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Distributed cross-learning for equitable
federated models - privacy-preserving
prediction on data from five California
hospitals

Tsung-Ting Kuo 1,2,3 , Rodney A. Gabriel3,4,5, Jejo Koola3,4,
Robert T. Schooley 6 & Lucila Ohno-Machado1,3

Quality improvement, clinical research, and patient care can be supported by
medical predictive analytics. Predictive models can be improved by integrat-
ing more patient records from different healthcare centers (horizontal) or
integrating parts of information of a patient from different centers (vertical).
We introduce Distributed Cross-Learning for Equitable Federated models (D-
CLEF), which incorporates horizontally- or vertically-partitioned data without
disseminating patient-level records, to protect patients’privacy.We compared
D-CLEF with centralized/siloed/federated learning in horizontal or vertical
scenarios. Using data of more than 15,000 patients with COVID-19 from five
University of California (UC)Healthmedical centers, surgical data fromUCSan
Diego, and heart disease data from Edinburgh, UK, D-CLEF performed close to
the centralized solution, outperforming the siloed ones, and equivalent to the
federated learning counterparts, but with increased synchronization time.
Here, we show that D-CLEF presents a promising accelerator for healthcare
systems to collaborate without submitting their patient data outside their own
systems.

Medical predictive analytics can support quality improvement, clinical
research, and eventually improve patient health status1. For example,
machine learning was leveraged to better understand the Coronavirus
Disease 2019 (COVID-19) pandemic and discover actionable factors2.
To improve the performance of modeling approaches and to identify
medication-outcome associations for diseases, these approaches need
to use a large number of patient records. This can be accomplished by
integrating data “horizontally”, e.g., when multiple patients have the
same type of data from different institutions, or by expanding the

collection of clinical information by integrating the data “vertically”,
e.g., a patient has clinical data in one hospital and vaccination data
elsewhere, frommultiple healthcare systems.Many institutions collect
COVID-19 data; however, a higher number of records is needed to
increase statistical power, especiallywhen the data are imbalanced. On
the other hand, many of these patients may have primary care physi-
cians (PCPs) as well as a large portion of their Electronic Health
Records (EHRs) in another hospital. Therefore, the capability to use
data in higher volume (i.e., horizontally-partitioned) or with a wider/
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deeper range of variables (i.e., vertically-partitioned) across institu-
tions is also critical for collaborative model improvement that
responds rapidly to pandemics. Existing solutions such as centralized,
federated3–18, or decentralizedprivacy-preserving19–28methods possess
potential privacy risks29, security issues30–32, and typically focus only on
horizontally-partitioned data19–28 (SUPPLEMENTARY NOTES Section 1).

We hypothesized that a completely decentralized cross-
institutional learning method would be capable of incorporating hor-
izontally- and vertically-partitioned data while still protecting patients’
privacy and conforming with policies/regulations. A solution should
ideally include the following features: (1) Data. Ideally, the method
should be able to increase the number of data records in the horizontal
scenario; it should also be capable of extending the collection of
clinical variables in the vertical scenario; and, more importantly,
patients’ privacy should be preserved by not disseminating their sen-
sitive data outside each institution. (2) Sites. Additionally, the method
should allow the institutions of the research network consortium
to collaboratively improve the predictive model; it should also
adopt autonomous peer-to-peer topology to avoid single-point-of-
control; and the compute loads for each participating site should
be fair. (3) Processes. The core federated learning algorithms should

exhibit performance equivalent to their centralized learning counter-
parts; the underlying distributed systems should engage the commu-
nity to allow long-term sustainability; and the whole learning process
should be recorded immutably for future auditing and dispute reso-
lution. (4) Models. Finally, the learned models should be source-
verifiable by each site to ensure provenance/trustworthiness; they
should also be shared transparently to enable identification of
potentially tampered models; and model storage should be scalable.
Here, we introduce D-CLEF, which incorporates both horizontally- and
vertically-partitioned data without patient-level record dissemination,
supports a fully-distributed and computationally-fair model building
across institutions, adopts centralization-equivalent algorithms and
community-backed distributed platforms with an immutable audit
trail, and constructs trustworthy, transparent and scalable predictive
models.

Conceptually, two major cross-institutional data partitioning
scenarios are horizontal (Fig. 1a) and vertical (Fig. 1b). If each hospital
database contains enough patients and covariates, it would be feasible
to locally train a predictive model for each respective institution
(Fig. 1c). Improving the predictivemodel requires collectingmore data
from multiple institutions, either horizontally or vertically. Once the
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Fig. 1 | Overview of Distributed Cross-Learning for Equitable Federatedmodels
(D-CLEF). a Horizontally-partitioned structural clinical data from multiple health-
care sites. In this scenario, each site contains data fromdifferent patients, while the
covariates are standardized across all sites. b Vertically-partitioned data from sites.
In this scenario, each site contains different parts of the covariates for the same set
of patients. c Siloed learning. For both horizontal and vertical scenarios, each site
may train their own “local” models. However, such models could suffer from
smaller sample size, as well as incomplete covariate information. d Centralized
learning. Intuitively, the data can be disseminated to a cloud or on premise central
repository, to train a “global” model with a larger sample size and a complete
covariate set. Nevertheless, transferring sensitive data could present a privacy risk
of patients’ data being re-identified. e Concept of federated learning. To build a
model withmore patients and covariates, federated learning algorithms allow sites

to exchange only partially-trained machine learning models without disseminating
patients’ data. However, a central server is still required to moderate the learning
process, and such a server is a vulnerable single-point-of-control. f Principle of
D-CLEF. By decentralizing the modeling process while keeping data locally, D-CLEF
protects patients’ privacy without a single-point-of-control. More importantly,
D-CLEF handles both horizontal and vertical data partitioning scenarios, thus can
support wider biomedical applications where data is distributed in either way.
g Conceptual design of D-CLEF, which contains two permissioned networks: the
modeling and the storage ones. The former is a blockchain-based network for
model training purposes, and the latter is a distributed file system to share the
models. Each D-CLEF site contains three nodes: local computing, modeling, and
storage. The data are only used within the local computing node and never dis-
seminated to either of the networks.
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data are collocated in a central database, a “global” model can be
trained (Fig. 1d); however, this also brings privacy risks such as re-
identification29. Federated learning methods3–18 build a global model
by only disseminating the “local” models instead of horizontally- or
vertically-partitioned data, thus protecting patients privacy (Fig. 1e).
That said, the central learning server still presents a single-point-of-
failure/control 30–32.

In this work, to mitigate these shortcomings, we developed D-
CLEF, which adopts blockchain30–32 to support decentralized training
on local data in horizontal and vertical scenarios (Fig. 1f). Each D-CLEF
site contains a local computing node to access data, a modeling node
connecting to a permissioned (i.e., not publicly-available, to further
protect patients’privacy) blockchain formodel training processes, and
a storage node connecting to a permissioned distributed file system33

formodel storage (Fig. 1g). The advantages of the design of D-CLEF are
summarized in terms of data, sites, processes, and models (Supple-
mentary Fig. 1a). The modeling network stores training details, while
the actual model contents are stored in the storage network (Supple-
mentary Fig. 1b). D-CLEF uses smart contracts30, which are programs
stored and run on a blockchain network, to execute and record the
model construction process (Supplementary Fig. 1c). The use of
blockchain and smart contracts ensures the provenance/transparency
of themodels and the immutable learning process audit trail, while the
integration with a distributed file system improves the scalability in
terms of the model size. D-CLEF is also sustainable by adopting a
blockchain and a distributed file system developed andmaintained by
the community. By keeping the data locally within each institution and
learning the global model in a fully-distributed way, D-CLEF not only
protects patients’ privacy, but also avoids the risks of having a central
server (Supplementary Fig. 2a). Meanwhile, each D-CLEF site serves as
a “virtual” server in eachmodel learning iteration in a round-robin way
to ensure computational fairness across institutions (Supplementary
Fig. 2b). Furthermore, the adoption of the algorithms that were
mathematically-proven to be equivalent to the centralized learning
methods further guarantees the performance of D-CLEF (Supplemen-
tary Fig. 3a), for horizontal (Supplementary Fig. 3b) and vertical
(Supplementary Fig. 3c) scenarios. We select three clinical datasets for
evaluation: COVID-19 pandemic, total hip arthroplasty surgery, and
myocardial infarction disease, to demonstrate the wide potential
adoption of D-CLEF in various use cases, then compared D-CLEF
models with siloed, centralized, and existing federated learning mod-
els for horizontal and vertical partitions. Compared to existing
healthcare analytics technologies that implement federated learning,
blockchain, or distributed file systems, D-CLEF is innovative because it
not only combines all the above-mentioned technologies, but also
supports horizontal data partitioning, vertical data partitioning, and
fully distributed learning (Supplementary Data 1). These technical
novelties can advance the field of cross-institutional privacy-preser-
ving model learning.

Results
D-CLEF for prediction of COVID-19 mortality
Our first use case is to predict mortality among 15,297 patients diag-
nosed with COVID-19 (Fig. 2a) from five University of California (UC)
Health medical centers: UC San Diego (UCSD), UC Irvine (UCI), UC Los
Angeles (UCLA),UCDavis (UCD), andUCSan Francisco (UCSF), to look
for beneficial or harmful impact in eight datasets (X for overall, X1–X2
for horizontal, and X3–X7 for vertical scenarios). Across the entire
dataset, 1072 (7.0%) patients died. The categories of covariates inclu-
ded in thisdatawere “patient andCOVID-19 information” (e.g., “patient
age group”, “vaccine manufacturer”, etc.) and “drug prescribed” (e.g.,
“ibuprofen”, “albuterol”, etc.) (Supplementary Data 2). The data were
derived from the UC Health COVID-19 Research Data Set (CORDS)
limited data set34 (METHOD Section 1.1). Relevant biological variables
for human subjects (age group, sex, race, and ethnicity) were included

and addressed as covariates for the predictivemodels (Supplementary
Figs. 4a–d, Supplementary Data 3–6).

We compared D-CLEF’s performance versus siloed and cen-
tralized models on dataset X (Fig. 2b) using the full Area Under the
receiver operating characteristic Curve (AUC)35 as our major perfor-
mance metric (SUPPLEMENTARY NOTES Section 2). We compared
AUCs between methods using the two-sided, two-sample Wilcoxon
signed rank-test36 (“METHOD” Section 5) in our evaluation process
(SUPPLEMENTARY NOTES Section 4). For the horizontal scenario, the
results demonstrated that D-CLEF performed similarly to centralized
Logistic Regression (LR) learning, and that it outperformed all siloed
LR models (Fig. 2c) and provided prediction performance with a
smaller interquartile range. Although our algorithms were mathema-
tically proven to be equivalent to the centralized counterparts, the
different performances happen because of the regularization setting
(SUPPLEMENTARYNOTES Section 2). For the vertical scenario, D-CLEF
provided the same-level results as the centralized LR model, with a
higher AUC score than the siloed LRmodels (Fig. 2d). Although vertical
siloed learning results were tested using only partial clinical covariates,
we still compared their results withD-CLEF and centralized learning, to
demonstrate the benefits of being able to use a wider coverage of
covariates. Lastly, we compared the horizontal and vertical D-CLEF
models with the centralized and ensemble ones (“METHOD” Sec-
tion 2.7). In general, the vertical D-CLEF and the centralized models
performed better than the horizontal D-CLEF model statistically;
however, the actual differences in AUC scores were relatively small
(Figs. 2e, Supplementary Data 7–8). The ensemble models in general
performed at a similar level when compared to D-CLEF without
ensemble. Next, we tested the horizontal D-CLEF method on datasets
X1–X2 (Fig. 3), and the results (Supplementary Data 9) showed that
D-CLEF performed similarly to centralized LR learning, which was in
general close to or better than the siloed LRmodels (SUPPLEMENTARY
NOTES Section 5). Vertical D-CLEF was also evaluated on five datasets
X3–X7 (Fig. 4), and the results (Supplementary Data 10) showed that
D-CLEF generally performed better when compared to the centralized
and siloed LR models (SUPPLEMENTARY NOTES Section 6).

We also implemented and compared D-CLEF with its federated
learning counterpart (“METHOD” Section 2.7). Since the predictive
performances are the same, we focused on evaluating the runtime
difference of the two implementations. For both horizontal and ver-
tical learning, the results (Supplementary Data 11–12) showed that in
general D-CLEF required about 10% more runtimes per iteration than
their federated implementations (SUPPLEMENTARYNOTESSection 7).
In essence, we demonstrated that for both horizontal and vertical
scenarios, D-CLEF is applicable for pandemic patient outcome pre-
diction at a comparable level with the centralized learning while out-
performing siloed learning, with an additional cost of synchronization
time per learning iteration.

D-CLEF to identify prolonged hospitalization after major
surgery
Weconstructed a seconduse case topredict prolongedhospital length
of stay following total hip arthroplasty (THA) for 960 patients at UCSD
(Fig. 5a), defined as greater than or equal to the average 3-day
hospitalization20,23,24 (“METHOD” Section 1.2). Across the entire data-
set, 267 (27.8%) patients had a prolonged hospital stay. The categories
of covariates included in this data were “demographic, lab test results,
and preoperative information”, “osteoarthritis and surgery Informa-
tion”, as well as “comorbidities” (SupplementaryData 13). This use case
included sixdatasets (Y for overall, Y1–Y3 for horizontal, andY4–Y5 for
vertical scenarios) and considered demographic variables of male,
geriatric age, and English speaker (Supplementary Figs. 4e, Supple-
mentary Data 14). We then used dataset Y (Fig. 5b) to evaluate D-CLEF
(SUPPLEMENTARY NOTES Section 8). In the horizontal scenario, D-
CLEF’s predictive capability was at a similar level as that of centralized
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LR learning, while being better than both siloed LR models (Fig. 5c).
The vertical scenario results demonstrated that D-CLEF performed
slightly better than the centralized LRmodel, which outperformed the
siloed LR ones (Fig. 5d). Overall, vertical D-CLEF statistically

outperformed centralized and horizontal D-CLEF, with comparable
AUC scores (Figs. 5e, Supplementary Data 15–16). The D-CLEF ensem-
ble models provided a similar level of performance. We also used
datasets Y1–Y3 (Fig. 6) to evaluate D-CLEF in the horizontal scenario,
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Fig. 2 | D-CLEF to predict mortality of patients with COVID-19 from University
of California (UC) Health COVID Research Data Set (CORDS) data. a The UC
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patient and COVID-19 information (dataset X1) and drugs prescribed (dataset X2).
The patients were from five UC Health medical centers (datasets X3–X7).
bOverviewof the setupondatasetX to estimate theperformanceofD-CLEF. cMain

results of the horizontal scenario on dataset X, comparing D-CLEF with siloed and
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dataset X, using two-sided, two-sampleWilcoxon signed rank-test. All box plots are
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and the results demonstrated that D-CLEF in general provided similar
predictive capability to the centralized LR model and was better/
steadier than that of siloed LRmodels (SupplementaryData 17). For the
vertical scenario, D-CLEF was tested on datasets Y4–Y5 (Fig. 7) and
again provided a higher predictive capability when compared to cen-
tralized and siloed LR learning (Supplementary Data 18). We also
evaluated D-CLEF’s runtimes in this use case and compared it to fed-
erated learning. For both horizontal/vertical scenarios, the runtimes
per iteration results (Supplementary Data 19–20) demonstrated that
D-CLEF in general required about 10% more than its federated coun-
terpart (SUPPLEMENTARY NOTES Section 9). In short, at a cost of
increased synchronization time, D-CLEF could perform predictions in
the surgical data space at a comparable level with the centralized
method and outperformed in both horizontal/vertical scenarios.

D-CLEF for prediction of myocardial infarction
The third use case involved prediction of myocardial infarction
(Fig. 8a) with sample size = 1253. We used the derived data20,21,37

originally collected at Edinburgh, UK3,4,27,28,38,39 (“METHOD” Sec-
tion 1.3), with covariates of “symptoms” and “electrocardiogram (ECG)
Information” (Supplementary Fig. 4f, Supplementary Data 21–22).
Across the entire dataset, 274 (21.9%) patients suffered a myocardial
infarction. Therewere five datasets (Z for overall, Z1–Z2 for horizontal,
and Z3–Z4 for vertical scenarios) in this use case.We leveraged dataset
Z (Fig. 8b) to evaluate D-CLEF (SUPPLEMENTARY NOTES Section 10).
Horizontally, D-CLEF’s performance was at a similar level as that of
centralized LR one, while being slightly better than siloed LR models
(Fig. 8c). Vertically, D-CLEF again provided similar performance to the
centralized LR one and outperformed both siloed LRmodels (Fig. 8d).
In general, horizontal and vertical D-CLEF could predict at a similar
level of the centralized method statistically, with relatively small AUC
score differences (Figs. 8e, Supplementary Data 23–24). The ensemble
of D-CLEF also provided a similar level of results. Next, datasets Z1–Z2
were used to evaluate further the horizontal scenario (Fig. 9), showing
that D-CLEF in general provided similar/better predictive capability
when compared to the centralized and siloed LR models
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(Supplementary Data 25). Also, D-CLEF was tested on datasets Z3–Z4
(Fig. 10) for the vertical scenario, and again performed similar to or
better than centralized/siloed LRmodels (SupplementaryData 26). For
runtime evaluation, the results (Supplementary Data 27–28) showed
that the runtimes per iteration D-CLEF in general needed 10% more
time than the federated model (SUPPLEMENTARY NOTES Section 11).
In effect, D-CLEF could predict outcomes related to internal medicine
at a similar level with the centralized method (and outperformed
siloedones) in both horizontal/vertical scenarios at a cost of additional
runtime.

Discussion
Preserving privacy and security of personal information has become a
crucial challenge in modern society, especially for studies involving
health data. Re-identification risks and data breaches require policies
and regulations for data sharing across healthcare and research insti-
tutions. While policies/regulations may not solve the problem in the

era of machine learning, advanced technologies that work together
with policies are important to address privacy and security concerns.
In the case of collaborative predictive modeling across institutions,
D-CLEF can protect privacy/security when the patients’ healthcare
records are distributed horizontally or vertically across multiple
medical institutions. By combining fair-computational federated
learning, decentralized blockchain, and distributed file system tech-
nologies, D-CLEF can provide model trustworthiness, transparency,
and scalability, as well as system sustainability/auditability. In general,
the predictive performance results for horizontal and vertical D-CLEF
were similar to the centralized solution, outperformed the siloed ones,
could incorporate differentmachine learning algorithms to potentially
improve prediction capability, and were identical to the federated
learning counterparts. However, D-CLEF required amodest increase in
synchronization time.

Platforms that allow privacy-protecting horizontal and vertical
integration of data across multiple institutions are particularly well
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suited to the study of rare clinical entities (including orphan diseases)
and/or infrequent events that cannot be studied within one or even a
handful of institutions. Meanwhile, both organizations and patients
see loss of control of data as themost significant barrier to performing
multisite research40.When asked about their perspectives on research,
patients are more willing to share data with their home compared to
other non-profit and for-profit institutions41. For organizations, sharing
data across national boundaries is especially complicated due to dif-
fering standards and protections42. Our study demonstrates that

D-CLEF may provide a solution across a wide range of healthcare dis-
ciplines, including pandemic-related research, surgical outcomes, and
internal medicine.

Utilization of technology, such as D-CLEF, that helps leverage data
from diverse institutions can potentially address several ethical issues
associated with risk prediction models. In addition to patient data
privacy and security, additional ethical concerns include fairness/bias
and reproducibility/generalizability43. Fairness/bias focuses on whe-
ther predictive models have algorithmic bias towards specific social
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Article https://doi.org/10.1038/s41467-025-56510-9

Nature Communications |         (2025) 16:1371 7

www.nature.com/naturecommunications


groups, such as race/ethnicity or socioeconomic status44. One
approach to reduce such bias is utilizing diverse training data for
models, which would necessitate incorporating data from various
geographical regions, healthcare settings, and demographic back-
grounds. Because of privacy and security issues within healthcare
institutions, fostering diverse data via the sharing between multiple
sites is challenging. Furthermore, the ethical principles of reproduci-
bility and generalizability are also dependent on diverse training
datasets45. D-CLEF offers one technologic solution to address building
fair and unbiased models that may be generalizable.

The limitations of D-CLEF include the following. First, moving
towards real-world deployment of D-CLEF in healthcare institutions
may require privacy and security hardening in terms of algorithms
(e.g., by using differential privacy46 to further protect patients from
being identified) and infrastructure (e.g., by incorporating trusted
execution environments based confidential computing47), and there-
fore warrants further investigation. Second, extending D-CLEF to
incorporate different data modalities (e.g., patients’ genomic infor-
mation,medical/radiological images, or personal health data, etc.) and
outcomes (e.g., multi-class for mutually-exclusive, or multi-label for
non-mutually-exclusive, prediction ofmultiple possible outcomes) will
require further exploration. Third, refactoring the underlying D-CLEF
algorithms would be required to incorporate complex global models
(e.g., Multi-Layer Perceptron (MLP)48, eXtreme Gradient Boosting
(XGB)49, Convolutional Neural Network (CNN)50, Long Short-Term
Memory (LSTM)51, or Transformers52) for horizontal and vertical

decentralized learning. After which, a thorough scalability evaluation
(e.g., in terms of the number of sites, the data size on each site in the
horizontal scenario, or the number of covariates on each site in the
vertical scenario) and improvement (e.g., using mapping53 or multi-
contract54 architectures), as well as comprehensive hyper-parameter
optimization, will require further study. Fourthly, using the principals
of D-CLEF to decentralize the training of medical-based language
models for leveraging unstructured clinical notes across multiple
healthcare institutions is a future direction that could potentially
improve the use of these diverse and under-utilized notes. Finally, as
with any multifactorial analysis seeking to identify predictive algo-
rithms, associations identified throughD-CLEF will require hypothesis-
based evaluations to evaluate causality. This challenge could ulti-
mately become one of D-CLEF’s strengths: the multidisciplinary rich-
ness of the data and the potential to study much larger populations
provides unique opportunities to conduct secondary analyses that
rigorously test causal relationships.

In summary, as a completely decentralized cross-institutional
learningmethod, D-CLEF can support collaborative privacy-preserving
modeling across multiple healthcare institutions with horizontally- or
vertically-partitioned data. Meanwhile, D-CLEF can also keep patients’
data protected to conform with policies and regulations. D-CLEF
allows healthcare systems to collaborate with other systems with
similar (horizontal) or complementary (vertical) healthcare records
while addressing modeling concerns related to privacy and equal
distribution of resources. Furthermore, D-CLEF has the potential to be
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Fig. 6 | Predicting prolonged hospital length of stay after surgery from UCSD
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adapted for other healthcare predictivemodeling tasks (i.e., predicting
different types of patient outcomes), or even beyond themedical field
(e.g., distributed learning of overall customer preferences without
sharing of proprietary behavior data).

Methods
Data preprocessing
This retrospective study utilized the University of California COVID
Research Data Set (UC CORDS). UC CORDS is an Institutional Review
Board (IRB)-approved database containing de-identified clinical data
for patients from the University of California Health System who
received COVID testing34. Our research complies with all relevant
ethical regulations, and the use of all datasets was exempt from Uni-
versity of California San Diego (UCSD) Human Research Protections
Program (HRPP) IRB requirements under category 45 CFR 46.104(d)
(4) Secondary research (# 804237), on May 16, 2022. The informed
consent was not required because the study presented no more than
minimal risk to the individuals whose information was accessed, the
project did not affect individual’s clinical care, adequate subject/data
confidentiality protection measures were used, and there was no
information to contact those under study. Also, the datasets used in
this study were de-identified.

University of California (UC) health COVID-19 data (dataset X)
Wederived a de-identifieddata set from the limitedUCHealthCOVID-19
Research Data Set (CORDS), collected as of September 13, 202134. To

predict themortality of patients diagnosedwith COVID-19, our inclusion
criteria include: (i1) known medical center from one of the five UC
Health medical centers: UCSD, UC Irvine (UCI), UC Los Angeles (UCLA),
UC Davis (UCD), and UC San Francisco (UCSF); (i2) 0 years ≤ patient’s
age ≤89 years; and (i3) used at least one of top-100 frequent medica-
tions (to increase generalizability). On the other hand, the exclusion
criteria include: (e1) missing age, drug, breakthrough, or death infor-
mation; (e2) unspecified,mixed, or other types of vaccinemanufacturer;
and (e3) unclear vaccination status. We selected a set of variables
selected by our expert: patient information (age group, gender, race,
and ethnicity), COVID-19 related information (vaccine manufacturer,
vaccination status at infection, and breakthrough case), as well as drugs
prescribed (top-100most frequently used ones out of 5066 in our data).
Vaccine manufacturer is “N/A” if the patient was not vaccinated. For the
vaccine manufacturer, we focused on three Centers for Disease Control
(CDC)-approved vaccines (i.e., Pfizer, Moderna, and Janssen) at the time
we retrieved the data. We then split the patients into five sets based on
their medical centers (UCSD, UCI, UCLA, UCD, or UCSF) for evaluating
horizontal methods (Supplementary Data 2). Next, we extracted 118
variables from the patient demographics (12 variables using dummy
coding for gender, race, and ethnicity), COVID-related information (6
variables also using dummy coding),medications administered (top 100
most frequent ones administered after positive COVID-19 diagnosis,
converted to binary variables using multi-label encoding). Then, per
medical center, we averaged the ages in each age group to obtain the
estimated age, removed variables with the same value across all
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patients, and combined duplicated variables. Additionally, we excluded
themale gender, because of its high collinearity with female gender due
to very small percentage ( ~ 0.025%, as shown in the Supplementary
Fig. 4b) of unknown gender (which was also removed). After data pre-
processing the number of patients was n= 15,279, and the number of
covariateswasm= 100 (10patient information, 6COVID-19 information,
and 84 medication ones). There were about 22,000 patients
excluded because they did notmeet our inclusion criteria. The excluded

patients in general were demographically similar to the included
ones (Supplementary Figs. 4a–d, Supplementary Data 3–6), with fewer
elderly patients (i.e., age groups of 61 + ), relatively fewer patients in
all races except white and unknown, and relatively fewer Hispanic or
Latina ethnicity patients. Also, we grouped the covariates into two
categories: patient and COVID-19 information (16 covariates) and
drug prescribed (84 covariates), to simulate the vertically split data
(Supplementary Data 2).
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Fig. 8 | D-CLEF to predict presence of myocardial infarction from Edinburgh
(Edin) data. a The Edin data (n = 1,253 and m = 9, dataset Z) include symptoms
(dataset Z1) and electrocardiogram (ECG) information (dataset Z2) as the covari-
ates. It was also split horizontally into two patient sets for simulation (datasets Z3
and Z4). ECG: Electrocardiogram. b Overview of the setup on dataset Z to test
D-CLEF. cMain results of the horizontal scenario on dataset Z. dMain results of the
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UCSD total hip arthroplasty (THA) surgery data (dataset Y)
We used the UCSD THA surgery data derived in previous
publications20,23,24, which contains n = 960 patients and m = 34 covari-
ates. This dataset isHealth Insurance Portability andAccountabilityAct
(HIPAA)-deidentified. Topredict the longer hospital length of stay (i.e.,
> expected 3 days) for the unilateral primary THA surgery, the cov-
ariates include 3 demographics (male sex, patient’s age ≥ 65 years, and
non-English speaker), 1 lab (obesity body mass index > 30 kg/m2), 2
preoperative (metabolic equivalents < 4 and opioid use), 4 operative-
side osteoarthritis grades (mild, moderate, severe, and avascular
necrosis), 6 contralateral hip description (no osteoarthritis, mild
osteoarthritis, moderate osteoarthritis, severe osteoarthritis, previous
surgery, and avascular necrosis), 1 anesthesia (general—versus neur-
axial), 3 surgical approach (posterior, anterolateral, and anterior), and
14 comorbidities (chronic kidney disease, chronic obstructive pul-
monary disease, congestive heart failure, coronary artery disease,
hypertension, diabetes mellitus, obstructive sleep apnea, dialysis,
psychiatric history— depression / anxiety / bipolar disease, active
smoker, asthma, thrombocytopenia—platelets < 150000/uL, anemia,
and dementia). All covariates were dummy-coded as binary ones, and

we checked to ensure there are no covariates with the same value
across all patients nor duplicated covariates. We split the patients
randomly into two sets in a stratified way (i.e., keeping the positive/
negative ratio) to simulate two UCSD hospitals in the San Diego area
(La Jolla and Hillcrest) for horizontal methods’ evaluation (Supple-
mentary Data 13). Then, we grouped the covariates into three cate-
gories: demographics, labs, and preoperative information (6
covariates), osteoarthritis and surgery-related information (14 covari-
ates, including operative-side osteoarthritis grades, contralateral hip
description, anesthesia, and surgical approach covariates), and
comorbidities (14 covariates), to evaluate vertical methods (Supple-
mentary Data 13).

Edinburgh myocardial infarction data (dataset Z)
We adopted the Edinburgh myocardial infarction data3,4,27,28,38,39

derived in existing literatures20,21,37. The data are publicly available
(DATA AVAILABILITY) and contain n = 1,253 patients and m = 9 cov-
ariates. To predict the presence of disease, the covariates include
symptoms (5 variables, including hypoperfusion, nausea, sweating,
pain in left arm, and pain in right arm) and ECG information (4
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Fig. 9 | Predicting presence of myocardial infarction from Edinburgh data
(dataset Z1–Z2). a Evaluation setup on dataset Z1 and Z2. The dataset Z1 training
data (for covariates C1) was partitioned equally and horizontally into two patient
sets, which were used to build two siloed models and a D-CLEF horizontal one. We
also built a centralizedmodel for comparison, and all models were evaluated using

the testingdata. The sameprocesswas conductedondataset Z2 (for covariates C2).
b–c Main results for horizontal modeling on dataset Z1 and Z2. All box plots are
derived from 30 trials, withmedian as center line, upper and lower quartiles as box
limits, 1.5x interquartile range as whiskers, and outliers as points.
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variables, including new Q waves, T wave inversion, ST elevation, and
ST depression). All covariates were binary without covariates with the
same value across all patients and without duplicated covariates. We
split the patients randomly into two sets in a stratified way to evaluate
horizontal methods (Supplementary Data 21), and then grouped the
covariates into two categories (symptoms and ECG information) to
simulate vertical data splitting (Supplementary Data 21).

Distributed cross-learning for equitable federated models (D-
CLEF) framework and computational algorithms
D-CLEF incorporated four technologies: horizontal federated learning,
vertical federated learning, blockchain distributed ledger, and dis-
tributed file sharing. D-CLEF, based on mathematically-proven feder-
ated learning algorithms, aims at enabling collaborative predictive
modeling across multiple healthcare institutions, whether the data
were split horizontally (i.e., different patients from each institution
with the same set of covariates across all institutions) or vertically (i.e.,
same set of patients across all institutions with different part of cov-
ariates in each institution). D-CLEF’s learning process does not dis-
seminate observation-level health data and therefore protects
patients’ privacy. Compared to existing horizontal/vertical federated
learning methods, D-CLEF does not require a centralized moderating
server, thus increasing autonomy of each site while reducing single-
point-of-control. Additionally, by utilizing blockchain and distributed
file system technologies, D-CLEF ensures the models’ provenance,

transparency, and scalability, aswell as the immutability of the learning
process audit trail. A complete list of the desirable technical features of
D-CLEF is illustrated in Supplementary Fig. 1a.

Learning on horizontally partitioned data
For horizontal learning scenario, we adopted the Grid binary LOgistic
Regression (GLORE) algorithm, which was based on Newton-Raphson
method and was mathematically proven to be equivalent as centralized
LR3. In the horizontal scenario, each site contains a different set of
patients with the same m covariates. In GLORE, all global model coeffi-
cients with size = (m+ 1), including an intercept term, are first initialized
as zeroes. In each iteration, each site uses the global model to compute
its local gradient vector with size = (m+ 1) and local variance-covariance
matrixwith size = (m+ 1) x (m+ 1), and then sends this local partialmodel
(including both the vector and thematrix) to the central server; then, the
server combines the partial models from all sites to update the global
model and sends the updated global model back to each site. The
iteration continues until convergence of the global model. The original
GLORE code was implemented in Java using the National Institute of
Standards and Technology (NIST) JAMA library v1.0.3, thus we integrated
the code directly into D-CLEF, which is also primarily developed in Java.

Learning on vertically partitioned data
We incorporated the VERTIcal Grid lOgistic regression (VERTIGO)
algorithm8 for the vertical learning scenario. VERTIGO was based on
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Fig. 10 | Predicting presence of myocardial infarction from Edinburgh data
(dataset Z3–Z4). a Evaluation setup on dataset Z3 and Z4. The dataset Z3 training
datawaspartitionedvertically into two covariate sets,whichwereused to construct
two siloed models as well as a D-CLEF vertical one. Then, a centralized model was
also built for comparison, and all models were evaluated on the testing data. The

same process was conducted on dataset Z4. b–cMain results for vertical modeling
on dataset Z3 and Z4. All box plots are derived from30 trials, withmedian as center
line, upper and lower quartiles as box limits, 1.5x interquartile range as whiskers,
and outliers as points.
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Newton’s method and was also proven to be equivalent as centralized
LRmathematically. For vertically partitioned data, each site contains a
different set of covariates with the same n patients, who are already
“linked” by unique identifiers. These identifiers are pseudo-generated
instead of real ones such as Medical Record Number (MRN). In this
case, techniques for horizontal modeling (e.g., GLORE) to decompose
the global model learning would not be feasible, because each site
possesses the information for different covariates (thus each site
cannot update the coefficients for all covariates locally). Therefore,
VERTIGO converts the primal problem (i.e., finding a global model
containing coefficients for all covariates) to a dual one (i.e., finding a
global dual-form model containing coefficients for all patients). Since
each site possesses the information for the samepatients, each site can
update the coefficients for all patients locally. Also, a covariate of 1 s is
added to one of the sites for computing the intercept term. In VER-
TIGO, the first step is to obtain a global grammatrix as the kernel trick
to solve the dual problem. To do this, each site first computes a local
gram matrix (with size = n × n) by using dot products of its local data
and sends thematrix to the server. Then, the server combines the local
gram matrices using element-wise addition to a global gram matrix.
After the dot product computation, it is very difficult to reverse engi-
neer and obtain the patient-level data.Next, all global dual-formmodel
coefficientswith size =n are initialized as zeroes. In each iteration, each
site uses the global dual-form model to compute its local dual-form
modelwith size = n and sends this partialmodel to the server; then, the
server combines the partial dual-form models from all sites to update
the global dual-form model and sends the updated global dual-form
model back to each site. The iteration continues until convergence of
the global dual-form model. Then, each site uses the global dual-form
model to compute a part of global primal-form model coefficients
corresponding to the covariates (and the intercept term, if added by
the site) available in the local data and sends that part of coefficients
again to the server. Finally, the server simply concatenates all parts of
coefficients to form a complete global primal-form model, and then
sends the global model to each site. The original VERTIGO8 was
implemented in MATLAB, while an updated version VERTIGO-CI14 was
implemented in Python. To integrate VERTIGO into D-CLEF, we re-
implemented it using Java and the JAMA library, referring to both
VERTIGO and VERTIGO-CI algorithms. One of the most time-
consuming steps of VERTIGO is to invert a large n x n matrix at the
central server side with the time complexity of O(n3)8, and therefore in
our implementation we computed matrix inversion via the jBLAS
library55 v1.2.6 snapshot with native system package to expedite the
computational speed.

D-CLEF modeling network using blockchain distributed ledger
For both horizontal and vertical learning scenarios, we eliminate the
need for a “physical” centralized server (as required for federated
learning) by using the fair compute load approach23,24,27,28, which asks
each site to serve as the “virtual” server in each learning iteration. This
design not only preserves the prediction capability when compared to
federated learning, but also ensures computing fairness for each par-
ticipating site because they take turns to contribute computation cost
as a virtual server (in addition to the computational cost as a client).We
also adopted themaximum iteration design20,21,23 by adding a “time-to-
leave” counter to cap the number of iterations (and thus the cost of
model transferring, which is critical for peer-to-peer communications).
Based on the above-mentioned fair compute load and maximum
iteration, we adopted blockchain distributed ledger31 as the D-CLEF
modeling network. Blockchain is distributed (i.e., no single inter-
mediary server), immutable (i.e., very hard to be changed), transparent
(i.e., everyone can see everything on the chain), highly-available (i.e.,
no single-point-of-failure because of full-redundancy), and source-
verifiable (i.e., clear provenance because there is no “root” user)30–32.
Several major blockchain platforms also support smart contract, a

computer program stored and executed on blockchain56,57, to provide
the above-mentioned benefits to computer codes in addition to data.
Compared to other decentralized systems and strategies, blockchain
brings the benefits and addresses many current challenges in dis-
tributed networks. Specifically, we adopted Ethereum56, which is an
open-source and community-based blockchain platform that can be
configured as both public/permissionless (thus have a huge momen-
tum to improve because of its large financial user base) and private/
permissioned (thus suitable for cross-institution beyond-financial
applications like our study) blockchain networks30. We used the Go-
Ethereum (Geth) v1.9.1, and configured it as a permissionedblockchain
network. We used Proof-of-Authority (PoA) consensus protocol that is
round-robin-based58. This is because in a permissioned network, a non-
compute-intensive PoA protocol could improve efficiency and reduce
energy cost59 when compared to computing/energy-intensive proto-
cols (e.g., Proof-of-Work, or PoW, used in Bitcoin60) required for per-
missionless blockchain networks. Therefore, we adopted the Clique61

PoA protocol with period = 0 and epoch = 30000. On the Ethereum
permissionedblockchain network,we further adopted smart contracts
to store detailed training information (related to process, sites, data,
and models) of horizontal or vertical learning. Meanwhile, the hor-
izontal/vertical model learning as well as the access to the data only
happens within the local computing node, and therefore no patients’
data will be disseminated on blockchain through the smart contracts.
The list of the training details and its isolation from the local com-
puting node are shown in Supplementary Fig. 1b. Specifically, we
adopted Solidity62, one of the most popular smart contract languages
for Ethereum, v0.8.19. We developed two Solidity smart contracts: the
Model Contract (one for each site, to store the training details) and the
Catalog Contract (only one for all sites, to manage site names and
Model Contract deployment addresses on blockchain). Finally, we
used the Web3j CLI v1.4.1 and its dependency/preliminary libraries to
manage the blockchain and deploy/run smart contracts on the
blockchain from the D-CLEF local computing. The Model Learner and
the two D-CLEF smart contracts are outlined in Supplementary Fig. 1c.
Our design of smart contracts are unified for both horizontal GLORE
and vertical VERTIGO learning methods and are extensible to incor-
porate other learning algorithms (in the Model Contract) or even to
exchange other training-related information (as smart contracts to be
indexed by the Catalog Contract).

D-CLEF sharing network using distributed file system
Although most of the training details can be recorded directly on
blockchain via smart contracts, the local or global models themselves
(i.e., model contents) are in general much larger than the rest of the
information. Moreover, the size of the model contents scales with the
data size, while the rest of the information only requires a fixed size of
on-chain storage space. For horizontal learning, the largest on-chain
storage requirement is for the local variance-covariance matrix with
size = (m + 1) x (m + 1), wherem is the number of covariates in the data.
On the other hand, for vertical learning the largest storage space
needed on blockchain is for the grammatrix with size = n x n, where n
is the number of patients in the data. For a typical predictive task, n is
usually at least a few times larger than m, to avoid model overfitting
and to be more focused on few actionable covariates. This is also true
for all our evaluation datasets as shown in Figs. 2a, 5a, and 8a. Although
existing studies enabled the storageof large amountof datadirectly on
blockchain by using a splitting-and-merging method63–65, the pro-
longed time required for disseminating the largematrices to every site
(because each site will have a copy of the whole blockchain data31)
could present an efficiency issue for data transferring. Therefore, we
adopted distributed file system33 as the D-CLEF sharing network, to
store and retrieve the model contents efficiently without the need of a
centralized intermediating repository. Specifically, we adopted Inter-
Planetary File System (IPFS),which is a popular protocol to serve as the
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“disk” of blockchain in various application fields66. We used the Kubo
IPFS v0.20.0, which is one of the most widely adopted implementa-
tions of IPFS, and configured it as a permissioned distributed file sys-
tem. To store the horizontal and vertical local/global models, we first
serialized and concatenated the 1-dimensional (1D) vector (e.g., gra-
dient vector) and 2-dimensional (2D) matrix data (e.g., variance-
covariance matrix) as a single byte array. Then, we compressed the
byte array using the DEFLATE lossless data compression algorithm67 to
further reduce the amount of data to be transferred.Next, we share the
compressed byte array via IPFS and obtain a Content Identifier (Con-
tent ID) which is a hash value to uniquely identify the stored byte array
across the IPFS network. The Content ID is then stored on the block-
chain together with other training details, as shown in Supplementary
Fig. 1b. We developed two D-CLEF storage network components: the
Model Sharing Peer (one for each site, to store model contents) and
the Model sharing connector (only one for all sites, to connect the
distributed file sharing peers using a pre-shared key; only peers with
the key can participate in the network). The two D-CLEF sharing net-
work components are shown in Supplementary Fig. 1c. Our design of
model storage not only supports both horizontal GLORE and vertical
VERTIGO methods, but also is extensible for other horizontal/vertical
learning methods because their arbitrary data structures can be seri-
alized, concatenated, compressed, and stored on IPFS to enable dis-
tributed model sharing. Specifically, although the space complexities
of the horizontal and vertical D-CLEF are O(m2) and O(n2) respectively
(which is already larger than the O(m) of centralized LR), significantly
larger andmore complexmodelsmay contain evenmore parameters68

and thus require larger storage space as well as data transferring
bandwidth. Therefore, the useof a distributedfile system is essential to
the scalability of D-CLEF in terms of model size.

D-CLEF site architecture
Each D-CLEF site contains three nodes (local computing, modeling,
and storage). The local computing node takes data as input for the
Model Learner (either horizontal or vertical), and then uses the pre-
shared catalog address to setup Ethereum blockchain within the
modeling node and then connect to the Catalog Contract, which in
turn provides the names and the Model Contract addresses of all
participating sites. On the other hand, the local computing node also
uses the pre-shared key to set up IPFSwithin the storagenode and then
connect to the Model Sharing Connector, which in turn sets up the
Model Sharing Peer. During themodelingprocess, the local computing
node stores the model contents to IPFS to obtain a Content ID, and
then records the training details (including the Content ID) to the
Model Contracts of the local site. Meanwhile, the local computing
nodes also query the Model Contracts of the other sites to obtain the
training details as well as the Content IDs from other sites, and then
retrieve other sites’ model contents via the Content IDs. The D-CLEF
system architecture is depicted in Supplementary Fig. 2a.

Workflow and algorithms
The overall workflow for D-CLEF is shown in Supplementary Fig. 2b,
and the relationship with the local computing, the modeling network,
and the storage networkmajorly involved in each step is also specified.
The workflow starts from the main D-CLEF algorithm (D-CLEF, algo-
rithmA1 in Supplementary Fig. 3a) that executes either horizontally (D-
CLEF-H, algorithm A2 in Supplementary Fig. 3b) or vertically (D-CLEF-
V, algorithm A3 in Supplementary Fig. 3c) learning algorithm. We
standardize these steps to make D-CLEF a unified framework for both
horizontal and vertical learning scenarios. The global/localmodels can
be either primal-form or dual-form. For horizontal learning, the initi-
alization step is trivial (by setting all global model coefficients to zer-
oes) and the finalization step simply returns the learned global model.
In contrast, for vertical learning the initialization step also involves
computing/transferring/combining the local gram matrices, and the

finalization step converts the global dual-form model to its primal-
form. We also adopted utility libraries such as the Apache Commons
CSV v1.9.0, the Apache CommonsMath v1.2, aswell as the Java Utilities
v1.0.0, in our implementation.

Centralized, ensemble, and federated implementations for
comparison
To evaluate the prediction performance of D-CLEF, we adopted LR
with Ridge estimator for L2 regularization on integrated data (i.e.,
combined from horizontally- or vertically-partitioned data) to serve as
the centralized comparing counterpart. Specifically, we used the
implementation from the Weka Dev v3.9.1 library. We also compared
D-CLEF with MLP48, XGB49, CNN50 and LSTM51 using Weka Dee-
pLearning4J v1.7.2 and Weka XGBoost v0.2.0 libraries. Since CNN and
LSTM were originally designed for spatially-related or sequential data,
we transformed our three datasets into either two-dimensional (2D) or
one-dimensional (1D) formats (SUPPLEMENTARY NOTES Section 2).
Specifically, for CNN we tested on both 2D and 1D data (CNN-2D and
CNN-1D models, respectively), and for LSTM we used 1D data. This
would allow a site, should they desire, to combine the benefits of a
global federated model with a more complex local model. For the
ensembled prediction score, we averaged the predicted scores from
D-CLEF with the scores from either siloedMLP, XGB, CNN-2D, CNN-1D,
or LSTM model (to still preserve patients’ privacy).

On the other hand, to gauge the runtime performance of D-CLEF,
we also implemented a federated version of our method using Apache
ActiveMQ, an open-source message broker. We set up the ActiveMQ
Java Message Service (JMS) queue server on one of the sites, to simu-
late the real-world situation that a central server usually resides within
one of the collaborating sites. This configuration also provides a fair
comparison with the distributed version of D-CLEF, by using the same
number of computational resources (i.e., both versions use the exact
same number of computers for each horizontal/vertical evaluation
scenario). For this message-based federated version, each site submit
both training details and model contents together as a single message
to the server and retrieve other sites’ information also from the server.
The training details and model contents are serialized as a byte array
with message compression, which is similar to the distributed version
of D-CLEF to be compared fairly. Since the core algorithms for both
federated and distributed versions are the same, the prediction per-
formance and the learning iteration were also the same, and therefore
we focused on the runtime comparison only. We adopted Apache
ActiveMQ v5.15.15 and its dependency/preliminary libraries, with a
configuration of frame size = 1 GB with non-transacted auto-acknowl-
edging sessions.

Simulation settings
In our experiments, each sitewas set upon a separate instance (instead
of simulating multiple sites on one instance), to represent a real-world
usage scenario as well as to obtain accurate time measurements. We
ranmultiple experiments in parallel using these 10 instances. We built
a total of 366 models (162 for the UC Health COVID-19, 114 for the
UCSD THA surgery, and 90 for the Edinburgh myocardial infarction
datasets). With 30 trials for each model, our evaluation included
10,980 trials in total. This corresponds to 1,395 h of computation (968
for UC Health COVID-19, 258 for UCSD THA surgery, and 169 for
Edinburgh myocardial infarction).

Inclusion & ethics
The research included local researchers (R.A.G., J.K., and R.T.S)
throughout the research process. The research locally relevant, which
has been determined in collaboration with local partners. The roles
and responsibilities were agreed amongst collaborators ahead of the
research and a capacity-building plan for local researchers was dis-
cussed. This research would not have been severely restricted or
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prohibited in the setting of the researchers, and the study has been
approved by a local ethics review committee (i.e., UCSD HRPP IRB
Exemption Category 4, # 804237, approved on May 16, 2022). The
animal welfare regulations, environmental protection and biorisk-
related regulations in the local research setting were not applicable to
this study. The research does not result in stigmatization, incrimina-
tion, discrimination or otherwise personal risk to participants, and
does not involve health, safety, security or other risk to researchers.
The benefit sharing measures in case biological materials, cultural
artefacts or associated traditional knowledge has been transferred out
of the country are not applicable to this research. We have taken
relevant local and regional research into account in citations.

Statistics & reproducibility
No statistical method was used to predetermine the sample size of
each dataset. The sample sizes were chosen based on the available
samples in each dataset (15,279 for dataset X, 960 for dataset Y, and
1253 for dataset Z), which are sufficient for predictive modeling pur-
poses.We repeated our experiments for n = 30 independent permuted
trials, and for each trial we reset the blockchain and the distributed file
system networks, to verify the reproducibility of our experimental
findings. We used a fixed set of random seeds (different per trial) to
increase the reproducibility of our experiments. The exclusion of data
in dataset X and the reasons are described in “METHOD” Section 1.1.
We further evaluated the AUC values with two-sided, two-sample
Wilcoxon signed-rank tests36 to assess statistical significance between
the two D-CLEF methods (i.e., horizontal and vertical), compare
D-CLEF versus the centralized LR approach, and also compare D-CLEF
ensembled with other machine learning algorithms. We employed
n = 30 trials with a p-value < 0.05 indicating a statistically significant
difference. The investigators who conducted this study were not
blinded to allocation during evaluation experiments and outcome/
result assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The University of California Health COVID-19 Research Data Set (UC
CORDS, dataset X) is not publicly available due to institutional privacy
restrictions. The data is incorporated into the UC Data Discovery
Platform and is available to UC Health researchers via an internal
process developed for granting access to this data, and there is cur-
rently no limitation of the data access time period. Access can be
obtained by UC Health affiliated researchers with permission from the
Center for Data-Driven Insights and Innovation (CDI2, https://www.
ucop.edu/uc-health/departments/center-for-data-driven-insights-and-
innovations-cdi2.html). The timeframe of response to requests and
availability of data will be determined byCDI2. The links to the request
forms are only available to UC Health researchers. The researcher
needs to be affiliatedwithUCHealth to access the data. The data usage
via Data Use Agreement (DUA) is restricted to UC Health researchers.
The UC San Diego (UCSD) Total Hip Arthroplasty (THA) surgery data
(dataset Y) are available to researchers under restricted access gov-
erned by UCSD policy and US/California law. Access to the data
requires approval by the UCSD Institutional Review Board (IRB),
approval by the UCSD Health Data Oversight Committee (HDOC), and
the successful execution of a DUA between UCSD and the researcher
receiving the data. Researchers seeking access should contact Dr.
Rodney A. Gabriel (ragabriel@health.ucsd.edu) to undertake this
process. The timeframeof response to requests and availability of data
will be determined by UCSD. The time period and allowed use of the
data by the recipient researcher will be determined by UCSD and
outlined in the data use agreement. The Edinburgh myocardial

infarction data (dataset Z) used in this study are available in the
Zenodo database under accession code: 10.5281/zenodo.1492820
(https://doi.org/10.5281/zenodo.1492820)37. Source data are provided
with this paper.

Code availability
The D-CLEF software is available in the Zenodo database under
accession code: 10.5281/zenodo.14052533 (https://doi.org/10.5281/
zenodo.14052533)69. Also, the data preprocessor to preprocess/split
the raw data for horizontal and vertical D-CLEF is available in the
Zenodo database under accession code: 10.5281/zenodo.14052494
(https://doi.org/10.5281/zenodo.14052494) 70.
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