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ASYMPTOTIC ROBUSTNESS IN 
MULTIPLE GROUP LINEAR-LATENT 

VARIABLE MODELS 

ALBERT SATORRA 
Universitat Pompeu Fabra 

Standard methods for analyzing linear-latent variable models rely on the assump- 
tion that the observed variables are normally distributed. Normality allows sta- 
tistical inferences to be carried out based solely on the first-and second-order 
moments. In general, inferences for nonnormally distributed data require the es- 
timates of matrices of third-and fourth-order moments. In the present paper, we 
show that inferences based on normal theory retain validity and asymptotic effi- 
ciency under general assumptions that allow for considerable departure from 
normality. In particular, we obtain conditions under which correct asymptotic 
inferences are attained when replacing a matrix of higher order moments by a 
matrix that depends only on cross-product moments of the data. 

1. INTRODUCTION 

Mean and covariance structure models are nowadays widely used in social, eco- 
nomic, and behavioral studies to analyze linear relationships among variables, 
some of which are unobservable (latent) or subject to measurement error. See 
Abowd and Card (1989), Aasness, Bi0rn, and Skjerpen (1993), and Behrman, 
Rosenzweig, and Taubman (1994) for recent applications of these models in 
econometrics; and, e.g., Anderson (1989) for covariance structure analysis of 
linear latent variable models. 

A common approach to moment structure analysis is based on minimum dis- 
tance (MD) methods, in which a structured vector o- = o- (i() of population mo- 
ments (usually first- and second-order moments) is fitted to the vector s of 
corresponding sample moments (Hansen, 1982; Chamberlain, 1982; Browne, 
1984; Abowd and Card, 1989). The asymptotic variance matrix 1, of \I7-s, 
where n is sample size, plays a fundamental role in designing an efficient MD 
analysis and in assessing the sampling variability of the statistics of interest. 
When the observed variables are normally distributed, 1s is a function of first- 
and second-order moments only; in the general case of nonnormal data, 1, in- 
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volves higher order moments of the observed variables. Here s is the (symmet- 
ric) vectorization of an augmented moment matrix, and the form of Fs under the 
normality assumption is denoted as [*. 

In the present paper we investigate conditions under which the replacement 
of F, by 17 (or simply by Ql, a matrix given in Section 3, which is a function of 
population cross-product moments only) gives asymptotically valid inferences 
when the data are nonnormal. By using a consistent estimator of Q1 instead of 
Fs, we avoid sample third- and fourth-order moments. Estimates of third- and 
fourth-order moments tend to be highly unstable in small samples, thus giving 
rise to small sample size distortions in the analysis (for recent investigations 
on small-sample properties of MD estimates in covariance structures, see, e.g., 
Altonji and Segal, 1996; and Clark, 1996). See also Horowitz (1998) for an 
alternative based on bootstrap methods. 

The validity of inferences based on the normality assumption when the data 
are not normally distributed has been called asymptotic robustness (Anderson, 
1987). Asymptotic robustness was investigated first in the context of factor analy- 
sis models (Anderson and Amemiya, 1988; Amemiya and Anderson, 1990; 
Browne, 1987) and then extended to a wider class of models and statistics (e.g., 
Browne and Shapiro, 1988; Anderson, 1989; Satorra and Bentler, 1990; Satorra 
and Neudecker, 1994). 

The present paper extends the work on asymptotic robustness in several as- 
pects. As in Satorra (1993), we consider asymptotic robustness in the general 
setting of multiple group analysis, where a common model is fitted to several 
independent samples (or groups), with model parameters possibly restricted to 
be equal across groups. Such an analysis allows us, among other possibilities, 
to investigate between-population differences of model parameters and to com- 
bine information from different samples. We also adopt Anderson and Amemiya's 
device of a Taylor series expansion around a sample dependent value of the pa- 
rameter vector. With this approach, we do not have to insist on finiteness of the 
matrix Fs and we can accommodate a latent component that can be assumed fixed 
(across hypothetical sample replications). We obtain results for models that struc- 
ture means and covariances of observable variables, encompassing a wide class 
of structural equation models that include regression with errors in variables, path 
analysis models, econometric simultaneous equation models, multivariate re- 
gression, models for panel data, etc. We address methods that can be imple- 
mented directly in standard computer software such as LISREL of Joreskog and 
Sorbom (1989), EQS of Bentler (1989), and the procedure CALIS in SAS (1990). 

The paper is organized as follows. Section 2 presents the model setup and 
describes a specific example. Section 3 describes general MD estimation and 
the (normal theory) NT approach. Section 4 presents the results on asymptotic 
robustness. Section 5 concludes. Proofs are confined to the Appendix. 

The following notation is used. For a symmetric matrix A, v(A) is the vec- 
tor obtained from vec(A) by eliminating the duplicated elements associated 
with the symmetry of A; D and D+ are matrices defined by the identities 
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vec(A) = Dv(A) and v(A) = D'vec(A), for a symmetric matrix A (Magnus 
and Neudecker, 1999). We use the standard notation (?7 I Ai for the direct sum 
of matrices (i.e., the block-diagonal matrix with blocks A1, A2, .. .,Am). Given 
a (vector) statistic a, we denote by Fa the asymptotic variance matrix of Wa, 
where n is the sample size associated with a. 

2. MODEL SETUP 

Let {Zgi: i = I.... f ng; g = 1,... . G} be multiple group data, where zgi is a pg X I 
vector of observable variables, i indexes individuals, and g indexes groups (note 
that we allow the dimension of zgi to vary with g). The samples {zgi}i are 
assumed to be mutually independent across g. Define the pg X pg matrix of 
(uncentered) sample cross-product moments Sg = (1/ng) g9zgiz'i and let 
s = (s,.. .,sG)', where sg v(Sg), be the overall p* X 1 vector of sample 
moments, where p* EG> I p* and pg = pg(pg + 1)/2. Let >g be the probabil- 
ity limit of Sg as ng -4 oo and let the p* X I vector o- = {(v(II))' ...., (v(IG))'}' 
be the probability limit of s. 

Assume the multivariate linear relation 
Lg 

Zgi - E 
-C=o 

Lg-l 

Ag0 6 Oi + AE1 A (f. + Ag(gLgisg=1 .,,() 

where the A(t) are pg X mge matrices of coefficient and the egei are mge X 1 
vector variables. The (gei, t = , . . , Lg, are of three types (fixed, distribution 
free, and normal), as depicted in (1) and implied by the conditions 

(a) the {1goi}i are fixed in repeated sampling, with 

1 ng 1 ng 
lim E goi = log and lim - (4gOi)gOi @(O) 

ngO+ o nnig i=1 fg?OO ng i=1 

for suitable mgo X 1 vector /-tOg and mgo X mgo matrix d(O) 
(b) the {fgei}i, f = l,...,Lg, are independent and identically distributed (i.i.d.) 

sequences of zero mean and (finite) mge X mgg variance matrices, Ve), with 
E(6'hi6'e1i) = 0, when h t f (i.e., uncorrelated). 

(c) the {egLgi}i are i.i.d. normal. 

In the models considered in the present paper, the A's and Vs depend on un- 
known parameters, and the aim is to carry out inferences about these parameters. 

The theory of the present paper also applies when the fixed and normal com- 
ponents are absent from (1); when egoi is absent, E(zig) = 0. Without loss of 
generality, to accommodate models that impose a structure on the means of 
observable variables in addition to the covariances, we let the first component 
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of zgi and egOi be the constant unit element (the first row of A" is then re- 
stricted accordingly). 

We write (1) in the compact form 

Zgj = Agg, g =1 .... ,G, (2) 

where 

A = (A(0) A() A(g)) 

and 

egi (C:oi, A:li,l .. * el *, YL 

are, respectively, a pg X mg matrix of coefficients and a mg X 1 vector variable, 
with mg f=omge. From (2), we obtain 

ig = A 4) gA'g g = 1, ........ , G, . (3) 

where (Fg is the probability limit of 

ng 

Qg = n- 1 5gi eg, (4) 

Note that 

' =()g f1 qge) 

as a result of the conditions (a) and (b) given previously. 
We assume the model implies (twice continuously differentiable) matrix- 

valued functions Ag Ag(r) and (j2(Lg) _p (DLg)(T), where z is a t* X I subvec- 
tor of the (t X 1) vector if of model parameters. Thus, using (3), we obtain the 
multiple group moment structure 

ig=,g(i0)q g =l,~...,IG, (5) 

where 1g9(C) = Ag(T)>)g(19)Ag(T)'. The matrix-valued functions (Ig(J) are as- 
sumed to be (twice continuously) differentiable. In a given model, (gi contains 
components of zgi (observed variables), unobservable variables such as mea- 
surement errors, disturbance terms of regression equations, latent factors, etc. 
Note that (5) can be expressed as o- = (ojr) where o-Q#) is (twice continu- 
ously) differentiable. We assume the model is identified in the sense that 0 6 
0* implies that o- (0) o- (O *). For further use, we define the Jacobian p8 X t 
matrix A dao-()/lai'. 

We now give a concrete example of this general model setup. 



MULTIPLE GROUP LATENT VARIABLE MODELS 301 

2.1. Model Example: Regression with Errors in Variables 

Consider the two-group regression model 

y = ? +Xg? +Vg, i = 1, ... g, (6) 
where for case i in group g (g = 1,2), y *. and xgi are the values of the response 
and explanatory variables, respectively, vgi is the value of the disturbance term, 
a is the intercept, and ,e is the regression coefficient. Instead of xgi we observe 
two variables x*ig and x<gi related to xgi by the following measurement-error 
equations: 

Jxlgi = Xgi + ugli 
x2gi= Xgi + Ug2i 

where ugli, Ug2i, vgi, and xgi are uncorrelated variables. Assume a common 
value for the variances of ugli and Ug2i, o-2 (the same across groups) and 
group varying variances for vgi and xgi, ?2 and o- 2 respectively. When the 
latent regressor is fixed (the so-called fixed x case), we assume the limits 
limn -O n 1~7 Eg I X ., g = 1, 2, are finite. 

The model given by equations (6) and (7) and associated assumptions is iden- 
tified (for a comprehensive overview of measurement-error models in regres- 
sion analysis, see Fuller, 1987). The analysis of this type of model is usually 
carried out under the assumption that the observable variables are normally dis- 
tributed; in the present paper, however, we are concerned with the validity of 
the NT approach when the latent regressor xgi and the disturbance terms vgi 
deviate from the normality assumption. This model has the form of (2) when 
we set 

10 1 \1 0 0 0 0 

Zgi Ugi , Ag - 0 1 0 1 0 

and 

Ig = E((gi ji) =diag(1, 2 2, 22, ,o ), (8) 

with 

# = (a, pS -U I V1 v X2^ 'V2) 

In the "fixed-x" case, egOi is (1, x'i)' and the nonnormal components are just 
vgi. When the latent regressor is random, 5goi is the constant unit element and 
the nonnormal components are vgi and xgi; in both cases, r = (a,/3, au2)', and 
the normal component (gL i is (ulg,U2g)'. 
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The issue we address in the present paper concerns the analysis of the mod- 
els described previously using MD methods (or equivalent maximum likeli- 
hood [ML] methods) that are based on the assumption that the zgi are i.i.d. 
normally distributed. It will be seen that NT statistics produces correct infer- 
ences despite violation of the normality assumption. For this example, it will 
be seen that NT gives correct inferences for estimates of T and for the chi- 
square goodness-of-fit test of the model, despite severe deviation from normal- 
ity of xgi and vgi. 

3. MD ANALYSIS 
Consider the MD estimator 
O = argmin,9O{s - o-(#)}' V{s - (je)}, (9) 

where V is a stochastic p8 X p* matrix with V - V, a positive definite matrix, 
and E) is a t-dimensional compact subset of f/t. The estimator iY is a general- 
ized method of moments (GMM) estimator (Hansen, 1982). Assume that i in 
(9) is unique for all s, the t X t matrix A'VA is nonsingular, and the true param- 
eter value 0i is in the interior of 0. 

In this setup, the standard asymptotic theory of MD estimation implies (see, 
e.g., Chamberlain, 1982) that A is consistent and asymptotically normal with 
variance matrix 

1 
avar('IV, Fs) - (AtVA)kA,vrs VA (A' VA)<, (10) 

n 
where n = n1 + ... + nG is the overall sample size and F, = avar(~Fs) is the 
p* X p* asymptotic variance matrix of the sample moments. When VF5V = V 
(alternatively, when F5VFs = 1S and A is in the column space of Fs) then (10) 
simplifies to 

avar(# V) = - (AVA). (11) 
n 

In this case, the corresponding MD estimator is asymptotically optimal within 
the class of MD estimators based on s (Hansen, 1982). When V is an identity 
matrix, we have the equally weighted MD estimator. 

Because the vectors sg are uncorrelated, we have Fs = =1 7,T 1 Fs, with 
.g = limn ,oo(ng/n). Let assume further that -frg > 0 for all g and that s - o-(A) 

and A are in the column space of F,, for all A and s. Under standard regularity 
conditions, the fourth-order moment matrix 

Fs = -1 E (dgi- sg) (dgi -sg) , 

where dgi = v(zgi Zi), is a consistent estimator of r,, and so 
A G n A 
Fs= ?ig=U - Fs (12) 

ng 
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is a consistent estimator of l7. The matrix 1, is called the asymptotic robust 
(AR) estimator of F,, to indicate that no specific distributional assumption is 
used. When in (10) we replace 1,, V, and A by their respective estimators Fs, V, 
and A, we obtain the so-called AR estimator of the variance matrix of A. 

A goodness-of-fit test statistic for the overall model is 

Tv=n(s - o)'A Al F1 )All (s - -), (13) 

where F, is the AR estimator of F, T = -(_(A), i0 is the MD estimator of A, and 
A1 is a consistent estimator of an orthogonal complement A, of A (i.e., A_L is a 
p* x (p* - G - t) matrix of full column rank, such that AlA A = 0). Note that A 
has G rows identical to zero as a result of the constant unit element of zgi (which 
gives a structural 1 in each vector sg). 

When we assume finiteness of the matrix 1s, then Tv is asymptotically chi- 
square distributed with 
r = rank{Al Fs iA,} (14) 

degrees of freedom (Browne, 1984; Newey, 1985). We call Tv the AR goodness- 
of-fit test statistic. 

Because estimators of higher order moments tend to be highly unstable in 
small samples, the use of Fs may lead to small sample size distortion of infer- 
ences, especially when Fs is involved in obtaining the optimal MD estimator. 
See Horowitz (1998) for a discussion of the small sample size distortions of 
the optimal MD estimator, with a proposal based on bootstrap methods for im- 
proving inferences in MD analysis of covariance structures. Third- and fourth- 
order sample moments are of course avoided when we assume that zgi is normally 
distributed. It is a matter of theoretical and practical interest whether the ap- 
proach based on normality remains valid with nonnormal data. Section 4, which 
follows, provides a theorem with results on this issue. First, however, we need 
to describe the NT approach. 

3.1. The NT Approach 
When the {Zgi} are assumed to be i.i.d. normal, i.e., under the NT assumption, 
then Fs equals (see, e.g., Satorra, 1993) 1s = Fs = fQ - Y, with 

G 1 Q = g - fig, with flg 2D+(Ig (i Vg)D+1, 
'TTg 

and 

Y =g 1Yg, with Yg2D + ([Lg ' () ?I( g fg)D+', 
' &=7T g y 

and /Utg = E(zgi), a pg X 1 vector. 
To define the NT-MD estimator, consider 

V * O rgVg*, with VgT =- D(E-1 ( 0 11)D 
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A 

and let (l and V* be the respective matrices Ql and V* with g9 and 19 substi- 
tuted by ng/n and Sg, respectively. MD estimation with V V* will be denoted 
as NT-MD. Note that V* = f-V. Because Vg* is a g-inverse of Fg*' (Satorra and 
Neudecker, 1993), we have that V* is a g-inverse of F*, 

F*V*F* = F* (15) 

Under NT, the asymptotic variance matrix (10) of the NT-MD estimator re- 
duces to (11) (we used that A is in the column space of F(* and (15)). The 
standard errors extracted from (11) will be called the NT standard errors. 

When NT holds and the zgi have zero mean, the goodness-of-fit test Tv of 
(13) is asymptotically equivalent to 

T7 = n (s - '' 1 ( A1-)L (S - ) (16) 

(Fs is just replaced by Ql) and, because (7 is nonsingular, 

7v n (s _ - \ AA(n 1 A)1 '1}(s - 

An alternative approach to NT-MD estimation is pseudo-maximum likeli- 
hood (PML), where the function to be minimized is an affine transformation of 
the log-likelihood function (under NT), 

G n, 
FNUO()f = E-[ logllg(U) I + trfSg1g(40)-' - logl Sg I- pg]. (17) g=1 n 

The minimizer of F{s, a- (9)} is a PML estimator (a closest moments estima- 
tor, in the notation of Newey, 1988). We note that the PML estimator is as- 
ymptotically equivalent to the NT-MD estimator, because the Hessian matrix 
(d2/adao-o')(')F(s,o-) evaluated at (s,oJ) = (-,) equals V* (Shapiro, 1986; 
Newey, 1986). An alternative PML goodness-of-fit test statistic is nF 
nF{s,o-(fYpML)}, where 4'9PML is the PML estimator and nF has the same as- 
ymptotic distribution as TV*. 

4. ASYMPTOTIC ROBUSTNESS 

4.1. I(ey Assumptions 

In this section we develop the assumptions needed for asymptotic robustness. 
First, however, we need to introduce basic matrices and vectors of sample and 
population moments. 

The matrix Qg of (4) has matrix blocks Qrt) n -1 g 1 6gri &'ti (mgr X mgt), 
0 ' r, t ' Lg. Set q = {(v(Ql))',.. .,(v(QG))'}', a m* X 1 vector, where m* 

9=1mM and m* = mg(mg + 1)/2, and let s = Sq, where g = ? -Iqg, a 
p* X m* matrix, with _D+(Ag Ag)D of dimension p* X m*. We de- 
compose Qg as Qg = Qg + Qg, with 
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(?__l Q(e) 0m ) (18) 

MLgXML,g 

(Q(f) Q$(e) and mL is the dimension of eL ) so that 

s - +~ ?:q, (19) 

where q {(v(I1))',...,(V(0G))'}' and q q - 4. Note that q involves no 
elements of the matrices Q(f), g = 1,... G, f = 0,... ,Lg_. Further, we can 
rewrite (19) as 

s - + -uu, (20) 

where 5u =R and qj = Rq is the mu X 1 vector 4 pruned from its structural 
o - 1 elements, with R an m* X mu matrix of O's and l's. From (18) and the 
presence of the unit component in (gOi, we have m* = EG 1 EL g-I 1). 

By taking the probability limit of (20), we obtain 

=0 b ? u (21) 

where b and /u are the probability limits of q and qu, respectively. Because 
7eg 1, . . . ,Lg, are assumed to be uncorrelated and of zero mean, it holds 

that Q(ht) 4 0 when h ? t, and thus b collects only structural O's and the 
nonredundant elements of the matrices -(Lg) = 1, ..., G. 

The following assumption ensures the elements of v(CFgf) (t 1,..., Lg -1, 
g = 1, ... , G) are unrestricted parameters of the model. 

Assumption A. 1 (Model Assumption, MA). The elements of /u are free pa- 
rameters of the model (i.e., we can write U = (r', 4h)'). 

From (21), A. 1 implies 

0-( '() =(T)>(T) + '.(T)SbU, (22) 

with o- (.) a (twice continuously differentiable) function of i. This parameter- 
ization of o7 yields the following partition: 

Al [A7 ], (23) 

with AT 3 ao(f)/3T'. It will be seen that this partition of A implies that the 
asymptotic distribution of statistics of interest (estimates of r and goodness-of- 
fit test statistics) depends only on the asymptotic distribution of q of (20) and 
not on qu. 

The next assumption imposes mutual independence (not only no correlation) 
among random constituents of the model. It will be required to ensure that the 
asymptotic distribution of q involves no higher order moments of the zgi (see 
Lemma 1 in the Appendix). 

Assumption A.2 (Independence Assumption, IA). The components ggli, 
fg2i, . . - IgLg are mutually independent (not only uncorrelated). 
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This assumption may be restrictive in some applications. For example, in a 
regression model, statistical independence (not just no correlation) between re- 
gressors and the disturbance term does not allow for heteroskedasticity. 

The following assumption of zero skewness will be needed to obtain results 
of asymptotic efficiency. 

Assumption A.3 (Zero Skewness, ZS). For each sample g and f > 0, 

E((gejieji(eg)ei l) = 0 

for every j. (That is, all third-order moments vanish.) 

4.2. Main Results 

From (19), we have 

Fs H rq H + Hu rq " + Frq, 4, 
" llu F u q 1-1 v (24) 

where rq and F, denote, respectively, the asymptotic variance matrices of q 
and qu and F- - and 4u 4 denote matrices of asymptotic covariances. Let J be 
the t' X t selection matrix such that ' J=lY. 

When A. 1 holds, the partition (23) of A applies; thus 

AI U 0 (25) 

and 

J(i\VA)'AIV > 0; (26) 

consequently, the matrix A, FA Al, involved in the expression of the goodness- 
of-fit test Tv of (13) and the leading t* X t* principal submatrix of the esti- 
mate's variance matrix (26), is free of the terms on the right-hand side of (24) 
except for the first term. That is, the asymptotic distribution of Tv and ' is 
determined only by the distribution of q (i.e., is free of the distribution of q4). 

On the other hand, when A.2 holds, the matrix Fq is free of the higher order 
moments of the variables eifg, 1, . , Lg - 1 (see Lemma 1 in the Appen- 
dix). Thus, combining A. 1 and A.2 we obtain that Tv* and z are free (asymptot- 
ically) of higher order moments of the data. This is made precise in the following 
theorem, a detailed proof of which appears in the Appendix. 

THEOREM 1. Under Assumptions A.] and A.2, 

1. -Vn (r - r) is asymptotically normally distributed with avar(#) = avarQr V, F,*) 
(i.e., the corresponding submatrix of (10) with rs = Fs*); 

2. when V = V*, avar(z) is the t* X t* upper left-hand corner submatrix of A'V*zX 
and z is the minimum variance estimator (in the class of MD estimators of (9), for 
any V); 

3. when additionally A.3 holds and V V*, the whole vector of estimators # has 
asymptotic minimum variance (in the class of MD estimators of (9), for any V); 
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4. -f_(s - &) is asymptotically normal, with zero mean and variance matrix deter- 
mined by T, V, and F* (i.e., the asymptotic distribution \/ (s - 5) is free of 
higher order moments of the zgi); 

5. the asymptotic distribution of the goodness-of-fit test statistic Tv of (16) (for any 
V) is chi square with degrees offreedom given by (14). 

Proof. See the Appendix. 
Note that normality is not assumed and that A.3 is needed only for result 3 

of the theorem. Note that except for results 2 and 3, the theorem holds for any 
MD estimation method (i.e., for any matrix V used). 

In many cases the model is not exactly true; i.e., it is only an approximate 
model. In this circumstance, to ensure finite asymptotic distribution of test sta- 
tistics, we proceed as follows. On the right-hand side of the multivariate rela- 
tion (1), we add the misspecification term vgi, with the condition that for all g, e, 
limn <0:,(1/X) In gj ei vi and liMn o0=(I/X) El 5 1 vgi vgi are finite, possi- 
bly zero. The presence of such misspecification terms implies a population drift 
assumption, = on, for the probability limit of s, O, with the property that 
8 lim,n h(o2o --0) is a finite p8 X I vector, o-r being the probability 
limit of cr. This leads to the classical device of a sequence of local alternatives 
used to investigate the asymptotic distribution of test statistics when the model 
does not hold exactly (cf. Stroud, 1972). Because this parameter drift assump- 
tion implies that the "size" of the misspecification decreases to zero as sample 
size n -X oo, for the asymptotic approximations to be accurate in finite samples, 
large n but "small" misspecification errors are required. 

Under this parameter drift assumption, it is easy to see that Theorem 1 ap- 
plies with the only modification on results 4 and 5, where now #n(s - r) 
has mean 8 and Tv has a noncentral chi-square distributed with noncentrality 
parameter 
A -n 'AI (Afl\ I )+Al 8. (27) 

Note that when 8 0, i.e., when the model is "exact," then A = 0 and the 
central case results are recovered. 

5. CONCLUSIONS 
We have shown that for a wide variety of linear-latent variable models, the 
model and independence assumptions (A. 1 and A.2, respectively) are sufficient 
conditions for the asymptotic efficiency of the NT-MD and PML estimators of 
r and also for correctness of the associated NT standard errors, despite nonnor- 
mality of the data. Furthermore, when the distribution of each latent random 
constituent of the model is symmetric (i.e., A.3 holds), then asymptotic effi- 
ciency applies to all the components of the NT-MD and PML estimators. In 
addition, the distribution of the residual vector s - S and of the goodness-of-fit 
test statistic Tv carry over from NT to the general case; in particular, the NT 
and PML goodness-of-fit test statistics, T and nF, are asymptotically chi- 
square distributed when the model holds, despite nonnormality. The practical 
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implications of these findings are that when there is independence among ran- 
dom constituents of the model, and the model does not restrict the variances 
and covariances of nonnormal constituents (not restricted even by equality across 
groups), we can avoid using the optimal MD approach (which requires a weight 
matrix based on higher order moments of the data); instead, we can just use 
NT-MD or PML methods with the associated NT statistics. This may be useful 
in view of the small sample size distortions reported recently for the optimal 
MD estimator (e.g., Altonji and Segal, 1996; Clark, 1996). 

We also showed that 17 can be replaced by fl; the additional advantage of 
such a replacement is that standard software for covariance structure analysis 
(e.g., LISREL of J6reskog and Sorbom, 1989; EQS of Bentler, 1989) can be 
used without modification to analyze mean and covariance structures. We have 
obtained results for NT-MD and PML estimators and also for MD estimators 
with general weight matrix V (e.g., V = I). Moreover, Theorem 1 can easily be 
extended to the case of a Fisher-consistent estimator that (asymptotically) is a 
smooth function of s, as, e.g., in instrumental variable estimation. 

In the example given in Section 2 of regression with errors in variables, our 
results ensure correctness of the NT standard errors for estimates of the sub- 
vector r = (a,8, o-,)' of 4# and asymptotic correctness also of the usual NT 
chi-square goodness-of-fit test statistic, provided there is mutual independence 
among xgi, Vgi, and ugi = (Ugli,Ug2i)' and ugi is normally distributed; further, 
this holds for both xgi random or fixed in repeated sampling. 
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APPENDIX: PROOF OF THEOREM 1 

This Appendix provides the proofs of Lemma 1 and Theorem 1. 

LEMMA 1. 

1. Under Assumptions A.] and A.2, 

(q.- U) = op(1); (A.1) 

\ --) 14 N(O, F4*), (A.2) 

where F. denotes the asymptotic variance of q under the NT assumption. 
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2. When in addition to Assumptions A.2 and A.1, Assunmption A.3 holds, then q and 
4u are asymptotically uncorrelated; thus 

r*= r ~ +~rW~ (A.3) 
s ~-q -u 'qU 

Proof. The result (A.1) follows by applying the law of large numbers element-wise 
to q. 

By applying the Lindeberg-Feller version of the central limit theorem to the linear 
combinations of q, we obtain the asymptotic normality stated in (A.2) but with a matrix 
of asymptotic variances Fq that is not necessarily equal to the NT one. 

To prove the NT form of the variance matrix of (A.2), note that a nonzero 
element of Fq is the asymptotic covariance Fgrt, rt' of sample moments igrt,a 

(Ilng) 1 (egri)aj ((gti)o2and qgr't', a' (Ilng)IgI((gri)aj (5gti)a' with 0 c 
rt , r', t' ' Lg, r # t unless r=t = Lg, and r' 0 t' unless r' = t' = Lg. As a result of 
A.2, FgLgLg ,LLg takes the same value as under NT. Because for r > 0, {Jgri} are inde- 
pendent zero mean variables, 

1 1 ng 

rnt, r 't' =- lim E E (egri )a (gti )a2(egr i)a (egt'i)a'; (A.4) 
lTg n->+oo ng 1 2 

and, by the mutual independence condition of Assumption A.2, 
E{(egri)a1(4gti)a2((gr'i)a,4(egt 'i)a'} = , except when 

r r' = Lg t = t' # L then grt, rt (Lg)) ( (tt)) a' 

r = r' = 0, t = t' 0: then rgrt,r't' = (-(?))ajag1(s(t))a2aX2 

r = r' t = t', r t, 0 < r,t < Lg: then Fgrt,r't' =(4(r))a,ai( (t) )2a'; 

in each case, the same values as under NT. This concludes the proof of (A.2). 
To prove (A.3), we need to show that 0Fq) (, 0. When (q)a and (C)a' correspond 

to the same group g, then 

1 1 ng 
- lim - COV{(egri)al(gti)-2,(sgr i)a(egr i)a2} 
IgTfln+oo ng _ 

2 

g 

in analogy with (A.4). When r, t < Lg, then 

cov{(g"gri)al(egti)a2g, 
((gr'i)aj('gr'i)aJ = E{((grj)a1(5gtj)ag(5gr'i)c4r(egr'i)aj}, 

which equals zero in all cases except when t = 0 and r = r' # 0, in which case 

1 1 ng 
= - lim - Ef(egri )aj(gti)a2 (gr'i )a1 (egr 'i 

IT n-i+oo ng i=1 

1 [ 1 gl1 
= { (gri )a(egri)a2I lim E (g0oi)a2j 

= - (Vg)a2EE{(gri)ai(egri)a;l(egri)a2I} = 0 
IJ, 
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by virtue of Assumption A.3. Now, when r = t Lg, 

C00egri ). (egti )a X( egr'J )o (egr i),} E (AB) -E (A) E (B) = O, 

where A ((gri)cxi(4gti)&2 and B ((gr'i)aiQ$gr'i)aff because, when r' k Lg, 
((gri )a(gti)?x2 is independent of (egri)aj)(gr'i)c2 and hence E(AB) = E(A)E(B). a 

We prove the statements of Theorem 1 one at a time. Because s A u, by standard 
theory of MD estimation also # - L. Following Anderson and Amemiya (1988) 
and Amemiya and Anderson (1990) we consider the "mixture" parameter vector e = 
(T',qT)' in which the elements of T are population values and the elements of 4" are 
sample specific, and we put o- = (J6). Note that by Lemma 1, 24 W. Using (20), 
(22), and (A.2), we obtain 

(S - (s = 2X(4-\ ) = Op(1). (A.5) 

By definition of an MD estimator, 

', V(s-&) = 0; (A.6) 

thus, a Taylor series expansion of A'V{s - o-(aU)} at # = # yields 

l&'V-Jn(s - &) = &'Vl (h - i) + op (1), (A.7) 

because A is continuously differentiable in A and h and Y are consistent. Premultiply- 
ing both sides of (A.7) by J(A'VA)-', and using (A.5) and the consistency of A and V, 
we obtain 

(7 - 7) = J(A'VA)''V Io(p - ) ? o,(1); (A.8) 

consequently, the asymptotic variance matrix of N17Y(r - #) is 

avar(Q) = - J(A'VAY1A'VHF$HtVA(A'VA)'J' 
n 

= J(A'VA)AlA'VFS VA (A'VA) 1J' 

as a result of (24) and equality (26). This proves statement 1 of Theorem 1. 
Because A is in the column space of 17, A\'V*F* V *A = A'VV*A (see (15)). This proves 

the first part of statement 2. 
Because for any nonnegative definite matrix V, 

(Al' VA)-Al 'Vf1VA (A' VA)' - (A,Q-A)- 

is positive semidefinite, so is 

avar(#) - - J(A'1 )'J'(A.9) n 

and this difference vanishes only when V= f-1. Hence the asymptotic efficiency in 
statement 2. 

Using (A.3), the variance matrix avar(h) of (10) decomposes to 

(A' VA<) AI'VSq S' 17 V('VAA(A +Jr ' i', (A.10) 
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where J = (A'VA)-'A'VSa. Because Sl is a submatrix of A, Jis a matrix with elements 
0 and 1. The first term in (A. 10) is the same as under NT, and the second is free of the 
estimation method used; consequently, minimum variance is attained for the same esti- 
mator as under NT, i.e., when V = Vt. This proves statement 3. For proving the remain- 
der of Theorem 1 we need the following lemma. 

LEMMA 2. LetP = I- '(A'VA)-A'Vand P = I- A (A'VA) A'V. UnderAssump- 
tions A.2 and A.], 

P,n(s- 6) PH fl(, C)- ) + op(1). (A.11) 

Proof. First, 

p XV- (s - ) =PkX (s - 6) + pJ\ -6 + (IJ * (6 - 6'9), (A.12) 

where (r = o-(X) and 4 = ($'4)'. By Taylor series expansion we obtain 

P -V-n - 6) PA'\fIl(6 - i) + op(l) = op 

because (V - ) = Op(l) and PA 24 PA =0. As a result of P\h(6 -6) = 
n (- qJ =) 0, (A. 12) simplifies to 

P N- ( s 
- 

3) =P X- ( s -J &) + Op ( 1) =P.\i_ X ( q 
- ~) + op(1) 

(see (20) and (21)). U 

Statement 4 follows directly from Lemma 2 and the asymptotic normality of q in 
Lemma 1. 

Premultiplying (A. 1) by AL and noting that Al P = Al, we obtain by Lemma 1 the 
asymptotic normality of Al\F(s - 6X); its asymptotic variance matrix is 

i\'S,'* 0 I = AIF/1 

as a result of (24). Thus, by the standard theory of Wald type test statistics (e.g., Moore, 
1977; Newey, 1985), the statistic 

n(s - 03)Ai(AF F'*A)?A1 (S - 6) (A.13) 

has the asymptotic chi-square distribution stated in statement 5. The proof concludes by 
noting that (A.13) is numerically equal to Tv*, because A and (s - 6) are in the column 
space of FS'. To prove (27), the noncentral case, we just need to combine the standard 
theory of Moore (1977) with the obvious result that \-l(s - 6) now has asymptotic 
mean 6, and the fact that F is not affected by the sample cross-product moments involv- 
ing vgi (as these sample moments are terms of order OP(l/1 I7)). U 
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