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ABSTRACT OF THE THESIS 

The corticome project: a data-driven parcellation of the neocortex 
 

by 
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From ancient times, there have been conflicting views of the significance of the brain. Such 

different opinions over the years show how little was known of the brain’s anatomy. The idea 

that our brains have a common basic structure, although it may seem rather straightforward, 

was not developed until 200 years ago when scientists first began to give names to 

structures. If all brains have a common structure, a data-driven study of different brain 

surfaces should have also similar results. In this thesis, a dataset of 100 brains is studied to 

see if a consistent partitioning among them can be found. Its aim it to asses whether the lobe 

partitioning (frontal, parietal, temporal and occipital) is also supported by data and, if not, 

to find a good data-driven partitioning of the brain. To do so, surface brain meshes are 

generated from MRI data and then treated with a partitioning software to segment them into 

different parts. The consistency among brains is analyzed with both registration and 

anatomical automatic labeling (AAL). It can be extracted from our analysis that the best data-

based partitioning of our brains corresponds to the 4-partitioned meshes for both methods 

of consistency used, registration and anatomical labeling.  
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1. INTRODUCTION 

 The brain in history 

From ancient times, there have been conflicting views of the significance of the brain. For 

example, in the fourth century B.C. Aristotle thought that the heart was the source of 

intelligence whereas the brain was the cooling mechanism for the blood.  He reasoned that 

humans are more rational than animals because, among other reasons, they have a larger 

brain to cool their “hot-bloodedness”. By the first century A.D., Alexandrian anatomists had 

already provided a general physical description of the brain. Basic structures as “soft and 

hard layers encasing the brain” were identified. Following this research, in the next century, 

Galen, one of the most popular Roman physicians, concluded that mental activity occurred 

in the brain rather than in the heart. He based his conclusions on the effects that brain 

injuries have on mental activity. And although some of his conclusions still make sense in the 

modern times, he also formulated that the brain was a cold, moist organ formed of sperm. In 

the Middle Ages, the anatomy of the brain had been consolidated into three principal 

divisions. Even though they thought that every division was the site of a different mental 

activity there was not a consensus about either its complexity or function. As Master Nicolaus 

of Salerno, as of late of the twelfth century stated “The brain is, according to some, of hot 

complexion; according to others, cold; according to others moist” [1].  

Renaissance physicians began to dissect the brain, among them also did Leonardo da Vinci 

during the first decade of the sixteenth century. Not until the 1660s did the understood 

anatomy of the brain change significantly.  Within a few years of each other, the English 

physician Thomas Willis published his Anatomy of the Brain (1664) and the Danish 
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anatomist Nicolaus Steno published his Lecture on the Anatomy of the Brain (1669). The 

brain had a new physiology and the that was the beginning of the neurology; at these times, 

the soul no longer had an easily identifiable home.       

 

 

 

 

 

 

Such different opinions over the years show how little was known of the brain’s anatomy. 

Now we know that in the brain there is no such substance as aura matter. The brain is part 

of the central nervous system (CNS) and is the most complex organ in a vertebrate’s body. In 

human beings, its cortex contains about 15 billion neurons which are connected by synapses 

among each other. These communicate by long fibers called axons, which guide electrical 

pulses to distant parts of the brain or body.  Our brain gives meaning to things that happen 

in the world surrounding us through five senses: sight, smell, hearing, touch and taste. We 

also know, and that is one of the basic ideas of our project, that our brains have a common 

basic structure. This idea, although it may seem rather straightforward, was not developed 

Figure 1. Drawings of brains from Da Vinci (S. XV), Willis (S. XVII) and current representation of a 
human brain. 
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until 200 years ago when scientists first began to give names to structures. If all brains have 

a common structure, a data-driven study of different brain surfaces should have also similar 

results. In this thesis, this concept that will guide us through our hypothesis.  
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 Motivation 

The study of human brain is one of the most actively pursued as well as challenging domains 

of research. The Nation Science Foundation (NSF) has also expressed the importance of 

understanding how the brain works and has established it one of the Engineering Challenges 

of the century. The complexity of the brain constantly requires for newer and better 

techniques at various levels to understand it. Although one of the main problems for this 

understanding is that brains are different, it has also been proven that brains have a common 

structure. And, furthermore the plasticity of it makes that every and each human being has a 

different cortical surface that surpasses fingerprints and DNA in individuality; i.e., both 

fingerprints and DNA are identical in monozygotic twins, but the brain is not. 

With the idea that we share a basic structure in all our brains, we want to assess if 

commonalities are revealed by a data-driven analysis that is not informed by anatomical 

knowledge. Therefore, the main goal of this thesis is to study a dataset of 100 brains to see if 

a consistent partitioning among them can be found only by using MRI data. At the same time, 

I seek to asses whether the lobe partitioning (frontal, parietal, temporal and occipital) is also 

supported by data and, if not, to find a good data-driven partitioning of the brain. I also want 

to prove or disapprove some of the hypothesis that come into our minds such as: is there a 

consistent way of partitioning the brain that is better than the current lobe segmentation? 

Are there different subtypes of brains; brains that have more similarities than the basic 

common structure?  

If a data-driven common segmentation can be found, may serve as a basis of a common data-

driven atlas that would represent better the population.   
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2. BASIC CONCEPTS 

 

 Neuroimaging techniques and MRI 

 Neuroimaging in the current years is described as “the process of producing images of the 

structure or activity of the brain or other part of the nervous system by non-invasive 

techniques” [2]. 

The first neuroimaging technique was invented by Angelo Mosso in the 1880s [3]. This 

technique was rudimentary and dangerous for the patient. The process involved draining 

the CSF from around the brain and replacing it with air in order to improve the contrast in 

X-ray images. Throughout the years and always aiming for a better understanding of the 

brain and safer techniques for the patients, different non-invasive techniques were 

developed.  

In the 1970s, computerized tomography (CT) opened the new era on the noninvasive brain 

imaging techniques using computer processing technologies. Prior to CT, the only brain 

imaging technique available was standard X-ray film, which gave poor contrast in soft tissue 

and involved high radiation exposure to patients. Although CT maintains the poor contrast 

in soft tissue, its advantage lays in that volumetric information can be obtained. With a CT 

scan an expert is able to distinguish and differentiate structures with a spatial resolution of 

a few millimeters.  

Ten years afterwards, brain imaging took another large step forward with the development 

of magnetic resonance imaging (MRI). MRI is based on the fact that the protons act as 
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"spinning magnets", and this spin is detectable in atoms with an unary number of protons, 

such as hydrogen. If hydrogen atoms are placed in a strong magnetic field their spins line up 

with the field and spin at a frequency that is proportional to the field strength. If they then 

receive a brief radiofrequency pulse tuned to their spinning frequency they elevated to a 

higher energy level, where they align anti-parallel to the field, and subsequently emit energy 

in an oscillatory fashion as they gradually realign themselves with the field. The strength of 

the emitted signal depends on how many protons are involved in  volume-of-interest. Careful 

manipulation of magnetic field gradients and radiofrequency pulses make it possible to 

construct extraordinarily detailed images of the brain at any location and orientation with 

sub-millimeter resolution [4, 5].  

Although MRI uses strong magnetic fields and radiofrequency pulses, they are harmless, 

making this technique completely noninvasive. MRI is also versatile because, by changing 

the parameters of the scanning, a variety of images using different contrast mechanisms can 

be obtained. For example, conventional MR images show a difference between the different 

types of tissue in the brain (e.g., gray matter, white matter and CSF) but different parameter 

settings can be used to generate images in which the brain vasculature stands out in sharp 

detail. This is what we call an MR angiography, a technique that uses the powerful magnetic 

field and radio frequency waves to evaluate blood vessels and help identify abnormalities or 

diagnose atherosclerotic disease. Safety and versatility have made MRI the technique of 

choice for imaging brain structure in most applications [5]. 

Imaging functional variations in the living brain has also become possible with the recent 

development of techniques for detecting small, localized changes in metabolism or cerebral 
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blood flow. To conserve energy, the brain regulates its blood flow such that active neurons 

with relatively high metabolic demands receive more blood than relatively inactive neurons. 

Detecting and mapping these local changes in cerebral blood flow forms the basis for three 

widely used functional brain imaging techniques: positron emission tomography (PET), 

single photon emission computerized tomography (SPECT), and functional magnetic 

resonance imaging (fMRI) [6].  

 

 Atlases  

The modern neuroimaging methods have generated a wealth of information about structural 

and functional properties of the human brain across the lifespan and under conditions of 

developmental brain disorders and diseases. The quantitative methods that have been 

developed allow extracting meaningful parameters from these examinations which can be 

related to clinical and demographical data of a subject. Brain atlases play an important role 

here, and are used to communicate results in terms of brain locations, or to relate functional 

information to specific (sub)cortical structures. During the last 30 years, several systems of 

digital brain atlases have been developed and have found wide-spread use in neurobiology.  

Considerable training is required for a human observer to recognize neocortical structures. 

Difficulties arise from the facts that even the main macroanatomical features show a 

remarkable structural variability, and other features are present as variants only in some 

individuals. Diligent procedures were developed that aid in delineating the macroscopic 

anatomy in individual brains. Manual outlining is tedious but still considered as the 



8 
 

reference method for a precise segmentation of brain structures. An abundance of neuro-

anatomical literature describes specific local variation. Modern neuro-surgical procedures 

and the upcoming neuroimaging techniques called for more accessible methods for labeling 

brain structures. The first approach for a quantitative brain atlas was provided by Talairach 

and Tournoux [7], and was based on an autopsy study of a single brain. Using their 

quantitative referencing framework, more recent approaches capture the individual 

variability as population-based digital atlases in an image-based format. These approaches 

led to the wide-spread use of “Talairach coordinates” for referencing brain locations. 

However, adapting an individual data set to this atlas employs elaborate non-linear image-

based registration procedures, and results in probabilitistic information about the possible 

structures found at this location.  

Creating an atlas that is based in more than one brain as a reference would make the brain 

labeling an easier task. As said previously though, even the main macroanatomical features 

show a remarkable structural variability, which might also mean that there are different 

classifications of the brain that depend on these features. Therefore, as many questions arise, 

a deeper analysis based on multiple brain datasets is required. With this work, I try to bring 

some light on how to classify brains and create a better atlas depending only on data [8].  
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3. METHODOLOGY 

 Background methodology 

There are a few concepts that are basic for this thesis that require a formal introduction: 

graph-matrix theory, smoothing,  graph partitioning, sphere meshes, mutual information 

and consistency.  

3.1.1. Graphs and their representation as matrices 

Conceptually, a graph is formed by vertices and edges connecting these vertices. Formally, a 

graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, formed by 

pairs of vertices. E is a multiset, in other words, its elements can occur more than once so 

that every element has a multiplicity [9, 10].  

 

Figure 2. Representation of a graph with V = {v1, . . . , v5} for the vertices and E = {(v1, v2),(v2, v5),(v5, v5),(v5, 
v4),(v5, v4)}. 

 

Since a graph is completely determined by specifying either its adjacency structure or its 

incidence structure, these specifications can be represented in far more efficient ways. As 

computers are more adept at manipulating numbers than at recognizing a symbolic data 

structure, for example, it is standard practice to communicate the specification of a graph to 
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a computer in matrix form. The matrix of the graph G = (V, E) is an n × n matrix D = (dij), 

where n is the number of vertices in G, V = {v1, . . . , vn} and dij = the weight of an edge 

between vi and vj.  

 

Figure 3. Graph G represented into matrix D. Every position of the matrix represents the weight of it with the 
other vertices. Thus, in the position 1x1, its value is 0, vertex 1 does not have any connection with itself, but 

position 1X2 has two connections with vertex 2. 

 

In this thesis, we use both concepts of graphs and matrices to represent the brain surfaces 

in triangle meshes and to analyze its consistency with matrices. A mesh is a collection of 

vertices, edges and faces that defines the shape of an object in 3D. Many applications can be 

represented as a mesh with a set of edges connected by nodes. The edges and nodes usually 

represent computation and communication. Each node and edge can have a weight that 

represents neighborhood relations and encodes for other information (such as local 

curvature, cortical thickness and other properties in the case of brains) associated with it.   

We also use the concept of sparsity in matrices.  Sparse matrices are a key data structure for 

implementing graph algorithms using linear algebra. Generally speaking, a sparse matrix is 

an nxn matrix which has a majority of zero elements. The interest of sparse matrices comes 

because the quantity of zeros in the matrix makes both computation and linear optimization 
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easier and requires less memory. Sparsity can be exploited saving time and storage in a 

computer. Many important problems could not be solved on present computers if it was not 

thanks to sparsity [11]. 

3.1.2. Smoothing  

Once we have our MRI images, they are preprocessed (see 3.2) resulting into 3D brain 

meshes. After that, there is one more step we can perform before partitioning, the smoothing. 

The main task is to remove undesirable uneven edges that originate from transforming the 

original MRI image voxels to a surface mesh while retaining desirable geometric features. 

Smoothing is used to approximate the white/grey matter interface of the real brain. This 

method is linear in the number of vertices in both time and memory space; large arbitrary 

connectivity meshes can be handled quite easily and transformed into visually appealing 

models. The smoothing step takes a surface mesh on input and it smoothes it depending on 

the parameters we specify. The most important ones are lambda, which specifies the filter 

parameter and the method, which specifies the filter method. Although there are several 

methods we can follow, we use the one described by Matheieu Desbrun [12], which applies 

an iterative filter using surface curvature as weights.  The expression that represents this 

method is the following: 

(𝐼 − 𝜆𝑑𝑡𝐾) 𝑋ାଵ = 𝑋 

This linear system depends simply on the non-zero coefficients of the matrix (𝐼 − 𝜆𝑑𝑡𝐾), 

where I represents the identity matrix,  𝜆 is the filter parameter we change (higher values 
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correspond to stronger filtering), dt is the time step and K represents the matrix of curvature 

normals.  

 

 
 
 
 
 
 
 
 
 

Figure 4. Brain meshes with (a) no smoothing, (b) smoothing with lambda 0.5 and (c) smoothing with lambda 
2.0 

 

3.1.3. Graph partitioning 

Graph Partitioning presents a way to segment a graph with non-negative edge weights in 

equally sized blocks of nodes. Graph partitioning is a universally employed technique for 

parallelization of calculations on unstructured grids for finite element, finite difference and 

finite volume techniques. Algorithms that find a good partitioning of highly unstructured 

graphs are critical for developing efficient solutions for a wide range of problems in many 

application areas on both serial and parallel computers. In our case, we do not use these 

algorithms to obtain efficient solutions but the methodology it uses, as to resemble the 

growing of human brains from a fetus to an adult state, a period when its shaping occurs and, 

therefore, its first differentiation that makes every brain unique.  As it can be seen in Figure 

5, the software we are using first simplifies the mesh, and hence, the partitioning; after that, 

it adds up all the remaining nodes in different steps [13]. 

(c) (b) (a) 
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Figure 5. Multilevel partitioning [14] 
 

METIS partitioner software 

The partitioner we use is METIS. METIS is a serial software package for partitioning large 

irregular graphs, and large meshes and computing fill-reducing orderings of sparse matrices. 

METIS has been developed at the Department of Computer Science & Engineering at the 

University of Minnesota and is freely distributed. Its source code can downloaded directly 

from [15], and is also included in numerous software distributions for Unix-like operating 

systems such as Linux and FreeBSD. 

METIS reduces the size of the meshes successively, using newly developed approaches that 

also refine its results during the uncoarsening phase, which is why it is chosen as our 

software. This can be thought as also how the human brain develops over time. Therefore, 

we use the partitioner software to divide our brain mesh into equally weighted parts. 

As it can be read in the “Encyclopedia of Parallel Computing” and in words of George Karypis 

[16]: “These highly tuned algorithms allow METIS to quickly produce high-quality partitions 

and fill-reducing orderings for a wide variety of irregular graphs, unstructured meshes, and 
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sparse matrices. The algorithms implemented in METIS are based on the multilevel graph 

partitioning paradigm [2, 3, 4], which has been shown to quickly produce high-quality 

partitionings and fill-reducing orderings. The multilevel paradigm, illustrated in Figure 5, 

consists of three phases: graph coarsening, initial partitioning, and uncoarsening. In the 

graph coarsening phase, a series of successively smaller graphs is derived from the input 

graph. Each successive graph is constructed from the previous graph by collapsing together 

a maximal size set of adjacent pairs of vertices. This process continues until the size of the 

graph has been reduced to just a few hundred vertices. In the initial partitioning phase, a 

partitioning of the coarsest and hence, smallest, graph is computed using relatively simple 

approaches describe such as the algorithm developed by Kernighan-Lin [17]. Since the 

coarsest graph is usually very small, this step is very fast. Finally, in the uncoarsening phase, 

the partitioning of the smallest graph is projected to the successively larger graphs by 

assigning the pairs of vertices that were collapsed together to the same partition as that of 

their corresponding collapsed vertex. After each projection step, the partitioning is refined 

using various heuristic methods to iteratively move vertices between partitions as long as 

such moves improve the quality of the partitioning solution. The uncoarsening phase ends 

when the partitioning solution has been projected all the way to the original graph [14]”. 

 

 

3.1.4. Spherical meshes 
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Due to its highly convoluted surface, brains are not straightforward to compare in their 

native space. Therefore, we ensure that brain surfaces have a topological genus of zero and 

transform the brain mesh onto a sphere.  With a spherical mesh, the comparison between 

spheres is easier because we only need to rotate the meshes to find the minimal normalized 

mutual information (NMI) during registration (See 3.1.6.13.1.6.1).   

 

Figure 6. Brain mesh transformed into a sphere mesh. 

 

3.1.5. Mutual information 

Two discrete random variables A and B with marginal probability distributions pA(a) and 

pB(b) and joint probability distribution pAB(a,b) are statistically independent if 

pAB(a,b)=pA(a)*pB(b) , while they are maximally dependent if they are related by a one-to-

one mapping T: pA(a) = pB(T(a)) = pAB(a, T(a)). The mutual information, I(A, B), of A and B 

measures the degree of dependence of A and B. Hence, I(A,B) is the reduction in the 



16 
 

uncertainty of the random variable A by the knowledge of another random variable B, or, 

equivalently, the amount of information that B contains about A [18]. 

3.1.5.1. Mutual Information Registration Criterion 

The [0,1]-normalized mutual information (NMI) registration criterion [18] is the value of the 

mutual information between 0 and 1; it quantifies with values between 0 and 1 that the joint 

probability distribution of corresponding voxel intensities can be estimated reliably. In fact, 

this necessitates the volume of overlap at registration to comprise a sufficiently large 

number of voxels. For low-resolution images or if the overlap region is small, the statistical 

association between both images needs to be derived from a small number of samples, which 

is not robust. In these cases, the computed NMI may show multiple local optima around the 

correct registration solution or the registered position may not coincide with a local 

maximum of MI [19]. 

Therefore, when we register two meshes we will use the mutual information to obtain a 

value between 0 and 1, being NMI = 1 if images are identical. Therefore, because our 

optimization procedures search for a minimum, we use 1-NMI. 

3.1.6. Consistency 

Consistency is the characteristic that share two or more objects that are accordant, 

compatible and not self-contradictory among each other. In our case, we will say that two 

brain meshes are consistent if their nodes are in identical positions in space, and connected 
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by the same set of edges, and therefore with the same label. To test consistency two different 

methods will be used.  

3.1.6.1. Consistency methods: registration and anatomic labeling 

The first consistency method used in this thesis is registration. The registration is a process 

that aligns two images with the same coordinate space. The registration problem is written 

as: 

 

where O corresponds to the object mesh, T to the transformation, R to the reference mesh 

and S(·) to a function that returns a similarity measure of both meshes.  

Due to its highly convoluted surface, brains are not straightforward to compare in their 

native space. Therefore, we ensure that brain surfaces have a topological genus of zero and 

transform the brain mesh onto a sphere. Once we have the sphere, we rotate it until the 

consistency is maximal. To obtain values of consistency we use the already explained concept 

of mutual information. Therefore, with a maximal consistency with the registration method 

will have a lower value of NMI. Our software performs a linear spatial transformation of a 

triangle mesh, given a rotation rt. If a reference mesh is given, a linear registration of a 

spherical input mesh to a reference mesh is performed using scalar information at each 

vertex. The summed-squared errors are used as a similarity criterion. If all meshes contain 

the same information and therefore the same partitioning NMI = 0. If the limits are not the 
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same and therefore the partitioning is different, NMI = 1. Therefore, the comparison between 

meshes will be limited to values between 0 and 1, being the values closer to 0 the best. 

 

Our second consistency check uses a comparison a given brain surface partitioning with a 

standard anatomical labeling. We use the anatomical automatic labeling (AAL) regions here 

that are defined as labeled voxels in a common space (called MNI space). Therefore, we map 

the partitioned meshes into a common space and count how many voxels in a AAL region fall 

into a specific partition. The result is a matrix, with rows corresponding to the regions of 

interest (ROIs), columns corresponding to the partitions, and cells corresponding to the 

fractions of voxels that fall into this combination of ROI and partition. In addition, the 

"sparseness" of the matrix is computed, as rated by the normalized mutual information 

(NMI). In this case, if all cells contain the same information (random partitioning), NMI = 0. 

If each ROI is contained in one partition only, NMI = 1. So, we expect also numbers between 

0 and 1, being 1 the best. (See the obtained matrices in the Appendix section 8.1) 

 

Figure 7. Example of registration: (a) reference mesh, (b) example of brain sphere mesh before registering 
and (c) example of brain sphere mesh after registering with the reference.   
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Table 1. ROIs used in the AAL method 
ROI NUMBER SHORT REGION NAME LONG REGION NAME 

1 FAG Precentral 
2 F1G Frontal_Sup 
3 F1OG Frontal_Sup_Orb 
4 F2G Frontal_Mid 
5 F2OG Frontal_Mid_Orb 
6 F3OPG Frontal_Inf_Oper 
7 F3TG Frontal_Inf_Tri 
8 F3OG Frontal_Inf_Orb 
9 ORG Rolandic_Oper 

10 SMAG Supp_Motor_Area 
11 COBG Olfactory 
12 FMG Frontal_Sup_Medial 
13 FMOG Frontal_Med_Orb 
14 GRG Rectus 
15 ING Insula 
16 CIAG Cingulum_Ant 
17 CINMG Cingulum_Mid 
18 CIPG Cingulum_Post 
19 HIPPOG Hippocampus 
20 PARA_HIPPOG ParaHippocampal 
21 AMYGDG Amygdala 
22 V1G Calcarine 
23 QG Cuneus 
24 LINGG Lingual 
25 O1G Occipital_Sup 
26 O2G Occipital_Mid 
27 O3G Occipital_Inf 
28 FUSIG Fusiform 
29 PAG Postcentral 
30 P1G Parietal_Sup 
31 P2G Parietal_Inf 
32 GSMG SupraMarginal 
33 GAG Angular 
34 PQG Precuneus 
35 LPCG Paracentral_Lobule 
36 NCG Caudate 
37 NLG Putamen 
38 THAG Thalamus 
39 HESCHLG Heschl 
40 T1G Temporal_Sup 
41 T1AG Temporal_Pole_Sup 
42 T2G Temporal_Mid 
43 T2AG Temporal_Pole_Mid 
44 T3G Temporal_Inf 
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 Image processing 

A unique feature of MRI is its multi-model nature that allows acquisition of images with 

different tissue contrasts (T1-, T2-, density-weighting, etc.). This allows us to use different 

protocols in order to maximize the information obtained from the MRI. 

To compare brains among each other, it is important to obtain surface meshes. Having this 

data in a graph form makes it is easy to manipulate and to obtain consistency values. To do 

so there is a series of crucial steps we have to follow. These steps, that perform what we 

could call a “virtual autopsy”, are what we call preprocessing steps. On this section, we will 

explain the next preprocessing steps:  

 Change of format.  

 Alignment with the stereotaxic coordinate system and the T2 weighted image. 

 Correction for intensity inhomogeneities.  

 Extraction of the intercranial compartment.  

 Classification of the intracranial space (GM, WM, CSF and connective tissue).  

 Filling of the inner cavities of the WM. 

 Clipping of the cerebellum and brain stem and split into hemispheres and 
reconstruction of a cerebral left hemisphere as a single C18-connected component.  

 

3.2.1. Change of format 

The software we are using has been developed by our lab and, even though it is used for our 

own purposes, our software package allows a combined analysis of these data sources 
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handling image datasets (MRI, PET, SPECT, CCT) and signal datasets (EEG, MEG) in a four 

dimensional coordinate space (x, y, z and time). 

Therefore, the first step we are performing with the MRI data is converting it from the 

Neuroimaging Informatics Technology Initiative (NIfTI) format to our own format, the 

BRIAN format [20]. 

 

3.2.2. Alignment with the stereotaxic coordinate system 

The second step is a common alignment of the data. For intersubject comparison, it is useful 

to align the dataset with a coordinate system and introduce a spatial normalization. While 

the most common approach was developed by Talairach 40 years ago [7], the “stereotactical 

coordinate system” has found the most widespread acceptance due to the need for more 

precise methods of comparing human brains. This method uses the anterior (AC) and 

posterior (PC) commissure as reference structures. Tehir midpoint defines the origin of a 

right-handed coordinate.  

To detect the AC/PC bundles and to register the dataset with the coordinate system we need 

to determine the mid-sagittal plane, detect the commissures, find the crossing between the 

plans and both commissures, compute the center and the axes and compute an affine 

transform for the peeled image [21]. 
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3.2.3. Correction for intensity inhomogeneities 

There is a need to correct for intensity inhomogeneity due to the bias in the contrast of the 

images. We use the bias field estimate F. The bias field F is estimated from the square root of 

the product of the T1 and T2-weighted images after thresholding out non-brain tissues. 

Before applying any correction it is necessary to register T1 and T2 to make sure they are as 

aligned as possible. This method works because the contrast x in the T1w and 1/x in the T2w 

within grey and white matter essentially cancel after multiplication, whereas the bias field F 

does not [22]. 

 

3.2.4. Extraction of the intercranial compartment 

The approach we follow is based on the idea that proton-density (PD)-weighted MR images 

provide a good basis for intracranial volume (ICV) segmentation, because the skull signal 

intensity is low, and all intracranial tissue and the cerebrospinal fluid (CSF) provide a high 

signal intensity. Therefore, the first part of our algorithm consists of generating an ICV mask 

from a PD-weighted MR image. Most often, only a high-resolution T1-weighted MR image is 

available. The second part of our algorithm consists of a non-linear registration of a T1-

weighted reference image to a T1-weighted study image, yielding a field of inter-subject 

deformation vectors. This deformation field is applied to the PD-weighted reference image 

to generate an ”artificial” PD-weighted study image. This artificial PD-weighted image is 

finally segmented to yield an ICV mask for the study image [23] . 
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3.2.5. Classification of the intracranial space 

It is a key point to have an accurate and robust tissue classification or segmentation for 

detecting changes in tissue volumes in healthy and diseased brain. In our preprocessing 

steps we focus on fuzzy c-means (FCM)-based methods because of their many desirable 

features in tissue classification. The fundamentals of fuzzy clustering in medical image 

segmentation are well described in Sutton et al. (2000) [24]. We use an extended AFCM to 

multi-spectral segmentation that included contextual constraints over neighborhood spatial 

intensity distribution. This method was applied to segment GM, WM and CSF of MR images 

[25]. 

 

3.2.6. Filling of the inner cavities of the WM 

The inner cavities of the WM segmentation (ventricles and basal ganglia) were filled using a 

patch-based approach using an atlas of 20 pre-segmented data sets.  

This patch-based scheme is based on a weighted label fusion, where the weight of each 

sample is only driven by the similarity of intensity between patches (i.e., small subvolumes 

of the image defined as three-dimensional, 3D, cubes). In the used method, voxels with 

similar surrounding neighborhoods are considered to belong to the same structure and thus 

are used to estimate the final label [26]. 
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3.2.7. Clipping of the cerebellum and brain stem and split into hemispheres and 

reconstruction of a cerebral left hemisphere as a single C18-connected 

component 

From the resulting WM segmentation of the brain, the cerebellum and brain stem were 

clipped at level of 15 mm below the AC-PC plane, and split into hemispheres at the mid-

sagittal plane. In each hemisphere, a multi-seeded region growing process was applied to 

reconstruct the object as a single C18-connected component of topological genus 0. After 

that, the mesh was generated [27].  

 

 Data  

I worked with a set of 100 MRI data from human brains. This data is from the Human 

Conectome Project (HPC), an NIH Blueprint for Neuroscience Research. It was obtained from 

healthy volunteers who were scanned with MRI. T1-weighted data were acquired using a 3D 

MPRAGE protocol [28] with parameters TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle 

8 degrees, FOV = 224 x 224 mm, 0.7 mm isotropic voxel size, 7 min 40 s acquisition time. T2-

weighted data were acquired using a 3D T2-space protocol with parameters TR = 3200 ms, 

TE = 565 ms, FOV = 224 x 224 mm, 0.7 mm isotropic voxel size, 8 min 24 s acquisition time. 

Once the data was obtained, I applied the preprocessing steps (see 3.2) and I used just the 

left hemispheres meshes for simplicity of our study. 

 



25 
 

4. PROCEDURE 

 Hypothesis: a data driven strategy 

As I developed experiments and hypothesis depending on the results I obtained, it can be 

said that I used a data driven strategy. I began with the two following hypothesis: 

 The current segmentation of the brain is different from a data-driven segmentation 

of a brain mesh surface.  

 There is no similarity or consistency between 4-partitioned brains as the partitioning 

software has a random initial point in every surface brain mesh and therefore, the 

equally-weighted partitions will be random.  

Once we had partitioned the brains in four parts and compared its consistency with only the 

registration method we asked ourselves another question:  

 There has to be different ways of corroborating the results of consistency among 

surface brain meshes. 

Finally, once we had our two methodologies to compare consistency and had the results for 

the 4-partitioned brains, we developed the following ideas: 

 There is a better partitioning of the brain than the one that we already have, which is 

consistent among brains.   

 There are different subtypes of brains; brains that have more similarities than the 

basic common structure.  
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 Experiments 

The first step once I have the data is to create meshes. To do so, first the meshes are 

generated using the preprocessing steps. Only the left brain hemispheres of 100 subjects 

were used; afterwards a smoothness is applied. In the first trials, as I did not know how the 

smoothing affected the brains, for example, if there was a loss of information or not, I used 

three different smoothness. To do so, lambdas of 0, 0.5 and 2.0 were used. As I could further 

discover, there was no significant difference in the registration values with the different 

lambdas. As applying different smoothness was time consuming and neither gave or 

substracted information from our samples, all meshes were smoothed with a setting of 

lambda=2.0.  

Next, hemispheres were clustered into n = 4 partitions. Once I had all the brains partitioned 

I just needed to register them to see if they were consistent among each other. Therefore, 

they were “inflated” into spheres and registered to an arbitrarily chosen brain from our 

dataset. 

 
Figure 8. (a) original mesh with no smoothing, (b) smoothed and partitioned mesh and (c) sphere mesh.
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The second consistency method was also applied. To apply this second process though, it 

was necessary to first have a consistent labeling of the four parts. Because the partitioner 

uses random seeds for the partitions, the extent of the partitions may be similar, although 

the partition labels may not be consistent across meshes, the labels of the partitions might 

not be the same. Therefore, I created a software that, by comparing the mean coordinates of 

the partitions, relabeled the meshes in a consistent way. Once I had all the brains relabeled 

consistently, the anatomic labeling method could be applied. Therefore, a matrix was 

obtained which columns corresponded to the same partitions.  
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5. RESULTS 

 Four-partitioned brains 

The first set of results corresponds to the four-partitioned brains. As said before, our aim is 

to assess if a data-driven partitioning of the brains gives a similar partitioning as the one that 

corresponds to the lobes and is currently in use and if this partitioning was consistent among 

100 brains.  

 

 

 

 

 

 

 

 

An example hemisphere clustered into 4 partitions is shown in Figure 9, left. It can also be 

observed how the distribution of the NMI in the registration process is. As the histogram 

shows, the distribution of the 4-partitioned brains has a Gaussian distributed shape (p-value 

of the Shapiro-Wilk [29] normality test is 0.158).  The mean consistency with the registration 

Figure 9. Example of 4-partitioned brain using METIS software and distribution of NMI after registration. 
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method has a value of 0.323 with a standard deviation of 0.054. That means that our 

partitioned brains match, the nodes are in identical positions in space and with the same 

label, and only in nearly 33 out of 100 brains they are different with a little difference 

between them as the standard deviation has a low value.  

The following four representations of the brains are the resulting mean matrix from the 

anatomical labeling method. As I previously mentioned, this matrix consists of, in this case, 

four columns which represent the four partitions and 44 rows that represent the ROIs (Table 

1).  The four images represent these four columns and show with color which are the main 

ROIs that lay in each partition. 

 

 

 

 

 

 

 

 

 Figure 10. Representation of the 4 columns of the matrix of results from the 
automated labeling method in a reference brain mesh. As each column 
represents a partition, we can see how dominant they are. The higher the 
dominance, the reddish the part will be colored.   
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It can be seen that there are clearly 4 different parts of the brain that correspond quite well 

to the current lobe segmentation of the brain (Figure 11). With a first glance at the results 

we can already see that the data-driven partition of the brain in four parts matches the 

current distribution of the lobes with some differences. It is quite surprising that even 

though our software has no previous information on how the mesh would be partitioned nor 

a specific start point for its algorithm, the partitions of our data-based segmented brains 

have a distribution that is similar to the lobe segmentations based on human expertise. One 

explanation for these differences could be that our four partitions weight equally, whereas 

the lobe-partitioning is based more on tissue characterization and function that normally 

differ depending on the subject.   

 

In the following section (5.2), we will analyze numerically the values obtained by the 

anatomical mapping methodology for the 4-partitioned brains alongside with the 2 to 10-

partitoned ones to have a better perspective. 

 

 

Figure 11. Comparison between the current partitioning of the brain and our data-based 
segmentation. 
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 2 to 10-partitioned brains 

Once it had been confirmed that the four-partitioned brains were fairly consistent among 

each other (around 68%) I decided to divide the brains into different numbers of parts to see 

how the distribution of consistency was and, if with any case, there was a more consistent 

partitioning and, therefore, a better data-supported way to cluster the brain.  

In Figure 12, we can observe the different segmentations I have performed in each of the 100 brains. As we 
can see in the example, the partitions that go from 2 to 10 and divide the brain in equally-weighted parts. The 
histograms in Figure 13 show that all the values of registration are Gaussian distributed around a mean as all 

the p-values of the Shapiro-Wilk normality test are greater than 0.05 which means that they do not deviate 
from normality. The only partitioning that does not follow this distribution are the 3-partitioned brains which 
seems to follow a bimodal distribution. The best value of registration corresponds to the brains partitioned in 

two parts as it is logical (and trivial), and increases with more partitions. It can also be appreciated that the 
four-partitioned brains have the second maximum consistency which indicates that apart from the trivial 

solution, segmenting the brain in four parts is the best option. The lowest registration value (highest 
consistency), for the brains with two partitions, is 0.767 meanwhile the lowest consistency, that is from the 

brains partitioned in 5 parts, has a value of 0.565. We can better see the results in  
 
 
 
 
 
 
 

 
 

Table 2 and the graph representations (Figure 14 and Figure 15).  
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Figure 12. Examples of the same brain mesh partitioned in 2, 3, 4, 5, 6, 7, 8, 9 and 10 data-based parts.  
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Figure 13. Distribution of the different partitionings with its mean registration value. As the reference is 
one of the brains there is always a fully consistent brain.  
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Table 2. Results of consistency using registration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number 
of parts 

Consistency Standard deviation 

2 0.767 0.054 
3 0.644 0.123 
4 0.677 0.062 
5 0.565 0.065 
6 0.600 0.060 
7 0.633 0.063 
8 0.656 0.052 
9 0.627 0.049 

10 0.641 0.050 
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Figure 15. Number of partitions vs. standard deviation 

Figure 14. Number of partitions vs. consistency 
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As said previously, for 3 partitions the standard deviation has the highest value which 

confirms our thoughts that it might follow a bimodal function. The lowest standard deviation 

corresponds to 9 partitions which means that, even if the meshes are divided with 9 parts, 

the similarity between them is high. It is also important to take into account that the meshes 

with 8, 9 and 10 partitions have the three lowest standard deviations with a mean 

consistency that neither corresponds to the lowest values. Also, another tendency we could 

appreciate from our results is that the brains with even partitions have a higher consistency 

than the ones with non-even partitioning. 

In the following figures we can better appreciate the two subgroups that form when we 

segment the brain meshes in 3 parts. The histograms show that the first subgroup resembles 

the 2-partitioned brains on the mean value although it deviates from normality as its 

Shapiro-Wilk test p-value is 0.015. The second group though, has the highest mean of all the 

segmentations and, although it has a Gaussian shape, it does not resemble any of the other 

partitionings. With these results, we cannot draw a final conclusion on why we obtain two 

subgroups of 3-partitioned brains.   

Figure 16. Histograms for the two subgroups of 3-partitioned brains 
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If we now look at the results of the anatomical mapping methodology we can correlate them 

with the registration values; the lowest the registration value, higher the consistency and the 

higher the sparsity of the resulting matrix of the anatomical mapping method which results 

into a clear representation of the partitions of the brains. Before analyzing the results 

numerically, I will show how the results from the 2-partitioned and 9-partitioned brains are 

in order to see the differences between having only two segments (which is a trivial solution 

and therefore the partitioning should be clear) or more partitions, which makes the 

boundaries less distinguishable.   

Figure 18. Representation of the results of 2-partitoned brains with the AAL method.  

Figure 17. Example of the two typologies of the 3 partitioned brains obtained. 
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As the images show in Figure 18, the resultant two-column matrix of the anatomical mapping 

method gives two-segmented brains with a clear separation of the two partitions (cranial 

and caudal portion of the brain). It can also be appreciated that the two parts are more 

differentiated than the four-partitioned brain results, which is logical as in this case it is a 

trivial solution, the ROIs lay in one partition or the other. If we now take a look at the nine-

partitioned brains (Figure 19) the differences are bigger and the different parts more 

difficult to distinguish.  

Although it can be seen that there are nine parts, these are not well separated among each 

other and that makes the consistency of the nine-partitioned brains to be the lower (although 

its standard deviation is the best one). It is much more difficult to extract information from 

the images obtained.  

 

After the illustration of some the results a statistic study is needed to draw conclusions. 

Therefore, I will first add up the maximum value that a partition holds at each ROI (maximum 

of each row), and compare that with the different partitionings. Also, I will perform a paired 

t-test [30] between the four-partitioned brains and the rest of the segmentations to 

determine if there is a partitioning that is clearly better or worse that the one that we have. 
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Figure 19. Mapping of the 9-partitioned brains. The scale of color (red to white meaning high to low 
values of correlation ROI/partition) indicates the domination of the ROI in that partition.  
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Table 3. Maximum value of ROIs depending of partitioning 
 

# of partitions Sum of maximums 
for each ROI 

Percentage 

2 38.8 88.3 
3 35.5 80.8 
4 36.2 82.2 
5 30.5 69.2 
6 30.9 70.2 
7 30.4 69.1 
8 30.5 69.4 
9 26.5 60.2 

10 25.3 57.56 
  

 

In this table, we can see that the more we segment the brain the less sparse the anatomic 

mapping matrix. This can be extracted by the values of the sum when we add up the 

maximum values of dominance of a partition in every ROI (being 1 the complete concordance 

of a ROI in one partition) and out of 44 ROIs. A complete sparse matrix would have a sum of 

44 and a percentage of 100%. Instead, the maximum percentage is 88.28% for the 2-

partitioned brain being the second best the 4-partitioned brain. To check if this dominance 

is real, meaning that the maximal value added is not just only bigger than 0.5, we apply a 

threshold of dominance. A value of 0.7 is considered as the threshold as it is the highest 

consistency value obtained with the registration. It can be seen that also the more partitions 

we have the less the number of ROI that lay 70% or more in one partition and therefore, the 

less sparse the matrix of results is. 
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Table 4. Number of dominant ROIs 

  

 

The last test performed is a paired t-test among the 4-partitioned brain and the other 

partitions. With this test I want to check if there is a partitioning clearly different than the 

one of the 4-partitioned brains whose consistency value is also better. 

 

Table 5. Paired t-test results in which we compare the means of the different partitioned brains and its 
resultant p-value 

 
 

Paired t-test Mean 4 
partitions 

Mean of the 
compared 
partitions (2, 3, 
5, 6, 7, 8, 9, 10) 

p-value 

Part 4 vs Part 2 0.821 0.883 8.35E-02 
Part 4 vs Part 3 0.821 0.808 7.12E-01 
Part 4 vs Part 5 0.821 0.692 1.36E-03 
Part 4 vs Part 6 0.821 0.702 2.04E-03 
Part 4 vs Part 7 0.821 0.691 5.92E-04 
Part 4 vs Part 8 0.821 0.694 1.30E-03 
Part 4 vs Part 9 0.821 0.602 5.44E-08 
Part 4 vs Part 10 0.821 0.576 4.88E-09 

 

# of 
partitions 

# of ROIs  Percentage 

2 37 84.091 
3 31 70.455 
4 32 72.727 
5 21 47.727 
6 23 52.273 
7 22 50.000 
8 22 50.000 
9 12 27.273 

10 11 25.000 
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Figure 20. Number of dominant ROIs depending on the 
partitions 
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We can see that only two of the p-values are non-significant (p-value is smaller than 5E-02) 

and the rest are significantly different than the 4-partitioned brains. From the ones that are 

significantly different, they all have a mean consistency that is lower than the one from the 

four-partitioned brains. Therefore, with the information provided by the rest of the data we 

would say that there is not better partitioning than 4 using what we have used.  
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6. SUMMARY AND DISCUSSION 

A set of 100 brain MRI data has been transformed to brain meshes and then partitioned into 

different parts, from 2 to 10. The first purpose was to obtain data-based 4-partitioned brain 

surfaces to see if they matched with the current distribution of the lobes. As seen in the 

results section, the data-based partitioning and the current distribution of the lobes, 

segmented by medical experts years ago, match surprisingly well. Our hypothesis was that 

the current segmentation of the brain is different from a data-driven segmentation of the 

brain mesh surface; we obtained proof that the four-partitioned brain meshes are similar to 

the segmentation of the medical experts as well as consistent among each other. Although 

we cannot say they are identical, the disposition of the parts are the same and its only 

difference lays in the boundaries of the segments as our partitioning creates four equally-

weighted parts whereas the lobe distribution does not follow this premise. Also, if the results 

among the 100 brains are compared, a consistency that is around a 70% is obtained which 

means that 7 of 10 brains match, and a low standard deviation (0.062) which means that the 

30% remaining are not consistent but do not vary a lot. With both the images and values 

obtained by the anatomical mapping we can see clearly four differentiated parts and a sparse 

matrix of results. Also, with results obtained from the paired t-test we obtain that there is no 

better partitioning and therefore no better data-based partitioning for a left hemisphere 

brain mesh obtained from MRI data.  

If we comment the results obtained with more partitions I first have to say how surprised I 

am of the high consistency obtained within the different partitionings, especially for the 

brains with higher number partitions. As it was explained before, the partitioner software 
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used does not begin its segmentation from a fixed point in all our meshes but a random point 

every time. Therefore, to obtain results with high consistency was really unexpected. The 

results from the trivial solution, dividing the brain in two parts, give us the best consistency 

values with both methods being the second best result the meshes segmented in 4 parts. 

Apart from that, the lowest consistency with registration is for the 5-partitioned brains with 

a value of 0.56 and then rises up around 0.63 for the 6-,7-,8-,9- and 10-partitioned brains. 

Their standard deviations are low, being the lowest the last 3 (8-, 9-, and 10-) due to its 

flexibility. We should also mention that the 3-partitioned brains have a bimodal distribution 

in the registration results which could suggest two different options in the partitioning and 

therefore maybe two different brain typologies. When we analyzed the two subgroups 

separately we could distinguish than although the first subgroup resembled the 2 partitioned 

brains and its mean and standard values were among the results obtained by the rest of the 

partitionings, the second subgroup had the lowest consistency and the highest standard 

deviation. The anatomical mapping confirms that the more partitions we have, the less 

sparse our resultant matrices are, and therefore the less defined the boundaries between 

partitions are. When we perform a paired t-test to see if there are significant better results 

than the 4-partitioned brains we discover that, as it could also be extracted from the previous 

results, 4 parts is the best option.  

After concluding that from the results obtained the best partitioning is four parts, I would 

like to state some of the problems or improvements which could be made. First of all, only 

left hemispheres were used and for that reason the results obtained should be corroborated 

with also right-hemisphere and whole-brain meshes. Also, it can be seen in the results that 

the consistency and standard deviation of the odd number partitioned brains have worse 
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values than the even number. This could be a problem of the algorithm used and therefore, 

it would be better if the results were contrasted with other partitioning softwares. With 

these two improvements and more samples we may be able to discover different subtypes 

of brains and then relate them to diseases, which we have not seen in this project.  
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8. APPENDIX 

 Anatomical Labeling matrices of results 

The results of the anatomical automatic labeling (AAL) are attached. These matrices are the 

resultant mean matrices of the 100 brains which have been partitioned in 2- to 10- segments 

and then analyzed with the AAL method. With these results a statistical dominance analysis 

could be performed as well as the representation of the brains with different parts. 

The tables contain the matrices which rows correspond to the regions of interest (ROIs) and 

which columns corresponding to the number of partitions. The number in the cells 

corresponds to the fractions of voxels that fall into this combination of ROI and partition. 

With these values, we can obtain representations like Figure 10, Figure 18 and Figure 19. 
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Table 6. AAL matrix for 3 partitions Table 7. AAL matrix for 2 partitions 
ROI Partition 1 Partition 2

1 0.9541 0.0459
2 0.9542 0.0458
3 0.9540 0.0460
4 0.9542 0.0458
5 0.9542 0.0458
6 0.9540 0.0460
7 0.9542 0.0458
8 0.9459 0.0541
9 0.5975 0.4025

10 0.9542 0.0458
11 0.9372 0.0628
12 0.9542 0.0458
13 0.9542 0.0458
14 0.9541 0.0459
15 0.6460 0.3540
16 0.9542 0.0458
17 0.9359 0.0641
18 0.6432 0.3568
19 0.1429 0.8571
20 0.0725 0.9275
21 0.2281 0.7719
22 0.0541 0.9459
23 0.0694 0.9306
24 0.0558 0.9442
25 0.0478 0.9522
26 0.0461 0.9539
27 0.0458 0.9542
28 0.0469 0.9531
29 0.9330 0.0670
30 0.4682 0.5318
31 0.4200 0.5800
32 0.3166 0.6834
33 0.0470 0.9530
34 0.5526 0.4474
35 0.9542 0.0458
36 0.9540 0.0460
37 0.8895 0.1105
38 0.8334 0.1666
39 0.1214 0.8786
40 0.0623 0.9377
41 0.0461 0.9539
42 0.0464 0.9536
43 0.0458 0.9542
44 0.0462 0.9538

ROI Partition 1 Partition 2 Partition 3
1 0.7714 0.1053 0.1232
2 0.9922 0.0026 0.0052
3 0.9984 0.0013 0.0004
4 0.9988 0.0008 0.0004
5 1.0000 0.0000 0.0000
6 0.9579 0.0342 0.0080
7 0.9998 0.0001 0.0001
8 0.9829 0.0127 0.0045
9 0.2555 0.6390 0.1055

10 0.8426 0.0151 0.1423
11 0.9501 0.0390 0.0109
12 1.0000 0.0000 0.0000
13 1.0000 0.0000 0.0000
14 0.9997 0.0002 0.0001
15 0.4804 0.4702 0.0494
16 0.9843 0.0016 0.0142
17 0.3554 0.0857 0.5589
18 0.0187 0.1179 0.8634
19 0.0060 0.7090 0.2850
20 0.0002 0.6646 0.3352
21 0.0263 0.7734 0.2003
22 0.0009 0.1860 0.8132
23 0.0000 0.1503 0.8497
24 0.0006 0.2520 0.7474
25 0.0000 0.1397 0.8603
26 0.0000 0.3105 0.6895
27 0.0000 0.3514 0.6486
28 0.0000 0.5441 0.4559
29 0.2169 0.4444 0.3387
30 0.0000 0.2311 0.7689
31 0.0111 0.5783 0.4106
32 0.0066 0.7574 0.2361
33 0.0000 0.6616 0.3384
34 0.0014 0.1632 0.8355
35 0.1629 0.1571 0.6799
36 0.9871 0.0051 0.0078
37 0.6854 0.2357 0.0790
38 0.1694 0.1618 0.6688
39 0.0000 0.9201 0.0799
40 0.0000 0.8996 0.1004
41 0.0001 0.8470 0.1529
42 0.0000 0.8389 0.1611
43 0.0000 0.8333 0.1667
44 0.0000 0.8165 0.1835
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  Table 8. AAL matrix for 4 partitions 

ROI Partition 1 Partition 2 Partition 3 Partition 4
1 0.0449 0.9546 0.0005 0.0000
2 0.7666 0.2334 0.0000 0.0000
3 0.9999 0.0000 0.0001 0.0000
4 0.7347 0.2653 0.0000 0.0000
5 1.0000 0.0000 0.0000 0.0000
6 0.4391 0.5597 0.0012 0.0000
7 0.9126 0.0874 0.0000 0.0000
8 0.9861 0.0056 0.0083 0.0000
9 0.1145 0.5399 0.3456 0.0000

10 0.2934 0.7066 0.0000 0.0000
11 0.9746 0.0019 0.0235 0.0000
12 0.9715 0.0285 0.0000 0.0000
13 1.0000 0.0000 0.0000 0.0000
14 1.0000 0.0000 0.0000 0.0000
15 0.5581 0.1286 0.3133 0.0000
16 0.9572 0.0428 0.0000 0.0000
17 0.2819 0.6606 0.0002 0.0573
18 0.0741 0.4547 0.0260 0.4451
19 0.0878 0.0131 0.8403 0.0588
20 0.0157 0.0020 0.8257 0.1566
21 0.1405 0.0104 0.8486 0.0006
22 0.0010 0.0058 0.0013 0.9919
23 0.0000 0.0232 0.0000 0.9768
24 0.0039 0.0022 0.0607 0.9332
25 0.0000 0.0016 0.0016 0.9968
26 0.0000 0.0015 0.0790 0.9195
27 0.0000 0.0000 0.1170 0.8830
28 0.0008 0.0000 0.5610 0.4382
29 0.0112 0.9761 0.0100 0.0027
30 0.0000 0.4429 0.0192 0.5378
31 0.0000 0.4775 0.2500 0.2725
32 0.0000 0.3942 0.5902 0.0157
33 0.0000 0.0125 0.5339 0.4536
34 0.0033 0.5067 0.0040 0.4860
35 0.0008 0.9980 0.0000 0.0012
36 0.9656 0.0341 0.0003 0.0000
37 0.8136 0.0493 0.1345 0.0026
38 0.4739 0.2563 0.1469 0.1229
39 0.0005 0.1175 0.8820 0.0000
40 0.0003 0.0338 0.9659 0.0000
41 0.0005 0.0023 0.9972 0.0000
42 0.0000 0.0016 0.9453 0.0531
43 0.0000 0.0000 1.0000 0.0000
44 0.0001 0.0000 0.9744 0.0255
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ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5
1 0.0115 0.9003 0.0242 0.0591 0.0048
2 0.6540 0.3073 0.0015 0.0155 0.0217
3 0.9653 0.0007 0.0000 0.0006 0.0333
4 0.4270 0.5262 0.0040 0.0267 0.0162
5 0.8976 0.0624 0.0000 0.0066 0.0333
6 0.1340 0.7982 0.0101 0.0494 0.0083
7 0.4789 0.4656 0.0059 0.0220 0.0276
8 0.8082 0.1332 0.0034 0.0215 0.0338
9 0.0343 0.4265 0.1791 0.3555 0.0045

10 0.3414 0.5932 0.0170 0.0356 0.0128
11 0.9363 0.0048 0.0041 0.0238 0.0310
12 0.8920 0.0740 0.0000 0.0045 0.0295
13 0.9667 0.0000 0.0000 0.0000 0.0333
14 0.9661 0.0003 0.0000 0.0003 0.0333
15 0.2943 0.2644 0.1081 0.3134 0.0199
16 0.9303 0.0347 0.0004 0.0008 0.0338
17 0.3332 0.2622 0.2487 0.0231 0.1329
18 0.0566 0.0632 0.4079 0.0475 0.4249
19 0.0641 0.0200 0.1079 0.7266 0.0815
20 0.0259 0.0112 0.0911 0.6995 0.1723
21 0.1025 0.0232 0.1281 0.7264 0.0199
22 0.0164 0.0234 0.0727 0.1521 0.7353
23 0.0155 0.0274 0.1918 0.0895 0.6758
24 0.0186 0.0184 0.0405 0.2148 0.7077
25 0.0130 0.0212 0.1452 0.0967 0.7239
26 0.0180 0.0182 0.1530 0.1348 0.6760
27 0.0167 0.0161 0.0261 0.2123 0.7289
28 0.0152 0.0083 0.0474 0.5010 0.4280
29 0.0059 0.6167 0.2411 0.0734 0.0629
30 0.0158 0.0532 0.6352 0.0203 0.2755
31 0.0137 0.0947 0.6641 0.0282 0.1993
32 0.0148 0.0835 0.6212 0.2019 0.0787
33 0.0237 0.0177 0.6070 0.0570 0.2946
34 0.0191 0.1065 0.4931 0.0326 0.3486
35 0.0561 0.6086 0.2103 0.0302 0.0948
36 0.9519 0.0127 0.0000 0.0021 0.0333
37 0.7372 0.0119 0.0350 0.1793 0.0365
38 0.3634 0.0874 0.1479 0.2015 0.1998
39 0.0000 0.0421 0.2509 0.6980 0.0091
40 0.0025 0.0271 0.2573 0.6905 0.0227
41 0.0003 0.0167 0.1573 0.8007 0.0250
42 0.0052 0.0192 0.1880 0.6604 0.1272
43 0.0000 0.0167 0.1458 0.8125 0.0250
44 0.0024 0.0161 0.1052 0.7767 0.0995

Table 9. AAL matrix for 5 partitions 



54 
 

 

 

 

  

ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6
1 0.5129 0.4360 0.0368 0.0072 0.0000 0.0071
2 0.0722 0.2776 0.6357 0.0061 0.0032 0.0051
3 0.0084 0.3408 0.6300 0.0125 0.0082 0.0000
4 0.0310 0.7472 0.2095 0.0039 0.0043 0.0040
5 0.0072 0.5827 0.3893 0.0125 0.0083 0.0000
6 0.1175 0.8642 0.0069 0.0068 0.0000 0.0045
7 0.0094 0.9422 0.0369 0.0036 0.0066 0.0013
8 0.0044 0.6384 0.3293 0.0200 0.0079 0.0000
9 0.2137 0.4132 0.0015 0.3224 0.0491 0.0002

10 0.3323 0.0355 0.6199 0.0040 0.0000 0.0083
11 0.0100 0.0930 0.8602 0.0297 0.0063 0.0008
12 0.0120 0.1128 0.8585 0.0084 0.0053 0.0030
13 0.0083 0.2552 0.7156 0.0125 0.0083 0.0000
14 0.0083 0.2298 0.7410 0.0125 0.0083 0.0000
15 0.0563 0.5622 0.0536 0.3116 0.0155 0.0007
16 0.0178 0.0634 0.8982 0.0123 0.0083 0.0000
17 0.4720 0.0065 0.4747 0.0032 0.0296 0.0139
18 0.4385 0.0092 0.1761 0.0003 0.1972 0.1786
19 0.0229 0.0012 0.0821 0.7342 0.0061 0.1534
20 0.0170 0.0004 0.0131 0.5929 0.0146 0.3620
21 0.0196 0.0080 0.1717 0.7645 0.0124 0.0238
22 0.0227 0.0022 0.0079 0.0000 0.1105 0.8567
23 0.0407 0.0025 0.0074 0.0000 0.3504 0.5990
24 0.0137 0.0008 0.0109 0.0200 0.0284 0.9262
25 0.0137 0.0034 0.0051 0.0001 0.4234 0.5543
26 0.0122 0.0031 0.0052 0.0099 0.5810 0.3887
27 0.0091 0.0000 0.0076 0.0166 0.2136 0.7532
28 0.0104 0.0000 0.0076 0.2929 0.0585 0.6307
29 0.7474 0.2037 0.0074 0.0275 0.0128 0.0013
30 0.4119 0.0089 0.0181 0.0129 0.5012 0.0469
31 0.3882 0.0224 0.0009 0.0403 0.5455 0.0028
32 0.3052 0.0509 0.0001 0.2015 0.4403 0.0020
33 0.0259 0.0082 0.0000 0.0307 0.9208 0.0145
34 0.4874 0.0076 0.0488 0.0066 0.2747 0.1748
35 0.8170 0.0032 0.1556 0.0141 0.0023 0.0079
36 0.0088 0.0565 0.9135 0.0125 0.0083 0.0004
37 0.0089 0.0704 0.7709 0.1220 0.0081 0.0197
38 0.1883 0.0156 0.6186 0.0337 0.0213 0.1225
39 0.0507 0.0302 0.0081 0.8469 0.0640 0.0000
40 0.0169 0.0037 0.0078 0.8372 0.1287 0.0058
41 0.0064 0.0007 0.0089 0.9585 0.0171 0.0084
42 0.0092 0.0006 0.0068 0.6416 0.2907 0.0511
43 0.0083 0.0000 0.0083 0.9625 0.0125 0.0083
44 0.0087 0.0000 0.0081 0.7460 0.1009 0.1363

Table 10. AAL matrix for 6 partitions 
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ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7
1 0.6639 0.2509 0.0238 0.0219 0.0007 0.0388 0.0000
2 0.1370 0.2116 0.6322 0.0055 0.0004 0.0017 0.0117
3 0.0167 0.4179 0.5317 0.0000 0.0000 0.0000 0.0337
4 0.1259 0.6575 0.1955 0.0045 0.0000 0.0031 0.0136
5 0.0210 0.7090 0.2367 0.0000 0.0000 0.0000 0.0333
6 0.2025 0.7412 0.0087 0.0096 0.0000 0.0363 0.0017
7 0.0518 0.8851 0.0374 0.0005 0.0000 0.0021 0.0232
8 0.0244 0.7119 0.2177 0.0000 0.0000 0.0023 0.0437
9 0.1730 0.2992 0.0000 0.0082 0.0000 0.4784 0.0411

10 0.3799 0.0049 0.5800 0.0218 0.0131 0.0003 0.0000
11 0.0001 0.0725 0.8777 0.0018 0.0011 0.0000 0.0469
12 0.0139 0.0578 0.9131 0.0000 0.0000 0.0000 0.0151
13 0.0110 0.2254 0.7303 0.0000 0.0000 0.0000 0.0333
14 0.0115 0.2035 0.7513 0.0000 0.0000 0.0000 0.0336
15 0.0460 0.4874 0.0392 0.0006 0.0017 0.2746 0.1505
16 0.0153 0.0347 0.9387 0.0015 0.0001 0.0000 0.0097
17 0.3113 0.0000 0.4291 0.2383 0.0205 0.0000 0.0008
18 0.1411 0.0000 0.0276 0.7561 0.0675 0.0000 0.0077
19 0.0009 0.0181 0.0457 0.0767 0.0737 0.0000 0.7849
20 0.0000 0.0149 0.0156 0.0986 0.1672 0.0000 0.7037
21 0.0000 0.0192 0.0716 0.0227 0.0323 0.0000 0.8541
22 0.0061 0.0001 0.0003 0.3343 0.6370 0.0000 0.0223
23 0.0282 0.0000 0.0000 0.5521 0.4039 0.0000 0.0158
24 0.0001 0.0017 0.0015 0.1471 0.7813 0.0000 0.0683
25 0.0125 0.0000 0.0000 0.4860 0.4707 0.0054 0.0254
26 0.0066 0.0000 0.0000 0.2986 0.5316 0.1112 0.0519
27 0.0000 0.0005 0.0000 0.0531 0.7884 0.0538 0.1042
28 0.0000 0.0089 0.0015 0.0489 0.4736 0.0067 0.4604
29 0.6656 0.1182 0.0022 0.0616 0.0009 0.1514 0.0003
30 0.1969 0.0001 0.0005 0.6893 0.0310 0.0772 0.0050
31 0.1896 0.0182 0.0000 0.2878 0.0087 0.4796 0.0160
32 0.1071 0.0323 0.0000 0.0237 0.0015 0.8092 0.0261
33 0.0159 0.0010 0.0000 0.2996 0.0480 0.5890 0.0466
34 0.2789 0.0002 0.0082 0.6486 0.0563 0.0049 0.0030
35 0.7730 0.0054 0.1239 0.0762 0.0198 0.0018 0.0000
36 0.0067 0.0437 0.9404 0.0005 0.0000 0.0000 0.0088
37 0.0127 0.0838 0.6841 0.0116 0.0075 0.0008 0.1995
38 0.0562 0.0000 0.4183 0.3098 0.0568 0.0000 0.1589
39 0.0111 0.0336 0.0000 0.0000 0.0000 0.7910 0.1642
40 0.0027 0.0181 0.0000 0.0040 0.0025 0.6814 0.2913
41 0.0000 0.0251 0.0000 0.0000 0.0308 0.0808 0.8632
42 0.0000 0.0131 0.0000 0.0241 0.0607 0.3892 0.5129
43 0.0000 0.0250 0.0000 0.0000 0.0333 0.0063 0.9354
44 0.0000 0.0185 0.0000 0.0082 0.0888 0.0409 0.8435

Table 11. AAL matrix for 7 partitions 
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ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8
1 0.6409 0.2839 0.0039 0.0623 0.0000 0.0000 0.0002 0.0087
2 0.0785 0.1702 0.5112 0.2402 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.4410 0.5587 0.0000 0.0000 0.0003 0.0000
4 0.2041 0.0649 0.1026 0.6280 0.0000 0.0000 0.0000 0.0003
5 0.0000 0.0000 0.1569 0.8431 0.0000 0.0000 0.0000 0.0000
6 0.4820 0.0011 0.0010 0.5054 0.0000 0.0000 0.0001 0.0105
7 0.0583 0.0000 0.0043 0.9373 0.0000 0.0000 0.0000 0.0001
8 0.0008 0.0000 0.1209 0.8699 0.0000 0.0000 0.0069 0.0014
9 0.4821 0.0000 0.0000 0.1507 0.0000 0.0000 0.0132 0.3539

10 0.0324 0.7060 0.2602 0.0013 0.0000 0.0000 0.0000 0.0000
11 0.0000 0.0042 0.8650 0.1034 0.0000 0.0000 0.0274 0.0000
12 0.0026 0.0270 0.8799 0.0905 0.0000 0.0000 0.0000 0.0000
13 0.0000 0.0000 0.7372 0.2628 0.0000 0.0000 0.0000 0.0000
14 0.0000 0.0000 0.7300 0.2700 0.0000 0.0000 0.0000 0.0000
15 0.0970 0.0001 0.0247 0.5516 0.0000 0.0000 0.0819 0.2447
16 0.0000 0.0334 0.9133 0.0528 0.0001 0.0000 0.0005 0.0000
17 0.0024 0.6565 0.2786 0.0029 0.0125 0.0463 0.0008 0.0000
18 0.0000 0.4749 0.0649 0.0004 0.1126 0.3216 0.0255 0.0000
19 0.0000 0.0083 0.0627 0.0011 0.0554 0.0289 0.8432 0.0005
20 0.0000 0.0016 0.0166 0.0000 0.1385 0.0349 0.8064 0.0020
21 0.0000 0.0058 0.1164 0.0084 0.0048 0.0075 0.8403 0.0168
22 0.0000 0.0072 0.0010 0.0000 0.7184 0.2698 0.0036 0.0000
23 0.0000 0.0223 0.0001 0.0000 0.3843 0.5915 0.0018 0.0000
24 0.0000 0.0025 0.0037 0.0000 0.8645 0.0660 0.0630 0.0004
25 0.0000 0.0022 0.0000 0.0000 0.3683 0.6290 0.0000 0.0005
26 0.0000 0.0011 0.0000 0.0000 0.3623 0.5464 0.0110 0.0793
27 0.0000 0.0000 0.0000 0.0000 0.7441 0.1238 0.0630 0.0691
28 0.0000 0.0000 0.0009 0.0000 0.4345 0.0210 0.5109 0.0327
29 0.6787 0.2663 0.0006 0.0170 0.0000 0.0032 0.0006 0.0335
30 0.0699 0.3845 0.0011 0.0000 0.0281 0.4950 0.0005 0.0210
31 0.3293 0.1411 0.0000 0.0000 0.0058 0.2634 0.0005 0.2600
32 0.3777 0.0127 0.0000 0.0004 0.0000 0.0233 0.0060 0.5800
33 0.0083 0.0037 0.0000 0.0000 0.0084 0.4289 0.0087 0.5419
34 0.0148 0.5067 0.0085 0.0000 0.0994 0.3628 0.0077 0.0001
35 0.0325 0.9537 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000
36 0.0000 0.0218 0.8945 0.0797 0.0000 0.0000 0.0040 0.0000
37 0.0001 0.0355 0.6709 0.1117 0.0000 0.0032 0.1783 0.0003
38 0.0000 0.2051 0.4453 0.0209 0.0757 0.0704 0.1825 0.0000
39 0.1179 0.0000 0.0000 0.0020 0.0000 0.0000 0.0529 0.8272
40 0.0344 0.0000 0.0000 0.0005 0.0000 0.0006 0.1318 0.8326
41 0.0001 0.0000 0.0002 0.0010 0.0000 0.0000 0.8541 0.1446
42 0.0003 0.0000 0.0000 0.0000 0.0182 0.0407 0.4071 0.5337
43 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9580 0.0420
44 0.0000 0.0000 0.0003 0.0000 0.0245 0.0047 0.8565 0.1141

Table 12. AAL matrix for 8 partitions 
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ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8 Partition 9
1 0.6154 0.3054 0.0043 0.0272 0.0184 0.0140 0.0074 0.0034 0.0046
2 0.0731 0.1800 0.4404 0.2654 0.0018 0.0158 0.0060 0.0142 0.0032
3 0.0114 0.0000 0.2713 0.6511 0.0015 0.0411 0.0139 0.0097 0.0000
4 0.3420 0.0737 0.0955 0.4414 0.0119 0.0225 0.0103 0.0010 0.0018
5 0.0412 0.0000 0.0682 0.8240 0.0115 0.0416 0.0131 0.0005 0.0000
6 0.7058 0.0073 0.0061 0.2083 0.0209 0.0486 0.0030 0.0000 0.0000
7 0.3053 0.0005 0.0093 0.6057 0.0127 0.0545 0.0119 0.0000 0.0000
8 0.0840 0.0000 0.0682 0.7598 0.0147 0.0579 0.0154 0.0000 0.0000
9 0.4485 0.0051 0.0021 0.0409 0.4494 0.0450 0.0089 0.0000 0.0000

10 0.0255 0.6115 0.3119 0.0183 0.0000 0.0038 0.0029 0.0143 0.0119
11 0.0012 0.0001 0.6816 0.2317 0.0011 0.0553 0.0129 0.0136 0.0024
12 0.0066 0.0284 0.7460 0.1759 0.0000 0.0181 0.0094 0.0156 0.0001
13 0.0031 0.0000 0.4884 0.4505 0.0000 0.0330 0.0125 0.0125 0.0000
14 0.0002 0.0000 0.4852 0.4585 0.0000 0.0312 0.0132 0.0118 0.0000
15 0.1827 0.0009 0.0236 0.3369 0.3238 0.1200 0.0086 0.0004 0.0032
16 0.0000 0.0127 0.8030 0.1365 0.0000 0.0224 0.0123 0.0126 0.0006
17 0.0008 0.5147 0.3143 0.0056 0.0000 0.0061 0.0648 0.0814 0.0123
18 0.0000 0.2010 0.0820 0.0000 0.0000 0.0179 0.2691 0.3847 0.0453
19 0.0000 0.0251 0.0379 0.0016 0.0017 0.6853 0.0330 0.0456 0.1698
20 0.0000 0.0206 0.0115 0.0041 0.0074 0.6037 0.0347 0.0674 0.2507
21 0.0000 0.0244 0.0653 0.0186 0.0100 0.7605 0.0093 0.0174 0.0945
22 0.0000 0.0144 0.0231 0.0007 0.0000 0.0032 0.0737 0.5440 0.3409
23 0.0000 0.0298 0.0222 0.0000 0.0001 0.0030 0.1765 0.6138 0.1546
24 0.0000 0.0034 0.0243 0.0027 0.0003 0.0267 0.0247 0.3596 0.5584
25 0.0000 0.0170 0.0228 0.0001 0.0009 0.0028 0.1670 0.5637 0.2257
26 0.0000 0.0097 0.0105 0.0115 0.0199 0.0166 0.2483 0.3248 0.3587
27 0.0000 0.0046 0.0092 0.0160 0.0235 0.0267 0.0582 0.2519 0.6098
28 0.0000 0.0117 0.0069 0.0102 0.0276 0.3144 0.0169 0.1287 0.4835
29 0.5341 0.3082 0.0007 0.0046 0.0547 0.0198 0.0726 0.0039 0.0013
30 0.0150 0.2572 0.0068 0.0007 0.0050 0.0165 0.5679 0.1216 0.0093
31 0.1554 0.1236 0.0002 0.0002 0.1565 0.0263 0.5082 0.0258 0.0039
32 0.1787 0.0319 0.0000 0.0011 0.5724 0.0239 0.1908 0.0011 0.0000
33 0.0038 0.0138 0.0000 0.0050 0.2622 0.0346 0.5528 0.0737 0.0541
34 0.0028 0.3635 0.0230 0.0006 0.0001 0.0093 0.2862 0.2803 0.0343
35 0.0157 0.8636 0.0522 0.0138 0.0000 0.0000 0.0214 0.0209 0.0125
36 0.0000 0.0002 0.7793 0.1697 0.0000 0.0254 0.0126 0.0128 0.0000
37 0.0000 0.0192 0.5745 0.1608 0.0003 0.1944 0.0087 0.0098 0.0324
38 0.0000 0.1064 0.4134 0.0074 0.0000 0.0829 0.0911 0.2010 0.0978
39 0.0554 0.0001 0.0000 0.0124 0.8654 0.0660 0.0007 0.0000 0.0000
40 0.0244 0.0028 0.0000 0.0114 0.8302 0.1138 0.0128 0.0000 0.0045
41 0.0026 0.0224 0.0000 0.0085 0.1628 0.7499 0.0000 0.0000 0.0538
42 0.0079 0.0069 0.0000 0.0134 0.4255 0.3675 0.0625 0.0291 0.0872
43 0.0000 0.0250 0.0000 0.0083 0.0331 0.8670 0.0000 0.0000 0.0666
44 0.0033 0.0174 0.0003 0.0115 0.1032 0.6958 0.0120 0.0214 0.1350

Table 13. AAL matrix for 9 partitions 
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ROI Partition 1 Partition 2 Partition 3 Partition 4 Partition 5 Partition 6 Partition 7 Partition 8 Partition 9 Partition 10
1 0.0153 0.0100 0.0000 0.0065 0.0000 0.4386 0.2504 0.2418 0.0317 0.0056
2 0.0018 0.0080 0.0062 0.0096 0.0000 0.0306 0.0963 0.0818 0.4107 0.3550
3 0.0074 0.0208 0.0095 0.0000 0.0000 0.0125 0.0000 0.0399 0.0749 0.8349
4 0.0095 0.0054 0.0007 0.0127 0.0000 0.0578 0.0346 0.4301 0.1700 0.2793
5 0.0163 0.0208 0.0004 0.0000 0.0000 0.0125 0.0000 0.1771 0.0284 0.7445
6 0.0355 0.0058 0.0000 0.0000 0.0000 0.2547 0.0042 0.6491 0.0071 0.0436
7 0.0266 0.0154 0.0000 0.0002 0.0000 0.0177 0.0008 0.6938 0.0172 0.2284
8 0.0209 0.0261 0.0005 0.0000 0.0002 0.0101 0.0001 0.3099 0.0366 0.5957
9 0.3318 0.0364 0.0051 0.0001 0.0000 0.3444 0.0003 0.2755 0.0032 0.0034

10 0.0002 0.0119 0.0027 0.0130 0.0000 0.0143 0.3798 0.0148 0.5448 0.0186
11 0.0012 0.0340 0.0146 0.0001 0.0001 0.0033 0.0107 0.0038 0.3527 0.5797
12 0.0000 0.0084 0.0129 0.0038 0.0000 0.0040 0.0122 0.0131 0.4992 0.4465
13 0.0000 0.0142 0.0167 0.0000 0.0000 0.0124 0.0001 0.0000 0.1171 0.8396
14 0.0004 0.0207 0.0163 0.0000 0.0000 0.0125 0.0000 0.0117 0.1380 0.8004
15 0.2501 0.0971 0.0001 0.0003 0.0017 0.0806 0.0007 0.3943 0.0170 0.1581
16 0.0000 0.0090 0.0167 0.0000 0.0000 0.0037 0.0118 0.0002 0.5370 0.4217
17 0.0000 0.0138 0.0297 0.0040 0.0236 0.0005 0.4595 0.0020 0.4464 0.0205
18 0.0000 0.0241 0.1732 0.0017 0.2342 0.0000 0.3537 0.0000 0.2101 0.0028
19 0.0013 0.7452 0.0053 0.0195 0.1040 0.0000 0.0190 0.0000 0.0889 0.0169
20 0.0008 0.6482 0.0038 0.0537 0.2285 0.0000 0.0169 0.0003 0.0349 0.0129
21 0.0215 0.7467 0.0001 0.0074 0.0484 0.0000 0.0167 0.0000 0.1321 0.0270
22 0.0000 0.0010 0.1906 0.1502 0.6183 0.0000 0.0077 0.0000 0.0321 0.0001
23 0.0000 0.0006 0.3703 0.1150 0.4603 0.0000 0.0210 0.0000 0.0328 0.0000
24 0.0000 0.0320 0.0613 0.2280 0.6412 0.0000 0.0038 0.0000 0.0326 0.0010
25 0.0000 0.0018 0.3964 0.2057 0.3638 0.0009 0.0037 0.0000 0.0266 0.0011
26 0.0126 0.0045 0.3580 0.4674 0.1275 0.0049 0.0001 0.0000 0.0174 0.0076
27 0.0161 0.0141 0.0461 0.6548 0.2397 0.0002 0.0000 0.0000 0.0281 0.0008
28 0.0145 0.3277 0.0085 0.2856 0.3300 0.0015 0.0110 0.0000 0.0142 0.0070
29 0.0204 0.0167 0.0054 0.0050 0.0000 0.5691 0.2794 0.1006 0.0029 0.0005
30 0.0022 0.0139 0.4342 0.0388 0.0456 0.0893 0.3526 0.0070 0.0100 0.0063
31 0.0991 0.0150 0.3634 0.0430 0.0009 0.3053 0.1472 0.0187 0.0001 0.0074
32 0.3925 0.0124 0.1564 0.0171 0.0000 0.3624 0.0167 0.0334 0.0000 0.0091
33 0.1492 0.0125 0.6369 0.1480 0.0000 0.0360 0.0007 0.0000 0.0000 0.0167
34 0.0000 0.0107 0.2460 0.0093 0.1957 0.0121 0.4654 0.0009 0.0595 0.0003
35 0.0000 0.0167 0.0000 0.0125 0.0000 0.0333 0.8608 0.0068 0.0700 0.0000
36 0.0000 0.0134 0.0167 0.0000 0.0000 0.0027 0.0096 0.0068 0.5187 0.4321
37 0.0024 0.1448 0.0110 0.0015 0.0122 0.0072 0.0075 0.0380 0.4182 0.3573
38 0.0000 0.1414 0.0365 0.0011 0.0965 0.0000 0.0923 0.0000 0.5488 0.0834
39 0.7891 0.0614 0.0008 0.0000 0.0000 0.1269 0.0000 0.0218 0.0000 0.0000
40 0.7979 0.1016 0.0190 0.0110 0.0006 0.0523 0.0000 0.0163 0.0006 0.0008
41 0.1988 0.7389 0.0000 0.0012 0.0225 0.0057 0.0112 0.0125 0.0090 0.0003
42 0.4621 0.2608 0.0984 0.1311 0.0165 0.0147 0.0013 0.0062 0.0018 0.0072
43 0.0689 0.8644 0.0000 0.0000 0.0292 0.0000 0.0167 0.0125 0.0083 0.0000
44 0.1439 0.6197 0.0063 0.1276 0.0692 0.0063 0.0096 0.0023 0.0047 0.0105

Table 14. AAL matrix for 10 partitions 




