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Resolving multi-image spatial lipidomic
responses to inhaled toxicants by machine
learning

Nathanial C. Stevens 1, Tong Shen 1, Joshua Martinez2, Veneese J. B. Evans2,
Morgan C. Domanico 2, Elizabeth K. Neumann3, Laura S. Van Winkle2,4 &
Oliver Fiehn 1

Regional responses to inhaled toxicants are essential to understand the
pathogenesis of lung disease under exposure to air pollution. We evaluate the
effect of combined allergen sensitization and ozone exposure on eliciting
spatial differences in lipid distribution in the mouse lung that may contribute
to ozone-induced exacerbations in asthma. We demonstrate the ability to
normalize and segment high resolution mass spectrometry imaging data by
applying established machine learning algorithms. Interestingly, our seg-
mented regions overlap with histologically validated lung regions, enabling
regional analysis across biological replicates. Our data reveal differences in the
abundance of spatially distinct lipids, support the potential role of lipid
saturation in healthy lung function, and highlight sex differences in regional
lung lipid distribution following ozone exposure. Our study provides a fra-
mework for futuremass spectrometry imaging experiments capable of relative
quantification across biological replicates and expansion to multiple sample
types, including human tissue.

More than 137 million people in the United States live in areas with
unhealthy levels of air pollution1. Exposure tomajor components of air
pollution, including particulate matter and oxidant gases, are well
characterized for their ability to worsen existing lung disease and to
potentially cause new-onset respiratory disease2–4. Despite extensive
evaluation of the acute and chronic adverse health outcomes of
inhaled toxicants, the molecular mechanisms underlying these effects
are still not well understood. Importantly, previous studies have
demonstrated that particulatematter and oxidant gases such as ozone
(O3) elicit site-specific toxicity, which is dependent upon the physio-
chemical properties of a toxicant and its inhaled concentration5–7.
Notably, the region-specific effects of O3 exposure on the conducting
airways are well studied, which acutely induces airway hyperreactivity,
airway inflammation, and damages lung surfactant. O3 exposure is also
a well-known risk factor for exacerbating pre-existing asthma in

humans, although potential mechanisms that may explain this asso-
ciation are not well understood1,4,5. The use of combined exposure
models incorporating O3 and common human allergens such as house
dust mite (HDM) may elucidate mechanisms of O3-induced exacerba-
tions in asthma.

In addition to the region-specific effects of an inhaled toxicant,
the wide array of cell types within the lung, differences in xenobiotic
metabolism, and unequal distribution of cell populations along the
respiratory tract all lead to effects that are often confined to individual
cell types or lung regions8,9. Elucidating site-specific responses is
therefore necessary for implicating individual types of cells or regions
in promoting lung disease and to develop targeted therapeutic
approaches to mitigate the outcomes of inhaled toxicant exposure.
Prior studies evaluating regional differences within the lung have
implemented techniques such as gross lung microdissection, which
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isolates major lung regions for further processing and downstream
analysis10. These studies have illustrated notable differences in xeno-
biotic metabolism, gene expression, and globalmetabolite abundance
while demonstrating how inherent differences between regions are
modulated by toxicant exposure11–14. However, analysis of micro-
dissected tissues does not isolate the contributions of individual cell
types that influence responses to inhaled toxicant exposure, despite
the clear advantages of this approach overwhole lung analysis in terms
of spatial resolution. Emerging techniques such as single-cell RNA
sequencing (scRNA-Seq) and spatial transcriptomics may circumvent
some limitations associated with lung microdissection by simulta-
neously identifying changes in gene expression and tracing these
changes back to individual types of cells9,15. Conversely, high spatial
resolution metabolomics analysis in the lung remains a significant
challenge due to difficulties stemming from throughput of existing
analytical methods and lung-specific issues regarding compatible
sample preparation methods for spatial metabolomics analysis16,17.
Nonetheless, high resolution spatial metabolomics studies are needed
to contextualize the functional changes downstream of gene expres-
sion within the lung following inhaled toxicant exposure.

Mass spectrometry imaging (MSI) demonstrates the potential to
facilitate high spatial resolution metabolomics analysis. MSI has
recently been utilized in a variety of applications to assess the locali-
zation of lipids and metabolites at near single-cell resolution in the
lung and at single cell resolution in other tissue types18–22. Despite
technical advancements in MSI data acquisition, processing and ana-
lysis ofMSI data specifically for large-scalemetabolomics or lipidomics
studies remains challenging. Both commercial and open-source soft-
ware have been developed to perform common MSI data processing
tasks and are continually advancing in their capability and
functionality23–27. Nonetheless, the burgeoning popularity of spatial
metabolomics studies and the relatively low availability of tools to
probe MSI datasets compared to traditional liquid chromatography
tandem mass spectrometry (LC-MS/MS) untargeted metabolomics
underscores the need for additional resources, specifically software
capable of performing MSI data analysis across biological replicates.

Including biological replicates is recognized as necessary for
expanding the scope ofMSI studies. Indeed, recent applications ofMSI
have incorporated replicates and qualitative assessment of metabolite
and lipid spatial distribution to drive biologically meaningful conclu-
sions from MSI data28–30. However, the ability to conduct statistical
analysis across biological replicates in MSI experiments is currently
limited. Likewise, applying previously developed segmentation meth-
ods to lung tissue is especially difficult due to morphological features
exclusive to the lung compared to common tissue types analyzed by
MSI such as brain or kidney tissue.

Our present study addresses these gaps in MSI studies of lung
tissue by providing comprehensive, versatile analysis scripts to com-
pare biological replicates across study groups. Secondly, we apply our
MSI analysis workflow to determine the effects of acute O3 exposure
on lung lipids in a mouse model of allergic asthma at high spatial
resolution in morphologically relevant lung regions. This analysis
builds on our previous study demonstrating significant changes in
sphingolipid and glycerophospholipid abundance of microdissected
airways following combined O3 exposure and allergic sensitization to
HDM by localizing specific changes in whole lung tissues12. Lastly, the
comparisons drawn between our previous study and the results of our
MSI study emphasize the detailed spatial information that can be
obtained from MSI compared to LC-MS/MS of bulk dissected tissue.

Results
Histological analysis of mouse lungs
We have previously reported the effects of combined HDM/ozone
exposure in mice on lung physiology and lipidomic profiles of micro-
dissected lung airways and parenchyma12. Our previous findings

demonstrated a synergistic increase in airway hyperreactivity and
airway inflammation in male mice that was not observed in female
mice. Due to the relatively modest effects of either HDM or ozone
alone in significantly altering global lipid abundance within micro-
dissected tissues, our present MSI study focused solely on the effects
of combined HDM/ozone exposure. Therefore, lungs for six mice with
HDM/ozone exposure were compared to six control lungs, three per
sex in each group. We here confirmed major structural changes in
HDM/ozone exposed lungs compared to control lungs using H&E
staining (Supplementary Fig. 2). Specifically, combined HDM/ozone
resulted in increased airway inflammation in males compared to
females, which was evidenced by thickening of the airway epithelium
relative to control treated mice. H&E staining of agarose-inflated lung
sections in general was less informative for obtaining detailed mor-
phological insights compared to our previous study analyzing paraf-
ormaldehyde fixed and paraffin embedded H&E sections. However,
H&E-stained sections were still suitable to confirm location specific
features corresponding to our MSI data.

Summary of annotated lipids
For each lung section of approximately 0.2 cm2, positive and negative
ion mode mass spectrometry imaging was conducted using a 10 µm
raster on sections, yielding MSI files of up to 10 GB. We initially
exported all raw data files into SCiLS software for conversion into
imzML format. All processing and analysis of the exported imzML files
was completed in R v.4.3.3 using comprehensive analysis scripts uti-
lizing functions fromover 15 separate Rpackages,whichwedeveloped
into a standalone R package called RegioMSI. Peak detection, binning,
and alignment were completed by the Cardinal R package, which
allows all peaks across multiple experimental runs to be processed
simultaneously31. By concurrent processing of all samples,we obtained
a single alignment list of approximately 1100 peaks for 12 positive
mode sections and 700 peaks for 12 negative mode sections, after
binning profile spectra for subsequent peak annotation (Supplemen-
tary Data 3).

We assigned annotations to detected peaks by untargeted LC-MS/
MS-based lipidomics validation of tissues scraped from ITO slides
following MSI data acquisition or by matching m/z values to our pre-
vious untargeted lipidomics data of microdissection lung tissue trea-
ted under identical experimental conditions12. We did not evaluate the
effect of matrix application on lipid detection in LC-MS/MS, although
previous reports suggest that the number of lipids identified by LC-
MS/MS is not significantly affected by matrix deposition32. Matching
m/z values were determined using a 10 mDa mass error, and we
excludedmatches to LC-MS/MSdatawith a low likelihood of detection
in a specific MSI ionization mode33. Specifically, we excluded features
in positive ionization mode MSI that matched phosphatidylinositol
and phosphatidylserine species detected in LC-MS/MS data. Addi-
tionally, we manually removed m/z values representing noisy or
background ion images to improve downstream image segmentation
and statistical analysis. Following these filtering steps, 119 peaks
detected in positive ionization mode and 83 peaks detected in nega-
tive ionization mode were annotated to each LC-MS/MS data set
(Supplementary Data 1). Over 75% of annotated lipids were glycer-
ophospholipids between 700 and 900m/z, whereas sphingolipids and
other major lipid classes comprised less than 25% of 202 total anno-
tated lipids across both ionization modes (Fig. 1b, Supplemen-
tary Data 2).

Intra- and inter-sample normalization by sparse LOESS
Wenext normalized the signal intensities for all annotated compounds
in each tissue section tomitigate sources of technical variance.Marked
intrasample signal drift in the raw intensity values was observed in
both positive and negative mode, which was also reflected in raw total
ion count ion images prior to normalization (Fig. 2a, Supplementary
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Fig. 1 | Experimental design and summary of annotated lipids across positive
and negative ionization modes. a Experimental design including allergic sensiti-
zation, challenge, and ozone exposure. Left lung lobes were collected 24h fol-
lowing the final day of ozone exposure.b Summary of all lipid annotations grouped
by major class, subclass, and saturation validated by LC-MS/MS of scraped tissue

slides and microdissected lung tissue under identical experimental conditions as
previously reported12. The individual annotation list is included in Supplementary
Data 1 and a supplemental list containing the proportion of lipids in each major
class, including saturated and unsaturated lipid species, is included in Supple-
mentary Data 2. Source data for panel b are provided as a Source Data file.
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Fig. 2 | Effect of TIC and sparse LOESS normalization on technical variance in
MSI signal intensity. Total ion current scatterplots of signal intensity vs. pixel
number according to acquisition order in negative ionization mode for (a) raw, (b)
TIC, and (c) sparse LOESS normalized data. d–f Total ion current ion images for a
representative sample displaying the raw, TIC, and sparse LOESS normalized signal

intensity innegativemode, respectively. TIC values correspond to the sum intensity
of all annotated compounds for each pixel. Sample ID reflects the identity of
individual imaging runs in order of data acquisition. Bar = 1mm. Source data for
panels (a–c) are provided as Source Data files.
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Fig. 3, Fig. 2d). Similarly, raw intersample signal intensity ranges varied
by more than 50% across several samples regardless of ionization
mode (Fig. 2a, Supplementary Fig. 3). Notably, routine total ion current
(TIC) normalization partially corrected intrasample signal intensities in
positive and negative mode but unsuccessfully reduced variance
between samples (Fig. 2b, Supplementary Fig. 3).

Therefore, we applied LOESS across all samples to minimize
technical bias that would otherwise limit downstream statistical com-
parisons across biological replicates and treatment groups. LOESS
normalizationwas confined to everynon-zero intensity pixel to correct
signal drift while preserving the spatial distributions of each annotated
compound. Furthermore, we used a variable LOESS span that factored
approximately 10% of the total pixel number per sample into the
LOESS algorithm to prevent over smoothing. Sparse LOESS normal-
ization successfully corrected intrasample signal drift and greatly
reduced signal variability across both positive and negative ionization
mode samples compared to both raw andTICnormalized data (Fig. 2c,
Supplementary Fig. 3). The effect of sparse LOESS normalization in
reducing intrasample signal drift was especially prominent in com-
paring sparse LOESS normalized ion images to either raw or TIC nor-
malized ion images displaying pixel TIC intensities (Fig. 2d–f).

Assessment of spatial differences among annotated lipids
Visualizing ion images normalized by sparse LOESS enabled us to
determine differences in lipid spatial distribution and localization
while minimizing technical artifacts impacting comparisons across
samples. We observed many phospholipids confined to specific sec-
tion areas, which was consistent across all samples in positive and
negative ionization modes. For example, MSI features annotated to
phosphatidylethanolamine (PE) 18:0/22:6, phosphatidylinositol (PI)
36:4, and phosphatidic acid (PA) 16:0/16:0 in negative ionizationmode
were highly localized to specific regions within lung tissues (Fig. 3a–c,
Supplementary Fig. 4). Our data supported the notion that PA 16:0/
16:0 was likely formed as an in-source fragment of PC 32:0. Impor-
tantly, these three lipids exhibited distinct localization where the
greatest abundance of one lipid did not overlap with another and
displayed distributions that appeared to be independent of potential
effects induced by treatment or sex.

We also observed differences in lipid species localization in
positive ionization mode (Supplementary Fig. 5). However, incon-
sistent tissue section morphology resulted in patterns of lipid spatial
distribution that were difficult to distinguish by manual inspection of
ion images alone. Specifically, not all sections analyzed in positive
mode contained prominent morphological features such as proximal
airways identifiable by visualizing individual ion images for annotated
lipids (Supplementary Fig. 5). Consequently, we were unable to uni-
formly define regions of interest across all samples in both ionization
modes by individual lipid species distribution.

Image segmentation and colocalization
To address inconsistencies in section morphology preventing robust
region of interest selection and subsequent statistical analysis across
treatment groups, we performed unsupervised machine learning-
based image segmentation based on all annotated lipids in each
sample. We adapted the KNN algorithm and graph-based clustering
approach used by Seurat, a commonly used R package for scRNA-Seq
analysis, to perform segmentation of each lung tissue section in both
ionization modes34. This segmentation approach was chosen over
spatial shrunken centroids (SSC) classification used by both commer-
cial and Cardinal software because the default implementation of SSC
by both software tools performs segmentation with limited flexibility
for selecting only annotated features and parameter optimization
compared to Seurat24. Unsupervised image segmentation resulted in
distinct clustering of multiple regions in each tissue section (Fig. 4a).
Visualizing identified clusters allowed us to accurately assign grouped

pixels to H&E validated morphological regions of interest while iso-
lating clusters likely arising from technical artifacts in data acquisition
(Fig. 4b–d, Supplementary Fig. 2, Supplementary Fig. 6). Airway and
alveolar epitheliumwere distinguished by unsupervised segmentation
in all sections analyzed across both ionization modes. However, our
unsupervised approach was unable to completely exclude some pixels
that did not overlap with a morphological region of interest
(Fig. 4b–d). Nonetheless, the proportion of these pixels relative to the
total pixels contained within each cluster did not prevent us from
selecting regions of interest from our segmentation results.

Next, we assessed the colocalization of individual lipid species in
each segmented cluster while focusing our analysis on clusters over-
lapping with morphological regions of interest. We observed an
interesting relationship between the degree of lipid saturation, class,
and region. Localized in the airway epithelium, polyunsaturated
phosphatidylcholines (PC) and sphingomyelins (SM) 44:1 and 44:2
were consistently among the top-5 most abundant lipids. In positive
ionizationmode, PCs containing four or fewer double bonds, aswell as
lyso-PC and lyso-PE defined the alveolar epithelium (Fig. 4b, d, e,
Supplementary Data 4). Conversely, the top-5 lipids detected in each
region among negative mode samples did not display a pattern of
decreasing saturation degree from proximal to distal lung regions.
Each region was instead distinguished by colocalization of specific
lipid classes. Polyunsaturated fatty acids suchasdocosahexaenoic acid
(FA 22:6) andpolyunsaturated PEwere detected primarily in the airway
epithelium, whereas both saturated and unsaturated phosphati-
dylglycerols (PG) predominated the alveolar epithelium (Supplemen-
tary Data 4).

Finally, unsupervised segmentation of specific lung sections
based on MSI data enabled a detailed approximation of lipid abun-
dance in individual lung regions not included indownstreamstatistical
analyses. We excluded specific regions from comparisons across
treatment groups since regions such as the airway basement mem-
brane anddistal airwayepitheliumwerenot clearly identified in all lung
sections. Nonetheless, our segmentation approach discerned adjacent
lung regions with high spatial resolution, which was supported by our
histological data (Fig. 5a, b). Specifically, our segmentation approach
resolved the airway epithelium from the basement membrane in spe-
cific samples (Fig. 5a, b). This finding was supported by visualizing the
abundance distributions of twopolyunsaturated PCs corresponding to
each of these regions, which overlapped with both our H&E data and
segmentation results (Fig. 5c, d). These results demonstrate the cap-
ability of our analysis to segment the lung into distinct regions based
solely upon localization of annotated lipids and to measure regional
lipid abundance at high spatial resolution.

Local effects of ozone/HDM exposure on lipid composition
Lastly, the segmented images of each sample were used to compare
the effects of combined HDM+O3 exposure between lung regions in
both male and female mice. Prior to statistical analysis, we log-
transformed the average abundances of each lipid per pixel to obtain a
distribution that was approximately normal. We initially conducted
enrichment analysis to assess differences in abundance among lipids
belonging to structurally similar classes35. We observed significant
decreases in multiple unsaturated lipid classes in the female HDM+O3

group relative to control in both the airway and alveolar epithelium,
including unsaturated PE and PS (Fig. 6a, c). However, unsaturated FA,
PG, and PI in addition to saturated PG, PE, and LPE were decreased in
the alveolar epitheliumbutnot in the airway epithelium (Fig. 6c). These
multivariate changes were followed by univariate statistical analysis,
which identified individual lipid species decreased by HDM+O3

(Fig. 6b, d, Supplementary Data 5). Interestingly, we observed a sig-
nificant decrease in individual SM species and an increase in ceramide
34:1 exclusive to the airway epithelium, which were not reflected by
class-based enrichment analysis (Fig. 6a, b).
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Overall, 32 individual lipid species in females were significantly
altered byHDM+O3 in the alveolar epithelium,while only 13 individual
lipid species were altered in the airway epithelium (Fig. 6b, d, Sup-
plementaryData 5). Notably, wedid not observe statistically significant

differences in lipid class and individual species abundancebetween the
male HDM+O3-exposed and control groups in either the airway or
alveolar epithelium (Supplementary Fig. 7). However, our statistical
analysis was limited to a sample size of 3 per sex and treatment group

a b c
PE 18:0/22:6 PI 36:4 PA 16:0/16:0

Fig. 3 | Spatial distribution of individual phospholipid species in sparse LOESS-
normalized ion images. Ion images representing pixel intensities of annotated
phospholipids in negative mode, including (a) PE 18:0/22:6, (b) PI 36:4, and (c) PA
16:0/16:0. Ion images correspond to a representative sample from the female

control group. Ion images for each lipid species from each individual sample is
included in Supplementary Fig. 4. Bar = 1mm. No acyl chain information was
available for PI 36:4 based on the LC-MS/MS reference library used for peak
annotation.

a b c d

Cluster

Combined Clusters Cluster 9 Cluster 3 Cluster 8

Average Intensity

1
2
3
4
5
6
7
8
9
10
11

Compound Name

0

6

-2 20
Scaled Intensity

e

Fig. 4 | Segmentation and colocalization analysis of annotated lipids.
aRepresentative positive ionizationmode tissue section segmented into individual
regions by Seurat-based KNN clustering analysis. Extracted pixels from clusters
corresponding roughly to the (b) airway epithelium (Cluster 9), (c) airway base-
mentmembrane (Cluster 3), and (d) alveolar epithelium (Cluster 8) fromamatched

H&E-stained serial section (Supplementary Fig. 2). e Heatmap displaying the
median-scaled intensity of the top-5 lipids represented by each cluster. Lipids
shared between the top-5 lists in multiple clusters are only included once. The
average log2 signal intensity per pixel for each lipid is included in the top heatmap
annotation. Bar = 1mm. Source data for panel e are provided as a Source Data file.
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comparing only lipids validated by LC-MS/MS, representing 10% of
approximately 1800 binned peaks spanning both ionization modes
(Supplementary Data 2). Notwithstanding the constraints of our ana-
lysis, these results provided proof-of-concept for multifaceted statis-
tical comparisons across biological replicate samples in MSI data,
including multiple sexes, treatment groups, and morphologically dis-
tinct regions of interest.

Discussion
Our study extends the applications of MSI to include statistical com-
parisons of compound spatial distributions across biological replicates
through a combination of data processing techniques and repurposed
segmentation approaches. Utilization of unsupervised machine
learning algorithms enabled us to characterize a model of environ-
mental exposure at high spatial resolution within the lung. Impor-
tantly, our study provides a framework for further metabolomics
studies in the lung usingMSI while providing flexible analysis methods
for other types of samples, including but not limited to human tissue.
While previous MSI studies have recognized the need for biological
replicates,manyMSI studies, especially those analyzing the lung, often
analyze or report data for very few tissue sections. Small sample
sizes inherently preclude the ability to conduct statistical analysis and
does not capture intragroup variance that may confound study
results18–20,28–30. These limitations illustrate the challenges specific to
MSI experiments related to sample preparation, data processing, and
analysis throughput. Our collective methodology using an optimized
agarose inflation method, sparse implementation of LOESS
normalization, and unsupervised KNN clustering enabled us to eluci-
date the effects of multiple sexes and treatment groups across
several biological replicates in specific lung regions. These results
both validated and expanded upon our previous findings

analyzing microdissected airways following an identical treatment
paradigm12.

Normalization of MSI data is imperative as MSI studies progress
towards increasingly complex experimental designs comparing bio-
logical replicates across multiple treatments. MALDI-MS data are sus-
ceptible to technical artifacts that skew signal intensity and overall
data interpretation. Normalization methods such as TIC and vector
normalization are routinely used to reduce sources of systematic
drift in signal intensity such as those introduced by detector con-
tamination across a single imaging run or by differences matrix crystal
distribution36. Likewise, alternative methods normalizing signal
intensity to an internal standard added to the MALDI matrix solution
have shown promise for correcting intrasample signal variability37.
However, additional normalization methods are needed for analyses
encompassing several imaging runs that simultaneously address
variability both within and across samples. Our data-driven approach
of sparse LOESS normalization highlights the potential of machine
learning-based methods to reduce systematic error attributed to
technical artifacts in MSI data (Fig. 2, Supplementary Fig. 3). LOESS is
commonly used in large-scale untargeted metabolomics assays using
LC-MS/MS and is effective in mitigating systematic errors in data
acquisition38. Applying LOESS normalization in both positive and
negative mode MSI data greatly reduced variability in the TIC of each
pixel within and across each sample (Fig. 2, Supplementary Fig. 3). By
limiting normalization to only pixels with signal intensities greater
than zero for each annotated compound, we reduced the impact of
technical artifacts on subsequent image segmentation and statistical
analysis while preserving biological differences in the spatial dis-
tributions of each compound (Fig. 3, Supplementary Fig. 4).

The results of our machine learning-based image segmentation
reiterate the importance of sample preparation inMSI, which is critical

a b

c d
PC 40:6 PC 38:4

Alveolar epithelium
Alveolar lumen
Airway base. mem.
Airway lumen
Airway epithelium

H&E Segmented Clusters

Fig. 5 | Overlap between lung histology, unsupervised image segmentation,
and individual lipid spatial distribution. a Representative H&E-stained serial
section selected from three separate sections from a male mouse exposed to
HDM+O3 at ×4 magnification with multiple morphological regions of interest
labeled. b A consecutive segmented serial section acquired by MSI, including all

clusters from Fig. 4. The cluster colors in (b) generally represent the matched
regions in (a). c Ion image displaying the signal intensity and distribution of
phosphatidylcholine 40:6. d Ion image displaying the signal intensity and dis-
tribution of PC 38:4. Both sections analyzedbyMSI andH&E stainingwere obtained
at a thickness of 15μm. Bar = 0.5mm.
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for robust detection and spatial visualization of metabolites in rela-
tively fragile tissue types such as the lung39,40. Combined agarose
inflation and embedding retained cellular integrity and the capacity of
our analysis to detect lipids spanning several classes across a widem/z
scan range (Fig. 1, Supplementary Fig. 1, Supplementary Data 1, Sup-
plementary Fig. 2). We have previously validated the suitability of

agarose for mass spectrometry-based metabolomics assays, which are
not compatible with other inflation media such as optimal cutting
temperature (OCT) that are well known to cause ion suppression and
detector contamination11,41. Additionally, our sample preparation
method avoided washing steps used in tissue fixation or OCT removal
that could potentially cause delocalization or removal of lipids while
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Fig. 6 | Comparison of airway and alveolar epithelial changes in lipid compo-
sition between HDM+O3 and control-treated female mice. a Dot plot sum-
marizing lipid class enrichment results comparing female HDM+O3 and control-
treated airway epithelium. Lipid classes were separated into fatty acyls with a high
degree of saturation (Sat.) or a low degree of saturation (Unsat.). b Volcano plot
summarizing significantly altered lipids in the airway epithelium comparing the
HDM+O3 group relative to female control mice. cDot plot summarizing lipid class
enrichment results comparing female HDM+O3 and control-treated alveolar epi-
thelium. d Volcano plot summarizing significantly altered lipids in the alveolar
epithelium comparing the HDM+O3 group relative to female control mice. All dot
plots and volcano plots used a p value cutoff of p <0.05 to determine statistical
significance. The fold change direction for all panels is expressed as the abundance
in the HDM+O3 group relative to the control group. P values for enrichment

analyses were based on a one-sided Kolmogorov-Smirnov Test with FDR-
correction. P values for univariate analyses were determined based on a one-way
ANOVA with Tukey’s post hoc analysis in R using a 95% confidence interval and
default R function parameters. A log2 fold-change of 0.5 (or a fold-change that is
greater than 1) was used to define a high-effect size. Fatty acid (FA), acylcarnitine
(AC), cardiolipin (CL), ceramide (Cer), cholesterol ester (CE), dihydro-
sphingomyelin (DhSM), glycosylceramide (HexCer), lysophosphatidylcholine
(LPC), lysophosphatidylethanolamines (LPE), lysophosphatidylglycerol (LPG),
lysophosphatidylinositol (LPI), sphingomyelin (SM), phosphatidic acid (PA), phos-
phatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
phosphatidylinositol (PI), phosphatidylserine (PS), triacylglycerol (TG). Source data
for panels a-d are provided as Source Data files.
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maintaining a cryoprotective effect similar to other saccharides used
in MSI studies17,41,42. Coupling this modified method of sample pre-
paration with MALDI TOF-MS acquisition at a spatial resolution of 10
μm allowed us to achieve spatial information that approached the
single-cell level and to segment tissue sections into distinct lung
regions based on KNN clustering of annotated lipids within each
sample (Fig. 4, Fig. 5, Supplementary Fig. 2)43. Importantly, we used the
KNN algorithm implemented by the Seurat R package instead of
existing segmentation methods available in the Cardinal R package or
commercial software24,34. The classification approach used by Seurat is
routinely used in scRNA-Seq studies but has not been directly applied
to MSI data previously. However, we were able to reliably perform
segmentation of each image through the default implementation of
the Seurat clustering function after optimizing the resolution para-
meter. Our approach enabled segmentation of images totaling over 1.2
million pixels in negative ionization mode and 1.4 million pixels in
positive ionizationmode, using a combination of Seurat and RegioMSI
on a computer with 128 GB of RAM in less than 5minutes.

We validated regions segmented using Seurat by comparing our
imaging data with serial sections stained with H&E, which corre-
sponded to the epithelial and luminal compartments of both the air-
ways and alveoli of each sample (Fig. 5, Supplementary Fig. 2).
Histological confirmation of segmented images was necessary to
evaluate the performance of the Seurat clustering algorithm in lieu of
using a MSI reference dataset for cross-validation or marker-based
approach for region assignment, both of which are currently unavail-
able for MSI imaging in lung tissue. Interestingly, our segmentation
approach was able to further divide specific samples to isolate the
airwaybasementmembrane and the distal airway epithelium, although
this degree of separation was not achieved in all study samples (Fig. 4,
Fig. 5, Supplementary Fig. 8). Nonetheless, our results demonstrate the
capability to compartmentalize lung MSI data into morphologically
relevant regions and to visualize the abundance of individual lipids at
high spatial resolution.

Our analysis of lipid spatial distribution and colocalization
enabled us to confirm previous findings and to gain insights regarding
lipid distribution throughout the murine respiratory tract. We
observed a consistent trend across all samples irrespective of treat-
ment or sex towards decreasing lipid saturation degree among PCs
detected in positive ionization mode localized in distal compared to
proximal lung regions (Supplementary Fig. 5, Supplementary Data 4).
Conversely, differences in spatial distribution among lipids annotated
in negative mode were largely the result of lipid class. Strikingly,
polyunsaturated PEs were localized to the airway epithelium whereas
saturated and unsaturated PGs were the most abundant lipid species
present in the alveolar epithelium (Fig. 3, Supplementary Data 4).
Differences in lipid classes of varying saturation degrees may reflect
differences related to the biophysical properties of lung surfactant and
mucus. PCs and PGs are abundant components of lung surfactant,
which is produced by type-2 alveolar cells to reduce surface tension
and to subsequently prevent alveolar collapse44,45. Indeed, saturated
phospholipids such as dipalmitoylphosphatidylcholine (PC 32:0) are
known to contribute to the biophysical characteristics of surfactant.
Our MSI method detected both PC 32:0 and PA 16:0/16:0, likely an in-
source fragment of PC 32:0, in the alveoli of sections analyzed in
positive and negative ionization modes (Fig. 3, Supplementary Fig. 4,
Supplementary Fig. 5). In contrast, an increasing degree of saturation
of PEs in proximal lung regions may suggest the prioritization of
surface-active properties to promote interactions between mucus and
cilia46. Importantly, the decreased airway epithelial unsaturated PE,
alveolar saturated and unsaturated PG, and saturated PE abundance
resulting from HDM+O3 exposure in females could alter baseline
surfactant composition and mucus biophysical properties important
for normal alveolar function and mucociliary clearance (Fig. 6, Sup-
plementary Data 5). Further studies are needed to determine the

functional relationship between lipid saturation and biophysical
properties throughout the respiratory tract under normal conditions
and under toxicant exposure.

The spatial distribution of individual lipid species may further
distinguish the functional differences between specific lung regions.
SM 44:1, SM 44:2, and docosahexaenoic acid were all highly localized
to the airway epithelium across all samples, the abundances of which
were independent of treatment or sex (Fig. 4, Supplementary Data 4).
Sphingolipids containing very long chain fatty acids (VLCFA) have
previously been implicated in modifying immune responses involving
macrophages and natural killer T (NKT) cells47,48. Furthermore, doc-
osahexaenoic acid administration in vivo has previously demonstrated
a protective role in a bleomycin-induced model of pulmonary fibrosis
in part from reduced cellular inflammation within the lung49. There-
fore, the distribution of VLCFA SM lipids and docosahexaenoic acid
in the airway epithelium may serve to modulate the activity and
resolution of local immune responses in the airways. Our findings
could be further explored by characterizing individual immune cell
types in tandem with targeted lipidomics assays to confirm if the
individual SM lipid species we identified are associated with these
responses.

The results of our lipid class-based enrichment analysis revealed
decreases in unsaturated PS abundance in both the airway and alveolar
epithelium of female mice treated with HDM+O3 (Fig. 6, Supple-
mentary Data 5). Decreased phosphatidylserines within both regions
could inhibit signaling events related to macrophage function that
would favor the resolution of severe inflammation present in our
combined exposure model. Phosphatidylserines are immunosup-
pressive mediators that are expressed on apoptotic cells and recog-
nized by phagocytes during efferocytosis50–52. While the role of
phosphatidylserines is largely studiedwithin the context of viruses and
cancer cells leveraging phosphatidylserine signaling in immune cell
evasion, the T cell/transmembrane, immunoglobulin, andmucin (TIM)
family of proteins respond to phosphatidylserine and have been
investigated for their roles in modulating T-cell responses in asthma53.
Thus, HDM+O3-associated decreases in phosphatidylserine abun-
dance we observed may indicate a mechanism promoting inflamma-
tory signals resulting in severe inflammation and immune cell influx
modeled in our previous study (Fig. 6, Supplementary Data 5)12.

Lastly, we observed significant differences in airway epithelial
sphingolipid abundance in female mice. Specifically, 6 long chain
sphingomyelins containing 2 or fewer double bonds were significantly
decreased in HDM+O3 exposed airway epithelium, which was
accompanied by an increase in ceramide 34:1 (Fig. 6, Supplementary
Data 5). This result confirms our previous finding frommicrodissected
airway tissue that decreases in sphingomyelins are concomitant with
increased ceramide following combined HDM+O3 exposure relative
to saline and filtered air controls12. Importantly, these changes induced
by combined HDM+O3 exposure may indicate an increased break-
down of sphingomyelin via acid sphingomyelinase, which cleaves cell
membrane-bound sphingomyelin into ceramide that can undergo
further breakdown into sphingosine 1-phosphate or modification into
glycosphingolipids54. Sphingolipid signaling through ceramide and
sphingosine 1-phosphate is well characterized to modulate several
hallmark features of allergic asthma, including airway hyperrespon-
siveness, airway inflammation, and immune cell influx to the
airways55,56. Unfortunately, our MSI method was not optimized to
detect lower m/z compounds including sphingosine 1-phosphate and
only detected one glycosphingolipid validated with LC-MS/MS, so we
were unable to comprehensively evaluate possible changes in sphin-
gosine 1-phosphate and glycosphingolipid abundance following com-
bined HDM+O3 exposure (Supplementary Data 2). Nonetheless, the
increased spatial resolution afforded by ourMSI analysis enabled us to
identify specific locations within the lung targeted by HDM+O3

compared to microdissected tissues.
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The limitations of our study warrant future experiments incor-
porating additional biologic replicates, improved annotation of
detected peaks, and orthogonal approaches to provide a holistic
understanding of the importance of the spatial lipidomic changes we
observed in ozone-mediated exacerbation of allergic asthma. Greater
variance in lipid abundance within treatment groups and coverage of
the lipidome by our MSI assay likely contributed to the absence of
statistically significant alterations in lipids observed in males com-
pared to females (Fig. 1, SupplementaryData 1, Supplementary Data 2).
While our analysis methods addressed throughput limitations pre-
sented by spatial data processing, segmentation, and statistics, opti-
mization of MSI sample preparation is needed to further increase the
sample size and statistical power of MSI studies. Consequently, we
were unable to perform MSI on lung sections collected from mice
treated with HDM or ozone alone to assess additive or synergistic
responses in our study. We previously determined that combined
HDM+O3 exposure induced comprehensive changes in the lipidome
ofmicrodissected airways, increased airway hyperresponsiveness, and
airway inflammation relative to control-treated mice12. Conversely,
enrichment analyses evaluating changes in lipid class abundance in
microdissected airways treated with HDM or exposed to ozone were
modest relative to our previous results (Supplementary Fig. 9). Con-
sidering these findings, we primarily focused on evaluating spatial
changes in lipid abundance in the combined HDM+O3 group.

Likewise, the technical aspects of our MSI data acquisition could
be further optimized to improve quantitative image analyses. Alter-
native normalization methods combining the strengths of our sparse
LOESS normalization with using series of internal standards added to
each sample may further attenuate technical variance in our data.
Additionally, our statistical analyses of ion images were based solely
upon lipids validated by LC-MS/MS. While this method of compound
annotation ismore reliable than assigning peak identities basedonm/z
alone, roughly 10% of the binned peaks detected across both ioniza-
tion modes were annotated in total. Using tandemmass spectrometry
(MS/MS) and trapped ionmobility spectrometry are needed to further
increase lipidome coverage to complement lipid annotations based on
LC-MS/MS validation. Such approaches could be used to distinguish
more detailed peak information, including the position of double
bonds on lipid acyl chains. Existing instrument software is not cur-
rently capable of simultaneous acquisition of MS and MS/MS spectra,
whichmeans that characteristic fragmentation information that assists
with identification must be collected on a sample after acquisition for
each feature individually. Therefore, software improvements enabling
simultaneous MS/MS acquisition are critical for metabolomics assays
based on MSI considering the hundreds of individual features we
detected inour study.However, our useof sparseLOESSnormalization
and extensive filtering of detected MSI peaks both outperformed
conventional TIC normalization of our data and limited analyses to
lipids annotated with high confidence.

Finally, wewere unable to isolate all morphologically defined lung
regions for all samples using our unsupervised segmentation
approach, including the airway basement membrane and the distal
airways (Figs. 3, 4, 5, Supplementary Fig. 4). Increasing the number of
samples in our study and varying the sectioned location of tissue
blocks may have increased the number of samples containing clearly
defined basement membranes and distal airway generations. Char-
acterization of these regions across treatments is needed to determine
localization and changes in lipids within the specialized cell types
located within each region and how these changes contribute to lung
disease9. Nonetheless, our segmentation results facilitated unbiased
regional comparisons in lipid abundance that highlight the potential of
MSI to study molecular differences within the lung and how these
regions are impacted by inhaled toxicants.

We have characterized a model of environmental exposure in the
lung using mass spectrometry imaging. This technique revealed

striking differences in lipid distribution between regions of lung tissue
sections at high spatial resolution. The modified agarose-inflation for
lung cryosectioning coupled with the comprehensive data processing,
image segmentation and analysis strategies included the RegioMSI
package presented here provide the foundation for future MSI
experiments not only in the lung but also for other MSI studies. Our
approach could be applied to investigations in human tissue or addi-
tional mechanistic rodent studies examining regional effects of other
air pollutants within the lung such as traffic-related air pollution and
wildfire smoke. Additionally, the detailed spatial information we
acquired from this study may implicate previously overlooked cell
types and local lipid composition changes in signaling pathways that
could subsequently be targets for therapeutic development in severe
asthma. Importantly, our lipidomic analysis using MSI could also be
paired with scRNA-Seq and spatial transcriptomics techniques to
confine the changes we observed in lung lipids to individual cell types
and evaluate cell-type specific gene expression to enhance our
understanding of the molecular determinants of lung disease.

Methods
Ethical statement
All animal exposures and experiments were conducted following
approved protocols (protocol number 22219) reviewed by the UC
Davis Institutional Animal Care andUse Committee in accordancewith
guidelines for animal research established by the National Institutes of
Health.

Animal protocol
Adult male and female BALB/c mice (Envigo, Inc.) 8–10 weeks of age
were acclimatized for 1 week in rooms kept on a 12 h/12 h light/dark
cycle and fed Purina 5001 lab diet. Mice were sensitized to crushed
whole bodies of Dermatophagoides farinae (Stallergenes Greer, Inc.)
dissolved in phosphate-buffered saline (PBS), challenged with HDM,
and acutely exposed to ozone (Fig. 1a). The sensitization phase con-
sisted of three intranasal instillations of 10μg HDM in 25μL PBS or
vehicle on Days 1, 3, and 5 followed by three consecutive challenges
with HDM (10μg in 25μL PBS) on Days 12–1457. Following each HDM
challenge on Days 12–14, mice were exposed to either filtered air (FA)
or ozone (0.5 ppm, 6 hr/day). Exposure chambers were individually
monitored every hour by a Teledyne Model 400E ozone analyzer to
ensure stability of ozone concentrations for the entire duration of
exposure. The left lung lobes from each mouse were cannulated and
inflated 24 h after the final ozone exposure with 1% low-melting tem-
perature agarose to isolate microdissected airways (n = 8M & 8 F/
group) or to prepare lung lobes for MSI, which were placed on ice for
10min in PBS to solidify (Supplementary Fig. 1)10. Each lobe designated
for MSI was cut into two transverse sections and embedded in 1% low-
melting temperature agarose, and the tissue blocks were sealed and
submerged in liquid nitrogen-cooled isopentane (n = 3M & 3 F/group,
total n = 12). Embedded tissue blocks or microdissected airways were
stored promptly at -80 °C until cryosectioning or extraction.

Lung histology
Left lung lobes were fixedwith 1% paraformaldehyde in PBS for 10min.
The fixed serial sections were dehydrated, stained with H&E, and
subsequently imaged using an Olympus BH-2 microscope with a 4x
and 10x objective. Representative images were selected to compare
sections analyzed by MSI and to identify morphologic changes in
response to combined HDM + ozone exposure (n = 3 males and 3
females per study group; total n = 12).

Cryosectioning
Each tissue block was transferred to a Leica CM1950 cryostat and
mounted to a metal chuck using optimal cutting temperature (OCT)
medium(Sakura FinetekUSA). TheOCTwasonly applied toone faceof
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the tissue block to prevent detector contamination. Sections 15μm
thick were cut and thaw-mounted onto indium tin oxide (ITO) coated
glass slides (Delta Technologies, Limited), and serial sections were
thaw-mounted onto poly-L-lysine coated glass slides for hematoxylin
and eosin (H&E) staining. Tissue sectioning was also tested at 5 and
10μm but this thickness was determined unsuitable for downstream
MSI data acquisition due to the presence of folding and scoring arti-
facts present in tissue sections. The ITO slides were then promptly
stored at –80 °C until matrix application.

Matrix application and MSI data acquisition
Two sets of ITO slides were prepared for either positive or negative
ionization mode data acquisition. Slides designated for positive mode
ionization were sprayed with a solution containing 40mg/mL dihy-
droxybenzoic acid (Millipore Sigma) in 70:30MeOH:H2O using anHTX
automatic sprayer system. The parameters for the sprayer were set to
75°C nozzle temperature, 8 passes, 0.1mL/min. flow rate, 2mm track
distance, and 10 second drying time between each pass. Slides
acquired by negative mode ionization were sprayed with 7mg/mL 1,5-
diaminonaphthalene dissolved in 70:30MeOH:H2O. Bothmatrices and
application parameters were optimized for broad lipidome coverage
in each ionization mode without targeting a specific lipid class39. The
sprayer parameters were set to 70 °C nozzle temperature, 13 passes,
0.1mL/min. flow rate, 2mm track distance, and 10 second drying time
between each pass. Matrix-coated slides were analyzed in positive and
negative ionization mode by matrix-assisted laser desorption/ioniza-
tion time-of-flight mass spectrometry (MALDI TOF MS) using a Bruker
timsTOF fleX hybrid trapped ion mobility time-of-flight mass spec-
trometer equipped with a MALDI source. Ion mobility separation was
disabled for all experimental runs and samples were randomized for
acquisition in both ionization modes. Prior to analysis, the detector
was calibrated using a solution of 90% Agilent ESI-TOF tuning mix and
10% sodium formate. Automatic target profile and laser focus adjust-
ments were performed upon loading slides, and the laser raster width
was set to 10 μm to acquire data using 1 burst of 150 shots at a fre-
quency of 10,000Hz. Beam scan was disabled and a laser field size of
5×5 μm was used to acquire data at 50% local laser energy and 0%
global attenuator offset. The detector scan range for positive ioniza-
tion mode was 300-1300m/z and 300-900m/z for negative
ionization mode.

Sample preparation and LC-MS/MS data acquisition
Following MALDI-TOFMS data acquisition, matrix-coated tissue slides
were scraped, and lipids were extracted for untargeted lipidomics
analysis by LC-MS/MS. Microdissected airways were acquired sepa-
rately but followed the same extraction protocol as scraped tissue
samples. Specifically, a biphasic extraction mixture consisting of
225μL methanol and 750μL methyl tert-butyl ether containing 76
internal lipid standards (Avanti Polar Lipids UltimateSPLASH ONE kit
plus acylcarnitines and free fatty acids) was used to extract lipids from
scraped tissues11,12,58,59. Briefly, the top fraction was evaporated to
dryness and resuspended in 90μL of 90:10 MeOH:Toluene with
50 ng/mL 12-[(Cyclohexylcarbamoyl)amino]dodecanoic acid (CUDA),
and analyzed by a ThermoFisher Scientific Vanquish UHPLC+ liquid
chromatography system coupled to a Q-Exactive HF orbital ion trap
mass spectrometer in both positive and negative ionization modes.
One experimental sample from each condition (n = 1/group/sex, total
n = 4) was acquired in eachmode alongwith two extraction blanks and
two technical replicates of pooled experimental samples. A Waters
Acquity UPLC CSH C18 column and a mobile phase consisting of
60/40 v/v acetonitrile:water (A) and 90/10 v/v isopropanol:acetonitrile
(B) were used to separate metabolites for lipidomics analysis. Formic
acid (0.1%) and ammonium formate (10mM) were used as modifiers
for positive mode acquisition, and ammonium acetate (10mM) was
used as amodifier for negativemode. The data acquisition parameters

for both positive and negative ionization modes were: 65 °C column
chamber temperature, 65 °C post-column cooler temperature, 65 °C
column preheater temperature, 5-minute acquisition time, and step-
ped normalized collision energies of 20, 30, and 40%. The acquisition
mass ranges were 120-1700m/z and 113.4-1700m/z for positive and
negative ionization modes, respectively.

LC-MS/MS data processing
Processing of raw LC-MS/MS files, including deconvolution, peak
picking, and alignment, was completed in MS-DIAL v.4.7060. Identifi-
cation for all compounds was based on mass spectra from built-in in
silico libraries61. Matches to in silico libraries were based on m/z,
retention time, and MS/MS fragmentation pattern. The curated
annotation list for positive and negative ionizationmode is available in
Supplementary Data 1.

MSI data processing, normalization, and statistical analysis
Raw data files were imported into SCiLS Lab software (Bruker Dal-
tonics, Inc.) with a 5-ppm bin size for exporting in imzML format. The
preprocessed imzML files containing all raw data were subsequently
imported into R Studio (v.2023.06.2 + 561) or directly into R (v.4.3.3,
v4.4.1, and v4.4.2) for further processing and downstream analysis.
Processing steps including peak detection, binning, and alignment
were completed using the R package Cardinal (v3.4.3 or v3.6.2)31. MSI
peak annotations were assigned based on matching m/z values to
untargeted LC-MS/MS-based lipidomics data from scraped tissue
slides and data from microdissected lung tissue under identical
experimental conditions as previously reported12. Images corre-
sponding to technical artifacts from the assigned annotation list
were then removed. The individual annotation list, including the
mass error between the MSI peak list and LC-MS/MS validated anno-
tations, is included in Supplementary Data 1. Additionally, a summary
of annotations stratified by class, subclass, and saturation from
positive and negative mode is included in Fig. 1b and Supplemen-
tary Data 2.

MSI data were normalized by adapting locally estimated scatter-
plot smoothing (LOESS), a local polynomial regression algorithm, to all
non-zero intensity pixels across all samples. Image segmentation and
clustering were completed by implementing the k-nearest neighbors
(KNN) algorithm and graph-based clustering approach used by the R
package Seurat (v5.0.3 and v5.1.0)34. All default function parameters
were used for clustering except the clustering resolution, which was
set to 0.9 for all samples. The segmentation results were then assigned
to morphological regions of interest by comparison to H&E-stained
serial sections of each tissue block. Lastly, univariate and multivariate
statistical analysis were conducted using various R packages and the
Kolmogorov-Smirnov test to conduct enrichment analysis for each
lipid class as previously described35,62. Specifically, individual lipids
were grouped based on similarities in chemical structure to determine
if a specific class of lipids was significantly enriched between two
groups. All analysis scripts are freely available online as a separate
R-package in GitHub [https://github.com/cschasestevens/RegioMSI]
or compiled in the Zenododatabaseunder the accession code 10.5281/
zenodo.14834145 [https://zenodo.org/records/14834145]. RegioMSI
was tested on Windows 10 and Windows subsystem for Linux (WSL2)
using a Windows PC equipped with a 12-Core 4.10GHz processor and
128 GB of RAM.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed data generated in this study have
been deposited in the Zenodo database under the accession code
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10.5281/zenodo.14846221 [https://zenodo.org/records/14846221]. The
data are available free of restrictions and can be downloaded directly
from Zenodo. Source data for all graphs included as figure panels
within this study have been deposited in the Zenodo database under
the accession code 10.5281/zenodo.14846581 [https://zenodo.org/
records/14846581]. Supplementary tables are included as Supple-
mentary Data files with this manuscript. Unless otherwise stated, all
data supporting the results of this study can be found in the article,
supplementary, and source data files.

Code availability
All source code used for the analysis and visualizationof the study data
are available onGithub [https://github.com/cschasestevens/RegioMSI]
under a MIT license and can be compiled as a R package for local use
following the instructions outlined in the RegioMSI package
documentation63. Package dependencies are freely available from
either the Comprehensive R Archive Network [CRAN: https://cran.r-
project.org/] or Bioconductor [https://www.bioconductor.org/]. A
compiled version of the RegioMSI source code is deposited in the
Zenodo database under the accession code 10.5281/zenodo.14834145
[https://zenodo.org/records/14834145].
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