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ABSTRACT OF THE DISSERTATION 

 
 

Environmental Impacts of  
Heavy-Duty Natural Gas Vehicle Incentives in California 

 
 
  
 

By 
 

Junhyeong Park 
 

Doctor of Philosophy in Civil and Environmental Engineering 
 

 University of California, Irvine, 2019 
 

Professor Stephen G. Ritchie, Chair 
 

 

Society has an interest in reducing pollutants emitted from the vehicles used for transporting 

people and goods. The main goal of heavy-duty natural gas vehicle (NGV) incentive projects is to 

offer upfront monetary incentives to reduce greenhouse gas emissions and the production of 

regulated pollutants in the state. However, these incentives are often based on vehicle weight and 

do not account for environmental impacts. In addition, although heavy-duty NGVs are being used 

in a variety of vocation types, conventional emission models only support a limited number of 

these vocation types. Because of this, it is challenging to assess the precise impacts of the heavy-

duty NGV (HD NGV) adoption and predict the specific environmental benefits per given 

operational conditions and vocation type. If government agencies realize the environmental 

benefits of alternative fuel vehicles (AFVs), like NGVs, with respect to vocation type and 

operating characteristics, it would be beneficial to design cost-effective incentive structures and 
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implementation plans. This study primarily focused on the operational characteristics and 

environmental impacts of the HD NGVs incentivized in California. This study conducted pattern 

clustering and classification analyses to obtain drive mode compositions (DMC) over duty cycles 

and showed the heterogeneity of operational and emission characteristics of the vocational HD 

NGVs. The vocational impact analysis computed the adoption impact of 40 NGVs operating in 

California across ten different vocation types. The proposed evaluation framework included life-

cycle nitrogen oxides (NOx) and carbon dioxide (CO2) emissions of natural gas, renewable natural 

gas and diesel fuel pathways and compared the lifetime NOx emission reduction potential of the 

considered vocation type vehicles. The resulting emission benefits of the fuel pathways were used 

to determine the most incentive-effective vocation types among the considered NGV applications. 

The multi-criteria decision-making analysis prioritized the fuel pathways based on multiple criteria 

which are related to an incentive effectiveness index as well as life cycle emissions. Refuse truck 

and transit bus pathways are likely to achieve the highest return for the total incentive granted 

when the vehicles are renewable natural gas (RNG)-powered. For compressed natural gas (CNG) 

fuel pathways, school and transit buses take the highest ranks over the various analysis scenarios. 

Each vocation type showed different incentive effects and emission reduction potential, which 

means that some vocational vehicles can play a critical role in the state’s funding and emission 

reduction plans. The suggested decision-making tool and assessment framework can provide 

useful reference data to improve the performance of future alternative fuel vehicle incentive 

programs. 

 



1	
	

Chapter 1 Introduction  

Transport activity is known to be the major contributor to the production of greenhouse gases 

(GHG) and criteria pollutants due to the dependency of major transportation modes on fossil fuels. 

Mobile sources, such as cars, trucks, and buses account for approximately 80 percent of nitrogen 

oxide (NOx) emissions, 90 percent of particulate matter (PM) emissions, and nearly 50 percent of 

GHG emissions (1). Heavy-duty vehicle (HDV) operations, in particular, are responsible for close 

to 36% of nitrogen oxides (NOx) emissions in the U.S. transportation sector, while HD and 

medium-duty vehicles consume 28% of petroleum and emit 26% of carbon dioxide (CO2) 

emissions (2). This study focuses on the production of NOx and CO2 emissions over the entire fuel 

life cycle. NOx is a poisonous and highly reactive gas and an ozone precursor that facilitates the 

production of ozone via chemical reactions in the atmosphere. When inhaled, ozone can damage 

the lungs and cause asthma attacks (3). A great deal of NOx is produced when fossil fuels are 

combusted at high temperatures, and motor vehicles emit 55% of NOx emissions (4-5).  

 

The use of natural gas is more environmentally friendly than other conventional 

petroleum-based fuels. When internal combustion engines (ICEs) burn compressed natural gas 

(CNG), they emit less carbon than conventional fuels, such as gasoline and diesel. Graham et al. 

(6) and Arteconi et al. (7) compare emission inventories from different fuel vehicles, and the results 

show that natural gas can reduce CO2 equivalent GHG emissions by 10 - 20% compared to diesel. 

This is because natural gas has the lowest carbon-hydrogen ratio of all stable hydrocarbon fuels. 

Dominguez-Faus (8) confirms this point by asserting, “NG combustion emits about ¼ less carbon 

dioxide than diesel.” Melendez et al. (9) find that CNG is capable of reducing nitrogen-oxide 

emissions by 35 to 60 percent, compared to gasoline. Natural gas buses can emit 53% lower NOx 
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emissions than conventional diesel buses (10). Furthermore, natural gas has been expected to 

become the most viable alternative fuel in the heavy-duty trucking sector, providing a significant 

amount of regulated pollutant reductions with cheaper pricing ranges than conventional fuels. 

 

Spurred by increasing concerns about air quality in the State of California, the state 

government has set emission reduction goals, as shown in the Mobile Source Strategy (1). 

Government agencies offer various policy and monetary incentives to public and private entities 

that are interested in alternative fuel vehicle (AFV) adoption. The main goal of the vehicle 

incentive projects is to offer upfront monetary incentives to reduce GHG emissions and regulated 

pollutants from mobile sources in the state and ultimately achieve the emission abatement goals. 

About $2 billion of financial incentives have been distributed for heavy-duty natural gas vehicle 

(HD NGV) adoption (11-15). Although the government agencies have distributed an enormous 

sum of money, a limited amount of incentives is available for select customers. Therefore, financial 

incentives should be deployed effectively under stringent distribution plans. The AFV incentives 

are often based on vehicle weight and do not account for environmental impacts. In addition, 

conventional emission models only support a limited number of these vocation types, even though 

heavy-duty natural gas vehicles (HD NGVs) have been used in a variety of vocation types for past 

decades. Because of this, it is challenging to assess the precise impacts of the HD NGV adoption 

and predict the specific environmental benefits per given operational conditions and vocation type. 

Therefore, this study aims to assess the environmental impacts of various vocational HD NGVs 

and determine the incentive-effective fuel pathways in terms of lifecycle NOx and CO2 emission 

benefits for vehicle lifespans. This is not only the problem of NGVs but also other AFVs. If 

government agencies realize the environmental benefits of alternative fuel vehicles (AFVs) with 

respect to vocation type and operating characteristics, it would be beneficial to identify the main 
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policy targets and design a vehicle incentive structure that maximizes emission reductions. Then, 

the agencies can offer different incentive values to vocation types based on the estimated 

environmental impacts. Accordingly, the incentive projects can be more cost-efficient by focusing 

on the specific fuel and vehicle application types. 

 

This study hypothesized that vocational NGVs would have different operational 

characteristics and resulting environmental impacts and investigated the relationship between 

vocation type and operational characteristics of HD NGVs, which has been underestimated in 

previous studies. The vocational impacts on vehicle activity were assessed in driving mode 

composition (DMC) which can provide an insight into how the vehicles are operated. Based on 

the stated research opportunity, this study proposed an evaluation framework that estimates 

lifecycle emissions of various fuel pathways and prioritizes the fuel type and vehicle application 

scenarios in multiple aspects, such as lifetime NOx and CO2 emission reduction potential, 

incentive effectiveness index, and the low-speed driving mode feature.  

 

The revealed best combination of fuel pathways and vocation groups can be a crucial 

player in designing alternative fuel vehicle incentive projects because it can enable the 

establishment of time- and cost-efficient emission reduction strategies, ultimately contributing to 

more sophisticated decision-making processes for determining the most environmentally friendly 

fuel pathways.  
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1.1 Research Objectives  

The objectives of this research are to: 

- Evaluate the environmental impacts of various vocational HD NGVs compared to their 

diesel counterparts  

- Assess the lifecycle NOx and CO2 emissions of NG and diesel vehicle applications 

- Evaluate the performance of NGV incentive projects in terms of environmental incentive 

effectiveness index (EI2, EI-square), which indicates the lifetime NOx emission reduction 

potential over the incentives granted. 

- Determine the most environmentally friendly fuel pathways for contributing to the state’s 

NOx and CO2 emission reduction goals.  

1.2 Evaluation framework  

The proposed evaluation framework for assessing air quality impacts of incentivized HD NGVs is 

presented in Figure 1.1. This study estimated CO2 and NOx emissions of HD NGVs using the 

vehicle activity data obtained via the J1939 controller area networks (CAN) bus protocol and then 

calculated driving mode distributions which aim to capture operational characteristics of the 

NGVs.  

 

The well-to-wheel (WTW) assessment covered NG lifecycles which include the entire NG 

production and consumption procedure so that the analysis results can explain the total 

environmental impacts of the NG fuel pathways and vehicle applications. The estimated total fuel 

cycle NOx and CO2 emission rates were used to prioritize NG and diesel fuel pathways and 
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determine cost-effective vocation type in terms of lifetime NOx emission reduction potential over 

incentive values granted.  

 
Figure 1.1. Environmental impact analysis framework of this study	
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1.3 Dissertation Outline  

This dissertation consists of nine chapters. 

Chapter 1 introduces the research background and opportunities in alternative fuel vehicle 

incentive projects, objectives of this dissertation, and the proposed evaluation framework. 

Chapter 2 revisits the policy details of the current incentive projects and discusses the 

academic contributions of this dissertation compared to previous studies related to the total fuel 

cycle, driving pattern, and multi-criteria decision-making (MCDM) analyses. 

Chapter 3 introduces the procedure of vehicle activity data survey and survey results.  

Chapter 4 presents estimation procedures and results of NOx and CO2 emissions. 

Chapter 5 introduces the vocational impact analysis that captures the operational 

characteristics of heavy-duty NGVs and investigates causal relationships between vehicle activity 

patterns and emission characteristics.  

Chapter 6 introduces the total fuel cycle analysis and the resulting environmental impacts 

of natural gas (NG), renewable natural gas (RNG), and diesel fuel pathways.  

Chapter 7 presents the lifetime NOx emission reduction potential of the considered HD 

NGV types and predict environmental incentive effect that indicates emission reductions over the 

incentive values granted.  

 Chapter 8 presents the prioritized NG, RNG, diesel fuel pathways by considering multiple 

criteria. 

Chapter 9 provides concluding remarks. This chapter discusses the contributions of this 

dissertation and potential future studies. Associated policy implications are discussed and address 

the anticipated contributions of the proposed incentive policy and evaluation framework.  
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Chapter 2 Literature Review  

The proposed evaluation framework integrates various data sources and analytical methods, and 

this chapter discusses the academic contributions of the relevant assessments and research efforts.  

2.1 Total fuel cycle analysis 

Total fuel cycle analysis (TFCA), also known as Well-to-Wheel (WTW) analysis or life-cycle 

analysis (LCA), estimates the total emissions associated with the whole process of energy 

production from the fuel source (“wells”), distribution through various transportation modes to the 

stations (“pumps”), to consumption in vehicle engines (“wheels”). WTW analysis consists of the 

Well-to-Pump (WTP) cycle and the Pump-to-Wheel (PTW) cycle (16).  

 

The California Energy Commission conducted a TFCA for 17 different vehicle and fuel 

type combinations with more than 50 fuel pathways (17). It was discovered that renewable natural 

gas (RNG) is the most environmentally favorable fuel pathway among methane-based fuels in 

terms of its environmental impacts. The NG WTW analysis of Cai et al. (18) asserted that NGVs 

consume less water and produce fewer NOx and PM emissions in comparison to conventionally 

fueled trucks. Wang et al. (19) conducted a full fuel cycle analysis of the energy and emissions 

impacts of transportation fuels produced from natural gas using the GREET1 (Greenhouse Gases, 

Regulated Emissions, and Energy Use in Transportation) total fuel cycle analysis (TFCA) tool. 

The study considered eight fuel types produced from natural gas for five vehicle types. The 

GREET1 model had to be modified to estimate emissions from heavy-duty trucks because the 

model supports only light-duty vehicles (8). Wang et al. (19-21) later improved the GREET model 

and released the 2018 version with updated fuel pathways and parameters of upstream stages. 
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Despite these improvements, the broad focus of TFCA methods has left gaps in their sensitivity to 

vocational applications. These gaps motivated this study to obtain activity data from a variety of 

vocational vehicles in service and to estimate their environmental impact. 

 

Many previous LCA studies have asserted that the environmental benefits of AFV adoption 

should be assessed in a total fuel cycle analysis (TFCA) to explain the total emissions produced 

during production, distribution, and consumption of energy (16-22). However, previous studies 

have aggregated key parameters for pump-to-wheel (PTW) analysis due to a lack of data sources 

from diverse heavy-duty vehicle types and vocations (16). Although these TFCA results may show 

the general environmental benefits of alternative energy use, the aggregation may not accurately 

reflect the incremental benefits of adopting AFVs making them less useful for deciding whether 

to adopt alternative fuel vehicles for specific vocational applications. Neither lab tests nor 

macroscopic emission models are capable of considering various vocation types, meaning that the 

emission rates used are insufficient to reflect in-use emissions produced by heavy-duty vehicles. 

 

Furthermore, recently introduced low NOx engine models offer far lower emissions 

compared to conventional CNG and diesel engines. The current TFCA tools, however, do not 

consider the impact of such near-zero emission vehicle operations. The near-zero low NOx engines 

are certified to the optional NOx emission standard (23), which is 0.02 grams per bhp-hour, while 

clean diesel and most modern conventional CNG 8.9-liter engines emit approximately 0.13 grams 

per bhp-hour. This study compared the environmental impacts of the low NOx, conventional CNG, 

and diesel engine vehicles to consider the benefits of these near-zero technologies. Because the 

low NOx engines are more expensive than their counterparts and customers are being offered 

additional incentives for the low NOx engine, this study includes an environmental incentive 
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effectiveness index in the multi-criteria decision-making (MCDM) analysis to prioritize the fuel 

pathways. 

 

To estimate and compare WTP emissions rates of different fuels, this study used the 

California Air Resource Board’s CA-GREET model (24). The proposed PTW analysis 

demonstrated how vehicle activity data could be used to customize the input parameters of the 

WTW analysis framework. The resulting life-cycle emission estimates were more sensitive to 

vocational performance differences, and this approach allowed fleet managers or policy 

practitioners to determine the vocation-specific adoption impacts of AFVs. 

2.2 Heavy-duty vehicle activity data collection 

Substantial research efforts have been made to investigate the operational characteristics of heavy-

duty commercial trucks due to their significant economic and environmental impacts on emissions 

inventory. A joint research project in 1999 between the California Air Resources Board (CARB) 

and Federal Highway Administration (FHWA) aimed to analyze characteristics of heavy-duty 

truck travel and improve the heavy-duty truck activity data that are used in forecasting on-road 

emissions (25). The obtained GPS data was used to assess driving, trip, and start patterns of study 

vehicles sampled from geographic regions and weight class groups. The study mainly focused on 

diesel-powered commercial truck activities and a relationship between vehicle speed and emission 

characteristics (26).  

Borisboonsomsin et al. (2011) conducted a heavy-duty truck activity data survey, and the 

obtained data includes electronic control unit (ECU) summary data and telematics-based vehicle 

tracking data to improve the MOtor Vehicle Emission Simulator (MOVES) which is one of the 

popular emission models. The study presented distributions of distance and duration per trip by 
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operation area type, highway functional, and vehicle weight classes, which can be used as input 

data for MOVES (27). The ECU summary data contains aggregated data and is limited to show 

various engine performance-related parameters.  

 

Borisboonsomsin et al. (2016) obtained detailed ECU data via J1939 data protocol from 

90 heavy-duty diesel trucks and assessed the impact of selective catalytic reduction (SCR) 

temperature on nitrogen oxides (NOx) emission rates (28). The study vehicles were sampled based 

on the EMFAC2011 (EMission FACtors) vehicle categories and various vocation types. The 

analysis results show the significant regional impacts on the variations of the ambient, engine, and 

Selective Catalytic Reduction (SCR) temperature. The participated commercial trucks are diesel-

powered, which means that the subject trucks have different emission characteristics from NGVs. 

Moreover, the structure and size of the diesel truck market are quite different from those of NGVs. 

Thus, the analysis results were limited to explain the operational characteristics of HD NGVs. 

 

Since the previous studies have focused on the diesel vehicle types, not many studies on 

the natural gas trucks and their vocation types have been conducted. The most recent cross-

vocational data analysis on NGVs is done by Fleet DNA: commercial fleet vehicle operating data 

of the National Renewable Energy Laboratory (NREL). Due to the huge population of diesel 

trucks, the fleet operation data was mainly collected from diesel vehicles, and NGV data takes a 

relatively small portion. 4% and 5% of total trips and total travel distance respectively are provided 

by NGVs.  

 

The Fleet DNA activity data includes numerous parameters derived from vehicle speed, 

and it helps researchers to understand the general operational characteristics of NGVs. However, 
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GPS-based vehicle speed data is likely to have severe error data in urban areas. This study used a 

data collection device that is capable of obtaining ECU and GPS data simultaneously so that it was 

possible to analyze spatial-temporal vehicle activities in multi-dimensions of various engine 

parameters.  

2.3 Driving pattern analysis  

Considerable research efforts have been made to capture the operational characteristics of HDVs 

in service and investigate diverse vehicle activities. Although the reviewed papers had different 

research goals, a collective research task was related to the characterization and generalization of 

observed vehicle activities to derive meaningful findings. Many previous studies have emphasized 

the importance of driving pattern analysis, with a particular focus on the estimation of emission 

inventory, because emission rate does not linearly increase as speed increases. For example, when 

a vehicle is coasting, tailpipe emission rates and engine speed can be relatively lower than the other 

driving states. Internal combustion engine vehicles produce GHG emissions and criteria pollutants 

in idling status and more after the extensive idling operation due to the lowered efficiency of after-

treatment systems. 
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2.3.1 Production of micro driving patterns 

A common practice to process activity data in the previous studies is refining vehicle activity data 

into micro driving patterns, which are defined by successive two stopping events. Lin et al. (29) 

divided data into small driving patterns by assuming that a new pattern started every time the 

vehicle came to a stop. Liaw (30) also used a similar scheme in which the data was broken down 

into sequentially isolated ‘driving pulses,’ each representing an active driving period bounded by 

two adjacent stops. Dai et al. (31) also used stops to define the micro driving patterns, which they 

called micro-trips. Yokoi et al. (32) used a slightly different method that divides the obtained data 

into micro driving patterns based on the distance traveled, such as 100 meters. These approaches 

often found that too many short driving patterns that last 2 ~ 3 seconds and seem to be useless in 

pattern analyses. To exclude the meaningless driving patterns, Larsson and Ericsson (33) used a 

speed threshold of 2mph, which successfully improved the equality of the patterns identified. This 

study adopts the Ericsson’s speed pattern threshold to divide the obtained speed trajectories.  

2.3.2 Driving pattern analysis  

Once the micro-patterns are defined, a typical data treatment is to compute summary statistics to 

classify the driving snippets, and then the driving pattern groups that constitute the drive cycle, 

representing on-road driving patterns, as shown in Larsson and Ericsson (33), Wang et al. (34), 

Ericsson (35), Hung et al. (36), Lin et al. (37), and Brundell-Freij et al. (38). Typically, the 

summary statistics are aggregated values per pattern and include average, median, and standard 

deviation for speed, acceleration, and deceleration, etc. These statistics can be easily generated 

from speed parameters but are challenging to obtain optimal classification thresholds for whole 
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datasets. Furthermore, they are relatively abstract pattern features that lack explanatory power 

compared to features capturing pattern-shape and joint-distributions (39-40).  

 

Speed and Acceleration Frequency Distribution (SAFD, also known as a Watson plot) had 

been popularly used in previous pattern analyses because emission rate does not exhibit a linear 

relationship with vehicle speed and acceleration. For instance, Nesamani and Subramanian (41) 

developed a driving cycle for intra-city buses in a city of India using speed and acceleration 

frequency distribution. The SAFD is known to effectively address the non-linear relationship 

between emission rates and vehicle speed; however, the SAFD matrix is likely to have too many 

empty cells or zero values to be used in statistical analyses. 

 

Another set of studies focuses on classifying micro driving patterns using thresholds for 

identifying operating modes. Bata et al. (42), Dembski et al. (43), Gu and Rizzoni (44), and Rapone 

et al. (45) set speed bins to classify driving patterns. For instance, Bata et al. (42) classify driving 

patterns into modes using an acceleration threshold of 0.03 m/s2 to define accelerating and 

decelerating modes. Below those thresholds, a vehicle is considered to be in cruise mode if its 

speed is greater than 0.3 m/s (0.67 mph) and in idle mode, if the speed is less than 0.3 m/s.  

Nesamani and Subramanian (41) defined five operating modes as: idling (speed equals zero), 

cruising mode (speed > 3.1 mph (5km/h) and acceleration > 0.1 m/s2), creep mode (speed < 3.1 

mph and absolute acceleration < 0.1 m/s2), accelerating mode (acceleration rate > 0.1 m/s2), and 

decelerating mode (acceleration rate < -0.1 m/s2). Dembski et al. (43) categorized driving patterns 

based on the average speed of the patterns. An urban driving trip is outlined for pattern mean 

velocities less than 20 mph, while a road driving trip is defined for the mean velocity between 20 
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and 35 mph (43). If the average speed of a driving pattern exceeds 35 mph, the driving pattern is 

classified as a highway driving trip.  

 

Borisboonsomsin et al. (28) calculated the operation mode (OpMode) matrix based upon 

computing the vehicle-specific power for MOVES (Motor Vehicle Emission Simulator) using in-

vehicle CAN data from HD diesel trucks. Because the element values of the OpMode matrix tend 

to concentrate on a certain OpMode in a driving pattern, it is likely to have many zero values, 

which lack the discrimination power of the pattern feature. Most vehicle activity parameters do 

not follow a Gaussian distribution; therefore, it is difficult to use conventional statistical tests for 

comparisons of the pattern features derived from vehicle speed. Barth and Borisboonsomsin (46) 

showed that different driving pattern compositions are more tightly correlated with vehicle fuel 

consumption, such that total fuel consumption can be significantly reduced by practicing eco-

driving behavior, involving smooth acceleration and deceleration, maintaining steady speeds, and 

coasting to a stop with efficient transmission gear shifts.  

 

Prohaska et al. (47) and Fotouhi et al. (48) conducted pattern clustering analyses and then 

classified micro driving patterns into driving mode groups. Prohaska et al. focuses on the 

operational characteristics of diesel drayage trucks in port areas and used the average and 

maximum speed of each driving pattern to conduct the k-medoids clustering analysis. Fotouhi et 

al. used the k-means clustering method with average speed and idle time percentage of each micro 

trip to develop representative driving cycles for Tehran. The clustering method shows outstanding 

results for pattern classification and is useful in the visualization of the distances between the 

driving mode partitions.  
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2.4 Alternative fuel vehicle incentive programs and impact analysis studies 

The California government set the emission reduction goals as 1) Reducing GHG emissions to 

1990 levels by 2020, 2) Reducing GHG emissions to 40 percent below 1990 levels by 2030, 3) 

Reducing GHG emissions to 80 percent below 1990 levels by 2050, 4) Reducing short-lived 

climate pollutant emissions, such as methane, to 40 to 50 percent below 2013 levels by 2030. The 

transportation sector is responsible for reducing 39% of state GHG emissions (49). The California 

legislature passed Assembly Bill 118 (Núñez, Chapter 750, Statutes of 2007). This legislation 

created the Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), which 

provides up to $100 million per year for projects that facilitate fuel transition in California through 

2024 (a total of $745 million) (12). The California Energy Commission ARFVTP 

(Reference California Health and Safety Code 44270-44274.7 and California Code of 

Regulations, Title 13, Chapter 8.1) supports $10 million per year to Natural Gas Vehicle Incentive 

Program (NGVIP), and its incentive structure is presented in Table 2.1. The project offers $25,000 

for heavy-duty NGVs that are 33,001 lbs. and greater. For the past decade, the ARFVTP has 

invested more than $745 million on a variety of alternative fuels and vehicle technologies. (49)  

 

Table 2.1. NGVIP incentive levels 
GVWR (lbs.) Incentive amount ($) 

Up to 8,500 $1,000 

8,501-16,000 $6,000 

16,001-26,000 $11,000 

26,001-33,000 $20,000 

33,001 & greater $25,000 
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The HDV and off-road equipment investment (SB 1204) of Low Carbon Transportation 

Investments and the Air Quality Improvement Program has funded the Hybrid and Zero-Emission 

Truck and Bus Voucher Incentive Project (HVIP) and Low NOx Engine Incentives (50). HVIP 

provides vouchers of up to $300,000 for California purchasers and lessees of zero-emission trucks 

and buses, up to $30,000 for eligible hybrid trucks and buses, and up to $45,000 for low NOx 

engines on a first-come, first-served basis. HVIP has supported 7,114 clean vehicle adoptions with 

$349 million (31.2 million for NGV adoption) (11).  

 
The goods movement emission reduction project (13) funded by the Proposition 1B 

program has invested $892 million and provides monetary incentives up to $200,000 for heavy 

heavy-duty trucks operated on California’s trade corridors (13-14). Many other incentive programs 

are also available for alternative fuel light-duty vehicle adoption (51), such as Clean Fuel Reward 

Program (52), Clean Vehicle Rebate Project (53), Clean Vehicle Assistance Program (54).  

 
Most incentive projects can be categorized into two types of incentives. The first type of 

incentive is monetary incentive type, and the other one is a policy incentive type. The fiscal 

incentive program offers upfront financial benefits, while policy incentive types provide non-

monetary benefits, such as High occupancy vehicle (HOV) and high occupancy toll (HOT) 

exemption for clean vehicles in California (55).  

 
As an alternative energy vehicle incentive program demands a very large budget, many 

studies have been conducted to assess the effectiveness of AFV incentive policies. Mersky et al. 

(56) investigated the effect of incentives on per-capita electric vehicle (EV) sales among the 

municipalities and regions of Norway. On both the regional and municipal levels, the number of 

charging stations is the most influential factor, while personal EV purchases are sensitive to 
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median household income only on the municipal level. Lévay et al. (57) investigated the causal 

relationship between costs and sales of EVs and the impact of financial incentives, which reduce 

TCO and increase EV sales. The study calculated the total cost of ownership (TCO) and conducted 

a comparative analysis for TCO values of EVs and internal combustion engine (ICE) vehicles in 

eight European countries. The TCO of Norway is lower than that of ICE counterparts, while TCO 

values of Netherlands, France, and the UK are similar to the TCO of ICE pairs. For the rest of the 

countries, the TCO of EVs is higher than the corresponding ICEs.  

 
Bjerkan et al. (58) attempted to investigate the role of EV incentive programs and what 

kind of incentive types is effective to promote battery electric vehicle (BEV) sales. 80% of all 

respondents declared that exemptions from purchase tax and VAT are critical for purchasing EVs. 

This result is consistent with Gass et al. (59), Jin et al. (60), Brand et al. (61), Tal and Nicholas 

(62), and David Diamond (63) and these papers highlighted that up-front price reduction is the 

most powerful incentive in increasing EV and hybrid-electric vehicle (HEV) adoptions. Tal and 

Nicholas (62), notably, argued that the incentive is critical for low-priced BEV purchases, while 

not crucial for high-end BEVs. It means that quite a few high-end BEV purchasers would buy the 

cars without fiscal support. Hardman and Tal (64) also support this argument. Another suggestion 

of Gil Tal and Michael Nicholas is that incentives should support more BEVs and PHEVs with 

high electric driving ranges than the vehicle types with low electric ranges. It is because the 

incentive is less important for the purchasers who drive PHEVs with lower electric driving ranges. 

 

Robert Kok (65) assessed the impact of CO2-based tax incentives for low-carbon light-

duty cars in the Netherlands. The tax incentives provided 13 gram/km, or 11% lower average CO2 

emissions in 2013. This incentive program achieved 4.6 million tons of potential lifetime CO2 
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abatement from the new light-duty cars sold between 2008 and 2013 at the cost of 30 to 50% of 

decreased tax revenues. 

 
In addition to the above financial support, the seven fleet rules of the South Coast Air 

Quality Management District (SCAQMD) in Southern California mandate that public and private 

fleets are operating in a set of specific alternative fuel vehicles if their fleet size is 15 or more (66). 

Because of these rules, most conventionally powered vocational vehicle types are likely to be 

replaced with alternative fuel vehicles (AFVs), particularly in the public sector. In light of the 

potential of the NGV market, a better understanding of heavy-duty truck activities is an essential 

component for studies on the strategic emission abatement plan. Furthermore, it is expected that 

the population of AFVs will gradually increase until the current emission levels meet the state’s 

goal with the successful implementation of the above projects. 

2.5 Difference of CO2 emission and fuel economy between diesel compression-

ignition (CI) and natural gas spark-ignition (SI) engines 

The CO2 emission estimation method of this study relies on instantaneous fuel rates (liter/hour) 

obtained from vehicle ECU with the assumption that carbon content is maintained between pre- 

and post-combustion. In order to estimate CO2 emissions of diesel vehicle scenarios, this study 

adjusted instantaneous horsepower values based on the difference in CO2 emissions and fuel 

economy between compression-ignition (CI)and spark-ignition (SI) engines, as provided by 

Johnson et al. (67), who noted that stoichiometric SI natural gas engine would emit approximately 

20% less CO2 than diesel engines. This is because natural gas (NG), which is primarily composed 

of methane, contains less carbon per unit energy than diesel; therefore, the resulting tailpipe 

exhaust is likely to contain less CO2. CI diesel engines, however, offer about 10 to 15 % higher 
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thermal efficiency than SI NG engines. Consequently, the lower thermal efficiency of SI NG 

engines partially negates the environmental benefits from the lower carbon content of NG.  

 
Clark et al. conducted chassis dynamometer tests for diesel and CNG transit buses. 

Emissions of CO2 from the natural gas transit buses averaged 11.6% lower compared with CO2 

emissions from the diesel-fueled buses (68). Ayala et al. also conducted chassis dynamometer tests 

for diesel and CNG transit buses over various driving schedules, such as 55 mph steady-state (SS) 

cruise, Central Business District (CBD), Urban Dynamometer Driving Schedule (UDDS), and 

New York City Bus Cycle (NYBC). The CNG transit bus produced 21.2%, 7.6%, 10.5%, and 2.1% 

lower CO2 emissions than diesel transit buses over the considered driving schedules, respectively 

(69). Lyford-Pike et al. measured various emission species of 12 CNG and diesel trucks over the 

Urban Dynamometer Driving Schedule (UDDS) and Viking drive cycles. The subject CNG 

vehicles emitted 7% and 6.5% lower CO2 emissions than diesel counterparts over UDDS and 

Viking cycles, respectively (70). 

 
Hesterberg et al. referred to numerous previous experimental studies and compared criteria 

pollutants and GHG emission rates of refuse trucks, school buses, and transit buses empowered by 

diesel fuel and CNG, respectively. For the most vehicle types, fuels, and after-treatment systems, 

NOx and CO2 emission rates were similar except for diesel school buses which provide 25% higher 

CO2 emission rates than the CNG buses (71). Lopez et al. compared GHG emissions from diesel, 

biodiesel, and natural gas refuse trucks, and the analysis results present 13 % less CO2 emission 

production from CNG trucks compared to diesel counterparts. The study also presented that CNG 

SI engines operating the Otto cycle have lower thermal efficiency than diesel CI engines (72). 

Quiros et al. presented in-use CO2 emission rates of diesel, hybrid diesel, and CNG tractor trucks 
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and the CNG truck data shows 11.6% less carbon dioxide per mile than the five diesel vehicles 

(73). 

 
Assuming that CO2 emissions are a proxy measure of fuel consumption, this study 

reviewed previous studies on the comparisons of fuel economy from diesel CI and NG SI engine 

vehicles. Lyford-Pike et al. (70) found that the fuel economy penalty for NGVs was about 20% 

compared to diesel vehicles. Tong et al. (74) found that diesel engines show approximately 10% 

better fuel efficiency than NG engines with various vocation types, such as refuse, transit, and 

haulers. Dominguez-Faus (8) assumed that NG SI engines are 10-15% less efficient than diesel, 

and the resulting fuel economy of the diesel trucks is 14.2% more efficient than the study NG 

trucks. Based on this literature, this study followed Tong et al. and assumed that diesel 

compression-ignition (CI) engines consume 10% less energy than NG spark-ignition (SI) engines. 

As such, this study converts ECU fuel rates of the subject NGV data into therms and then reduce 

them by 10% to estimate CO2 emissions for diesel vehicle scenarios.  

2.6 Multi-Criteria Decision-Making Analysis 

NOx and CO2 emission species are different tailpipe exhaust types making it difficult to aggregate 

them into a single factor.  Furthermore, the life-cycle emission rate alone is insufficient to explain 

the validity and feasibility of AFV adoption fully because government agencies need to consider 

not only the environmental benefits of AFVs but also the sustainability of the incentive programs 

and relevant emission reduction programs. Multi-criteria decision-making analysis (MCDM) is 

commonly used for situations such as these in which the goal is to identify the best alternative 

based upon criteria that cannot be combined into a single metric. 
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MCDM is an evaluation technique that compares available alternatives with various 

qualitative and quantitative criteria to find the best choice or strategy in the given situation. Among 

the numerous MCDM methods, the TOPSIS (Technique for Order Preference by Similarity to 

Ideal Solution) is one of the most popular. Hwang and Yoon developed TOPSIS in 1981 (75), and 

Nădăban et al. (76), Kuo (77), and Krohling et al. (78) were helpful to understand the basic 

concepts and methodologies of the TOPSIS. Chen et al. (79) provides well-organized reviews 

about the variations and evolution of the TOPSIS methods.  

 
TOPSIS identifies the best alternative by finding a solution that has the shortest geometric 

distance from the positive-ideal solution (PIS), and the longest geometric distance from the 

negative ideal solution (NIS). The PIS consists of all the best values attainable of the criteria; 

therefore, it minimizes the cost criteria and maximizes the benefit criteria. NIS is composed of all 

the worst values attainable of the criteria and maximizes the cost criteria and minimizes the benefit 

criteria (76). TOPSIS has been used in a variety of research areas, such as economic and stock 

market analyses (80), commercial product evaluations (81), and energy selection problem studies 

(82-84). 

 
According to Lee and Chang (85), MCDM methods are popular in energy selection 

problems because the MCDM methods allow considering multiple and conflicting criteria. 

Available renewable energy sources for electricity generation in Taiwan were evaluated and 

ranked up based on various criteria. The analysis results show that Hydro is the best alternative for 

Taiwan, followed by solar. Ümran Sengül et al. (82) proposed a multi-criteria decision support 

framework for comparing renewable energy supply systems in Turkey. TOPSIS results concluded 
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that hydropower station is the top prioritized energy supply system for Turkey, followed by 

Geothermal Power Station.  

 
Kim (84) used the fuzzy decision-making approach to solve the optimal energy selection 

problem with ten energy alternatives. As a result, solar energy is the top-scored energy alternative, 

followed by wind and biomass. Buyukozkan and Guleryuz (83) used a hybrid fuzzy MCDM 

methodology to evaluate the sustainable energy alternatives for Turkey. The analysis result 

presented that nuclear energy is the highest scored alternative. As shown in Buyukozkan and 

Guleryuz (83) and Lee & Chang (85), the previous studies considered various kinds of criteria, 

such as economic, technical, social, and environmental criteria; therefore, the alternatives were 

assessed by considering multiple perspectives. 

 
The decision analysis requires a set of weights for the considered criteria, and the decision 

analysis results can significantly vary depending on these assigned weights. This means that the 

weighting process is the most critical step in the MCDM analysis. Previous studies obtained weight 

values by conducting surveys (84) or using the Shannon entropy method (82-83)(85). This study 

set multiple weight value scenarios and conducted a sensitivity analysis assessing the impacts of 

different weight vectors. Depending on the applied weight value set, each scenario focuses on 

different criteria in the determination of the best alternative among the fuel and vehicle 

alternatives. 
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2.7 Summary and research opportunity 

2.7.1 Total fuel cycle analysis 

Numerous fuel lifecycle studies have been conducted to compare the environmental impacts of 

various fuel pathways. It is essential to recognize the fuel cycle emissions as well as vehicle cycle 

emissions because no alternative fuel type is possible to offer net zero-emissions. This study used 

the GREET.net of Argonne National Laboratory and CA-GREET of the California Air Resources 

Board to compare the environmental impacts of CNG, RNG, and diesel fuel pathways. In addition, 

this study demonstrated how vehicle activity data collected from standard in-vehicle controller 

area networks (CAN) could be used to customize input parameters of the TFCA framework, which 

reflect fuel consumption and emission production of the subject vehicles. The resulting life cycle 

emission estimates are more sensitive to vocational performance differences, which allows fleet 

managers or policy practitioners to determine the vocation-specific adoption impacts of AFVs 

using life cycle analysis. 

2.7.2 Heavy-duty vehicle activity data collection 

The previous activity data collection projects focused on heavy-duty diesel trucks, which are 

mainly being used for freight transportation; therefore, the investigated truck activity types lack 

diversity and the resulting emission characteristics only support diesel-powered vehicle 

applications. Natural gas and other alternatively fueled vehicles and their related vocations have 

received less attention than the leading player in the market despite the cleanness of the 

alternatives. Considering the vehicle population and infrastructure network scale of HD NGVs, 

NGV applications are the most viable fuel and vehicle technologies among the alternative fuel 
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vehicle types. Thus, NGVs are expected to take a crucial role in emission reduction plans of the 

state.  

2.7.3 Driving pattern analysis  

Depending on the research goal, researchers should select a proper data treatment process to 

transform the obtained raw data into appropriate evaluation metrics. When we, for instance, 

compare fuel economy values of two vehicles, one of the vehicles can show a higher fuel economy 

than the other. The metric, fuel economy, exhibits fuel consumption of the subjects; however, it is 

limited to explain why it does. The reviewed vehicle activity and pattern studies demonstrate that 

the micro driving pattern analysis can effectively capture operational characteristics with drive 

mode composition (DMC), also known as drive mode distribution. DMC indicates the total amount 

of operating time for each driving mode; therefore, it is possible to explain the difference in fuel 

economy values of the two vehicles. The presented causal relationships between the drive mode 

composition, traffic environments, and the resulting environmental impacts of the subject vehicles 

are expected to show a clearer picture of emission characteristics over duty cycles. 

2.7.4 Alternative fuel vehicle incentive programs and impact analysis studies 

Previous incentive policy studies mainly focused on the determination of effective incentive types 

and influential factors for promoting alternative fuel light-duty vehicle adoption. Due to the 

immature clean vehicle technologies and market, it has been difficult to predict the environmental 

impact of emerging clean vehicles. Therefore, not many research efforts have been made to assess 

the effectiveness of the incentive programs and associated influential factors, such as operational 

conditions, business type, vehicle cost, incentive type, regional effects. The previous studies 
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commonly concluded that up-front price reduction is the most effective in AFV adoption and a 

limited amount of studies have been conducted to assess the performance of incentive projects.  

 

The HDV incentive projects offer monetary benefits based on vehicle gross vehicle 

weight rating (GVWR), while the light-duty vehicle incentive projects often provide different 

benefits according to the income level of purchasers. The incentive is to compensate for the price 

premium of alternative fuel vehicles. The vehicle cost, however, varies by vehicle class and 

vocation type. It means that HDVs can have different incentive benefits depending on vocation 

type, and the resulting environmental benefits cannot be consistent in the same GVWR group. This 

study investigated the incentivization impact of the subject NGVs by vocation type and argued 

that the incentive projects could be further improved by re-designing the incentive structure based 

on the suggested emission benefit measures.  

2.7.5 Multi-Criteria Decision-Making Analysis 

MCDM analysis can compare alternatives in multiple aspects; therefore, it has been popular in 

energy-related problems. This is the reason that this study chose the method for the prioritization 

of the fuel pathways. Compared to conventional MCDM analysis studies on energy problems, this 

study considered new criteria that reflect the impacts of incentivization and operational 

characteristics of the subject vehicles. This study set multiple weight value scenarios to conduct 

sensitivity analysis. Depending on an applied weight value set, each scenario focuses on different 

criteria in the determination of the best fuel pathways among the fuel and vehicle alternatives. 
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Chapter 3 Vehicle activity data and duty cycle information 
acquisition  
 

3.1 Purpose and background  

The California Energy Commission (CEC) operates a number of programs under its Alternative 

and Renewable Fuel and Vehicle Technology Program (ARFVTP) to reduce the upfront cost of 

alternative fuel vehicles, accelerate the deployment of such vehicles, improve air quality in heavily 

impacted regions, and strategically support alternative fuel vehicles. One of these programs is the 

Natural Gas Vehicle Incentive Program (NGVIP), which offers monetary incentives for the 

purchase of NGVs in California. The survey task focused on the collection of technology-specific 

deployment data from the planned use of NGVs operated by private and public entities receiving 

incentives. The NGVIP has involved three general classes of end-users of the incentive program: 

• Freight fleet operators 

• Non-freight fleet operators, which may include bus, utility, and lightweight delivery fleets 

• Consumers purchasing light-duty vehicles for personal use 

3.2 Survey instruments 

The NGV use survey was conducted by using two survey instruments. The first instrument is ECU 

data loggers which are also known as On-Board Diagnostics (OBD) reader and the main device of 

this survey task. This survey instrument was used to collect vehicle activity data from the 

incentivized NGVs. The second one was designed to obtain duty cycle information for predicting 

annual and lifetime emission benefits of the subject vehicles. This study procured fifteen OBD-

II/J1939 data loggers for the proposed survey task.  
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3.2.1 Instrument 1 (J1939 data collection from NGVs) 

Survey participants were asked to install a Global Positioning Device (GPS) and OBD reader into 

their NGVs for at least two weeks. Figure 3.1 shows an example of the data logger installed in a 

heavy-duty truck. The data collection period varied with the operational schedules and conditions 

of the survey participants. This instrument gathers high-resolution data on trajectories and engine 

performance characteristics of participants’ vehicles to understand how vehicles are deployed in 

practice. The obtained datasets were used to estimate NOx and CO2 emissions of the subject 

vehicles and conduct driving pattern analyses.  

3.2.2 Instrument 2 (“Natural Gas Vehicle use paper survey”) 

In the second part of the survey, participants were asked to take a short paper survey, and the 

answers were used as supplement data for analyzing the obtained vehicle activity data. The survey 

questionnaire was designed to ask about the purchased NGV’s vocation-related information. The 

survey sheets were included in a survey package as shown in Figure 3.1 and sent to fleet managers. 

The questionnaire is presented in Appendix A.  

 

This method depends on self-reported survey data collected from incentive recipients, 

such as a fleet manager, a shop manager, or an owner-operator.  Each participant was asked to fill 

out the survey after the voucher redemption process.  The data to be collected in the survey include 

the following information for the purchased vehicle: 

• Purpose of use: commercial or personal transportation 

• Information on prospective refueling station types and behaviors 

• Duty-cycle and travel pattern information 
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• Expected vehicle miles traveled per week 

• Previous vehicle and fuel types 

	

	 	 	
J1939 CAN bus port  Example of installed data logger in   

a heavy-duty truck 
Survey packages prepared  

for the data survey 

Figure 3.1. Data survey instruments	 	
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3.3 NGVIP data survey procedure 

The proposed survey task was carried out in a cross-sectional design. The instrument 1 is the main 

data survey, which was to capture the operational characteristics of the subject vehicles. The 

instrument 2 is to validate the instrument 1 data and a source of duty cycle information in the 

incentive impact analysis. Survey targets of instrument 1 were the CNG vehicles incentivized by 

the NGVIP and only focused on the vehicle activity, while instrument 2 was answered by fleet 

operators  

 

The chronological procedure is as follows: 

3.3.1 Instrument 1  

a. Individuals and business representatives (“applicants”) who apply for natural gas vehicle 

incentives were recruited for participation in the research study.  Those who agreed to 

participate became research subjects.   

b. The GPS+OBD data collection device was mailed to each survey participant with instructions 

on how to install the device in their vehicle. 

c. Survey participants installed the data logging device in the vehicle for the data collection 

period (two weeks or over) 

d. Survey participants returned the device to the researchers using the provided packaging. 

e. Surveyors copied the electronic data from the device to a secure, encrypted electronic 

database. 

f. Surveyors reformatted the memory of the data collection device. 

g. Surveyors performed life-cycle analysis using the collected data and integrate the aggregated 

results into a comparative life-cycle analysis model. 
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h. All subject identifiers were aggregated and/or removed from the raw data after the analyses.  

3.3.2 Instrument 2  

a. Those subjects indicating a willingness to participate in the Instrument 2 survey were 

identified. Along with the data collection device (s), incentive administrators sent a paper 

survey (Instrument 2) to the subject to be completed at their home or place of business. 

b. Following the data collection from the selected natural gas vehicles, applicant-subjects were 

asked to include the completed Instrument 2 with the OBD data logger return mailing. 

c. The completed Instrument 2 surveys were given to the research team. 

d. The surveyor encoded the data from the forms in an electronic database for analysis. 

e. The surveyor performed aggregate analyses of general and annual operational characteristics 

of natural gas vehicles. 
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3.4 Obtained vehicle activity data  

To support this research, vehicle activity data was obtained by using a device to read engine 

parameters via the in-vehicle controller area network (CAN) bus protocol. Society of Automotive 

Engineers standard SAE J1939 is a key protocol in CAN bus data logging and commonly used for 

communication and diagnostics among vehicle components. The data logging device provided 

accurate and high-resolution driving performance data because it is directly transmitted from the 

engine control unit (ECU) of the subject NGV. The ECU data is more tightly correlated with 

emission production than vehicle speed. Therefore, the J1939/OBD-II CAN data has a high 

research potential for aiding in the development of more seamless and sophisticated methodologies 

to alleviate the given problems. 

 

Table 3.1. Subject CNG vehicles and specification 
Service type Bus transit Local service Hauling service Utility service 

Vocation type Urban 
transit 

School 
bus 

Street 
sweeper Refuse truck Long-haul 

truck Short-haul truck  
Utility 
service 
truck 

Sewer truck 

Vehicle fleet 
description 

Urban 
Transit 
buses 

School 
district 
buses 

Street 
Sweeper 

in a 
university 

Refuse 
trucks in 

San 
Diego 

Refuse 
trucks in 

Los 
Angeles 

Long-haul 
trucks 

Waste 
transfer 

short-haul 
trucks in 

San Diego 

Water 
district 

short-haul 
trucks 

Waste 
transfer 

short-haul 
trucks in 

Los 
Angeles 

Waste 
transfer 

short-haul 
trucks in 

Los 
Angeles 

Dairy 
reefer 
trucks 

Water retail 
crew utility 

trucks 

Water retail 
sewer 
trucks 

Group code TB SCHB SWPER RF SD RF LA LHT WTSH SD SHT WTSH  
LA I 

WTSH  
LA II DDRT CRWT SWT 

Model year 2016 2016 / 
2017 2009 2014 / 

2017 2016 2017 2014 2013/ 
2014 2016 2018 2018 2011 2016 

Location Southern 
CA 

Orange 
County 

Orange 
County 

San Diego 
County 

Los 
Angeles 
County 

San Francisco 
& Sacramento 

County 
San Diego 

County 
Los Angeles 

County 
Los 

Angeles 
County 

Los 
Angeles 
County 

San Diego 
County 

Orange 
County 

Orange 
County 

Make / Model New flyer 
/ XN40 

Thomas / 
HDX & 

C2 

Elgin 
broom 

sweeper 

Autocar / 
ACX 

Peterbilt 
/320 

Kenworth 
/ T680 

Autocar / 
ACX 

M2112 / 
Daimler 

Peterbilt / 
365 

Kenworth 
/ T880 

Kenworth 
/ T680 

Condor / 
American 
La Frnace 

Kenworth 
/ T880 

Number of vehicles 
in fleet 3 2 1 4 3 6 2 2 3 7 1 3 3 

Data length 
(operation hour) 166.9 77.6 78.1 175.2 370.6 244.9 82.0 151.5 157.2 268.5 59.4 99.2 169.4 

Total distance 
traveled (mile) 1755 1117 462 1113 3043 3405 1030 1916 3503 11670 1217 1050 4909 

Average driving 
speed (mph) 19.29 18.63 6.69 8.57 9.51 19.65 13.25 18.06 15.38 16.60 18.01 14.78 13.48 

Engine dimension 
(Litre) 8.9 8.9/6.7 5.9 8.9 8.9 11.9 8.9 8.9 11.9 11.9 11.9 8.9 11.9 

Total working days 
of the group 21 14 27 24 56 58 12 66 47 58 15 104 45 

Gross Vehicle 
Weight Rating 

(lbs.) 
42,540 33,000 33,000 60,000 58,000 54,320 80,000 80,000 80,000 80,000 54,320 33,000 80,000 

NOx emission rate 
(g/bhp-hour) 0.13 0.13/ 

0.08 1.44 0.13 / 
0.01 0.13 0.15 0.13 0.13 0.15 0.01 0.01 0.13 0.15 
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This study computed the adoption impact of 40 NGVs operating in California across ten 

different vocation types as shown in Table 3.1, including a street sweeper, three transit buses, six 

long-haul trucks, a dairy distribution reefer truck, two school buses, six retail water service trucks, 

twelve waste transfer short-haul trucks, two water district short-haul trucks, and seven refuse 

trucks. Since the operating conditions and availability of each fleet differed, this study attempted 

to collect as much activity data as possible from a variety of vocation types. By the end of the 

collection effort, this study obtained a total of 2,100 operating-hours of activity data, which is 

sufficient to cover the duty cycles of the subject NGVs. 
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3.4.1 Parameter IDs used in the assessments 

Table 3.2 presents the ECU parameters obtained from the presented activity data survey. The listed 

parameters were primarily used to calculate vehicular emissions and recognize the driving status.  

 
Table 3.2. ECU parameters used in the assessments 

 PIDs Purpose 

Time 
Time 

Time detection 
Date 

Torque 

Actual Maximum Available Engine - Percent Torque (%) 

Torque calculation 

Actual Engine - Percent Torque (Fractional) (%) 
Actual Engine - Percent Torque (%) 

Driver's Demand Engine - Percent Torque (%) 
Engine Demand ï¿½ Percent Torque (%) 
Estimated Pumping - Percent Torque (%) 
Nominal Friction - Percent Torque (%) 

Estimated Engine Parasitic Losses - Percent Torque (%) 
RPM Engine Speed (rpm) 

Driving status 
detection 

Idle time Idle Time (s) 

Speed 

Wheel-Based Vehicle Speed (kph) 
Engine's Desired Operating Speed (rpm) 

Desired Operating Speed Asymmetry Adjustment (Ratio) 
Engine Percent Load At Current Speed (%) 

GPS 

Latitude 

Road facility type 
identification 

Longitude 
Altitude 
Velocity 
Heading 

Pressure 

Engine Fuel Delivery Pressure (kPa) 

Engine diagnosis 

Engine Extended Crankcase Blow-by Pressure (kPa) 
Engine Intake Manifold #1 Pressure (kPa) 

Engine Intake Air Pressure (kPa) 
Barometric Pressure (kPa) 

After-treatment 1 DPF Intake Pressure (kPa) 

Temperature 

Engine Fuel Temperature 1 (C) 

Emission factor 
calibration 

Engine Oil Temperature 1 (C) 
Engine Intake Air Temperature (C) 
Engine Intercooler Temperature (C) 

Engine Intake Manifold 1 Temperature (C) 
Engine Exhaust Temperature (C) 
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3.5 Surveyed duty cycle information 

The paper-based survey obtained the following answers from fleet managers and operators. 

Several questions and answers are related to private information of the fleets; therefore, the 

questions were omitted in the tables. The following tables present answers directly written by the 

survey respondents.  

 
Table 3.3. Survey ID and basic information of subject vehicles 

Question number Basic Q2 Basic Q5 

Vehicle group Survey Vehicle 
Number Survey date Model and Make Odometer (miles) 

Urban Transit buses 
P002 

08/30/17 
XN60 / NewFlyer 32,355 

P003 XN40 / NewFlyer 45,279 
P001 33,977 

Waste transfer short-
haul trucks in SD 

1008 10/11/17 ACXXPERH012 / Autocar 46,272 
1006 ACX / Autocar 73,153 

Refuse Trucks in SD 

1005 

10/11/17 

ACXXPERH012 / Autocar 3,197 
1007 ACX / Autocar 40,940 
1004 ACXXPERH012 / Autocar 5,925 
1009 ACXXPERH012 / Autocar 4,840 

Waste transfer short-
haul trucks in LA 

2005 
6/18/18  Peterbilt / 365 

36,483 
2006 55,888 
2003 36,467 

Refuse Trucks in LA 
2004 

6/18/18  Peterbilt / 320 
27,245 

2002 29,649 
2001 24,009 

Long-haul trucks 

3001 5/31/18 

T680 / Kenworth 

14,287 
3002 6/20/18 14,837 
3003 5/31/18 13,400 
3004 6/5/18 15,395 
3005 6/27/18 93,557 
3006 6/1/18 74,587 

School buses 

5001 

10/17/18  

C2 / Thomas 19,958 
5002 HDX / Thomas 20,965 
5003 HDX / Thomas 18,978 
5004 C2 / Thomas 10,640 

Water retail sewer 
trucks 

4005 8/30/18 

T880 / Kenworth 

52,850 (1,510 hours) 
4006 8/30/18 62,825 (1,795 hours) 
4004 10/9/18 53,200 (1,520 hours) 
4007 8/30/18 25,760 (736 hours) 

Water retail crew 
utility trucks  

4001 
10/9/18  Condor / American La France 

Unknown  
4002 104,615 (2,989 hours) 
4003 54,075 (1,545 hours) 

Dairy reefer trucks  
6002 10/19/18 T440 / Kenworth 13689 
6001 T680 / Kenworth 10524 

Short-haul trucks  
8002 1/17/19 M2112 / Daimler 63763 
8003 35838 

Waste transfer short-
haul trucks in LA 

county 

7001 

3/18/19 
 T880 / Kenworth 

9278 
7002 9278 
7003 9659 
7004 8568 
7005 980 
7006 8146 
7007 7165 
7008 4820 
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Table 3.4. Duty cycle information 
Question number A1 A2 A3 A4 

Vehicle group Survey ID Working 
hours per day 

Working days 
per week VMT per week Business type 

Urban Transit 
buses 

P002 15 5 950 Transit/Passenger 
Transportation P003 6.5 5 535 

P001 10.75 5 535 

Refuse Trucks 
in SD 

1008 10 5 640 

Waste  
Management 

1006 10 5 400 
1005 10 5 275 
1007 10 5 350 
1004 10 5 385 
1009 10 5 220 

Waste transfer 
short-haul 

trucks in LA 

2005 7 5 650 

Waste  
Management 

2006 7 5 650 
2003 7 5 650 

Refuse Trucks 
in LA 

2004 6 5 268 
2002 6 5 268 
2001 6 5 303 

Long-haul 
trucks 

3001 6 6 1,491 

Freight trucking 

3002 6 7 1,641 
3003 6 6 1,641 
3004 6 6 1,491 
3005 6 7 1,030 
3006 7 7 1,537 

School buses 

5001 6 5 307 
Educational 

Service 
5002 9 5 265 
5003 6 5 440 
5004 6 5 413 

Water retail 
sewer trucks 

4005 3.3 5 16.5 hours / 577.5 miles 

Utilities 4006 4.1 5 20 hours / 700 miles 
4004 3.3 5 16.5 hours / 577.5 miles 
4007 2.2 5 10 hours / 350 miles 

Water retail 
crew utility 

trucks  

4001 5 4  Not reported Public 
organization 4002 5 4 9.5 hours / 332.5 miles 

4003 6 4 7.4 hours / 259 miles 
Dairy reefer 

trucks  
6002 8 5 (40) 1,000 Accommodation 

or food service 6001 8 5 (40) 900 
Short-haul 

trucks  
8002 8 4 783 Warehouse 

delivery 8003 8 4 840 

Waste transfer 
short-haul 

trucks in LA 
county 

7001 8 5 1,000 

Refuse transfer 

7002 8 5 1,000 
7003 8 5 1,000 
7004 8 5 1,000 
7005 8 5 1,000 
7006 8 5 1,000 
7007 8 5 1,000 
7008 8 5 1,000 

 
Questions A1 to A4 ask operational schedule information of the subject vehicles. Most 

survey respondents provided identical values of working hours and days for their fleet vehicles. 
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This may be due to trucks in a fleet having similar duty cycles or fleet managers failing to follow 

up the detailed operational schedule. For example, one of the refuse truck fleet managers who 

participated in the survey mentioned the uncertainty of operation schedules. He noted that refuse 

trucks occasionally failed to pick up all assigned solid waste in residential communities. Then, the 

vehicles visited the communities again the next day, even if it was a weekend. Since it was 

unpredictable and happened often, some fleet managers had difficulty characterizing duty cycle 

information precisely, such as VMT per week or day and working days per week. Furthermore, 

school buses were operated over a planned route. However, the buses were often assigned to field-

trip operations which traveled significantly longer than regular operations. Because of this type of 

operation, school bus fleet operators also had difficulty determining exact duty cycles.  

 

The water retail district truck data showed extensive power take-off (PTO) operations; 

therefore, VMT per week and odometer questions were answered in units of operating hours and 

VMT both. According to the fleet manager, a common conversion factor from working hours to 

VMT is 35 miles per hour. Due to the high-speed operations of long- and short-haul trucks, these 

trucks provided relatively larger values of VMT per week than the other vocational trucks, such as 

refuse and bus type vehicles. The fleet operator of the dairy reefer truck fleet reported that the 

vehicles work 40 days per week. The answer was corrected to 5 based on the confirmation from 

the fleet operator.   

 

In Table 3.5, transmission type question (A6) is omitted because all subject vehicles were 

reported as automatic transmission-equipped except for the waste transfer short-haul trucks 

operated in Los Angeles county. Answers of question A9 are some of the most useful and 

meaningful information because it can be used to assess the replacement impacts of the NGV 
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adoptions. According to the model year of the replaced vehicles, hauling trucks were replaced with 

new ones more often compared to the bus type vehicles. If one assumes that the average lifespan 

of heavy-duty trucks is either of 150,000 or 200,000 miles, the haulers are likely to reach high 

mileage points earlier than the other trucks which causes a higher turnover rate. From Table 4.5, 

this study found that most of the subject NGVs refuel on an everyday basis regardless of refueling 

infrastructure type. One of the participating fleet managers commented that his/her fleet tries to 

keep the fuel level of the NGVs at 50% to 60% full because of the possibility for incidents and 

rescue costs.  
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Table 3.5. Vocation type and replaced vehicle information 
Question number A5 A7 A8 A9 

Vehicle group Survey 
ID Vocation Body type 

Replaced 
vehicle's  
fuel type 

Replaced vehicle's 
information 

(Engine info / reference 
torque / MY) 

Urban Transit 
buses 

1002 
Others: Public Transit  

N – 05 
Transit bus 

Diesel 1CEX40540LAB/1100/2001 
1003 LNG 8CEXH0540LBD/980/2001 1001 

Refuse Trucks 
in SD 

1008 Roll-off truck N-10 Roll off Diesel ISL07 Cummins/1150/ 2008 
1006 

Refuse truck  
N – 07 

Refuse truck Diesel 

ISC 07 Cummins / 860/ 2008 1005 
1007 VE D7 Volvo / 800/ 2002 
1004 ISC Cummins / 800/ 2004 1009 

Refuse transfer 
short-haul 

trucks in LA 

2005 
Non-drayage -  

short-haul tractor  
N – 08 
Tractor Diesel 5CPXH0928EBK / 1850/ 

2004 2006 
2003 

Refuse Trucks 
in LA 

2004 
Refuse truck  

N – 07 
Refuse truck Diesel 2CPXH0629ERK / - / 2003 2002 

2001 

Long-haul 
trucks 

3001 

Short Haul N – 08 
Tractor Diesel 

9CEXH0912XAL/1850/2010 
3002 

CCEXH0912XAS / 1850 / 
2013 

3003 
3004 
3005 
3006 

School buses 

5001 

School Bus  
N - 03 

School bus - No previous vehicle  
prior to the adoption 

5002 
5003 
5004 

Water retail 
sewer trucks 

4005 
Sewer Maintenance  

truck  
N - 10 – 

Sewer Jeter  -  

  
  No previous vehicle  
before the adoption 

  

4006 
4004 
4007 Construction Excavation 

Water retail 
crew utility 

trucks  

4001 
Construction utility crew 

truck 
N – 06 

Service utility  - No previous vehicle  
prior to the adoption 4002 

4003 
Dairy reefer 

trucks  
6002 Refrigerated transport N - 02 Single  Diesel 6NVXHQ466AEA/650/2006 
6001 N–08 Tractor 5CEXH0661MAT/1350/2005 

Short-haul 
trucks  

8002 Short-haul N - 10 Single 
flat-bed   -  No previous vehicle  

prior to the adoption 8003 

Waste transfer 
short-haul trucks 

in LA county 

7001 

Non drayage short-haul N–08 Tractor Diesel 

4CEXH0661MAT,  
MY2005  

KENWORTH T800 
(TIER 3 DPF) 

7002 
7003 
7004 
7005 
7006 
7007 
7008 
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Table 3.6. Refueling behavior information  
Question number B1 B2-1 B2-2 B3 B4 

Vehicle group Survey 
ID Station type 

Number of 
refueling times 

per week 

Refueling 
frequency 

(Average tank 
level before 
refueling) 

Refueling 
time 

Refueling 
station 
type 

Urban Transit 
buses 

1002 
Maintenance yard  5 Unknown 5 mins Fast-fill 1003 

1001 

Refuse Trucks in 
SD 

1008 

Terminal / Depot 5 

45% 

6 hours 
3 mins Time-fill 

1006 

25% 
1005 
1007 
1004 
1009 

Refuse transfer 
short-haul trucks 

in LA 

2005 

Maintenance yard  5 

60% 15 mins 

Fast-fill 

2006 
2003 

Refuse Trucks in 
LA 

2004 33% 8 mins 
2002 33% 8 mins 
2001 50% 15 mins 

Long-haul trucks 

3001 

Maintenance yard  

2 

55% 20 mins Fast-fill 

3002 2 
3003 

7 3004 
3005 
3006 

School buses 

5001 Maintenance yard 

5 

80% 7 mins Fast-fill 
5002 

Public station / 
Maintenance yard 75% 2 hours 30 

mins Time-fill 5003 
5004 

Water retail sewer 
trucks 

4005 

Public station 5 50% 20 mins Fast-fill 4006 
4004 
4007 2 30 mins 

Water retail crew 
utility trucks  

4001 
Public station 4 60% 20 mins Fast-fill 4002 

4003 
Dairy reefer 

trucks  
6002 Public station 4 40% 12 mins Fast-fill 6001 8 10% 

Short-haul trucks  
8002 Public station 4 50% 25 mins Fast-fill 8003 

Waste transfer 
short-haul trucks 

in LA county 

7001 

Public station 5 40% 30 mins Fast fill 

7002 
7003 
7004 
7005 
7006 
7007 
7008 
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3.6 Summary and conclusion of vehicle activity data acquisition  

This study obtained vehicle activity data and duty cycle information to assess operational and 

emission characteristics of the HD NGVs operating in California. 40 HD NGVs of 10 entities 

participated in the NGV use survey and provided the equivalent number of survey answer sheets 

as well as a total of 2,100 operating-hours of activity data. The survey results were used to estimate 

the regulated pollutants and greenhouse gas (GHG) emissions savings attributable to the incentive 

program assessment as well as in the development of an evaluation framework for predicting air 

quality impacts of NGV adoption.   

 

According to the paper-based survey results, the HD NGVs in the same fleet are likely to 

have similar operating conditions, such as working days per week and operating hours per day. 

Overall, survey results show that each vehicle had a different average VMT per week. Inter-group 

differences of weekly VMT were significantly larger than intra-group differences. This provided 

the research motivation to investigate the heterogeneity of operational and emission characteristics 

of various vocation types. If VMT is the sole metric to assess the environmental impacts, long-

haul trucks are likely to be the largest source of mobile source emission inventory. This study 

discussed the limitation of VMT-based emission factors in the driving pattern analysis and PTW 

analysis chapters. In addition, the survey results brought up a question about the differences 

between the perception of fleet operators on their vehicle operation and actual activity logs 

recorded via the in-vehicle CAN bus protocol. This study found that the operating time and 

distance information was not always consistent with the paper survey answers. 
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The paper-survey results can be used to design the future survey process which aims to 

investigate the CNGV market status and customer preference. The future survey should include 

economic perspective and customer experience related questions to capture a comprehensive 

picture of CNG commercial vehicle operating businesses. For example, refueling behavior 

information can be used to assess causal relationships between fuel type, vocation type, refueling 

behavior and environments. If the survey results can be integrated with other publicly available 

datasets, it would be possible to improve our understanding of the market status and enhance the 

capability to predict future market transformations.  
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Chapter 4 Estimation of nitrogen oxides (NOx) and carbon 
dioxide (CO2) emission rates 

 

4.1 Estimation of NOx emission rates using in-vehicle CAN data 

EMFAC2017 (EMission FACtors) model and the MOVES (Motor Vehicle Emission Simulator) 

model are widely used in the estimation of vehicular emission inventory based on energy 

consumption, and vehicle mileage traveled (VMT) respectively (86). MOVES supports diverse 

vehicle, fuel, and activity types as well as various modeling scales ranging from project level to 

network level (3)(86). However, the models, including the other existing models, such as 

MOBILE6, VT-Micro, and CMEM, have limited emission factors for NGVs due to the lack of 

relevant data (86-87). California’s EMFAC uses speed correction factors for NGVs adopted from 

diesel vehicle test results. The two conventional models only support CNG transit bus and refuse 

truck types only, even though NGVs have been used in diverse vocational applications for decades 

(87).  

 

Depending on the driving status, vehicles produce tailpipe exhausts at different rates. 

VMT-based emission models are limited to estimate accurate environmental impacts because the 

model is in disregard of operational conditions and vehicle specifications, such as vocation type, 

engine model, number of stops per mile, idling time over total operation time, etc. Heavy-duty 

commercial vehicles in service can provide significantly different environmental impacts 

depending on the engine model and fuel type. With the introduction of near-zero emission engines, 

conventional internal combustion engines, including natural gas engines, exhibit a broader range 

of NOx emission factors than before. 
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In order to reflect the different emission factors of the heavy-duty engine families, this 

study adopted emission factors provided by the engine certification program of the California Air 

Resources Board (CARB). Because all internal combustion engines operated in California must 

pass the engine certification program of CARB, engine-specific emission rates can be obtained 

from CARB’s published certifications. CARB’s Heavy-Duty Certification Program tests all 

medium and heavy-duty commercial engines for conformity over the HD transient drive cycle and 

federal test procedures (FTP) (88). A certification sheet for each engine family shows applicable 

emission standards along with the engine’s certified emission performance over the test cycle.  

 

The published engine certifications express emissions factors in pollutant grams produced 

per brake-horsepower-hour. Revolutions Per Minute (RPM) and torque parameter values were 

used to calculate brake-horsepower (BHP) as shown in Equation 1. Specifically, actual engine 

percent torque (Suspect Parameter Number, SPN 513) and friction percent torque (SPN 514) were 

used to calculate horsepower. Because both are expressed in percentages, the maximum torque 

information for the specific engine was obtained from the engine specification sheet and applied 

to calculate instantaneous torque. Engine Speed parameter (SPN 190) provided the instantaneous 

engine RPM. With these values, this study was able to apply Equation 1 to compute the 

instantaneous horsepower and then multiply it by the emission certification values to compute 

NOx emission rates in grams per second as shown in Equation 2 (67)(89). 

 

𝐻𝑃# =
%&'()*+,-./(

01(2034*+,-./(
5671(789:×*+,-./6<5<6<91<

=>=>
                              (1) 

- 𝐻𝑃# = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑝𝑜𝑤𝑒𝑟	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑒𝑛𝑔𝑖𝑛𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	
- 𝑅𝑃𝑀# = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑒𝑛𝑔𝑖𝑛𝑒	𝑠𝑝𝑒𝑒𝑑	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	𝑎𝑠	𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑	𝑏𝑦	𝐸𝐶𝑀	𝑡ℎ𝑟𝑜𝑢𝑔ℎ	𝐽1939	𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙	

- 𝑇𝑜𝑟𝑞𝑢𝑒#_`#._a = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑒𝑛𝑔𝑖𝑛𝑒	𝑎𝑐𝑡𝑢𝑎𝑙	𝑡𝑜𝑟𝑞𝑢𝑒	(%)	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡			

- 𝑇𝑜𝑟𝑞𝑢𝑒#
e,f`#f+g = 𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑒𝑛𝑔𝑖𝑛𝑒	𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛	𝑡𝑜𝑟𝑞𝑢𝑒	(%)	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡		

- 𝑇𝑜𝑟𝑞𝑢𝑒#
,/e/,/g`/ = 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑡𝑜𝑟𝑞𝑢𝑒		
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𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑟𝑎𝑡𝑒𝑠	(𝑔/𝑠𝑒𝑐)# = 𝑁𝑂𝑥	𝑓𝑎𝑐l	 ÷ 3600	 × 𝐻𝑃#
_pq                        (2) 

- 𝐻𝑃#
_pq = 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	

- 𝑁𝑂𝑥	𝑓𝑎𝑐l = 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	𝑜𝑓	𝑒𝑛𝑔𝑖𝑛𝑒	𝑘, 	𝑖. 𝑒. , 	0.15 w,_xy
z{|∗{+.,

	

	
The equation relies on the statistically significant linear relationship between NOx 

emission rates from engine and chassis dynamometer tests (89-91). The estimation performance 

could be improved by using tailpipe emission data obtained via a portable emission measurement 

system (PEMS). This data resource would help to find more accurate instantaneous NOx emission 

rates as well as other regulated pollutant species. The PEMS data has limited availability across 

engine and vehicle model variations, although it is far more accurate than any other emission 

models. The engine certification program has no requirement for the idle NOx emission rate of 

NGVs. As such, this study followed McCormick et al. that assumed 0.00445 g/sec (92), while the 

idle emission rates for diesel trucks are 0.00938 g/sec, which is 33.763 g/hour (93).  

4.2 CO2 emission estimation methods using ECU fuel rate  

The engine fuel rate (SPN 183) was converted to therm per second, and the U.S. Energy 

Information Administration’s CO2 emission factor was used to calculate grams of CO2 per second. 

As discussed in the literature review for the difference of CO2 emission and fuel economy between 

diesel compression-ignition (CI) and natural gas spark-ignition (SI) engines, this study converted 

ECU fuel rates of the subject NGV data into therms and then reduced them by 10% to estimate 

CO2 emissions for diesel vehicle scenarios. 

 
𝐶𝑁𝐺	𝐸𝑛𝑔𝑖𝑛𝑒	𝑓𝑢𝑒𝑙	𝑟𝑎𝑡𝑒(𝑔𝑎𝑙𝑙𝑜𝑛/𝑠𝑒𝑐)# = 𝐶𝑁𝐺	𝐸𝑛𝑔𝑖𝑛𝑒	𝑓𝑢𝑒𝑙	𝑟𝑎𝑡𝑒	(𝑙/𝑠𝑒𝑐) 	× 0.264172  

𝐶𝑁𝐺	𝐸𝑛𝑔𝑖𝑛𝑒	𝑓𝑢𝑒𝑙	𝑟𝑎𝑡𝑒(𝑡ℎ𝑒𝑟𝑚/𝑠𝑒𝑐)# = 𝐶𝑁𝐺	𝐸𝑛𝑔𝑖𝑛𝑒	𝑓𝑢𝑒𝑙	𝑟𝑎𝑡𝑒	(𝑔𝑎𝑙𝑙𝑜𝑛/𝑠𝑒𝑐) 	× 1.25  
- 1.25	Therms	=	1	Gasoline	Gallon	Equivalent	(GGE)	=	125,000	BTU	(94)	
- 1.39	Therms	=	1	Diesel	Gallon	Equivalent	(DGE)	=	139,000	BTU	(94)	
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𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠	𝐶𝑂2	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒𝑠	(𝑇ℎ𝑒𝑟𝑚/𝑠𝑒𝑐)# = 𝐸𝑛𝑔𝑖𝑛𝑒	𝑓𝑢𝑒𝑙	𝑟𝑎𝑡𝑒	(𝑇ℎ𝑒𝑟𝑚/𝑠𝑒𝑐) 	× 5307.026          (3) 

- 117.0	pounds	of	CO2	per	million	British	thermal	unit	(MMBtu)	for	natural	gas	(95)	
- 161.3	pounds	of	CO2	per	million	British	thermal	unit	(MMBtu)	for	diesel	(95)	
- 1	pound	=	453.592	g,	1	MMBtu	=	927.8	SCF	NG	

- 53070.26	gCO2	per	MMBtu	=	54.55413	gCO2	per	SCF	(standard	cubic	feet)	NG	

- 0.054554kg	CO2	per	SCF	NG	=	5307.026	gCO2	per	therm	from	NG	

- 73164.39	gCO2	per	MMBtu	=	7316.439	gCO2	per	therm	from	Diesel	

4.3 Summary  

The emission modeling algorithm of this dissertation relied on engine horsepower (HP) and 

instantaneous fuel rate parameters that were obtained from engine control units (ECUs) via SAE 

J1939 in-vehicle CAN bus protocol. HP was used to estimate instantaneous NOx emissions, while 

the fuel rate was used for CO2 estimation. This study adopted emission factors provided by the 

engine certification program of the CARB; therefore, the proposed evaluation framework was able 

to estimate NOx emissions across all NG engine families in the market including the near-zero 

emission low NOx engine models.  
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Chapter 5 Driving pattern analysis to capture operational 

characteristics of HD NGVs 

5.1 Production of micro driving patterns 

Vehicle activity data obtained from the survey was partitioned into micro driving patterns to 

investigate the operational characteristics of the HD NGVs. The micro driving pattern was defined 

as a speed profile between two idling (stopped) events and was also called a driving trip snippet. 

Ericsson also defined a micro driving pulse as a driving pattern between two stops, and a stop is a 

driving status corresponding to vehicle speeds below two mph (33)(35). The driving pattern 

analyses in this study used the same speed threshold value of Ericsson (33)(35) to divide the 

obtained speed profile. 

 5.2 Driving pattern clustering and classification 

Heavy-duty vehicle (HDV) engines are typically identified with a primary intended service class 

(PISC), which is assigned by vehicle manufacturers, and commercial HDVs usually use various 

names originating from vocation type, business type, or appearance. The PISC is assigned based 

on engine configurations, which may not be consistent with vocational operations. Therefore, the 

PISC is not always the same as vocation type because the PISC is for engines and a broader concept 

of the classification scheme, and vocation type is defined with respect to business and operation 

type of the fleet operator. For instance, a tractor truck, which is a PISC, can be used for long-haul, 

short-haul, or port drayage operations, etc. Due to the given objectives, commercial vehicles travel 

on assigned operation routes and schedules in order to accomplish their purpose. Hence, this study 
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presumed that vocation type induces operating mission-related driving situations, and the vehicles 

typically conduct repetitive operation patterns that are associated with the given duties.  

 

This study defined drive modes as common driving patterns that have distinct driving and 

emission characteristics. Drive mode composition (DMC) represents the captured behavioral 

features over a duty cycle and was calculated by aggregating the durations and distances of the 

classified driving patterns by drive mode group. Therefore, DMC shows how a vehicle is being 

operated in terms of time and distance. As shown in Prohaska et al. (47), a comparison of DMC 

can show differences in operational and emission characteristics between vocation types. For 

instance, if two trucks operate for the same distance but in different DMCs, emission productions 

of the vehicles cannot be the same because each drive mode has a different emission factor per 

time and distance.  

 

The driving patterns can be classified into three drive mode groups depending on the 

speed attributes of patterns. For example, a short and low-speed operation, also called creeping 

mode (CRP), is typically shown in a turning movement or operations in truck queues. Extensive 

and sustained high-speed operations are usually defined as cruising mode (CRS) and observed 

from freeway driving data. Transient (TRS) pattern is an oscillating speed profile with a relatively 

shorter pattern duration than cruising mode and achieves brief high peak speeds but does not 

sustain these speeds. It also appears when a vehicle’s operation is in a transition to another. 

Generally, the transient mode operation can be found in operations on urban arterials (47)(96). 

These drive modes are included in the heavy-duty transient drive cycle, and the drive cycle is used 

for testing conformity of vehicle emission through chassis dynamometer tests. It means that the 

three drive modes are prevalent and essential in typical truck operations.  
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To identify these broadly defined driving modes, the entire dataset was partitioned into 

micro driving patterns (33)(35)(36-37) and classified into drive mode groups representing 

commonly observed driving pattern types. Prohaska et al. (47) and A. Fotouhi et al. (48) asserted 

that pattern clustering could be an effective way to obtain pattern classification thresholds, and this 

study applied k-means clustering to group the observed micro driving patterns and used the 

boundaries between clusters as thresholds for pattern classification. Montazeri-Gh et al. showed 

that the average and maximum speed of each pattern are highly correlated with fuel consumption 

and NOx emission production (97). The average and maximum speeds of the entire patterns were 

normalized and then used in the clustering analysis.  
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Figure 5.1. Scree plot for determining the number of clusters  
 

The k-means clustering method requires that the analyst can predefine the number of 

clusters. This study determined the optimal number using the elbow method (47), which finds a 

balance point between the number of clusters and the percentage of variance explained as the sum 

of squared error within the clusters. The first cluster usually explains a large portion of the variance 

in the data and each successive cluster explains less and less of the overall variance. The results 

from the elbow method analysis showed that the driving patterns could be partitioned into three 

clusters as shown in the scree plot of Figure 5.1. Although this technique cannot always identify 

an unambiguous optimum, this study found it to be an effective heuristic in this application and 

obtained three clusters as the optimal using the average and maximum speed of the micro driving 

patterns.  

 

In addition to the three drive modes, this study considered two additional drive modes in 

the pattern analysis. Since 2005, the CNG vehicle population has been steadily growing by the 

implementation of SCAQMD’s fleet rules (98). Unlike conventional cargo tractor and drayage 

truck operations, vocational NGVs show different movement patterns that are related to their 

specific operational duty, such as waste collection and compaction, extensive high RPM idling for 

Power Take-Off (PTO) operation, and street sweeping. These special activities induced different 

driving engine loads and vehicle speed variations, compared to the basic three drive modes. Refuse 

trucks, and street sweepers conducted sustained low-speed operations, and this study designated 

the operations as low-speed cruising (LSC) mode. Bus and food distribution truck types presented 

greater portions of arterial operations than the other road-type operations. In general, bus transit 

operation is required to cover maximum service areas and be punctual at every bus station, while 
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food distribution trucks travel back and forth between distribution centers and several local stores 

or retail customers. These vehicle types performed bell-shaped speed profiles, including frequent 

stops due to signalized intersections. High-speed transient (HST) mode showed high maximum 

speed as cruising pattern speed on freeways; however, the peak speed was not sustained. The LSC 

and HST modes exhibited different speed variations and micro trip pattern lengths, compared to 

the basic driving modes. Thus, this study used the pattern-duration feature to distinguish the LSC 

and HST patterns from the primary modes in the pattern classification.  

 

Table 5.1. Thresholds for the driving pattern classification  

Thresholds Creeping 
(CRP) 

Cruising 
(CRS) Transient (TRS) Low-speed 

cruising (LSC) 
High-speed 

transient (HST) 

Pattern average 
speed (mph) < 11 > 18 

Driving patterns 
that not meet the 
requirement for 

other drive mode 
groups 

< 18 > 18 

Pattern maximum 
speed (mph) < 18 > 35 < 35 > 35 

Pattern 
duration (sec) < 30 > 205 > 145 < 205 

 

Boundaries between clusters were determined as straight lines, which are average values 

of maximum and minimum of the nearest clusters, and Table 5.1 presents the pattern classification 

scheme associated with the thresholds. The classified driving patterns were validated based on 

their drive mode groups and pattern shapes. Driving patterns in the transient drive mode usually 

appeared as bell-shaped curves having higher variations than the other drive modes. While the 

other pattern types were relatively easily identifiable at a certain speed level, transient patterns 

typically showed wide ranges of driving speed and pattern duration, which means that it is difficult 

to define a transient reference pattern precisely. Therefore, transient patterns were defined as 

unclassified driving patterns that could not fit in the other drive mode conditions.  
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Figure 5.2. Clustered driving patterns into each drive mode  
 

Couch and Leonard (96) and Prohaska et al. (47) noted that each drive mode possesses 

distinctive emission characteristics. For example, the creeping mode is regarded as a short and 

low-speed driving pattern, while cruising mode represents extended and high-speed driving 

patterns. The abstract conception on the drive modes indicated that the pattern duration could be a 

useful pattern feature. This study determined the duration threshold values depending on the 

operational characteristics of each drive mode. For instance, cruising patterns were the most 

common driving patterns on the freeway. Assuming that a typical ramp/intersection spacing is 2 

miles (99-100) and a vehicle maintains average speed 35 mph on a freeway (43), this study  

computed a pattern duration threshold for cruising mode as  >	xf
¤=	xf/{,

¤¥¦¦y
§{,

≈ 206s. 
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Prohaska et al. (47) characterized the creeping mode of drayage trucks as very low-speed 

operation; a common driving pattern in truck queues. Because creeping is a short driving pattern 

with varying pattern shapes and likely between two idling states, this study set the pattern duration 

threshold for creep as 30 seconds. Low-speed-cruising modes are typically performed by 

vocational trucks such as refuse trucks and street sweepers that are primarily operated in residential 

areas, where low-speed limits (25 mph) are predominant. As such, this study computed the pattern 

duration threshold for the low-speed-cruising (LSC) mode as 144 seconds based on the assumption 

that a vehicle drives at an average 25 mph on a typical 1-mile residential area street. It resulted in 

a maximum LSC pattern duration threshold of  §	xf
>=	xf/{,

¤¥¦¦y
§{,

≈ 144s. As a consequence, the 

pattern duration thresholds for transient and high-speed transient modes should be longer than 

maximum creep pattern duration and lower than minimum cruising pattern duration.  

 

Internal combustion engines (ICE) consume more fuel to generate energy to propel the 

vehicle faster. An emission inventory is highly relevant to the power production of ICEs. 

Therefore, this study compared the power distributions of each drive mode group. Figure 5.2 

shows the partitions of the classified driving patterns and joint distributions of average and 

maximum horsepower values. The partitions shown in the figure implied that each drive mode 

exhibits different driving behaviors with a different speed level. The horsepower distribution of 

the creeping drive mode widely is spread over a joint area of average and maximum horsepower 

parameters, while LSC mode has a very concentrated distribution. Overall, the drive mode groups 

showed that each drive mode has different concentration patterns at different locations. 
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5.3 Drive mode composition (DMC) by vocation type 

This study hypothesized that vocation type is one of the factors affecting operational and emission 

characteristics of HD NGVs, and DMC can explain how these vehicles are being operated in terms 

of driving time and travel distance. Depending on the distribution of the drive modes over the duty 

cycle and the emission rate of each mode, the vehicles could produce different amounts of NOx 

emissions for given operational conditions. Table 5.2 shows NOx emission rates per drive mode 

and vocation type.  

 

Refuse trucks and buses are known to conduct frequent stop-and-go operations. The 

refuse trucks had a higher value of total NOx emission rates (g/mile) than urban transit and school 

buses, as shown in Table 5.2. Since refuse trucks exhibited more idling and low power-demand 

driving patterns, a greater gap existed between the DMCs of the refuse trucks and the other 

vocation types. It illustrates the limitations of using aggregated emission rates only in comparing 

environmental impacts. With little thought of operational characteristics, it is difficult to 

understand the emission characteristics of commercial vehicles. Matt Grote et al. mentioned that 

notwithstanding local government authorities (LGA) are responsible for estimating accurate 

emission productions in their area of administration and for establishing reliable emission 

abatement plans. Existing contemporary emission estimation methods of LGAs are likely to 

provide imprecise measures due to scarce funds for air quality impact analyses and modeling 

studies and the difficulty of balancing the model’s accuracy and complexity (101). Therefore, this 

is an essential area for current research, and driving pattern-based air quality impact analyses are 

expected to show more detailed emission characteristics explicitly without high computational 

efforts. 



54	
	

Table 5.2. NOx emission rates by drive mode and vocation type 
Service  

type Bus transit Waste service Hauling service Utility service 

Vocation 
type 

Urban 
transit 

bus 
(UTB) 

School 
bus 

(SCHB) 

Street 
sweeper 

(SWPER) 

Refuse truck  
(RF) 

Long-haul 
truck  

(LHT) 

Short-haul truck  
(SHT) 

Utility 
service 
truck  
(UT) 

Sewer  
truck 

(SWT) 

Vehicle  
fleet 

description 

Urban 
Transit 
buses 

School 
district 
buses 

Street 
Sweeper  

in a 
university 

Refuse 
trucks in 

San Diego 

Refuse 
trucks in 

Los 
Angeles 

Long-haul 
trucks 

Waste 
transfer 

short-haul 
trucks in 

San Diego 

Waste 
transfer short-
haul trucks I 

in Los 
Angeles 

Waste 
transfer short-
haul trucks II 

in Los 
Angeles 

Water 
district 

short-haul 
trucks 

Dairy 
reefer 
trucks 

Water 
retail crew 

utility 
trucks 

Water 
retail  
sewer 
trucks 

Fleet code UTB SCHB SWPER RF SD RF LA LHT WTSH SD WTSH  
LA I 

WTSH  
LA II SHT DDRT CRWT SWT 

TOTAL 1.193 0.602 2.528 1.646 1.509 0.305 1.002 0.660 0.283 0.497 0.123 1.690 2.400 

CRP 0.430 0.180 1.684 0.566 1.122 0.332 0.675 0.352 0.034 0.222 0.046 0.328 0.490 

CRS 0.279 0.161 2.323 0.159 0.334 0.263 0.323 0.386 0.026 0.200 0.029 0.271 0.427 

TRS 0.374 0.218 1.893 0.288 0.563 0.257 0.506 0.450 0.046 0.207 0.048 0.367 0.532 

LSC   0.171 1.376 0.117 0.595 0.189 0.542 0.474 0.024 0.222   0.280 0.444 

HST 0.351 0.194 2.274 0.184 0.381 0.292 0.353 0.402 0.032 0.200 0.037 0.360 0.467 

 
Water retail sewer trucks and street sweeper showed the highest total emission rates 

(g/mile) among the considered vocation types, and the values of the sewer trucks were far higher 

than their running exhaust emission rates. This is because the sewer trucks conducted work-zone 

activities that demand a power supply in idling status. Due to the extensive PTO (Power-Take-

Off) operations, these vehicles produced a considerable amount of idling emissions. Regarding the 

high NOx emission rate of the street sweeper, it is equipped with an old engine model (MY 2009); 

therefore, it provided relatively higher NOx emission rates than the others.  

 

For most vocation types considered in this study, creep (CRP) drive mode patterns 

showed the highest emission rates among the drive modes, followed by transient (TRS). Creep and 

transient patterns exhibited high engine speed variances, and these power-demanding driving 

patterns required relatively higher fuel rates. In dynamically transitioning traffic situations, it is 

difficult to maintain and control the performance of after-treatment systems, which aim to reduce 

criteria pollutant species in tailpipe exhausts. These results are consistent with the experimental 
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analysis results of George Karavalakis et al. (102-103). According to the William H. Martin Refuse 

Truck Cycle (RTC), which was developed by West Virginia University, driving cycles of waste 

haulers consist of a transport segment, a curbside pickup segment, and a compaction segment. In 

the curbside pickup segments, the refuse trucks conducted numerous stop-and-go driving patterns, 

and the resulting CO2 and NOx emission rates are twice as high as the emission rates in the 

transport segment (102). 

 
The obtained vehicle activity data is one of spatial-temporal data; it can be assessed on a 

pattern duration-basis and distance-basis. While duration-based DMC showed the time fractions 

of idling mode operation, distance-based DMC neglected the idling impact. Distance-based DMC 

in Figure 5.5 showed different proportions compared to duration-based DMC in Figure 5.3. This 

is mainly due to the idling mode duration and also because each drive mode has a different impact 

on pattern-duration and pattern-distance. For example, cruising mode exhibits high-speed 

operation, so it has more VMT per unit of time than the other lower speed operation modes. 

 

Vocation type specific-DMC showed that the vocational vehicles were likely to have 

specific predominant drive modes, and the primary driving mode differed by vocation type. As 

shown in Figure 5.3, most vocation types commonly have portions of idling mode over the total 

operating time. Ironically, vehicle emission enforcement programs never specify idling emission 

standards for NG engines. 
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Figure 5.3. Pattern duration-based drive mode composition 
 
 

The refuse trucks and street sweeper data showed a substantial amount of low-speed range 

operations, such as creeping and low-speed-cruising modes. The refuse truck data had the highest 

proportion of creeping mode to the total operation time compared to the others. The best 

explanation for this is that refuse trucks dropped by every waste collection point and travel in 

residential areas that have numerous turning and stop-and-go events. The number of stop per mile 

and GPS trajectories also could support the analysis results. As shown in Table 5.3, refuse trucks 

had a significantly higher number of stops per mile than other vehicle types. Figure 5.4 shows a 

complicated GPS trajectory of the refuse trucks participated in the activity data survey. These 

results indicated that refuse trucks are likely to conduct more NOx emission-intense operations, 

compared to the other vocational types.  

 

The predominant drive modes of transit and school buses were transient and high-speed 

transient patterns that are more common in arterial street operations, while short- and long-haul 

trucks were operated in the cruising mode for the most of time in their duty cycle. Also, the DMCs 
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of transit buses and the dairy reefer truck showed no low-speed cruising operations over the entire 

operation schedule.  

 
Table 5.3. Drive mode composition and number of stops per mile  

Service type Transit service Waste service Hauling service Utility service 

Vocation type Urban 
transit 

School  
bus 

Street 
sweeper 

Refuse 
truck 

Long-haul 
truck 

Short-haul 
truck 

Utility 
service 
truck 

Sewer 
truck 

Group code UTB SCHB SWPER RFT LHT SHT UT SWT 

CRP 1.5% 3.0% 6.4% 14.2% 1.0% 2.0% 2.0% 2.4% 

CRS 4.3% 7.4% 2.0% 5.9% 74.2% 35.9% 15.0% 4.2% 

TRS 18.9% 18.8% 31.4% 15.5% 7.8% 11.9% 9.9% 11.3% 

LSC 0.0% 0.4% 17.7% 1.4% 0.5% 2.7% 0.6% 0.2% 

HST 16.8% 29.1% 2.0% 3.3% 2.4% 7.2% 14.1% 9.6% 

IDLING 58.6% 41.2% 40.5% 59.7% 14.1% 40.2% 58.4% 72.3% 

# of stops per mile 2.82 1.91 3.98 14.65 0.20 1.27 1.35 3.31 

 
 

 
Figure 5.4. A sample GPS trajectory of the refuse truck participated in the data survey  
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Figure 5.5. Pattern distance-based drive mode composition 
 

Table 5.3 presents the DMCs of the considered vocation types. The long- and short-haul 

truck datasets provided a substantial amount of cruising mode portions, which means that the 

subject trucks primarily travel on freeways. These trucks have very similar drive mode 

distributions even though their operation areas are different from each other. This study discovered 

similar DMC patterns not only from the cargo truck types but also bus type vehicles. Urban transit 

buses and school buses showed similar concentration patterns in Figures 5.3 and 5.5.  

 

Figure 5.6 presents the concentrations of the running NOx emissions by drive mode. The 

figure highlights drive modes that contribute to the total NOx emissions the most. It also supports 

the hypothesis that the vocational HD NGVs are likely to have specific predominant drive modes. 

Urban transit and school buses produced a significant total amount of NOx emissions in high-

speed transient mode, while the majority of NOx emissions of long- and short-haul trucks were 

from cruising mode. Refuse trucks showed that most NOx emissions were produced in creeping 
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and transient modes. The analysis results showed the predominant drive modes that were highly 

correlated with the total NOx emissions of the subject NGVs.  

 

 
Figure 5.6. NOx and VMT distributions by drive mode  
 

Not all the subject vehicles in the vocation type group travel on the same routes and 

experience the same traffic conditions. DMC can differ from vehicle to vehicle; therefore, this 

study presented DMCs of all subject vehicles in Figure 5.7. This study found that the DMCs of 

specific vocations were consistent across regions. In other words, inter-group differences were 
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much more significant than intra-group differences. Refuse truck (RFT) 1, 2, and 3 in Figure 5.7 

were included in the fleet RF SD in Table 5.3 and were operated in San Diego County, while RFT 

4, 5, and 6 were from the fleet RF LA, and the corresponding activity data was obtained from an 

entity in Los Angeles County. The refuse trucks from different regions also presented similar 

DMCs. The DMC analysis results illustrated that the vocation type factor could have a very 

significant impact on commercial HDV operations and be more influential than the other factors. 

This is because vehicle activities are constrained by given operational conditions to achieve the 

objectives assigned by fleet operators. Although the vocation type cannot explain the entire 

variations of operational and emission characteristics, it is, at least, an essential factor in 

determining the environmental impact of the vehicles.  

 

 
Figure 5.7. Drive mode composition in duration per vehicle 
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5.4 Drive mode compositions by road facility type 

On-road emissions production is not uniform over time and space because a vehicle’s driving 

status is affected by driving situations and operational conditions, although emission rates usually 

are expressed and compared in averages (in the unit of time or distance). The previous section 

showed that HD NGVs could have different environmental impacts due to vocation and business 

types. This section focused on the concentration of criteria pollutant emissions associated with 

road facility type over time and space. The DMC by road type can address the environmental 

impact of the subject vehicles more specifically, such as estimating the adoption impact on 

vulnerable communities and contributing to geofencing strategies, while aggregated emission rates 

may preclude these types of assessments. Hence, this study considered the influence of the 

transportation network and associated road conditions on vehicle performance. From the entire 

datasets collected, this study selected the ten activity datasets that have the least error-prone GPS 

data and captured GPS trajectories covering a variety of traffic and road conditions. To analyze 

network impacts on emissions, this study geocoded the trajectories into an open-source map and 

then correlated the DMCs to road facility type.  

 

 
Figure 5.8. Sample of geocoded vehicle trajectories 
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5.4.1 Highway Functional Class  

The Federal Highway Administration (FHWA) classifies road type in seven classes, such as 

interstate, other freeways or expressways, principal-arterial, minor-arterial, major-collector, 

minor-collector, and local street. This study assumed that the driving features between the similar 

road types are analogous. For instance, operational and emission characteristics of interstate, 

expressways, and freeways may not be significantly different. Accordingly, the DMCs were 

divided into three road facility types, such as freeway (FW), arterial (ARTE), and local street 

(LOC). Using the California Road System (CRS) maps and geographic information system (GIS) 

tools, road types on the obtained vehicle trajectories were identified, and DMC and pattern features 

were re-calculated based on the road type. Figure 5.8 shows a sample of geo-mapped trajectories.  

5.4.2 Drive mode composition by road facility type 

DMCs by facility type provides a broad picture of the operational conditions of the HD NGVs. 

When the road type changes along a vehicle trajectory, the corresponding road segment is 

identified as a road-facility trip. This study calculated the drive mode composition and driving 

statistics for each road-facility trip segment identified, including the number of stops, speed, travel 

distance, power consumption, and idling time. DMCs by road facility type in Figure 5.9 showed 

that the HD NGVs used a specific road facility type during their duty cycles. This implies that 

some specific drive modes were highly correlated with road type, and the vocational vehicles had 

their specific areas of operation. Referring to the DMC bar graph shown in Figure 5.9, it was 

possible to envision the operational environments of the buses. Bus type vehicles were operated 

predominantly on major-arterials and, as expected, the arterial road type is responsible for most 

NOx productions from the buses in service. While transit bus operations primarily focused on 
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arterials, school buses presented slightly different facility type DMCs. In addition to the substantial 

amounts of high-speed transient mode operations on arterials, the school bus type showed 

significant transient mode operations in local streets, which could be explained by student pick-up 

and drop-off behaviors. 

	

 
Figure 5.9. Drive mode composition without idling mode by road facility type 

 

Similarly, most operations of long-haul trucks were conducted on freeways in cruising 

mode. The street sweeper had significant portions of creep, transient, and LSC patterns on local 

streets due to its special duty. Refuse trucks had the largest portions of creeping mode among the 

considered vocation types, and they operated creeping mode mainly on local streets and transient 

mode on arterials. It implies that sweepers and refuse trucks are partially responsible for the air 

quality of residential and business areas. If a government agency wants to reduce emissions in 

residential areas, these vehicle types can be the main policy targets that the agency needs to focus 

on. Short-haul trucks presented a variety of predominant drive modes that have similar portions, 

while road type-specific DMCs of refuse and long-haul truck types were primarily focused on local 
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streets and freeways, respectively. Short-haul trucks were likely to experience very diverse traffic 

environments over their duty cycles. It implies that each vocation type can have different driving 

difficultness, which is highly related to system requirements for automated vehicles. For instance, 

the short-haul trucks are likely to require the highest autonomous level because of their various 

driving mode distributions and diverse road conditions over drive cycles. 

 

Utility service and sewer trucks mainly traveled on arterials. Utility trucks had slightly 

more freeway cruising operations, while sewer trucks had relatively more transient model portions. 

The two vehicle types showed similar DMCs by road type to those of bus type vehicles. The trucks 

traveled mainly in the high-speed driving modes across all road types and had substantial fractions 

of idling time in the arterial and local streets. It is possible to summarize the vehicle activities of 

the utility and sewer trucks as the vehicles quickly moved to work-zones and conducted extensive 

PTO operations.  

 

Figure 5.10 illustrates road type compositions (RTC) and demonstrates that the HD NGVs 

have primary road facility types associated with their operations. The figure also shows the 

variability of intra- and inter-group RTCs. Urban bus, school bus, crew trucks, and sewer trucks 

mainly traveled in arterials (ARTE in the figure). Refuse trucks and street sweepers usually 

operated on local streets (LOCAL), presumably residential areas. Long-haul trucks and waste 

dumpsters focused on freeway (FW) operations. The vocation types in each partition can be 

grouped as vehicle classes that exhibit similar activity patterns. 
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Figure 5.10. Road facility type compositions of the subject vehicles  

 

For instance, some vocation types can be merged into newly defined vehicle groups, and 

the new group can represent emission production potential of the included subject vehicles. With 

an underlying assumption that air pollutant exposure rates for humans differ by road type due to 

different population concentration in residential and freeway areas, it is possible to argue that the 

refuse truck and sweeper group can provide higher fuel transition impact than the other vehicle 

groups.  

  



66	
	

5.5 Analysis of the variability of environmental impacts with possible drive 

mode compositions  

The observed activity patterns are limited to explain the duty cycles of the entire vocational NGV 

population in California. Although activity patterns are similar between the same vocation type 

vehicles, drive mode compositions (DMCs) can differ depending on given operational and traffic 

conditions, such as traffic conditions, duty cycle, geographical features over an assigned operation 

route. This study assumed that DMCs of HD NGVs could differ by ±10% and ±20% from the 

observed DMCs and estimated the variations of NOx emission rates of the considered vocation 

types.  

 

This study generated 2,000 synthetic DMCs for each vocation type that are randomly 

produced within the allowed variation range of ±10% and ±20% from the observed DMCs. The 

sum of durations of drive modes should be equal to 100%, which is the total operation time of the 

vehicles. This study calculated NOx emission rates for each synthetic DMC generated. Figure 

5.11 shows the histograms of NOx emission rates of the vocation types considered in this study 

under the allowed 10% variations of DMCs. The range of each distribution indicates the variability 

of NOx emission productions of each vocation type. 

 

Long-haul trucks showed the lowest NOx emission rates and were expected to provide very 

consistent emission benefits. School buses and short-haul trucks with 8.9-liter engines had an 

overlapped area, which means that school buses could provide better emission benefits in some 

DMCs than short-haul trucks with 8.9-liter engines and vice versa. The distribution of NOx 

emission rates of sewer trucks was substantially far from the other vocation groups. At a glance, 
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the vocational vehicles can have the presented ranges of NOx emission rates in Figure 5.11 under 

the assumption that the obtained activity data is not significantly different from the operational 

characteristics of the entire NGV population.  

 

 
Figure 5.11. Distributions of NOx emission rates with 10% of allowed DMC variability 

 

A higher variation of DMC provided larger overlapped spaces between the distributions, 

as shown in Figure 5.12. The consecutive order of the vocation types from the left side of the 

figure presented the environmental friendliness, and it can be regarded as a priority in public 

health-related policy design such as vehicle incentive projects. In addition, the extent of the 

overlapped area indicated that the two involved vocation types could be used to determine their 

priorities. Hence, the rightmost side of each distribution showed the tipping point where the 

vocation type loses the superiority of emission benefits compared to the adjacent vocation type to 

its right.  
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Figure 5.12. Distributions of NOx emission rates with 20% of allowed DMC variability 

 

5.6 Summary  

In this chapter, various driving pattern analyses were conducted to define common driving patterns 

per vocation type and capture operational characteristics of the subject NGVs. The obtained 

activity data was processed into micro driving patterns and used to conduct k-means pattern 

clustering analysis. The pattern classification thresholds obtained from the clustering analysis were 

used to categorize the micro driving patterns into the five drive mode groups, including creep, 

transient, cruising, low-speed cruising, and high-speed transient. The resulting drive mode 

composition (DMC) of each vehicle exhibited the operational characteristics of the subject NGV 

types. This study demonstrated that the operational characteristics captured by DMC are correlated 

with emission production patterns over duty cycles because each drive mode has different NOx 

and CO2 emission rates.  
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Vocation type specific-DMC showed that the vocational vehicles are likely to have specific 

predominant drive modes, and the primary driving mode differs by vocation type. This indicated 

that the vocation type is one of the influential factors affecting the operational and emission 

characteristics of HD NGVs. The refuse trucks and street sweeper data showed a substantial 

amount of low-speed range operations, such as creeping and low-speed-cruising modes. The refuse 

truck data had the highest proportion of creeping mode to the total operation time compared to the 

others, while most operations of hauling service groups were conducted in cruising mode. This 

study found that inter-group differences are much more significant than intra-group differences. 

The refuse trucks from different regions presented similar DMCs. This result supported the 

argument that vocation type factor can have a very significant impact on commercial HDV 

operations and be more influential than the other factors. DMCs by facility type provided a broad 

picture of operational conditions of the HD NGVs. DMCs by road facility type showed that the 

HD NGVs use a specific road facility type during their duty cycles. 
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Chapter 6 Total fuel cycle (Well-to-Wheel) analysis on NGVs  

6.1 Well-to-Pump (WTP) analysis 

Battery-electric and fuel cell vehicles produce zero emissions on the roads, and this is reasonably 

true when we only account for the vehicle cycle (Pump-to-Wheel) emissions. Since no natural 

source of electricity and hydrogen exist yet, it is necessary to construct stationary power plants 

and applications to produce hydrogen and electricity and store them in stable and reliable forms. 

Given the entire process of energy production and consumption, vehicle electrification does not 

offer zero-emission production. This is the reason that alternative fuel vehicles should be compared 

in total fuel cycle analysis. Table 6.1 and Table 6.2 present Well-to-Pump emission rates of NG, 

RNG, and diesel fuel pathways.  

 

While NGVs provides significant regulated pollutant and GHG emission reductions 

compared to diesel vehicles (DVs), RNG powered NGVs offer much more environmental benefits 

than fossil-fueled NGVs and DVs. Argonne National Laboratory’s GREET.net version and 

California Air Resources Board’s CA-GREET version provide slightly different CO2 emission 

rates for the conventional CNG fuel pathway. This is because the CA-GREET uses different 

assumptions of fuel consumption and emission characteristics that reflect the operational 

conditions of California. The RNG pathway can provide different environmental impacts 

depending on how the vehicles are refueled. If NGVs perform on-site RNG refueling, the expected 

emission benefits are incredible and likely to negate the partial vehicle cycle emissions. Due to the 

limited number of RNG facilities, the emission benefits are disappeared in the off-site RNG 

refueling scenario of the recently released CA-GREET 3.0 version. The emission rates of off-site 
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refueling scenario are higher than the other pathways; therefore, the fuel pathway was excluded in 

the well-to-wheel analysis.  

 

For the WTP diesel emissions, this study referred to the fuel economy values of diesel 

vehicles in the GREET.net model (22-24). Overall, emission rates of the CA-GREET 3.0 version 

were higher than those of the default GREET.net. Because the subject vehicles were being operated 

in CA, the CA-GREET estimates were coupled with vehicular emissions in the WTW analysis. 

Notably, conventional and California Ultra-Low-Sulfur (ULS) diesel WTP CO2 emission rates 

were nearly 10% higher and 10% lower respectively than the CNG WTP CO2 emission rates, 

respectively. In addition, WTP NOx emission rates of diesel fuel types were 80% lower than CNG 

WTP NOx emission rates. Considering the PTW CO2 and NOx emission rates of the CA-GREET 

3.0, it was found that the total carbon intensity (CI) of diesel fuel pathways exceeds the total CI of 

the conventional CNG fuel pathway.  

6.2 Well-to-Pump analysis results 

WTP emission rates can be expressed in either gram per mile or grams per Megajoule. Table 6.1 

and 6.2 show the WTP CO2 and NOx emission rates estimated with the HD NGV fuel economy 

assumptions of GREET.net and CA-GREET. For WTW analysis, this study used the CI of each 

WTP pathway and horsepower of the subject NGVs to estimate NOx and CO2 fuel cycle emissions 

because the subject NGVs had different fuel economy from the assumption of the GREET models. 

If this study uses distance-based fuel cycle emission rates (g/mile) to estimate the WTW emissions 

of the subject vehicles, NOx and CO2 emissions of long- and short-haul trucks will be over-

estimated, compared to other vocational trucks. This is because the long-distance traveling 

vehicles, which are primarily operated on freeways, are likely to have higher VMT than the other 
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vocational vehicles. Therefore, this study used the emission rates in grams per Megajoule in the 

WTW analysis.  

 
Table 6.1. WTP CO2 emission rates of the fuel cycles of NG, RNG, and diesel (g/mile) 

Fuel pathway GREET.net 
diesel  

CA-GREET 
Conventional 

diesel  

CA-GREET  
CA ULS 

diesel 

GREET.net 
CNG 

CA-GREET 
CNG 

CA-GREET 
RNG (off-site 

refueling) 

CA-GREET 
RNG (on-site 

refueling) 

Heavy-duty intercity Buses 310 525.7 450.0 220 449.5 662.8 -1171.4 

Heavy-duty school Buses 260 450.6 385.7 200 407.9 601.5 -1063.2 

Heavy-duty transit Buses 480 846.2 724.4 370 739.7 1090.9 -1927.9 

Heavy-duty long-haul trucks 300 475.3 406.9 220 442.1 651.9 -1152.2 

Heavy-duty short-haul trucks 300 468.9 401.3 220 435.0 641.4 -1133.6 

Medium heavy-duty vocational vehicles 98.91 418.0 357.9 64.11 380.7 561.4 -992.3 

Heavy heavy-duty vocational vehicles 300 468.9 401.3 220 442.1 651.9 -1152.2 

Heavy-duty Refuse trucks 380 608.7 521.1 300 594.9 877.2 -1550.4 

 
 
Table 6.2. WTP NOx emission rates of the fuel cycles of NG, RNG and diesel (g/mile) 

Fuel pathway GREET.net 
diesel  

CA-GREET 
Conventional 

diesel  

CA-GREET  
CA ULS 

diesel 

GREET.net 
CNG 

CA-GREET 
CNG 

CA-GREET 
RNG (off-site 

refueling) 

CA-GREET 
RNG (on-site 

refueling) 

Heavy-duty intercity Buses 0.640 0.302 0.326 1.070 1.331 5.234 -0.204 

Heavy-duty school Buses 0.540 0.259 0.279 0.970 1.208 4.750 -0.185 

Heavy-duty transit Buses 0.990 0.486 0.525 1.760 2.191 8.614 -0.336 

Heavy-duty long-haul trucks 0.630 0.273 0.295 1.050 1.309 5.148 -0.201 

Heavy-duty short-haul trucks 0.620 0.269 0.291 1.030 1.288 5.065 -0.198 

Medium heavy-duty vocational vehicles 0.210 0.240 0.259 0.310 1.128 4.433 -0.173 

Heavy heavy-duty vocational vehicles 0.630 0.269 0.291 1.050 1.309 5.148 -0.201 

Heavy-duty Refuse trucks 0.790 0.349 0.377 1.410 1.762 6.927 -0.270 

 
 
Table 6.3. WTP CO2 and NOx emission rates in grams per Megajoule (g/MJ) 

WTP fuel pathway California 
Conventional CNG 

California RNG 
(off-site refueling) 

California RNG 
(on-site refueling) 

California 
Conventional Diesel 

California Ultra-
Low-Sulfur-Diesel 

Carbon Dioxide 17.765 26.198 -46.302 25.396 21.740 

Nitrogen Oxides 0.049 0.207 -0.008 0.015 0.016 
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6.3 Pump-to-Wheel (PTW) analysis  

Pump-to-wheel (PTW) cycle NOx and CO2 emissions were compared between NGV and diesel 

vehicle (DV) type scenarios as presented in Table 6.4. The base scenarios showed the emission 

rates of the subject vehicles, while low NOx and diesel vehicle scenarios were included in the 

analysis as counterparts of the base scenarios. The low NOx engines are the cleanest engine models 

currently on the market and conform to the optional criterion of the NOx emission standard of less 

than 0.02 g/bhp-hr. This study determined the diesel counterparts based on the Primary Intended 

Service Class (PISC), model year (MY) and engine dimension of the subject vehicles. Among the 

2017 and 2018 MY diesel engines with comparable engine dimensions, this study selected the 

diesel counterparts that have the lowest NOx emission rate.  

Table 6.4. PTW analysis scenarios  
PTW 

scenario 
ID 

Service 
type Vocation group Group 

code 

Model 
year 

(MY) 
Location 

Engine 
dimension 

(liter) 

Engine family [NOx emission rate (g/bhp-hr)] 
Base scenario - 
Subject vehicles 

Low NOx engine 
scenario 

Diesel counterpart 
scenario 

1 
Transit 
service 

Urban transit bus UTB 2016 South California 8.9 GCEXH0540LBG 
[0.13] 

HCEXH0540LBK 
[0.01] 

GCEXH0540LAV 
[0.19] 

2 School bus SCB 2016 Orange County 8.9 
GCEXH0540LBF / 
HCEXH0408BBA 

[0.13 / 0.08] 

HCEXH0540LBK 
[0.01] 

HCEXH0540LAX 
[0.16] 

3 

Waste 
service 

Street sweeper SWP 2009 Orange County 5.9 9CEXH0359BBG 
[1.44] 

FGKTE06.8FM1 
[0.01] 

HCEXH0408BAT 
[0.14] 

4 Refuse truck RFT SD 2014 / 
2017 San Diego County 8.9 

ECEXH0540LBH / 
HCEXH0540LBK 

[0.13 / 0.01] 

HCEXH0540LBK 
[0.01] 

HCEXH0540LAX 
[0.16] 

5 Refuse truck RFT LA 2016 Los Angeles 
County 8.9 

FCEXH0540LBH / 
GCEXH0540LBF 

[0.13] 

HCEXH0540LBK 
[0.01] 

GCEXH0540LAV 
[0.19] 

6 

Hauling 
service 

Waste transfer 
short-haul truck 

WTSH 
SD 2014 San Diego County 11.9 

ECEXH0540LBH / 
FCEXH0540LBH 

[0.13] 

JCEXH0729XBC 
[0.01] 

HCEXH0540LAX 
[0.16] 

7 Waste transfer 
short-haul truck 

WTSH 
LA I 2016 Los Angeles 

County 11.9 GCEXH0729XBA 
[0.15] 

JCEXH0729XBC 
[0.01] 

GCEXH0729XAE 
[0.19] 

8 Waste transfer 
short-haul truck 

WTSH 
LA II 2018 Los Angeles 

County 11.9 JCEXH0729XBC 
[0.01]  

JCEXH0729XBC 
[0.01] 

GCEXH0729XAE 
[0.19] 

9 Long-haul truck LHT 2017 San Francisco and 
Sacramento County 11.9 HCEXH0729XBA 

[0.15] 
JCEXH0729XBC 

[0.01] 
HCEXH0729XAE 

[0.19] 

10 Short-haul truck SHT 2013 / 
2014 

Los Angeles 
County 8.9 

DCEXH0540LBH 
ECEXH0540LBH 

[0.13] 

HCEXH0540LBK 
[0.01] 

HCEXH0540LAX 
[0.16] 

11 Dairy reefer 
truck DRT 2018 San Diego County 11.9 JCEXH0729XBC 

[0.01] 
JCEXH0729XBC 

[0.01] 
HCEXH0729XAE 

[0.19] 

11 
Utility 
service 

Water retail crew 
utility trucks CUT 2011 Orange County 8.9 BCEXH0540LBH 

[0.13] 
HCEXH0540LBK 

[0.01] 
GCEXH0729XBA 

[0.15] 

12 Water retail sewer 
trucks SWT 2016 Orange County 11.9 GCEXH0729XBA 

[0.15] 
JCEXH0729XBC 

[0.01] 
HCEXH0729XAE 

[0.19] 
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6.4 Pump-to-Wheel (PTW) analysis results 

PTW NOx and CO2 emission rates of the NGV and diesel vehicle scenarios were presented in 

Table 6.5, Figure 6.1, and Figure 6.2. Because the street sweeper was equipped with a relatively 

older engine model (MY 2009) than the other subjects, it showed higher NOx emission rates than 

the 2018 diesel engine models and did not provide the fuel rate parameter used for estimating CO2. 

Thus, the total fuel cycle analysis excluded the street sweeper data, but its operating characteristics 

were unique and showed high emission reduction potential (ERP) due to the extensive amount of 

low-speed operations as shown in Figure 6.3.  

 

Table 6.5. NOx and CO2 emission rates and the number of stop-per-mile 
Service 

type Vocation group 
Number  
of stops 
per mile 

CO2 emission rates in grams per mile NOx emission rates in grams per mile 

Base CNG scenario  Diesel counterpart 
scenario Base CNG scenario Low NOx engine 

scenario 
Diesel counterpart 

scenario 

Transit 
service 

Urban transit bus 2.82 1822 2261 1.193 0.875 2.274 

School bus 1.91 1332 1653 0.602 0.428 1.110 

Waste 
service 

Street sweeper 5.79 - - 2.528 0.643 1.574 

Refuse truck in SD 15.48 3589 4453 1.646 1.384 3.469 

Refuse truck in LA 13.82 3726 4623 1.509 0.959 2.795 

Hauling 
service 

Waste transfer short-
haul truck in SD 3.74 1642 2037 1.002 0.637 1.716 

Waste transfer short-
haul truck in LA I 0.54 1789 2220 0.660 0.288 1.130 

Waste transfer short-
haul truck in LA II 0.87 1927 2391 0.283 0.283 1.094 

Long-haul truck 0.20 1078 1338 0.305 0.057 0.431 

Short-haul truck 0.64 1056 1310 0.497 0.311 0.883 

Dairy reefer truck 0.56 1704 2114 0.123 0.123 0.807 

Utility 
service 

Water retail crew 
utility trucks 1.35 2048 2541 1.690 1.397 3.284 

Water retail sewer 
trucks 3.31 4262 5288 2.400 1.939 4.793 

 
The NGV operations provided approximately 20% lower CO2 emissions compared to 

diesel scenarios. NOx emissions were reduced respectively about 42% and 67% in the base and 

low NOx engine scenarios. If a government agency offers the same value of incentives to the 

vocational heavy-duty vehicles, the anticipated emission reduction potential would be between 



75	
	

42% and 67% depending on the market penetrations. However, Table 5.2 shows that each 

vocational NGV group provided different environmental impacts. This implies that an incentive 

policy can be re-designed to maximize emissions reductions by focusing on the crucial vocation 

types.  

 

 
Figure 6.1. NOx emission rates of the vocation groups 
 

The water retail sewer trucks presented the second-highest average NOx emission rate, 

followed by crew utility and refuse trucks. These vocational vehicles exhibited significant idling 

time for power take-off (PTO) operations, as shown in Figure 6.3. PTO operations maintain high 

engine RPM to supply power source for the unique activity of the vehicle type. Thus, a common 

practice to measure the lifespan of these vocational trucks takes account of accumulated operating 

time rather than using VMT. For reference, this study used engine horsepower parameters to 

calculate the NOx emission rates; therefore, the emission estimates reflect the impact of the PTO 

operations. 
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Figure 6.2. NOx and CO2 emission rates of NGV and diesel counterpart scenarios  

 

Urban transit buses and refuse trucks showed higher NOx emission rates than hauling 

service truck groups. Figure 6.3 shows that refuse trucks and transit buses had substantial 

durations of creeping and transient mode operations. In particular, refuse trucks exhibited a high 

number of stops-per-mile as shown in Table 5.3, and their total NOx emission rates were also 

higher than the other groups. The waste collection activity included frequent stop-and-go 

operations, and this caused higher emission rates in grams per second. The dairy reefer truck is a 

low NOx engine equipped vehicle; therefore, it has the same emission rate for the base and low 

NOx engine scenarios. Overall, the PTW analysis results showed that conventional NG and low 

NOx NG engines provide significant environmental benefits in terms of both NOx and CO2.  

 

According to California Department of Motor Vehicles data, refuse trucks take a 

significant market share in the heavy-duty CNG vehicle market. This research compared the 

environmental benefits and incentive effect of the subject vehicles based on those of refuse trucks. 

Hauling service trucks showed lower emissions compared to other vocation groups. Hauling truck 

groups including short- and long-haul and dairy reefer trucks showed an average of 76% lower 
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emission rates than average NOx emission rates of refuse truck groups in the CNG low NOx engine 

scenario. Sewer trucks showed an average of 52% and 65% higher NOx emission rates than refuse 

truck groups in the default CNG engine and low NOx engine scenarios, respectively. The DMC 

analysis results suggested that low-speed operations and frequent stop-and-go driving patterns are 

correlated with high emission rates. Although the activity datasets of the vocation groups were 

obtained from different regions, bus groups, refuse truck groups, and hauling truck groups showed 

similar DMCs and emission rates across regions, respectively. 

6.5 Well-to-Wheel (WTW) analysis results of NG fuel pathways and NGV 

applications 

The WTW analysis considered a total of 56 fuel pathways which consist of WTP cycles for diesel, 

NG, and RNG and PTW cycles for 13 vehicle groups with conventional NG, diesel, and low NOx 

NG engine variations. The corresponding CO2 and NOx emission rates of the WTP and PTW 

cycles were respectively summed up to WTW emission rates of each fuel pathway. Then, this 

study prioritized the fuel pathways based on WTW CO2 and NOx emission rates. An underlying 

assumption of the WTW analysis was that the CO2 production of conventional NG and low NOx 

NG engines are not significantly different because the CO2 emission estimation method relies on 

the ECU fuel rate.  

 

Table 6.6 shows net CO2 and NOx emission rates for the entire fuel cycles and the 

resulting rank order of the fuel pathways considered. The fuel pathway scenarios had different 

ranks depending on what emission species was prioritized. For instance, RNG-powered long-haul 

trucks equipped with a low NOx engine offered the lowest NOx emissions per mile if the fuel 



78	
	

pathways are prioritized by NOx emission reduction benefits. Furthermore, RNG-powered urban 

transit buses can potentially be the best fuel pathway in terms of CO2 emission reduction.  

 

Since the analysis was sensitive to the focus of the emissions, some mechanism was 

required for considering the trade-offs.  In this case, CO2 is one of the representative GHG emission 

species, while NOx is a regulated pollutant. They affect our environment in different ways and 

therefore, cannot easily be combined into a single factor. However, public health-related 

policymakers and legislators are required to consider multiple aspects of fuel pathways to 

determine the performance of emission reduction plans precisely. Thus, this study proposed 

combining a multiple-criteria decision-making (MCDM) method and the emissions evaluation 

framework described above to compare WTW scenarios and to prioritize them. 
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Table 6.6. Ranked fuel pathway scenarios based on WTW NOx and CO2 emission rates 
Fuel 

pathway  Vocation type Engine technology 
WTW NOx 

emission rate 
(g/mile) 

NOx Scenario 
rank order 

WTW CO2 
emission rate 

(g/mile) 

CO2 Scenario 
rank order 

CNG Urban transit bus  Conventional NG engine 1.593 39 1967 31 
CNG Urban transit bus  Low NOx NG engine 1.275 34     
CNG School bus Conventional NG engine 0.822 23 1412 14 
CNG School bus Low NOx NG engine 0.648 17     
CNG Refuse truck SD  Conventional NG engine 2.534 50 3910 48 
CNG Refuse truck SD  Low NOx NG engine 2.272 47     
CNG Refuse truck LA  Conventional NG engine 2.423 49 4057 50 
CNG Refuse truck LA  Low NOx NG engine 1.873 44     
CNG Waste transfer short-haul truck SD Conventional NG engine 1.506 38 1825 26 
CNG Waste transfer short-haul truck SD Low NOx NG engine 1.141 29     
CNG Waste transfer short-haul truck LA I Conventional NG engine 1.055 27 1932 29 
CNG Waste transfer short-haul truck LA I Low NOx NG engine 0.683 18     
CNG Long-haul truck  Conventional NG engine 0.567 14 1173 11 
CNG Long-haul truck  Low NOx NG engine 0.319 7     
CNG Short-haul truck Conventional NG engine 0.733 20 1142 7 
CNG Short-haul truck Low NOx NG engine 0.547 11     
CNG Dairy reefer truck  Low NOx NG engine 0.597 16     
CNG Crew utility truck  Conventional NG engine 2.129 45 2207 34 
CNG Crew utility truck  Low NOx NG engine 1.836 42     
CNG Sewer truck Conventional NG engine 3.208 53 4554 52 
CNG Sewer truck Low NOx NG engine 2.746 51     
CNG Waste transfer short-haul truck LA II Low NOx NG engine 0.713 19     
DSL Urban transit bus  Diesel engine 2.402 48 2468 39 
DSL School bus Diesel engine 1.186 30 1766 25 
DSL Refuse truck SD  Diesel engine 3.748 55 4912 54 
DSL Refuse truck LA  Diesel engine 3.067 52 5096 55 
DSL Waste transfer short-haul truck SD Diesel engine 1.866 43 2299 36 
DSL Waste transfer short-haul truck LA I Diesel engine 1.264 33 2424 38 
DSL Long-haul truck  Diesel engine 0.520 10 1473 21 
DSL Short-haul truck Diesel engine 0.966 25 1433 18 
DSL Dairy reefer truck  Diesel engine 0.968 26 2359 37 
DSL Crew utility truck  Diesel engine 3.414 54 2768 43 
DSL Sewer truck Diesel engine 5.095 56 5706 56 
DSL Waste transfer short-haul truck LA II Diesel engine 1.241 32 2614 40 
RNG Urban transit bus  Conventional NG engine 1.127 28 1445 19 
RNG Urban transit bus  Low NOx NG engine 0.809 22     
RNG School bus Conventional NG engine 0.566 13 1125 5 
RNG School bus Low NOx NG engine 0.392 8     
RNG Refuse truck SD  Conventional NG engine 1.500 37 2751 41 
RNG Refuse truck SD  Low NOx NG engine 1.238 31     
RNG Refuse truck LA  Conventional NG engine 1.359 36 2864 44 
RNG Refuse truck LA  Low NOx NG engine 0.809 21     
RNG Waste transfer short-haul truck SD Conventional NG engine 0.919 24 1166 9 
RNG Waste transfer short-haul truck SD Low NOx NG engine 0.554 12     
RNG Waste transfer short-haul truck LA I Conventional NG engine 0.595 15 1417 16 
RNG Waste transfer short-haul truck LA I Low NOx NG engine 0.223 4     
RNG Long-haul truck  Conventional NG engine 0.262 5 832 1 
RNG Long-haul truck  Low NOx NG engine 0.014 1     
RNG Short-haul truck Conventional NG engine 0.458 9 833 3 
RNG Short-haul truck Low NOx NG engine 0.272 6     
RNG Dairy reefer truck  Low NOx NG engine 0.045 2     
RNG Crew utility truck  Conventional NG engine 1.618 40 1633 23 
RNG Crew utility truck  Low NOx NG engine 1.324 35     
RNG Sewer truck Conventional NG engine 2.268 46 3500 46 
RNG Sewer truck Low NOx NG engine 1.806 41     
RNG Waste transfer short-haul truck LA II Low NOx NG engine 0.212 3     
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6.6 Summary  

As no zero-emission vehicle in terms of fuel lifecycle emissions exists, total fuel cycle analysis is 

an essential component of solving energy-related problems. This chapter presented well-to-pump 

(WTP) cycle emissions of conventional natural gas, renewable natural gas, and conventional diesel 

fuel pathways calculated by using Argonne National Laboratory’s GREET.net model and 

California Air Resources Board’s CA-GREET model.  

 

Using the obtained vehicle activity data, this study estimated pump-to-wheel (PTW) cycle 

emissions of various heavy-duty NG and diesel vehicles. Waste, transit and utility service vehicle 

groups showed relatively higher emission rates than hauling service truck groups. Particularly, 

refuse trucks and urban transit buses commonly had a considerable number of stop-and-go driving 

patterns which caused higher NOx emissions per time and distance. Activity data obtained from 

utility service truck groups showed extensive PTO (Power-Take-Off) operations; therefore, these 

vehicles produced a significant amount of idling emissions. The water retail sewer trucks presented 

the second-highest average NOx emission rate, followed by crew utility and refuse trucks. Hauling 

truck groups including short- and long-haul and dairy reefer trucks showed an average of 76% 

lower emission rates than average NOx emission rates of refuse truck groups in the CNG low NOx 

engine scenario. Sewer trucks showed an average of 52% and 65% higher NOx emission rates than 

refuse truck groups in the default CNG engine and low NOx engine scenarios, respectively. 

 

Well-to-wheel (WTW) analysis results showed net CO2 and NOx emission rates for the 

entire fuel cycles and the resulting rank order of the fuel pathways considered. The fuel pathway 

scenarios have different ranks depending on what emission species is prioritized on. CO2 is one of 
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the representative GHG emission species, while NOx is a regulated pollutant. They affect our 

environment in different ways and therefore, cannot easily be combined into a single factor. This 

was the research motivation to conduct multiple-criteria decision-making analyses on the various 

fuel pathways.  

 
 
 
  



82	
	

Chapter 7 NOx emission reduction potential and 
environmental incentive effectiveness index  
 
Emission rates in grams per mile or seconds were insufficient to explain the entire environmental 

impacts of NGV adoption because vocational HD NGVs had different operational conditions and 

duty cycles which cause different lifetime emissions in the unit of time and distance. Using the 

surveyed duty cycle information of the subject NGVs, this study extrapolated the total NOx 

emissions during the data collection period to annual NOx emission projections and predicted 

annual NOx emission reduction potential (ANRP) of the NGVs compared to diesel counterpart 

scenarios. VMT during the data survey period was converted to daily and annual average VMT 

values based on the obtained duty cycle information which is presented in Table 7.1. 

 
Table 7.1. Duty cycle information of the subject NGVs 

Data source NGV use paper survey J1939 data survey 

Vocational  
vehicle groups 

Number 
of 

vehicles 

Average daily 
operating  

hour per veh. 
(hour) 

Average 
operating days 
 per week per 
veh. (days)  

Average daily 
VMT per veh. 

(mile) 

Average daily 
VMT per 

veh. (mile) 

Sum of effective  
working days for 
the survey period 

per fleet group 
(days) 

Urban transit buses 3 10.8 5.7 129.7 85.1 21 

School buses 2 7.5 5.0 70.5 79.8 14 

Refuse trucks 7 8.3 5.0 59.1 50.1 80 

Short-haul trucks - 8.9 liter 4 9.0 4.5 153.4 68.7 78 

Short-haul trucks - 11.9 liter 10 7.7 5.0 179.0 88.8 105 

Long-haul trucks 6 6.2 6.5 226.2 194.4 58 

Dairy reefer trucks 1 8.0 5.0 180.0 127.7 15 

Water district vocational trucks 6 4.3 4.5 92.8 17.1 149 

 
The diesel counterpart engines were determined based on PISC, model year (MY) and 

engine dimension of the subject vehicles. Among the 2017 and 2018 MY diesel engines with 

comparable engine dimensions, this study selected the diesel counterparts that have the least NOx 

emission rate. The vehicle groups with the same vocation types, such as refuse and short-haul truck 
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types, were merged into one group, and short-haul trucks separated into two groups based upon 

engine size (8.9-liter, and 11.9-liter). 

7.1 Annual and lifetime NOx reductions of the HD NGVs 

Per day per vehicle NOx emissions were extrapolated to the annual NOx emission projections 

based on the duty cycle information and the number of official working days excluding national 

holidays, summer, winter, and spring breaks. An assumption on this process was that every target 

year (TY) has the same total active working days for the project life period. Equation 4 and 

Equation 5 present the calculation processes of daily NOx emissions and annual NOx projection, 

and the resulting annual WTW NOx emission projections in kg/year/vehicle were presented in 

Table 7.2.  

 

NOx emission reduction potential (NRP) represents the anticipated amount of NOx 

emissions reductions that can be achieved by adopting the subject HD NGV against conventional 

diesel vehicle applications. AFV adoption offers NOx emission reductions in the fuel cycle (Well-

to-Pump) as well as the vehicle cycle (Pump-to-Wheel) because an introduction of clean vehicle 

technology is accompanied by expansions of the corresponding fuel supply system and refueling 

infrastructure. Therefore, NRP was predicted in terms of total NOx emission reductions of full NG 

and diesel fuel lifecycle.  

 

𝐷𝑎𝑖𝑙𝑦	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛ª«*(𝑔) = 	𝑇𝑜𝑡𝑎𝑙	𝑁𝑂𝑥	𝑝𝑟𝑜𝑑.ª*÷	𝐸𝑓𝑓.𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑑𝑎𝑦𝑠ª*                       (4) 

- 𝐷𝑎𝑖𝑙𝑦	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛ª«* =

𝐷𝑎𝑖𝑙𝑦	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑖𝑛	𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑡𝑦𝑝𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝑇	

- 𝑇𝑜𝑡𝑎𝑙	𝑁𝑂𝑥	𝑝𝑟𝑜𝑑.ª* = 𝑇𝑜𝑡𝑎𝑙	𝑁𝑂𝑥	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑑𝑎𝑡𝑎	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑇	
- 𝐸𝑓𝑓.𝑤𝑜𝑟𝑘𝑖𝑔𝑛	𝑑𝑎𝑦𝑠.ª* = 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑑𝑎𝑦𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑑𝑎𝑡𝑎	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑇	
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𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯°*(𝑘𝑔) = 	𝐷𝑎𝑖𝑙𝑦	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑.ª«*×𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑑𝑎𝑦𝑠ª*¯                     (5) 

- 𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯°*(𝑘𝑔) =

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑓𝑢𝑒𝑙	𝑡𝑦𝑝𝑒	𝐹𝑇	𝑓𝑜𝑟	𝑡ℎ𝑒	𝑡𝑎𝑟𝑔𝑒𝑡	𝑦𝑒𝑎𝑟(𝑇𝑌) 

- 𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝑑𝑎𝑦𝑠ª*¯ = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑜𝑟𝑘𝑖𝑛𝑔	𝑑𝑎𝑦𝑠	𝑜𝑓	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑣	𝑖𝑛	𝑡𝑎𝑟𝑔𝑒𝑡	𝑦𝑒𝑎𝑟(𝑇𝑌) 

 
Annual NOx emission reduction potential (ANRP) is a metric of expected NOx emission 

reductions per year of HD NGV adoption and calculated by using Equation 6. This study 

calculated the ANRP of each subject individually because the vehicles had slightly different 

operating conditions and schedules. An underlying assumption of ANRP was that the vehicle fleets 

maintain duty cycle and operational conditions throughout a year regardless of fuel type and 

pathway. 

 
𝐴𝑁𝑅𝑃°*,«´	(𝑘𝑔/𝑦𝑒𝑎𝑟/𝑣𝑒ℎ) = 𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖. 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯

µf/y/a,«´ − 𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖. 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯
·´,«´    (6) 

- 𝐴𝑁𝑅𝑃	°*,«´ =

𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑠	𝑜𝑓	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝐺	𝑜𝑓	𝑓𝑢𝑒𝑙	𝑡𝑦𝑝𝑒	𝐹𝑇	𝑓𝑜𝑟	𝑡𝑎𝑟𝑔𝑒𝑡	𝑦𝑒𝑎𝑟	(𝑇𝑌)		

- 𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯
µf/y/a,«´ =

𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑖𝑒𝑠𝑒𝑙	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝐺	𝑓𝑜𝑟	𝑇𝑌		

- 𝐴𝑛𝑛𝑢𝑎𝑙	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛*¯
·´,«´ = 𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑁𝐺	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝐺	𝑓𝑜𝑟	𝑇𝑌		

	

Table 7.2. Annual NOx projections and project life estimates based on annual VMT  

Vocational  
vehicle groups 

Activity 
data-based 

average 
annual 
VMT 

Survey-
based 

average 
annual 
VMT 

Activity data 
VMT based 
project life 

Survey VMT 
based project 

life 

Annual WTW NOx emission projection 

Diesel 
scenario 

CNG 
scenario 

CNG w/low 
NOx engine 

scenario 

RNG 
scenario 

RNG w/low 
NOx engine 

scenario 

Unit (miles/vehicle) (years/180,000 miles) (kg/year/veh.) 

Urban transit buses 24,026 37,443 7 5 57.69 38.44 30.69 27.09 19.34 

School buses 20,035 17,696 9 10 23.23 16.28 12.75 11.10 7.57 

Refuse trucks 12,584 14,838 14 12 42.25 30.67 25.68 17.66 12.68 

Long-haul trucks 15,901 33,238 11 5 24.16 19.34 14.57 11.82 7.05 

Short-haul trucks – 8.9 liter 22,283 44,929 8 4 27.50 17.51 15.63 6.46 4.58 

Short-haul trucks – 11.9 liter 64,310 74,500 3 2 32.91 36.03 20.20 16.61 0.78 

Dairy reefer trucks 32,058 45,180 6 4 31.05 19.14 19.14 1.45 1.45 

Water district vocational 
trucks 4,001 21,278 15 8 15.80 10.13 8.50 7.14 5.51 
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7.2 Project life (PL) of NGV incentives 

HDVs may emit different amounts of emissions for vehicle lifespan depending on vocation type 

due to their different VMT variations. This was also shown as the average annual VMT in Table 

7.2. The lifespan factor was included in the incentive impact analysis to predict the lifetime 

emission reduction potential (LNRP) of the incentivized NGVs as shown in Equation 7. This 

study adopted various average lifespan values of HDVs from multiple sources (50)(105-108) and 

defined project life (PL) as the time it takes to reach 180,000 miles for each vocational group 

according to the vehicle replacement guidelines of South Florida Water Management District 

(107). 

 

The survey results showed that the two survey instruments obtained different average daily 

VMT values from the subject NGVs and fleet operators. Thus, LNRP was calculated under 

multiple lifespan assumptions, such as 10 years, 15 years, activity data-based project life (ABPL) 

for 180k miles, and survey data-based project life (SBPL) for 180k miles. ABPL was calculated 

by dividing 180k miles by annual average VMT obtained from ECU data, while SBPL was 

obtained by dividing 180k miles by annual average of survey VMT.  

 

According to the funding plan for clean transportation incentives, the California Air 

Resources Board predicts the effectiveness of the incentives by assuming 250 working days per 

year and a 15-year lifespan as a conservative estimate for all heavy-duty vehicle classes, and grams 

per mile emission estimates (50). Furthermore, low-speed operating vehicles, such as sweepers, 

utility service, sewer trucks, had significantly lower lifetime VMT than the other vocation type 

vehicles. The low mileages will result in unrealistic project life for the 180k miles operating 
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condition; therefore, the project life (PL) estimates are limited up to 15 years. The calculated PL 

values of the two survey instruments are presented in Table 7.2.  

 
𝐿𝑁𝑅𝑃«´,f°* (𝑘𝑔	/	𝑣𝑒ℎ) = 	𝐴𝑁𝑅𝑃°*,«´	 ×	𝑃𝑟𝑜𝑗𝑒𝑐𝑡	𝑙𝑖𝑓𝑒f	(𝑦𝑒𝑎𝑟𝑠)                                  (7) 

- 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	*¯°*(𝐿𝑁𝑅𝑃) =

𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑜𝑓	𝑓𝑢𝑒𝑙	𝑡𝑦𝑝𝑒	𝐹𝑇	𝑜𝑓	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝐺	𝑓𝑜𝑟	𝑝𝑟𝑜𝑗𝑒𝑐𝑡	𝑙𝑖𝑓𝑒	𝑡𝑦𝑝𝑒	𝑖 

- 𝑃𝑟𝑜𝑗𝑒𝑐𝑡	𝑙𝑖𝑓𝑒f	(𝑦𝑒𝑎𝑟𝑠)	=	Active	period	of	the	incentivized	vehicle,	i.e.,	10	years	

 

7.3 Lifetime NOx emission reduction potential  

Annual NRP of the vehicle groups was presented in Figure 7.1, and each vehicle group in the 

figure represents a combination of fuel and vocation type and engine family. Overall, RNG-

powered NGV applications offered a significant amount of NOx emission reductions compared to 

conventional NG and diesel vehicle applications. Urban transit bus groups showed the highest 

NRP among the CNG-powered applications, while low NOx engine equipped long-haul truck, 

waste collection vehicle, dairy reefer truck, and transit bus groups presented the highest NRP 

among the RNG-powered applications.  

 

Annual NRP in kg/year/vehicle can differ by a total of the active period of the subject 

vehicles, and vocational NGVs can have different annual VMT due to their operational schedule 

and conditions. Lifetime NRP (LNRP) was estimated under various project life assumptions and 

presented in Table 7.3 and Table 7.4.  
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Figure 7.1. Annual NOx emission reduction potential of the HD NGVs 
 
Table 7.3. Annual and lifetime NOx emission reduction potentials under 10- and 15-years 
project life assumptions 

Project life 1 year 10 years 15 years 

NRP scenario 
(NOx emission reduction 

potential) 

CNG 
ANRP 

CNG & 
Low 
NOx 

ANRP 

RNG 
ANRP 

RNG & 
Low 
NOx 

ANRP 

CNG 
LNRP 

CNG & 
Low 
NOx 

LNRP 

RNG 
LNRP 

RNG & 
Low 
NOx 

LNRP 

CNG 
LNRP 

CNG & 
Low 
NOx 

LNRP 

RNG 
LNRP 

RNG & 
Low 
NOx 

LNRP 
Vehicle group / Unit (kg/year/veh) (kg/10years/veh) (kg/15yrs/veh) 

Urban transit buses (UTB) 19.2 27.0 30.6 38.3 192.5 270.0 306.0 383.5 288.7 405.0 458.9 575.2 

School buses (SCHB) 7.0 10.5 12.1 15.7 69.5 104.8 121.3 156.6 104.3 157.2 182.0 234.9 

Refuse trucks (RFT) 11.6 16.6 24.6 29.6 115.8 165.7 245.8 295.7 173.7 248.5 368.8 443.6 

Long-haul trucks (LHT) 4.8 9.6 12.3 17.1 48.3 96.0 123.4 171.1 72.4 143.9 185.1 256.6 

Short-haul trucks – 8.9 
liter (SHT8.9) 10.0 11.9 21.0 22.9 99.9 118.7 210.4 229.2 149.8 178.0 315.6 343.8 

Short-haul trucks – 11.9 
liter (SHT11.9) -3.1 12.7 16.3 32.1 -31.2 127.1 163.0 321.3 -46.7 190.6 244.6 481.9 

Dairy reefer trucks (DRT) 11.9 11.9 29.6 29.6 119.0 119.0 295.9 295.9 178.5 178.5 443.9 443.9 

Water district vocational 
trucks (WTVT) 5.7 7.3 8.7 10.3 56.7 72.9 86.6 102.9 85.0 109.4 129.9 154.3 

 
Figure 7.2 shows lifetime NOx emission reduction potential which was calculated based 

on activity data VMT. LNRP presented slightly different trends compared to ANRP. Waste 

collection vehicle groups showed outstanding lifetime NRP among the vehicle groups, followed 

by transit bus and short-haul truck groups in the CNG, CNG-low NOx, and RNG-low NOx 

scenarios. 
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Figure 7.2. Lifetime NOx emission reduction potential of the HD NGVs 
 
Table 7.4. lifetime NOx emission reduction potentials under activity data VMT and survey 
VMT based project life assumptions 

Project life Activity data VMT based project life Survey VMT based project life 

Vehicle group 
CNG 
LNRP 

CNG & Low 
NOx 

LNRP 

RNG 
LNRP 

RNG & Low 
NOx 

LNRP 

CNG 
LNRP 

CNG & Low 
NOx 

LNRP 

RNG 
LNRP 

RNG & Low 
NOx 

LNRP 
(kg/ABPL/veh) (kg/SBPL/veh) 

Urban transit buses (UTB) 134.75 188.99 214.18 268.42 96.2 135.0 153.0 191.7 

School buses (SCHB) 62.57 94.32 109.21 140.96 69.5 104.8 121.3 156.6 

Refuse trucks (RFT) 162.10 231.95 344.18 414.03 138.9 198.8 295.0 354.9 

Long-haul trucks (LHT) 53.10 105.56 135.73 188.19 24.1 48.0 61.7 85.5 

Short-haul trucks – 8.9 liter 
(SHT8.9) 79.91 94.94 168.33 183.36 40.0 47.5 84.2 91.7 

Short-haul trucks – 11.9 liter 
(SHT11.9) -9.35 38.12 48.91 96.38 -6.2 25.4 32.6 64.3 

Dairy reefer trucks (DRT) 71.41 71.41 177.55 177.55 47.6 47.6 118.4 118.4 

Water district vocational trucks 
(WTVT) 84.99 109.40 129.88 154.29 45.3 58.3 69.3 82.3 

 
 

The proposed evaluation framework can determine the most incentive-effective vocation 

types in terms of NOx emission reduction. With a limited amount of funding, the incentive policy 

should be designed to maximize the incentive impact, which aims to contribute to the state’s 
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emission abatement goals. The incentivization effect was calculated based on NOx reduction 

because reducing the regulated pollutant species is the primary purpose of NGV adoption.  

7.4 Environmental Incentive Effectiveness Index (EI2)  

The Environmental Incentive Effectiveness Index (EI2) aims to assess the NRP of the NGVs in the 

financial perspective. EI2 is an indicator of the effectiveness of an incentive project and defined as 

the reduced NOx emissions in grams for the estimated lifespan of the vehicles over the granted 

incentive value as calculated by using Equation 8. The subject vehicles are heavy-duty class 

vehicles that weigh 33,000 lbs. or greater and eligible for $25,000 from the Natural Gas Vehicle 

Incentive Project (NGVIP) of the California Energy Commission. The California Hybrid and Zero-

Emission Truck and Bus Voucher Incentive Project (HVIP) also provides $40,000 to some of the 

qualified heavy-duty refuse and transfer NGVs which are equipped with low NOx engine and 

expected to replace diesel vehicles. From 2019 and later adoption, HVIP offers $45,000 per 

vehicle.  

 

The $1 billion California Proposition 1B: Goods Movement Emission Reduction Program 

(13)(109) also provides monetary incentives up to $200,000 for heavy heavy-duty trucks operated 

on California’s trade corridors (14). Equation 8 shows the process of EI2 calculation per vehicle 

group. Table 7.5 shows the EI2 of each vehicle group based on two incentivization scenarios. The 

street sweeper’s operation was mainly focused on a sweeping activity in a boundary of a college 

campus. As a result, it had a low annual mileage compared to the other vehicle types; therefore, 

the vehicle showed the same value of EI2 for the considered project life assumptions. 
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𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙	𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒	𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	𝑖𝑛𝑑𝑒𝑥ª«´ = 𝐿𝑁𝑅𝑃«´,f°* ÷ 𝑇𝐼𝑁𝐺«´                         (8) 

- 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙	𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒	𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠	𝑖𝑛𝑑𝑒𝑥ª«´ =

𝐷𝑜𝑙𝑙𝑎𝑟	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝑟𝑒𝑑𝑢𝑐𝑒𝑑	𝑔𝑟𝑎𝑚𝑠	𝑜𝑓	𝑁𝑂𝑥	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	 

- 𝑇𝐼𝑁𝐺«´ = The amount of total incentive granted for NGVIP 𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑔𝑟𝑜𝑢𝑝	𝑉𝐺	
 
 
Table 7.5. Environmental Incentive Effectiveness Index (EI2) with 10 years and 15 years 
project life assumptions (g/$) 

Project life 10 years Activity data VMT based project life 

Vehicle group 

Total CNG 
EI2  

Total CNG & 
Low NOx EI2  

Total RNG 
EI2 

Total RNG & 
Low NOx EI2 

Total CNG 
EI2 

Total CNG & 
Low NOx EI2 

Total RNG 
EI2 

Total RNG & 
Low NOx EI2 

(g/$) 

Urban transit buses (UTB) 7.70 10.80 12.24 15.34 11.55 16.20 18.36 23.01 

School buses (SCHB) 2.78 4.19 4.85 6.26 4.17 6.29 7.28 9.40 

Refuse trucks (RFT) 4.63 6.63 9.83 11.83 6.95 9.94 14.75 17.74 

Long-haul trucks (LHT) 1.93 3.84 4.94 6.84 2.90 5.76 7.40 10.26 

Short-haul trucks – 8.9 liter 
(SHT8.9) 1.54 1.83 3.24 3.53 5.99 7.12 12.62 13.75 

Short-haul trucks – 11.9 liter 
(SHT11.9) -0.35 1.41 1.81 3.57 -1.87 7.62 9.78 19.28 

Dairy reefer trucks (DRT) 0.95 0.95 2.37 2.37 7.14 7.14 17.76 17.76 

Water district vocational 
trucks (WTVT) 2.27 2.92 3.46 4.11 3.40 4.38 5.20 6.17 

 

Table 7.6. Environmental Incentive Effectiveness Index (EI2) with ABPL and SBPL project 
life assumptions (g/$) 

Project life Activity data VMT based project life Survey data VMT based project life 

Vehicle group 

Total CNG 
EI2  

Total CNG & 
Low NOx EI2  

Total RNG 
EI2 

Total RNG & 
Low NOx EI2 

Total CNG 
EI2 

Total CNG & 
Low NOx EI2 

Total RNG 
EI2 

Total RNG & 
Low NOx EI2 

(g/$) 

Urban transit buses (UTB) 5.39 7.56 8.57 10.74 3.85 5.40 6.12 7.67 

School buses (SCHB) 2.50 3.77 4.37 5.64 2.78 4.19 4.85 6.26 

Refuse trucks (RFT) 6.48 9.28 13.77 16.56 5.56 7.95 11.80 14.20 

Long-haul trucks (LHT) 2.12 4.22 5.43 7.53 0.97 1.92 2.47 3.42 

Short-haul trucks – 8.9 liter 
(SHT8.9) 3.20 3.80 6.73 7.33 0.61 0.73 1.29 1.41 

Short-haul trucks – 11.9 liter 
(SHT11.9) -0.37 1.52 1.96 3.86 -0.07 0.28 0.36 0.71 

Dairy reefer trucks (DRT) 2.86 2.86 7.10 7.10 0.38 0.38 0.95 0.95 

Water district vocational 
trucks (WTVT) 3.40 4.38 5.20 6.17 1.81 2.33 2.77 3.29 
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Refuse trucks showed that the highest EI2 followed by transit buses and 8.9L engine short-

haul trucks in ABPL and SBPL scenarios. The average EI2of all vocation type was respectively 

58%, 57%, and 61% lower than the refuse trucks’ EI2 in CNG, CNG-Low NOx engine, and RNG-

low NOx engine scenarios. Hauling truck groups except for short-haul 8.9L NGVs provided 

substantially lower NOx emission benefits than waste and transit service NGVs. As shown in 

Table 7.5, the refuse and hauling service truck groups had considerable gaps in EI2. In particular, 

RNG fuel pathway scenarios presented more distinct results between the considered vehicle 

groups, as shown in Figure 7.3. 

 

 
Figure 7.3. Activity data VMT based lifetime NOx EI2 (g/USD) 
 
 

According to the LNRP and EI2 values of the NGVs, the large EI2 value groups can be a 

crucial factor in the design of vehicle incentive programs. If a government agency can allocate 

more funding to specific vocation types, the vehicle incentive programs can achieve the emission 

reduction goals time- and cost-efficiently with the same amount of budget. As shown in the DMC 

analysis results, the two top EI2 groups, refuse trucks and transit buses, were likely to experience 

dynamically changing traffic conditions and conducted more stop-and-go driving patterns than the 
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other groups. Low-speed and high-engine-demand driving patterns, such as creeping and transient, 

exhibit higher emission rates (102-104). Moreover, these NGV types were being operated in the 

vicinity of residential areas so that the environmental benefits will be more effective in terms of 

exposure rate.  

 

 
Figure 7.4. Survey VMT based lifetime NOx EI2 (g/USD) 

 

The water district vocational truck group showed similar annual NOx reduction potential 

with hauling truck groups in Figure 8.1 and Figure 8.2. However, EI2 indicated that the truck group 

showed significantly higher incentive-effectiveness than the haulers in all scenarios. 8.9L Short-

haul and water district vocational trucks had slightly higher EI2 values than school buses in the 

ABPL scenario, while the SBPL scenario showed that the school bus group provides significantly 

higher EI2 than those truck groups. 
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7.5 Variations of difference of environmental benefits between refuse trucks 

and other vocation types 

A series of comparative analyses in this study determined the best fuel pathways and vehicle 

applications based on various evaluation metrics. Table 7.6 shows the percentage change of 

evaluation metrics between refuse trucks and the other vocation types in the low NOx CNG engine 

scenario. This study explored whether the difference is consistent in the successive analyses 

presented in the WTW cycle and incentive impact analysis sections. Percentage error always have 

positive values; therefore, it is limited to show which vocation type has lower environmental 

impacts than the other. Therefore, this study used percentage change and negative percentage value 

in Table 7.6 indicates that the vocation type has lower value than refuse trucks. For the pump-to-

wheel cycle, NOx emission rates of hauling trucks were 76% lower than that of refuse trucks. It 

means hauling trucks offer significantly higher emission benefits in terms of vehicle cycle 

emissions. Unlike PTW, WTW emission rates and ANP values, high ANRP and EI2 values indicate 

high environmental benefits. Refuse trucks provided the highest EI2 value, while transit buses had 

the 63% higher ANRP than refuse trucks.  

 
Table 7.7. Ranked fuel pathway and vehicle application scenarios by each weight scenario  

Metric PTW NOx emission 
rate 

WTW NOx 
emission rate 

Annual NOx 
emission projection 

(ANP) 

Annual NOx 
emission reduction 
potential (ANRP) 

Environmental 
incentive 

effectiveness index 
(EI2) 

Unit gram per mile gram per mile gram per year per 
vehicle 

gram per year per 
vehicle gram per U.S. dollar 

Urban transit bus -25% -38% 24% 63% -18% 

School bus -63% -69% -48% -37% -59% 

Hauling trucks -76% -68% -31% -33% -80% 

Vocational trucks 42% 11% -67% -56% -53% 
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Compared with the gaps in the PTW cycle, the difference between refuse trucks and the 

vocational truck group in the WTW cycle was reduced, while other vocation types showed similar 

values between the two cycles. The annual NOx emission projection considered the duty cycle 

information of each vocational vehicles. Therefore, the differences in annual emissions showed 

apparent inconsistency with the assessments of the g/mile-based NOx emission estimates in PTW 

and WTW cycles. The resulting environmental impact of the vocational truck groups became 

lower than refuse trucks, while the urban transit bus group showed higher annual NOx emissions 

compared to the refuse truck group.  

ANRP indicated the estimated NOx reductions of NGV operations compared to diesel 

counterparts. The urban transit bus group showed significantly higher NOx reduction potential 

than refuse trucks, while the other vocation types remain relatively similar in value. In terms of 

annual NOx reduction contribution, urban transit buses can be regarded as the most crucial 

promising player in the emission abatement plans.  

EI2 reflected financial incentive impacts in addition to the LNRP. The refuse truck group 

was not the most environmentally friendly vocation type according to the results of PTW and 

WTW cycle analyses and duty cycle information-specific annual emissions projections. However, 

the refuse truck group became the most incentive-effective vocation type considering the total fuel 

cycle, duty cycle information, and granted incentive values. This result implies that properly 

defined metrics should be used in comparisons of the emission characteristics between various 

vehicle and fuel types.  
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7.6 Summary  

Emission rates in grams per mile or seconds are limited to explain the entire environmental impacts 

of NGV adoption because vocational HD NGVs have different operational conditions and duty 

cycles which cause different lifetime emissions. In this chapter, the lifecycle NOx and CO2 

emissions of the fuel pathways were extrapolated to annual NOx and CO2 emission projections by 

referring to the surveyed duty cycle information of the subject NGVs. Then, this study predicted 

the lifetime NOx emission reduction potential of the NGVs compared to diesel counterpart 

scenarios. 

 

The Environmental Incentive Effectiveness Index (EI2) is an indicator of the effectiveness 

of the NGV incentive project and was defined as the reduced NOx emissions in grams for the 

estimated lifespan of the vehicles over the granted incentive value. Refuse trucks showed that the 

highest EI2 followed by transit buses and 8.9L engine short-haul trucks. The average EI2 of all 

vocation type was respectively 58%, 57%, and 61% lower than the refuse trucks’ EI2 in CNG, 

CNG-Low NOx engine, and RNG-low NOx engine scenarios. Hauling truck groups except for 

short-haul 8.9L NGVs provided substantially lower NOx emission benefits than waste and transit 

service NGVs. The water district vocational truck group showed similar annual NOx reduction 

potential with hauling truck groups. However, EI2 indicated that the truck group showed 

significantly higher incentive-effectiveness than the haulers in all scenarios.  

 
According to the LNRP and EI2 values of the NGVs, the large EI2 value groups can be a 

crucial factor in the design of vehicle incentive programs. If a government agency can allocate 

more funding to specific vocation types, the vehicle incentive programs can achieve the emission 

reduction goals time- and cost-efficiently with the same amount of budget. 
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Chapter 8 Prioritization of fuel pathways using multi-criteria 

decision-making analysis  

It is not difficult to access general information on natural gas vehicles, such as the Environmental 

Protection Agency (EPA) certified fuel economy, engine performance, vehicle weight, and price. 

However, the expectation of new customers based on this well-known and wide-spread general 

information will often be out of the ballpark from in-use experiences. This is because commercial 

HDV types have different operational and emission characteristics depending on the operating 

conditions, such as vocation type, working schedule, geographical, and road conditions. In 

addition, prospective customers may be wondering which fuel and vehicle types are adequate for 

their business type. 

 

If government agencies, policy-makers, legislators and researchers can access to more 

specific information regarding the adoption benefits of alternative fuel vehicles (AFVs), they will 

be more likely to make bold decisions for AFV adoption and to create reciprocal incentive policies. 

The gap between willingness of people to purchase NGVs and the corresponding cost will likely 

decrease if an emphasis is placed on the environmental friendliness of natural gas vehicles (NGVs), 

if more information about the advantages and disadvantages of these vehicles, and if customers 

have an accessibility to more specific and detail information and insight on their operating patterns. 

Furthermore, emerging new alternative fuel, drivetrain, and emission control technologies allow 

customers more choices, and government agencies have to make amendments to emission 

abatement strategies that consider the new technologies.  
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The WTW analysis results showed that the rank order of the considered fuel pathways 

could differ by an emission species that the analysis focuses on. Therefore, this study adopted 

multi-criteria decision making (MCDM) techniques, which are gaining popularity in energy 

selection problem studies (81-83). MCDM is known as an evaluation technique that compares 

available alternatives with various qualitative and quantitative criteria to find the best choice or 

strategy in the given situation (110). This study used the TOPSIS (Technique for Order Preference 

by Similarity to Ideal Solution) to evaluate the considered scenarios. The detailed steps of TOPSIS 

are explained in the previous studies (81-83)(110). The criteria used in the analysis included not 

only fuel and vehicle cycle emission factors but also a newly developed environmental incentive 

effectiveness index (EI2).  

 

The decision analysis method considered three types of criteria, including impacts of 

environmental and operational characteristics and incentivization. The environmental impact 

criteria consisted of fuel and vehicle cycle NOx and CO2 emission rates. The operational 

characteristic factor was low-speed operation DMC, which is a driving pattern-related feature. The 

incentive effectiveness factor was LNRP over incentive value granted which is expressed in grams 

per dollar.  

 

Weighing criteria is the most critical component in decision analysis. A criteria weight 

vector indicated the importance of each criterion in the analysis, and each fuel pathway and 

vocation type scenario had a different rank order depending on the weight vector used in the 

analysis. This study presumed that the importance of the considered criteria could differ by region 

or local conditions. For instance, urban areas where vehicles exhibit many stop-and-go driving 
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patterns will show higher regulated pollutant concentrations than rural areas. Such an air quality 

impact analysis for urban areas could put more weight on the regulated air pollutants than neither 

incentive effect nor GHG emissions. On the other hand, an incentive policy designer will be 

interested in the sustainability and performance of the incentive program so incentive effectiveness 

can be the most crucial criterion. This study conducted scenario analyses with various weight value 

sets that represent different research interests. 

 

The vehicle groups were merged into similar vocation types, such as haulers, refuse trucks, 

transit buses, school buses, and vocational trucks. Fuel pathway variations were CNG, RNG, and 

diesel, while vehicle applications had default (DEF) engine and low NOx engine variations.  

8.1 Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

The TOPSIS involves the following seven steps.  

Step 1. Definition of analysis variables. A MCDM problem with m alternatives {𝐴§, 𝐴>, … , 𝐴x} 

which should be assessed by applying n criteria  {𝐶§, 𝐶>, … , 𝐶g} can be expressed by the decision 

matrix D. 

𝐷 =	¿
𝑥§§ ⋯ 𝑥§g
⋮ ⋱ ⋮

𝑥x§ ⋯ 𝑥xg
Ã 

 
𝑥fq  is numeric data which represents the value of the 𝑖#{  alternative with respect to the 𝑖#{ 

criterion. The importance (or weight) of the criterion 𝐶q to the decision is denoted by 𝑤q. A set of 

weights can be expressed as W = {𝑤§,𝑤>, … ,𝑤g} and satisfy 𝑤q > 0 and ∑ 𝑤q = 1g
qÅ§  where 𝑤q 

denotes the weight of the criteria 𝐶q.  
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Step 2. Normalization of the decision matrix. Given the decision matrix, the normalized value 

𝑦fq is calculated as  

𝑦fq =
𝑥fq

Æ∑ 𝑥fq>g
fÅ§

, i = 1,2, … ,m; 	j = 1,2, … , n. 

Step 3. Computation of the weighted normalized decision matrix.  

𝑧fq = 𝑤q𝑦fq, i = 1,2, … ,m; 	j = 1,2, … , n. 

Step 4. Determination of the positive ideal solution (PIS), 𝐴Ê(benefits), and the negative ideal 

solution (NIS).	𝐴4 (costs).  

𝐴Ê = (𝑃§Ê, 𝑃>Ê, … , 𝑃xÊ, ) 

𝐴4 = (𝑃§4, 𝑃>4, … , 𝑃x4, ) 

Where  

𝑃qÊ = (max
f
𝑃fq , j ∈ 𝐽§,minf 𝑃fq , j ∈ 𝐽>) 

𝑃q4 = (min
f
𝑃fq , j ∈ 𝐽§,maxf 𝑃fq , j ∈ 𝐽>) 

Where 𝐽§ and 𝐽> represent the set of benefit criteria and the set of cost criteria, respectively. 

 

Step 5. Calculation of Euclidean distances from the PIS, 𝐴Ê, and the NIS,	𝐴4 of each alternative 

𝐴q, respectively, as follows: 

𝑑fÊ = ÍÎ (𝑑fqÊ)>
g

qÅ§
 

𝑑f4 = ÍÎ (𝑑fq4)>
g

qÅ§
 

Where  

𝑑fqÊ = 𝑃qÊ −	𝑃fq, 𝑖 = 1,… ,𝑚 

𝑑fq4 = 𝑃q4 −	𝑃fq, 𝑖 = 1,… ,𝑚 
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Step 6. Calculation of the relative closeness 𝐶𝐶f for each alternative 𝐴f with respect to PIS as 

given by: 

𝐶𝐶f =
𝑑f4

𝑑fÊ + 𝑑f4
 

Here, 0 ≤ 𝐶𝐶f ≤ 1, i = 1,2, … ,m. 

𝐶𝐶f is also known as a composite performance score of an alternative 𝐴f. 

Step 7. Rank the alternatives according to the relative closeness. The best alternatives have 

higher value 𝐶𝐶f because the values are closer to the PIS than the other alternatives. 

8.2 Weight vector scenarios and analysis criteria 

This study conducted MCDM analyses for seven weight scenarios that have different weight 

distributions to the considered criteria shown in Table 8.1.  

 

Weight scenario 1 is to prioritize the alternatives with equally allocated weights, which 

means the importance of the criteria is equally treated. For scenario 2 to 7, this study added some 

variations in the weight vectors. The DMC analysis results exhibited that low-speed operations 

were highly correlated with high emission rates; therefore, weight scenario 2 included a driving 

pattern criterion, which is defined as the sum of low-speed driving mode durations. The low-speed 

driving mode durations included pattern durations of creeping, transient, and low-speed cruising 

modes. Weight scenario 3 and 5 mainly focused on life-cycle NOx and CO2 emission rates, 

respectively, while the scenario 4 and 6 were more balanced weight allocation than weight scenario 

3 and 5. 
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The Environmental incentive effectiveness index (EI2) was also included in the decision 

analysis, and it contributed to putting more weight on cost-effective vocation types. Since EI2 

considered environmental benefits for project life and lifecycle of the fuel types, it is expected to 

help decision-makers and policy-designers consider the sustainability and performance of 

incentive projects.  

 
Table 8.1. Weight vector scenarios  

Criteria 

WTP 
NOx 

emission  
rates  

PTW 
NOx 

emission  
rates 

WTP CO2 
emission  

rates  

PTW CO2 
emission  

rates 

Low-
speed 

operation 
DMC  

Incentive 
effectiveness 

index 
Note 

Weight 
scenario 1 20% 20% 20% 20% 0% 20% Equal weight allocation except for 

driving pattern criterion 

Weight 
scenario 2 15% 20% 15% 20% 15% 15% 

Including driving pattern criterion 
and more weights on PTW 
emissions 

Weight 
scenario 3 20% 40% 0% 0% 0% 40% Focusing on NOx emission rates 

and EI2 

Weight 
scenario 4 20% 40% 10% 10% 0% 20% Slightly more focusing on NOx 

rates than scenario 3 

Weight 
scenario 5 0% 0% 20% 40% 0% 40% Focusing on CO2 emission rates 

and EI2 

Weight 
scenario 6 10% 10% 20% 40% 0% 20% Slightly more focusing on CO2 

rates than scenario 5 

Weight 
scenario 7 15% 30% 10% 20% 5% 20% Arbitrarily allocated weight values 
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8.3 MCDM analysis results 

Table 8.2 shows the ranked fuel pathways, including vocation type and engine family 

configurations. Overall, RNG pathways were high-ranked, and diesel pathways were low-ranked. 

The ranking results showed that RNG-powered refuse truck scenarios are the best alternative, 

followed by RNG-powered transit bus scenarios. However, refuse trucks were not high-ranked in 

the CNG fuel pathway scenarios because CNG transit and school bus scenarios showed higher 

ranks than CNG-powered refuse truck scenarios. If the refuse truck type was diesel-powered, the 

vehicle type could be the lowest or the second lowest-ranked in all weight scenarios. The ranking 

results for weight scenario 2 presented the driving pattern criterion has an insignificant effect on 

the rank order in comparison to weight scenario 1.  

 

Diesel school bus scenarios were placed in the highest rank among the diesel scenarios 

except for weight scenario 3. For weight scenario 3, the diesel hauler scenario took the highest 

rank, followed by diesel school bus. Moreover, CNG-powered school bus pathways were also the 

highest-ranked scenarios among the CNG pathway scenarios. Diesel school bus scenarios were 

ranked higher than several CNG-powered applications, such as haulers and vocational trucks in 

most of the weight scenarios. This indicated that engine family and fuel pathway have significant 

effects on net environmental benefits of NGV operations.  
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Table 8.2. Ranked fuel pathway and vehicle application scenarios for each weight scenario  
Rank Weight  

scenario 1 
Weight  

scenario 2 
Weight  

scenario 3 
Weight  

scenario 4 
Weight  

scenario 5 
Weight  

scenario 6 
Weight  

scenario 7 

1 RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

RNG-Refuse 
truck-Low Nox 

2 RNG-Refuse 
truck-DEF 

RNG-Transit 
bus-Low Nox 

RNG-Refuse 
truck-DEF 

RNG-Transit 
bus-Low Nox 

RNG-Refuse 
truck-DEF 

RNG-Transit 
bus-Low Nox 

RNG-Transit 
bus-Low Nox 

3 RNG-Transit 
bus-Low Nox 

RNG-Refuse 
truck-DEF 

RNG-Transit 
bus-Low Nox 

RNG-Refuse 
truck-DEF 

RNG-Transit 
bus-Low Nox 

RNG-Refuse 
truck-DEF 

RNG-Refuse 
truck-DEF 

4 RNG-Transit 
bus-DEF 

RNG-Transit 
bus-DEF 

RNG-Transit 
bus-DEF 

RNG-School 
bus-Low Nox 

RNG-Transit 
bus-DEF 

RNG-Transit 
bus-DEF 

RNG-Transit 
bus-DEF 

5 RNG-Vocational 
truck-Low Nox 

RNG-Haulers-
Low Nox 

RNG-School 
bus-Low Nox 

RNG-Transit 
bus-DEF 

RNG-Vocational 
truck-Low Nox 

RNG-Haulers-
Low Nox 

RNG-School 
bus-Low Nox 

6 RNG-Vocational 
truck-DEF 

RNG-Vocational 
truck-Low Nox 

CNG-Transit 
bus-Low Nox 

RNG-Haulers-
Low Nox 

RNG-School 
bus-Low Nox 

RNG-Vocational 
truck-Low Nox 

RNG-Haulers-
Low Nox 

7 RNG-Haulers-
Low Nox 

RNG-School 
bus-Low Nox 

RNG-School 
bus-DEF 

RNG-School 
bus-DEF 

RNG-Vocational 
truck-DEF 

RNG-School 
bus-Low Nox 

RNG-School 
bus-DEF 

8 RNG-School 
bus-Low Nox 

RNG-Haulers-
DEF 

RNG-Haulers-
Low Nox 

RNG-Haulers-
DEF 

CNG-Transit 
bus-Low Nox 

RNG-Haulers-
DEF 

RNG-Haulers-
DEF 

9 RNG-Haulers-
DEF 

RNG-School 
bus-DEF 

CNG-School 
bus-Low Nox 

CNG-School 
bus-Low Nox 

RNG-School 
bus-DEF 

RNG-Vocational 
truck-DEF 

CNG-School 
bus-Low Nox 

10 RNG-School 
bus-DEF 

RNG-Vocational 
truck-DEF 

RNG-Vocational 
truck-Low Nox 

RNG-Vocational 
truck-Low Nox 

RNG-Haulers-
Low Nox 

RNG-School 
bus-DEF 

RNG-Vocational 
truck-Low Nox 

11 CNG-School 
bus-Low Nox 

CNG-School 
bus-Low Nox 

RNG-Haulers-
DEF 

CNG-School 
bus-DEF 

RNG-Haulers-
DEF 

CNG-School 
bus-Low Nox 

CNG-Transit 
bus-Low Nox 

12 CNG-School 
bus-DEF 

CNG-School 
bus-DEF 

CNG-Refuse 
truck-Low Nox 

CNG-Transit 
bus-Low Nox 

CNG-Refuse 
truck-Low Nox 

CNG-School 
bus-DEF 

CNG-School 
bus-DEF 

13 CNG-Transit 
bus-Low Nox 

CNG-Transit 
bus-Low Nox 

CNG-School 
bus-DEF 

CNG-Haulers-
Low Nox 

CNG-Transit 
bus-DEF 

CNG-Transit 
bus-Low Nox 

CNG-Haulers-
Low Nox 

14 DSL-School bus-
DEF 

CNG-Haulers-
Low Nox 

CNG-Transit 
bus-DEF 

CNG-Haulers-
DEF 

CNG-School 
bus-Low Nox 

CNG-Transit 
bus-DEF 

RNG-Vocational 
truck-DEF 

15 CNG-Haulers-
Low Nox 

DSL-School bus-
DEF 

CNG-Haulers-
Low Nox 

DSL-School bus-
DEF 

CNG-School 
bus-DEF 

CNG-Haulers-
DEF 

CNG-Haulers-
DEF 

16 CNG-Haulers-
DEF 

CNG-Haulers-
DEF 

RNG-Vocational 
truck-DEF 

DSL-Haulers-
DEF 

CNG-Haulers-
Low Nox 

CNG-Haulers-
Low Nox 

CNG-Transit 
bus-DEF 

17 DSL-Haulers-
DEF 

DSL-Haulers-
DEF 

CNG-Haulers-
DEF 

RNG-Vocational 
truck-DEF 

CNG-Haulers-
DEF 

DSL-School bus-
DEF 

DSL-School bus-
DEF 

18 CNG-Transit 
bus-DEF 

CNG-Transit 
bus-DEF 

DSL-Haulers-
DEF 

CNG-Transit 
bus-DEF 

CNG-Refuse 
truck-DEF 

DSL-Haulers-
DEF 

DSL-Haulers-
DEF 

19 DSL-Transit bus-
DEF 

DSL-Transit bus-
DEF 

DSL-School bus-
DEF 

CNG-Refuse 
truck-Low Nox 

DSL-School bus-
DEF 

DSL-Transit bus-
DEF 

CNG-Refuse 
truck-Low Nox 

20 CNG-Refuse 
truck-Low Nox 

CNG-Refuse 
truck-Low Nox 

CNG-Refuse 
truck-DEF 

CNG-Vocational 
truck-Low Nox 

CNG-Vocational 
truck-Low Nox 

CNG-Refuse 
truck-Low Nox 

CNG-Vocational 
truck-Low Nox 

21 CNG-Vocational 
truck-Low Nox 

CNG-Vocational 
truck-Low Nox 

CNG-Vocational 
truck-Low Nox 

CNG-Refuse 
truck-DEF 

DSL-Haulers-
DEF 

CNG-Vocational 
truck-Low Nox 

CNG-Refuse 
truck-DEF 

22 CNG-Vocational 
truck-DEF 

CNG-Vocational 
truck-DEF 

CNG-Vocational 
truck-DEF 

DSL-Transit bus-
DEF 

DSL-Transit bus-
DEF 

CNG-Vocational 
truck-DEF 

DSL-Transit bus-
DEF 

23 CNG-Refuse 
truck-DEF 

CNG-Refuse 
truck-DEF 

DSL-Transit bus-
DEF 

CNG-Vocational 
truck-DEF 

CNG-Vocational 
truck-DEF 

CNG-Refuse 
truck-DEF 

CNG-Vocational 
truck-DEF 

24 DSL-Vocational 
truck-DEF 

DSL-Vocational 
truck-DEF 

DSL-Refuse 
truck-DEF 

DSL-Refuse 
truck-DEF 

DSL-Vocational 
truck-DEF 

DSL-Vocational 
truck-DEF 

DSL-Refuse 
truck-DEF 

25 DSL-Refuse 
truck-DEF 

DSL-Refuse 
truck-DEF 

DSL-Vocational 
truck-DEF 

DSL-Vocational 
truck-DEF 

DSL-Refuse 
truck-DEF 

DSL-Refuse 
truck-DEF 

DSL-Vocational 
truck-DEF 
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As shown in the EI2 analysis results, refuse trucks, transit buses, and sewer trucks had 

substantial NOx emissions reduction potential for the project life. The MCDM analysis also 

demonstrated that refuse truck and transit bus types are the vehicle groups that can provide the 

highest returns with the same amount of financial incentive. Refuse trucks and transit buses 

conducted a number of stop-and-go driving patterns, and it caused higher power consumption in 

unit time and distance. Thus, if these vehicle types are converted to cleaner fuel type vehicles, the 

replacement effect can be significant compared to other vocation types. 

8.4 Summary  

The WTW analysis results showed that the rank order of the fuel pathways could differ by an 

emission species that the analysis focuses on. This study adopted a multi-criteria decision making 

(MCDM) technique, TOPSIS, to prioritize the alternatives according to the weight vector 

scenarios.  

 

 RNG-powered vehicle applications were generally high-ranked, while diesel-powered 

vehicle pathways were low-ranked. RNG-powered refuse truck scenarios were the best alternative, 

followed by RNG-powered transit bus scenarios. However, refuse trucks were not high-ranked in 

the CNG fuel pathway scenarios because CNG transit and school bus scenarios showed higher 

ranks than CNG refuse scenarios. If the refuse truck type was diesel-powered, the vehicle type 

could be the lowest or the second lowest-ranked in all weight scenarios. 

 

Diesel school bus scenarios were placed in the highest rank among the diesel scenarios 

except for weight scenario 3. For weight scenario 3, the diesel hauler scenario took the highest 
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rank, followed by diesel school bus. Moreover, CNG-powered school bus pathways were also the 

highest-ranked scenarios among the CNG pathway scenarios. Diesel school bus scenarios were 

ranked higher than several CNG-powered applications, such as haulers and vocational trucks in 

most of the weight scenarios. This indicated that engine family and fuel pathway have significant 

effects on net environmental benefits of NGV operations. If the high-ranked pathways are 

converted to cleaner fuel type vehicles, the replacement effect can be significant compared to other 

vocation types. 
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Chapter 9 Conclusion and Future research 

9.1 Conclusion 

Vehicular emissions are of great interest because they are one of the primary sources of air 

pollution. Compared to commonly used gas and diesel engines, natural gas engines have relatively 

lower emission rates while offering higher total cost of ownership. Federal and state governments 

have offered various monetary and policy incentives to promote alternative fuel vehicles (AFVs) 

that are expected to reduce greenhouse gases and criteria pollutants significantly. The vehicle 

incentives are often distributed based on vehicle weight and do not account for the environmental 

impacts of AFVs. This study recognized the research opportunity to improve incentive structures 

and policies.  

 

To improve the cost-effectiveness of vehicle incentive programs, this study assessed the 

adoption impact of various heavy-duty NGVs and predicted the emission reduction potential of 

the vehicle incentive programs. The environmental benefits of HD NGV operations were assessed 

by using in-use vehicle activity data and surveyed duty cycle information obtained from the 

proposed NGV use survey. The evaluation framework included fuel life-cycle assessments (LCA) 

and multi-criteria decision-making (MCDM) analyses; therefore, it was able to estimate lifecycle 

NOx and CO2 emissions of CNG, RNG, and diesel fuel pathways and compare the fuel pathways 

in multiple aspects, such as lifetime emission reduction potential, incentive effect index, and total 

fuel cycle emission rates.  

 



107	
	

This dissertation provided evidence that there is a causal relationship between operational 

characteristics and environmental impacts. The driving pattern analysis for various HD NGVs 

across a number of vocation types showed that each vocation type has discernable differences in 

its drive mode composition. Particularly, low-speed and high-engine-load driving patterns had a 

significant relationship with high environmental impacts in the unit of time. Moreover, vehicles 

with the same or similar vocation types from different regions showed analogous DMCs. This 

supported an argument that the vocational impact is an influential factor affecting vehicle activity 

patterns. If this pattern is consistent across the broader population, it implies that the vocation type 

is one of the influential factors determining vehicle activity and associated environmental impact. 

The observed heterogeneity in vehicle operation and NOx and CO2 emission factors per drive 

mode demonstrated that criteria pollutants and greenhouse gas emissions are also different among 

the considered vocation types.  

 

The well-to-pump (WTP) analysis results showed that methane-based fuel pathways 

could provide significant emission reductions in the fuel cycle compared to the conventional diesel 

pathway. In particular, the RNG pathway provided negative emission rates for WTP cycles, which 

means significantly positive environmental impacts. The well-to-wheel (WTW) analysis showed 

that WTP and pump-to-wheel (PTW) emissions exert discernible influences on total emission 

production for each fuel pathway. This implies that alternative and conventional fuels should be 

compared in the total fuel cycle to see their undistorted environmental impacts.  

 

The revealed relationships between vocation types, network characteristics, and resulting 

environmental impact of NGVs can potentially offer avenues for designing or improving current 
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public health-related policies with respect to HDV operations. The lifetime NOx emission 

reduction potential (LNRP) values of the refuse trucks were twice as high as the average LNRP of 

all vocation types. Refuse trucks showed that the highest EI2, followed by transit buses, and the 

average EI2 of all vocation type was approximately 58% lower than the refuse truck EI2 in all fuel 

pathway scenarios. The vocation type groups showed different EI2, and this suggests that incentive 

structures based upon gross vehicle weight (GVW) may not incentivize the most environmentally 

beneficial fueling options. Furthermore, some vocational vehicles can play a critical role in 

achieving the state’s emission abatement goals. The analysis result can be used to re-design the 

current incentive structure to focus on ‘the bang for the emission reduction (buck)’ vocation types.  

 

The environmental impacts of AFVs could differ by evaluation metrics used in the 

analyses. For example, the incentive effectiveness analysis results are not consistent with the 

WTW analysis results because of the different duty cycles and operational conditions of the NGV 

types. This study examined the percentage difference of various evaluation metrics between refuse 

trucks and other vocation types, such as PTW and WTW NOx rates, annual NOx projection, 

LNRP, and EI2. A series of analyses, which used different metrics, provided the different cleanest 

and dirtiest sets of fuel and vocation types. The findings implied that the evaluation metrics should 

be explicitly defined and properly selected to reflect emission characteristics of study vehicles.  

 

The MCDM analysis was conducted to compare given alternatives with multiple criteria 

and determine the best-investment-alternatives. The criteria included in the MCDM are lifecycle 

NOx and CO2 emission rates, low-speed driving mode distribution, and incentive effectiveness 
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index. The analysis results indicated that refuse truck and transit bus pathways are likely to achieve 

the highest return for the total incentives granted when the vehicles are RNG-powered.  

 

This dissertation focused on the improvement of incentive policy and structure, which can 

contribute to achieving societal emission reduction goals in a time- and cost-efficient way. The 

findings of this study can provide useful information to energy decision-makers and serve as a 

reference for energy policy design. By assessing the emission rates of criteria pollutants from 

various vocational trucks, it should be possible to identify the effects of vehicle vocation on 

emission production more closely. Such findings could help shape the incentive policy of AFVs 

to be more effectively targeted to vehicle vocations by analyzing their distinct duty cycles and 

identifying the best matches between the available technologies to achieve societal goals. 

9.2 Dissertation Contributions  

This dissertation proposed the following unique academic contributions.  

- Natural gas and diesel fuel pathways were evaluated by a novel evaluation framework that 

integrates a variety of analytic research works, such as total fuel cycle analysis, driving 

pattern analysis, vehicular NOx and CO2 emission estimations, incentive impact analysis, 

and multi-criteria decision-making (MCDM) analysis. The assessment framework suggest 

not only a new incentive structure that maximizes total emission reductions of HD NGV 

adoption, but also a decision-making tool that effectively compares various fuel pathways 

in multiple aspects. The tool can be used by government agencies, policymakers, 

legislators, and researchers who are involved with the design and assessment of vehicle 

incentive projects.  
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- This study investigated the vocational impact on heavy-duty natural gas vehicle activity 

patterns. Driving pattern analysis showed the heterogeneity of operational characteristics 

of various HD NGV types. The resulting drive mode composition (DMC) demonstrated 

that vocational impact is significant in heavy-duty natural gas vehicle activity patterns, and 

it resulted in different emission characteristics for each vocation type. Each vocation type 

had predominant driving modes over its driving cycle. DMCs by road facility type showed 

the relationship between road type and operational characteristics. The proposed DMC 

analysis method could be used to understand the operational characteristics of new 

vocation type vehicles and predict its environmental impacts.  

- The estimated environmental benefits were derived from total fuel cycle analyses and used 

to predict lifetime emission reduction potential based on the in-use operating conditions. 

AFV adoption impacts should be assessed by considering lifecycle emissions because 

vehicle cycle emission rates were insufficient to explain the entire environmental impacts 

of AFV adoption (16-22). This study used various project life values obtained from 

surveyed duty cycle information and vehicle activity data obtained via the J1939/OBD-II 

CAN bus protocol, rather than assuming homogeneous project life per vocation type. 

- Environmental Incentive Effectiveness Index (EI2) analysis demonstrated the 

determination of the best policy targets in the market based on the recognized operational 

characteristics. The revealed cost-effective vocation types are expected to play a crucial 

role in the alternative fuel vehicle incentive programs. Compared to the current incentive 

structure, the suggested incentivization strategy can achieve more emission reductions with 

the same amount of monetary incentives.  
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- The proposed emission model was able to estimate the NOx and CO2 emission inventories 

of all internal combustion engine families in the market because the method relied on 

engine control units (ECUs) data and the emission factors provided by the engine 

certification program. Therefore, this study was able to estimate the environmental impacts 

of a variety of vocation types and provide more accurate emission estimates than the GPS- 

and vehicle speed-based emission models. 

9.3 Future research  

The evaluation framework was designed to be readily transferable to environmental benefit 

assessments of other alternative fuel vehicles or vocation types. It can be used to evaluate the 

suitability of newly introduced alternative fuel vocational trucks based on given operational 

conditions and vehicle specifications. It means that the evaluation framework is not necessarily 

limited to natural gas, though further research is necessary. Rapidly growing electric and hybrid 

vehicle markets show that numerous prospective clean vehicle users are looking for an 

environmentally friendly vehicle as a next car. Although this study focused on commercial vehicle 

activity, the proposed analysis framework fits perfectly in the needs of prospective customers who 

want to know that their driving cycle is suitable for zero-emission vehicles. The predominant 

driving modes over the personal driving cycle will help understand future benefits and costs of 

alternative fuel vehicle adoption.  

 

Another research opportunity extended from this study is vehicular emission modeling 

based on vocational vehicle activity and network characteristics. Rosqvist (15), Brundell-Freij and 

Ericsson (38) assessed influences of network characteristics on emissions using a linear regression 
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method. Borisboonsomsin and Barth (27) investigated the impact of road grade on CO2 emission 

and fuel consumption. Based on previous research, subsequent studies from this research work can 

find other relevant and influential factors affecting driving mode composition and emissions. The 

DMCs, facility trip information, and related emission characteristics can be used to predict future 

NOx emissions and identifying NOx-intensive driving segments. The model can contribute to 

design pollutant intensity-based geofencing strategies, such as in highly polluted areas or children 

protection zones. 

NOx reduction is the main reason for the NGV adoption program. The estimated incentive 

impact in this study is limited to explain the full environmental benefits of the NGV adoption in 

the real world because the proposed evaluation framework considered NOx and CO2 reductions 

only. Better emission modeling can provide more detailed and specific air quality impacts of AFV 

adoption. In-use emission data collected by using Portable Emission Measurement System (PEMS) 

can be an excellent way to improve the accuracy of estimates of a variety of criteria pollutant 

species and GHG emission inventories. Due to the limited budget and time, it, however, is 

impossible to measure all kinds of emission rates of varying vehicle types associated with various 

engine types, fuel types, model years, so forth. Conversely, macroscopic emission models estimate 

emission inventory based on VMT. This study tackled the limitation of VMT-based emission rates 

(grams/mile) that emissions can differ by operational characteristics and DMC. For these reasons, 

it was very worth putting more research efforts into developing a more accurate emission 

estimation model.  
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APPENDIX A: Survey Questionnaire Sample  

 
 

 

 
2019 CALIFORNIA NATURAL GAS 

VEHICLE USE SURVEY  
	

The Natural Gas Vehicle Use Survey (NGVUS) is part of the Natural Gas Vehicle Incentive Project 
(NGVIP) in California. The purpose of the NGVUS is to obtain recent data on the operational 
characteristics of natural gas vehicles in California. The results of this survey will be used to 
provide necessary inputs for improving our understanding of the environmental impacts of natural 
gas vehicle adoption. 
 
The survey is being conducted in conjuction with a provided in-
vehicle in-vehicle data logger. Please note that the logger ID of this 
survey sheet must be matched with the ID written on the top of the 
provided logger.  After the data collection period, please return this 
survey sheet and the logger to the Institute of Transportation 
Studies at University of California, Irvine. Please read the provided 
introductory letter before taking this survey.  
 
Respondent privacy is of our utmost concern. All information collected will be held in strict 
confidentiality and be used only to obtain recent data on the operational characteristics of 
natural gas vehicles operating in California.  

 

☺ START HERE 
 
• Please indicate the date this 

survey is completed. 
     

____ / ____ / _____  

MM  /  DD  /  YYYY 
 

 
• Use blue or black ink or pencil 
• Please center numbers in their respective boxes 
   Example:   

0 1 2 3 4 5 6 7 8 9 A B 
 

▶ Survey ID  

7 0 0 1 

▶ All of the following questions refer to the NGVIP-incentivized vehicle specified in the table below. 
Each survey answer sheet and the collected data will be identified based on the given logger ID. 

 

Logger ID 
Vehicle Identification Number 

(Last 6 Digits) 
Odometer reading  

(ex) 118,625) 

1540  START: ________ / END: ________  

Engine Serial Number  
(ESN) 

Vehicle Model / Manufacturer  
(e.g., ACX64 / Autocar) 

Surveyee’s title 
(ex) Shop manager or fleet manager 

 /  
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