collections of matlab routines. Labels in boxes are names of principle functions. Hexagons
represent internal storage objects. Round-cornered boxes are routines external to matlab. Cylinders are databases.
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<d datasets >

<_classes >

< cat

ories >
Ksz,

dsxxacyymdzz 3
_Irxx — 24 » geneX2DBcat
_ dsxxKszz
_chdxx eneXIothas | geneXcrossclass |
eI _dsxxacyymdbbaczzmdaa eneX classcat e T
- genexplotcrossclass dsxxK yymdaa _OSXXKSyyKsz
[geneXplotclasscateg| | [geneXplotcrosscateg|

geneX AC2txt
i

geneXdumpjtden

Data Analysis Routines

—
geneXhistclasscateg

Output types include graphical figure displays and text files.
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