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Abstract

This study focuses on a sequence of thermal response tests carried

out on a 12 m-long instrumented thermal pile performed at different

times throughout a year in a location in Brazil with a tropical climate.

The thermal pile was a cast-in-place concrete bored pile, installed in a

stratified sedimentary deposit typical of the Brazilian coastal region.

The results  from the tests  permit  assessment  of  the heat  transfer

characteristics to evaluate the feasibility using thermal piles as a heat

sink  for  building  cooling  purposes.  Interesting  thermo-mechanical

phenomena were observed in the tests, including deformations of the

concrete  and  the  steel  reinforcement,  along  with  localized

deformations at the tip attributed to the pile  construction process.

The results presented in this study indicate the feasibility of using this

technology in tropical climate regions, and features regarding thermo-

mechanical  response  of  thermal  piles  in  stratified  soil  profiles

common to tropic regions were assessed and highlighted. 

Keywords:  Thermal  pile,  Thermal  response  test,  Thermal  induced

stress
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Introduction

According to official data, 60% of the energetic matrix in Brazil in

2014 came from non-renewable sources and approximately 80% of

this fraction is responsible for emission of gases that lead to global

heating effects (EPE 2016). According to data collected by SEEG in

2016, the energy sector was responsible for 31.7% of the emission of

gases in Brazil that provoke greenhouse effects (Brasil MME 2015).

Moreover,  Brazil  is  a  signatory  of  the  Montreal  Protocol  and  is

committed to drastically reduce the use of hydrofluorocarbons (HFCs)

in air conditioning systems commonly used in houses, companies, and

public spaces.

The motivations to reduce greenhouse gas emissions and the use of

HFCs are driving policy makers and engineers in Brazil to incorporate

cleaner and more environmentally-friendly energy technologies into

the  energetic  matrix.  These  technologies,  including  thermo-active

geothermal structures combined with ground-source heat pumps, are

of  great  appeal.  Amongst  these  structures,  thermal  piles  (also

referred to as energy piles or thermo-active piles) are very attractive

because they build upon a mandatory part of the structural support

for heavy structures. Heat is transferred in thermal piles by circulating

heated  or  cooled  fluid  through  a  closed-loop  network  of  pipes

embedded in reinforced concrete. Incorporating heat exchange pipes

into deep foundations can be achieved with negligible additional costs

beyond those expected for the structural element. The large contact

area  of  thermal  piles  with  soil  along  with  their  thermal  properties
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makes the heat exchange mechanism in thermal piles more effective

than conventional borehole heat exchangers (Loveridge and Powrie

2013). On the other hand, despite being a cooling-dominated tropical

country, Brazil has not encountered a marked use of this technology.

Studies to confirm the heat transfer characteristics of thermal piles in

tropic soils are necessary, along with studies to help understand the

impacts  of  heat  transfer  of  the  thermo-mechanical  response  of

thermal piles in typical Brazilian stratified soil profiles.

Background

Due to their advantages, thermal piles have been used in practice

throughout the world for the past two or three decades. According to

Koene  and  Geelen  (2000),  the  idea  of  using  closed-loop  heat

exchanger pipes embedded inside concrete or steel piles to exchange

heat with soil gave life to the first prototype in the 1990’s. Since that

time, there have been several full-scale evaluations of the thermo-

mechanical response of  thermal piles and other structures such as

walls and tunnels (Adam and Markiewicz 2009; Brandl 2006; Laloui et

al. 2006; Bourne-Webb et al. 2009; Amatya et al. 2012; Bourne-Webb

2013a;  Murphy  et  al.  2014;  Bouazza  et  al.  2015;  Murphy  and

McCartney 2015; Akrouch et al. 2014). There have also been several

applications of thermal piles in practice. Laloui and Di Donna (2011)

reported that as of 2011 more than forty large projects in Switzerland

including schools, industrial buildings, and airports have implemented

thermal piles,.  However,  in  most  of  these cases,  the thermal  piles

were being installed in heating-driven climates and in soil  deposits
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that are not representative of those encountered in tropical regions

like Brazil. The limited research studies on the feasibility of thermal

piles in Brazil are theoretical and do not provide conclusive evidence

of  the  behavior  of  thermal  piles  in  the  particular  hydrogeological

setting in Brazil (Bandeira Neto 2015; Morais and Tsuha 2016). Liu et

al. (2019) performed tests on reduced scale models of thermal piles

under varying climate conditions and found that the pile response due

to temperature variations was somewhat dependent on the climate

condition.  Sutman  et  al.  (2020)  carried  out  numerical  analyses  to

study the feasibility of thermal piles in different climates aiming to

assess the life-cycle response of these structures, and found that the

climate setting was an important issue to consider.

To  address  the  need  to  characterize  full-scale  energy  piles  in

tropical  climates,  this  study  focuses  on  the  evaluation  of  an

instrumented, 12 m-long concrete thermal pile installed at the State

University  of  Norte  Fluminense  (UENF)  site  in  Campos  dos

Goytacazes,  Brazil,  in  a  sedimentary  stratified  soil  deposit  with

intercalation of clay and sandy layers typical of the Brazilian coastal

region. The site under investigation is characterized by high annual

temperatures  throughout  the  year,  which  lead  to  ground

temperatures  well  above  those  observed  in  previous  studies  on

thermal piles installed in temperate climate regions. The tested area

is close to the Paraíba River, where considerable fluctuations of the

groundwater  table  (GWT)  occur  on  an  annual  basis.  To  better

understand the seasonal effects on system efficiency and the role of
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soil  stratification  and  GWT  fluctuations  on  the  thermo-mechanical

response  of  the  pile,  three  thermal  response  tests  (TRTs)  were

performed on the thermal pile at different times through a 180-day

period. During this period, the first two TRTs were carried out when

the air temperature was close to the annual maximum and the GWT

was  at  its  maximum elevation,  while  the  last  TRT  was  performed

when air temperatures were cooler and after the GWT had dropped

by  approximately  3.5  m,  as  depicted  in  Figure  1.  The  soil  layer

affected  by  the  GWT  fluctuation  is  composed  of  clean  sand.  The

thermal  pile  evaluated  in  this  study  is  a  cast-in-place  bored  pile,

installed  with  rotary  steel  pipes  with  water  circulation  similar  to  a

micropile. This type of pile and its installation method has received

limited attention in the literature compared to other types of thermal

piles  (e.g.,  Akrouch  et  al.  2014,  Bourne-Webb 2013b).  The  results

from  the  three  TRTs  permit  definition  of  the  system  thermal

properties of the thermal pile and surrounding soil (thermal resistance

and thermal conductivity) considering the characteristics of tropical

regions with significant  GWT  fluctuations.  Further,  the thermal  pile

was instrumented with strain gauges oriented axially and radially to

evaluate the corresponding changes in stresses and strains resulting

from  the  temperature  variations  in  the  thermal  pile  over  several

heating/recovering cycles. The succession of TRTs performed over a

period of 180 days also permits the assessment of potential effects of

different  temperature  changes  on  the  surrounding  soil  layers  and

related soil-structure interaction mechanisms. Special attention was
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paid to the effects of the organic soft soil layer at depths of 8.0 to

10.0m where plastic strains may occur due to thermal consolidation

stemming from the heating-cooling processes. Therefore, a series of

TRTs was necessary to investigate the long-term behavior of the pile

regarding  thermo-mechanical  hysteresis  resulting  from  thermal

consolidation and ground water table lowering.  

Thermal Response Tests

One of the key points for understanding thermal pile behavior is

the mechanism of heat transfer in the system.  The heat exchange

between a thermal  pile  and the surrounding soil  can occur due to

three  mechanisms:  conduction,  convection  and  radiation  (Brandl

2006). Conduction is the predominant mechanism of heat exchange

between  the  thermal  pile  and  soils  and  depends  on  the  contacts

between soil grains, typically quantified using the dry density, and the

degree  of  saturation.  Convection  should  be  considered  in  the

presence of ground water flow, thermally induced buoyancy driven

water  flow,  and  in  vapor  flow  in  unsaturated  soils.  Convection  is

typically  most  relevant  in  high  permeability  soils  (Catolico  et  al.

2016).. Radiation is important near the ground surface where vapor

diffusion and water phase change may lead to large increases in heat

transfer. In low-permeability, saturated soil deposits it is conventional

to consider conduction as the primary mode of heat transfer.

Heat transfer by conduction is governed by Fick’s law of diffusion,

and the key parameters governing conductive heat transfer are the

thermal  conductivity  ()  and the  specific  heat  capacity  (Cs)  of  the
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system. Thermal conductivity (W/m°C) refers to the amount of heat

(W) that is transferred through a medium having a unit length (m)

under a unit change in temperature (°C). The specific heat capacity is

defined as the amount of heat that must be input (or withdraw) to

change the temperature of 1 gram of a certain material by 1°C and is

typically  reported  in  units  of  J/kg°C.  The  other  two  key  pieces  of

information that should be quantified in evaluating heat transfer are

the initial  soil  temperature and the thermal gradient induced by a

given heat transfer process. 

The thermal conductivity of a pile-soil system is typically quantified

using  a  thermal  response test  (TRT),  which  involves  heating  the

thermal pile under a constant heat transfer rate and measuring the

change in temperature with time (Hamada et al. 2007; Gehlin 2002;

Austin  1998;  Roth  2004;  Moel  et  al.  2010;  Murphy  et  al.  2014;

Lhendup et al. 2014; Koene and Geelen 2000, Loveridge and Powrie

2013).  Several  theories have been investigated in these studies to

interpret the results from a thermal response test. Analytical solutions

for infinite line heat sources and cylindrical heat sources as well as

numerical  methods  have  been  used  to  interpret  thermal  response

tests,  although  the  prior  two  methods  are  preferable  due  to  their

simplicity  as  long  as  the  heat  transfer  process  meets  the  basic

assumptions of the analysis. This study focuses on the application of

the infinite line source theory to interpret the TRT results. 

According to the infinite line source theory, the temperature at a

distance r from the heat source for a time t is given by:
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T (r , t )=
Q

4 πλ [ ln (
4αt
r 2 )−γ ] (1)

where  is  the  thermal  conductivity,=  /Cs is  the  thermal

diffusivity, Cs is the specific heat capacity,  is the total density of the

soil,  Q is  the heat transfer rate in W, and   is  the Euler constant.

Equation (1) can be rearranged to solve for the thermal conductivity

but can also be used to evaluate the thermal resistivity Rb, which is a

measure of  the impedance for  heat  transfer  through a  system, as

follows: 

Rb=
∆T
Q −

1
4 πλ [ ln(

4 αt
r 2 )−γ ] (2)

Minimizing the thermal resistance Rb of thermal piles by incorporating

concrete  additives,  changing  the  embedded tubes  configuration  or

adjusting  the  input  flow  velocity  are  approaches  to  improve  the

efficiency of geothermal heat exchangers (Sanner et al. 2005; Kim et

al. 2003).

During a thermal response test (TRT) heat is injected into the pile

at a  constant heat transfer rate Q, corresponding to a heat transfer

rate per unit length of the heat exchanger q. In this case the thermal

conductivity  can be calculated from measurements  of  the average

thermal pile temperature at two times t1 and t2, as follows:

λ=
q

4 π
ln ( t2 )−ln(t 1)

T́ 2−T́ 1
(3)

where T́ i is the average thermal pile temperature at time ti, which

can  be  assumed  to  be  the  mean  of  the  input  and  output  fluid

temperatures. The values of  times t1 and t2 should be any two times
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larger  than  6  hours.  Loveridge  and  Powrie  (2013)  presented  a

comprehensive  study  of  the  thermal  response  of  thermal  piles,

involving an evaluation of different variables such as the pile aspect

ratio,  internal  pipe  arrangement  and  the  theory  used  in  the  TRT

interpretation. They found that the use of Eq. 1 shows some deviation

for the first six hours of heating as compared to numerical solution, so

a criterion is  needed to define the portion of  the temperature rise

curve when calculating the thermal conductivity.

Typical  values ofcalculated using this  approach can be found in

Murphy et  al.  (2013)  for  thermal  piles  and in  Wagner and Clauser

(2005) for conventional borehole-type geothermal heat exchangers.

Several  other  studies  have  evaluated  various  aspects  of  the

thermal response of  thermal piles.  For  example,  Park et al.  (2015)

presented  results  from  field  studies  on  a  large  diameter  drilled

thermal  shaft  with  coiled  heat  exchangers  on  with  two  different

pitches to evaluate their constructability and efficiency. They found

that the internal pipe coil-type system may not be well represented

by  traditional  analytical  models  and  that  a  tighter  coil  is  not

necessarily more efficient than one that has a wider spacing. Park et

al. (2013) carried out a field test to investigate the influence of the

internal pipe shape in pre-cast concrete thermal piles and they found

that  “3U-shaped”  and  “W-shaped”  configurations  do  not  affect

significantly  the  performance  of  the  thermal  pile  for  continuous

operation.  Hamada  et  al.  (2007)  tested  several  internal  pipe

arrangements and found that a “U” shape for the heat exchanger is
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the optimal choice for both constructability and economic efficiency.

You et al. (2014) evaluated the impact of the heat transfer rate, inlet

water temperature, and fluid flow velocity and found that the heat

transfer process is most dependent on the fluid flow velocity.

Structural Behavior of Thermal Piles

It is well known that temperature changes in thermal piles can lead

to thermal  deformations that  may induce changes in  stresses that

should be considered to avoid compromising their safe operation from

a  structural  perspective.  The  earliest  comprehensive  thermo-

mechanical test on thermal piles was reported by Laloui et al. (2006),

who evaluated the  temperature  distribution  and strains  in  thermal

pile  in  overconsolidated  clay  during  monotonic  heating  and  they

found  a  good  match  with  predictions  from  a  thermo-elastic  finite

element  model.  Bourne-Webb et  al.  (2009)  along  with  a  follow-up

paper  by  Amatya  et  al.  (2012)  presented  the  results  from  heat

injection and extraction tests on a free-head thermal pile and used

fiber-optic  sensors  to  evaluate the thermally-induced strains  which

were used to assess the restraints provided by the ends of the pile

(the  head  and  tip),  and  the  side  shear  resistance.  Stewart  and

McCartney (2013)  and Goode and McCartney (2015)  evaluated the

thermo-mechanical responses of centrifuge-scale thermal piles having

different end restraints and were able to assess the load-settlement

behavior of the piles after heating. Murphy et al. (2014) presented the

results  from TRTs performed on eight 14 m long concrete thermal

piles under the mechanical load and stiffness restraints of an actual
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one-story building. A variation in average pile temperature of 18°C

was observed in the pile, resulting in an increase in axial stress up to

25% of the compressive strength of the concrete used in the project

(approximately 21 MPa), the maximum strains were located near the

pile head, and the maximum stresses were located near the bottom

of  the  piles.  Murphy  and  McCartney  (2015)  and  McCartney  and

Murphy (2017)  reported on the long-term behavior  of  two thermal

piles  installed  beneath  an eight-story  building  in  a  claystone layer

during  operation  of  a  heat  pump  over  a  period  of  six  years  and

observed a gradual change in the axial strains and stresses over time.

This temporal change was attributed to a dragdown effect that may

be  associated  with  temperature  effects  on  the  thermal  volume

change of the surrounding subsurface. Rotta Loria and Laloui (2018)

have studied the effect of differential thermal expansion of sandstone

strata  on  the  thermal  response of  a  thermal  pile.  Several  authors

have also evaluated the thermo-mechanical response of thermal piles

by means of numerical methods (e.g., Wang et al. 2014; Gashti et al.

2014;  Dupray et al.  2014;  Laloui  et  al.  2006;  Suryatriyastuti  et  al.

2014; Chen and McCartney 2016). The model of Suryatriyastuti et al.

(2014) permitted consideration of  the evolution of  axial stress and

shaft friction during thermal cycles.

Despite the wide range of observations from the previous studies

noted  above,  the  thermo-mechanical  response  of  thermal  piles  in

tropical regions and stratified subsoil has not been entirely evaluated.

Specific conditions that are common in tropical regions that may lead
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to a different response compared to other climate zones, including

high surface and ground temperatures  during both night  and day,

fluctuations  in  the level  of  the GWT, high air  humidity,  and upper

layers of unsaturated soils. In such regions, the ground temperature

has been recorded to be around 24 to 28 °C (Morais and Tsuha 2016)

and the temperature gradient between day and night can be as wide

as 20°C. In addition,  thermal piles installed in stratified subsoil  are

expected to show a particular mechanical response when heated due

to  different  properties  of  the  pile-soil  interface  with  depth.  This

variation  in pile-soil  interface behavior  with depth can give rise to

differential strain distributions, which is investigated herein.

Materials and Methods

Test Set-Up

This  study  involves  the  evaluation  of  a  cast-in-place  concrete

bored pile with a diameter of 0.4 m and a length of 12.0 m installed at

the Campus of UENF, located in the city of Campos dos Goytacazes in

Rio de Janeiro State, Brazil. The site is located on the right margin of

the  Paraiba  River,  in  the  sedimentary  Paraiba  basin  soil  deposit

(21o45’38”S,  41o17’34”W,  Datum  WGS84).  The  local  subsoil  is

composed of thick layers of sand and thin layers of silt and clay. A

soft  organic  clay layer with  a  thickness  of  approximately  2.0 m is

located  at  a  depth  of  approximately  8.2  m.  The  low  standard

penetration test (SPT) blow count, Nspt,  shown in Figure 1 indicates

that this clay layer has low shear strength and may be susceptible to
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contractile  thermal  volume  changes  such  as  those  observed  by

Hueckel  et  al.  (1987).  The  low  shear  strength  and  potential  for

thermal  volume  change  of  the  clay  layer  may  influence  the  axial

stress-strain response of the thermal pile over time. 

The installation of the thermal pile consisted of a pre-bored shaft

made  with  rotary  steel  pipes  and water  circulation  to  loosen  and

remove  the  excavated  soil.  The  bored  shaft  was  stabilized  with

bentonite slurry. After the excavation, the cage was inserted into the

slurry and fluid concrete was poured from the bottom of the shaft

through a PVC tremie tube to expel the bentonite. The concrete used

in the pile was very fluid with a low aggregate content composed by

quartz sand and gravel (D50=2.36 mm), as recommended for this type

of pile. This construction technique is commonly used for micropiles in

Brazil and may lead to different characteristics from a bored shaft in

overconsolidated clay like those characterized by Laloui et al. (2006),

Bourne-Webb et al.  (2009),  or McCartney and Murphy (2017)  or  in

sandstone like Murphy et al. (2015). 

After curing, the concrete had a compressive strength of 29MPa

and a tensile strength of 3.4 MPa measured from a diametric Brazilian

test. The compressive uniaxial test has shown an elastic modulus of

30  MPa  at  50%  of  the  maximum  strength.  For  the  longitudinal

reinforcement,  three steel bars having a diameter of  9.5 mm were

configured in  a  triangular  arrangement.  The heat  exchange tubing

embedded in the pile was composed of PEX-A monolayer tube having

an external diameter of 25 mm and a thickness of 2.3mm. The heat
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exchange tubing was placed in a simple “U” shape extending along

the entire length of the pile.

Vibrating  wire  strain  gauges  with  embedded  thermistors  were

attached to the reinforcing cage (Geokon model 4150) and embedded

in the concrete (Geokon model 4200) at the different locations shown

in Figure 1, in order to understand the strains in the piles resulting

from temperature  variations.  A  total  of  nine  concrete  embedment

strain gauges and six strain gauges welded to the steel cage were

included  along  the  length  of  the  pile.  The  thermistors  within  the

vibrating  wire  strain  gauges  were  useful  in  measuring  local

temperatures. Three of the strain gauges were concentrated near the

pile tip to evaluate the effects of end restraint boundary condition,

which is critical in this type of installation. One strain gauge of each

type (concrete and steel) was placed horizontally at the mid-depth of

pile in the center to capture the horizontal strains during the heating-

cooling  cycles.  Dividing  these horizontal  strains  by  2  provides  the

radial strain in the pile.  

After pile installation, curing of the concrete, and the setting up of

the facilities (128 days), a series of three TRTs were performed on the

thermal pile. The test setup includes tubes for circulating fluid (water)

through  the  pile  for  heat  exchange,  an  isolated  water  tank  with

temperature control, a water pump, two thermistors for measurement

of the inlet and outlet fluid temperatures, a flow meter, and a data

acquisition system for the embedded strain gauges and  thermistors

(Figure 2). The data acquisition for the TRT was developed with an
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Arduino-based platform, and a manual (not continuous) data reader

from Geokon was used to monitor the strain gauge readings during

TRTs.

TRT Tests - General Initial Conditions

The TRTs were performed in three different periods to capture the

behavior of the thermal pile during different seasons. The time gap

between each TRT was  sufficient  for  the  thermal  pile  to  return  to

ambient temperature after heating from the prior TRT. TRT 1 and TRT

2 were carried out close together, with only 28 days between the end

of TRT1 and the start of TRT 2. A longer waiting time of 150 days

between TRT2 and TRT3 was used to help investigate the impact of

performing TRT3 in the cooler season where the groundwater table

was  expected  to  be  at  its  low  point.  The  first  two  TRTs  were

performed in  the summer where the ambient  air  temperature was

about 30°C (the mean temperature for December 2016), while TRT3

was performed in the winter where the average air temperature is

approximately 22°C. This schedule allowed assessment of seasonal

effects  on  the  thermal  pile  in  addition  to  the  effects  of  GWT

fluctuations. The GWT was not directly measured in this study, but

was  interpreted  from the  elevation  of  the  river  as  the  site  under

investigation  is  only  50  m from the  riverbank.  This  assumption  is

reasonable  as  the  uppermost  8  m  of  soil  at  the  site  is  high-

permeability sand. Accordingly, it is expected that the GWT level with

be the same as  the  level  of  the river,  which  decreased by 3.5  m

between TRT2 and TRT3.
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Before  starting  the  TRTs,  it  was  necessary  to  define  the  heat

exchange  fluid  flow  rate  required  to  maintain  turbulent  flow

conditions in the heat exchanger tubing to maximize heat transfer.

For the diameter of tubing evaluated in this study, the flow rate had

to be higher than 3.8l/min. The mean flow rates adopted for TRT1,

TRT2  and  TRT3  are  presented  in  Table  1  and  all  correspond  to

turbulent regime conditions.

Next,  to determine the mean temperature of  the ground at the

start of the tests, the circulating pump was operated for 30 minutes

until the inlet and outlet heat exchange fluid temperatures became

constant.  The  input  and  output  heat  exchange  fluid  temperatures

were  recorded,  and  the  mean  temperature  of  the  subsoil  was

obtained by a simple arithmetic mean as shown in Table 1.. Despite

the fact that the mean ground temperature in TRT3 was smaller than

during  the  other  two  TRT  tests,  itwas  highly  influenced  by  the

temperature of the organic clay layer, which was up to 4°C below the

ground temperatures at this depth recorded in TRT1 and TRT2 (in the

summer). This seems to be associated to the recharge of the GWT

and heat retention capacity of this organic clay layer. Table 1 also

shows  the  heat  power  used  in  the  three  TRTs  and  the  final  pile

temperature along with the duration of each test up to stabilization

under the constant heat transfer rate.  
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Table 1. Characteristics of the three TRTs

TRT

Heat
Exchanger
Fluid Flow

Rate
(l/min)

Initial Ground
Temperature

(oC)

Heater
Power

(W)

Final Pile
Temperature

(oC)

Duratio
n

(h)

TRT

1
19.4 28.7 1000 49 140

TRT

2
23.4 30.3 1000 49 115

TRT

3
15.0 28.3 1300 52 150

Results

Thermal analysis

The  thermal  properties  of  the  subsoil  were  estimated  from the

measured data using the infinite line source equation given in Eq. 1.

To apply this equation, it is necessary to calculate the heat transfer

into the system, which can be calculated as follows:

Q̇=C s ∙ V̇ m ∙(T i−T o) (4

)
where Cs is the specific heat of the fluid (J/kg°C), V̇ m is the mass flow

rate  (kg/s),  To is  the  output  temperature  (°C)  and  Ti is  the  input

temperature (°C). Clean tap water was used as the heat transfer fluid

and its specific heat capacity is 4187 J/kg°C. Table 2 shows that the

mass  flow rates  were  different  in  each of  the  TRTs.. According  to

Equation (4)  a higher mass flow rate should lead to a higher heat

transfer rate. 
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With  this  information,  the  next  step  was  to  calculate  the  heat

transfer for each instant of the tests using Eq. (4), whose values are

depicted in Table 2. According to the values presented in Table 2,  a

significant increase in heat transfer was observed for TRT 3 despite

the lower mass flow rate in this experiment. This was attributed to a

new more powerful heater supplying a heat power input 1300W. The

heat losses are due to installation features due to insulation of the

tank  and  the  distance  from  the  heat  source  and  the  pile  of

approximately 5m.  An important piece of information from the TRT

tests is the rate of the heat exchange per length of the thermal pile

during  heating,  which  are  also  summarized  in  Table  2  and  were

obtained by dividing the measured heat transfer rates by the total

length of  the pile.  These values are at  the lower  boundary of  the

range in heat transfer rates per unit length of 44 to 139 W/m obtained

from several previous TRT studies on thermal piles summarized by

Olgun and McCartney (2014). 

Table 2. Thermal analysis results

TRT
Mass Flow Rate

(kg/s)

Heat Transfer
Rate
(W)

Heat Exchange
Per Unit Pile

Length
(W/m)

TRT1 0.32 484 40
TRT2 0.39 552 46
TRT3 0.25 778 65

Time series of temperature at different locations in the thermal pile

for each TRT are shown in Figure 3. The initial temperatures at some

19

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457



of the depths are different for each of the TRTs, likely due to ambient

surface temperature interactions and the possibility of groundwater

recharge at  different  depths.  The time series  indicate  that  slightly

higher temperatures, around 45 °C were reached in TRT2 and TRT3.

This partly occurred due to the higher heat transfer rates in these two

tests,  and because TRT3  started from lower  ground temperatures.

When investigating  the  maximum temperature  at  different  depths,

the  greatest  temperatures  were  achieved  in  TRT3.  Relatively  high

temperatures may have been achieved in TRT2, despite its shorter

duration  due  to  power  failure,  because  of  the  higher  thermal

conductivity of the ground associated with a higher GWT.  

Profiles of the initial and final temperatures with depth in the pile

for each of the three TRTs are shown in Figure 4a, while profiles of the

changes in temperature with depth are shown in Figure 4b.  These

profiles indicate that the temperature is not uniform along the length

of the thermal pile, an observation that was made by Murphy et al.

(2015)  for  a  thermal  pile  in  uniform  sandstone.  The  difference  in

temperature  may  be  due  to  non-uniform  heat  transfer  from  the

thermal pile in the different soil strata shown in Figure 1. The heat

transfers and resulting changes in temperature of the pile may also

depend on the initial temperature of the soil layer at the beginning of

each TRT and the GWT level.

When determining the thermal conductivity using the line source

method, the mean fluid temperature ((T i+T o)/2)  (in °C) was plotted

against the natural logarithm of time (Figure 5). The slopes of these
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curves were then determined, disregarding the data from the first 46

hours,  as  recommended by  Loveridge  (2012)  and Loveridge  et  al.

(2014)  in  order  to  attend  the  Eq.1.  The  thermal  conductivity

expressed in W/(m°C) was then calculated using Eq. 3, and the found

thermal  conductivity  values  are  shown  in  Table  3.  The  thermal

conductivity appears to be sensitive to the heat transfer rate applied

in the experiments, but the thermal conductivity of the ground could

also be affected by changes in ambient surface temperature and GWT

fluctuation.  For saturated clean sands, the typical value of thermal

conductivity is around 2 to 3 W/(m°C). For loose sands, the thermal

conductivity is less sensitive to the degree of saturation than denser

sands (Chen 2008). The lowering of the groundwater table may lead

to a decrease in the thermal conductivity  of  sandy soil  layers, but

convective heat transfer in unsaturated soil may occur due to vapor

diffusion. The lowering of the groundwater table leads to an increase

in effective stress, which may lead to a densification of the soil and

corresponding increase in thermal conductivity.

According  to  Eurocode  (CEN  341  N525  2011),  thermal

conductivities higher than 1.7 W/m°C are considered suitable for the

application of thermal piles. Therefore, it can be said that the values

measured in the three TRTs indicate that the thermal pile evaluated

in this study could be appropriate for establishing a geothermal heat

exchange  system.  The  thermal  resistance  of  the  system  can  be

calculated from the thermal conductivity values using Eq. 2. However,

it is first necessary to estimate the thermal diffusivity of the system,
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which requires an estimate of  the specific heat capacity,  Cs of the

subsoil components. Herein, the value of Cs was estimated as function

of the mineralogy of the soil layers surrounding the thermal pile that

were  projected  from  values  presented  by  Lhendup  (2014).

Specifically, Cs was estimated as a weighed mean of the values likely

for each layer (shown in Figure 1), as follows:

C s=

∑
i=1

n

C s ,i . li

∑
i=1

n

li

(5)

where  Cs,i  and li  are the specific heat capacity and thickness of each

soil layer.. This resulted in an equivalent specific heat capacity of 1.82

kJ/(kg°C)  (which  corresponds  to  a  volumetric  heat  capacity  of

2.92x106J/(m3°C)).  The  values  of  thermal  diffusivity   of  the  soil

calculated from the measured thermal  conductivity  values in  each

TRT and the estimated values of specific heat capacity of the system

can be seen in Table 3. Based on these values, the mean thermal

resistance  values  calculated  using  Eq.  2  and  the  resulting  values

shown  in  Table  3  are  in  accordance  with  those  reported  in  the

literature (e.g., Abuel-Naga et al. 2015).

Table 3. TRTs system results

TRT
Thermal

Conductivity
W/(m°C)

Specific Heat
Capacity

(m2/s)

Thermal
Resistance
(m°C/W)

TRT1 2.15 7.40x10-7 0.43
TRT2 2.14 8.24x10-7 0.41
TRT3 2.59 8.9x10-7 0.30

Mechanical Analysis 
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The  impacts  of  temperature  changes  in  each  soil  layer  on  the

strain distribution along the thermal pile in each of the three TRTs

were  evaluated  using  the  results  from  the  strain  gauge

measurements. The thermal strains can then be used to evaluate the

resulting stresses generated due to the restraint of the thermal pile

by the surrounding ground. For the vibrating wire strain gauges, the

shortening or stretching of the steel wire due to the variation in the

temperature should be accounted for using a correction equation to

identify the actual strain (real) measured by the gauge during heating,

given as follows: 

εreal=B ( R1−R0 )+(T 1−T 0 ) αsteel (6)
where B is the strain gauge manufacturer constant (equal to 0.962),

and R1 and R0 are the readings of the strain gauge at different times,

steel  is the coefficient of thermal expansion for the steel wire, which

was reported by the manufacturer to be 12.2 /°C. As no mechanical

load was applied to the pile, the initial strains were due to curing of

the concrete and they were zeroed out before the start of each TRT.

Accordingly,  any changes in  strain after  the start  of  each TRT are

expected to be due to the thermo-elastic movements of the thermal

pile and to the impact of thermal volume changes of the surrounding

soil on the deformation of the thermal pile. Therefore, it is understood

that  the  strains  shown  herein  were  resulting  only  from  the

temperature changes in the specific TRT (i.e. they were zeroed at the

beginning  of  each  TRT).  The  strains  mentioned  here  did  not

accumulate from one TRT to the subsequent TRT.
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Profiles of the real strain in the thermal pile with depth measured

from the concrete strain gauges at the end of each TRT are shown in

Figure 6.  Unfortunately, two strain gauges, one installed in the cage

close to the top of the pile and the other embedded in the at a depth

of 4.0m, malfunctioned just before TRT3. Accordingly, this part of the

curve  for  TRT3  is  not  shown  in  Figure  6.  During  heating,  tensile

(negative)  strain  increments  were  observed  in  all  tests,  indicating

thermal  expansion  of  the  pile,  as  expected.  Horizontally-oriented

strain  gauges  placed  at  a  mid-depth  of  5.8  m  indicate  thermal

expansion  with  magnitudes  similar  to  those  of  the  axial  direction.

Although the pile experienced the greatest increases in temperature

in TRT3,  the thermal pile did not expand proportionally  to it  when

compared with the strains in TRT1 and TRT2. As will be discussed, the

unexpected response during TRT3 is attributed to the lowering of the

GWT to a depth of 7.5m, leading to an increase in effective stress in

the sandy layer. 

Higher thermal strains, around 180 to 210 , were observed near

the tip of the thermal pile in all three TRTs. This can be attributed to

the  lower  end  bearing  capacity  expected  for  piles  built  with  the

construction technique described above (where the shaft was bored

with  circulating  water that  strongly  disaggregates  the  soil  in  the

base). Regarding the strain near the head of the thermal pile, strains

around 160  were observed despite lower increases in temperature

compared to the rest of the pile. The large magnitude of strain near

the head of the pile is closely related to the higher degree of freedom
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in piles with low head restraint. It is also interesting to mention that

higher strain of approximately 240  were recorded in the vicinity of

sensor SC2 (in the organic clay layer),  which may be attributed to

higher  temperature  increments  in  this  layer  associated  with  the

higher values of specific heat capacity for this layer. This observation

emphasizes  the  importance of  considering  the  effects  of  each soil

layer in a stratified soil deposit. 

In order to make a cautious comparison among the three TRTs, it is

important to note that, due to non-uniform temperature distribution in

the pile, the resulting strains should be compared to those from the

subsequent TRTs at the same location, taking into account the local

temperature, as well. Similar strains do not necessarily mean similar

response  if  the  local  temperature  is  different  for  each  TRT.

Comparison based only  on the strain values may lead to incorrect

conclusions.  In  TRT1,  according  to  the  temperature  change

(T=13oC), the thermal strain observed near the tip of the pile was

about 197 . However, the tip did not show the same response in the

two subsequent TRTs. TRT2 imposed an increment of temperature of

14oC and the resulting strain was 185   when the expected value

should have been 210  if the same coefficient obtained in TRT1 was

used. Using the same reasoning for TRT3 the expected value would

be 225   but the recorded value was 210  . The greater restraint

implied  by  the  reduction  in  this  ratio  in  subsequent  TRTs  may be

attributed to thermal consolidation of the soil near the tip of the pile.

It is important to stress that the pile tip is placed in a transition region
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between organic soft clay and sand that was strongly affected by the

pile installation method. However, strains calculated from the steel

sensor indicated a lower strain at the tip than those measured by the

concrete embedment strain gauge. This indicates that some slippage

may be occurring between the cage and the concrete near the tip

during  thermal  expansion  in  TRT1,  which  could  be  caused  by  the

incomplete removal of bentonite slurry used during pile installation

and/or  the  presence  of  cracks  in  the  concrete.  This  has  been

corroborated by the fact that a sudden strain of 36.1  was observed

at the location of SC1 (near the tip) during the first few minutes of

TRT1, while the other sensors did not record any similar extra strains.

This  marginal  strain  was  then  subtracted  from  the  sensor  (SC1)

readings.  Therefore,  the  results  presented  in  Figure  6  for  the  tip

during TRT1 did not consider this initial strain, which is not a standard

thermally  induced  response.  This  effect  was  not  observed  during

subsequent TRT 2 and TRT3.

The accumulated thermal strain increments as a function of the

change in temperature for each sensor are shown in Figure 7a. The

slope  of  these  curves  permits  an  estimate of  the  mean mobilized

coefficient of thermal expansion of the reinforced concrete mob. It is

important to call attention for the line for TRT1 observed at the pile

tip (SC1), where considerably strains occurred during the very initial

heating process, corroborating with the findings discussed in Figure 6.

This is represented by a sudden increase in strain occurred without an

enough increment in  temperature that justifies such behavior  (Fig.
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7a).  The  mobilized  coefficients  of  thermal  expansion  plotted  as  a

function of depth from each of the three TRTs are presented in Figure

7b. The induced pile strains are directly linked to the changes in local

temperature as well as the side shear resistance and end restraints.

Higher mobilized coefficients of thermal expansion were observed for

maximum strain loci (i.e. near the tip and the head of the thermal

pile). It is important to note that between depths of 2.0 and 4.0 m, the

mobilized coefficients of thermal expansion for TRT1 and TRT2, was

approximately  80%  of  the  free  thermal  expansion  of  that  of  the

concrete (free = 16 /°C), indicating that the pile had a considerable

degree of  freedom to  deform in  the soft  soil  layer.  The horizontal

mobilized  thermal  expansion  becomes  progressively  smaller  from

TRT1  to  subsequent  TRT2  and  TRT3,  varying  from  12  to  8  /oC.

Unfortunately, the GWT level was not recorded during TRT2. However,

it is known that the GWT was lowered from a depth of around 3.5m to

7.0m between the times that TRT1 to TRT3 were performed, which

can explain the behavior of horizontal strain pattern of the pile at this

particular depth.

For  the  assessment  of  increment  of  stress  T due  to  thermal

expansion of the pile,  the mobilized coefficient of thermal expansion

is used for each point of the pile in the following equation:

σ T=E (εT−α free .∆ T ) (7)
where  E  is  the  elastic  modulus  of  concrete  (30GPa)  and  T  is  the

thermal strain of a given sensor. The product  α free ∙∆ T  represents the

unrestricted (free) thermal strain of the pile. The thermal expansion
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coefficient of the concrete, free used was, as shown before, estimated

to be 16 /°C, which is a representative value of fluid concrete with

high proportion of fine aggregate. Similar values of the coefficient of

thermal  expansion  of  concrete  with  high  fines  fractions  were  also

reported by Goode and McCartney (2015). 

Profiles of thermal axial stress with depth in the thermal pile, at

the point of the maximum changes in temperature for the three TRTs

are  shown in  Figure  8.  Similar  to  the  thermal  axial  stress  profiles

presented by Murphy et al. (2015), the maximum thermal axial stress

of around 3 MPa in the first two TRTs occurs near the zone above the

tip of the pile, due to both the higher restraint in this zone and the

progressive consolidation of the clay layer that increases the lateral

restraint for TRT2 and TRT3. This indicates that the null-point of the

pile is in this region and that the pile is moving upward in the upper

length  of  8.0  m  and  moving  downward  below  this  elevation.  The

magnitudes of maximum thermal axial stress range from 2 to 2.8 MPa

in these first two TRTs, which is lower than the magnitudes observed

in the thermal piles in sandstone measured by Murphy et al. (2015). A

change in radial stress in the pile, at 6.0 m depth, was also observed

in TRT1 and TRT2, with values higher than of axial stress. In TRT1, the

thermal  radial  stresses  are  considerably  lower  than  in  TRT  2  and

TRT3.  The maximum thermal compression radial  stress of  3.5 MPa

was observed in TRT3.  This  can be an indication of  the change in

confinement in this particular subsoil region where the hysteresis is

more pronounced. In TRT3, the shapes of the profiles of thermal axial
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stress are similar to those in TRT1 and TRT2, disregarding the sensor

at 4.0m deep due to malfunctioning for TRT3. The magnitude of the

thermal axial  stress calculated from Eq.7 may not  be accurate for

representing the axial  stress in the pile because the stress at this

depth,  about  10m  deep,  could  have  occurred  due  to  mechanical

strains (possibly dragdown), even though the analysis in Figures 7b

and 8 indicates that an increase in  thermal  axial  stress should be

expected  due  to  the  smaller  mobilized  coefficient  of  thermal

expansion.  These  additional  mechanical  strains  could  be  due  to

effects associated to changes in effective stress related due to the

lowering of GWT between TRT2 and TRT3 increasing, thus, the weight

of the soil in this region and therefore the horizontal stress that is

directly related to lateral resistance. 

To investigate the reasons for the different response in each TRT

the initial axial strains at the end of natural cooling for TRT1 and TRT2

(i.e., before zeroing the strain values at the beginning of TRT2 and

TRT3 to  evaluate  the thermal  axial  strains)  along with  changes  in

temperature at these times with respect to the beginning of TRT1 are

plotted in Figure 9a. Here it is possible to notice some residual strains

around 70 near the soft  clay layer. This  may be an indicative of

thermal consolidation of this layer. The difference between these two

initial  strain  profiles  can be  assumed to  represent  the  mechanical

strain  in  the  pile  at  the  beginning  of  TRT3,  shown  in  Figure  9b

resulting from the change in effective stress (and also the soil weight)

in this subsoil region. This mechanical strain can be multiplied by the
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Young’s modulus of the pile to define a side shear stress, which can

be added to the thermal axial stresses from TRT3 to define the total

axial stresses in the thermal pile as shown in Figure 9c. The addition

of the mechanical and thermal stresses indicates high compression

stresses near the tip, with values of up to 6.0 MPa. This may have

been caused by a component related to downward movement due to

thermal consolidation of the soft clay layer resulting from the thermal

load applied in the earliest TRTs (seen in the bottom of Figure 9a)

actin along with the GWT variation.

The  results  in  Figure  9a  indicate  that  there  were  two  marked

temperature  variations  due  to  natural  seasonal  effects  between

November-December (28 days) and December-June (150 days), which

are  the  months  when  TRT1,  TRT2  and  TRT3  were  carried  out,

respectively. The temperature variation for each sensor also indicates

that the soft organic clay layer at depths between 8.0 and 10.0 m

cooled by around 4 °C from December to June. It  is  interesting to

notice that the sensors  close to the surface also registered negative

temperature variations, as June is winter in Brazil where records have

shown air temperatures around 22°C, while for December 2016 the

mean temperature  was  around 31 °C.  Between these two specific

points  in  time,  i.e.  during  natural  cooling,  the  pile  shows  a

compressive behavior as depicted in Figure 9b. The zone between 2.5

and 6.5m could not be analyzed because of the sensor malfunctioning

during TRT3. 
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It is important to evaluate the evolution of the recovered strain in

the period of natural cooling of the pile for the three TRTs. The curves

shown  in  Figure  10  represent  the  thermal  axial  strains  at  the

maximum heating in each TRT (which were zeroed at the beginning of

each TRT) and after the full period of ambient cooling down between

each TRT that is indicated in the figure. Consistent with the discussion

of results in Figure 9, significant residual strains were observed for

TRT1. This indicates that a substantial permanent deformation around

80  at the soil-pile interface occurred near tip from a source of pile

deformation  other  than  thermal.  It  is  reasonable  to  attribute  this

feature to the thermal consolidation process at the tip zone. The steel

strain  gauges  near  this  concrete  embedment  strain  gauge  at  this

depth also captured this feature

Another possible effect of the lowering of the groundwater table is

that  the  sand  layer  may  have  increased  in  unit  weight  from

submerged  (buoyant)  conditions  to  partially  saturated  or  dry

conditions, leading to an increase in effective stress on the clay layer,

as already stated before. Effects due to temperature changes in the

clay  layer  could  also  be  present  but  it  is  quite  difficult  to  assess

without a measurement of the historical series of the soil temperature

at  this  location.  The mechanism of  excess  of  pore  water  pressure

generation due to heating of clay soils has been presented in detail

by Booker and Savvidou (1985) and can be used to explain the lower

thermal strains and the consequent higher thermal stress developed

in this region (cf. Figures 6 and 8).
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Horizontal Strain Response 

The pile instrumentation includes two strain gauges (SC6 and SS6)

in horizontal orientations at a depth of 5.8 m, which can be used to

compare the thermal expansion of the pile in the horizontal direction

with that in the vertical direction during the three TRTs. A comparison

between  the  degree  of  freedom  in  the  horizontal  and  vertical

directions in the concrete during each TRTs is shown in Figure 11. The

degree of freedom can be understood as the ratio between the actual

strain and the strain relative to the unrestricted condition (Bochon

1992). As there was no vertically-oriented strain gauge at a depth of

5.8 m, the mean of the vertical axial strains from sensors SC5 and

SC7 were used for comparison. Two interesting observations can be

drawn from the results in Figure 11. First, for all TRTs, the vertical

strain  was  greater  than  the  horizontal  strain,  while  this  ratio  is

becoming  smaller  for  each  subsequent  TRT.  This  may  have  been

caused by an increase in side shear stress due to lowering of GWT

that  affected  the  vertical  strain  during  the  third  TRT.  Second,  the

degrees  of  freedom  in  both  the  horizontal  and  vertical  directions

decrease  during  each  TRT,  indicating  an  increase  in  lateral  and

vertical  restraint  during  each  TRT.  This  behavior  has  also  been

captured by the thermal stress as presented in Figure 8, which shows

higher stress for the horizontal gauge in TRT3.

Tip Analysis
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An unexpected observation  regarding the structural  response of

the pile that was captured during the tests was the response pattern

of the tip of the pile, especially during TRT1. At the tip, there is a

concrete sensor (Strain Gauge SC1) and a cage sensor (Steel Strain

Gauge SS5) installed at the same depth. Further, a second concrete

sensor (Strain Gauge SC2) was placed at approximately 0.70 m above

the tip sensors. The deformation time history of these three sensors

during the three TRTs are shown in Figure 12. The sensors at the tip

(both  concrete  and steel)  show almost  the  same strain results  for

TRT2 and TRT3,  as expected. However,  for TRT1,  there is  a “gap”

between  the  measured  strains,  indicating  a  different  response

between the steel and concrete at the tip of 36.1 . This strain was

recorded just  during  the first  minutes  of  heating.  This  observation

may indicate  a  slippage  between the  reinforcement  and concrete,

possibly due to the adopted construction process, which was revealed

when the pile started to deform due to thermal loading. (i.e., fissures

in  the  concrete  or  bentonite  grouting  remaining  attached  to  the

reinforcements after concrete injection from the bottom). In the plot

for TRT1, the dotted curves are for the free expansion of the concrete.

It can be clearly observed that the readings from the concrete sensor

SC1 are  always  greater  than  that  of  the  free  concrete  expansion,

which is structurally inadmissible. This indicates that an unexpected

pattern  of  deformation  is  occurring  near  the  pile  tip.  Comparing

concrete sensor SC1 with concrete sensor SC2 a discontinuity in strain

is observed. For TRT1 both the concrete sensor SC1 and steel sensor
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SS5 should have shown almost the same results that could indicate a

reasonable  structural  condition  of  the  pile  tip.  However,  the  steel

sensor SS5 shows smaller strains, indicating an irregular strain field in

the concrete near the tip. This feature seems to be the reason why

low  compressive  stresses  had  been  developed  in  this  region.  For

subsequent tests TRT2 and TRT3, this feature was not observed, and

the expected strain field (i.e., the tip SC1) has shown smaller strains

than of the region above it (SC2) and the concrete and steel strain

values matched). This may have been due to the consolidation of the

soil near the toe of the pile after the first TRT.

Conclusions

The goal of this study was to demonstrate the suitability of thermal

piles  in  a  tropical  climate  as  an  approach  to  help  reduce  HCF

emissions. Relatively high thermal conductivity values of 2.15 to 2.59

W/m°C were observed for a 12 m-long thermal pile in the form of a

bored  pile  installed  in  a  sedimentary  stratified  soil  deposit  with  a

relatively  high  ground  water  level  after  a  series  of  three  thermal

response tests (TRTs) performed at different times of the year. These

thermal conductivity values reflect the efficiency of the tested pile in

stratified soil deposits. 

Interesting  observations  were  drawn  due  to  the  impact  of  the

stratified soil  layer on the thermal response of  the thermal pile.  A

non-uniform  pile  temperature  was  observed  at  the  end  of  each

thermal response tests due to the different thermal conductivity and

specific heat capacity of each soil layer. A drop in the elevation of the
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ground water table by 3.5 m between the second and third TRTs led

to an unexpected increase in the system thermal conductivity. It was

expected that the thermal conductivity of the sandy soil in the depths

where the groundwater table lowered would have decreased due to a

decrease in degree of saturation, but this decrease may have been

compensated  by  convective  heat  transfer  in  the  unsaturated  soil

under  the  higher  heat  transfer  rate  applied  in  the  third  TRT.  The

lowering of the ground water table also led to an increase in effective

stress which may have densified the soil along the pile, leading to an

increase in thermal conductivity.    

Regarding  the  thermo-mechanical  response  of  the  pile,  heating

resulted  in  expansion  of  the  pile  in  all  three  TRTs,  as  expected,

however each soil layer had a different role in the overall pile thermal

response.  When  converted  to  thermal  axial  stress,  the  free-head

thermal  pile  was  consistently  in  compression  due  to  the  restraint

provided by side shear stresses from the surrounding subsurface. The

magnitude of thermal axial stress was greatest near the lower two-

thirds of the pile length, with lower values near the head, which was

free to displace upwards during heating, as well as at the tip, which is

quite disturbed as part of pile construction method used and provides

a softer end restraint. As to the degree of freedom for the three TRTs,

it has been observed that the pile shows progressively smaller values

with the time, indicating that a mechanism that make the restraint to

increase is present, at least for the depths where the arrange is highly

affected by the lowering of GWT and by the thermal consolidation of
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clayey layers.  The ratio between horizontal  and vertical degrees of

freedom in the zone where the lowering of GWT took place indicated

an increase in restraint, but this ratio became progressively smaller

for each subsequent TRT. Another important feature captured by the

instrumentation  was  the  recovery  of  the  tip  structural  conditions.

Instruments  near  the  tip  of  the  pile  showed  that  a  sudden  strain

occurred during the first minutes of heating in the first TRT causing

part of the tip to deform more than that expected for unrestricted

concrete. 
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FIGURE CAPTIONS

Fig. 1 Geotechnical subsoil profile and pile instrumentation scheme 

Fig. 2 Overview of the system used to perform the Thermal Response
Tests (TRTs).

Fig. 3 Temperature variations at the locations of the concrete strain 
gauges for each TRT.

Fig. 4 a) Initial and final profiles of temperature in the pile for all 
three TRTs, b) Temperature change in the pile at the end of heating in
each TRT

Fig. 5 Mean temperature vs logarithm of time plots for TRT 1, TRT2, 
and TRT3 along with the slopes identified for thermal conductivity 
estimation.

Fig. 6 Profiles of thermal axial strain and pile temperature at the end 
of heating in the TRTs.

Fig. 7 (a) Relationships between the change in temperature and 
induced thermal strain at different depths in the pile for the three 
TRTs; (b)Profiles of the mobilized coefficients of thermal expansion 
mob for the pile in the three TRTs.

Fig. 8 Profiles of thermal stress in the thermal pile at the end of 
heating in each TRT.

Fig. 9 Profiles of a) Concrete strain after natural cooling and 
temperature profile at the beginning of TRT2 and the beginning of 
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TRT3, b) Difference in residual strain TRT1-TRT3; c) Stresses at the 
end of heating in TRT3

Fig. 10 Thermal and residual strains at the end of heating and the 
end of natural cooling (i.e., before the start of the subsequent TRT) in 
the three TRTs.

Fig. 11 Ratio between vertical and radial pile degrees of freedom at a
depth of 6.0 m at the end of heating in the three TRTs

Fig. 12 Strains at the pile tip during heating 
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