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1  | INTRODUC TION

Physiologically based pharmacokinetic or toxicokinetic (PBPK or 
PBTK) models are increasingly used in various fields, including human 
health risk assessment (Andersen, Clewell, Gargas, Smith, & Reitz, 

1987; Tan, Worley, Leonard, & Fisher, 2018; WHO, 2010), animal 
health risk assessment (Lautz, Oldenkamp, Dorne, & Ragas, 2019), 
environmental or ecological risk assessment (Grech et al., 2017), 
drug discovery and development (EMA, 2018; FDA, 2018; Shebley 
et al., 2018), as well as animal-derived food safety assessment (Li, 
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Abstract
Physiologically based pharmacokinetic (PBPK) models for chemicals in food animals 
are a useful tool in estimating chemical tissue residues and withdrawal intervals. 
Physiological parameters such as organ weights and blood flows are an important 
component of a PBPK model. The objective of this study was to compile PBPK-
related physiological parameter data in food animals, including cattle and swine. 
Comprehensive literature searches were performed in PubMed, Google Scholar, 
ScienceDirect, and ProQuest. Relevant literature was reviewed and tables of rele-
vant parameters such as relative organ weights (% of body weight) and relative blood 
flows (% of cardiac output) were compiled for different production classes of cattle 
and swine. The mean and standard deviation of each parameter were calculated to 
characterize their variability and uncertainty and to allow investigators to conduct 
population PBPK analysis via Monte Carlo simulations. Regression equations using 
weight or age were created for parameters having sufficient data. These compiled 
data provide a comprehensive physiological parameter database for developing 
PBPK models of chemicals in cattle and swine to support animal-derived food safety 
assessment. This work also provides a basis to compile data in other food animal spe-
cies, including goats, sheep, chickens, and turkeys.
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Mainquist-Whigham, et al., 2019; Lin, Gehring, Mochel, Lavé, & 
Riviere, 2016). PBPK models are powerful tools that can simulate 
the concentration of a xenobiotic in tissues of interest and allow for 
extrapolations across species, doses, and routes of administration, 
as well as from in vitro to in vivo (IVIVE) and from one compound to 
another (i.e., read-across). These unique strengths result from the 
use of two key components of a PBPK model, that is, chemical-spe-
cific parameters (e.g., partition coefficients and metabolic rates) and 
species-specific physiological or anatomical parameters (e.g., cardiac 
output, organ weights, and blood flow rates).

The use of accurate species-specific physiological parameters is 
essential in the development, validation, extrapolation, and application 
of a PBPK model. In particular, proper characterization of the variabil-
ity of each physiological parameter within and between species is im-
portant to build stochastic population PBPK models to quantify the 
variability of simulation results given an exposure paradigm. As such, 
multiple review articles have comprehensively compiled PBPK-related 
physiological parameters in multiple species, mainly laboratory mice, 
rats, dogs, and humans (Brown, Delp, Lindstedt, Rhomberg, & Beliles, 
1997; Davies & Morris, 1993; ICRP, 2002). These studies greatly facil-
itate the development of PBPK models in laboratory animals and hu-
mans and have been extensively cited.

In terms of food-producing animals such as the cattle, swine, 
goats, sheep, chickens, and turkeys, there are limited sources that 
compile physiological parameters useful for PBPK models. Upton 
(2008) reports physiological parameters in sheep and swine, but 
only the mean value of each parameter is provided and the study 
is based on the standard sizes of sheep (i.e., 45 kg) and swine (i.e., 
25 kg) commonly used in biomedical research, which are smaller 
than animals used in food production. Brown et al. (1997) also 
provide physiological parameters for goats and cattle, but their 
focus is on laboratory animals and humans, and only the mean val-
ues for several organ weights in goats and cattle are provided. In 
Lin, Gehring, et al. (2016), physiological parameters for common 
food-producing animals are only summarized. The focus of this 
article is on the principles, methodology and existing applications 
of PBPK models, thus the physiological values are primarily based 
on previously published PBPK models, rather than based on orig-
inal experimental studies. A recent mini-review on physiological 
parameters in swine, cattle, and sheep has been published (Lautz, 
Dorne, Oldenkamp, Hendriks, & Ragas, 2019). However, this study 
does not consider different production classes (i.e., calves vs. adult 
beef cattle vs. dairy cows) or breed differences, and the values of 
multiple parameters are not available. Overall, despite the recent 
increase in the number of published PBPK models in food animals 
(Lautz, Oldenkamp, et al., 2019; Lin, Gehring, et al., 2016), useful 
compilations of PBPK-related physiological parameters in food an-
imals are still deficient.

The objective of this manuscript is to compile a comprehensive 
review on PBPK-related physiological parameters in food-producing 
animals, including cattle and swine. These parameters include body 
weight, cardiac output, organ weights, blood flow rates, hematocrit, 

and volume fractions of blood in organs. For each parameter in each 
species, unless data are not available, the pooled mean and standard 
deviation (SD) were analyzed from original experimental studies in 
order to quantify the variability of each parameter. The extracted 
raw data are provided in the Appendices S1–S5, S6–S11, and S12–
S17, and the calculated mean and SD values are presented in the 
manuscript. Due to the large amount of data, the present manuscript 
focuses on cattle and swine. Subsequent publications will include 
data from other food-producing species, including goats, sheep, 
chickens, and turkeys. The ultimate goal of this project is to provide 
a reference physiological parameter database for the development 
of PBPK models for drugs and environmental chemicals in food-pro-
ducing animals.

2  | METHODS

2.1 | Literature search

All data used in this study were extracted from previously pub-
lished experimental research manuscripts from peer-reviewed 
journals or book chapters. These relevant publications were 
identified through the use of multiple search engines, including 
PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Google Scholar 
(https://schol​ar.google.com/), ProQuest (https://search.proqu​est.
com/), and ScienceDirect (https://www.scien​cedir​ect.com/) with 
related key words. The Kansas State University Interlibrary Loan 
service provided full text of those papers that were not subscribed 
by Kansas State University Libraries. For the first-round literature 
search, the combination of general key words for animal species 
and physiological parameters was used. The animal species-spe-
cific keywords for cattle used in the literature search were “Cattle,” 
“Cow,” “Bull,” or “Bovine”; for calves were “Calf,” “Calves,” or 
“Young Cattle”; and for swine were “Pig,” “Swine,” “Sow,” “Barrow,” 
“Boar,” “Gilt,” “Hog,” “Stag,” or “Porcine.” The terms for physiologi-
cal parameters used in the literature search were “Organ Weight,” 
“Tissue Volume,” “Blood Flow,” “Vascular Space,” or “Residual 
Blood Volume.” The literature was primarily screened based on 
information in their titles and abstracts. In order to increase the 
number of manuscripts, specific key words were used for the sec-
ond-round literature search. For tissue volumes of specific organs 
or tissues, the following key words, such as “Heart,” “Kidneys,” 
“Liver,” “Lungs,” “Spleen,” “Brain,” “Stomachs,” “Intestines,” 
“Muscle,” “Adipose,” “Fat,” “Blood,” “Bone,” “Pancreas,” “Adrenal 
Glands (Adrenals),” “Thyroid,” “Thymus,” or “Carcass Composition,” 
were used for a more targeted literature search. The key words 
“Hepatic Blood Flow,” “Myocardial Blood Flow,” “Pulmonary Blood 
Flow,” “Renal Blood Flow,” or “Muscular Blood Flow” were used 
for searching more specific parameters related to blood flow. The 
“Residual Blood Volume” and “Vascular Space” were used with spe-
cific organ names to obtain more relevant literature on the param-
eter of the volume percentage of blood in each organ.

https://www.ncbi.nlm.nih.gov/pubmed
https://scholar.google.com/
https://search.proquest.com/
https://search.proquest.com/
https://www.sciencedirect.com/


     |  387LIN et al.

2.2 | Literature selection criteria

Please refer to Figure  1 for a detailed workflow of the literature 
search, and inclusion and exclusion criteria. In brief, all data used in 
the study were from healthy animals. The selected studies from all 
the literature of cattle and swine must have implemented a method 
for randomization, and these studies must be controlled trials with 
at least one control group (i.e., healthy animals). Only the controlled 
group animals were involved in the calculation, if the treatment 
factors had significant impacts on values of the physiological pa-
rameters. For tissue or organ volumes, studies must have included 
measures of final body weights or directly reported the initial body 
weight and the daily weight gain. If no body weight value was re-
ported, the fractions of tissue volume per body weight had to be 
reported directly. For the studies used to calculate blood flow frac-
tions, only values measured on conscious animals were involved. No 
data were collected from fetuses, in vitro fertilizations, transgenic 
animals, or wild animals. The studies or data sets for breeds with 
gene mutations significantly affecting the physiological parameters 
were excluded. For example, double-muscled cattle breeds (Shahin, 
Berg, & Price, 1986), which have higher tissue volume of muscle and 
lower tissue volume of fat compared to the same breed without gene 
mutations, were not involved in the data analysis. For adult cattle 
physiological parameters, all experimental studies included had 
to report the physiological parameters for cattle over 10  months. 

Studies with species such as bison, buffalo, and yak were removed, 
and only studies with cattle breeds commonly used for food prod-
ucts (i.e., Jersey and Holstein for dairy cows and Angus and Hereford 
for beef cattle) were included for further analysis. For calves, only 
young cattle under 350 kg and/or under age of ten months old were 
included for physiological data calculation. The calves might be fed 
with different diets (e.g., milk, milk replacer, hay, or concentrate), but 
not exposed to drugs or toxic agents. For physiological parameters 
of swine, experimental studies for swine with all ages were included. 
Data for minipigs were removed, and only studies with swine breeds 
commonly used for meat production (i.e., Yorkshire, Landrace, Large 
White, Duroc, and Hampshire) were included for further analysis.

2.3 | Data digitalization and standardization

The physiological parameter data were extracted directly into 
Excel spreadsheets from papers that reported these values in ta-
bles. When the relevant data were shown graphically, the graphic 
data were extracted and digitized with WebPlotDigitizer (version 
4.1). Since data from different studies were presented in different 
units, all data were converted into International System of Units 
(SI), and finally into the units commonly used in PBPK modeling. 
Briefly, gram (g) and kilogram (kg) were used as units for mass; 
minute (min) and hour (h) were used for time units, and milliliter 

F I G U R E  1   A flow chart for the process 
of literature search, selection, data 
extraction, and analysis for physiological 
parameters in adult cattle, calves, and 
swine [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(mL) and liter (L) were used as units for volumes. The reported 
standard errors were converted into standard deviations using 
Equation  1. The organ weights and blood flows to organs were 
calculated into organ weight fractions and blood flow fractions 
by dividing the body weight and cardiac output, respectively. As 
both values for physiological parameters involved in the calcula-
tion may have means and standard deviations, Equations 2 and 3 
were used to calculate means and standard deviations for organ 
weight and blood flow fractions. Equations 4 and 5 were used to 
calculate the combinations of means and standard deviations from 
studies with different animal numbers (i.e., the pooled mean and 
the pooled standard deviation). Details for these equations and 
examples are provided in the Appendix S18.

Here, SE is the standard error; SD is the standard deviation; N 
is the number of animals in the study used; MEAN_ind is the mean 
after calculation from an individual study; MEAN_a and MEAN_b 
are the mean values used to calculate relative organ weights (i.e., 
MEAN_a is the organ weight and MEAN_b is the body weight) or 
blood flow fractions (i.e., MEAN_a is the blood flow to an organ and 
MEAN_b is the cardiac output); SD_a and SD_b are the standard de-
viations used to calculate relative organ weight (SD_a is the SD of 
organ weight and SD_b is the SD of body weight) or blood flow frac-
tions (SD_a is the SD of the blood flow to an organ and SD_b is the 
SD of cardiac output); MEAN1, MEAN2, and MEAN3 are the means 
from studies 1, 2, and 3 (if more than 3 studies were used, MEAN4, 
MEAN5, and so on were used); SD_ind is the standard deviation after 
calculation from an individual study; SD1, SD2, and SD3 are the stan-
dard deviations from studies 1, 2, and 3; MEANtotal is the pooled 
mean for all data; N1, N2, and N3 are the number of animals in indi-
vidual studies; SDtotal is the pooled standard deviation for all data 
from studies 1, 2, and 3.

The mean values in all tables provided in this document are 
weighted arithmetic means with the number of animals used in 
each experiment as weight. For adult cattle and swine, the studies 
not reporting data variabilities were not included to calculate the 
pooled standard deviation. For calves, the weights from papers 
not reporting standard deviation or standard error values were 
treated as one.

2.4 | Statistical analysis

The values of physiological parameters were extracted from the ta-
bles with values of all production classes for beef cattle and dairy 
cows. The physiological parameters for dairy cows were calculated 
based on data from female Holstein or Jersey cattle breeds. These 
values were also filtered for the two most commonly used beef cat-
tle breeds, Angus and Hereford. The comparison of organ weights 
for potential sex differences in beef cattle was also carried out with 
Student's t test. The Student's t test was also used to identify the 
potential differences of available physiological parameters between 
beef cattle and dairy cows, and between commonly used breeds in 
beef cattle (i.e., Angus vs. Hereford) and in dairy cows (i.e., Jersey 
vs. Holstein). The values of p < .05 were considered statistically sig-
nificant. For calves, regression analyses were performed for body 
weight with age, and for all other parameters with body weight. 
Regression models were only considered acceptable when the coef-
ficients of determination (R2) were larger than or equal to .75.

3  | RESULTS

3.1 | Body weight

For beef-use cattle, there is no specific age for market use. From 
the “Blue Book” of the U.S. National Residue Program of the U.S. 
Department of Agriculture's Food Safety and Inspection Service 
(USDA/FSIS), the bovine category includes cattle with a wide age 
range starting from bob veal up to beef cows, dairy cows, and bulls 
(USDA, 2019c). Previous experimental studies that reported cattle 
across different ages were included in current research. The average 
market weight for adult cattle was reported as 552 kg (Meyer, Hess, 
Paisley, Du, & Caton, 2014), and the average market weight for swine 
in 1980 was 110  kg and in 2015 was 128  kg (Tokach, Goodband, 
& O'Quinn, 2016). According to the latest USDA Daily Cattle and 
Swine Reports in November 2019, the average market weights for 
beef cattle and swine were 621 (USDA, 2019a) and 131 kg (USDA, 
2019b), respectively.

Body weights in calves younger than 10  months are age and 
breed dependent and can range from 20 kg to over 350 kg. However, 
in the food animal industry, male Holstein calves are commonly used 
as sources of veal. Body weight and age selection were first based on 
the criteria of veal calves which are male calves predominantly from 
the dairy industry. Excluding all the data from female and/or adult 
and/or other breeds of cattle, a fourth-order polynomial regression 
was generated from available data in young Holstein male calves:

where BW represents body weight in kg, Age resembles age values 
in days, B0 = 41.04, B1 = 0.5584, B2 = 0.001787, B3 = −1.549e-006, 
B4 = −1.332e-009. The R2 value was .9709. The growth curve is shown 
in Figure 2, and all data and the regression analysis are included in the 

(1)SD=SE×

√

N

(2)MEAN_ind=
MEAN_a

MEAN_b

(3)SD_ind=MEAN_ind×

√

(

SD_a

MEAN_a

)2

+

(

SD_b

MEAN_b

)2

(4)MEANtotal=
MEAN1×N1+MEAN2×N2+MEAN3×N3

N1+N2+N3

(5)SDtotal=

√

SD12×N1+SD22×N2+SD32×N3

N1+N2+N3

(6)BW=B0+B1∗Age+B2∗Age
2
+B3∗Age

3
+B4∗Age

4
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Appendix S6. In brief, a total of 213 data points from 18 publications 
(Abu-Tarboush, Al-Saiady, & Keir El-Din, 1996; Andrighetto, Gottardo, 
Andreoli, & Cozzi, 1999; Arrayet et al., 2002; Bailey & Mears, 1990; 
Castells, Bach, Araujo, Montoro, & Terre, 2012; Eaton, Rousseau, Hall, 
Frier, & Lucas, 1972; Groenewegen, McBride, Burton, & Elsasser, 1990; 
Kahl, Wrenn, & Bitman, 1977; D. E. Kerr, Manns, Laarveld, & Fehr, 1991; 
Khan et al., 2007; Montoro, Miller-Cushon, DeVries, & Bach, 2013; 
Shakeri, Riasi, & Alikhani, 2014; Soltan, 2009; Stabel, Spears, & Brown, 
1993; Tamate, McGilliard, Jacobson, & Getty, 1962; Terré, Devant, & 
Bach, 2007; Vogstad et al., 2015; Woelfel, Rousseau, Kersting, Nielsen, 
& Lucas, 1964) involving 763 animals were extracted to generate the 
regression Equation 6. These studies used different methods for milk 
feeding, weaning, or provided different diets. Body weight values for 
Holstein calves were included in the analysis when the corresponding 
age parameters were reported in the literature.

For swine, body weights are reported from birth to around 
450 days, with the range from 1 kg to over 150 kg being included in 
the regression analysis. Data from 13 studies (Adeola & King, 2006; 
Doornenbal, Tong, & Sather, 1986; Hansard, 1956; Kaensombath, 
Neil, & Lindberg, 2013; Lee & Woyengo, 2018; Lundeen, Manohar, 
& Parks, 1983; Miller & Ullrey, 1987; Owsley, Orr, & Tribble, 1986; 
Rehfeldt, Tuchscherer, Hartung, & Kuhn, 2008; Ruusunen, Partanen, 
Pösö, & Puolanne, 2007; Smit & Beltranena, 2017; Velayudhan, 
Schuh, Woyengo, Sands, & Nyachoti, 2017; Wise, Young, & Pond, 
1993) involving 712 animals were used for the regression analysis. 
The body weight data for both sexes were included. The growth 
curve for swine is shown in Figure 3. The data and the regression 
analysis are included in Appendix S12 of the Supporting Information. 
The regression equation is as follows:

where BW represents body weight in kg, Age resembles age values in 
days, B0 = 3.37 and B1 = 0.387. The R2 value was .8799.

Typically in PBPK models, study-specific body weight is used for 
model calibration or evaluation using a specific data set. However, 
the average market weight is required for predicting tissue drug 
or chemical residue withdrawal intervals using population analysis 
with Monte Carlo simulations for PBPK models of drugs in food-pro-
ducing animals (Buur, Baynes, Smith, & Riviere, 2006; Li, Gehring, 
Riviere, & Lin, 2017). In addition, most of the existing PBPK models 
do not consider growth when using body weight in food animals, 
especially in adults because the therapeutic scenarios of drug usage 
usually last for only a short period. However, even for the short 
therapeutic period, the body weight growth may be considerable in 
calves. Therefore, it is important to incorporate the growth curve 
into PBPK models of calves. Furthermore, when simulating a long 
period of exposure to feed additives or environmental toxicants, the 
growth curve definitely needs to be considered in a PBPK model. 
In this regard, recent PBPK models that simulate lifetime exposure 
to a chemical in chickens have incorporated growth curves for rel-
evant physiological parameters (Henri, Carrez, Méda, Laurentie, & 
Sanders, 2017; Zeng et al., 2019). Another recent PBPK model for 
doxycycline in grass carp also considers body weight gain because 
the model simulation period is relatively long due to the substantially 
extended withdrawal interval estimates of 41–74 days depending on 
the target tissue (Xu, Li, Chou, & Lin, 2020).

3.2 | Organ weight

In the literature, typically the organ weight or mass values, rather 
than organ volume values are reported. However, PBPK model 
compartments are defined by the compartments’ volumes rather 
than their weights (Brown et al., 1997). Since the density of most 
visceral organs is approximately 1.00  g/cm3 (most organs have 
densities ranging from 1.02 to 1.06  g/cm3, except for bone and 
skin), the mass-to-volume conversion is often not required in PBPK 

(7)BW=B0+B1∗Age

F I G U R E  2   The growth curve for calves from 0 day to about 
550 days. Data from 213 animals in 18 studies (Abu-Tarboush et al., 
1996; Andrighetto et al., 1999; Arrayet et al., 2002; Bailey & Mears, 
1990; Castells et al., 2012; Eaton et al., 1972; Groenewegen et al., 
1990; Kahl et al., 1977; Kerr et al., 1991; Khan et al., 2007; Montoro 
et al., 2013; Shakeri et al., 2014; Soltan, 2009; Stabel et al., 1993; 
Tamate et al., 1962; Terré et al., 2007; Vogstad et al., 2015; Woelfel 
et al., 1964) were used to establish the growth curve [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  3   The growth curve for swine from 0 day to about 
450 days. Data from 712 animals in 13 studies (Adeola & King, 
2006; Doornenbal et al., 1986; Hansard, 1956; Kaensombath et al., 
2013; Lee & Woyengo, 2018; Lundeen et al., 1983; Miller & Ullrey, 
1987; Owsley et al., 1986; Rehfeldt et al., 2008; Ruusunen et al., 
2007; Smit & Beltranena, 2017; Velayudhan et al., 2017; Wise et al., 
1993) were used to establish the growth curve [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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models. Therefore, the present study considers the terms “rela-
tive organ weight” and “relative tissue volume” and “relative organ 
volume” operationally equivalent assuming water density for all 
organs.

Organ weights or tissue volumes for adrenal glands, adipose tissue, 
blood, bone, brain, gastrointestinal tract (GI tract), heart, kidneys, liver, 
lungs, muscle, pancreas, spleen, thyroid, and thymus were obtained for 
cattle from previously reported data. The raw data and data analysis 

processes can be found in Appendix S1. Organ weights or tissue volumes 
in adult cattle operationally defined as either age older than 10 months 
or body weight larger than 350 kg including both beef cattle and dairy 
cows are summarized in Table 1. The calculation of cattle organ weights 
or tissue volumes was based on both sexes with commonly used breeds, 
including Friesian, Jersey, Angus, Hereford, and Holstein. In addition, 
the organ weight or tissue volume data for beef cattle only and dairy 
cows only are shown in Tables 2 and 3, respectively.

TA B L E  1   Relative organ weight (percent body weight) or tissue volume for adult cattle (including beef cattle and dairy cows)

  Mean SD Number of animals Number of studies References

Adrenal glands 0.006 0.002 716 3 1–3

Adipose tissue 12.27 5.21 301 9 4–11, 48

Blood 4.31 0.87 893 9 1, 12–19

Bone 8.66 1.49 40 2 11, 20

Brain 0.08 0.01 812 2 1, 21

GI tract 5.98 1.28 107 6 4, 6, 14, 22–24

Reticulorumen 1.76 0.45 339 7 15, 16, 22, 25–28

Reticulum 0.26 0.07 696 1 1

Rumen 1.75 0.35 869 4 1, 14, 29, 30

Omasum 0.85 0.22 948 6 1, 15, 16, 22, 25, 27

Abomasum 0.37 0.10 948 6 1, 15, 16, 22, 25, 27

Intestines

Small intestine 1.06 0.24 1,158 10 1, 14–17, 22, 25, 27, 29, 31

Large intestine 0.78 0.21 919 8 1, 14–17, 22, 25, 31

Cecum 0.08 0.01 168 3 17, 25, 27

Colon 0.39 0.02 93 1 27

Heart 0.40 0.07 1,828 28 1–4, 14–18, 22, 24, 26–42

Kidneys 0.21 0.04 2,159 29 1–4, 6, 14–20, 22, 24–34, 35, 37, 
40, 42, 43

Liver 1.23 0.21 2,256 32 1–4, 6, 14–20, 23–33, 36, 37, 40, 
41, 43–46

Lungs 0.77 0.20 1,773 21 1, 2, 4, 32, 15–18, 22, 24, 26–30, 
33, 34, 37–39, 42

Muscle 36.10 11.73 83 2 11, 47

Pancreas 0.09 0.02 1,319 12 1, 32, 15, 17, 22, 26, 24, 27, 30, 
38, 39, 43

Spleen 0.18 0.05 1,642 22 1, 3, 4, 10, 14–18, 22, 24–28, 30, 
32–34, 39, 41, 45

Thyroid 0.006 0.002 696 1 1

Thymus 0.030 0.018 728 3 1, 24, 26

Rest of body 29.67        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Matthews et al. (1975); 2. Buntyn et al. (2017); 3. Garrett et 
al. (1968); 4. DiCostanzo et al. (1991); 5. Velazco et al. (1997); 6. Andrew et al. (1994); 7. Robelin (1981); 8. De Paula et al. (2013); 9. Fernandez et al. 
(1996); 10. Sainz et al. (1995); 11. Keane (2011); 12. Hansard et al. (1953); 13. Larsen et al. (2017); 14. Rumsey et al. (1996); 15. Long et al. (2010); 16. 
Rotta, Valadares Filho, et al. (2015); 17. McCurdy et al. (2010); 18. Hansard (1956); 19. Swett et al. (1933); 20. Faulkner et al. (1989); 21. Ballarin et al. 
(2016); 22. Sharman et al. (2013); 23. Sprinkle et al. (1998); 24. Schumann et al., (2007); 25. Reynolds et al. (2004); 26. Remling et al. (2017); 27. Mader 
et al. (2009); 28. Fitzsimons et al. (2014); 29. Jenkins and Ferrell, (1997); 30. Wood et al. (2013); 31. Scheaffer, Caton, Bauer, and Reynolds (2001); 
32. Terry et al. (1990); 33. Early, McBride, and Ball (1990); 34. Schlegel, Bergen, Schroeder, VandeHaar, and Rust (2006); 35. Olivares et al. (2019); 
36. McEvoy, Sinclair, Broadbent, Goodhand, and Robinson (1998); 37. Fiems, Boucque, and Cottyn (1993); 38. Long et al. (2012); 39. Talton et al. 
(2014); 40. Murphy and Loerch (1994); 41. Bourg, Tedeschi, Wickersham, and Tricarico (2012); 42. Sainz and Bentley (1997); 43. Burciaga-Robles et 
al. (2010); 44. Moseley, Paulissen, Goodwin, Alaniz, and Claflin (1992); 45. Lawler, Taylor, Finley, and Caton (2004); 46. Robertson, Wilson, and Morris 
(1967); 47. Shahin and Berg, (1985a); 48. Fonseca et al. (2017).
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The organ weights between commonly used breeds for dairy 
cattle (Jersey vs. Holstein) and beef cattle (Angus vs. Hereford) 
were compared. Since dairy cattle data were from multiple stud-
ies, and the number of animals was large, nearly all relative organ 
weight parameters were significantly different between Jersey and 
Holstein, except volumes for heart, liver, lung, and mammary gland 
(Table  4). For beef cattle, relative weights of adipose tissue, liver, 
lung, and spleen were significantly different between Angus and 
Hereford (Table 5). The sex differences for organ volumes are shown 
in Table 6. All relative organ weights were significantly different be-
tween sexes. Even though the statistical tests showed significant 
differences, some of those relative organ weight values were quite 

close between breeds and between sexes. For example, the relative 
blood volume in percentage of body weight was 4.33% for Jersey 
and 4.52% for Holstein, and the relative heart volume was 0.42% for 
males and 0.41% for females. This was, in part, because these pa-
rameter values were based on the pooled data from multiple studies 
involving a large number of animals.

For calves, relative organ weight values were available for the 
adrenal glands, adipose tissue, bone, blood, brain, GI tract, stomachs 
(reticulorumen, omasum, abomasum), intestines (small intestine, 
large intestine), heart, kidneys, liver, lungs, muscle, pancreas, skin, 
spleen, and thyroid (Table 7). Data were from calves that met the in-
clusion criteria mentioned earlier, but were independent of sex, diet, 

TA B L E  2   Relative organ weight (percent body weight) or tissue volume for beef cattle

  Mean SD Number of animals Number of studies References

Adrenal glands 0.004 0.001 20 2 1, 2

Adipose tissue 12.18 5.06 276 7 3, 4, 5–12

Blood 3.99 0.68 105 7 13, 14, 16–21

Bone 8.66 1.49 40 2 12, 22

GI Tract 5.17 0.73 90 5 4, 16, 23–27

Reticulorumen 1.81 0.53 215 5 17, 23, 24, 27, 28

Omasum 0.65 0.17 128 3 17, 23, 27

Abomasum 0.28 0.13 128 3 17, 23, 27

Intestines

Small intestine 1.00 0.19 318 6 14, 16, 17, 19, 23, 27, 29

Large intestine 0.87 0.29 79 4 14, 16, 17, 19, 23

Cecum 0.08 0.03 132 2 19, 27

Colon 0.39 0.07 93 1 27

Heart 0.43 0.08 1,012 24 2–4, 14, 16, 17, 19, 20, 23, 24, 26–30, 32–41

Kidneys 0.21 0.05 1,282 23 2–4, 14, 16, 17, 19–21, 23, 24, 26–30, 32, 
33, 35, 37, 40, 42–44

Liver 1.22 0.18 1,379 27 2–4, 14, 16, 17, 19–30, 32, 35, 36, 39, 40, 
42–45

Lungs 0.85 0.25 977 19 2, 4, 14, 17, 19, 20, 23, 24, 26–30, 32, 33, 
36–38, 41

Muscle 36.10 11.73 83 2 12, 46

Pancreas 0.09 0.02 611 11 14, 17, 19, 23, 24, 26, 27, 30, 37, 38, 42

Spleen 0.19 0.06 810 19 3, 4, 11, 14, 16, 17, 19, 20, 23, 24, 26–28, 30, 
32, 33, 38, 40, 44

Thymus 0.09 0.02 20 1 24

Testes 0.10 0.02 104 3 47–49

Rest of body 30.72        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Matthews et al. (1975); 2. Buntyn et al. (2017); 3. Garrett et 
al. (1968); 4. DiCostanzo et al. (1991); 5. Velazco et al. (1997); 6. Andrew et al. (1994); 7. Robelin (1981); 8. De Paula et al. (2013); 9. Fernandez et al. 
(1996); 10. Fonseca et al. (2017); 11. Sainz et al. (1995); 12. Keane (2011); 13. Hansard et al. (1953); 14. Terry et al. (1990); 15. Larsen et al. (2017); 
16. Rumsey et al. (1996); 17. Long et al. (2010); 18. Rotta, Valadares Filho, et al. (2015); 19. McCurdy et al. (2010); 20. Hansard (1956); 21. Swett et al. 
(1933); 22. Faulkner et al. (1989); 23. Sharman et al. (2013); 24. Remling et al. (2017); 25. Sprinkle et al. (1998); 26. Schumann et al., (2007); 27. Mader 
et al. (2009); 28. Fitzsimons et al. (2014); 29. Jenkins and Ferrell, (1997); 30. Wood et al. (2013); 31. Scheaffer et al. (2001); 32. Early et al. (1990); 
33. Schlegel et al. (2006); 34. Olivares et al. (2019); 35. McEvoy et al. (1998); 36. Fiems et al. (1993); 37. Long et al. (2012); 38. Talton et al. (2014); 
39. Murphy and Loerch (1994); 40. Bourg et al. (2012); 41. Sainz and Bentley (1997); 42. Burciaga-Robles et al. (2010); 43. Moseley et al. (1992); 44. 
Lawler et al. (2004); 45. Robertson et al. (1967); 46. Shahin and Berg, (1985a); 47. Weisgold and Almquist (1979); 48. Unruh et al. (1986); 49. Killian 
and Amann, (1972).
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or breed (Table 7). Relative organ weight for adipose tissue in calves 
is summarized in Table 8 with data from 3 studies (Gill et al., 1987; 
Morgan, 1969; Santos et al., 2013). All data and data analysis pro-
cesses for organ weights in calves are provided in the Appendix S7.

The relative organ weight values were plotted against the corre-
sponding body weight with a fitted linear trend line. Heart relative 
weights were observed to be body weight dependent with a R2 value 
of .7509. Settlemire, Hibbs, and Conrad (1964) have also provided 
weights of several organs, but the values were outliers when com-
pared to other available data. Therefore, the calculated weighted 
arithmetic mean did not include this study. The results for the re-
gression analyses of relative organ weights with body weight or age 
for calves are provided in the “Tissue Volume Calcu&Regression” tab 
of the Appendix S7.

Relative organ weight values were obtained for the adrenal 
glands, adipose tissue, bone, blood, stomach, intestines (small in-
testine and large intestine), heart, kidneys, liver, lungs, muscle, pan-
creas, spleen, thyroid, thymus, and skin for swine. All data and data 
analysis processes for relative organ weights in swine are included in 
the Appendix S13 of Supporting Information. Relative organ weight 
values for swine based on data from both sexes with all age range 
and with commonly used breeds for meat production, including 
Yorkshire, Landrace, Large White, Duroc, and Hampshire are sum-
marized in Table 9. We also calculated these parameter values for 
each sex. The results for males and females are shown in Tables 10 
and 11, respectively. The reported average market weight for swine 
in 1980 was 110 kg and in 2015 was 128 kg from the study by Tokach 
et al. (Tokach et al., 2016). In Table 12, relative organ weights were 

TA B L E  3   Relative organ weight (percent body weight) or tissue volume for dairy cows

  Mean SD Number of animals Number of studies References

Adrenal glands 0.006 0.002 696 1 1

Adipose tissue 13.21 6.64 25 1 2

Blood 4.35 0.90 788 3 1, 4, 5

Brain 0.08 0.01 696 1 1

GI tract 8.20 2.28 25 1 2

Reticulorumen 1.68 0.25 124 1 5

Reticulum 0.26 0.07 696 1 1

Rumen 1.55 0.33 696 1 1

Omasum 0.89 0.23 820 3 1, 3, 5

Abomasum 0.38 0.09 820 3 1, 3, 5

Intestines

Small intestine 1.09 0.25 840 4 1, 3, 5, 6

Large intestine 0.77 0.20 840 4 1, 3, 5, 6

Cecum 0.08 0.01 36 1 3

Heart 0.37 0.06 804 3 1, 5, 6

Kidneys 0.22 0.05 865 5 1–3, 5, 6

Liver 1.25 0.25 865 5 1–3, 5, 6

Lungs 0.68 0.15 784 2 1, 5

Pancreas 0.08 0.02 696 1 1

Spleen 0.17 0.04 820 3 1, 3, 5

Thyroid 0.006 0.002 696 1 1

Thymus 0.03 0.02 696 1 1

Mammary gland (nonlactating) 1.68 0.81 55 3 7, 8, 9

Mammary gland (lactating) 3.18 0.71 22 1 7

Mammary gland (pregnancy) 2.29 0.54 7 1 7

Uterus 1.09 0.24 40 1 10

Ovaries 0.003 0.001 187 3 11–13

Corpora Lutea 0.0008 0.0003 187 3 11–13

Rest of body 67.06        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Matthews et al. (1975); 2. Andrew et al. (1994); 3. Reynolds et al. 
(2004); 4. Larsen et al. (2017); 5. Rotta, Valadares Filho, et al. (2015); 6. Scheaffer et al. (2001); 7. Smith and Baldwin, (1974); 8. Harrison, Reynolds, 
and Little (1983); 9. Swanson and Poffenbarger, (1979); 10. Rotta, Valadares Filho, et al. (2015), 11. Segerson, Hansen, Libby, Randel, and Getz (1984); 
12. Ireland, Coulson, and Murphree (1979); 13. Freetly et al. (2014).
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calculated with data from swine with the body weight in the range 
of 65–160 kg.

The relative organ weights of cattle and swine across different 
ages or production classes are provided (Table  2 for beef cattle, 
Table 3 for dairy cows, Table 7 for calves, and Table 12 for market-age 

swine), which can be used to establish PBPK models specific for food 
animals with a certain age or for a certain production class. The rel-
ative organ weights for different sexes are also available (Table 3 for 
dairy cows, Table 6 for male and female beef cattle, Table 10 for male 
swine, and Table  11 for female swine). These data can be applied 

TA B L E  4   Relative organ weight (percent body weight) or tissue volume for dairy cows in breeds of Jersey and Holstein

 

Jersey Holstein t test

Mean SD Number of animals Mean SD Number of animals p

Adrenal glands 0.008 0.003 346 0.004 0.001 350 2.4E-90*

Blood 4.33 0.88 346 4.52 0.92 350 .00544*

Brain 0.09 0.01 346 0.07 0.01 350 1E-107*

GI tract

Reticulum 0.33 0.08 346 0.19 0.05 350 1E-118*

Rumen 2.08 0.42 346 1.02 0.21 350 3E-117*

Omasum 1.18 0.30 346 0.66 0.16 350 3E-192*

Abomasum 0.50 0.11 346 0.29 0.08 350 1E-106*

Intestines

Small intestine 1.37 0.32 346 0.82 0.20 350 2E-112*

Large intestine 1.01 0.25 346 0.55 0.14 350 1E-129*

Heart 0.38 0.06 346 0.37 0.07 350 .19742

Kidneys 0.22 0.05 346 0.25 0.05 375 1.9E-17*

Liver 1.35 0.28 346 1.31 0.27 375 .0555

Lungs 0.69 0.16 346 0.70 0.14 350 .60003

Pancreas 0.09 0.02 346 0.08 0.02 350 1.4E-07*

Spleen 0.18 0.04 346 0.16 0.04 350 1.7E-18*

Thyroid 0.008 0.003 346 0.004 0.002 350 2.6E-97*

Thymus 0.04 0.02 346 0.02 0.01 350 1.7E-32*

Mammary gland 
(nonlactating)

1.67 0.74 13 1.77 0.38 10 .65921

Mammary gland 
(lactating)

3.14 0.50 7 3.20 0.79 15 .83425

Note: Data were extracted from studies by Andrew et al. (1994) and Matthews et al. (1975). Please refer to the Appendix S1 Tab “Tissue Vol Comp 
Summary” in Supporting Information for details about these data.
*Significant differences between the two breeds with p < .05. 

TA B L E  5   Relative organ weight (percent body weight) or tissue volume for beef cattle in breeds of Angus and Hereford

 

Angus Hereford t test

Mean SD Number of animals Mean SD Number of animals p

Adipose tissue 22.20 1.63 14 14.00 3.53 3 .0013*

Small intestine 1.12 0.10 33 1.06 0.14 16 .1334

Heart 0.44 0.04 47 0.43 0.06 24 .3427

Kidneys 0.22 0.03 47 0.23 0.04 24 .1125

Liver 1.19 0.11 47 1.06 0.15 24 .0002*

Lungs 0.88 0.12 47 0.76 0.16 24 .0012*

Spleen 0.16 0.03 33 0.24 0.06 8 .0014*

Note: Data are from studies by DiCostanzo et al. (1991), Early et al. (1990), Hansard et al. (1953), Jenkins and Ferrell (1997), Keane (2011), Shahin and 
Berg (1985a), and Sharman et al. (2013). For details about these data, please refer to the Appendix S1 Tab “Tissue Vol Comp Summary” in Supporting 
Information.
*Significant differences between the two breeds with p < .05. 
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to develop PBPK models for each sex to explore the potential sex 
differences in the pharmacokinetics of a chemical. Relative organ 
weights for commonly used breeds of beef cattle (Table 4) and dairy 
cows (Table 5) are also included.

3.2.1 | Adrenal glands

The adrenal gland data for cattle were obtained from three differ-
ent studies (Buntyn et al., 2017; Garrett, Heitman, & Booth, 1968; 
Matthews, Swett, & McDowell, 1975). The adrenal glands consti-
tute approximately 0.006% of the body weight in cattle (including 
both beef cattle and dairy cows) (Table 1). The adrenal gland data 
for calves were reported only in Sangild et al. (2000). The adrenal 
glands constitute approximately 0.007% of the body weight in calves 
(Table 7). The relative organ weight of adrenal glands does not seem 
to significantly change due to age or body weight in cattle. As shown 
in Table  9, the relative organ weight of adrenal glands in swine is 
0.005%. These values in cattle and swine are similar to the range of 
relative weights of adrenal glands reported in mice (0.01%–0.04%), 
rats (0.01%–0.03%), dogs (0.004%–0.014%), and humans (~0.02%) 
(Brown et al., 1997).

3.2.2 | Adipose tissue

The weight of adipose tissue reflects the weight of dissectible 
fat tissue only. The mean relative weight of adipose tissue in cat-
tle was 12.27%, and the reported values were in a wide range of 
6.6%–24% based on the data from 9 different studies (Andrew, 
Waldo, & Erdman, 1994; De Paula, Tedeschi, Paulino, Fernandes, 
& Fonseca, 2013; DiCostanzo, Meiske, & Plegge, 1991; Fernandez, 
Monin, Culioli, Legrand, & Quilichini, 1996; Fonseca et al., 2017; 

Keane, 2011; Robelin, 1981; Sainz, De la Torre, & Oltjen, 1995; 
Velazco et al., 1997; Table 1). The calculated relative adipose tissue 
weight for calves was 6.95% ± 1.96% (mean ± SD) based on data from 
three studies (Gill et al., 1987; Morgan, 1969; Santos et al., 2013). 
The reported values of relative adipose tissue weights from indi-
vidual studies are summarized in Table 8. The relative adipose tissue 
weights for cattle reported in a previous review was in the range of 
15%–20% (Lin, Gehring, et al., 2016), and the value of 15% was used 
in the PBPK models for cattle (Li, Cheng, et al., 2019; Li et al., 2017; 
Li, Gehring, Riviere, & Lin, 2018). These values are within the range 
of 6.6%–24% reported in the present study. In swine, the calculated 
relative adipose tissue weight was 15.44% ± 2.65% (Table 9). These 
values in swine are close to those in cattle. The reported relative adi-
pose tissue weights are 7% in mice and rats, 15% for dogs, and 21.4% 
for humans (Brown et al., 1997). The average values of 12.27% in 
cattle and 15.44% in swine fall in the range from 7% to 21.4% in 
mice, rats, dogs, and humans, and the reported value ranges in cattle 
and swine include more variability from different breeds of animals 
from available experimental studies.

3.2.3 | Blood

The calculated mean relative blood volume in cattle was 4.31% based 
on data from 893 animals of 9 studies (Hansard, 1956; Hansard, 
Butler, Comar, & Hobbs, 1953; Larsen et al., 2017; Long, Prado-
Cooper, Krehbiel, DeSilva, & Wettemann, 2010; Matthews et al., 
1975; McCurdy, Krehbiel, Horn, Lancaster, & Wagner, 2010; Rotta, 
Filho, et al., 2015; Rumsey, Elsasser, Kahl, Moseley, & Solomon, 
1996; Swett, Matthews, Miller, & Graves, 1933) (Table 1). This value 
is close to the reported mean value of 4% for cattle in a previous re-
view article (Lin, Gehring, et al., 2016). Based on data from 5 studies 
using 52 animals in total, the average relative volume of the blood in 

TA B L E  6   Relative organ weight (percent body weight) or tissue volume for male and female beef cattle

 

Male Female t test

Mean SD Number of animals Mean SD Number of animals p

Body weight (kg) 419.00 46.90 1,172 369.00 58.00 506 8.1E-61*

Adipose Tissue 11.30 4.46 193 22.20 6.77 14 1.2E-08*

Heart 0.42 0.08 556 0.41 0.08 389 .0056*

Kidneys 0.21 0.04 786 0.22 0.04 371 2.7E-08*

Liver 1.26 0.20 853 1.11 0.13 401 4.3E-52*

Lungs 0.92 0.25 482 0.66 0.26 419 5.7E-48*

Pancreas 0.09 0.02 318 0.07 0.02 229 9.4E-35*

Spleen 0.19 0.06 476 0.12 0.04 219 4.5E-54*

Note: Data for this table are from 33 studies (Bourg et al., 2012; De Paula et al., 2013; DiCostanzo et al., 1991; Early et al., 1990; Faulkner et al., 1989; 
Fernandez et al., 1996; Fiems et al., 1993; Fitzsimons et al., 2014; Fonseca et al., 2017; Garrett et al., 1968; Jenkins & Ferrell, 1997; Long et al., 2010, 
2012; McEvoy et al., 1998; Moloney, Allen, Ross, Olson, & Convey, 1990; Moseley et al., 1992; Murphy & Loerch, 1994; Olivares et al., 2019; Remling 
et al., 2017; Robelin, 1981; Robertson et al., 1967; Rumsey et al., 1996; Sainz & Bentley, 1997; Sainz et al., 1995; Schlegel et al., 2006; Shahin & Berg, 
1985b; Sprinkle et al., 1998; Swanson & Poffenbarger, 1979; Swett et al., 1933; Talton et al., 2014; Terry et al., 1990; Velazco et al., 1997; Wood et al., 
2013). Please refer to the Appendix S1 Tab “Tissue Vol Comp Summary” in Supporting Information for more details.
*Significant differences between the two sexes with p < .05. 
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calves was approximately 6.95% of the body weight (Table 7). The 
calculated relative blood volume for swine was 4.12% based on data 
of 302 animals from 5 different studies (Hansard, 1956; Johnson 
et al., 2015; Kerr, Yen, Nienaber, & Easter, 2003; Ruusunen et al., 
2007; Wiseman et al., 2007) (Table 9). The value in swine reported 
here is close to the calculated mean value for cattle. However, these 
values in cattle and swine are relatively lower than the reported 
values of 4.9% for mice, 7.4% for rats, 8.2% for dogs, and 7.9% for 
humans (Brown et al., 1997). Also, the mean value of 4.12% is lower 
than the previously reported value of 6% for swine (Lin, Gehring, 
et al., 2016; Upton, 2008).

3.2.4 | Bone

The calculated mean relative bone weight was 8.66% for cattle 
based on data from two different studies (Faulkner, McKeith, Berger, 
Kesler, & Parrett, 1989; Keane, 2011; Table 1). The average value for 
relative bone weight in calves was 13.29% (Table 7). This was calcu-
lated based on values reported in two studies ranging from 9% to 

18% of the body weight (Morgan, 1969; Santos et al., 2013). The cal-
culated mean value for swine was 10.7% based on values from two 
studies (Quinious & Noblet, 1995; Ruusunen et al., 2007) (Table 9). 
The calculated mean values for cattle, calves, and swine are in the 
range of 7.3%–14.3% for the species of mice, rats, dogs, and humans 
(Brown et al., 1997).

3.2.5 | Brain

The calculated mean value for relative brain weight in cattle was 
0.08% based on data from two different studies (Ballarin et al., 
2016; Matthews et al., 1975; Table 1). The reported brain weights 
for cattle are consistently within the range of 400–500 g. The data 
for relative brain weight in calves were obtained only from Sangild 
et al. (2000), with the mean value of 0.54% derived from the ex-
periment with 7 calves (Table  7). The relative brain weight for 
swine was 0.22% based on one study (Mitchell, Scholz, Wange, & 
Song, 2001). The relative brain weight for cattle is much lower, and 
for calves and swine are slightly lower than the reported values 

TA B L E  7   Relative organ weight (percent body weight) or tissue volume for calves

  Mean SD Number of animals Number of studies References

Adrenal glands 0.007 0.002 7 1 1

Adipose tissue 6.95 1.96 112 3 2–4

Blood 6.91 0.37 52 5 5–9

Bone 13.29 4.06 76 2 2, 3

Brain 0.54 0.14 7 1 1

GI tract 5.47 3.61 148 5 3, 4, 10–12

Stomachs 2.22 0.69 315 7 3, 10–15

Reticulorumen 1.23 0.59 279 6 10–15

Omasum 0.38 0.17 279 6 10–15

Abomasum 0.38 0.08 286 7 1, 10–15

Intestines 2.39 1.47 146 5 1, 3, 10–12

Small intestine 1.15 0.64 110 4 1, 10–12

Large intestine 0.53 0.20 110 4 1, 10–12

Heart 0.51 0.13 228 9 1, 3, 4, 7, 10, 16–19

Kidneys 0.39 0.07 119 6 1, 3, 4, 7, 14, 16

Liver 2.87 0.36 475 12 1, 3, 4, 7, 10, 12, 14, 16–18, 20

Lungs 1.23 0.29 195 5 1, 4, 7, 10, 16

Muscle 33.90 1.61 76 2 2, 3

Pancreas 0.08 0.00 93 1 10

Spleen 0.26 0.07 192 6 1, 3, 7, 10, 17, 22

Thyroid 0.03 0.01 7 1 1

Thymus 0.23 0.09 13 3 1, 17, 21

Rest of body 27.34        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Sangild et al. (2000); 2. Santos et al. (2013); 3. Morgan (1969); 
4. Gill et al. (1987); 5. Waldern, Johnson, and Blosser (1963); 6. Hansard et al. (1953); 7. Hansard (1956); 8. Rhodes, Paterson, Kerley, Garner, and 
Laughlin (1991); 9. Conrad et al. (1958); 10. Mader et al. (2009); 11. Lineweaver and Hafez (1969); 12. Taylor-Edwards, Burrin, Holst, McLeod, and 
Harmon (2011); 13. Cozzi et al. (2002); 14. Kristensen et al. (2007); 15. Khan et al. (2011); 16. Martin et al. (2010); 17. Stabel et al. (1993); 18. Williams 
et al. (1987); 19. Manohar et al. (1982); 20. Fernandez et al. (1996); 21. Biolatti et al. (2005); 22. Settlemire et al. (1964).
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in other species, which are in the range of 0.6% in rats to 2.0% in 
humans (Brown et al., 1997). This may be due to the fact that the 
value of brain weight has been shown in allometric analyses of 
pharmacokinetic drug data to not scale with body weight across 
species (Huang & Riviere, 2014).

3.2.6 | Gastrointestinal tract

The contents of GI tract were excluded in the calculation of values 
for weight of the total GI tract and individual segments of the GI 
tract. The calculated mean value for relative weight of total GI tract 
was 5.98% for cattle (Table 1). The sum of relative weights of the 
small and large intestines and stomachs, including the reticulum, 
rumen, omasum, and abomasum, was 5.08%. The value was not 
exactly equal to 5.98% because all these values were mean values 
calculated from different studies. Without GI tract contents, the GI 
tract, including reticulum, rumen, omasum, abomasum, small intes-
tine, and large intestine, constituted about 5.47% of the body weight 
in calves (Table 7). Three studies (Cozzi et al., 2002; Khan, Weary, & 
von Keyserlingk, 2011; Kristensen, Sehested, Jensen, & Vestergaard, 
2007) reported only stomach data but not organ weights for intes-
tines. Although a trend of decreasing relative organ weights of in-
testines with increasing body weights was found for calves when 
plotting values of different sections of the GI tract to body weight, 
a lack of data for calves with body weight around 250–350 kg pre-
vents a conclusion for this trend. The results for the regression 
analysis of GI tract organ weights with body weights are included 
in the Appendix S7 tab “Tissue Volume Calcu&Regression” in the 

Supporting Information. By combining organ weights of stomach 
and intestines, the calculated mean relative GI tract weight was 4.3% 
for swine (Table  9). The relative GI tract weight of swine is close 
to the values reported for mammals without a ruminant digestive 
system (e.g., 4.2% for mice, 2.7% for rats, 3.7% for dogs, and 1.7% 
for humans) (Brown et al., 1997). However, the calculated values are 
higher in cattle and calves, which may be due to the large relative 
weight of the forestomachs.

The food effects are an important consideration in the PBPK 
simulation of drug absorption through GI tract in humans (Li, Zhao, 
Pan, & Wagner, 2018). The changes of gastric emptying rate, pH 
in GI lumen, and increase of splanchnic and hepatic blood flow by 
food intake can impact oral absorption of drugs in humans (FDA, 
2002; Rose, Turner, Neuhoff, & Jamei, 2017). The food effects on 
oral absorption of drugs in food-producing animals, especially in 
ruminant animals are less studied than in humans. However, con-
sidering that the rumen content can have a major metabolic ac-
tivity and its acidic pH can play a major ion trapping effect (as for 
sulfonamides) (Ratz, Maas, Semjen, van Miert, & Witkamp, 1995), 
it is also anticipated that the rumen content plays an important 
role in oral absorption of drugs in ruminants. During the literature 
search process of this study, we have also identified data on the 
weight of GI tract contents in cattle (Fitzsimons, Kenny, & McGee, 
2014; Reynolds, Dürst, Lupoli, Humphries, & Beever, 2004; 
Sharman et al., 2013) and swine (Pond, Jung, & Varel, 1988). It is 
also important to know that different diets would have different 
impacts on the pH of digesta (Ma, Li, Qiao, Huang, & Han, 2002), 
the digesta flow kinetics (Pond, Pond, Ellis, & Matis, 1986), and on 
the weight of ruminant contents which ranges from 4.5 to 9.6 g/kg 
body weight (Sharman et al., 2013). Since the digesta-related pa-
rameter values are highly dependent on the diet, these parameters 
should be considered on a case-by-case basis when incorporating 
into a PBPK model.

3.2.7 | Heart

The calculated mean relative heart weight was 0.4% for cattle as 
shown in Table 1, and the calculated values for beef cattle and dairy 
cows were 0.43% and 0.37%, respectively (Tables 2 and 3). The rela-
tive organ weight of the heart was about 0.51% of the whole body 
of calves ranging from 0.39% to 0.73% (Table 7). Heimbecker (1969) 
suggested the range is 0.3%–1.4% in calves. When plotting the rela-
tive heart weight values to the corresponding body weight values, 
a regression with R2 = .7509 was found: Y = −0.00001X + 0.0076, 
where Y represents relative heart weight and X represents body 
weight in kilograms. Results for the regression analysis of heart organ 
weights with body weights are presented in the Appendix S7 tab 
“Tissue Volume Calcu&Regression” in the Supporting Information. 
The calculated mean relative heart organ weight for swine was 
0.37% shown in Table 9. These values are all in the range of relative 
heart weights from 0.3% to 0.8% reported in mice, rats, dogs, and 
humans (Brown et al., 1997).

TA B L E  8   Relative organ weight (percent body weight) or tissue 
volume for adipose tissue in calves

Volume (percent 
body weight) Note

Numbers 
of animals References

4.21   10 1

5.58   10  

6.15   10  

5.97   10  

3.38   9 2

4.58   9  

5.70   9  

5.61   9  

10.73   36 3

0.34 Perirenal fat 2 4

0.41 Perirenal fat 2  

0.43 Perirenal fat 2  

0.45 Perirenal fat 2  

5.42 Visceral fat 93 5

Note: The studies involved in the calculations are as follows: 1. Santos 
et al. (2013); 2. Morgan (1969); 3. Gill et al. (1987); 4. Kristensen et al. 
(2007); 5. Mader et al. (2009).
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3.2.8 | Kidneys

The calculated mean volume for both kidneys was 0.21% for cattle 
(Table 1). This value is close to the value of 0.26% used in a PBPK 
model by MacLachlan (2009) and 0.2% used in recent PBPK models 
for cattle (Li, Cheng, et al., 2019; Li et al., 2017; Li, Gehring, et al., 
2018). The kidneys constitute about 0.39% of the body weight in 
calves (Table 7). In addition, Williams et al. (1987) reported that the 
relative weight of kidneys with channel fat was about 1.1%. When 
data were provided for only one kidney (Hansard, 1956), the as-
sumption was made that the weight of both kidneys was equal to 
twice the weight of the studied organ. The calculated relative weight 
of both kidneys in swine was 0.37% (Table 9), which is close to the 

value 0.4% reported in previous review papers (Lin, Gehring, et al., 
2016; Upton, 2008).

3.2.9 | Liver

The calculated mean relative liver weight in cattle was 1.23% 
(Table  1), which is similar to the value of 1.4% used in published 
PBPK models for cattle (Li, Cheng, et al., 2019; Li et al., 2017; Li, 
Gehring, et al., 2018) and is close to the reported range of 1.3% to 
3% in the review paper (Lin, Gehring, et al., 2016). However, the 
value is lower than values of 5.5%, 3.4%, 3.3%, and 2.6% reported 
for mice, rats, dogs, and humans (Brown et al., 1997). In calves, this 

TA B L E  9   Relative organ weight (percent body weight) or tissue volume for swine

  Mean SD Number of animals Number of studies References

Adrenal glands 0.005 0.001 111 3 1–3

Adipose tissue 15.44 2.65 244 6 4–9

Blood 4.12 0.46 302 5 1, 8, 10–12

Bone 10.70 0.92 166 2 6, 8

Brain 0.22 0.18 37 1 13

GI tract

Stomach 0.61 0.09 2,069 17 11, 14–29

Intestines 3.69 0.64 140 2 11, 30

Small intestine 2.19 0.39 626 18 1, 8, 14–19, 21, 22, 24, 25–29, 31, 32

Large intestine 1.47 0.39 282 11 1, 14, 15, 17–19, 21, 22, 25, 27, 28

Cecum 0.20 0.03 135 5 16, 17, 19, 20, 29

Colon 1.68 0.24 59 3 19, 20, 33

Heart 0.37 0.07 2,555 28 1, 8, 10, 11, 13–17, 20–29, 31, 34–41

Kidneys 0.37 0.11 3,261 32 1, 3, 8–10, 13–17, 19–29, 31, 34–37, 39–44

Liver 2.04 0.33 4,992 39 1–3, 8–17, 19–29, 31, 33–46

Lungs 0.90 0.20 419 10 10, 11, 15, 17, 24, 25, 29, 38, 39, 41

Muscle 36.32 2.66 110 3 6, 19, 34

Pancreas 0.15 0.11 421 10 1, 8, 15, 16, 21, 22, 27–29, 33, 37, 47

Spleen 0.20 0.06 3,817 23 1, 8, 10, 12, 14, 16, 17, 21–25, 27–29, 3, 34, 
37, 39, 41–45

Thyroid 0.011 0.010 158 6 3, 17, 20, 35, 37, 46

Thymus 0.28 0.03 8 1 1

Skin 5.28 0.81 166 2 6, 8

Rest of body 19.29        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Kerr et al. (2003); 2. Wise et al. (1993); 3. Stahly and Cromwell 
(1979); 4. Doornenbal et al. (1986); 5. Hood and Allen (1977); 6. Quinious and Noblet (1995); 7. O'Hea and Leveille (1969); 8. Ruusunen et al. (2007); 
9 Shelton, Southern, LeMieux, Bidner, and Page (2004); 10. Hansard (1956); 11. Wiseman et al. (2007); 12. Johnson et al. (2015); 13. Mitchell et al. 
(2001); 14. Tranquilli et al. (1982); 15. Phuc and Hieu (1993); 16. Agyekum, Slominski, and Nyachoti (2012); 17. Kaensombath et al. (2013); 18. Miller 
and Ullrey (1987); 19. Pond, Varel, Dickson, and Haschek (1989); 20. Velayudhan et al. (2017); 21. Chen, Lewis, Miller, and Yen (1999); 22. Chen, 
Miller, Lewis, Wolverton, and Stroup (1995); 23. Cliplef and McKay (1993); 24. Critser, Miller, and Lewis (1995); 25. Kaensombath and Lindberg 
(2012); 26. Pond et al. (1988); 27. Koong, Nienaber, Pekas, and Yen (1982); 28. Koong, Nienaber, and Mersmann (1983); 29. Yen, Nienaber, Klindt, and 
Crouse (1991); 30. Adeola and King (2006); 31. Moughan, Smith, and Stevens (1990); 32. Cera, Mahan, Cross, Reinhart, and Whitmoyer (1988); 33. 
Jin, Reynolds, Redmer, Caton, and Crenshaw (1994); 34. Anugwa, Varel, Dickson, Pond, and Krook (1989); 35. Lee and Woyengo (2018); 36. Rehfeldt 
et al. (2008); 37. Smit and Beltranena (2017); 38. Chiba (1994); 39. Boleman et al. (1995); 40. Owen, Nelssen, Goodband, Tokach, and Friesen (2001); 
41. Wang et al. (2011); 42. Brudevold and Southern (1994); 43. Weaver et al. (2013); 44. Lundeen et al. (1983); 45. Tischendorf, Schone, Kirchheim, 
and Jahreis (2002); 46. Schöne, Kirchheim, Schumann, and Lüdke (1996); 47. Owsley et al. (1986).
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value was 2.87% (Table 7). The calculated mean relative liver organ 
weight for swine was 2.04% of body weight (Table 9). This value is 
close to the value of 2.3% used in recent PBPK models for swine 
(Li, Cheng, et al., 2019; Li et al., 2017) and in the range of 2%–2.94% 
for swine reported in the previous review paper (Lin, Gehring, et al., 
2016).

3.2.10 | Lungs

The calculated relative weight of lungs for cattle was 0.77% (Table 1), 
which is close to the value of 0.8% used in PBPK models for cattle (Li 
et al., 2017; Li, Gehring, et al., 2018). The lungs constitute 1.23% of 
the body weight in calves with a range of 0.82% to 1.92% (Table 7). 
Morgan (1969) conducted experiments on 36 calves and showed 
that lung and trachea weight values ranged from 1.7% to 2.2%. For 
swine, the calculated mean relative organ weight of lungs was 0.9% 
(Table 9). This value is similar to the value of 1% for swine in previ-
ous review papers (Lin, Gehring, et al., 2016; Upton, 2008) and in 
one PBPK model for swine (Qian et al., 2017), and to the value of 
0.8% in some recent PBPK models for swine (Li, Cheng, et al., 2019; 
Li et al., 2017).

3.2.11 | Muscle

The calculated mean relative weight of muscle for beef cattle was 
36.1% (Tables 1 and 2), which is in the range of 27%–45% reported 
in a previous review (Lin, Gehring, et al., 2016). The muscle tissue 
weight data are not available for dairy cows. As shown in Table 7, 
the weight of muscle is fairly constant and constitutes approxi-
mately 33.9% of the body weight in calves. The calculated mean 
relative tissue weight of muscle in swine was 36.32% (Table  9), 
which is close to the value of 40% reported in previous review pa-
pers (Lin, Gehring, et al., 2016; Upton, 2008) and some PBPK mod-
els for swine (Qian et al., 2017; Yuan, Luo, Zhu, Wang, & Liu, 2011), 
and similar to the value of 35.5% used in PBPK models for swine (Li, 
Cheng, et al., 2019; Li et al., 2017).

3.2.12 | Pancreas

The calculated mean value was 0.09% for relative weight of pan-
creas in cattle (Table 1). This value is slightly lower than the reported 
values in the range of 0.14%–0.7% for mice, rats, dogs, and humans 
(Brown et al., 1997). The weight of the pancreas constitutes about 

TA B L E  1 0   Relative organ weight (percent body weight) or tissue volume for male swine

  Mean SD Number of animals Number of studies References

Adrenal glands 0.005 0.001 55 2 1, 2

Adipose tissue 14.93 2.61 122 4 3–6

Blood 3.85 0.25 104 3 1, 6, 7

Bone 8.60 0.76 86 2 4, 6

GI tract

Stomach 0.66 0.11 324 10 6–15

Intestines 3.74 0.40 60 1 7

Small intestine 1.68 0.28 273 10 1, 8–16

Large intestine 1.57 0.40 183 7 1, 8–10, 12, 14, 15

Cecum 0.15 0.02 27 2 1, 13

Heart 0.34 0.05 377 14 1, 6–8, 10–19

Kidneys 0.38 0.10 1,566 16 1, 2, 6, 8–20

Liver 1.76 0.23 246 19 1, 2, 5–21

Lungs 0.80 0.17 200 6 7, 8, 11, 12, 18, 19

Muscle 38.46 2.70 79 3 4, 9, 17

Pancreas 0.15 0.13 297 7 1, 6, 10, 14, 15, 21, 22

Spleen 0.20 0.05 765 11 1, 6, 8, 10–12, 14, 15, 17, 18, 20

Thyroid 0.008 0.001 24 1 1

Thymus 0.28 0.03 8 1 1

Skin 4.47 0.82 86 2 4, 6

Rest of body 21.38        

Note: The studies involved in the tissue volume calculations are as follows: 1. Kerr et al. (2003); 2. Wise et al. (1993); 3. Hood and Allen (1977); 4. 
Quinious and Noblet (1995); 5. O'Hea and Leveille (1969); 6. Ruusunen et al. (2007); 7. Wiseman et al. (2007); 8. Kaensombath et al. (2013); 9. Pond 
et al. (1989); 10. Chen et al. (1999); 11. Critser et al. (1995); 12. Kaensombath and Lindberg (2012); 13 Pond et al. (1988); 14. Koong et al. (1982); 15. 
Koong et al. (1983); 16. Moughan et al. (1990); 17. Anugwa et al. (1989); 18. Boleman et al. (1995); 19. Chiba (1994); 20. Cliplef and McKay (1993); 21. 
Jin et al. (1994); 22. Owsley et al. (1986). Only data from male swine were used in the calculation in this table.
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0.08% of the body weight in calves (Table 7), which is close to the 
value in cattle. Only limited data are available on the weight of the 
pancreas in calves (Mader et al., 2009). The pancreas organ weight 
in swine was 0.15% (Table 9), which is close to the reported range 
of 0.14%–0.7% in other mammalian species (Brown et al., 1997). It 
should be noted that pancreas along with the thymus can be a com-
ponent of the “sweetbreads,” an edible food product, and thus has 
tissue residue food safety implications.

3.2.13 | Spleen

Although the spleen represents a small proportion of total body 
weight, it is important for many physiological functions and can 
be an important target organ for toxicants. Spleen constitutes ap-
proximately 0.18% of the body weight for cattle (Table 1). The av-
erage value for calves is 0.26%, which is based on reported values 
ranging from 0.16% to 0.42% (Hansard, 1956; Mader et al., 2009; 
Morgan, 1969; Sangild et al., 2000; Settlemire et al., 1964; Stabel 
et al., 1993) (Table  7). The value for swine is 0.20% (Table  9), 
which is the same as the relative spleen volume in rats (Brown 
et al., 1997). All these values in swine and cattle are somewhat 

lower than the values 0.35% for mice, 0.27% for dogs, and 0.26% 
for humans (Brown et al., 1997).

3.2.14 | Thymus

The calculated mean organ weight for thymus was 0.03% of 
body weight in cattle (Table 1). The value for thymus was based 
on three different studies (Matthews et al., 1975; Remling et al., 
2017; Schumann, Dänicke, Meyer, Ueberschär, & Breves, 2007). In 
calves, the reported values for thymus are fairly constant with the 
mean value of 0.23%, and actual values of thymus in calves fall in 
the range of 360–550 g (Biolatti et al., 2005; Sangild et al., 2000; 
Stabel et al., 1993) (Table 7). The organ weight of thymus in cattle 
decreases as the age increases, from 170 g in cattle at 2–3 years 
to 104 g at over 10 years old (Matthews et al., 1975). The organ 
weight for thymus was 0.28% of body weight in swine (Table 9). 
The organ weight of thymus in swine was based on only one study 
(Matthews et al., 1975). The organ weights of thymus in rats are in 
the range of 0.08%–0.14% (Brown et al., 1997). The relative organ 
weights of thymus for swine and calves are higher than the val-
ues in rats, but the value in cattle is lower than the value in rats. 

TA B L E  11   Relative organ weight (percent body weight) or tissue volume for female swine

  Mean SD Number of animals Number of studies References

Adrenal glands 0.005 0.001 42 1 1

Adipose tissue 13.00 3.06 40 2 2, 3

Blood 3.76 0.28 80 2 3, 4

Bone 10.73 1.00 40 2 2, 3

GI tract

Stomach 0.63 0.11 131 3 4–6

Intestines 3.47 0.40 60 1 4

Small intestine 1.44 0.31 116 4 5–8

Large intestine 1.04 0.17 42 2 5, 8

Heart 0.36 0.05 196 6 3–8

Kidneys 0.35 0.11 1,318 8 1, 3, 5–10

Liver 1.89 0.28 1,002 8 1, 3–8, 10

Lungs 0.90 0.19 119 2 4, 6

Muscle 34.09 2.37 19 1 2

Pancreas 0.10 0.02 12 1 5

Spleen 0.21 0.07 492 4 5, 6, 9, 10

Uterus 3.28 0.84 42 1 1

Ovaries 0.011 0.002 42 1 1

Corpora Lutea 0.005 0.001 42 1 1

Skin 5.07 0.85 40 2 1, 3

Rest of body 22.14        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Wise et al. (1993); 2. Quinious and Noblet (1995); 3. Ruusunen 
et al. (2007); 4. Wiseman et al. (2007); 5. Moughan et al. (1990); 6. Chen et al. (1999). Only data from female swine were used in the calculation in this 
table.
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More data are required to increase our confidence for the relative 
weight of thymus in swine and cattle.

3.2.15 | Thyroid

The calculated mean organ weight for thyroid was 0.006% of body 
weight in cattle (Table 1) and 0.03% in calves (Table 7). The rel-
evant data are very limited, only one study (Matthews et al., 1975) 
is available for thyroid organ weight in beef cattle and no data 
were found for dairy cows. The actual weights of thyroid increase 
from around 11 g in calves with 41 kg body weight (Sangild et al., 
2000) to 20–40 g in adult cattle (Matthews et al., 1975). Thyroid 
grows slower compared with the growth of body weight in cat-
tle. The calculated mean organ weight for thyroid was 0.011% of 
body weight in swine (Table 9). The relative weight of thyroid is in 
the range of 0.002%–0.009% in rats and in the range of 0.0074%-
0.0081% in dogs (Brown et al., 1997). Both the thyroid volumes in 
cattle and swine are close to or in the range of the values in rats 
and dogs.

3.2.16 | Mammary glands

The physiological parameters for mammary glands in dairy cows are 
important for PBPK models related to drugs excreted through milk. 
The organ weights of mammary glands in nonlactating, pregnant, 
and lactating cows were obtained, although limited data were avail-
able. The mammary glands constitute about 1.68% of body weight 
for nonlactating cows, 2.29% for pregnant cows, and 3.18% for lac-
tating cows (Table 3).

3.2.17 | Reproductive organs

Limited data were available for reproductive organs. The organ 
weight of testes is provided in Table 2 for beef cattle as 0.1% of body 
weight based on three studies (Killian & Amann, 1972; Unruh, Gray, 
& Dikeman, 1986; Weisgold & Almquist, 1979). The relative organ 
weights of uterus, ovaries, and corpora lutea were 1.09%, 0.003%, 
and 0.0008% for dairy cows shown in Table  3, and were 3.28%, 
0.011%, and 0.005% for female swine shown in Table 11.

TA B L E  1 2   Relative organ weight (percent body weight) or tissue volume for market-age swine

  Mean SD Number of animals Number of studies References

Body weight (kg) 92.5 4.0 5,521 26 1–26

Adrenal glands 0.005 0.001 79 2 1, 2

Adipose tissue 17.42 2.66 124 4 3–6

Blood 3.45 0.54 176 3 5, 7, 8

Bone 14.31 1.19 88 2 4, 5

GI tract

Stomach 0.58 0.08 1,811 11 7, 9–18

Intestines 3.01 0.30 72 1 7

Small intestine 1.26 0.23 300 10 9–13, 15–19

Large intestine 1.35 0.32 132 6 9–13, 18

Cecum 0.14 0.02 39 2 16, 17

Colon 0.94 0.10 3 1 16

Heart 0.35 0.05 2,101 16 5, 7, 9, 12–24

Kidneys 0.37 0.10 2,812 17 1, 2, 5, 6, 9, 11–17, 19, 20, 22–24

Liver 2.01 0.25 4,421 21 1, 2, 5–9, 11–20, 22–26

Lungs 0.77 0.14 275 7 7, 9, 15, 17, 18, 22, 24

Muscle 42.63 3.29 24 2 11, 20

Pancreas 0.12 0.03 112 4 12, 13, 17, 18

Spleen 0.21 0.06 3,488 10 8, 9, 12–15, 17, 20, 22, 25

Skin 6.82 0.82 88 2 4, 5

Rest of Body 7.95        

Note: The studies involved in the relative organ weight calculations are as follows: 1. Wise et al. (1993); 2. Stahly and Cromwell (1979); 3. Hood and 
Allen (1977); 4. Quinious and Noblet (1995); 5. Ruusunen et al. (2007); 6. Shelton et al. (2004); 7. Wiseman et al. (2007); 8.. Johnson et al. (2015); 9. 
Kaensombath et al. (2013); 10. Miller and Ullrey (1987); 11. Pond et al. (1989); 12. Chen et al. (1999); 13. Chen et al. (1995); 14. Cliplef and McKay 
(1993); 15. Critser et al. (1995); 16. Pond et al. (1988); 17. Yen et al. (1991); 18. Phuc and Hieu (1993); 19. Moughan et al. (1990); 20. Anugwa et al. 
(1989); 21. Rehfeldt et al. (2008); 22. Boleman et al. (1995); 23. Owen et al. (2001); 24. Chiba (1994); 25. Tischendorf et al. (2002); 26. Schöne et al. 
(1996). The calculation of swine relative organ weights in this table was based on data from swine with reported mean body weight of 92.5 kg ranging 
from 65 to 160 kg.
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3.2.18 | Mass balance

The value for the rest of body is included in the table to maintain 
mass balance and to constrain the sum of total relative organ weight 
fractions to 1. The value for rest of body in Table 1 was 29.67% and 
in Table 2 was 30.72%, which includes skin, ear, horn, eye, hoof, hair, 
some of the reproductive organs, and GI tract contents. For dairy 
cows, the rest of body value was 67.06% in Table 3. This high value 
is attributed to the fact that muscle weight was not measured sepa-
rately in dairy cattle and is therefore included in the rest of body 
estimates. The value for rest of body for calves was 27.34% (Table 7). 
For swine, the rest of body value in Table 9 was 19.29%.

3.3 | Cardiac output

All cardiac output data in cattle and swine are from unanesthetized, 
resting animals only. Anesthesia and exercise have impacts on the 
cardiac output in animals and were therefore excluded from report-
ing. The cardiac output for adult cattle is summarized in Table  13. 
The value for cardiac output of calves was calculated based on six 
different studies (Davis, Collier, McNamara, Head, & Sussman, 1988; 
Doyle, Patterson, Warren, & Detweiler, 1960; Huntington, Eisemann, 
& Whitt, 1990; Nienaber, Eisemann, Yen, & Huntington, 1993; Weir, 
Tucker, Reeves, Will, & Grover, 1974; Whittow, 1965). The mean value 
of cardiac output for cattle was 5.45 L h−1 kg−1 body weight. This value 
is close to the value of 5.67 L h−1 kg−1 reported in the review by Lin, 
Gehring, et al. (2016) and the value of 5.97 L h−1 kg−1 used in recent 
published PBPK models for cattle (Li, Cheng, et al., 2019; Li et al., 2017). 
Cardiac output values for calves were calculated based on data only 
from calves. The original values from each study with reported units 
are presented in Table 14. The calculated values in the unit of L/h/
kg body weight when the body weight data were available for PBPK 
model use are reported in Table 15. The mean cardiac output value was 
9.09 L h−1 kg−1 from eleven studies and 220 calves (Table 16). Cardiac 
Output values (L h−1 kg−1 body weight) were plotted against values of 
corresponding body weight (kg). Only those studies with explicit body 
weight (kg) values and those with convertible cardiac output (L h−1 kg−1 
body weight) were included. No significant trend was found for the 
correlation of cardiac output with body weight, the relevant data and 
regression analysis are included in the Appendix S10. The body weight-
scaled cardiac output value (L h−1 kg−1 body weight) in calves is higher 
than that in adult cattle.

The value for cardiac output of swine was calculated based on 
seven different studies (Duncker et al., 1997; Hannon, Bossone, 
& Wade, 1990; Lundeen et al., 1983; Manohar & Parks, 1984; 
Tranquilli et al., 1982; van Woerkens, Duncker, Huigen, Van Der 
Giessen, & Verdouw, 1990; van Woerkens et al., 1992). The average 
value of cardiac output for swine was 8.70 L h−1 kg−1 body weight 
shown in Table 17. The value reported here is close to the value of 
8.543 L h−1 kg−1 in recent PBPK models for swine (Li, Cheng, et al., 
2019; Li et al., 2017). In the review paper by Upton (2008), the 
cardiac output of swine was reported as 12  L  h−1  kg−1 from Buur, 

Baynes, Craigmill, and Riviere (2005) or 20 L h−1 kg−1 from Vinegar 
(1999) based on young pigs with body weight of 25 kg. These values 
are both larger than the value of 8.70 L h−1 kg−1 for market-age swine 
analyzed in this study (mean body weight 92.5  kg, Table  12). The 
data and data analysis for cardiac output for cattle are included in 
Appendix S4, for calves are in Appendix S10, and for swine are in 
Appendix S16.

3.4 | Blood flow

The cardiac output value is needed in the calculation of the frac-
tion of blood flow to an organ out of the cardiac output (i.e., frac-
tional cardiac output). For papers that did not provide cardiac 
output values, the mean cardiac output value from the previous 
section was used to calculate the mean values of blood flow in in-
dividual organs as fractions of cardiac output. The values of blood 
flow to different organs or tissues are reported as blood flow units 
of L h−1 kg BW−1 or mL/min/100 g tissue weight or with the original 
units reported in the papers, and also by the percent of cardiac 
output, which can be used directly in PBPK models. The pooled 
average values of blood flows to organs for adult cattle are sum-
marized in Tables 18 and 19, for beef cattle in Tables 20 and 21, for 
dairy cows in Tables 22 and 23, for calves in Tables 24-26, and for 
swine in Tables 27 and 28.

3.4.1 | Gastrointestinal tract

Due to limited data, the blood flow to GI tract was available only for 
swine and calves. The blood flow fractions in swine to the stomach, 
small intestine and large intestine were 2.1%, 15.3%, and 5.1% of car-
diac output, respectively (Table 28). The sum of these GI tract seg-
ment blood flow fractions was 22.5%, which represents the blood 
flow fraction that gets to the liver through portal vein. This value 
was very close to the calculated mean value of 19.9% for the portal 
vein blood flow in swine. The slight difference between these two 
values was due to these values being calculated based on different 
experimental studies. The mean value of the blood flow fraction in 
GI tract for calves was derived from only one study (Conrad, Smith, 
Vandersall, Pounden, & Hibbs, 1958). This value was 11% (Table 24). 
The blood flow to GI tract takes 14% of the cardiac output in the rat 
(Delp, Manning, Bruckner, & Armstrong, 1991), which is close to the 
values in cattle and swine.

TA B L E  1 3   Cardiac output (L h−1 kg−1 body weight) in 
unanesthetized adult cattle

Mean SD Number of animals
Numbers of 
studies

5.45 1.47 48 6

Note: The value for cardiac output of cattle was calculated based on six 
different studies (Davis et al., 1988; Doyle et al., 1960; Huntington et 
al., 1990; Nienaber et al., 1993; Weir et al., 1974; Whittow, 1965).
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3.4.2 | Muscle

The calculated mean blood flow to muscle in cattle was 28% of car-
diac output as shown in Table 19. This value is within the range of 18% 
to 45% reported for cattle in the review paper by Lin, Gehring, et al. 
(2016). The calculated value was 34.2% of cardiac output in swine 
shown in Table 28. The value for blood flow fraction of muscle in swine 
is close to but slightly higher than the value of 29.3% used in PBPK 
models for swine (Li, Cheng, et al., 2019; Li et al., 2017) and the value 
of 25% reported in previous review papers (Lin, Gehring, et al., 2016; 
Upton, 2008) and some other PBPK models for swine (Qian et al., 
2017; Yuan et al., 2011). The values of blood flow to muscle in mice, 
rats, dogs, and humans fall in the range of 16.1 to 29.7% (Brown et al., 
1997). The average value for cattle is within this range; however, the 
value in swine is slightly higher compared with the range.

3.4.3 | Heart

Manohar et al. (1981) and Manohar et al. (1982) both reported myo-
cardial blood flow values in the left and right ventricles, and interven-
tricular septum for calves. Delp et al. (1991) reported interregional 
differences exist in blood flow to the heart in rats, with the ventri-
cles receiving about twice the flow rate as the atria. Therefore, the 
summation of the blood flow fractions of both ventricles and septum 

accounts for the majority of the heart. The calculated mean blood 
flow fraction to the heart in calves was 6% (Table 24). The originally 
reported values of blood flow to heart in units of mL min−1 g−1 tissue 
or mL  min−1  kg  BW−1 are provided in Table  25, and the converted 
values in units of L h−1 kg BW−1 are provided in Table 26. Similar to 
calves, the heart blood flow in swine was also the sum of the values 
of septum, right and left ventricles (Tranquilli et al., 1982). The blood 
flow fraction of heart in swine was 3% (Table 28), which is close to 
the value of 4.3% in swine reported by Upton (2008). The blood flow 
to heart is 6.6% in mice, 5.1% in rats, 4.6% in dogs, and 4.0% of car-
diac output in humans (Brown et al., 1997). The value of blood flow to 
heart in cattle is in the range of values reported for mice, rats, dogs, 
and humans, but the value in swine is slightly lower than this range.

3.4.4 | Kidneys

The value of blood flow to kidneys in cattle was based on 75 animals 
from four different studies (Deetz, Tucker, Mitchell, & DeGregorio, 
1982; Delaquis & Block, 1995; Reynolds, Tyrrell, & Reynolds, 
1991a, 1991b). The values of renal blood flow in calves were found 
in three studies (Huber, 1976; Reynolds, Tyrrell, & Reynolds, 1991b; 
Wanner, Ziv, Nicolet, Noelpp, & Roesler, 1981). The study by Huber 
(1976) did not provide either body weight or breed. Therefore, the 
mean value was calculated based only on the other two studies. 

Cardiac output SD Unit Number of animals References

10.5 2.92 L/min 34 1

28.5 4.68 L/min 27 1

32.1 4.87 L/min 37 1

39.4 6.5 L/min 25 1

8.4 NR L/min 14 2

158 42.43 mL min−1 kg−1 8 3

158 15 mL min−1 kg−1 6 3

136 31.11 mL min−1 kg−1 8 4

127 29.98 mL min−1 kg−1 8 4

1655 NR L/h 4 5

123 NR mL min−1 kg−1 14 6

7.5 NR L/min 11 6

154.3 NR mL min−1 kg−1 2 7

4.04 NR L/min 1 8

32.8 0.98 L/min 6 9

28.6 0.73 L/min 6 9

113 14 mL min−1 kg−1 9 10

8.29 0.35 L/min 9 11

Note: NR, not reported in the original study. The studies involved in the cardiac output calculations 
are as follows: 1. Amory et al. (1993); 2. Weber, Dennison, Fuqua, Speaker, and Hastings (1971); 
3. Will, McMurtry, Reeves, and Grover (1978); 4. Busch, Tucker, and Robertshaw (1985); 5. 
Huntington, Reynolds, and Stroud (1989); 6. Stowe and Good (1960); 7. Waldern et al. (1963); 8. 
Neuwirth, Norton, Rawlings, Thompson, and Ware (1979); 9. Amory et al. (1995); 10. Manohar et al. 
(1982); 11. Weber et al. (1972).

TA B L E  14   Cardiac output in 
unanesthetized calves with original values 
and units
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The originally reported values of blood flow to kidney in units of 
mL/min or mL  min−1  m−2 or L/h is provided in Table  25, and the 
converted values in units of L h−1 kg BW−1 are provided in Table 26. 
The calculated mean values for renal blood flow fractions in cattle, 
calves, and swine were 10% (Table 19), 10% (Table 24), and 11.4% 
(Table  28), respectively. Those values were close to each other 
and fell within the reported range of renal blood flow for cattle of 
9%–11%, and for swine of 10%–14% in a previous review article 
(Lin, Gehring, et al., 2016). For other animal species, the value was 
9.1% for mice, 14.1% for rats, 17.3% for dogs, and 17.5% of cardiac 
output for humans (Brown et al., 1997). The values of blood flow 
to kidneys in cattle and swine all fell in the range of 9.1% to 17.5%.

3.4.5 | Liver

Liver blood flow is composed of hepatic artery and portal vein. The 
total blood flow in liver, represented as a combination of blood flow 
in the hepatic artery and portal vein, is commonly used in PBPK 
models. The hepatic blood flow in cattle was 46% (Table 19), which 
was within the reported range of 35%–53% in a previous review 
article (Lin, Gehring, et al., 2016) and close to the value of 40.5% in 
published PBPK models for cattle (Li, Cheng, et al., 2019; Li et al., 
2017). The value for hepatic blood flow fraction in calves was 30% 
of cardiac output (Table 24). The value was slightly lower than the 
value in cattle. The originally reported values of blood flow to liver 
in units of L/min or L/h is provided in Table 25, and the converted 
values in unit of L h−1 kg BW−1 is provided in Table 26. The origi-
nally reported values of blood flow to hepatic artery in units of 
mL min−1 kg BW−1, L/min, or L h−1 kg BW−1 is provided in Table 25, 
and the converted values in unit of L  h−1  kg  BW−1 is provided in 
Table 26. The blood flow fractions of hepatic artery and portal vein 
in swine are reported in Table 28. By combining these two values, 
the value of hepatic blood flow fraction in swine was 24.3% of car-
diac output. This value fell in the range of 24%–30.5% in a previous 
review paper (Lin, Gehring, et al., 2016) and was close to the value 
of 27.3% used in PBPK models for swine (Li, Cheng, et al., 2019; Li 
et al., 2017). The values of blood flow to liver are in the range of 
16.1%–29.7%, blood flow through hepatic artery in the range of 
2.0%–4.6%, and through portal vein in the range of 14.1%–25.1% in 
mice, rats, dogs, and humans (Brown et al., 1997). The blood flow to 
liver in cattle was higher than the values for swine, mice, rats, dogs, 
and humans, which may be due to the ruminant digestive system 
in cattle.

3.4.6 | Lungs

The blood flow to lungs in calves was achieved based on data from 
one study (Rudolph & Yuan, 1966), which was reported as 50% in 
Table 24. The blood flow values in the original reported unit of L/min 
are shown in Table 25, and in the unit of L h−1 kg BW−1 are reported 
in Table 26. In the PBPK model, the blood flow to the lung compart-
ment is typically considered as 100% cardiac output (Brown et al., 
1997). The values reported for calves stand for the blood flow to the 
bronchial region.

TA B L E  1 5   Cardiac output in unanesthetized calves with the unit 
as L h−1 kg−1 body weight

QCC 
(L h−1 kg BW−1) SD Number of animals References

12.75 5.06 34 1

10.03 2.05 27 1

9.77 1.95 37 1

8.00 1.81 25 1

5.31 NR 14 2

9.48 2.55 8 3

9.48 0.9 6 3

8.16 1.87 8 4

7.62 1.8 8 4

8.36 NR 4 5

7.38 NR 14 6

7.09 NR 11 6

9.26 NR 2 7

5.92 NR 1 8

9.38 0.32 6 9

7.23 0.24 6 9

6.78 2.52 9 10

Note: NR, not reported in the original study. The studies involved in 
the cardiac output calculations are as follows: 1. Amory et al. (1993); 
2. Weber et al. (1971); 3. Will et al. (1978); 4. Busch et al. (1985); 5. 
Huntington et al. (1989); 6. Stowe and Good (1960); 7. Waldern et al. 
(1963); 8. Neuwirth et al. (1979); 9. Amory et al. (1995); 10. Manohar et 
al. (1982).

TA B L E  1 6   Cardiac output (L h−1 kg−1 body weight) in 
unanesthetized calves

Mean SD Number of animals
Numbers of 
studies

9.09 2.77 220 11

Note: The studies involved in the cardiac output calculations are as 
follows: 1. Amory et al. (1993); 2. Weber et al. (1971); 3. Will et al. 
(1978); 4. Busch et al. (1985); 5. Huntington et al. (1989); 6. Stowe 
and Good (1960); 7. Waldern et al. (1963); 8. Neuwirth et al. (1979); 9. 
Amory et al. (1995); 10. Manohar et al. (1982); 11. Weber et al. (1972).

TA B L E  17   Cardiac output (L h−1 kg−1 body weight) in 
unanesthetized swine

Mean SD Number of animals
Numbers of 
studies

8.70 1.62 83 7

Note: The value for cardiac output of swine was calculated based on 
seven different studies (Duncker et al., 1997; Hannon et al., 1990; 
Lundeen et al., 1983; Manohar & Parks, 1984; Tranquilli et al., 1982; van 
Woerkens et al., 1990, 1992).
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All raw data and data calculations for blood flow fractions for cat-
tle are provided in Appendix S2, for calves are provided in Appendix 
S8, and for swine are included in Appendix S14.

3.5 | Vascular space

The vascular space or volume fraction of blood in organs and tis-
sues is one of the important physiological parameters for PBPK 
models with diffusion-limited (also known as permeability-limited 
or membrane-limited) compartment structures. Vascular space is 
also described as residual blood volume in tissues or organs. For 
chemicals with large molecular weight as well as many nanoparti-
cles, the transmembrane process is the rate-limited step for chemi-
cal distribution. In membrane-limited PBPK models, the organ 
compartments are divided into compartments of organ tissue and 
residual blood (Godin et al., 2010; Lin, Monteiro-Riviere, & Riviere, 

2016; Tornero-Velez et al., 2010; Yoon, Kedderis, Yan, & Clewell, 
2015). Hansard (1956) reported values of residual blood volumes 
in nine different organs, including spleen, lungs, liver, kidneys, pi-
tuitary gland, adrenal gland, heart, pancreas, and muscles in cat-
tle, sheep, and swine, which are shown in Table 29 for adult cattle, 
Table 30 for calves, Table 31 for growing swine, and Table 32 for 
aged swine (mean BW: ~297 kg). Compared to the values reported 
in Table 30 of Brown et al. (1997), the fractions in heart, liver, and 
lungs for cattle and swine seem to be lower than those of the 
mouse, rat, dog, and human perhaps due to species difference or 
variability in the measurement. The fraction values in other organs 
in cattle and swine fall within the reported ranges of mice, rats, 
dogs, and humans (Brown et al., 1997). For vascular space in muscle 
of calves, two studies were found for calculation and comparison 
as shown in Table 33. Macdougall, Bremner, and Dalgarno (1973) 
reported four residual blood volume fractions from different mus-
cles. Hansard (1956) reported two values, both higher than those 

  Mean SD
Number of 
animals

Number of 
studies References

Muscle 1.51 0.28 13 2 1, 2

Kidneys 0.55 0.45 75 4 3–6

Liver 2.51 1.17 331 8 3, 6, 7–12

Hepatic artery 0.44 0.34 152 2 8, 10

Portal vein 2.12 1.02 399 9 3, 6–13

Uterus 0.0041 0.0036 12 3 14–16

Ovaries 0.0003 0.0001 3 1 15

Testes 0.0015 0.0005 14 1 17

Note: The studies involved in the regional blood flow calculations are as follows: 1. Eisemann, 
Huntington, and Ferrell (1987); 2. Eisemann, Huntington, and Ferrell (1988); 3. Reynolds, Tyrrell, 
and Reynolds (1991a); 4. Delaquis and Block (1995); 5. Deetz et al. (1982); 6. Reynolds et al. 
(1991b); 7. Huntington et al. (1990); 8. Røjen, Theil, and Kristensen (2011); 9. Lescoat, Sauvant, 
and Danfær (1996); 10. Ellis et al. (2016); 11. Huntington et al. (1989); 12. Whitt et al. (1996); 
13. Reynolds and Huntington (1988); 14. Ford, Chenault, and Echternkamp (1979); 15. Ford and 
Chenault (1981); 16. Rawy et al. (2018); 17. Barros Adwell et al. (2018).

TA B L E  1 8   Regional blood flow 
(L h−1 kg−1 body weight) distribution in 
adult cattle

  Mean SD Number of animals Number of studies References

Muscle 28 9 13 2 1, 2

Kidneys 10 9 75 4 3–6

Liver 46 25 331 8 3, 6, 7–12

Hepatic artery 8 7 152 2 8, 10

Portal vein 39 22 399 9 3, 6–13

Uterus 0.08 0.07 12 3 14–16

Ovaries 0.005 0.002 3 1 15

Testes 0.03 0.01 14 1 17

Note: The studies involved in the regional blood flow calculations are as follows: 1. Eisemann et al. 
(1987); 2. Eisemann et al. (1988); 3. Reynolds et al. (1991a); 4. Delaquis and Block (1995); 5. Deetz 
et al. (1982); 6. Reynolds et al. (1991b); 7. Huntington et al. (1990); 8. Røjen et al. (2011); 9. Lescoat 
et al. (1996); 10. Ellis et al. (2016); 11. Huntington et al. (1989); 12. Whitt et al. (1996); 13. Reynolds 
and Huntington (1988); 14. Ford et al. (1979); 15. Ford and Chenault (1981); 16. Rawy et al. (2018); 
17. Barros Adwell et al. (2018).

TA B L E  19   Regional blood flow 
distribution as percent cardiac output in 
adult cattle
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in Macdougall et al. (1973). The mean value of around 1% for cattle 
and swine from Hansard (1956) was similar to the value of 1% for 
dogs and humans, but was less than the value of 4% in mice and rats 
(Brown et al., 1997).

All raw data and data calculations for vascular space for cattle 
are provided in Appendix S3, for calves in Appendix S9, and for 
swine in Appendix S15.

3.6 | Hematocrit

Hematocrit, also known as Packed Cell Volume (PCV), is the propor-
tion of red blood cells in the total volume of blood. Hematocrit for 

cattle and swine were calculated based on previously reported data. 
Hematocrit for cattle of both sexes with different ages was pooled 
together (Table  34), and the value was 37.8%. Hematocrit values 
were collected as the baseline for calves (Table  35). The hemato-
crit value for calves was 33.7%. Hematocrit values for swine of all 
ages are shown in Table 36 and for different age groups are shown in 
Table 37. The average value of hematocrit in swine was 41.2%, and 
values of hematocrit slightly increase from 39.9% to 43.3% with the 
increase of age.

Hematocrit was not included in previous reviews for physiolog-
ical parameters in either laboratory animals or food animals (Brown 
et al., 1997; Lin, Gehring, et al., 2016; Upton, 2008). In the PBPK 
models for drugs and chemicals in laboratory animals and humans, 

TA B L E  2 0   Regional blood flow (L h−1 kg−1 BW) distribution in beef cattle

  Mean SD Number of animals Number of studies References

Muscle 1.51 0.28 13 2 1, 2

Kidneys 0.62 0.41 54 3 3–5

Liver 2.40 1.23 285 7 3, 5–10

Hepatic artery 0.40 0.35 111 1 8

Portal vein 2.05 1.07 353 8 3, 5–11

Testes 0.0015 0.0005 14 1 12

Note: The studies involved in the regional blood flow calculations are as follows: 1. Eisemann et al. (1987); 2. Eisemann et al. (1988); 3. Reynolds et al. 
(1991a); 4. Deetz et al. (1982); 5. Reynolds et al. (1991b); 6. Huntington et al. (1990); 7. Lescoat et al. (1996); 8. Ellis et al. (2016); 9. Huntington et al. 
(1989); 10. Whitt et al. (1996); 11. Reynolds and Huntington (1988); 12. Barros Adwell et al. (2018).

TA B L E  2 1   Regional blood flow distribution as percent cardiac output in beef cattle

  Mean SD Number of animals Number of studies References

Muscle 28 9 13 2 1, 2

Kidneys 11 8 54 3 3–5

Liver 44 25 285 7 3, 5–10

Hepatic artery 7 7 111 1 8

Portal vein 38 22 353 8 3, 5–11

Testes 0.03 0.01 14 1 12

Note: The studies involved in the regional blood flow calculations are as follows: 1. Eisemann et al. (1987); 2. Eisemann et al. (1988); 3. Reynolds et al. 
(1991a); 4. Deetz et al. (1982); 5. Reynolds et al. (1991b); 6. Huntington et al. (1990); 7. Lescoat et al. (1996); 8. Ellis et al. (2016); 9. Huntington et al. 
(1989); 10. Whitt et al. (1996); 11. Reynolds and Huntington (1988); 12. Barros Adwell et al. (2018).

TA B L E  2 2   Regional blood flow distribution (L h−1 kg−1 BW) in dairy cows

  Mean SD Number of animals Number of studies References

Kidneys 0.36 0.53 21 1 1

Liver 3.17 0.63 41 2 2, 3

Hepatic artery 0.54 0.30 41 2 2, 3

Portal vein 2.65 0.58 41 2 2, 3

Mammary gland 0.71 0.25 119 2 4, 5

Uterus 0.0041 0.0036 12 3 6–8

Ovaries 0.0003 0.0001 3 1 6

Note: The studies involved in the regional blood flow calculations are as follows: 1. Delaquis and Block (1995); 2. Røjen et al. (2011); 3. Ellis et al. 
(2016); 4. Lescoat et al. (1996); 5. Davis et al. (1988); 6. Ford et al. (1979); 7. Ford and Chenault (1981); 8. Rawy et al. (2018).
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the hematocrit is applied to facilitate the prediction of chemical 
concentrations in plasma. However, for PBPK models in food an-
imals, the values of hematocrit were not commonly used, due to 
limited information in pharmacokinetic and drug depletion studies 
in food animals. For example, the blood to plasma ratio of drugs, 
which helps to calculate drug distributed to red blood cells, is not 
commonly measured or reported in drug distribution studies in 
food animals. Many pharmacokinetic studies do not report details 
for blood sample preparation, and the drug concentrations in blood 
samples may be from serum, plasma, or whole blood. In addition, 
the pharmacokinetic and drug depletion studies in food animals 
conducted across a wide range of time used very different ana-
lytical methods, including radioactive techniques, immunoassay, or 
analytical chemistry methods. When performing new pharmacoki-
netic studies in food animals, the inclusion of hematocrit in PBPK 
models would help improve the prediction of drug concentrations 
in blood or plasma. All raw data and data analysis for hematocrit for 
cattle are provided in Appendix S5, for calves in Appendix S11, and 
swine in Appendix S17.

4  | DISCUSSION

To develop a PBPK model for a xenobiotic in an organism, the most 
accurate method of collecting physiological parameter values is 
by direct measurement of the values in animals of the same spe-
cies, strain/breed, and age as the target animals used in the phar-
macokinetic or tissue residue depletion studies. However, this is 
practically unfeasible, scientifically unnecessary, and ethically 
questionable since many physiological parameters in different ani-
mals of different strains/breeds and ages have been reported. One 
of the future directions of PBPK model applications is to serve as 
an alternative method to animal experimentation (i.e., to develop 
a PBPK model using in vitro and in silico methods for animal-free 
risk assessment) (Fabian et al., 2019). Therefore, it is important 
to have a physiological parameter database for developing PBPK 
models in the future. The main contribution of the present report 
is to provide a detailed and comprehensive compilation of PBPK-
related physiological parameters in different production classes 
of cattle (i.e., calve, beef cattle, and dairy cows) and swine (i.e., 

  Mean SD
Number of 
animals

Number of 
studies References

Kidneys 7 10 21 1 1

Liver 58 19 41 2 2, 3

Hepatic artery 10 6 41 2 2, 3

Portal vein 49 17 41 2 2, 3

Mammary gland 13 6 119 2 4, 5

Uterus 0.075 0.069 12 3 6–8

Ovaries 0.005 0.002 3 1 6

Note: The studies involved in the regional blood flow calculations are as follows: 1. Delaquis and 
Block (1995); 2. Røjen et al. (2011); 3. Ellis et al. (2016); 4. Lescoat et al. (1996); 5. Davis et al. 
(1988); 6. Ford et al. (1979); 7. Ford and Chenault (1981); 8. Rawy et al. (2018).

TA B L E  2 3   Regional blood flow 
distribution as percent cardiac output in 
dairy cows

  Mean SD Number of animals Number of studies References

GI tract 11 4 8 1 1

Heart 6 2 21 2 2, 3

Kidneys 10 3 30 2 4, 5

Liver 30 11 12 2 4, 6

Hepatic artery 4 1 17 2 6, 7

Portal vein 28 9 62 12 4, 6–16

Lungs 46 25 16 1 17

Note: The studies involved in the regional blood flow calculations are as follows: 1. Conrad et al. 
(1958); 2. Manohar et al. (1981); 3. Manohar et al. (1982); 4. Reynolds et al. (1991a); 5. Wanner et al. 
(1981); 6. Ortigues, Martin, Durand, and Vermorel (1995); 7. Durand, Bauchart, and Levaivre (1984); 
8. McGilliard, Thorp, and Thorp (1971); 9. Fries and Conner (1961); 10. Huntington et al. (1989); 11. 
Harmon and Avery (1987); 12. Wangsness and McGilliard (1972); 13. Huntington and Prior (1983); 
14. Huntington et al. (1989); 15. Carr and Jacobson (1968); 16. Durand, Bauchart, Lefaivre, and 
Donnat (1988); 17. Rudolph and Yuan (1966).

TA B L E  2 4   Regional blood flow 
distribution as percent cardiac output in 
calves
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growing swine, market-age swine, and aged swine). This study is 
expected to serve as a reference for the development of future 
PBPK models for drugs and xenobiotics in cattle and swine. This 

study also provides a methodology basis for ongoing studies com-
piling physiological parameters for other food-producing animals, 
such as goats, sheep, chickens, and turkeys.

  Mean SD Unit Number of animals Reference

Heart 2.83   mL min−1 g−1 
tissue

12 1

4.32 0.20 mL min−1 kg−1 
BW

9 2

Kidneys 210.00   L/h 1 3

235.00   L/h 1 3

186.00   L/h 1 3

200.00   L/h 1 3

681.70 14.90 mL/min NA 4

351.00 125.70 mL min−1 m−2 26 5

Liver 714.50 193.01 L/h 4 3

3.00 NR L/min 4 6

3.02 NR L/min 4 6

Hepatic artery 4.40 1.20 mL min−1 kg−1 4 7

5.70 NR L h−1 kg−1 BW 5 7

0.46 NR L/min 4 6

0.44 NR L/min 4 6

Lungs 3   L/min 1 9

4.1   L/min 1 9

3.6   L/min 1 9

2.9 1.3 L/min 16 10

Note: NR, not reported in the original study. 1. Manohar et al. (1981), 2. Manohar et al. (1982), 3. 
Reynolds et al. (1991a), 4. Huber (1976), 5. Wanner et al. (1981), 6. Ortigues et al. (1995), 7. Durand 
et al. (1984), 8. Durand et al. (1988), 9. Reeves and Leathers (1964b), 10. Rudolph and Yuan (1966).

TA B L E  2 5   Original data for regional 
blood flow distribution in calves

  Mean SD Unit Number of animals Reference

Heart 0.69   L h−1 kg−1 BW 12 1

0.26 0.01 L h−1 kg−1 BW 9 2

Kidneys 0.67   L h−1 kg−1 BW 1 3

0.70   L h−1 kg−1 BW 1 3

0.60   L h−1 kg−1 BW 1 3

0.62   L h−1 kg−1 BW 1 3

0.90   L h−1 kg−1 BW 26 4

Liver 2.21   L h−1 kg−1 BW 4 3

2.99   L h−1 kg−1 BW 4 5

3.01   L h−1 kg−1 BW 4 5

Hepatic artery 0.26 0.07 L h−1 kg−1 BW 4 6

0.34   L h−1 kg−1 BW 5 6

0.46   L h−1 kg−1 BW 4 5

0.44   L h−1 kg−1 BW 4 5

Lungs 4.14 1.84 L h−1 kg−1 BW 16 8

Note: 1. Manohar et al. (1981), 2. Manohar et al. (1982), 3. Reynolds et al. (1991a), 4. Wanner et al. 
(1981), 5. Ortigues et al. (1995), 6. Durand et al. (1984), 7. Durand et al. (1988), 8. Rudolph and Yuan 
(1966).

TA B L E  2 6   Converted data for regional 
blood flow distribution in unit of L h−1 kg−1 
BW in calves



408  |     LIN et al.

In this database, the mean, standard deviation, and range of 
values of each parameter from different studies were calculated 
to characterize the biological and experimental variability associ-
ated with each parameter. Only the original studies that reported 
values obtained experimentally were used as sources of data anal-
ysis. To avoid the bias inherent to repeated use of the same data in 
the analysis, the default organ weight estimates used in published 
PBPK models were not used to calculate the mean values reported 

in this manuscript. The standard deviation and range of values of 
each parameter are important as these data are needed to conduct 
stochastic population PBPK analysis to quantify the population 
variability via statistical approaches, such as Monte Carlo simu-
lations. These data can better characterize the animal population 
variability since direct measurement of physiological parameters 
in a few animals from a highly homogeneous population is unlikely 
to accurately characterize the variability of the particular animal 

  Mean SD
Number of 
animals

Number of 
studies References

Brain 80.92 12.93 26 2 1, 2

Thyroid 206.00 126.00 9 1 3

Adrenal 152.16 87.77 43 4 1–3, 5

Pancreas 149.00 51.00 9 1 3

Muscle 10.10 6.86 45 4 1, 2, 4, 5

Skin 7.58 3.28 34 3 1, 2, 5

Kidneys 361.63 84.48 35 3 1–3

Hepatic artery 22.28 18.71 43 4 1–3, 5

Spleen 193.98 91.84 43 4 1–3, 5

Stomach 59.42 35.27 43 4 1–3, 5

Small intestine 82.84 37.34 43 4 1–3, 5

Large intestine 57.00 15.00 9 1 3

Note: The regional blood flows of swine were calculated based on the following studies: 1. Duncker 
et al. (1997); 2. van Woerkens et al. (1990); 3. Manohar and Parks (1984); 4. Lundeen et al. (1983); 
5. van Woerkens et al. (1992).

TA B L E  2 7   Regional blood flow (mL/
min/100 g tissue weight) in swine

Swine blood flow (percent cardiac output)

  Mean SD Number of animals Number of studies References

Brain 1.5 0.4 35 3 1–3

Thyroid 0.13 0.08 9 1 4

Adrenal glands 0.06 0.04 43 4 2–5

Pancreas 1.4 0.5 9 1 4

Muscle 34.2 30.6 45 4 2, 3, 5, 6

Skin 3.5 1.6 34 3 2, 3, 5

Heart 3.0 0.6 9 1 1

Kidneys 11.4 3.2 56 5 1–4, 7

Hepatic artery 4.4 2.9 55 5 1–4, 6

Portal vein 19.9 4.6 32 3 8–10

Spleen 3.1 1.2 52 5 1–5

Stomach 2.1 1.1 34 4 1, 3, 5

Small intestine 15.3 7.7 52 5 1–5

Large intestine 5.1 1.1 18 2 1,4

Note: The regional blood flow fractions of swine were calculated based on the following studies: 
1. Tranquilli et al. (1982); 2. Duncker et al. (1997); 3. van Woerkens et al. (1990); 4. Manohar and 
Parks (1984); 5. van Woerkens et al. (1992); 6. Lundeen et al. (1983); 7. Hannon et al. (1990); 8. Yen, 
Nienaber, Hill, and Pond (1989); 9. O'Connor et al. (1992); 10. Yen and Killefer (1987). If no cardiac 
output reported in a specific study, the regional blood flow fractions were calculated using the 
average cardiac output of swine reported in Table 17.

TA B L E  2 8   Regional blood flow 
distribution as percent of cardiac output 
in swine
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population. Although calculation of the mean and standard devia-
tion in this way is useful to characterize the population variability, 
it does not solely represent the variability of the data for individ-
uals within a species. Instead, the standard deviations reported 
in this manuscript could be due to multiple factors, including true 
biological variability, sampling error, interlaboratory variation, and 
differences in the measurement techniques employed. Therefore, 
while the present data are useful in characterizing the population 
variability of physiological parameters, caution should be taken 
when interpreting the results.

To facilitate the application of the data presented in this manu-
script, for all parameters, the values in the tables are presented in a 
format that can be directly used in a PBPK model. If the original stud-
ies use a different unit, the values are converted to the unit com-
monly used in PBPK modeling. Values in original units are available 

in the Supplementary Excel files. Consequently, the values in this 
manuscript can be directly compared to published values in existing 
PBPK models for cattle and swine (Lin, Gehring, et al., 2016), and 
also be compared with values in other mammals (Brown et al., 1997). 
These comparisons are performed and discussed throughout the 
manuscript in order to verify that the values are biologically plau-
sible (i.e., do not substantially deviate from the commonly reported 
values).

When available, values for the weights or blood flows of differ-
ent regions within a particular organ or tissue system (e.g., stomach 
and small and large intestines of the GI tract, or hepatic artery and 
portal vein of the total blood flow to the liver) are provided. The sum 
of individual values of different regions may be occasionally differ-
ent from the measured total value of the particular organ or tissue 
system. These differences are mainly because different values could 
be taken from different references, not due to oversights or failure 

TA B L E  2 9   Vascular space or volume fraction of blood (% of 
organ weight, unitless) in organs and tissues of adult cattle

  Mean SD

BW (kg) 383.7 46.3

Spleen 34.5 8.3

Lungs 20.3 2.6

Liver 7.7 1.5

Kidneys 6.6 0.5

Pituitary gland 4.6 0.9

Adrenal glands 3.8 0.3

Heart 3.7 0.6

Pancreas 3.4 0.8

Loin muscle 1.0 0.3

Gastrocnemius muscle 1.0 0.2

Note: Very limited studies were identified for the residual blood volume 
in organs of cattle. All data reported in the table were from the study of 
Hansard (1956) with values from 4 animals.

TA B L E  3 0   Vascular space or volume fraction of blood (% of 
organ weight, unitless) in organs and tissues for calves

  Mean SD

Adrenal glands 3.0 0.2

Heart 2.6 0.4

Kidneys 3.7 0.3

Liver 7.9 2.5

Lungs 25.1 1.8

Muscle * *

Pancreas 2.5 0.5

Pituitary gland 3.4 0.7

Spleen 31.3 1.7

Note: Very limited studies were identified for the residual blood volume 
in organs of calves. All data reported in the table were from the study 
of Hansard (1956) with values from 3 animals. * Please refer to Table 33 
for more details related to muscle.

TA B L E  3 1   Vascular space or volume fraction of blood (% of 
organ weight, unitless) in organs and tissues for growing swine

  Mean SD

BW (kg) 20.9 12.6

Spleen 14.6 1.9

Lungs 24.8 2.9

Liver 5.7 0.5

Kidneys 7.2 0.3

Adrenal glands 4.9 0.8

Heart 3.1 0.3

Pancreas 2.2 0.1

Loin muscle 1.5 0.4

gastrocnemius muscle 0.80 0.02

Note: Very limited studies were identified for the residual blood volume 
in organs of growing swine. All data reported in the table were from the 
study of Hansard (1956) with values from 3 animals.

TA B L E  3 2   Vascular space or volume fraction of blood (% of 
organ weight, unitless) in organs and tissues for aged swine

  Mean SD

BW (kg) 281.1 29.1

Spleen 10.0 0.1

Lungs 24.0 0.9

Liver 8.0 0.6

Kidneys 9.1 3.2

Adrenal glands 4.5 0.9

Heart 3.6 0.5

Pancreas 2.3 0.3

Loin muscle 0.91 0.01

Gastrocnemius muscle 0.8 0.1

Note: Very limited studies were identified for the residual blood volume 
in organs of aged swine. All data reported in the table were from the 
study of Hansard (1956) with values from 3 animals.
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to select between alternative values, as discussed in a previous re-
view article (Davies & Morris, 1993).

The present study fills many data gaps in the recently published 
review article on physiological parameters in cattle, swine, and 
sheep (Lautz, Dorne, et al., 2019). For example, in the study by Lautz, 
Dorne, et al. (2019), many parameter values are not available, such 

as physiological parameters in calves, blood flows in the kidney and 
reproductive organs (i.e., testes, uterus, and ovaries) in beef cattle 
and dairy cows, as well as vascular space or volume fraction of blood 
in organs (i.e., % organ weight) in cattle and swine. These parame-
ters were tabulated in the present manuscript. In Lautz, Dorne, et al. 
(2019), physiological parameter values are presented, but without 
discussion on the consistency with values reported in existing PBPK 
models. As a result, it is difficult to evaluate the validity of their pa-
rameter values. For example, the blood flows to the liver as a frac-
tion of cardiac output are 24.6% and 66.0% in beef cattle and dairy 
cattle, respectively, in Lautz, Dorne, et al. (2019). Since these two 
values are both for adult animals in the same species and the major 
difference is lactating vs. nonlactating, this large difference is hard 
to interpret biologically. This difference could be due to inter-study 
variation, but the specific reference(s) for each parameter are not 
provided and there is no discussion on the validity of the parameter 
values, it is difficult to identify the reasons. In the present study, 
the blood flows to the liver as a fraction of cardiac output are 44% 
and 58% in beef cattle and dairy cows, respectively. These values 
are consistently with the previously reported values of 40.5% for 
beef cattle (Li, Cheng, et al., 2019) and 40.5%–53% for dairy cows 
(Leavens et al., 2014; Li, Gehring, et al., 2018). Since many physio-
logical parameters were determined in studies published decades 
ago with different methods, they are of high variability. When se-
lecting physiological parameter values to use in a PBPK model, it is 
important to consider whether the parameter value is biologically 
plausible and whether it is consistent with values reported in exist-
ing literature. Overall, compared to the mini-review by Lautz, Dorne, 
et al. (2019), the present study provides a comprehensive database 
on PBPK-related physiological parameters in cattle and swine in the 
context of their potential application to food animal safety end-
points, as well as providing a detailed discussion on the validity of 
the parameter values reported.

The present summary of physiological parameter values can serve 
as a reference database for the development of new PBPK models of 
drugs and environmental chemicals in different production classes 
of cattle and swine. However, readers should be aware of several 
caveats associated with the use of default parameter values in PBPK 
models. The reported values are for healthy, unanesthetized, and 

Mean SD Number of animals Notes References

0.46 0.21 3 Longissimus dorsi 1

0.40 0.14 3 Biceps femoris  

0.38 0.23 3 Semimembranosus  

0.33 0.07 3 Semitendinosus  

0.39 0.09 3 Mean of all muscles 
measured

 

1.23 0.06 3 Loin muscle 2

0.97 0.12 3 Gastrocnemius muscle  

Note: Very limited studies were identified for the residual blood volume in muscle of calves. All 
data reported in the table were from the studies of 1. MacDougall et al. (1973) and 2. Hansard 
(1956).

TA B L E  3 3   Vascular space or volume 
fraction of blood (% of organ weight, 
unitless) in muscle for calves

TA B L E  3 4   Hematocrit (%) for adult cattle

Mean SD Number of animals
Numbers of 
studies

37.8 3.3 230 6

Note: The hematocrit value of cattle was calculated based on 6 studies 
(Braun, Camenzind, & Ossent, 2003; Doyle et al., 1960; Lawrence, 
Kenny, Earley, Crews, & McGee, 2011; Nascimento et al., 2015; Røjen et 
al., 2011; Weir et al., 1974).

TA B L E  3 5   Hematocrit (%) for calves

Mean SD Number of animals
Numbers of 
studies

33.7 4.6 81 7

Note: Final SD was calculated excluding data without reported SD 
values. The hematocrit value of calves was calculated based on 7 
studies (Bisgard, Ruiz, Grover, & Will, 1974; Fasules, Tryka, Chipman, & 
Van Devanter, 1994; Manohar et al., 1982; Reeves & Leathers, 1964a, 
1964b; Reynolds et al., 1991b; Will et al., 1978).

TA B L E  3 6   Hematocrit (%) for swine

BW (kg) Mean SD Number of animals
Numbers of 
studies

56.3 41.2 5.0 684 10

Note: The hematocrit value of swine was calculated based on 10 studies 
(Brudevold & Southern, 1994; DeGoey, Wahlstrom, & Emerick, 1971; 
Gowanlock, Mahan, Jolliff, Moeller, & Hill, 2013; Groce et al., 1973; 
Honeyfield, Froseth, & Barke, 1985; Hyun, Ellis, Curtis, & Johnson, 
2005; Russett, Krider, Cline, & Underwood, 1979; Shelton et al., 2004; 
Veum, Ledoux, Shannon, & Raboy, 2009; Weaver et al., 2013). The 
calculation of swine hematocrit in this table involved data from swine 
of all ages.



     |  411LIN et al.

resting animals. However, as reviewed by Brown et al. (1997), many 
factors can change physiological parameter values, especially organ 
blood flows. These factors include disease, physical activity, anes-
thesia, food intake, age, sex, posture, and treatment with common 
drugs, as well as unintended or unreported exposure to toxicants 
(e.g., mycotoxins in feed). For example, liver is an important organ 
for elimination of drugs that are extensively metabolized and liver 
is a commonly included organ in PBPK models. Liver dysfunction 
due to disease (e.g., cirrhosis) or exposure to chemicals (e.g., carbon 
tetrachloride) can markedly change hepatic blood flow by over a 
fourfold range from half normal flow to twice normal flow (Brown 
et al., 1997; Nies, Shand, & Wilkinson, 1976). This will greatly change 
elimination of drugs with a high hepatic extraction ratio and intrin-
sic hepatic clearance. Liver dysfunction can also change the hepatic 
metabolic capacity (e.g., decreased enzyme expression or activity) 
(Brown et al., 1997), resulting in altered metabolite to parent drug 
ratios and extended withdrawal times for different drugs in cattle 
and swine; and this effect is drug- and species-specific (Lin, Vahl, & 
Riviere, 2016).

One of the main applications of PBPK models in food animals 
is to predict extralabel withdrawal intervals of drugs, which could 
range from days to months, depending on the drug and species. 
When running a PBPK model for an extended simulation period in 
growing animals, it is important to consider age-dependent physio-
logical changes. Age-dependent increases in body weight of chickens 
have been incorporated into recently published PBPK models (Henri 
et al., 2017; Zeng et al., 2019). The present study provides growth 
curves for calves and young swine for developing PBPK models in 
growing calves and swine. Potential age- or body weight-depen-
dence of other physiological parameters was also analyzed, but due 
to limited data, only the relative heart weight was found to be signifi-
cantly associated with the body weight. The raw data are provided 
in the Supplementary Excel files. Once new data are available, fur-
ther studies are needed to determine whether other parameters are 
age-dependent.

Another potential application for the data in this report is to serve 
as a basis for the creation of virtual populations of cattle and swine 
in computer software programs or web-based interfaces for rapid 
development of PBPK models. In this regard, virtual populations in 
different species, including mice, rats, dogs, and humans have been 
incorporated into commercial PBPK modeling software programs, 

such as Simcyp (Certara USA, Inc.) and GastroPlus (Simulations Plus, 
Inc.). These software programs have been shown to be useful to 
efficiently create PBPK models for drugs in preclinical species and 
humans, facilitating drug discovery and development. Both the US 
Food and Drug Administration and European Medicines Agency 
have accepted PBPK simulation results based on virtual populations 
from Simcyp and GastroPlus (EMA, 2018; FDA, 2018). However, 
currently, neither Simcyp nor GastroPlus has included food-produc-
ing animal species in their software. To create virtual animal popu-
lations, besides physiological parameters, biochemical parameters, 
such as the expression levels and activities of different drug-me-
tabolizing enzymes in different organs (e.g., liver and intestine) are 
needed. Several studies have attempted to characterize the ontog-
eny of hepatic and intestinal P450 protein abundance and enzyme 
activity in pigs (Millecam et al., 2018; Schelstraete et al., 2019), but 
such studies are still limited in cattle, which requires further inves-
tigation. Overall, the present study serves as a critical step toward 
creating virtual populations of cattle and swine in PBPK modeling 
software programs.

In conclusion, the present manuscript provides a comprehen-
sive compilation and a reference database of physiological parame-
ter values for developing PBPK models of drugs and environmental 
chemicals in different production classes of cattle and swine. This 
study serves a methodology basis for compiling PBPK-related 
physiological parameters for other food animal species, such as 
chickens, turkeys, goats, and sheep. This study represents as a 
first step toward creating virtual populations of cattle and swine 
in computer software programs or web-based interfaces for rapid 
development and application of PBPK models in the field of an-
imal health and animal-derived food safety assessment. Reviews 
such as the present manuscript strengthen the ability to build 
PBPK models as outlined in the World Health Organization and US 
Environmental Protection Agency PBPK modeling guidelines (EPA, 
2006; WHO, 2010).
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Age BW (kg) Mean SD Number of animals
Numbers of 
studies References

Young 17.6 39.9 5.4 315 7 1–7

Growing 65.6 40.1 6.4 113 2 6, 8

Finishing 95.2 43.3 3.7 256 4 2, 8–10

Note: The hematocrit value of swine was calculated based on 10 studies including 1. Brudevold and 
Southern (1994); 2. DeGoey et al. (1971); 3. Hyun et al. (2005); 4. Russett et al. (1979); 5. Veum et 
al. (2009); 6. Groce et al. (1973); 7. Weaver et al. (2013); 8. Gowanlock et al. (2013); 9. Honeyfield et 
al. (1985); 10. Shelton et al. (2004). The values of hematocrit for swine in this table were calculated 
based on different age groups.

TA B L E  3 7   Hematocrit (%) for swine in 
different age groups
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