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A comparison of 
neuroelectrophysiology databases
Priyanka Subash1, Alex Gray1, Misque Boswell1, Samantha L. Cohen   1, Rachael Garner1, 
Sana Salehi1, Calvary Fisher1, Samuel Hobel1, Satrajit Ghosh   2, Yaroslav Halchenko   3,  
Benjamin Dichter4, Russell A. Poldrack5, Chris Markiewicz   5, Dora Hermes   6, 
Arnaud Delorme7, Scott Makeig7, Brendan Behan   8, Alana Sparks9, Stephen R Arnott10, 
Zhengjia Wang   11, John Magnotti11, Michael S. Beauchamp11, Nader Pouratian12, 
Arthur W. Toga1 & Dominique Duncan   1 ✉

As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - 
have emerged as critical components in facilitating effective data sharing and collaboration. This paper 
compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive 
for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), 
OpenNeuro, and Brain-CODE. The aim of this review is to describe archives that provide researchers 
with tools to store, share, and reanalyze both human and non-human neurophysiology data based on 
criteria that are of interest to the neuroscientific community. The Brain Imaging Data Structure (BIDS) 
and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to 
researchers by implementing a common standard. As the necessity for integrating large-scale analysis 
into data repository platforms continues to grow within the neuroscientific community, this article will 
highlight the various analytical and customizable tools developed within the chosen archives that may 
advance the field of neuroinformatics.

Introduction
Open science.  Open science aims to make research data more transparent and widely available while pro-
moting interdisciplinary partnerships that leverage findings1,2. In the United States, public health organizations, 
such as the National Institutes of Health (NIH), are funding data repositories that can serve as reliable resources 
to make data accessible. Requiring and encouraging data sharing, promoting common standards, and provid-
ing tools for analysis are the foundation of translating research findings into new knowledge, products, and 
procedures3–5.

Access to existing datasets presents many advantages, including developing new hypotheses and serving as 
a source for preliminary analyses. Further, secondary analysis (analysis of existing data to address a different 
question from the original study) is critical in novel research fields where limited data hinder the production of 
replicable results, and pooling data sets can add statistical power to an otherwise limited study. Lastly, reused 
datasets can validate previous conclusions or be repurposed to address new questions with lower cost and effort.
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Intracranial electroencephalography (iEEG) provides high temporal and spatial resolution, enabling a level 
of detail not possible using other neurodata capturing techniques. With iEEG more widely utilized in clinical 
settings and FDA approvals of deep brain stimulation (DBS) for multiple conditions in the last three decades, 
electrophysiology studies have become more critical and frequently employed in neuroscience.

Intracranial neuroelectrophysiology.  Intracranial neuroelectrophysiology data can be collected through 
electrodes placed on the cortical surface for electrocorticography (ECoG), intracortical for stereoelectroenceph-
alography (sEEG), or from deep brain stimulation (DBS) electrodes. The recordings are obtained from patients 
undergoing clinically indicated brain surgery for neurological conditions or those participating in device trials 
with FDA investigational device exemption (IDE) approval6–8. The complexity of the implantation procedures 
requires multimodal imaging data for proper placement of the electrodes, enriching the resultant datasets. The 
nature of these procedures, their high costs, and their specialized clinical requirements make these studies rela-
tively rare. In addition, electrodes are placed sparsely, covering different brain regions across patients. Therefore, 
limited sample sizes8–10 establish a need for centralized databases to make rare data types available to the larger 
community for large-scale studies.

Sharing non-human invasive neuroelectrophysiology data.  Sharing non-human data, while differ-
ent from sharing human data regarding privacy concerns, requires careful consideration of ethical factors related 
to animal welfare and research practices11. Archives hosting non-human neuroelectrophysiology datasets should 
stress adherence to animal welfare standards and ensure proper sharing permissions, with clear disclosures of any 
restrictions. Substantial documentation, including using Latin species names, should be provided to prevent data 
pooling and reanalysis mistakes.

While PRIMatE Data Exchange (PRIME-DE) (https://fcon_1000.projects.nitrc.org/indi/indiPRIME.html) 
aims to support open science in the neuroimaging community, initiatives involving protocols for sharing 
non-human neuroelectrophysiology data are still under development.

History of intracranial neuroelectrophysiology databases.  So far, there have been several signifi-
cant developments toward creating valuable databases housing neuroelectrophysiology data. Notable pioneers 
include EPILEPSIAE (http://www.epilepsiae.eu), iEEG.org (https://www.ieeg.org), EEGLAB (https://eeglab.org), 
and Collaborative Research in Computational Neuroscience (CRCNS) (https://crcns.org).

One of the early efforts to construct an electrophysiology repository was undertaken in 2012 by the Epilepsy 
Research Group at the University of Leuven (Katholieke Universiteit Leuven) in Belgium. EPILEPSIAE (Evolving 
Platform for Improving the Living Expectations of Patients Suffering from IctAl Events)12 with a repository sub-
division known as The European Epilepsy Database, was developed to provide access to expert-annotated elec-
trophysiology recordings along with metadata and imaging for 275 patients through serving as a paid resource 
for researchers, clinicians, and students.

Another early platform for data sharing and collaboration The International Epilepsy Electrophysiology 
Portal (iEEG.org), was established in 2013 by the University of Pennsylvania and the Mayo Clinic. iEEG.org rev-
olutionized the creation and curation of intracranial neurophysiologic and multimodal datasets while making 
large-scale complex analysis and customization easier for researchers13.

A different approach was undertaken by the creators of EEGLAB (https://sccn.ucsd.edu/eeglab/index.php),  
an environment for human EEG analysis developed by Swartz Center for Computer Neuroscience at the 
University of California, San Diego (UCSD) in 2004 (https://sccn.ucsd.edu). EEGLAB gathered contributions 
from programmers, tool authors, and users while providing access to 32-channel EEG recordings from 14 
patients, which later became available on the OpenNeuro platform14. In 2019, EEGLAB creators, jointly with 
OpenNeuro, built the Neuroelectromagnetic Data Archive and Tools Resource (NEMAR)15.

CRCNS was established in 2002 in collaboration with funding from the National Science Foundation and 
National Institutes of Health, with the goal of enabling concerted efforts to understand and share neurodata, 
stimuli, and analysis tools with researchers worldwide. Data available on the CRCNS platform include physio-
logical recordings from sensory and memory systems, as well as eye movement data16.

Governing bodies with neurodata sharing mandates.  The NIH brain initiative.  In the United States, 
in 2013, NIH launched the BRAIN (Brain Research Through Advancing Innovative Neurotechnologies) Initiative 
to advance neuroscience through multimodal, cross-disciplinary, and multi-institutional research, fostering a 
more integrative approach. Over $1.5 billion has been invested in investigating treatments for brain disorders 
while advancing research tools and technologies. BRAIN Initiative studies have produced a wealth of neurodata 
that can further expand our knowledge, making data archives a vital part of its efforts17.

Presently, several existing BRAIN Initiative-funded neurophysiology repositories collect data to develop new 
features and expand the size and scope of their systems while sharing broadly with the scientific community. 
These include Data Archive for the BRAIN Initiative (DABI) (https://dabi.loni.usc.edu), Distributed Archives 
for Neurophysiology Data Integration (DANDI) (https://www.dandiarchive.org), and OpenNeuro (https://
openneuro.org) with its partner analysis platform NEMAR (https://nemar.org).

Ontario brain institute.  In Canada, the Province of Ontario recognized the need to improve the diagnosis and 
treatment of brain disorders, aiming to implement a province-wide integrated approach to research. As a result, 
in 2010, it established and funded the Ontario Brain Institute (OBI) to create a patient-centered research system, 
engage the industry, and drive knowledge exchange between researchers, policymakers, and the neuroscience 
industry18. In 2012, OBI launched Brain-CODE (https://www.braincode.ca), a data-sharing informatics plat-
form, as a crucial part of its efforts to facilitate and maximize the integrative research approach.
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Each archive aims to improve public health by increasing research transparency through data accessibil-
ity, reproducibility, and inter-institutional collaboration. Data from DABI, DANDI, OpenNeuro, NEMAR, and 
Brain-CODE contributed to numerous publications19–32 demonstrating their influential impact on neuroscience 
research.

National institute of mental health (NIMH) and the national institute of mental health data archive 
(NDA).  Another repository, the NDA (https://nda.nih.gov), is managed by the NIMH for researchers to store, 
share, and access research data related to mental health. NDA aims to accelerate scientific research and discov-
ery by sharing de-identified and harmonized data across scientific domains (https://nda.nih.gov). It provides 
a secure platform for researchers to upload and store clinical, neuroimaging, and genomic data, ensuring that 
datasets are de-identified, sensitive information is encrypted, and strict access controls are in place. Not all data 
on NDA are publicly available. Some datasets require access requests and approvals by authorized individuals 
or institutions.

While NDA shares the goal of accelerating discovery through sharing and reanalyzing existing neurodata, 
it is distinct from DABI, DANDI, and OpenNeuro, which focus on neuroresearch data collected through the 
BRAIN Initiative-funded projects. Further, NDA focuses on mental health research data and has a cost associ-
ated with data deposition, which is intended to cover the maintenance and curation of the archive.

The aim of this review is to describe archives that provide researchers with tools to store, share, and reanalyze 
both human and non-human neurophysiology data based on criteria that are of interest to the neuroscientific 
community.

Methods
Governmental agencies, academic institutions, and patients engaged in research have collectively acknowledged 
the imperative of sharing scientific data. This imperative is crucial for enhancing transparency and driving 
research progress, ultimately minimizing the duplication of efforts and resource allocation. Consequently, data 
archives hold immense potential to revolutionize scientific research by establishing standardized data collection 
protocols while safeguarding data privacy, security, and long-term preservation.

Data governance is critical in well-established archive management and data asset control. It involves estab-
lishing frameworks that dictate how data are collected, stored, accessed, shared, and organized. In the context 
of data archives, data governance oversees the entire archival process, encompassing data retention policies, 
security measures, access controls, and data integrity and privacy. Additionally, it facilitates appropriate and 
controlled data sharing among relevant stakeholders.

To better appreciate the scope of neurophysiology databases and describe optimal user systems, DABI, 
DANDI, Brain-CODE, and OpenNeuro, jointly with NEMAR (Note: as NEMAR platform is an analysis partner 
to OpenNeuro archive and does not store independent data, it will be discussed only in the context of neurodata 
analysis tools), are summarized and compared to assist individuals in the scientific community who have an 
interest in sharing and accessing human and non-human neuroelectrophysiology data. Inclusion criteria for the 
selected archives include accessibility to free human and non-human iEEG data variables, integration of open 
access or controlled access sharing protocols, establishment in North America with global users, and preferred 
data archives in NIH or OBI-mandated data sharing initiatives.

Though not exhaustive, this review utilizes the following method of assessment to compare databases con-
taining intracranial recordings, focusing on criteria related to data governance frameworks:

•	 Data Standards & File Formats
•	 Data Upload Procedures
•	 Data Download, Access Protocols, and Policies
•	 Data Storage and Maintenance
•	 Analytic Tools

To assist with identifying which archive meets the needs of potential data users or data sharers, summary 
tables of features are provided at the end of each criteria discussion.

DABI.  Funded in 2018, DABI was created to facilitate and streamline the dissemination of human and 
non-human neurophysiology data, focusing on intracranial recordings. DABI emphasizes the organization and 
analysis with investigators who retain control and ownership of their datasets while fulfilling data-sharing direc-
tives. Housed at the University of Southern California Stevens Neuroimaging and Informatics Institute, DABI 
provides innovative infrastructure for interactive data visualization, processing, sharing, and collaboration among 
researchers33.

DANDI.  Funded in 2019, DANDI is a repository that accepts cellular neurophysiology and neuroimaging 
datasets termed Dandisets (https://github.com/dandisets) for both human and non-human data. The self-service 
model allows uploading, organizing, and analyzing data with tools provided by the platform, giving users greater 
control over their data; however, it requires technical expertise to use the platform effectively. Additional features 
include storage optimizations and tools, allowing investigators to collaborate outside their institutions. DANDI 
positions itself as a platform for scientists new to secondary analysis. Led by scientists from the Massachusetts 
Institute of Technology and Dartmouth College, DANDI is designed to aid in the adoption of Neurodata Without 
Borders (NWB)34, Brain Imaging Data Structure (BIDS)7, and Neuroimaging Data Model (NIDM)35. Also 
included are World Wide Web Consortium-Provenance (W3C-PROV) data, metadata, and provenance standards 
that address data harmonization challenges and promote interoperability36.
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OpenNeuro.  Funded in 2018 and led by Stanford University, OpenNeuro is one of the largest repositories 
of human and non-human neuroimaging data14. Developed from an earlier version of the platform, OpenfMRI 
(https://openfmri.org/), OpenNeuro is built around the BIDS specification to simplify file formats and folder 
structures for broad accessibility, evolving into its current ecosystem of tools and resources. OpenNeuro began 
supporting iEEG data in 2019 after the modality was incorporated into the BIDS standards (iEEG-BIDS) as an 
extension7. NEMAR is a partner to OpenNeuro for MEG, EEG, and iEEG data (MEEG) and provides additional 
MEEG tools for datasets made available for public downloads on the OpenNeuro platform, which undergo qual-
ity checks and automatic preprocessing. In addition to BIDS, NEMAR uses detailed descriptions of experimen-
tal events stored using the Hierarchical Event Descriptor (HED) system15,37. Figure 1 illustrates the iEEG-BIDS 
folder structure7.

Brain-CODE.  Launched in 2012, Brain-CODE22 is a platform that provides secure informatics-based data 
sharing, management, and integration with standards that maximize the interoperability of complex neuroscien-
tific human and non-human datasets. In addition to hosting studies that utilize iEEG and Magnetic Resonance 
Imaging (MRI) data, Brain-CODE collects and shares clinical measures, neuropsychological, omics, sensor, and 
other data types to facilitate deeper neuroscientific understanding. Brain-CODE includes processing pipelines, 
notebooks, and virtual desktops to assist with analytics. The platform further promotes academic and industry 
collaborations for research and discovery.

Results
Data standards and file formats.  A variety of neurophysiology data modalities (i.e., EEG, MEG, DBS, and 
iEEG) results in a wide range of formats and structures, leading to challenges in integrating and analyzing pooled 
data. The lack of standardization of recorded file formats complicates building large-scale datasets and requires 
file conversion. The emergence of intracranial neurophysiology databases necessitated improved standardization 
and harmonization protocols to ensure data usability and integration. DABI, DANDI, OpenNeuro, and Brain-
CODE offer nuanced solutions to address this demand.

The brain imaging data structure (BIDS).  BIDS has gained broad acceptance by the neuroimaging commu-
nity, becoming the leading standard for harmonizing imaging data. As previously mentioned, electrophysiology 
data is complex and challenging to harmonize because there are many different formats in which the recording 
devices store the (source) data. Several electrophysiology data formats are allowed in the BIDS specification. 
For EEG, these include European Data Format and its extensions (EDF/EDF + /BDF)38, Brain Vision Core Data 
Format39, and EEGLAB. iEEG additionally allows constrained NWB and MEF3 files to allow data chunking 
(NWB & MEF3), lossless compression (NWB & MEF3) and HIPAA-compliant multi-layer encryption of sensi-
tive data (MEF3). Lastly, MEG is limited to CTF, Neuromag, BTi/4D Neuroimaging, KIT/Yokogawa, KRISS, and 
Chieti file formats (Note that this is not a strict rule, as some iEEG and MEG files may contain EEG channels). 
While there are some differences in the formats across modalities, the overall structure is harmonized such that 
metadata with information about channels, electrodes, and events are stored similarly across MEG, EEG, and 
iEEG modalities.

Neurodata without borders (NWB).  NWB format is a standard that packages neurophysiology data with the 
metadata necessary for reanalysis. NWB is primarily used for cellular neurophysiology data such as extra- and 
intra-cellular electrophysiology, optical physiology, and behavior (Fig. 2). Several NWB datasets on DANDI and 
DABI contain iEEG data32, but it is not commonly used for EEG or MEG. In contrast to BIDS, which supports 
storing acquired data in domain-specific formats, NWB requires that the electrophysiology measurements be 
stored within the NWB file. Although this creates a higher barrier for data conversion, it provides increased 
standardization and enables advanced data engineering tools such as data chunking and lossless compression.

Each repository discussed here approaches data standards differently. Some archives place the burden of file 
conversions on the data providers. Others take on the task themselves or leave the harmonization protocol to the 
data users to decide and execute.

DABI.  DABI hosts a broad range of multimodal data emphasizing intracranial neurophysiology. Neurological 
diagnostic test and procedure subtypes, imaging, behavioral, demographic, and clinical variables are also stored 
on the platform. Modalities of data include iEEG, EEG, electromyography (EMG), single/multi-unit microe-
lectrode recordings, DBS, MRI, fMRI, DWI, positron emission tomography (PET), and computed tomography 
(CT). DABI accepts multiple data formats (see Table 1 for a comprehensive list) to alleviate the challenge of 
time-consuming file conversions but strongly encourages using NWB and BIDS standards when possible. The 
variety of data formats and modalities within DABI is intended to be all-encompassing and includes scripts from 
Python (https://www.python.org), MATLAB (https://www.mathworks.com), and R (https://www.r-project.org). 
Users are free to upload either raw or processed forms.

DANDI.  DANDI houses neurophysiology data, including electrophysiology, optophysiology, microscopy (e.g., 
selective plane illumination microscopy (SPIM)40), behavioral time series, and imaging data (e.g., MRI, fMRI, OCT).  
The platform requires that uploaded data adhere to established community standards and file formats. The indi-
vidual file level includes NWB for cellular neurophysiology and optical physiology and OME-Zarr implemen-
tation (https://github.com/ome/ome-zarr-py) of the Next-generation file format (NGFF)41 for microscopy (see 
Code Availability: 1). The entire dataset (Dandiset in DANDI terms) must adhere to BIDS-like lightweight file 
tree hierarchy as prepared by dandi command line tools. For cellular neurophysiology, such as electrophysiology 
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Fig. 1  iEEG-BIDS folder structure. (a) BIDS structure contains folders for each subject and one folder for 
stimuli. Within a subject folder, an /anat/ folder contains structural images alongside iEEG data. (b) _ieeg.
json file stores iEEG data containing information on acquisition systems and their parameters. (c) _channels.
tsv file stores metadata about channel-specific information, such as hardware filters or electrophysiological 
units. (d) _events.tsv TSV file contains event timing data. (e) _electrodes.tsv files store electrode coordinates. 
(f) _coordsystem.json file stores the coordinate system information. (g) Other images relevant for iEEG, such 
as surface models and 2-D images can be stored in a systematic manner. Optional folders and labels, such as the 
session folder and space- label, are mostly left out of this example.

https://doi.org/10.1038/s41597-023-02614-0
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and optical physiology, DANDI requires the NWB format. BIDS is required for neuroimaging data, encom-
passing structural MRI, fMRI, and microscopy data, while the NIDM standard is used for associated meta-
data34,35,40,41. The DANDI team is actively participating in BIDS and NWB standards developments to ensure 
that those adequately address the needs of the archive users Tables 2–5.

OpenNeuro.  OpenNeuro focuses on collecting imaging and electrophysiologic data modalities. Imaging data 
include structural MRI, fMRI, and PET. Electrophysiologic data include EEG, iEEG, and MEG. All data uploaded 
onto OpenNeuro are submitted through a BIDS-validator and must be BIDS-compliant to be included. NEMAR 
is the first open data archive to implement the Hierarchical Event Descriptor (HED) tags for data discovery and 
integration15. The HED system provides a standardized and flexible set of descriptors for experimental events in 
brain imaging or behavioral experiments and has been integrated into BIDS as a standard for describing events15,37.

Fig. 2  NWB Data Types.

Feature DABI DANDI OpenNeuro Brain-CODE

BIDS Yes Yes (imaging only) Yes Yes

NWB Yes Yes

NIDM Yes

DICOM Yes

NIfTI Yes Yes (as part of BIDS) Yes (as part of BIDS) Yes (as part of BIDS)

MATLAB Yes Yes

BrainVision Yes Yes (as part of BIDS) Yes (as part of BIDS)

EEGLAB Yes Yes (as part of BIDS) Yes (as part of BIDS)

BioSemi Yes Yes (as part of BIDS) Yes (as part of BIDS)

European Data Format (EDF) Yes Yes (as part of NWB) Yes (as part of BIDS) Yes (as part of BIDS)

Blackrock NeuroPort Yes Yes (as part of NWB)

Intan Yes Yes (as part of NWB)

JSON (for data) Yes

Non-human data Yes Yes Yes Yes

Table 1.  Data Standards and File Formats.

https://doi.org/10.1038/s41597-023-02614-0
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Brain-code.  The primary focus of Brain-CODE is to collect multidimensional neuroscience data involving all 
forms of Magnetic Resonance Imaging (MRI), ocular computed tomography (OCT), genomic next-generation 
sequencing (NGS), proteomic, and electrophysiological data, along with clinical, wearable devices, and other 
data types. Accepted file formats include tabular (e.g., csv, txt), imaging (e.g., NifTI, DICOM), molecular (e.g., 
vcf, fastq), and MATLAB files (.mat).

Brain-CODE utilizes modality-specific electronic data capture systems for collection and management. These 
include REDCap (https://www.project-redcap.org) or OpenClinica42 for clinical data, Stroke Patient Recovery 
Research Database (SPReD) – a system built on the eXtensible Neuroimaging Archive Toolkit (XNAT)43 – for 
imaging data, LabKey (https://www.labkey.com) for molecular data, and a custom-built Subject Registry for the 
secure collection of encrypted provincial health card numbers. Further, Brain-CODE provides data quality and 
processing pipelines, a central data federation system enabling cross-modality, site, and study data federation, 
data processing and analytic-driven workspaces, data query, and visual data analytics solutions.

Data upload procedures.  DABI, DANDI, OpenNeuro, and Brain-CODE employ distinctive methods for 
data upload with some overlap between platforms. The challenges of high-speed data migration are met with 
software proxies that assist in streamlining the process for smoother transitions and provide versatility to accom-
modate the needs of the providers.

DABI.  DABI offers users four options for uploading (Fig. 3).
The first is through a browser-based “DABI Web Uploader” within the DABI portal, where providers can 

directly upload data to their affiliated DABI projects. The Web Uploader option is preferred for small files (up to 

Feature DABI DANDI OpenNeuro Brain-CODE

Multiple upload options Yes Yes

Cloud linking (no upload) Yes

CLI Upload Yes Yes

Web Upload Yes Yes Yes

Table 2.  Data Upload Procedures.

Feature DABI DANDI OpenNeuro Brain-CODE

Signal Processing Analyses Yes Yes (NEMAR)

Machine Learning Analyses Yes

RAVE Yes Yes (DANDIhub)

Python Notebooks Yes Yes (DANDIhub) Yes

Multi-modal analytics Yes Yes (NEMAR) Yes

On-Cloud Analysis Yes Yes (DANDIhub) Yes (NEMAR)

Signal Processing Analyses Yes

Table 5.  Analytic Tools.

Feature DABI DANDI OpenNeuro Brain-CODE

Data Use Agreement (DUA) Yes Yes (implicit) Yes Yes

User Account Required Yes Yes Yes

Public Data Sets Available Yes Yes Yes Yes

Private Data Sets Available Yes Yes Yes Yes

Embargo Period Yes Yes Yes

CLI Download Yes Yes

Ability to download part 
of dataset Yes Yes Yes Yes

Table 3.  Data Download and Access Protocols.

Feature DABI DANDI OpenNeuro Brain-CODE

Versioned Datasets Yes Yes Yes

Federated Storage Yes

Centralized Storage Yes Yes

Table 4.  Data Storage and Maintenance.
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50GB) due to dependency on a continuous internet connection. If a session times out during a single file upload, 
the process will need to be restarted. However, should an error occur with multiple file uploads, those success-
fully uploaded up to that point will remain on the server.

The second upload option is through IBM’s file transfer client Aspera (https://www.ibm.com/products/aspera), 
installed locally. Aspera is an encrypted, HIPAA-compliant, high-speed file transfer system that is 10 to 100 times 
faster than the standard file transfer protocol and is primarily used for large, raw, or preprocessed datasets. Aspera, 
which requires a separate account, can connect to DABI servers for uploading or downloading data, granting its 
users complete control over their data and providing a safety net for timeouts during uploads by resuming from 
its last point before the cutoff.

Fig. 3  DABI Feature Architecture.
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The third alternative is the SSH File Transfer Protocol (SFTP), an upload method for large raw or preproc-
essed datasets. DABI chooses to support this method due to potential approval restrictions for new software and 
presently established SFTP protocols by several institutions.

The final option is through a HIPAA-compliant cloud-connected Box account (https://www.box.com/home), 
allowing real-time data collection. Updates will automatically sync if a provider has already uploaded data to 
Box, eliminating the need to upload through another method. Files stored in a cloud account are not transferred 
to DABI servers by default. Instead, DABI facilitates transferring files between the cloud and the user’s machine.

DANDI.  Providers utilizing DANDI can register on the portal with a GitHub account, create a new dataset, 
and, using the Python-based DANDI CLI tool, organize their collection of NWB files into a conformant file tree, 
validate adherence of metadata to standards and DANDI requirements, and then upload (Fig. 4). The upload can 
be performed using the same dandi CLI or the corresponding DANDI Python library or directly communicat-
ing with a DANDI archive server through a REST application programming interface (API). A staging instance 
of the DANDI archive can be used before uploading to the main archive for experimentation or testing of the 
automations. The DANDI Python library is also often used to automate tasks, perform data analysis, or interact 
with other software.

Once a data collection - or Dandiset - is registered, a unique identifier will be generated that can be refer-
enced to initiate any Dandiset-level metadata changes on the platform. Because DANDI requires adherence to 
standards (e.g., NWB and BIDS), uploaded data are validated for format errors. If errors are found, users must 
convert their files into the standard formats or correct coding issues when running within the CLI before suc-
cessful data deposition. DANDI provides a comprehensive online handbook, DANDI CLI documentation, and 
YouTube tutorials that outline each step of the upload process. Datasets can be “embargoed” to be made accessi-
ble only via authorization by the provider. They remain unavailable to public view, allowing researchers to solicit 
feedback before publishing findings or sharing them without concern about intellectual property disclosure. 
A dataset passing validation can be “published” as a versioned release on the archive, which is then assigned a 
datacite DOI, and guarantees future availability of this particular version of the dataset.

OpenNeuro.  OpenNeuro provides collaborators with two options for uploads. The first is similar to DANDI’s 
CLI tool, allowing partners to upload data through their in-house CLI tool. Since uploads are read through 
a BIDS-validator before data deposition, collaborators who use this method must ensure that the files are 
BIDS-compliant. The second upload option is a web interface tool similar to DABI’s Web Uploader. Within the 
OpenNeuro user interface, users select files that undergo a validation process to ensure BIDS compliance before 

Fig. 4  DANDI Feature Architecture.
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upload14 (Fig. 1). Additional constraints are placed on datasets, such as a non-empty author list when required 
to ensure that datasets are findable and citable.

Once uploaded, datasets are assigned a unique accession number and enter the “draft” state. Uploaders and 
authorized users may upload additional files through the CLI tool or the dataset’s landing page. When a dataset 
passes validation, a “snapshot” may be made, which assigns a version number and a digital object identifier (DOI) 
to that snapshot. The dataset is then in an embargoed state. When the dataset is published, either by the uploader 
or automatically after the 36-month embargo period, all versions of the dataset are made public (Fig. 5).

Brain-CODE.  Brain-CODE supports studies requiring data collection from several sites across multiple 
modalities; thus, collection workflows must provide sufficient flexibility (Fig. 6). Each modality can be collected 
independently without the platform enforcing a specific workflow. Imaging and other data can be submitted via 
a secure web browser by manual or bulk transfer into XNAT. Clinical, genomic, and other “omic” data can be 
shared through electronic data capture systems such as REDCap and LabKey. Data uploaded via data capture 
tools are ingested, processed, and merged into the central Brain-CODE Federation System daily. The data col-
lected across multiple modalities are organized using a standard participant-naming convention and undergo 
administrative and quality control processes, study tracking and monitoring dashboards, data query, and release 
and data analytics.

Fig. 5  OpenNeuro Data Uploading Process Flow.
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Data download and access protocols.  Download and access protocols for intracranial neurophysiol-
ogy data are critical to promoting data sharing and research collaboration. Protecting data and authentication 
information as it travels through networks or between servers is paramount to preserving data integrity on each 
platform. DABI, DANDI, OpenNeuro, and Brain-CODE data are subject to specific protocols that reflect each 
platform’s high usability standards.

DABI.  DABI download procedures require all users to create an account and sign a DABI Data Use Agreement 
(DUA). This allows them to download the data directly from DABI if a data owner’s project is listed as public. 
For private datasets, access must be granted by the data owners, sometimes requiring additional institutional 
DUAs with terms particular to each dataset. DABI’s provider portal facilitates communication between users 
requesting data access and data providers. For a more granular approach to securing data, owners can control 
access to individual subject data or files by creating subprojects with specific sharing parameters.

DANDI.  DANDI allows users to download public datasets via five methods without creating an account 
(access to embargoed data requires an account and permission for a given dataset).

The first is through the DANDI web application. Once data users have identified a Dandiset of interest, they 
can navigate to the associated Files icon, visualize the data like a directory tree, and download any files. This 
method is convenient for inexperienced users needing to download only a few files.

The second, more flexible method utilizes the Python library and provides a CLI. Data users must first down-
load the Python client and then download the Dandiset (single files, a set of files, a single subject, or the entire 
Dandiset) using DANDI CLI or Python API within the Python environment. The CLI tool is the default recom-
mended method for a typical user to download data.

The third method uses DataLad44, an open-source git (https://git-scm.com/book/en/v2/
Git-Basics-Getting-a-Git-Repository) and git-annex (https://git-annex.branchable.com/) based tool for flexible 
data management with CLI and Python interfaces. Like OpenNeuro, DANDI exposes all Dandisets as versioned 
DataLad datasets from GitHub, allowing users to view an entire DataLad set without downloading any data in 
their local file system and permitting them to download specific files and folders that fulfill their needs.

Moreover, using the modularity principle of git submodules, such DANDI DataLad datasets could be com-
bined within larger study datasets and accompanied by computational environment containers to facilitate 
reproducible computation and collaboration. This method is recommended for users aspiring to keep all of 
their data under version control and often provides a more convenient approach for navigation and selective 
downloads within datasets.

The fourth method uses an API server directly where every file can be downloaded via simple REST API. 
This method is recommended for non-Python (e.g., MATLAB) developers to provide integrated solutions with 
the DANDI archive (https://api.dandiarchive.org).

And finally, it is possible to access data directly on the underlying S3 bucket using AWS (https://aws.ama-
zon.com) tools or the HTTP protocol. For every Dandiset version, DANDI provides dumps of listings of 
assets. Direct access via HTTP to the S3 bucket allows on-demand data access using Range requests, e.g., as 

Fig. 6  Brain-CODE Feature Architecture.
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implemented in fsspec and ROS3 driver for HDF5. This method is recommended for efficient remote access to 
metadata and data within NWB files, OME-Zarr file sets, and archival.

OpenNeuro.  Four download mechanisms are available to OpenNeuro users: the web interface, the OpenNeuro 
CLI, DataLad, and the Amazon S3 client. The web interface is available to any user with permission to view the 
dataset, including users without accounts in the case of public datasets; through this interface, the whole dataset 
or individual files may be downloaded from any accessible version. Dataset owners may download data from 
unpublished drafts. The OpenNeuro CLI requires logging in with an API token. Versioned or draft datasets 
that the user has access to may be downloaded through this mechanism. This mechanism supports resuming 
interrupted downloads in case of large datasets and unstable connections. OpenNeuro publishes mirrors of 
its public datasets to the OpenNeuro Datasets organization on GitHub, providing public DataLad access to 
the full version history up to the latest snapshot. In addition, dataset owners have read/write DataLad access 
to datasets through private URLs that require API tokens, which further provide access to draft or embargoed 
data (see Code Availability: 2). The Amazon AWS client may be used to download the latest version of a public 
dataset. Once an EEG, MEG, or iEEG dataset is made public on OpenNeuro, within 24 hours, its clone auto-
matically appears on NEMAR. Unlike OpenNeuro, its partner archive, NEMAR, offers only full-archive ZIP file 
downloads, allowing users to bypass OpenNeuro’s Amazon cloud server and achieve significantly faster speeds 
through transfers from the San Diego Supercomputer Center15.

Like DANDI, OpenNeuro utilizes the open-source command line tool DataLad to manage, organize, and 
share research data to facilitate reproducibility and collaboration. DataLad uses a distributed version control 
system (Git) as the underlying technology, allowing researchers to track their data over time and collaborate 
with others by sharing and merging changes. DataLad also provides tools for managing metadata and software. 
One of the most appealing features is its ability to manage data dependencies. Researchers can specify the data 
required for analysis and automatically retrieve the sets from remote locations, including data repositories or 
datasets created by other researchers with DataLad.

Brain-CODE.  Brain-CODE requires all users to create an account prior to requesting datasets through their 
platform, which provides access to data via a tiered 3-zone process.

Zone 1 holds raw data supplied to OBI by affiliated providers. Data funneled into Zone 1 may contain per-
sonal identifiers and is considered “raw” until de-identified. It is primarily accessible to the providers, who must 
ensure that it aligns with the Research Ethics Board (REB) protocols. De-identified data can be shared with 
external collaborators through a Data Use Agreement (DUA) with appropriate REB approvals. Zone 2 focuses 
on long-term data storage of de-identified data with public and controlled access options for third parties. Since 
the datasets have already been integrated in Zone 1 with the Brain-CODE federation system, metadata is availa-
ble to external researchers and can be queried via Data Request Portal dashboards. Data are disclosed to external 
researchers in Zone 3 in alignment with their data access request and data use agreement.

There are two access mechanisms in Zone 3: Public and Controlled Access. Users can immediately down-
load the data if they submit a Public data access request. Controlled access requests are more nuanced and 
require OBI and its Data Access Committee’s review to ensure compliance with the Brain-CODE Informatics 
Governance Policy, applicable laws and guidelines. Once the user’s access is approved, the data can then be 
analyzed within Brain-CODE Workspace or downloaded locally, following the completion of a Data Transfer 
Agreement45.

Secure data protocols afforded by each archive’s role-based (RBAC) or attribute-based (ABAC) access con-
trols give data providers authority over users’ access and download permissions. OpenNeuro and DANDI permit 
data variables to be publicly available immediately or after a 36-month grace period. DABI enables data owners 
to publicize full or partial datasets at their discretion, offering a granular data-control approach. Brain-CODE 
institutes a three-tiered zoning framework for data access and, like DABI, creates strict access protocols that 
enable greater control by data owners.

Data storage and maintenance.  As datasets continue to grow, the roles of storage and management 
become increasingly important for security, operation, and compliance needs, which necessitate multiprotocol 
strategies. Information technology (IT) administrators at DABI, DANDI, OpenNeuro, and Brain-CODE apply 
methods that aim to improve performance and recovery, protect against data loss, avert human error, and thwart 
data breaches or system failures.

To ensure patient protection, DANDI, DABI, and OpenNeuro follow the National Institutes of Health (NIH) 
BRAIN Initiative and the NIH Office of Science Policy’s (OSP) guidelines for patient privacy.

Privacy and confidentiality of research participants are protected by requiring that any data collected dur-
ing a study is subject to appropriate security measures, such as encryption and access controls. The data must 
be de-identified to remove any information that could be used to link them back to a specific individual. Each 
archive provides stringent measures to ensure policy compliance and protect patients from privacy violations 
(Note: These policies are more applicable for U.S.-based platforms vs. Canadian Brain-CODE).

DABI.  DABI permits data providers to choose from three storage options: centralized, federated, and 
cloud-based. Under the centralized model, data are housed at the University of Southern California 
Neuroimaging and Informatics Institute – this is the most prevalent method. The federated model permits 
local storage at the owner’s affiliated institution. Under a cloud-based model, users with access permissions can 
securely communicate with the cloud provider via DABI’s central server-cached memory. Under this model, no 
data are ever written to the DABI disks. Box is the only presently supported cloud service offered by DABI. DABI 
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data maintenance includes manual and automated quality checks as well as performance monitoring to identify 
bottlenecks, slow-loading pages, or other performance-related issues.

DANDI.  DANDI harnesses Amazon Web Services (AWS) S3 cloud-based storage services to store public 
or embargoed Dandisets. Data are maintained through the DANDI web interface and accessible via DataLad. 
Owners can edit, view, share, and publish their Dandisets directly through the DANDI website, maintaining full 
ownership of their data throughout the collaboration (Fig. 5). The publishing process generates a DOI for each 
dataset. Owners can extend the Dandiset with new files by releasing its multiple versions.

OpenNeuro.  OpenNeuro stores and manages all data through the Google Cloud Platform, with access via the 
OpenNeuro web interface, CLI tool, and DataLad. Partners maintain data through the OpenNeuro web server to 
ensure long-term data security14. On publication, dataset contents are pushed to Amazon S3, and the meta-data 
is mirrored to GitHub for full public access.

Brain-CODE.  Data hosted by Brain-CODE are stored on high-performance computing nodes at the Centre 
for Advanced Computing (CAC) at Queen’s University in Kingston, Ontario, Canada. Data are federated via 
standard participant IDs providing a better overall data management structure and can be mapped to encrypted 
provincial health card numbers. The Brain-CODE Subject Registry sub-system encrypts the health card number 
within the data provider’s web browser. The original value (i.e., health card number) of the health card never 
leaves the research site.

Instead, sensitive information is encrypted using a homomorphic algorithm and transmitted and stored in 
the Subject Registry. Subsequently, encrypted health card numbers link study data to external databases, such as 
one holding provincial health administrative data. For data maintenance, study teams are provided with man-
agement tools that can be accessed through the web interface to upload new data to an existing project and make 
edits or changes to existing datasets.

Analytic tools.  Analytic tools for neurophysiology archives are valuable and convenient resources that ena-
ble server-based data analysis, preserve computational resources, and save significant time. While some plat-
forms employ more intricate on-site analysis tools, others may prefer to limit or outsource these functions. With 
researchers having outside access to a broad collection of analysis software, providing the options already availa-
ble externally may be expensive and complex, especially considering the broad range of research and the number 
of data modalities. Some tools and environments, such as Jupyter that have been adopted by the neuroimaging 
community are more cumbersome to employ with electrophysiology data as they are not designed for processing 
and analyzing high-frequency electrophysiology signals and are not well optimized for processing large amounts 
of data from multiple electrodes simultaneously (see Code Availability: 3). Still, accessing tools and running 
analysis software on the archives’ servers without downloading large datasets is an appealing option to many 
researchers who value time and efficiency.

DABI.  DABI is working on enhancing in-house analytical tools that allow in-depth analysis of the reposito-
ry’s neurophysiology data. The integration of data analysis tools on DABI is still evolving, with plans to offer a 
comprehensive, user-friendly pipeline that provides users with server space for complex analyses. The cohort 
feature on DABI will allow data exploration and aggregation for seamless cross-study and cross-modality cohort 
building. The pipeline tool will include code and no-code workflow interfaces for processing, analysis, and vis-
ualization of MRI and electrophysiology data to accommodate a spectrum of users from novice to advanced. 
Further, pipeline workflows and preprocessing parameters are designed for sharing with others and saving for 
subsequent analyses.

DABI features will also include The Jupyter Notebook Library, enabling users to create custom notebooks for 
comprehensive data analysis. Jupyter and DABI plan to construct a public library where users can communally 
pool their notebooks and search for notebooks created by others.

DABI partners with RAVE: Reproducible Analysis and Visualization of Intracranial EEG Data46, a compre-
hensive package that provides an easy-to-use software platform for all steps of iEEG analysis, from electrode 
localization to sophisticated statistical analysis of group data (https://openwetware.org/wiki/RAVE:Install). 
RAVE was designed with a client-server architecture so resource-heavy tasks (such as storing and analyzing 
terabytes of iEEG data) can occur in the cloud. In contrast, visualization of analysis results (such as interactive 
manipulation and inspection of iEEG data using a 3-D cortical surface model) occurs locally for a satisfying user 
experience. Upcoming plans for DABI include pipelines for automated analysis once the appropriate parameters 
have been determined. Future development of RAVE is focused on easy upload, download, and analysis of data 
in archives, including DABI, DANDI, and OpenNeuro.

DANDI.  DANDI provides a Jupyter environment named DandiHub for users to interact with the data. While 
using DandiHub, a researcher can perform many kinds of analyses and visualize data; it is not intended for 
significant computation. Presently, each user is restricted to 48 cores and 96GB of RAM or a machine with a T4 
GPU. For additional resources, a researcher can use their own AWS account to extend the compute resources. 
DANDI web UI integrates with several external services (e.g., MetaCell NWB explorer34, BioImagSuite/Viewer47, 
itk/vtk viewer (see Code Availability: 4–6) for viewing individual files and/or performing analytics.

OpenNeuro.  Conversely, OpenNeuro does not house analysis tools; however, it partners with external pro-
viders for analytics, which act as intermediaries. To perform large-scale analyses, users can process public data 
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through independent platforms, including BrainLife.io (https://brainlife.io/about) and NEMAR.org. NEMAR 
allows searching OpenNeuro’s dataset metadata to aid data selection; researchers can view a range of data statis-
tics, measures, and transforms. Once the data are selected, users can download pointers to the selected datasets 
that can be included in scripts uploaded to the Neuroscience Gateway for no-cost processing. Users in various 
neuroscience computing environments can build NSG data analysis scripts. Importantly, NEMAR academic 
users, in particular, can use a tight integration via its Neuroscience Gateway (NSG) portal48 plug-in by starting 
Python or MATLAB scripts on the Expanse supercomputer that directly interface NEMAR-stored BIDS datasets 
on the same back end15.

Brain-CODE.  Brain-CODE offers access to secure customizable computing workspaces for analysis with tools 
such as RStudio (https://www.rstudio.com) and Jupyter Notebooks49, among others. Researchers also can imple-
ment their software licenses in Brain-CODE workspaces; as a result, key licensed tools such as MATLAB, SAS50, 
and SPSS51 can be installed in a remote desktop workspace environment on either Linux or Windows operating 
systems. Data can be extracted from source data capture tools or the federation system and provided to research 
teams in approved project-specific workspaces. Researchers can request computing resources as their needs 
change.

Discussion
Conclusion.  Public health organizations strive to improve neuroscience research by encouraging data sharing 
to promote secondary analyses and the translation of research outputs into new information, products, and pro-
cedures. As a result, NIH has created specific Requests for Applications (RFAs) to support and promote secondary 
analysis of existing datasets. United States’ DABI, DANDI, OpenNeuro, NEMAR, and Canadian Brain-CODE are 
government-funded projects based in North America that facilitate data sharing within the scientific community. 
Each of the archives implements different data governance strategies and frameworks to build a platform that 
addresses the needs of its providers and users.

DABI took on the challenge of providing the broadest range of analysis tools, while OpenNeuro has elected 
to employ an independent analysis platform on its partner archive, NEMAR. solutions carry merits and appeal 
to researchers. Those who prefer to complete their analyses on the cloud and do not feel limited by the selection 
of tools will find DABI useful, and those who prefer to use highly specialized tools or machine-learning environ-
ments may select other platforms to conduct the analyses. The cost of maintaining and developing data analysis 
tools and software licensing permissions is an important consideration for the repositories, who need to weigh 
the frequency of use against the financial investment. Ultimately, while significant resources are necessary to 
address the challenges of advanced data analytics, the investment is well worth the effort, given the productivity 
gains and possible experimental breakthroughs downstream.

The first step of the preprocessing pipeline involves harmonization protocols to ensure dataset usability. 
However, harmonizing neuroelectrophysiology data remains a significant challenge, potentially hindering sec-
ondary analysis. Unstructured (unstandardized) files have limitations in pooling, preprocessing, and analysis, 
which restricts the research potential of these datasets.

Some archives strictly adhere to standardization protocols, while others offer more flexibility in accepted data 
formats. Data standards make harmonization less challenging but may limit the amount of collected data. On 
the other hand, accepting a broader range of formats creates a harmonization hurdle. One solution is to accept 
formats that can be converted into multiple acceptable data structures (e.g., BIDS or NWB). While indiscrim-
inate acceptance reduces time-consuming conversions by providers, it leaves the harmonization task to users.

Another topic of consideration is the potential introduction of batch effects when harmonizing and pooling 
data. While easily correctable, it is vital to consider when working with large and diverse datasets.

Requiring the BIDS and NWB standards allows the archives to have uniform data ready for secondary 
analysis. Structured data promote a consistent approach to data annotation, sharing, and storage and increase 
the reproducibility of results. Standardized naming conventions and file structures facilitate interoperability 
between software platforms and simplify analysis. Additionally, standards ensure that the data are available and 
accessible, even if the original researcher or institution no longer maintains the datasets.

A further obstacle to successful data sharing and secondary analysis is the limited guideline on data sharing 
protocols. Many researchers elect to keep their datasets or metadata private, while others upload incomplete 
sets, hindering the reanalysis efforts. Some repositories allow data owners to upload agreements that require 
co-authorship considerations, provide guidelines on crediting the sets, and outline stipulations before releasing 
the data. BRAIN Initiative’s guidelines for data sharing have continued to improve by adapting to the needs of 
the data providers and users, removing ambiguity, and offering a policy that can be uniformly implemented to 
enhance data sharing in this field further.

In Canada, OBI mandates that all Integrated Discovery (ID) Programs it funds provide data to Brain-CODE 
to foster collaboration and data sharing. Therefore, OBI’s policy on data sharing states that the data produced 
through its funding should be accessible with minimal constraints in a responsible and timely manner52.

Data redundancy, interoperability, performance optimization, maintenance and support, safeguarding 
against data loss, and comprehensive documentation enhance user navigation and help developers maintain 
and improve the system, which is fundamental to success. The importance of robust security mechanisms and a 
design conducive to growth complements these efforts.

Future directions.  This review aims to reflect the value and promise of neurophysiology platforms aggregat-
ing intracranial and imaging neurodata by highlighting their limitless benefits for the neuroinformatics commu-
nity. Defining characteristics within and between DABI, DANDI, OpenNeuro, NEMAR, and Brain-CODE equip 
data users and owners with unique tools to better investigate, share, and analyze data.
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One of the NIH BRAIN Initiative and OBI’s objectives is to expand research through electrophysiology 
data sharing and secondary analysis, a model that has been exceptionally successful in other areas of research, 
including genomics and imaging neuroscience, where projects such as NIH-funded Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) have led to significant findings that resulted in new treatment protocols53,54.

To further enhance the utility and impact of these platforms, several constraints should be considered when 
thinking about the future directions of data archives.

Standardization Efforts.  While harmonization models may be crucial in the current landscape, they rely on 
post-collection processing, which can introduce potential distortions in the data. Establishing standardized data 
and behavioral task collection protocols between all archives should be the first step in this effort. Furthermore, 
limiting the number of possible file formats or proposing a universal format would eliminate the need for file 
harmonization. Implementing BIDS or NWB would solve the need for conventional file naming and organiza-
tion. Lastly, developing tools that can aid conversion to a shared standard with limited input from researchers 
would reduce the time devoted to this effort.

Overall, the implementation and utilization of standardized protocols ensure uniformity in data collection, 
management, and analysis, reducing the need for extensive harmonization efforts. In addition, these protocols 
minimize variability and allow for data comparability across studies, fostering more robust and reliable inte-
grative analyses. Standardization also aids in enhancing reproducibility and data sharing across platforms and 
databases.

Analysis.  Developing reliable, cloud-based, collaborative, and accessible analysis platforms is essential to pre-
serve researchers’ time and computational resources. Such platforms would provide a valuable incentive for 
researchers to engage in secondary analyses, fostering scientific progress and collaboration.

Further, embracing the potential of artificial intelligence (AI) and machine learning (ML) technologies can 
significantly enhance data analysis and interpretation. Future directions should explore integrating AI and ML 
algorithms into neurophysiology platforms to automate data processing, identify patterns, and generate valuable 
insights.

Additionally, enhancing data visualization tools can aid researchers in more effective neurophysiological data 
analysis. The development of interactive and intuitive data visualization techniques can facilitate the interpre-
tation of findings.

Interoperability.  Investing in developing standardized data collection protocols and models that allow for 
interoperability of neurophysiology databases will facilitate large-scale integrated analytics without the need for 
extensive harmonization.

By promoting interoperability, neurophysiology platforms can facilitate cross-platform collaboration where 
researchers can share data, pool resources, and join projects, leading to more comprehensive studies with a 
broader impact.

Interoperability can enable the development of machine learning and artificial intelligence applications that 
simultaneously analyze data from multiple sources. AI-driven approaches can reveal complex patterns and asso-
ciations that may not be apparent when analyzing data in isolation.

Furthermore, interoperability can be particularly valuable for longitudinal studies, where data must be col-
lected and analyzed consistently. By promoting standardized data protocols across platforms, longitudinal stud-
ies would maintain data validity and reliability.

Policy.  Continued efforts in developing and enforcing data-sharing policies are crucial to ensure compliance 
from both data owners and users. Stricter guidelines can uphold and reinforce ethical data sharing and reuse 
practices, cultivating a responsible and ethical scientific environment.

As data sharing becomes more prevalent, ensuring robust data privacy and security measures is crucial. 
Future directions should prioritize developing and implementing stringent data protection protocols to safe-
guard sensitive information and maintain the trust of data owners and participants.

Long-term data sustainability.  To preserve neurophysiology data for further research, long-term sustainability 
and accessibility of data archives are critical. Implementing strategies for data curation, preservation, and con-
tinuous maintenance will enable access to valuable data for future investigations.

Data archives improve how researchers across the scientific community can aggregate, analyze, and share 
multimodal data that contribute research to evidence-based medicine. Implementing these platforms per-
mits large-scale experiments, ensures the reproducibility of findings, and enhances machine learning tools. 
Consequently, discovering new diagnostics and therapeutics that can be translated into patient care becomes a 
more realistic expectation and improves overall population health outcomes.

Data availability
Publicly available datasets stored on each of the repositories discussed can be downloaded from:

DABI: https://dabi.loni.usc.edu/search
DANDI: https://dandiarchive.org/dandiset
OpenNeuro: https://openneuro.org
NEMAR: https://nemar.org/dataexplorer
Brain-CODE: https://www.braincode.ca/content/open-data-releases
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Code availability
Notes about software discussed in the paper

1. �Note that DANDI utilizes the OMERO-Zarr, a software package for efficient storage and retrieval of large 
microscopy datasets.

2. �Note that DataLad datasets are standard git/git-annex repositories, and these tools may be used directly in cases 
where the DataLad tool is not desired or available.

3. �While Jupyter alone is not optimal for use with electrophysiology data, it can be used with other Python librar-
ies such as MNE-Python to load, preprocess, and plot example EEG data in a Jupyter notebook through vscode.

4. For NWB explorer, see http://nwbexplorer.opensourcebrain.org/ for more information.
5. For BioImageSuite/Viewer, see https://bioimagesuiteweb.github.io/webapp/viewer.html for more information.
6. For itk/vtk viewer, see https://kitware.github.io/itk-vtk-viewer/docs/ for more information.
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