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Abstract: It has been shown that the Western diet (WD) induces systemic inflammation and cognitive
decline. Moreover, probiotic supplementation and antibiotic treatment reduce diet-induced hepatic
inflammation. The current study examines whether shaping the gut microbes by Bifidobacterium
infantis (B. infantis) supplementation and antibiotic treatment reduce diet-induced brain inflammation
and improve neuroplasticity. Furthermore, the significance of bile acid (BA) signaling in regulating
brain inflammation was studied. Mice were fed a control diet (CD) or WD for seven months.
B. infantis was supplemented to WD-fed mice to study brain inflammation, lipid, metabolomes,
and neuroplasticity measured by long-term potentiation (LTP). Broad-spectrum coverage antibiotics
and cholestyramine treatments were performed to study the impact of WD-associated gut microbes
and BA in brain inflammation. Probiotic B. infantis supplementation inhibited diet-induced brain
inflammation by reducing IL6, TNFα, and CD11b levels. B. infantis improved LTP and increased brain
PSD95 and BDNF levels, which were reduced due to WD intake. Additionally, B. infantis reduced
cecal cholesterol, brain ceramide and enhanced saturated fatty acids. Moreover, antibiotic treatment,
as well as cholestyramine, diminished WD-induced brain inflammatory signaling. Our findings
support the theory that intestinal microbiota remodeling by B. infantis reduces brain inflammation,
activates BA receptor signaling, and improves neuroplasticity.

Keywords: gut microbiota; bile acid receptor; neuroplasticity; brain inflammation; metabolomics;
Bifidobacterium infantis

1. Introduction

Western Diet (WD) intake leads to systemic inflammation and cognitive dysfunc-
tion [1,2]. Additionally, in a bodyweight gain independent manner, short-term consump-
tion of a high-fat diet leads to hippocampal-dependent spatial memory impairments in
rats [3–5]. Moreover, obesity is associated with reduced hippocampal volume and impaired
hippocampal function [6,7]. Furthermore, WD significantly alters commensal bacteria in
the gastrointestinal (GI) tract and influences brain physiology and behavior [1,8]. Moreover,
intestinal bacteria also regulate enteric nervous system (ENS) development, and the Toll-
like receptors (TLR2 and TLR4), which are regulated by intestinal bacteria, maintain the
function of ENS [9,10]. Therefore, the gut microbiota has a significant role in the digestive
as well as neuronal systems [1]. Gut microbiota directly stimulates the production of
interleukin 1 β (IL1β) and tumor necrosis factor α (TNFα), which impairs hippocampal-
dependent memories in rodents [11,12]. Together, the interplay between the gut and brain
is a critical target for manipulating brain health and neurodegenerative diseases.

It has been shown that probiotics regulate not only digestion but also neuronal func-
tion. Probiotics enhance intestinal epithelial integrity, reduce the inflammatory response,
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protect against barrier disruption, as well as inhibit neuroinflammation and neurodegenera-
tion [13,14]. Supplementation with Enterococcus faecium and Lactobacillus rhamnosus reduces
TNFα in vitro and enhances antioxidant enzymes in young mouse brains [15]. In a clinical
study, supplementation of Lactobacilli and Bifidobacteria for 12 weeks improved cognitive
and metabolic statuses in Alzheimer’s disease (AD) patients [16]. Similarly, supplementa-
tion of a mixture of Lactobacillus and Bifidobacteria improved both GI function and mood
during pregnancy [17,18].

B. infantis has intestinal and extraintestinal health benefits [2]. B. infantis has the
ability to metabolize human milk oligosaccharides that are essential for newborns [19].
Our previous study revealed the benefits of B. infantis in reducing hepatic inflammation
and preventing cancer-prone nonalcoholic steatohepatitis [20]. It is unknown whether
B. infantis can prevent diet-induced brain inflammation and provide beneficial effects to
prevent cognitive decline.

Modulating gut microbes using antibiotics also affects neuronal function. It has
been shown that broad-spectrum antibiotic treatment reduces amyloid-β (Aβ) plaque
deposition, attenuates plaque-localized glial reactivity, and alters microglial morphol-
ogy in an AD mouse model [21]. Thus, it would be interesting to study whether antibi-
otics, which are known to reduce diet-induced liver inflammation [2,22], can also prevent
brain inflammation.

Bile acids (BAs) are among the leading mediators explaining how diet via the gut
microbiota affects health. As the gut microbes produce secondary BAs, dysregulated
BA synthesis is always accompanied by dysbiosis [2,22]. BAs can cross the blood-brain
barrier (BBB) and affect brain function [23,24]. Moreover, it has been shown that AD
pathophysiology is associated with the dysregulated production of both primary and
secondary BAs [25]. Altered BA profiles were found in AD patients [26,27]. Whether
BA signaling is implicated in diet-induced neuroinflammation before AD development
remains to be examined.

The current study examined whether gut microbiota remodeling with probiotic sup-
plementation and antibiotics could reduce diet-induced brain inflammation. Our data
revealed for the first time that B. infantis could attenuate pathological phenotypes caused
by WD consumption, including brain inflammation and reduced neuroplasticity. In addi-
tion, WD-induced brain inflammation is attenuated by antibiotic treatment and reducing
BA pool size. Together, our data signifies the impact of both gut microbiota and BA on
brain function. Probiotic supplementation can potentially be used to prevent diet-induced
cognitive decline.

2. Materials and Methods
2.1. Mice Maintenance and Treatment Regimens

Specific pathogen-free C57BL/6 mice were housed in steel micro-isolator cages at
22 ◦C with a 12-h light/dark cycle. To study the dietary effect, mice were provided a control
healthy diet (CD; 5.2% fat, 12% sucrose, and 0.01% cholesterol, w/w, TD. 140415) or a WD
(21.2% fat, 34% sucrose, and 0.2% cholesterol, w/w; TD. 140414) (Envigo, Indianapolis, IN,
USA) after weaning (3 weeks, more than 4 mice per group were used in each experiment).
Mice were euthanized by 5% isoflurane, USP (#NDC 13985-046-60, VetOne, Boise, ID, USA)
for 5 min.

For intervention using probiotics, after eight months of WD-feeding, mice were ran-
domly assigned to two groups to receive either B. infantis (109 CFU/mL, daily oral) or PBS
(control) for two months. Mice were euthanized at the age of 10 months.

For antibiotic treatment, 7-month-old WD-fed mice received without or with broad-
spectrum coverage antibiotics (ABX) consisting of Ampicillin (1 gm/L), Metronidazole
(1 gm/L), Vancomycin (0.5 gm/L), and Neomycin (1 gm/L) in drinking water for 3 months
while mice continued to be fed by WD.

To study the effect of BAs, 8-month-old WD-fed mice received without or with
cholestyramine (2% in WD). Experiments were conducted following the National Institutes
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of Health Guidelines for the Care, and Use of Laboratory Animals under protocols ap-
proved by the Institutional Animal Care and Use Committee of the University of California,
Davis (Sacramento, CA, USA).

2.2. Gene Expression Profiling

The hippocampal RNA was reverse transcribed into cDNA. qRT-PCR was performed
on an ABI 7900HT Fast real-time PCR system using Power SYBR Green PCR Master Mix
(Applied Biosystems, Foster City, CA, USA). The mRNA levels were normalized to the
level of Gapdh mRNA.

2.3. Western Blot Analysis

Brain protein (40 mg) was subjected to SDS-PAGE under reducing conditions following
the transfer to polyvinylidene difluoride membranes. The membranes were incubated
with 5% nonfat milk, followed by incubation using a specific antibody. The following
primary antibodies (dilutions) were used: CD11b (1:1000; Bioss Antibodies, Woburn, MA,
USA), phospho-ERK1/2 and total ERK1/2 (1:1000; Cell Signaling Technology, Danvers,
MA, USA), IL6 (1:1000, Bioss Antibodies, Woburn, MA, USA), TNFα (1:1000, LSBio, Seattle,
WA, USA), postsynaptic density-95 (PSD-95, 1:1000; Cell Signaling, Danvers, MA, USA),
brain-derived neurotrophic factor (BDNF, 1:1000; Millipore Sigma, St. Louis, MO, USA),
GPBAR1 (1:3000, LSBio, Seattle, WA, USA) and β-Actin (1:10,000; Millipore Sigma, St. Louis,
MO, USA). Then, membranes were incubated with horseradish peroxidase-conjugated
secondary antibodies. The signals were detected using Pierce Super Signal West Pico
chemiluminescent substrates (Thermo Fisher Scientific, Rockford, IL, USA).

2.4. Biochemical Analysis

Brain homogenates were used to measure IL1β and TNFα protein by ELISA according
to the manufacturer’s instructions (R&D biosystem, San Jose, CA, USA).

2.5. Electrophysiological Recording for Measuring Long-Term Potentiation (LTP)

Electrophysiological recordings were performed as previously described [28]. Fresh
coronal hippocampal slices (300 µm) were submerged in ice-cold oxygenated artificial
cerebrospinal fluid (ACSF). The hemi-slices were transferred to the recording chamber
and perfused with standard ACSF at a constant flow rate of ~2 mL/min. Field excitatory
postsynaptic potentials (fEPSPs) were obtained from the stratum radiatum of the CA1
region of the hippocampus after stimulation. Extracellular recording electrodes were
prepared from borosilicate capillaries with an outer diameter of 1.5 µm (Sutter Instruments,
Novato, CA, USA) and filled with 3 M NaCl. The baseline stimulation rate was 0.05 Hz.
The fEPSPs were filtered at 2 kHz and digitized at 10 kHz with a Multiclamp 700 B
amplifier (Molecular Devices, Sunnyvale, CA, USA). Data were collected and analyzed
with pClamp software version 10.3 (Molecular Devices, Inc., Sunnyvale, CA, USA). Slope
values of fEPSPs were considered for quantitation of the responses. After 10 min of stable
baseline, the recording of fEPSPs was evoked every 20 s, LTP was elicited by high-frequency
stimulation, consisting of 2 trains of 100 Hz (1 s) stimulation with the same intensity and
pulse duration used in the sampling of baseline fEPSPs.

2.6. Brain Lipidomics

Snap frozen frontal cortex specimens (10 mg) were homogenized using 1 mL of
degassed, −20 ◦C cold solvent mixture of acetonitrile: isopropanol: water (3:3:2, v/v/v).
Samples were centrifuged for 30 min at 14,000× g, and the supernatant was used for lipid
extraction using an improved butanol–methanol method [29]. An aliquot of homogenate
(20 µL) was thawed and transferred to a disposable glass tube followed by extraction
using an organic solvent (200 µL, 3:1, butanol-to-methanol volume ratio) and another
200 µL of organic solution (3:1, n-heptane-to-ethyl acetate volume ratio) vertexing for 60 s,
and ultrasound (60 Hz, 200 W) for 10 min. Then, the solution was stratified by adding
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ammonium acetate (50 mM, 200 µL) into it, vertexing for 60 s, and centrifuging (6000 rpm)
for 10 min at 4 ◦C. The upper organic layer was shifted to a new tube and desiccated under a
vacuum. At last, the dried samples were reconstituted with acetonitrile/isopropanol/water
(100 µL, 3:4:1, v/v/v) and treated by ultrasound (60 Hz, 200 W) for 5 min. The clear
solutions were removed for LC-MS detection performed by the UC Davis West Coast
Metabolomics Center. Quality control samples were obtained by pooling and blending
equal aliquots of each sample were detected.

2.7. Gut Microbiota Analysis Using 16S rRNA Gene Sequencing

Based on published methods, cecum content DNA was used for 16S rRNA sequenc-
ing [2,30]. Variable region four of the 16S rRNA gene was amplified and sequenced.
Sequence reads were analyzed by QIIME based platform and/or demultiplexed and clas-
sified with a custom python application dbcAmplicons (https://github.com/msettles/
dbcAmplicons) to identify and assign reads by expected barcode and primer sequences [31].
The Ribosomal Database Project Bayesian classifier was performed to assign sequences to
phylotypes [32]. Reads were assigned to the first Ribosomal Database Project taxonomic
level with a bootstrap score ≥ 50.

2.8. Untargeted Metabolomics Profile

Untargeted, semi-quantitative metabolomics profiling was performed using cecal
metabolites. Gas chromatography time of flight mass spectrometry was conducted at
the UC Davis West Coast Metabolomics Center based on published methods [30,33,34].
BinBase database was used to process acquired spectra, filtered, and matched with the
Fiehn mass spectral library of 1200 authentic metabolite spectra with retention index and
mass spectrum information or against the NIST library. Chemical similarity enrichment
analysis was performed by ChemRICH [35]. Pathway analyses were generated by the open
source website MetaboAnalyst 4.0 (Montreal, QC, Canada) [36].

2.9. Bile Acid Quantification

Serum BA quantification was performed based on the published method [2,37]. BAs
were detected using an ultrafast liquid chromatography system (Shimadzu, Kyoto, Japan)
coupled to an API 4000 QTRAP mass spectrometer (AB Sciex, Redwood City, CA, USA)
operated in the negative ionization mode. Chromatography was performed on a Kinetex
C18 column (50 × 2.1 mm, 2.6 µm; Phenomenex, Torrance, CA, USA), maintained at 40 ◦C,
preceded by a high-pressure column prefilter. The mobile phase consisted of a gradient of
methanol delivered at a flow rate of 0.4 mL/min.

2.10. Bioinformatics and Statistical Analysis

Alpha-diversity, which summarizes the diversity of microbial structure, was analyzed
within a sample for several alpha-diversity metrics, including species richness (Observed),
Shannon, Inverse Simpson, and Fisher metrics, using the “Phyloseq” R package [38].
Beta-diversity, which summarizes the diversity between samples performed by weighted
Unifrac distance, accounts for the abundance of the operational taxonomic units. The
Kruskal–Wallis test calculated the differences between groups in microbiota genus level.

Cecal metabolomics data were analyzed with MetaboAnalyst and ChemRICH [34,39].
Brain lipidomics data were analyzed with MetaboAnalyst and R program. Data are ex-
pressed as mean ± SD. All other comparisons were calculated by two-tailed Student’s t-test,
one-way ANOVA, or two-way ANOVA, followed by Tukey’s test using GraphPad Prism
8 software. p values are adjusted for multiple comparisons using a false discovery rate.
p < 0.05 was considered statistically significant.

https://github.com/msettles/dbcAmplicons
https://github.com/msettles/dbcAmplicons
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3. Results
3.1. B. infantis Reduces Diet-Induced Brain Inflammation

B. infantis supplementation for 2 months reduced WD-induced brain inflammation.
The experimental scheme is shown in Figure 1a. WD-fed mice had increased Il1β, Il6, Tnfα,
Ccl17, as well as Ccl20, and B. infantis reduced the expression levels. (Figure 1b). The
mRNA level of ApoE, which is implicated in cholesterol homeostasis, increased in WD-fed
mice, and B. infantis reduced it (Figure 1b). B. infantis reduced voltage-gated potassium
channel mRNA levels of KCa3.1, Kv1.3, and Kir2.1, which were increased due to WD intake
(Figure 1b). These ion channels play an essential role in brain inflammation and are a target
in AD treatment. The protein levels of Phospho-ERK1/2, a potent effector of neuronal
death and neuroinflammation [40], and CD11b, as well as IL6, were increased in WD-fed
mice and decreased after B. infantis treatment (Figure 1c). In addition, ELISA data showed
that brain IL1β and TNFα levels were increased in WD-fed mice, and B. infantis reduced
the levels (Figure 1d).
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Figure 1. Probiotic B. infantis reduced brain inflammation signaling in WD-fed mice. (a) Experi-
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Figure 1. Probiotic B. infantis reduced brain inflammation signaling in WD-fed mice. (a) Experimental
schema. (b) The hippocampal mRNA levels of inflammatory signaling genes of CD-fed (n = 6),
WD-fed (n = 6), and WD-fed mice supplemented with B. infantis (n = 4). (c) Western blot of proteins
related to inflammatory signaling. (d) Brain homogenate concentration of IL1β and TNFα by ELISA
(n = 3). Data are expressed as means ± SD. One-Way ANOVA multiple comparisons Tukey t-test,
* p < 0.05, ** p < 0.01, *** p < 0.001. CD-fed mice vs. WD-fed mice; WD-fed mice vs. B. infantis
supplemented mice.
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3.2. B. infantis Improves Neuroplasticity in WD-Fed Mice

We studied whether B. infantis supplementation could reverse reduced neuroplas-
ticity based on LTP in WD-fed mice. After 2 months of B. infantis supplementation, LTP
significantly improved compared to WD-fed mice. There was no significant difference in
LTP between the control diet-fed healthy mice and B. infantis-supplemented WD-fed mice
(Figure 2a). Moreover, WD intake reduced the levels of BDNF and PSD95, and B. infantis
supplementation prevented those reductions (Figure 2b).
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Figure 2. B. infantis treatment improved long-term potentiation (LTP) and synaptic deficits as well
as an altered brain lipid profile: (a) Scatter plot indicates high-frequency stimulation-induced LTP,
and the bar graph shows LTP calculated by averaging the change in fEPSP slope apparent between
50 and 60 min after high-frequency stimulation (n = 3, 9 slices per brain); all data is presented as
the percent change in fEPSP slope means ± SEM from baseline; (b) Western blot data shows protein
levels in the brains (CD, n = 6; WD, n = 6; WD + B. infantis, n = 4); (c) sPLS-DA based analysis of brain
lipidomics; (d) Heatmap analysis shows a mean value of pick intensity of the top 23 lipids changed in
each experimental group; (e) Volcano plots represent the brain lipidomics profile between WD vs. CD
and WD + B. infantis vs. WD. The red color represents the fold changes of >2 with a p-value < 0.05,
(n = 4). Data is mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.3. B. infantis Supplementation Changes Brain Lipidomic Profiles in WD-Fed Mice

In the brain, lipids are required for myelination and signal transduction [41]. A
dysregulated lipid profile is associated with neurological disorders [42]. Brain lipidomic
profiles were performed to study the effect of WD intake and B. infantis supplementation.
Sparse partial least squares discriminant analysis (sPLS-DA) showed that brain lipid profiles
formed three clusters based on the experimental groups (Figure 2c).
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Multiple unpaired t-tests revealed that ceramide (d32:1), diacylglycerol (36:4), phos-
phatidylcholine (35:4), acylcarnitine (12:1), and triacylglycerides (55:3) were increased in
WD-fed mice (Figure 2d,e). WD intake also significantly reduced sphingomyelin (d38:1),
phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol (16:0-16:0), be-
henic acid, cholesteryl ester (18:2). B. infantis supplementation reduced phosphatidyl-
choline p-36:4 and ceramide (d32:1), however increased phosphatidylcholine (35:2), phos-
phatidylethanolamine (o-38:6), and triacylglyceride (54:1) (Figure 2d,e).

3.4. B. infantis Supplementation Modulates Cecal Metabolome

GC-TOF-MS analysis of cecum metabolites revealed three distinct clusters based on
experimental groups using sparse partial-least-squares discriminant analysis (sPLS-DA)
(Figure 3a). Fold changes in the cecal metabolites between groups are shown in volcano
plots (Figure 3b).
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Figure 3. Untargeted metabolomics study of cecal content. Mice were fed a WD and treated with
or without B. infantis: (a) sPLS-DA analysis of cecal metabolites clustered differently; (b) Volcano
plots represent the cecal metabolomics profile between WD vs. CD (n = 4) and WD + B. infantis vs.
WD (n = 4). The red color represents the fold changes of > 2 with a p-value < 0.05; (c) ChemRICH
metabolite set enrichment statistics plot. The node color shows increased (red) or decreased (blue)
metabolite sets. Only enrichment clusters are shown significantly different at p < 0.05 (The node
sizes represent the total number of metabolites in each cluster set); (d) The pathway impact and
(e) pathway analysis impacts were shown between WD vs. CD (n = 4) and WD + B. infantis vs. WD
(n = 4).

WD intake increased cholesterol and lanosterol, and B. infantis treatment reduced
them (Figure 3b). In addition, sugar substitutes such as xylose, maltose, and lyxose were
reduced in WD-fed mice. Furthermore, B. infantis-treated mice had increased stearic acid
(Figure 3b), a long-chain saturated fatty acid with neuroprotective effects [43].
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Chemical similarity enrichment analysis showed that WD-fed mice had reduced un-
saturated fatty acids, dicarboxylic acids, purinones, and hexoses (Figure 3c). The saturated
fatty acid that rises in the brain during memory formation also increased in B. infantis
treated mice [44] (Figure 3d,e). The top five relevant pathways between WD vs. CD groups
were starch and sucrose metabolism, glycolysis/gluconeogenesis, steroid hormone/steroid
biosynthesis, primary bile acid synthesis, and tryptophan metabolism based on MetaboAn-
alyst 4.0 (Figure 3d). On the other hand, biosynthesis of unsaturated fatty acids, pyrimidine
metabolism, and glycine, serine, and threonine metabolism were among the top altered
due to B. infantis supplementation (Figure 3d,e).

3.5. B. infantis Supplementation Alters the Gut Microbiota of WD-Fed Mice

We further studied the impact of WD and B. infantis supplementation on gut microbiota
composition using 16S pyrosequencing. WD-fed mice had reduced Bacteroidetes, yet had
increased Firmicutes leading to an elevated Firmicute to Bacteroidete ratio (Figure 4a,b).
B. infantis supplementation reduced the ratio, mainly due to a reduction in Firmicutes.
B. infantis also enriched Actinobacteria and Proteobacteria (Figure 4a).
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Figure 4. Probiotic B. infantis prevented gut dysbiosis induced by WD: (a) Relative abundance of
cecal microbiota at the phylum level; (b) The ratio between phylum Firmicutes and Bacteroidetes;
(c) Relative abundance of cecal microbiota at the family level; (d) Relative abundance of cecal
microbiota at genus level in control diet (CD) and WD fed mice treated with and without B. infantis
for 2 months (CD, n = 6; WD, n = 6; WD + B. infantis, n = 4). Data are expressed as mean ± SD.
* p < 0.05, ** p < 0.01, *** p < 0.001, CD-fed mice compared with WD-fed mice and WD-fed mice
compared with B. infantis treated mice.

Under the Firmicutes phylum, WD-fed mice had increased Rikenellaceae, Clostridi-
aceae, and Peptostreptococcaceae, but reduced Lachnospiraceae (Figure 4c). However,
B. infantis increased Lachnospiraceae, and reduced Clostridiaceae. Under the Bacteroidetes
phylum, the abundance of Bacteroidaceae and Prevotellaceae was reduced in B. infantis
treated mice. Under the Proteobacteria phylum, WD increased Desulfovibrionaceae, and
B. infantis reduced it (Figure 4c).

At the genus level, B. infantis significantly increased the abundance of Bifidobacterium,
Barnesiella, and Parabacteroides (Figure 4d). WD-fed mice had increased Desulfovibrio,
Alloprevotella, Clostridium, Mucispirillum, Turicibacter, Eisenbergiella, and B. infantis
reversed those changes (Figure 4d).
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3.6. Microbiome Depletion by Antibiotics Reduce Brain Inflammation and Increase BA
Receptor Signaling

We further studied the impact of antibiotics in influencing brain inflammation. The
Shannon index (p < 0.05, Wilcoxon rank-sum test) was substantially reduced by ABX treat-
ment (Figure 5a,b). A PCA plot of unweighted unifrac distance shows a distinctly diverse
microbiome in the ABX group compared to untreated mice (PERMANOVA, R2 = 0.1784,
p = 0.0025) (Figure 5c). Weighted unifrac is a quantitative measure of β-diversity, which clus-
tered marginally differently between CD and WD fed mice (PERMANOVA, R2 = 0.16806,
p = 0.001) (Figure S1a). ABX supplementation to WD-fed mice depleted fecal microbiota
composition (Figure S1b,c).
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Figure 5. Microbiota depletion by antibiotics abrogated the inflammation induced by WD: (a) Experi-
mental schema; (b) Shannon diversity index; (c) PCoA plot shows unweighted unifrac distance of
fecal microbiota after 16S sequencing; (d) Relative mRNA level of inflammatory signaling genes in
brain (CD, n = 6; WD, n = 6; WD with ABX, n = 4); (e) Western blot of inflammation signaling-related
proteins in the brain of all experimental groups; (f) Serum cholesterol level and relative mRNA level
of bile acid signaling genes in the brain of all experimental groups; (g) Relative mRNA level of bile
acid receptor signaling genes in the brain. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01,
*** p < 0.001, CD-fed compared with WD-fed mice, WD-fed mice compared with ABX (cocktail of
ampicillin, neomycin, vancomycin, and metronidazole) treated mice.

Real-time PCR data revealed that WD-induced inflammatory singling could be re-
duced by antibiotic treatment as evidenced by reduced Il1β, Il6, Tnfα, ApoE, Ccl17, Ccl20, as
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well as KCa3.1 and Kv1.3 in ABX-treated mouse brains (Figure 5d). Moreover, WD-activated
ERK1/2 and IL6 induction was also reduced (Figure 5e), and serum cholesterol level was
reduced by ABX treatment (Figure 5f).

WD intake is expected to overburden BA signaling. Indeed, WD intake reduced
the expression of hippocampal BA receptor GPBAR1 downstream genes, including Nos1,
Dio2, Glp1r, and Pyy, as well as Fxr, and Cyp27a1, and microbiota depletion by ABX
increased these BA receptors signaling genes (Figure 5g). Additionally, the expression of
brain cholesterol 25-hydroxylase (Ch25h) was increased in WD-fed mouse brains, and ABX
treatment reduced it (Figure 5g). These data unequivocally demonstrated the significance
of the gut microbiota in regulating brain inflammation as well as BA signaling.

3.7. B. infantis Supplementation Enhances BA Receptor Signaling

We further studied the impact of B. infantis treatment on BA signaling in the brain.
B. infantis supplementation increased brain Gpba1, Nos1, Pc1/3, Glp1r, and Pyy mRNA,
which were reduced in WD-fed mice (Figure 6a). Additionally, brain Fxr, and Cyp46a1
mRNA levels were increased, whereas Cyp39a1 and Ch25h were reduced due to B. infantis
supplementation (Figure 6b). Furthermore, WD intake reduced the protein level of GPBAR1,
and B. infantis prohibited such a reduction (Figure 6c).
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Figure 6. Probiotic B. infantis improved bile acid receptor signaling in the brain reduced by WD:
(a) Bile acid signaling genes of CD (n = 6), WD (n = 6), and WD fed with B. infantis (n = 4) in mouse
brains at the mRNA level; (b) The protein level of G-protein coupled bile acid receptor 1 (Gpbar1)
in the brain; (c) Secondary to primary BA ratio, conjugated to unconjugated BA ratio, and serum
bile acid level of CD, WD, and WD fed with B. infantis mice. Data are expressed as means ± SD.
One-Way ANOVA multiple comparisons Tukey t-test, * p < 0.05, ** p < 0.01, *** p < 0.001. CD-fed mice
compared with WD-fed mice and WD-fed mice compared with B. infantis treated mice.

Quantification of serum BAs revealed that WD-fed mice had an increase in total BAs,
the ratio of conjugated-to-free BA, as well as secondary BAs, DCA, GUDCA, and GDCA,
which were all reduced by B. infantis supplementation. Moreover, WD reduced CA, TLCA,
and UDCA, which were increased by B. infantis (Figure 6c).
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3.8. Bile Acid Sequestrant, Cholestyramine, Reduces WD-Indued Brain Inflammation

The experimental scheme is shown in Figure 7a. Reducing BA pool by cholestyramine
could reduce hippocampal mRNA levels of Il1β, Il6, Nos2, Saa1, and chemokines Ccl17,
Ccl20, and Ccl5 as well as KCa3.1 (Figure 7b). Moreover, cholestyramine treatment increased
the Bdnf mRNA level compared to untreated mice (Figure 7b). Cholestyramine treatment
also induced the expression of FXR target genes such as Shp and Cyp27a1 (Figure 7c).
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* p < 0.05, ** p < 0.01, *** p < 0.001, CD-fed compared with WD-fed mice, WD-fed mice compared with
cholestyramine treated mice.

4. Discussion

This study revealed the benefits of probiotic B. infantis in preventing diet-induced
cognitive decline in mice fed with a WD. Using antibiotic and cholestyramine treatments,
the generated data also signifies the impact of gut microbiota and BAs in regulating
brain inflammation.

Our data revealed that WD intake reduced LTP as well as the expression of BDNF and
PSD-95. However, B. infantis supplementation reversed these effects. LTP measures learn-
ing ability and memory, and BDNF is necessary for memory persistence and storage [45].
Reduced expression of BDNF is implicated with the formation of neurotic plaques con-
sisting of Aβ and neurofibrillary tangles [46]. Our data is in agreement with a previously
published study that shows a reduction in BDNF in the hippocampus of HFD fed mice [47].
WD/HFD increases oxidative stress, which causes BDNF reduction [48,49]. B. infantis
strain CCFM687 significantly improved behavioral test scores and increased BDNF level
in the prefrontal cortex through the 5-HT1A-CREB-BDNF pathway [50]. PSD-95 protein
determines the structural and functional integrity of excitatory synapses [51]. PSD-95 was
also significantly downregulated in metabolically imbalanced neurons compared to the
healthy condition [52].

Dyslipidemia considers a chronic risk factor for the progression of cognitive dysfunc-
tion [53]. In this study, we observed dyslipidemia in the brain of WD-fed mice, which was
reversed by B. infantis supplementation. Lipidomic data showed that WD-fed mice had
increased brain ceramide, and B. infantis treatment reduced it. Ceramides are lipid-soluble
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and readily cross the blood-brain barrier [54]. Ceramides are neurotoxic, and their lev-
els are increased in AD [55]. Patients with more than one neuropathologic abnormality
have higher levels of ceramides [56]. Obesity and insulin resistance produce neurotoxic
ceramides and could account for cognitive impairment and neurodegeneration [54,57].
Additionally, reducing ceramide synthesis can protect mice from HFD-induced obesity and
insulin resistance [58].

Microbiota depletion by broad-spectrum antibiotics improves dyslipidemia [59]. Mi-
crobiota depletion by ABX in APP/PS1 reduces brain Aβ deposition with an improved
pattern of peripherally circulating cytokines, chemokines, and gut hormones [21]. In ad-
dition, healthy microbiota transplants reduce amyloid and tau pathology in AD mouse
models [60]. Our data showed that ABX reduced brain inflammatory cytokines, suggesting
gut microbiota play a role in brain dysfunction pathogenesis. Together, gut microbiome
remodeling by probiotics and antibiotics prohibit reduced neuroplasticity caused by WD in-
take.

This study showed WD-fed mice had high cholesterol levels and were minimized
with B. infantis treatment. Cholesterol is associated with late-life cognitive function [61]. In
the brain, cholesterol 24-hydroxylase (CYP46A1) controls cholesterol efflux and converts
cholesterol to 24S-hydroxycholesterol, and 7α-hydroxylation is carried out by CYP39A1 [62].
The CYP46A1 gene may modulate the course of cognitive deterioration in later life [63].
CYP46A1 activity generates isoprenoids that are essential for LTP in the brain [64]. In
consistency, B. infantis increased the level of CYP46A1 as well as LTP. Cholesterol clearance
leads to BA synthesis, which helps in lipid absorption [65]. Primary BAs are derived from
cholesterol, mainly in the liver, whereas secondary BAs are typically produced by bacteria
in the gut [66]. It has been shown that increased secondary to primary BA ratio links AD
development and cognitive decline [67].

Bile salt hydrolase (BSH) is a bacterial enzyme that catalyzes the hydrolysis of glycine-
and/or taurine-conjugated bile salts into free unconjugated BAs [68]. B. infantis produces
BSH. Quantitated PCR revealed that there are 24 copies of Bsh per ng of B. infantis DNA
(our unpublished data). Thus, B. infantis supplementation increased unconjugated BAs and
facilitated metabolism. In consistency, targeted metabolomic analysis of post-mortem brain
samples identified higher ratios of glycochenodeoxycholate to CA as well as increased
secondary BAs including DCA, LCA, TDCA, and GDCA in AD patients [25].

BA receptor FXR plays a critical role in regulating BA synthesis and regulating glucose,
lipid, and energy homeostasis, influencing signaling pathways in the brain [69]. In addition,
BAs also modulate GABAergic and N-methyl-D-aspartate receptor-mediated neurotrans-
mission [70]. Our previous data showed that fructose-enriched WD induced gut and brain
inflammation [2,34]. Moreover, reducing BA pool size effectively reduces skin inflammation
and liver damage [71–73]. The data presented here indicate that WD-associated BAs are
also implicated in neuroinflammation.

In summary, our data reveal that the gut microbiome and BA signaling pathways play
a significant role in the cognitive impairment of WD-fed mice. Gut microbiota remodeling
with probiotics improves BA signaling, reduces inflammation, and boosts free fatty acids
in the brain, which may provide a novel perspective on cognitive impairment induced by
WD intake.
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.3390/cells11030504/s1, Figure S1. Microbiota depletion by antibiotic altered fecal microbiota profile.
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