
UCLA
UCLA Previously Published Works

Title
A Retrospective Analysis of the First Clinical 5DCT Workflow.

Permalink
https://escholarship.org/uc/item/4q94g4jr

Journal
Cancers, 17(3)

ISSN
2072-6694

Authors
Lauria, Michael
Kim, Minji
OConnell, Dylan
et al.

Publication Date
2025-02-05

DOI
10.3390/cancers17030531
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q94g4jr
https://escholarship.org/uc/item/4q94g4jr#author
https://escholarship.org
http://www.cdlib.org/


Academic Editor: Brigitta G. Baumert

Received: 19 December 2024

Revised: 29 January 2025

Accepted: 30 January 2025

Published: 5 February 2025

Citation: Lauria, M.; Kim, M.;

O’Connell, D.; Lao, Y.; Miller, C.R.;

Naumann, L.; Boyle, P.; Raldow, A.;

Lee, A.; Savjani, R.R.; et al. A

Retrospective Analysis of the First

Clinical 5DCT Workflow. Cancers 2025,

17, 531. https://doi.org/10.3390/

cancers17030531

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article
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Simple Summary: 5DCT has been developed as a replacement for 4DCT that avoids sorting
artifacts and provides quantitative motion characterization by employing a motion model
for reconstruction. Since its development and clinical introduction in 2019, it has been the
primary imaging modality for respiratory motion management in lung radiotherapy at
our clinic, being used for more than 150 patients. The aim of this study is to report on
our experience, including the frequency and magnitude of imaging artifacts, breathing
irregularity, and image registration accuracy, correlating these quantities with 5DCT image
reconstruction accuracy. We also report on the frequency of use of 5DCT images by
physicians in the treatment planning workflow. This study is the first to report on the
clinical implementation of 5DCT.

Abstract: Background/Objectives: 5DCT was first proposed in 2005 as a motion-
compensated CT simulation approach for radiotherapy treatment planning to avoid sorting
artifacts that arise in 4DCT when patients breathe irregularly. Since March 2019, 5DCT has
been clinically implemented for routine use at our institution to leverage this technological
advantage. The clinical workflow includes a quality assurance report that describes the
output of primary workflow steps. This study reports on the challenges and quality of the
clinical 5DCT workflow using these quality assurance reports. Methods: We evaluated
all thoracic 5DCT simulation datasets consecutively acquired at our institution between
March 2019 and December 2022 for thoracic radiotherapy treatment planning. The 5DCT
datasets utilized motion models constructed from 25 fast-helical free-breathing computed
tomography (FHFBCTs) with simultaneous respiratory bellows signal monitoring to recon-
struct individual, user-specified breathing-phase images (termed 5DCT phase images) for
internal target volume contouring. Each 5DCT dataset was accompanied by a structured
quality assurance report composed of qualitative and quantitative measures of the breath-
ing pattern, image quality, DIR quality, model fitting accuracy, and a validation process by
which the original FHFBCT scans were regenerated with the 5DCT model. Measures of
breathing irregularity, image quality, and DIR quality were retrospectively categorized on a
grading scale from 1 (regular breathing and accurate registration/modeling) to 4 (irregular
breathing and inaccurate registration/modeling). The validation process was graded ac-
cording to the same scale, and this grade was termed the suitability-for-treatment-planning
(STP) grade. We correlated the graded variables to the STP grade. In addition to the quality
assurance reports, we reviewed the contour sessions to determine how often 5DCT phase
images were used for treatment planning and delivery. Results: There were 169 5DCT simu-
lation datasets available from 156 patients for analysis. The STP was moderately correlated
with breathing irregularity, image quality, and DIR quality (Spearman coefficients: 0.26,
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0.30, and 0.50, respectively). Multiple linear regression analysis demonstrated that STP was
correlated with regular breathing patterns (p = 0.008), image quality (p < 0.001), and better
DIR quality (p < 0.001). 5DCT datasets were used for treatment planning in 82% of cases,
while in 12% of cases, a backup image process was used. In total, 6% of image datasets were
not used for treatment planning due to factors unrelated to the 5DCT workflow quality.
Conclusions: The strongest association with STP was with DIR quality grades, as indicated
by both Spearman and multiple linear regression analysis, implying that improvements
to DIR accuracy and evaluation may be the best route for further improvement to 5DCT.
The high rate of 5DCT phase image use for treatment planning showed that the work-
flow was reliable, and this has encouraged us to continue to develop and improve the
workflow steps.

Keywords: lung radiotherapy; 4DCT; model-based CT; motion management; image-guided
radiotherapy

1. Introduction
Respiratory motion poses a significant challenge in radiation therapy, as its irregularity

introduces uncertainty in tumor and normal organ positions that can compromise the
precision of target contouring and the accuracy of treatment delivery [1,2]. The report of
Task Group 76 (TG 76) of the American Association of Physicists in Medicine [3] addressed
this challenge by describing clinical approaches for managing respiratory motion, including
respiratory gating [4], breath-hold techniques [5], forced shallow-breathing methods [6],
and respiration synchronization [7]. The TG 76 report also outlined simulation imaging
solutions for motion management, including slow-scanning CT [8], breath-hold CT, and
4DCT [9]. Since the time of its publication (2006), the latter has offered the most promising
solution for acquiring high-quality images for tumors with respiratory motion, despite its
known limitations [10].

4DCT reconstructs three-dimensional images of lung tumors at several phases, defined
by amplitude or time bins [11,12], of the breathing cycle by acquiring free-breathing scans,
either with helical [9] or ciné [13] scanning. The image data are sorted into phase bins,
and the sorted image data in each phase bin are then used to reconstruct 3D images. This
process is conventionally completed for 8–10 phase bins so that the tumor can be tracked
throughout the respiratory cycle. The phase-binned images are used to assess breathing
motion and guide ITV contouring for treatment planning-based motion management [14].

Following recommendations of the AAPM [3,15], radiotherapy clinics have been using
4DCT to improve the management of respiratory motion for thoracic radiotherapy cases. A
recent survey [16] of radiation therapy clinics published by AAPM’s TG 324 demonstrated
that 93% of surveyed clinics employed 4DCT—a large growth since a previous survey [17]
in 2009, which showed that at the time, only 40% of clinics had 4DCT capabilities. Despite its
widespread availability and clinical use, in cases where patients exhibit irregular breathing,
sorting artifacts can interfere with 4DCT image quality [18], obscuring tumor location(s),
which could compromise motion assessment and lead to target coverage errors [19]. One
study showed that 45 of 50 retrospectively analyzed patients simulated with 4DCT images
had at least one sorting artifact, and that 6 of 20 patients with lung cancer had at least one
sorting artifact visible within the tumor [20]. Though 4DCT has improved incrementally in
recent years with its increasing adoption, fundamental issues remain with this technology
that call for an alternative solution to further improve patient outcomes [10].
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As an alternative to 4DCT, 5DCT has been developed to overcome sorting artifacts
particularly in patients who breathe irregularly. 5DCT is a model-based CT (MBCT) tech-
nique introduced by Low et al. in 2005 [21]. MBCT approaches like 5DCT are driven by
motion models, rather than relying on sorting projections or ciné images [22,23]. The 5DCT
name stems from the motion model’s description of tissue displacement as a function of the
following five variables: (1–3) x, y, and z position in the reference geometry; (4) breathing
amplitude; and (5) breathing rate. The 5DCT model relates tissue displacement, measured
by deformable image registration (DIR), to the breathing pattern, measured by a respiratory
surrogate such as spirometry [24], surface imaging [25], or an abdominal bellows [26].
Once the motion is characterized by the 5DCT model, user-defined phase images can be
reconstructed by applying the model to a designated reference scan. In our clinic, we
first take the representative breathing waveform (as described in Section 2.2) from the 5th
percentile to 95th percentile amplitudes and remove the outliers outside of this range. From
the remaining waveform, we generate eight 5DCT phase images at 0th-, 25th-, 50th-, 75th-,
and 100th-percentile amplitude during exhalation and 25th-, 50th-, and 75th-percentile
amplitude during inhalation.

Early 5DCT characterizations were reported in 2013 and 2014 [2,27]. The initial publi-
cations described how 5DCT could be implemented with conventional CT equipment and
protocols, DIR, and a universal breathing motion model equation to describe breathing mo-
tion on a voxel-by-voxel basis. A novel free-breathing image acquisition method leveraging
fast-helical free-breathing CT (FHFBCT) acquisition was introduced in 2013 to optimize the
quality of images needed for 5DCT. Eventually, 5DCT was compared to conventional 4DCT
protocols and demonstrated to be more robust for irregular breathing, while producing
artifact-free images with similar imaging doses [27].

To validate the 5DCT workflow, O’Connell et al. first demonstrated that the 5DCT
technique produces similar results as commercial 4DCT for simulating patients with regular
breathing cycles [28]. They used mechanically ventilated pigs to generate images with
4DCT and 5DCT, evaluated landmarks throughout the lungs in the phase images, and
identified position agreement within 2 mm for most cases. They later evaluated their
workflows by comparing tumor motion, ITV generation, noise characteristics, and artifacts
between both approaches, once again demonstrating consistent results using 5DCT with
reduced artifacts [29]. Subsequent studies reported on the techniques needed to improve
the quality and efficiency of 5DCT, such as de-blurring [30]. A historical summary of the
5DCT development and implementation timeline is shown in Figure 1.
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Figure 1. 5DCT development and implementation timeline.

Following early efforts to validate and prepare 5DCT for clinical use, the first clinical
5DCT scan was acquired for routine clinical care at our institution in March 2019, fourteen
years after the initial publication [2]. Since 2019, more than 310 patients have been scanned
clinically with 5DCT in place of 4DCT. In this study, we report on our initial clinical
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experience (up to December 2022) with 5DCT and evaluate patient and technical factors
that can influence its quality.

2. Materials and Methods
The goal of this study was to report on our experience with the primary drivers lim-

iting the fidelity of the clinical 5DCT phase image generation process. We performed a
retrospective analysis of the consecutive patients simulated with a 5DCT protocol at our
institution from March 2019 to December 2022, utilizing the patient-specific quality assur-
ance (QA) reports to identify patient and technical factors associated with the suitability of
the image sets for treatment planning.

2.1. 5DCT Protocol

The 5DCT protocol in use at our institution relies on a motion model-based technique
relating tumor displacement to breathing amplitude and rate as captured during the ac-
quisition of 25 FHFBCTs. A schematic of the 5DCT workflow is shown in Figure 2, and
further details can be found in prior publications [2,27]. To begin, 25 FHFBCTs are acquired
with simultaneous respiratory monitoring using a sealed abdominal bellows (Lafayette
Instrument Company, Lafayette, IN, USA) and a pressured transducer monitoring the inter-
nal bellows’ air pressure. Each slice of the FHFBCTs is assigned an uncorrected breathing
amplitude and rate based on the bellows measurement and a time synchronization (offset)
between the bellows and CT scanner. Due to the patient’s body temperature heating the air
in the bellows, there is an inherent signal drift. This signal drift is corrected by optimizing
a linear function that maximizes the correlation of the patient’s anterior abdominal skin
surface position to the breathing amplitude.
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shows lungs, the registration and subsequent DVFs are acquired throughout the entire CT scan.

The first FHFBCT is acquired using 140 mAs to serve as the reference scan. The other
24 FHFBCT scans, acquired with 40 mAs, are registered to the reference scan using DIR.
The voxel-wise deformation vector fields (DVFs) thereby measure the breathing motion
across the 25 images.

At each reference image voxel, including those outside the lungs, the 25 DIR voxel
positions are fitted to their corresponding amplitudes and rates to fit the voxel- and patient-
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specific 5DCT motion model parameters. Equation (1) describes the model, where
→
X is the

voxel position at a breathing amplitude A and breathing rate
.

A;
→
X0 is the voxel’s position

in the reference image;
→
α is a voxel-specific model parameter that scales the breathing

amplitude, A; and
→
β is a voxel-specific model parameter that scales the breathing rate,

.
A.

Note that, for tissue voxels that do not move, such as in the spine, both
→
α and

→
β are zero.

After fitting the 5DCT model parameters, Equation (1) is used to generate a vector field to
deform the reference image and generate images at any user-defined breathing amplitude
and rate (A and

.
A):

→
X =

→
X0 +

→
α ∗ A +

→
β ∗

.
A (1)

2.2. Clinical Workflow

After the scans and bellows signals were acquired, the DIR and subsequent model
generation were calculated on a computer server. The DIRs were performed using the deeds
algorithm [31,32], while model reconstruction was performed in MATLAB (The Mathworks
Inc., Natick, MA, USA). This process generally required several hours to complete, largely
due to DIR processing, and provided the following image datasets used for treatment
planning: (1) 8 5DCT phase images intended to replace the images provided by 4DCT in
our 4DCT clinical workflow; (2) a maximum intensity projection (MIP) image, generated in
MIM Vista software version 7.3.5 (MIM Software, Inc., Cleveland, OH, USA), of the 5DCT
phase images; and (3) a maximum-intensity projection of the 25 FHFBCTs, also generated
in MIM, termed the MEGA-MIP. The MEGA-MIP served as both a second check for the
5DCT tumor motion trajectory and a backup method when the 5DCT failed the quality
checks described below.

The 5DCT phase images were based on breathing amplitudes and rates from a rep-
resentative breath that was generated using the patient’s breathing trace, as described
by White et al. [33]. Figure 3 shows examples of the annotated breathing waveform and
representative breath for one patient.

In addition to the generation of the 5DCT phase images and MIPs, a process was also
implemented to provide measures of 5DCT modeling and workflow validation that were
easily interpretable. The first measure was the motion model fit residuals, reported as the
distances between the model’s predicted voxel positions and the voxel positions acquired
from the DIRs [28]. These were presented as summary statistics (mean, standard deviation,
95th percentile), histograms, and MIPs in the report. The second measure employed the
5DCT model and the breathing traces for the FHFBCTs to re-generate the original FHFBCTs
using the reference image. This measure was termed the original scan reconstruction, which
offered a comparison of 5DCT-generated images to the FHFBCT scans, considered by us as
ground truth images.

The physicist assigned to the case was required to determine whether the 5DCT phase
images could be used by the clinic for ITV contouring, generally relying on printed reports,
described in the next section, to identify potential signs of catastrophic failures such as
highly misregistered diaphragms or large (>~2 mm) residual errors. The assigned physicist
also compared the 5DCT MIP to the MEGA-MIP and original 25 scans to determine whether
the 5DCT reconstruction adequately reflected the tumor motion envelope. If the 5DCT
failed to pass these quality checks, backup protocols were utilized, including the MEGA-
MIP and reviewing the FHFBCTs as a movie sequence for treatment-planning purposes.
While not providing a specific representative motion summary of the tumor, these images
reflected the motion as characterized over the approximately 2 min CT scan acquisition
period, although images taken during outlier breaths would not have been removed as their
influence on the representative breath and, consequently, the 5DCT phase images would.
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2.3. Quality Assurance (QA) Reports

Table 1 summarizes the contents of each QA report section, highlighting those that
provided a qualitative summary of the breathing irregularity, FHFBCT quality, DIR accu-
racy, and modeling accuracy. The first section summarized FHFBCT acquisition, including
a graph of the detected scan start and stop times and a display of the scan ranges. This
section also included a display of the offset corrections and a summary of the drift correc-
tion process.

The second section of the QA report summarized the breathing pattern with plots
annotating the 5th, 85th, and 95th percentiles; the segmentation of the breathing trace that
was used to define the representative breath was also plotted. A breathing amplitude
percentile histogram was also provided, along with plots of the representative breath alone
and within the context of the entire breathing trace.

The third section of the QA report summarized the DIR results, relying on superim-
posed images of the reference FHFBCT and the registered target FHFBCTs in the mid-slice
coronal, sagittal in the left lung, and sagittal in the right lung. Each overlay was presented
as an image overlay, where the reference and target FHFBCTs were green and magenta,
respectively. In locations where the images were aligned, the green and magenta colors
created the typical gray scale. In the lungs, this was especially evident for the airways,
blood vessels, and lung boundaries. In misaligned regions, the structures of one image
would appear superimposed on the parenchyma of the other image and appear as either
green or magenta.

The fourth section of the QA report summarized the motion modeling quality, eval-
uating model fit residuals that were summarized as mean, standard deviation, and 95th
percentile and displayed as an MIP within the lungs, which had been masked using the
Pulmonary Toolkit [34]. Image overlays were presented as in the DIR section, with the
FHFBCT image in green and the 5DCT-generated image in magenta.
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Table 1. Summary of data elements in 5DCT QA reports.

Data Element Description Purpose

Image and Breathing Surrogate Acquisition

Scan Start/Stop Times Binary signal of the CT on/off state, used to
synchronize the scans to the bellows signal

This was used to assure that the noise level in the signal
was not excessive, allowing for a clear determination of
beam-on and beam-off times.

Scan Ranges
Plot of the slices available against the scan
numbers, used to note if any slices or scans
were missing from each scan

Some, especially early scan datasets, did not have
common craniocaudal coverage due to CT sequence
programming errors. These were rare, and if one of the
25 scans was too short, it was removed from further
analysis by the physicist running the 5DCT protocol.

Corrected Shifts Summary of any interpolations to correct
offsets between head-first and foot-first scans

Even with careful programming, the scanner
reconstructed the head-to-foot and foot-to-head with
slightly different (sub-millimeter) couch positions. These
were accounted for in the image processing, so this step
was intended to assure that there were no >1 mm
differences indicative of a CT programming error.

Bellows Signal/Abdominal Height

Summary figures of all detected abdomen
heights and plot of the heights against the
corresponding drift-corrected bellows signals,
used to show the effectiveness of the drift
correction and the correlation of the
drift-corrected bellows signal and the
abdomen heights.

This was used to assure that the correlation was high and
did not have the appearance of randomness and to
assure that the corresponding linear fit was a good
representation of the data.

Respiratory Surrogate Analysis

Respiratory Trace

Plot of the bellows amplitude signal over time
with 5th-, 85th-, and 95th-percentile
amplitudes annotated. Used to evaluate
breathing irregularity in this study.

Examine the breathing trace to evaluate for obvious
anomalies such as discontinuities or severe
uncompensated drift.

Respiratory Amplitude Histogram Histogram of time while the signal was in each
amplitude bin

Not evaluated. This histogram was provided for
retrospective review. There were and are no evaluation
criteria tied to these types of data, and the respiratory
trace contained a more easily evaluable form of
these data.

Waveform Segmentation

Plot of the bellows amplitude signal over time
with each detected exhalation point annotated,
used to show how breaths were segmented to
determine the representative breath.

Examined the exhalation points, which were used in the
process of creating the representative breath.

Representative Breath and Context
Plots of the representative breath, alone and
superimposed over the breathing waveform at
its appropriate amplitudes.

This was used to assure that the representative breath
amplitudes (peak inhalation and exhalation) reflected the
overall breathing pattern.

Deformable Image Registration

Deformable Image Registration

A set of 24 coronal, right lung sagittal, and left
lung sagittal images, showing a
green/magenta overlay of the reference image
and deformed target FHFBCT at the middle
slice of each plane. Used to evaluate DIR
quality in this study.

Examined to determine if the image registration failed.
This was generally due to the DIR algorithm’s inability to
register images with large differences in
breathing amplitudes.

Motion Modeling

Summary

Summary table including number of scans,
reference scan number, mean, standard
deviation, and 95th percentile of the 5DCT
model fit residuals.

Mean, standard deviation, and 95th percentile of the
5DCT model fit residuals were evaluated in conjunction
with the 5DCT model fit residual histogram to determine
if the 5DCT 8-phase images and 5DCT MIP should be
used clinically.

Residual Histogram
Histogram of the 5DCT model residuals in 1
mm bins with frequency represented by
percent of lung voxels

Used in conjunction with the mean, standard deviation,
and 95th percentile of 5D model fit residuals to
determine if the 5DCT 8-phase images and 5DCT MIP
should be used clinically
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Table 1. Cont.

Data Element Description Purpose

5DCT Model Residual AP/Lat
MIPs (mm)

Coronal and sagittal maximum-intensity
projections (MIPs) of the model residuals
overlain with a projection of the anatomy.
Residuals were shown on a green-to-red
color wash.

These were used to determine the magnitude and rough
locations of the 5DCT model residual error distribution.

Original Scan Reconstructions

Coronal, left lung sagittal, and right lung
sagittal overlays of the 5DCT model-deformed
reference image superimposed with each of
the 25 FHFBCTs using the green/magenta
color overlay. Used to evaluate image quality
and STP in this study.

Used in conjunction with the 5DCT motion model
residuals to determine overall 5DCT workflow quality
and clinical usability. Since no quantitative values were
assigned to these images, they were primarily used to
verify that high or low residual values accurately
reflected poor or good original scan
reconstructions, respectively.

2.4. Review and Grading of QA Reports

Figure 4 shows a flowchart summarizing the overall study design. We retrospectively
employed a grading system to quantify several variables in the QA report, as well as to assess
the suitability of the 5DCTs themselves for treatment planning. This grading system was
adapted from a previous 5DCT validation study by O’Connell et al. [29]. Three workflow
variables were graded—breathing irregularity, FHFBCT quality, and DIR quality—with the
grades described in Table 2. Our FHFBCT and DIR quality reviews focused heavily on
the diaphragm because we relied on the original FHFBCT scans prior to contouring, so the
tumor location was not available to aid in quality analysis. The Suitability for Treatment
Planning (STP) was graded on the same scale for the severity of discrepancies in the original
scan reconstructions. Table 1 indicates which report components were used for each graded
quantity. Figure 5 shows examples of the grades for each workflow variable.

Figure 4. Flowchart of study design. MIM (MIM Software, Inc., Cleveland, OH, USA) was our
RT-PACS system used for contouring.
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Table 2. Grading criteria used to report the quality of breathing irregularity, fast-helical free-breathing
computed tomography (FHFBCT) image quality, deformable image registration (DIR), and STP.
Examples of artifacts are given in parentheses.

Variable Grade 1 Grade 2 Grade 3 Grade 4

Breathing Irregularity Very regular Regular Irregular Very irregular

FHFBCT
Image Quality No artifacts

Minor artifacts
(Some blurring at the

diaphragm)

Some artifacts
(Slight doubling of the

diaphragm)

Severe artifacts
(Severe doubling of the

diaphragm)

DIR Quality
Great alignment of the

reference and target
FHFBCTs

Good alignment of the
reference and target

FHFBCTs
(Minor misalignments that

would not significantly
impact modeling)

Poor alignment of the
reference and target

FHFBCTs
(Some images are

misaligned by greater than 1
mm at the diaphragm or

vessels)

Very poor alignment of the
reference and target

FHFBCTs
(Many or all images are

misaligned by much more
than 1 mm at the

diaphragm or vessels)

Suitability for
Treatment Planning

Great alignment of the
true FHFBCTs and the

model-generated
FHFBCTs

Good alignment of the
true FHFBCTs and the

model-generated
FHFBCTs

(minor misalignments that
signify minor errors in

modeling)

Poor alignment of the true
FHFBCTs and the

model-generated FHFBCTs
(some images are misaligned
by greater than 1 mm at the
diaphragm or vessels that
signify some meaningful

errors in modeling)

Very poor alignment of the
true FHFBCTs and the

model-generated
FHFBCTs

(many or all images are
misaligned by much more

than 1 mm at the
diaphragm or vessels that
signify meaningful errors

in modeling)
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2.5. Determination of 5DCT Clinical Use

We evaluated the outcomes of all 5DCT scans acquired in our department by their
usability, which had been determined by the treatment-planning team, to assign them to
one of seven categories, as summarized in Table 3. These categories were collected into
three groups. Categories 1 and 2 were assigned whenever the 5DCT was clinically utilized.
Categories 3 and 4 were assigned when the 5DCT phases were of insufficient quality for
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clinical use. Categories 5, 6, and 7 were assigned when no ITV was contoured, for example,
when the patient was treated using our MR-linac (Category 5).

Table 3. Categories of 5DCT clinical usability based on saved contouring sessions.

Category Description

5DCT Used for ITV Contouring (N = 118)

1 5DCT phase images reconstructions used for ITV contouring
2 MIP generated from 5DCT phase images reconstructions used for ITV contouring

Backup Protocols Used for ITV Contouring (N = 21)

3 MEGA-MIP used for ITV contouring
4 Series of FHFBCT scans in sequence used for contouring

Other (No ITV Identified) (N = 30)

5 Patient treated using an MR-linac (unrelated to 5DCT quality)
6 Patient not treated (unrelated to 5DCT quality)
7 No motion imaging used in contour session (due to lack of evidence of motion)

2.6. Statistical Analysis

We evaluated possible 5DCT modeling correlates and usability through three key
indicators: (1) the STP grade, (2) model residual statistics (mean and 95th percentile), and
(3) use in the clinic as defined in Table 3. We calculated Spearman correlation coefficients
between each graded workflow variable and accuracy metric, with breathing irregularity
grade, FHFBCT quality grade, and DIR quality grade as independent variables and STP
grade, mean model residual, and 95th percentile model residual as dependent variables.
Additionally, we calculated linear regression models to adjust for potential confounders.
We performed multiple regression tests to assess STP grade as the dependent variable,
with breathing irregularity grades, FHFBCT quality grades, and DIR quality grades as the
independent variables. We calculated p-values for each regression, considering p < 0.05 to
be statistically significant. We also calculated adjusted R2 values to assess the correlation
strength. To assess the relationship between our criteria and the clinical utility, we calcu-
lated the mean STP grade and model residuals of 5DCT phase images that were used for
treatment planning versus those that were not used, as categorized in Table 3.

3. Results
We identified 212 patients simulated with a 5DCT acquisition from March 2019 to

December 2022. Of those, 56 patients had been scanned for abdominal tumors. For the
purposes of this report, we focused only on the 156 patients imaged for thoracic tumors,
including 169 unique 5DCT phase image sets (13 patients had two or more 5DCT scans).
The mean age of the included patients was 67.7 ± 15.2 years. Of the patients, 45% were
male and 55% were female.

STP grades were 1–4 (best to worse) in 14%, 50%, 31%, and 5% of cases, respectively
(Figure 6). Breathing irregularity was graded 1–4 (best to worse) in 14%, 39%, 28%, and
19% of cases, respectively, indicating that patients commonly experienced an appreciable
degree of breathing irregularity. FHFBCT image quality was graded 1–4 (best to worse)
in 62%, 33%, 4%, and 1% of cases, respectively, indicating that artifacts were only “some”
or “severe” in 5% of cases. DIR quality was graded 1–4 (best to worse) in 57%, 27%, 9%,
and 6% of cases, respectively, indicating that poor or very poor image registration was
uncommon. Figure 7 shows histograms of all investigated workflow variables.
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Figure 7. Histogram of grades for FHFBCT quality, DIR quality, and breathing irregularity across
all cases.

Using Spearman correlations, we found that breathing irregularity grades (p = 0.008),
FHFBCT quality grades (p < 0.001), and DIR quality grades (p < 0.001) were significant
predictors of the STP grade. DIR quality showed the highest Spearman correlation at
0.50. Table 4 summarizes the Spearman correlation coefficients of the graded workflow
variables and the STP grades for the analyzed scans. We found that the same predictors of
STP grade were significant in the multiple linear regression model, with DIR grade again
having the highest correlation. Table 5 shows these results (adjusted R2 = 0.378). Breathing
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irregularity had the highest correlation to the multiple linear regression model predicting
mean residuals, while DIR quality had the highest correlation with the 95th percentile
residual, suggesting that DIR quality may be more predictive of severe issues with model
fitting. Table 6 shows the results for the multiple linear regression model predicting the
mean model residual (adjusted R2 = 0.287). Table 7 shows the results for the multiple linear
regression model predicting the 95th-percentile model residual (adjusted R2 = 0.319).

Table 4. Spearman correlation of graded workflow variables to the STP grades.

Correlation Spearman Coefficient Spearman Confidence Interval

Breathing irregularity Grade vs.
Suitability for Treatment Planning

Grade
0.260 (p < 0.001) [0.109, 0.399]

Imaging FHFBCT Quality Grade
vs. Suitability for Treatment

Planning Grade
0.301 (p < 0.001) [0.153, 0.436]

DIR Quality Grade vs. Suitability
for Treatment Planning Grade 0.500 (p < 0.001) [0.374, 0.608]

Table 5. Multiple linear regression model results predicting STP grades.

Criteria Unstandardized
Coefficient (B)

95% Confidence
Interval for B

Standardized
Coefficient (β)

Constant 0.996 (p < 0.001) [0.541, 1.451] -
Breathing Irregularity Grade 0.133 (p = 0.008) [0.034, 0.231] 0.165 (p = 0.008)

FHFBCT Quality Grade 0.290 (p < 0.001) [0.130, 0.449] 0.230 (p < 0.001)
DIR Quality Grade 0.404 (p < 0.001) [0.292, 0.517] 0.467 (p <0.001)

Table 6. Multiple linear regression model results predicting mean model residual (mm).

Criteria Unstandardized
Coefficient (B)

95% Confidence
Interval for B

Standardized
Coefficient (β)

(Constant) 0.571 (p < 0.001) [0.253, 0.888] -
Breathing irregularity Grade 0.214 (p < 0.001) [0.145, 0.282] 0.407 (p < 0.001)

FHFBCT Quality grade 0.147 (p = 0.010) [0.035, 0.258] 0.177 (p = 0.010)
DIR Quality Grade 0.102 (p = 0.011) [0.024, 0.181] 0.181 (p = 0.011)

Table 7. Multiple linear regression model results predicting 95th-percentile model residual (mm).

Criteria Unstandardized
Coefficient (B)

95% Confidence
Interval for B

Standardized
Coefficient (β)

(Constant) 0.758 (p = 0.012) [0.170, 1.346] -
Breathing irregularity Grade 0.279 (p < 0.001) [0.152, 0.406] 0.281 (p < 0.001)

FHFBCT Quality grade 0.248 (p = 0.019) [0.042, 0.455] 0.159 (p = 0.019)
DIR Quality Grade 0.412 (p < 0.001) [0.266, 0.557] 0.384 (p < 0.001)

These relationships are visualized in Figure 8, showing heatmaps summarizing the
coincidence of each grade between the STP and the three graded workflow variables. From
these figures, the stronger relationship between DIR quality and STP can be seen compared
to that of breathing irregularity. Figure 8a also shows that FHFBCT quality does not have a
very strong relationship for Grades 1 and 2 but has a strong relationship for Grades 3 and 4.
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Figure 8. Heatmaps showing the coincidental frequency of (a) FHFBCT quality grade, (b) DIR quality
grade, and (c) breathing irregularity grade with STP grades for all patients. The colors reflect the
numbers displayed and are intended for assisted visual interpretation.

Regarding clinical usability of the 5DCT images, 139 out of 169 patient scans were used
by clinicians for contouring and treatment planning, while 21 utilized a backup protocol
or the MEGA-MIP. Five patients were ultimately treated on the MR-linac due to excessive
respiratory motion. Among the 139 patient scans that used 5DCT for contouring, 45 patient
scans had high STP grades, indicating poor 5DCT reconstruction (38 with grades of 3; 7 with
grades of 4). The average breathing irregularity grades for scans where 5DCT phase images
were used for contouring versus the backup protocol were 2. 45 and 3.10, respectively, and
their FHFBCT quality grades for each were 1.40 and 1.62, respectively. The DIR quality
grades were 1.56 and 1.90 for each, respectively. The average STP grades for each were 2.22
and 2.62, respectively. The average mean residuals for each were 1.21 and 1.80, respectively.
Figure 9 shows the breakdown of clinical uses of 5DCT reconstructions for contouring.
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4. Discussion
The goal of this study was to report on clinical 5DCT and the factors that impact its use.

5DCT image sets acquired over a 33-month period were used for treatment planning for 82% of
patients, with 12% requiring a backup protocol that utilized the same FHFBCT images acquired;
no patient needed to return for a repeat CT simulation scan. These results demonstrate that
5DCT served as a replacement to 4DCT for thoracic radiotherapy treatment planning.
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In total, 36% of scans had image reconstruction scores of 3 or 4, and we found that the
biggest cause for these was poor DIR quality, as evidenced by Spearman correlation and
multiple linear regression models. Image registration in the 5DCT workflow was, thus, a
limiting aspect for modeling accuracy. This was an expected result as 5DCT was designed
to be robust to irregular breathing, hence its major advantage over 4DCT, but largely relies
on DIR to track tissue across the 25 FHFBCTs. 5DCT creates less reliability on breathing
regularity and places more importance on DIR. This is important as DIR can be improved
through advanced techniques and continued development, while breathing irregularity
cannot for free-breathing protocols.

The findings of this study are the first reported evidence of 5DCT’s utility in the clinic,
following the development and validation studies performed by Low et al. and O’Connell
et al. from 2005 to 2018. Based on our findings, we are currently making improvements to
the 5DCT workflow, along with using a new and faster CT scanner, and we will evaluate
those improvements in follow-up studies. Now that we have evaluated the clinical efficacy
of 5DCT, we can begin to study its clinical impact in terms of treatment planning quality
and clinical endpoints.

As DIR quality was the primary driver of 5DCT STP, more accurate and robust image
registration algorithms, especially ones that handle large motion magnitudes, could lead to
the direct improvement of 5DCT. Some promising registration techniques on the horizon
include deep-learning-based methods [35] or commercial and open-source options [36]. As
an example, we have found that an updated version of deeds, deedsBCV, is more capable
of registering patients with larger motion magnitudes [37], and we have implemented
deedsBCV in our next iteration of the 5DCT workflow. Reviewing clinical 5DCT cases
calls for further expertise to diagnose registration issues, so there is also a need for further
developments in registration evaluation tools [38]. Our group has developed one such
tool to quantify sub-millimeter DIR errors [39] that we will implement into the clinical QA
process. In addition to improving DIR, we aim to improve the model through alternative
surrogates that avoid the amplitude measurement signal drift. Wilms et al. showed that
1-D surrogates were mostly consistent in respiratory modeling accuracy, but that increasing
the dimensionality of the surrogate led to great improvements [40]. We will thus test the
feasibility of surface imaging as a 5DCT surrogate. Moreover, the deformed reference
image serves to create anatomically accurate images, but the Hounsfield units are derived
from the reference image and do not reflect the change in parenchymal tissue density
during breathing. This does not greatly affect megavoltage photon radiation therapy but
would introduce proton range errors for proton therapy. We are developing a ventilation
adjustment process to scale the Hounsfield units to reflect local changes in air content using
the principles of CT-based ventilation [41–43].

In addition to providing a reliable motion characterization for treatment planning, the
5DCT motion model could be used for downstream modeling applications. For example,
there has been a large effort towards measuring ventilation with 4DCT-based motion mod-
els, but 4DCT sorting artifacts have been shown to impact these measurements [44]. 5DCT
could be useful in enabling new methods for ventilation calculations with more highly
sampled and robust data. Clinical trials have already shown the impact of using ventilation
maps in treatment planning to reduce radiation pneumonitis [45,46], so increased accuracy
with 5DCT could help further refine an already impactful technique. There is also a large
research effort towards correcting motion artifacts in cone–beam CT with 4D-CBCT [47]
or motion modeling [48,49], and we have demonstrated the potential of the 5DCT model
in this area [50]. Its benefits are both immediate in delivering a sorting-artifact free CT
simulation approach and extensive in biomechanical and daily imaging applications.
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One limitation of our study was the restriction of retrospectively reviewing the QA report,
requiring the manual grading process to analyze the workflow variables and STP. While we
made efforts to standardize and guide the observer, for example, with the rubric shown in
Figure 5, this process leaves room for observer bias. As we continue to improve the 5DCT
process, future prospective studies will include more efforts to collect quantifiable data. Another
limitation is the need to rely on the contouring sessions to determine whether and how 5DCT
was used for a particular patient. Specifically, in the five MR-linac cases, we could not determine
whether the 5DCT would have been used for contouring had the patient been treated on a
conventional linac. It is likely that those scans were adequate to determine that there was too
much motion for ITV planning, and that gating would greatly improve treatment efficacy.

5. Conclusions
5DCT simulation for radiation therapy treatment planning has been successfully

implemented in our institution since 2019. Our analysis of the first 169 cases simulated
with this technique demonstrates that 5DCT was clinically used in 82% of cases. We
identified that, although 5DCT can generate robust images in the context of irregular
breathing, there remains room for improvement in the DIR operational component to
improve reconstructed image reliability. Our roadmap for continued development of the
5DCT workflow includes introducing modern DIR algorithms, implementing a quantitative
DIR evaluation tool, scaling the HUs of model-derived scans to reflect ventilation, and
exploring new 2D surrogates for the respiratory pattern. Our next evaluation study will
address the direct impacts of 5DCT on the treatment planning workflow, including ITV
generation and dosimetric differences between 4DCT and 5DCT. With these next steps, we
anticipate increased modeling accuracy and a demonstration of the benefits of 5DCT for
lung radiotherapy treatment planning.
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