UCLA

UCLA Electronic Theses and Dissertations

Title

Embedded Scientific Computing: A Scalable, Interoperable and Reproducible Approach to
Statistical Software for Data-Driven Business and Open Science

Permalink
https://escholarship.org/uc/item/496105rw
Author

Ooms, Jeroen

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4q6105rw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Embedded Scientific Computing: A Scalable,

Interoperable and Reproducible Approach to

Statistical Software for Data-Driven Business
and Open Science

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Statistics
by

Jeroen Ooms

2014

(© Copyright by
Jeroen Ooms

2014

ABSTRACT OF THE DISSERTATION

Embedded Scientific Computing: A Scalable,

Interoperable and Reproducible Approach to

Statistical Software for Data-Driven Business
and Open Science

by

Jeroen Ooms
Doctor of Philosophy in Statistics
University of California, Los Angeles, 2014
Professor Frederick Paik Schoenberg, Co-chair

Professor Mark Hansen, Co-chair

Methods for scientific computing are traditionally implemented in specialized soft-
ware packages assisting the statistician in all facets of the data analysis process. A
single product typically includes a wealth of functionality to interactively manage,
explore and analyze data, and often much more. However, increasingly many users
and organizations wish to integrate statistical computing into third party software.
Rather than working in a specialized statistical environment, methods to analyze
and visualize data get incorporated into pipelines, web applications and big data
infrastructures. This way of doing data analysis requires a different approach
to statistical software which emphasizes interoperability and programmable in-
terfaces rather than user interaction. We refer to this branch of computing as

embedded scientific computing.

i

The dissertation of Jeroen Ooms is approved.

Sanjog Misra

Mark Handcock

Jan de Leeuw

Mark Hansen, Committee Co-chair

Frederick Paik Schoenberg, Committee Co-chair

University of California, Los Angeles

2014

11

To Elizabeth,
for making me feel at home,

far away from home.

v

TABLE OF CONTENTS

1 The Changing Role of Statisticians and their Software 1
1 Theriseof data 1
1.1 Current developments 3

1.2 Integration and interoperability 7

2 Motivation and scope 9
2.1 Definition o 10

2.2 Overview 12

2.3 About R 15

2 The OpenCPU System: Towards a Universal Interface for Scien-

tific Computing through Separation of Concerns 20
1 Introduction 20
1.1 Separation of concerns 22

1.2 The OpenCPU system 23

1.3 History of OpenCPU 24

2 Practices and domain logic of scientific computing 25
2.1 It starts with data 26

2.2 Functional programming 27

2.3 Graphics 28

2.4 Numeric properties and missing values 29

2.5 Non deterministic and unpredictable behavior 31

2.6 Managing experimental software 32

2.7 Interactivity and error handling 33

2.8 Security and resource control 34

2.9 Reproducible research 36
The state problem L0 37
3.1 Stateless solutions: predefined scripts 38
3.2 Stateful solution: client side process management 40
3.3 A hybrid solution: functional state 41
The OpenCPU HTTP APL. 42
4.1 About HTTP 43
4.2 Resource typeso 44
4.3 Methods 48
4.4 Status codes 49
4.5 Content-types 49
4.6 URLs 49
4.7 RPCrequests 50
4.8 Arguments 51
4.9 Privacy o ol

3 The RAppArmor Package: Enforcing Security Policies in R Using

Dynamic Sandboxing on Linux 64
1 Security in R: introduction and motivation 64

1.1 Security when using contributed code 65

1.2 Sandboxing the R environment 66

2 Use cases and concerns of sandboxing R 67
2.1 System privileges and hardware resources 70

3 Various approaches of confining R 73

vi

3.1 Application level security: predefined services 74

3.2 Sanitizing code by blacklisting 7

3.3 Sandboxing on the level of the operating system 78

4 The RAppArmor package 79
4.1 AppArmor profileso oo 81

4.2 Automatic installationo 0L 82

4.3 Manual installationo 83

4.4 Linux security methods 84

4.5 Setting user and group IDo 84

4.6 Setting Task Priority 86

4.7 Linux Resource Limits (RLIMIT) 87

4.8 Activating AppArmor profileso 89

4.9 AppArmor without RAppArmor 92

4.10 Learning using complain mode 93

5 Profiling R: defining security policies 94
5.1 AppArmor policy configuration syntax 95

5.2 Profile: r-base 96

5.3 Profile: r-compile 98

5.4 Profile: r-user 98

5.5 Installing packages L. 99

6 Concluding remarks 100
A Example profiles L 102
1 Profile: r-baseo 102
2 Profile: r-compile Lo 103

Vil

3 Profile: r-user 104
B Security unit testso 105
1 Access system fileso 105
2 Access personal files 105
3 Limiting memory oo 106
4 Limiting CPU time 107
5 Forkbomb 108

3 The jsonlite Package: A Practical and Consistent Mapping Be-

tween JSON Data and R Objects 114
1 Introduction 114
1.1 Parsing and typesafety 115

1.2 Reference implementation: the jsonlite package 117

1.3 Class-based versus type-based encoding 118

1.4 Scope and limitations 119

2 Converting between JSON and R classes 120
2.1 Atomic vectors L 120

2.2 Matrices 125

2.3 Lists o . 130

2.4 Data frame 133

3 Structural consistency and type safety in dynamic data 143
3.1 Classes, typesand data 143

3.2 Rule 1: Fixed keys 144

3.3 Rule 2: Consistent types 147

viil

4 Possible Directions for Improving Dependency Versioning in R 152

1

Package managementin R 152
1.1 The dependency network 153
1.2 Package versioning oo 154
Usecases o 155
2.1 Case 1: Archive / repository maintenance 156
2.2 Case 2: Reproducibility 158
2.3 Case 3: Production applications 160
Solution 1: staged distributions 161
3.1 The release cycle oL 162
3.2 R: downstream staging and repackaging 163
3.3 Branching and staging in CRAN itself 164
3.4 Organizational change 166
Solution 2: versioned package management 167
4.1 Node.jsand NPM 167
4.2 Dependencies in NPM 168
4.3 BacktoR o 170
SUMMATY o o oo e e 172

1X

ACKNOWLEDGMENTS

This research would not have been possible without the help of many people.
I would like to thank my adviser Mark Hansen and other committee members
Jan de Leeuw, Deborah Estrin, Mark Handcock, Rick Schoenberg and Sanjog
Misra for giving me the confidence, support and liberty to pursue this somewhat
unconventional interdisciplinary research. Their blessing and advice provided the
perfect balance between guidance and creative freedom that allowed me to get
the most out ouf my doctoral research. I thank Jan specifically for welcoming
me at UCLA and personally making my California adventure possible. I am
also grateful to my colleagues at Mobilize and OpenMHealth. Collaborating with
these professional software developers was a big inspiration to my research and I
thoroughly enjoy working with each of the individual team members. Elizabeth
Torres has been very helpful with reviewing drafts of this thesis and contributed
numerous suggestions for improvement. Finally a warm hug goes to our student
affairs officer Glenda Jones for going above and beyond her duties to take care of

the statistics students at UCLA.

Then there are the countless members of the R community that generously pro-
vided valuable support, advice, feedback and criticism. In particular, much of
the initial research builds on pioneering work and advice from Jeffrey Horner.
Expertise from Dirk Eddelbuettel and Michael Rutter provided important foun-
dations for developing software systems with R on Debian and Ubuntu systems.
The RStudio folks, including Hadley Wickham, JJ Allaire, Joe Cheng and Yihui
Xie have given lots of helpful technical support. Finally I would like to thank the
many individuals and organizations that adopted the OpenCPU software, especially
in the early stages. By investing their time and energy in my work they were an

important source of feedback and motivation to keep improving the software.

2007
2008 — 2009
2009
2009
2009 — 2010
2010 — 2014
2010 - 2014
2010 - 2014
2013
2014

ViTA

B.S. (Major: Psychology. Minors: Artificial Intelligence, Man-

agement and Organization), Utrecht University.

Teaching Assistant for Joop Hox and Edith de Leeuw, upper

division statistics, University College Utrecht.

M.S. (Methodology and Statistics for Social and Behavioral Sci-

ences), Cum Laude, Utrecht University.

Teaching Assistant for Henk Kelderman, Upper division psy-

chometrics, VU University Amsterdam.

Visiting Scholar, UCLA Department of Statistics.

Graduate Student Researcher, software development of embed-
ded vizualisation in Ohmage software system, UCLA Center for

Embedded Networked Sensing.

Co-organizer of Los Angeles R User Group.

Self-employed, development and consulting in statistical soft-

ware for numerous organizations.

Visiting Scholar, consult and teach data journalism, Columbia

School of Journalism.

Organizing committee of the international useR! 2014 confer-

ence, Los Angeles

X1

CHAPTER 1

The Changing Role of Statisticians and their

Software

1 The rise of data

The field of computational statistics finds itself in a transition that is bringing
tremendous opportunities but also challenging some of its foundations. Histori-
cally, statistics has been an important early application of computer science, with
numerical methods for analyzing data dating back to the 1960s. The discipline
has evolved largely on its own terms and has a proud history with pioneers such
as John Tukey using some of the first programmable machines at Bell Labs for
exploratory data analysis (Brillinger, 2002). Well known techniques such as the
Cooley-Tukey FFT algorithm (Cooley and Tukey, 1965) and the boz-plot (Tukey,
1977) as well as computer terminology such as bit and software were conceived
at this time. These visionary contributions to the process of computing on data
laid the foundations for current practices in data analysis. Computer programs
developed at Bell Labs in the 1970s and 1980s, such as UNIX (Ritchie and Thomp-
son, 1974) and S (Becker and Chambers, 1984; Becker et al., 1988) have strongly
influenced statistical software as we know it today. In fact, the R environment (R
Core Team, 2014a), which features prominently in this thesis, is often dubbed the
lingua franca of statistics and is a direct ancestor of the S language as originally
proposed by John Chambers. In the traditions of Tukey and Bell Labs, the field

has made remarkable progress over the past few decades. Specifically the S lan-

guage has, to quote the Association for Computing Machinery, “forever altered
how people analyze, visualize, and manipulate data” (ACM, 1998). Largely due
to the availability of statistical software, data analysis has become the de facto
method of empirical sciences, an integral part of academic curricula, and plays an

increasingly prominent role in modern society.

However, half a century after Tukey first demonstrated how to compute the Fourier
transform on a machine, big changes are on the horizon. Modern society has put
data at the frontier for innovation and productivity, presenting problems of a
unprecedented scale and complexity (Manyika et al., 2011). Developments in
computer technology and scientific practices ask for more flexible and scalable
analysis tools. At the same time, fast growing adjacent fields such as artificial in-
telligence, software engineering and graphic design are increasingly touching and
overlapping with statistics. The combination and interaction of these factors is
blurring the borders of traditional disciplines. Techniques for collection, man-
agement, and analysis of data have started to melt into a hybrid field of data.
This joint discipline is enormous, which leads to the emergence of many new sub-
disciplines based on domain knowledge and technical expertise. A proliferation
of short-lived ideas, paradigms, vocabulary, software, and business models has
accompanied this tumultuous transition phase. The upcoming years will likely be
decisive in determining where this transition converges, who takes the lead, and

which branches are destined to become extinct.

It is in the interest of both the statistician and the scientific community that
the statistical tradition and theoretical foundations do not get diluted in this
transition. The experience and understanding of learning from data that exists
in the literature and minds of the statistical community harbors unique value.
Statistical principles are strongly rooted in probability theory and methods that
have evolved over the years are best of breed and proven to be effective. Only

statisticians truly master the fine art of carefully exploring and testing data in

order to unveil relations, patterns, and stories hidden behind the numbers. This
holistic approach of studying each individual dataset in all its facets is not very well
understood by any other community. Moreover, the infrastructure and expertise in
research and development of statistical methods will become only more valuable
as the field expands. This wisdom and maturity provides the credentials for a
leading role in the new era of data. Our discipline enjoys great respect from
other fields and we are invited to show the way. However, we must also face our
limitations. Modern data analysis involves technical challenges that are beyond
our capabilities and require interdisciplinary collaboration. This changing reality
asks for some reflection on what is the true strength of statistics and which tasks

are perhaps better suited for other experts.

1.1 Current developments
1.1.1 Size and scale

Amongst the most visible recent developments are those related to scale. The
rapid growth of data and the rise of computationally intensive methods have
multiplied demand for computational power. Over the past years, estimation
based on resampling or Monte Carlo techniques has steadily gained popularity over
analytical solutions. These new methods are often easier to develop and require
less assumptions of the data, at the cost of computational energy. Therefore,
many universities have invested in supercomputers that students and faculty share
to schedule such computationally intensive processing jobs. More recently, a new
class of problems under the umbrella term of big data has entered the arena. These
are problems which by definition call for quantities of memory and cpu that a single
machine can not possibly provide. Big data analysis needs to be spread out on
computing clusters, which requires fundamental redesigns of analytical software

to support distributed computing. Algorithms need to be based on naturally

parallelizable design patterns such as map-reduce (Dean and Ghemawat, 2008) in

order to generalize to large scale data processing.

It has become painfully clear that these challenges are beyond the domain of the
traditional statistical software. The big data movement has been driven by the
IT industry with a strong emphasis on software engineering solutions, such as
distributed file-systems and tools for managing computing resources in clusters.
Statistical products provide an interface to such systems at best. Big data soft-
ware is still in its infancy and analysis programs that build on these stacks are
quite rudimentary in comparison with mainstream statistical software. However,
demand from governments and industries has made big data into big business,
resulting in enormous efforts to close this gap. We are starting to see the first
open source products that layer on Hadoop to implement natively distributed ver-
sions of statistical methods such as GLM, PCA and K-Means. Over the upcoming
years, these systems will likely start replacing current software to provide better
support for big data and distributed computing. Tools and techniques for data
analysis originating from fields other than statistics are received with a mix of
excitement, skepticism, and aversion that is dividing the community. However, it
is absolutely critical to the survival of our discipline that statisticians join the big
data movement and work with these new players to influence the next generation

of analysis software.

1.1.2 Visualization

Alongside quantitative results such as averages and parameter estimates, another
important device for inspecting data is provided by computer graphics. Statis-
tical software packages typically include functionality to generate plots in some
form or another. Implementations vary anywhere from low-level shape drawing
to completely canned charts automatically included with particular analyses. For

many years such graphing tools have provided a useful and popular complement

to numerical methods in statistical software products. However visualization too
has matured into its own field independent of statistical computing. Specialized
programs and libraries have started to offer more powerful, flexible visualization
capabilities than those found in statistical software, slowly taking away market

share.

The definitive tipping point has been the introduction of advanced graphing ca-
pabilities SVG, Canvas and WebGL in web browsers as part of the HTML5 standard
in 2012. These technologies opened the door to high performance, vector based,
interactive, and even 3D visualization in web pages. They take advantage of ded-
icated languages for styling (CSS) and interaction (JavaScript) while leveraging
a user base that literally includes the entire world. In very little time countless
high quality open source JavaScript libraries have appeared that go far beyond
traditional graphics. By taking advantage of internet access and the document
object model (DOM), browser graphics introduce a new generation of visualiza-
tions including interactive maps, live data animation and data-driven documents
(Bostock et al., 2011). But even for implementing traditional static plots, the
browser offers unprecedented flexibility and performance and which eventually

replace other graphics devices.

1.1.3 Domain specialization

The rise of data and statistics has given birth to many new specializations and sub-
fields. Over the past two decades much of the social sciences, including psychology
and political science have transitioned from mostly qualitative towards quantita-
tive methods, making measurement and analysis of behavior the main subject of
research. Other applied branches like biostatistics and econometrics have long
outgrown their respective disciplines and are supporting dedicated degrees and
departments. In bioinformatics, entire schools are forming around various types

of genomic data, such as DNA microarrays and ChIP-sequencing. More recently,

even areas like literature and journalism are discovering data as a source of infor-
mation. These fields encounter data and problems of a different nature, but have
already unveiled very promising applications. Following progress in academia,
increasingly many organizations in the public and private sector are embracing
statistical methods as well. Retailers rely on data analysis to predict sales, tar-
get advertisement, and improve recruiting, whereas governments use it to study

demographics, evaluate policy, and mass surveillance to name a few applications.

An important consequence of these developments is that analysts and their tools
become increasingly specialized. Whereas statistics used to be practiced mainly in
universities and research labs, data analysis is now part of job descriptions in all
corners of the economy. This transition shifts the emphasis of analysis tools away
from general purpose software towards applications tailored specifically to data
or problems as they appear in a particular field or occupation. To develop such
tools, the statistician must work in a team of engineers, user interface designers
and domain experts to implement custom applications with embedded analysis
methods. This asks for a more flexible approach to statistical software which
allows for incorporating domain knowledge and third party software in order to

cater to the demands of specific user groups.

1.1.4 Socializing data analysis

A somewhat more cultural yet important trend in recent years has been the social-
izing of technology. Much of software innovation has shifted focus from optimizing
ways in which users perform particular tasks towards improving communication
and collaboration between people. One popular example is Github: a software
hosting service with social networking features based on the revision control sys-
tem git (Torvalds and Hamano, 2010). Tts excellent branching and merging tools
enable distributed non-linear development by making it effortless to fork, proto-

type, contribute, review, discuss, and incorporate code between users and projects.

This system has revolutionized code management for open-source projects and has
proven to catalyze efficiency and creativity in the development process. Many of
the younger statistical software developers are already using Github or similar

platforms to host and manage their scripts and packages.

There is a lot of room for further socializing the data analysis process itself as
well, especially within the sciences. Practices in statistics have changed surpris-
ingly little over the past few decades. Statisticians usually work with a locally
installed software product to manipulate and analyze data, and then copy results
into a report or presentation. Collaboration is often limited to sharing a script
or data file on a personal homepage. Many have argued that modernizing these
practices is long overdue and vital to the future of statistics. According to Lee
et al. (2013) academic publication is on an irreversible trajectory moving in the di-
rection of online, dynamic, open-access publishing models. Changing demands for
reproducibility (Peng, 2011) and teaching (Nolan and Temple Lang, 2010) are also
pushing for more transparent and accessible analysis tools. This coincides with the
global movement of universities, governments and industries towards open data,
open access knowledge and open source software. With the availability of enabling
technologies, these developments suggest a future where reproducible data, code
and results become an integral part of the scientific publication process. Inter-
net based data analysis platforms with social networking features could greatly
advance collaboration, peer review and education of statistics while at the same

time addressing data management and scalability issues.

1.2 Integration and interoperability

In my opinion, all of these developments highlight the urgency of interdisciplinary
collaboration and integration for the future of our field. Modern society presents
problems that can only be tackled through joint effort of statisticians, engineers,

computer scientists, web developers, graphic designers and domain experts. This

requires statisticians to surrender some of their independence and learn to become
better team players. Finding our new identity in this dynamic is perhaps the main
challenge for the current generation of statisticians. However, doing everything
ourselves is no longer feasible. Failure to adapt to this new role puts us at serious

risk of becoming isolated and obsolete.

I am particularly concerned with the changing role of statistical software. It is
my belief that interoperability of statistical tools with other software will be the
key factor to sustained pertinence of the discipline. Today, statistical products
are primarily designed as do-it-all standalone suites serving every need of the in-
dependent statistician. The technology and culture of statistical computing has
been formed around the assumption that we are at the end of the software food
chain. Statistical software packages make it easy to call out to a database, C++
library or web API, but little thought and effort is put into interfacing statistical
methods from third party software. Unfortunately this dynamic is not unlike the
attitude of many statisticians themselves. In order to leverage statistical meth-
ods in systems, pipelines, and applications, the focus needs to shift away from
standalone products for statisticians, towards modular analysis units. Rather
than competing with big data software or browser based visualization, we should
implement statistical methods that can integrate with these upcoming technolo-
gies. Tools that play nice with other software can facilitate better collaboration
between statisticians and other team members and smoothen the transition into
the interdisciplinary world. The demand for high quality analysis tools that the
statistics community has to offer is enormous, but making them widely applicable
requires some changes in the way we design our software. This brings us to the

theme of this thesis: embedded scientific computing.

2 DMotivation and scope

In 2009 I co-authored an article for the journal Statistics in Medicine (van Bu-
uren and Ooms, 2009) which proposed a novel statistical method for diagnosing
developmental disorders in young teenagers. Along with the paper and R imple-
mentation, we developed a free web service to directly use this method online
without the need for technical knowledge or specialized software. The application
was relatively primitive but succeeded in making a state of the art diagnosis tool
widely available to clinics and hospitals in The Netherlands. It enabled physicians
and pediatricians with limited experience in statistics or R to immediately take
advantage of recent statistical innovation. For me, this was a proof of concept
that showed the enormous potential of integrating open source analysis software
in specialized applications. Scaling this up could greatly improve accessibility of
statistical methods while multiplying return on investment of our efforts. In the
period leading up to and during my graduate studies at UCLA, I have been in-
volved in many similar projects developing software with embedded analysis and
visualization, both in academic and commercial organizations. These included
systems, web applications and reporting tools in areas such as health, education,
geography, and finance. Experiences and struggles from such diverse projects pro-

vided unique insights in the recurring challenges of embedded scientific computing.

The topic of embedded scientific computing has not previously been studied with
the attention and detail it deserves. The problems are underdetermined and their
complexity is widely underestimated. Over the course of my studies I have come
to realize that the true nature of the problems is not only caused by technical
limitations, but has to be understood from a disconnect between disciplines in
an interdisciplinary space. The subject intersects statistical computing, software
engineering and applied data analysis, however insufficient overlap and joint work

between researchers in these fields is impeding integration of tools and knowledge.

Many technical problems arise due to lack of understanding of the practices in sci-
entific computing and the type of problems that it encounters. Underappreciation
of the domain logic and inner workings of statistical software has resulted in so-
lutions that are impractical, unreliable or unscalable. Therefore, this dissertation
starts with an in-depth exploration of what scientific computing is about and how
it is different from other applications of computer science. By mapping out the do-
main logic and identifying important bottlenecks, I hope my work can contribute
towards aligning the various efforts in this space and lead to a more coherent set

of tools and knowledge for developing integrated analysis components.

The motivation and approach for this research were entirely bottom-up. The
intention was never to solely apply or extend a particular existing technology or
theoretical framework. Instead I studied the challenges and solutions as they arise
in practice when implementing systems and applications with embedded analysis
and visualization. From these experiences I tried to distill the principal problems
in order to develop a general purpose software system. The process involves
an empirical back and forth between diagnosing and refining problems, while
experimenting with various approaches for solutions. This contrasts with most
current research in statistics where implementation details are often considered
an afterthought. In this thesis the software itself is the subject of the study
and the conclusions largely follow from implementation rather than the other
way around. Much effort has gone into developing high quality software to put
various approaches to the test. The results are a convergence of many iterations

of prototyping, testing, refactoring, and incorporating feedback.

2.1 Definition

The purpose of this research is to identify and discuss fundamental challenges
of scaling embedded scientific computing. Scientific computing refers to the gen-

eral class of computational methods for data manipulation, statistics, mining,

10

algorithm development, analysis, visualization, and related functionality. Unfor-
tunately there is no universally agreed-upon umbrella term for this genre of data-
driven research software. Vocabulary and scope of the countless packages vary
by domain and are constantly evolving. For example, R is officially a “software
environment for statistical computing and graphics”, but this does not exactly
capture functionality for scraping, text processing, meta programming, and web
development, to name some recent additions. Similarly, Matlab is marketed as

13

a “numerical computing environment”, Julia is “a programming language for
technical computing”, and NumPy is “the fundamental package for scientific com-
puting with Python”. In addition, many more specialized software packages use
jargon specific to particular applications or domains. FEach of these packages
takes a unique angle, but they share a similar purpose and overlapping audience.
Perhaps the most distinguishing characteristic is the emphasis of data as objects
combined with a functional style of programming that resembles mathematical op-
erations. No single description does justice to this continuously expanding body
of methods and software. Within this thesis the various terms are used mostly

interchangeably with minor differences in emphasis. But for the title scientific

computing seems like the most general neutral term for this branch of computing.

The term embedded deserves some clarification as well. In the context of this
thesis, it does not refer to software specifically written for a particular electronic
or mechanical device, which is the conventional meaning of embedded systems in
computer science. Instead, the term has been adopted from the R community.
For example Neuwirth and Baier (2001) talked about “Embedding R in standard
software” and Eddelbuettel and Francois (2011) state that “The RInside package
provides C++ classes that make it easier to embed R in C++ code”. Moreover,
the Writing R Fxtensions manual mentions the term frequently in the chapter
“Embedding R under Unix-alikes” (R Core Team, 2014b). I use embedded to

emphasize the role of software as a component, in contrast with a standalone

11

application. In software engineering, a component is a module or web resource
that encapsulates a set of related functions or data (Cox, 1990). It builds on
the principle of separation of concerns and advocates a reuse-based approach to
defining, implementing and composing loosely coupled independent modules into
systems. Components are generally not interfaced by the user, but rather called

from another piece of software through a programmable interface.

Finally, scalability connotes the ability of a system to accommodate an increasing
number of elements or objects, to process growing volumes of work gracefully and
be susceptible to enlargement (Bondi, 2000). Commercial vendors of statistical
software often present scale exclusively in relation to the magnitude of the data
and offer solutions to process more data in less time. Although important, there
are many additional dimensions and directions to scale other than memory and
disk space. For example, accommodating large amounts of users or concurrent
tasks introduces new management and organization problems. Also systems that
are high maintenance and require considerable human resources to accommodate
growth do not scale well by definition. Furthermore, increased code complexity
in large projects often reveals difficulties which were invisible on a smaller scale.
Finally an important observation is that in order to scale up, systems must be
able to scale down. Software which requires a special infrastructure and a team
of experts and administrators to operate has limited applications, regardless of
performance. On the other hand, a solution that has the potential to scale up to
large problems, but also works for small projects by users with limited expertise is
much more likely to find wide adoption. Human dimensions to scalability are easily

overlooked, but in practice just as critical as overcoming technical limitations.

2.2 Overview

The main body of the thesis consists of four contributions which form the cor-

ner stones of the research. These pieces treat the most pressing and difficult

12

problems that are encountered when building systems with embedded scientific
computing. Chapter 2 presents the central work of this thesis and treats the prob-
lem of interfacing computational procedures. Currently most statistical software
is designed for UI rather than API interaction. However, clients or systems in-
tegrating analytical components require a programmable interface that exposes
desired functionality while abstracting implementation details. The principle of
separation of concerns requires us to carefully carve out logic specific to scien-
tific computing and distinguish it from any application or implementation logic.
To this end, the majority of the chapter is concerned with a high level descrip-
tion of the principles and practices of scientific computing. The OpenCPU system
is introduced as a proof of concept and reference implementation that puts the
advocated approach in practice. Experiences from developing and applying the
OpenCPU software are a driving factor throughout the research and also motivate

the remaining chapters of this thesis.

The subsequent chapters treat more technical issues that come up with embed-
ded scientific computing. Chapter 3 talks about enforcing security policies and
managing hardware resources. Because statistical software products are tradition-
ally designed for local use, access control is generally not considered an issue and
the execution environment is entirely unrestricted. However, embedded statistical
components require fine grained control over permissions and resources allocated
to individual users or tasks. The chapter discusses various security models and
explains the domain specific aspects of the problem that make it difficult to ap-
ply general purpose solutions. The RAppArmor package is introduced to illustrate
mandatory access control style security in R on Linux systems. This allows for
divorcing the security concern from the application layer and solve it on the level
of the operating system. RAppArmor is at the basis of the OpenCPU cloud server
implementation and makes it possible to expose arbitrary code execution privi-

leges to the public. This provides a basis for applications where users can freely

13

share, modify and run custom code which is central to the OpenCPU philosophy.

Chapter 4 discusses the issue of data interchange, specifically in the context of
the JSON format. A key challenge for interfacing statistical components is getting
data in and out of the system. To this end, OpenCPU supports two popular data
interchange formats: JSON and Protocol Buffers (Eddelbuettel et al.). How-
ever the main difficulties are not so much related to the format, but rather to the
structure of input and output data. Strong typed languages typically use schemas
to formally describe and enforce structure. However this is not very natural for
dynamically typed languages with loosely defined data structures frequently used
in scientific computing. Instead we take an approach that directly maps the most
important data types in R to JSON and vice versa. This allows clients to inter-
act with R functions and objects via JSON without any specific knowledge about
implementation of object classes in R. The jsonlite package is used as a refer-
ence implementation throughout the chapter to illustrate this mapping. Besides
OpenCPU, at least a dozen other projects have already adopted the jsonlite pack-

age to interact with JSON data in R as well.

Finally, chapter 5 treats the more high level issue of managing software versioning
and specifically inter-software dependencies in the context of scientific computing.
In my experience, imprudent software versioning is by far the primary cause of
problems in statistical software. Rapidly growing repositories have made current
practices unsustainable and properly addressing this issue is critical for turning
statistical methods into reliable components and applications. Unfortunately the
problem is not sufficiently understood and acknowledged by most members of the
community. This can be traced back to a long culture of exclusively interactive use
which assumes that the user will manually manage software and debug problems
as they appear. The chapter explores the problem in great detail and explains
how limitations of dependency versioning are causing unstable software and ir-

reproducible results. I make a case to the R community for moving to a design

14

that better accommodates modern software development and can scale to large

repositories.

2.3 About R

This research relies heavily on the The R Project for Statistical Computing, for
short: R (R Core Team, 2014a). The R language is currently the most popular open
source software for statistical computing and considered by many statisticians as
the de facto standard for data analysis. The software is well established and
the huge R community provides a wealth of contributed packages in a variety of
fields. Currently only R has the required maturity and infrastructure to build
and test scalable computing systems. Therefore, R is the obvious candidate to
experiment with embedded scientific computing. Most of my experiences that
led to this research have been with R, and the software presented in this thesis is
implemented on R. However, [want to emphasize that the purpose of this research
was not just to develop software and the problems discussed are not limited to
any particular implementation. Difficulties related to interfacing, security, data
interchange and dependency management will appear in some form or another
when implementing analysis components in any language. None of the currently
available systems, including commercial products, provide any simple and general

solutions.

Yet in reality it is very difficult to study or discuss software without an actual
implementation. Only by developing and using software we discover the strengths
and limitations of certain technology and learn which solutions are practical and
reliable. For these reasons, the problems of embedded scientific computing are
mostly treated from the way they take shape in R. Rather than presenting ab-
stract ideas in general terms, we take advantage of the lingua franca to demon-
strate problems and solutions as they appear in practice. Therefore each chapter

discusses some relevant aspects of the R language that provide the context for a

15

particular issue. For example, the conventional container format for namespacing
a collection of data and functions in R is a package. Even though other products
might use different mechanics and jargon for combining and publishing a set of
objects, any system needs some notion of namespaces and dependencies analo-
gous to packages in R. Throughout the thesis I discuss concepts using terminology
and examples from the R language, but repeatedly emphasize that software serves
primarily as illustration. Similar techniques used in the R packages should work

when building analysis components with Julia, Matlab or Python.

16

BIBLIOGRAPHY

ACM. ACM honors dr. John M. Chambers of Bell Labs with the 1998 ACM
software system award for creating S system, 1998. URL http://www.acm.

org/announcements/ss99.html.

R. A. Becker and J. M. Chambers. S: An Interactive Environment for Data
Analysis and Graphics (His Competencies for Teaching; V. 8). Chapman and
Hall/CRC, 0 edition, 2 1984. ISBN 9780534033132. URL http://amazon.com/
0/ASIN/053403313X/.

R. A. Becker, J. M. Chambers, and Allan R Wilks. New S Language. Chapman
and Hall/CRC, 6 1988. ISBN 9780534091934. URL http://amazon.com/o/
ASIN/0534091938/.

André B Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the 2nd international workshop on Software and performance,
pages 195-203. ACM, 2000. URL http://dl.acm.org/citation.cfm?id=
350432.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D?® data-driven docu-
ments. Visualization and Computer Graphics, IEEE Transactions on, 17(12):
2301-2309, 2011. URL http://dl.acm.org/citation.cfm?id=2068631.

David R Brillinger. John W. Tukey: his life and professional contributions. Annals
of Statistics, pages 1535-1575, 2002. URL http://www.stat.berkeley.edu/

~brill/Papers/life.pdf.

James W Cooley and John W Tukey. An algorithm for the machine calculation

of complex fourier series. Mathematics of computation, 19(90):297-301, 1965.

B.J. Cox. Planning the software industrial revolution. Software, IEEE, 7(6):25-33,

17

http://www.acm.org/announcements/ss99.html
http://www.acm.org/announcements/ss99.html
http://amazon.com/o/ASIN/053403313X/
http://amazon.com/o/ASIN/053403313X/
http://amazon.com/o/ASIN/0534091938/
http://amazon.com/o/ASIN/0534091938/
http://dl.acm.org/citation.cfm?id=350432
http://dl.acm.org/citation.cfm?id=350432
http://dl.acm.org/citation.cfm?id=2068631
http://www.stat.berkeley.edu/~brill/Papers/life.pdf
http://www.stat.berkeley.edu/~brill/Papers/life.pdf

Nov 1990. ISSN 0740-7459. doi: 10.1109/52.60587. URL http://ieeexplore.

ieee.org/xpls/abs_all. jsp?arnumber=60587.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107-113, January 2008. ISSN 0001-0782.
doi: 10.1145/1327452.1327492. URL http://dx.doi.org/10.1145/1327452.
1327492.

Dirk Eddelbuettel and Romain Francois. Repp: Seamless r and c++ integration.
Journal of Statistical Software, 40(8):1-18, 4 2011. ISSN 1548-7660. URL

http://www.jstatsoft.org/v40/108.

Dirk Eddelbuettel, Murray Stokely, and Jeroen Ooms. RProtoBuf: Efficient Cross-
Language Data Serialization in R. arXiv:1401.7372. URL http://arxiv.org/
abs/1401.7372.

Herbert Lee, Bruce Lindsay, Samantha C. Prins, Nicholas P. Jewell,
Michelle Dunn, Steven Snapinn, David Banks, and Leonard Stefanski.
The future of publication in the statistical sciences. Technical report,
2013. URL http://magazine.amstat.org/wp-content/uploads/2013an/

FuturePublicationsReport.pdf.

James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela H Byers. Big data: The next frontier
for innovation, competition, and productivity. McKinsey Global Institute,
2011. URL http://www.mckinsey.com/insights/business_technology/

big_data_the_next_frontier_for_innovation.

Erich Neuwirth and Thomas Baier. Embedding R in standard software, and the
other way around. In Proceedings of the Distributed Statistical Computing 2001
Workshop, 2001. URL http://www.r-project.org/conferences/DSC-2001/

Proceedings/NeuwirthBaier.pdf.

18

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=60587
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=60587
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://www.jstatsoft.org/v40/i08
http://arxiv.org/abs/1401.7372
http://arxiv.org/abs/1401.7372
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.r-project.org/conferences/DSC-2001/Proceedings/NeuwirthBaier.pdf
http://www.r-project.org/conferences/DSC-2001/Proceedings/NeuwirthBaier.pdf

Deborah Nolan and Duncan Temple Lang. Computing in the statistics curricula.
The American Statistician, 64(2), 2010. URL http://www.stat.berkeley.

edu/~statcur/Preprints/ComputingCurric3.pdf.

Roger D. Peng. Reproducible Research in Computational Science. Science, 334
(6060):1226-1227, December 2011. ISSN 1095-9203. doi: 10.1126/science.
1213847. URL http://dx.doi.org/10.1126/science.1213847.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014a. URL http:

//www .R-project.org/.

R Core Team. Writing r extensions. R Foundation for Statistical Computing,

2014b. URL http://cran.r-project.org/doc/manuals/R-exts.html.

Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Commun.
ACM, 17(7):365-375, July 1974. ISSN 0001-0782. doi: 10.1145/361011.361061.
URL http://doi.acm.org/10.1145/361011.361061.

Linus Torvalds and Junio Hamano. Git: Fast version control system. 2010. URL

http://git-scm.com.

John W. Tukey. Fzxploratory Data Analysis. Pearson, 1 edition, 1977. ISBN
9780201076165. URL http://amazon.com/o/ASIN/0201076160/.

Stef van Buuren and Jeroen CL Ooms. Stage line diagram: An age-conditional
reference diagram for tracking development. Statistics in medicine, 28(11):
1569-1579, 2009. URL http://onlinelibrary.wiley.com/doi/10.1002/

sim.3567/abstract.

19

http://www.stat.berkeley.edu/~statcur/Preprints/ComputingCurric3.pdf
http://www.stat.berkeley.edu/~statcur/Preprints/ComputingCurric3.pdf
http://dx.doi.org/10.1126/science.1213847
http://www.R-project.org/
http://www.R-project.org/
http://cran.r-project.org/doc/manuals/R-exts.html
http://doi.acm.org/10.1145/361011.361061
http://git-scm.com
http://amazon.com/o/ASIN/0201076160/
http://onlinelibrary.wiley.com/doi/10.1002/sim.3567/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.3567/abstract

CHAPTER 2

The OpenCPU System: Towards a Universal
Interface for Scientific Computing through

Separation of Concerns

1 Introduction

Methods for scientific computing are traditionally implemented in specialized soft-
ware packages assisting the statistician in all facets of the data analysis process.
A single product typically includes a wealth of functionality to interactively man-
age, explore and analyze data, and often much more. Products such as R or STATA
are optimized for use via a command line interface (CLI) whereas others such as
SPSS focus mainly on the graphical user interface (GUI). However, increasingly
many users and organizations wish to integrate statistical computing into third
party software. Rather than working in a specialized statistical environment,
methods to analyze and visualize data get incorporated into pipelines, web ap-
plications and big data infrastructures. This way of doing data analysis requires
a different approach to statistical software which emphasizes interoperability and
programmable interfaces rather than UI interaction. Throughout the paper we

refer to this approach to statistical software as embedded scientific computing.

Early pioneering work in this area was done by Temple Lang (2000) and Chambers
et al. (1998) who developed an environment for integration of statistical software

in Java based on the CORBA standard, which was a promising technology at the

20

time (Henning, 2006). Previous work in embedded scientific computing has mostly
been limited to low-level tools for connecting statistical software to general purpose
environments. For R, bindings and bridges are available to execute an R script or
process from inside all popular languages. For example, JRI (Urbanek, 2013a),
RInside (Eddelbuettel and Francois, 2011), rpy2 (Gautier, 2012) or RinRuby
(Dahl and Crawford, 2009) can be used to call R from respectively Java, C++,
Python or Ruby. Heiberger and Neuwirth (2009) provide a set of tools to run
R code from DCOM clients on Windows, mostly to support calling R in Microsoft
Excel. The rApache module (mod_R) makes it possible to execute R scripts from
the Apache2 web server (Horner, 2013). Similarly, the 1ittler program provides
hash-bang capability for R, as well as simple command-line and piping use on UNIX
(Horner and Eddelbuettel, 2011). Finally, Rserve is TCP/IP server which provides

low level access to an R process over a socket (Urbanek, 2013b).

Even though these bridging tools have been available for several years, they have
not been able to facilitate the big breakthrough of R as a ubiquitous statistical
engine. Given the enormous demand for analysis and visualization these days, the
adoption of R for embedded scientific computing is actually quite underwhelming.
In my experience, the primary cause for the limited success is that these bridges
are hard to implement, do not scale very well, and leave the most challenging prob-
lems unresolved. Substantial plumbing and expertise of R internals is required for
building actual applications on these tools. Clients are supposed to generate and
push R syntax, make sense of R’s internal C structures and write their own frame-
work for managing requests, graphics, security, data interchange, etc. Thereby,
scientific computing gets intermingled with other parts of the system resulting in
highly coupled software which is complex and often unreliable. High coupling is
also problematic from a human point of view. Building a web application with
for example Rserve requires a web developer that is also an expert in R, Java and

Rserve. Because R is a very domain specific language, this combination of skills

21

is very rare and expensive.

1.1 Separation of concerns

What is needed to scale up embedded scientific computing is a system that decou-
ples data analysis from other system components in such a way that applications
can integrate statistical methods without detailed understanding of R or statis-
tics. Component based software engineering advocates the design principle of
separation of concerns (Heineman and Councill, 2001), which states that a com-
puter program is split up into distinct pieces that each encapsulate a logical set of
functionality behind a well-defined interface. This allows for independent devel-
opment of various components by different people with different background and
expertise. Separation of concerns is fundamental to the functional programming
paradigm (Reade, 1989) as well as the design of service oriented architectures on
distributed information systems such as the internet (Fielding, 2000). The prin-
ciple lies at the heart of this research and holds the key to advancing embedded

scientific computing.

In order to develop a system that separates concerns of scientific computing from
other parts of the system, we need to ask ourselves: what are the concerns of sci-
entific computing? This question does not have a straightforward answer. Over
the years, statistical software has gotten highly convoluted by the inclusion of
complementary tools that are useful but not necessarily an integral part of com-
puting. Separation of concerns requires us to extract the core logic and divorce it
from all other apparatus. We need to form a conceptual model of data analysis
that is independent of any particular application or implementation. Therefore,
rather than discussing technical problems, this paper focuses entirely on studying
the domain logic of the discipline along the lines of Evans (2003). By exploring
the concepts, problems, and practices of the field we try to unveil the fundamental

principles behind statistical software. Along the way we highlight important prob-

22

lems and bottlenecks that require further attention in order to facilitate reliable

and scalable analysis modules.

The end goal of this paper is to work towards an interface definition for embedded
scientific computing. An interface is the embodiment of separation of concerns
and serves as a contract that formalizes the boundary across which separate com-
ponents exchange information. The interface definition describes the concepts and
operations that components agree upon to cooperate and how the communication
is arranged. In the interface we specify the functionality that a server has to
implement, which parts of the interaction are fixed and which choices are specifi-
cally left at the discretion of the implementation. Ideally the specification should
provide sufficient structure to develop clients and server components for scien-
tific computing while minimizing limitations on how these can be implemented.
An interface that carefully isolates components along the lines of domain logic
allows developers to focus on their expertise using their tools of choice. It gives
clients a universal point of interaction to integrate statistical programs without
understanding the actual computing, and allows statisticians to implement their
methods for use in applications without knowing specifics about the application

layer.

1.2 The OpenCPU system

The OpenCPU system is an example that illustrates what an abstracted interface
to scientific computing could look like. OpenCPU defines an HTTP API that builds
on The R Project for Statistical Computing, for short: R (R Core Team, 2014).
The R language is the obvious candidate for a first implementation of this kind. It
is currently the most popular statistical software package and considered by many
statisticians as the de facto standard of data analysis. The huge R community
provides both the tools and use-cases needed to develop and experiment with this

new approach to scientific computing. It is fair to say that currently only R has

23

the required scale and foundations to really put our ideas to the test. However,
although the research and OpenCPU system are colored by and tailored to the
way things work in R, the approach should generalize quite naturally to other
computational back-ends. The API is designed to describe general logic of data
analysis rather than that of a particular language. The main role of the software
is to put this new approach into practice and get firsthand experience with the

problems and opportunities in this unexplored field.

As part of the research, two OpenCPU server implementations were developed.
The R package opencpu uses the httpuv web server (RStudio Inc., 2014a) to
implement a single-user server which runs within an interactive R session on any
platform. The cloud server on the other hand is a multi-user implementation
based on Ubuntu Linux and rApache. The latter yields much better performance
and has advanced security and configuration options, but requires a dedicated
Linux server. Another major difference between these implementations is how
they handle concurrency. Because R is single threaded, httpuv handles only a
single request at a time. Additional incoming requests are automatically queued
and executed in succession using the same process. The cloud server on the other
hand takes advantage of multi-processing in the Apache2 web server to handle
concurrency. This implementation uses forks of the R process to serve concurrent
requests immediately with little performance overhead. The differences between
the cloud server and single user server are invisible the client. The API provides a
standard interface to either implementation and other than varying performance,
applications will behave the same regardless of which server is used. This already

hints at the benefits of a well defined interface.

1.3 History of OpenCPU

The OpenCPU system builds on several years of work dating back to 2009. The

software evolved through many iterations of trial and error by which we identified

24

the main concerns and learned what works in practice. Initial inspirations were
drawn from recurring problems in developing R web applications with rApache,
including van Buuren and Ooms (2009). Accumulated experiences from these
projects shaped a vision on what is involved with embedded scientific computing.
After a year of internal development, the first public beta of OpenCPU appeared
in August 2011. This version was picked up by early adopters in both industry
and academia, some of which are still in production today. The problems and
suggestions generated from early versions were a great source of feedback and
revealed some fundamental problems. At the same time exciting developments
were going on in the R community, in particular the rise of the RStudio IDE and
introduction of powerful new R packages knitr, evaluate and httpuv. After a
redesign of the API and a complete rewrite of the code, OpenCPU 1.0 was released
in August 2013. By making better use of native features in HTTP, this version
is more simple, flexible, and extensible than before. Subsequent releases within
the 1.x series have introduced additional server configurations and optimizations

without major changes to the API.

2 Practices and domain logic of scientific computing

This section provides a helicopter view of the practices and logic of scientific com-
puting that are most relevant in the context of this research. The reader should
get a sense of what is involved with scientific computing, what makes data analysis
unique, and why the software landscape is dominated by domain specific languages
(DSL). The topics are chosen and presented somewhat subjectively based on my
experiences in this field. They are not intended to be exhaustive or exclusive, but
rather identify the most important concerns for developing embedded analysis

components.

25

2.1 It starts with data

The role and shape of data is the main characteristic that distinguishes scientific
computing. In most general purpose programming languages, data structures are
instances of classes with well-defined fields and methods. Similarly, databases use
schemas or table definitions to enforce the structure of data. This ensures that a
table returned by a given SQL query always contains exactly the same structure
with the requested fields; the only varying property between several executions of
a query is the number of returned rows. Also the time needed for the database
to process the request usually depends only on the amount of records in the
database. Strictly defined structures make it possible to write code implementing
all required operations in advance without knowing the actual content of the data.
It also creates a clear separation between developers and users. Most applications
do not give users direct access to raw data. Developers focus in implementing
code and designing data structures, whereas users merely get to execute a limited

set of operations.

This paradigm does not work for scientific computing. Developers of statistical
software have relatively little control over the structure, content, and quality of
the data. Data analysis starts with the user supplying a dataset, which is rarely
pretty. Real world data come in all shapes and formats. They are messy, have
inconsistent structures, and invisible numeric properties. Therefore statistical
programming languages define data structures relatively loosely and instead im-
plement a rich lexicon for interactively manipulating and testing the data. Unlike
software operating on well-defined data structures, it is nearly impossible to write
code that accounts for any scenario and will work for every possible dataset. Many
functions are not applicable to every instance of a particular class, or might behave
differently based on dynamic properties such as size or dimensionality. For these
reasons there is also less clear of a separation between developers and users in sci-

entific computing. The data analysis process involves simultaneously debugging

26

of code and data where the user iterates back and forth between manipulating and
analyzing the data. Implementations of statistical methods tend to be very flexi-
ble with many parameters and settings to specify behavior for the broad range of
possible data. And still the user might have to go through many steps of cleaning
and reshaping to give data the appropriate structure and properties to perform a

particular analysis.

Informal operations and loosely defined data structures are typical characteris-
tics of scientific computing. They give a lot of freedom to implement powerful
and flexible tools for data analysis, but complicate interfacing of statistical meth-
ods. Embedded systems require a degree of type-safety, predictability, and con-
sistency to facilitate reliable I/0 between components. These features are native
to databases or many object oriented languages, but require substantial effort for

statistical software.

2.2 Functional programming

Many different programming languages and styles exists, each with their own
strengths and limitations. Scientific computing languages typically use a func-
tional style of programming, where methods take a role and notation similar to
functions in mathematics. This has obvious benefits for numerical computing.
Because equations are typically written as y = f(g(z)) (rather than y = z.g().f()
notation), a functional syntax results in intuitive code for implementing algo-

rithms.

Most popular general purpose languages take a more imperative and object ori-
ented approach. In many ways, object-oriented programming can be considered
the opposite of functional programming (A. M. Kuchling, 2014). Here methods
are invoked on an object and modify the state of this particular object. Object-

oriented languages typically implement inheritance of fields and methods based on

27

object classes or prototypes. Many software engineers prefer this style of program-
ming because it is more powerful to handle complex data structures. The success
of object oriented languages has also influenced scientific computing, resulting in
multi-paradigm systems. Languages such as Julia and R use multiple dispatch
to dynamically assign function calls to a particular function based on the type of
arguments. This brings certain object oriented benefits to functional languages,

but also complicates scoping and inheritance.

A comparative review on programming styles is beyond the scope of this research.
But what is relevant to us is how conflicting paradigms affect interfacing of analysis
components. In the context of web services, the Representational State Transfer
style (for short: REST) described by Fielding (2000) is very popular among web
developers. A restful API maps every URL to a resource and HTTP requests are
used to modify the state of a resource, which results in a simple and elegant API.
Unfortunately, REST does not map very naturally to the functional paradigm of
statistical software. Languages where functions are first class citizens suggest more
RPC flavored interfaces, which according to Fielding are by definition not restful
(Fielding, 2008). This does not mean that such a component is incompatible
with other pieces. As long as components honor the rules of the protocol (i.e.
HTTP) they will work together. However, conflicting programming styles can be
a source of friction for embedded scientific computing. Strongly object-oriented
frameworks or developers might require some additional effort to get comfortable

with components implementing a more functional paradigm.

2.3 Graphics

Another somewhat domain specific feature of scientific computing is native sup-
port for graphics. Most statistical software packages include programs to draw
plots and charts in some form or another. In contrast to data and functions which

are language objects, the graphics device is considered a separate output stream.

28

Drawings on the canvas are implemented as a side effect rather than a return
value of function calls. This works a bit similar to manipulating document object
model (DOM) elements in a browser using JavaScript. In most interactive sta-
tistical software, graphics appear to the user in a new window. The state of the
graphics device cannot easily be stored or serialized as is the case for functions
and objects. We can export an image of the graphics device to a file using png,
svg or pdf format, but this image is merely a snapshot. It does not contain the

actual state of the device cannot be reloaded for further manipulation.

First class citizenship of graphics is an important concern of interfacing scientific
computing. Yet output containing both data and graphics makes the design of
a general purpose API more difficult. The system needs to capture the return
value as well as graphical side effects of a remote function call. Furthermore
the interface should allow for generating graphics without imposing restrictions
on the format or formatting parameters. Users want to utilize a simple bitmap
format such as png for previewing a graphic, but have the option to export the
same graphic to a high quality vector based format such as pdf for publication.
Because statistical computation is expensive and non-deterministic, the graphic
cannot simply reconstructed from scratch only to retrieve it in another format.
Hence the API needs to incorporate the notion of a graphics device in a way

independent of the imaging format.

2.4 Numeric properties and missing values

It was already mentioned how loosely defined data structures in scientific com-
puting can impede type safety of data I/0 in analysis components. In addition,
statistical methods can choke on the actual content of data as well. Sometimes
problematic data can easily be spotted, but often it is nearly impossible to detect
these ahead of time. Applying statistical procedures to these data will then result

in errors, even though the code and structure of the data are perfectly fine. These

29

problems frequently arise for statistical models that build on matrix decomposi-
tions which require the data to follow certain numeric properties. The rank of a
matrix is one such property which measures the nondegenerateness of the system
of linear equations. When a matrix A is rank deficient, the equation Ax = b does
not have a solution when b does not lie in the range of A. Attempting to solve
this equation will eventually lead to division by zero. Accounting for such cases of
time is nearly impossible because numeric properties are invisible until they are
actually calculated. But perhaps just as difficult is explaining the user or software
engineer that these errors are not a bug, and can not be fixed. The procedure just

does not work for this particular dataset.

Another case of problematic data is presented by missing values. Missingness
in statistics means that the value of a field is unknown. Missing data should
not be confused with no data or null. Missing values are often non ignorable,
meaning that the missingness itself is information that needs to be accounted
for in the modeling. A standard textbook example is when we perform a survey
asking people about their salary. Because some people might refuse to provide
this information, the data contains missing values. This missingness is probably
not completely at random: respondents with high salaries might be more reluctant
to provide this information than respondents with a median salary. If we calculate
the mean salary from our data ignoring the missing values, the estimate is likely
biased. To obtain a more accurate estimate of the average salary, missing values

need to be incorporated in the estimation using a more sophisticated model.

Statistical programming languages can define several types of missing or non-
finite values such as NA, NaN or Inf. These are usually implemented as special
primitives, which is one of the benefits of using a DSL. Functions in statistical
software have built-in procedures and options to specify how to handle missing
values encountered in the data. However, the notion of missingness is foreign to

most languages and software outside of scientific computing. They are a typical

30

domain-specific phenomenon that can cause technical problems in data exchange
with other systems. And like numeric properties, the concept of values containing
no actual value is likely to cause confusion among developers or users with limited
experience in data analysis. Yet failure to properly incorporate missing values
in the data can easily lead to errors or incorrect results, as the example above

illustrated.

2.5 Non deterministic and unpredictable behavior

Most software applications are expected to produce consistent output in a timely
manner, unless something is very wrong. This does not generally hold for scien-
tific computing. The previous section explained how problematic data can cause
exceptions or unexpected results. But many analysis methods are actually non-

deterministic or unpredictable by nature.

Statistical algorithms often repeat some calculation until a particular convergence
criterion is reached. Starting values and minor fluctuations in the data can have
snowball effect on the course of the algorithm. Therefore several runs can re-
sult in wildly varying outcomes and completion times. Moreover, convergence
might not be guaranteed: unfortunate input can get a process stuck in a local
minimum or send it off into the wrong direction. Predicting and controlling for
such scenarios a-priori in the implementation is very difficult. Monte Carlo tech-
niques are even less predictable because they are specifically designed to behave
randomly. For example, MCMC methods use a Markov-Chain to simulate random
walk through a (high-dimensional) space such as a multivariate probability den-
sity. These methods are a powerful tool for simulation studies and numerical
integration in Bayesian analysis. Each execution of the random walk yields differ-
ent outcomes, but under general conditions the process will converge to the value
of interest. However, due to randomness it is possible that some of the runs or

chains get stuck and need to be terminated or disregarded.

31

Unpredictability of statistical methods underlies many technical problems for em-
bedded scientific computing that are not present when interacting with a database.
This can sometimes surprise software engineers expecting deterministic behavior.
Statistical methods are rarely absolutely guaranteed to be successful for arbitrary
data. Assuming that a procedure will always return timely and consistently be-
cause it did so with testing data is very dangerous. In a console, the user can
easily intervene or recover, and retry with different options or starting values. For
embedded modules, unpredictability needs to be accounted for in the design of the
system. At a very minimum, the system should be able to detect and terminate
a process that has not completed when some timeout is reached. But preferably
we need a layer or meta functionality to control and monitor executions, either

manually or automatically.

2.6 Managing experimental software

In scientific computing, we usually need to work with inventive, volatile, and ex-
perimental software. This is a big cultural difference with many general purpose
languages such as python, Java, C++ or JavaScript. The latter communities
include professional organizations and engineers committed to implementing and
maintaining production quality libraries. Most authors of open source statistical
software do not have the expertise and resources to meet such standards. Con-
tributed code in languages like R was often written by academics or students to
accompany a scientific article proposing novel models, algorithms, or program-
ming techniques. The script or package serves as an illustration of the presented
ideas, but needs needs to be tweaked and tailored to fit a particular problem or
dataset. The quality of such contributions varies a lot, no active support or main-
tenance should be expected from the authors. Furthermore, package updates can

sometimes introduce radical changes based on new insights.

Because traditional data analysis does not really have a notion of production,

32

this has never been a major problem. The emphasis in statistical software has
always been on innovation rather than continuity. Experimental code is usually
good enough for interactive data analysis where it suffices to manually make a
script or package work for the dataset at hand. Authors of statistical software
tend to assume that the user will spend some effort to manage dependencies
and debug the code. However, integrated components require a greater degree
of reliability and continuity which introduces a source of technical and cultural
friction for embedded scientific computing. This makes the ability to manage
unstable software, facilitate rapid change, sandbox modules, and manage failure

important concerns of embedded scientific computing.

2.7 Interactivity and error handling

In general purpose languages, run-time errors are typically caused by a bug or
some sort of system failure. Exceptions are only raised when the software can not
recover and usually result in termination of the process. Error messages contain
information such as calling stacks to help the programmer discover where in the
code a problem occurred. Software engineers go through great trouble to prevent
potential problems ahead of time using smart compilers, unit tests, automatic
code analysis, and continuous integration. Errors that do arise during production
are usually not displayed to the user, but rather the administrator is notified that

the system urgently needs attention. The user gets to see an apology at best.

In scientific computing, errors play a very different role. As a consequence of some
of the characteristics discussed earlier, interactive debugging is a natural part of
the user experience. Errors in statistics do not necessarily indicate a bug in the
software, but rather a problem with the data or some interaction of the code
and data. The statistician goes back and forth between cleaning, manipulating,
modeling, visualizing and interpreting to study patterns and relations in the data.

This simultaneous debugging of data and code comes down to a lot of trial and

33

error. Problems with outliers, degrees of freedom or numeric properties do not
reveal themselves until we try to fit a model or create a plot. Exceptions raised
by statistical methods are often a sign that data needs additional work. This
makes error messages an important source of information for the statistician to
get to know a dataset and its intricacies. And while debugging the data we
learn limitations of the analysis methods. In practice we sometimes find out that
a particular dataset requires us to research or implement additional techniques

because the standard tools do not suffice or are inappropriate.

Interactive error handling is one of the reasons that there is no clear distinction
between development and production in scientific computing. When interfacing
with analysis modules it is important that the role of errors is recognized. An
APT must be able to handle exceptions and report error messages to the user, and
certainly not crash the system. The role of errors and interactive debugging in data
analysis can be confusing to developers outside of our community. Some popular
commercial products seem to have propagated the belief that data analysis comes
down to applying a magical formula to a dataset, and no intelligent action is
required on the side of the user. Systems that only support such canned analyses
don’t do justice to the wide range of methods that statistics has to offer. In
practice, interactive data debugging is an important concern of data analysis and

embedded scientific computing.

2.8 Security and resource control

Somewhat related to the above are special needs in terms of security. Most statis-
tical software currently available is primarily designed for interactive use on the
local machine. Therefore access control is not considered an issue and the execu-
tion environment is entirely unrestricted. Embedded modules or public services
require implementation of security policies to prevent malicious or excessive use

of resources. This in itself is not a unique problem. Most scripting languages such

34

as php or python do not enforce any access control and assume security will be
implemented on the application level. But in the case of scientific computing, two

domain specific aspects further complicate the problem.

The first issue is that statistical software can be demanding and greedy with
hardware resources. Numerical methods are expensive both in terms of memory
and cpu. Fair-use policies are not really feasible because excessive use of resources
often happens unintentionally. For example, an overly complex model specification
or algorithm getting stuck could end up consuming all available memory and
cpu until manually terminated. When this happens on the local machine, the
user can easily interrupt the process prematurely by sending a SIGINT (pressing
CTRL+C or ESC), but in a shared environment this needs to be regulated by the
system. Embedded scientific computing requires technology and policies that can
manage and limit memory allocation, cycles, disk space, concurrent processes,
network traffic, etc. The degree of flexibility offered by implementation of resource
management is an important factor in the scalability of a system. Fine grained
control over system resources consumed by individual tasks allows for serving

many users without sacrificing reliability.

The second domain specific security issue is caused by the need for arbitrary code
execution. A traditional application security model is based on user role privileges.
In a standard web application, only a developer or administrator can implement
and deploy actual code. The application merely exposes predefined functionality;
users are not allowed to execute arbitrary code on the server. Any possibility of
code injection is considered a security vulnerability and when found the server
is potentially compromised. However as already mentioned, lack of segregation
between users and developers in statistics gives limited use to applications that
restrict users to predefined scripts and canned services. To support actual data
analysis, the user needs access to the full language lexicon to freely explore and

manipulate the data. The need for arbitrary code execution disqualifies user role

35

based privileges and demands a more sophisticated security model.

2.9 Reproducible research

Replication of findings is one of the main principles of the scientific method.
In quantitative research, a necessary condition for replication is reproducibility
of results. The goal of reproducible research is to tie specific instructions to
data analysis and experimental data so that scholarship can be recreated, better
understood, and verified (Kuhn, 2014). Even though the ideas of replication
are as old as science itself, reproducibility in scientific computing is still in its
infancy. Tools are available that assist users in documenting their actions, but to
most researchers these are not a natural part of the daily workflow. Fortunately,
the importance of replication in data analysis is increasingly acknowledged and
support for reproducibility is becoming more influential in the design of statistical

software.

Reproducibility changes what constitutes the main product of data analysis. Rather
than solely output and conclusions, we are interested recording and publishing the
entire analysis process. This includes all data, code and results but also external
software that was used arrive at the results. Reproducibility puts high require-
ments on software versioning. More than in other fields it is crucial that we
diligently archive and administer the precise versions or branches of all scripts,
packages, libraries, plugins that were somehow involved in the process. If an anal-
ysis involves randomness, it is also important that we keep track of which seeds
and random number generators were used. In the current design of statistical
software, reproducibility was mostly an afterthought and has to be taken care of
manually. In practice it is tedious and error-prone. There is a lot of room for im-
provement through software that incorporates reproducible practices as a natural

part of the data analysis process.

36

Whereas reproducibility in statistics is acknowledged from a transparency and
accountability point of view, it has enormous potential to become much more
than that. There are interesting parallels between reproducible research and re-
vision control in source code management systems. Technology for automatic
reproducible data analysis could revolutionize scientific collaboration, similar to
what git has done for software development. A system that keeps track of each
step in the analysis process like a commit in software versioning would make peer
review or follow-up analysis more practical and enjoyable. When colleagues or
reviewers can easily reproduce results, test alternative hypotheses or recycle data,
we achieve greater trustworthiness but also multiply return on investment of our
work. Finally an open kitchen can help facilitate more natural ways of learning
and teaching statistics. Rather than relying on general purpose textbooks with
artificial examples, scholars directly study the practices of prominent researchers
to understand how methods are applied in the context of data and problems as

they appear specifically in their area of interest.

3 The state problem

Management of state is a fundamental principle around which digital commu-
nications are designed. We distinguish stateful and stateless communication.
In a stateless communication protocol, interaction involves independent request-
response messages in which each request is unrelated by any previous request
(Hennessy and Patterson, 2011). Because the messages are independent, there
is no particular ordering to them and requests can be performed concurrently.
Examples of stateless protocols include the internet protocol (IP) and the hyper-
text transfer protocol (HTTP). A stateful protocol on the other hand consists of
an interaction via an ordered sequence of interrelated messages. The specification

typically prescribes a specific mechanism for initiating and terminating a persis-

37

tent connection for information exchange. Examples of stateful protocols include

the transmission control protocol (TCP) or file transfer protocol (FTP).

In most data analysis software, the user controls an interactive session through a
console or GUI, with the possibility of executing a sequence of operations in the
form of a script. Scripts are useful for publishing code, but the most powerful
way of using the software is interactively. In this respect, statistical software is
not unlike to a shell interface to the operating system. Interactivity in scientific
computing makes management of state the most central challenge in the inter-
face design. When moving from a UI to API perspective, support for statefulness
becomes substantially more complicated. This section discusses how the exist-
ing bridges to R have approached this problem, and their limitations. We then
continue by explaining how the OpenCPU API exploits the functional paradigm to
implement a hybrid solution that abstracts the notion of state and allows for a

high degree of performance optimization.

3.1 Stateless solutions: predefined scripts

The easiest solution is to not incorporate state on the level of the interface, and
limit the system to predefined scripts. This is the standard approach in tradi-
tional web development. The web server exposes a parameterized service which
generates dynamic content by calling out to a script on the system via CGI. Any
support for state has to be implemented manually in the application layer, e.g. by
writing code that stores values in a database. For R we can use rApache (Horner,
2013) to develop this kind of scripted applications very similar to web scripting
languages such as php. This suffices for relatively simple services that expose
limited, predefined functionality. Scripted solutions give the developer flexibility
to freely define input and output that are needed for a particular application.
For example, we can write a script that generates a plot based on a couple of

input parameters and returns a fixed size png image. Because scripts are state-

38

less, multiple requests can be performed concurrently. A lot of the early work in
this research has been based on this approach, which is a nice starting point but

becomes increasingly problematic for more sophisticated applications.

The main limitation of scripts is that to support basic interactivity, retention
of state needs to be implemented manually in the application layer. A minimal
application in statistics consists of the user uploading a data file, performing some
manipulations and then creating a model, plot or report. When using scripts, the
application developer needs to implement a framework to manage requests from
various user sessions, and store intermediate results in a database or disk. Due
to the complexity of objects and data in R, this is much more involved than
it is in e.g. php, and requires programming skills. Furthermore it leads to code
that intermingles scientific computing with application logic, and rapidly increases
complexity as the application gets extended with additional scripts. Because these
problems will recur for almost any statistical application, we could benefit greatly

from a system that supports retaining state by design.

Moreover predefined scripts are problematic because they divide developers and
users in a way that is not very natural for scientific computing. Scripts in tra-
ditional web development give the client very little power to prevents malicious
use of services. However, in scientific computing, a script often merely serves as a
starting point for analysis. The user wants to be able to modify the script to look
at the data in another way by trying additional methods or different procedures.
A system that only allows for performing scripted actions severely handicaps the
client and creates a lot of work for developers: because all functionality has to
be prescripted, they are in charge of designing and implementing each possible
action the user might want to perform. This is impractical for statistics because
of the infinite amount of operations that can be performed on a dataset. For
these reasons, the stateless scripting approach does not scale well to many users

or complex applications.

39

3.2 Stateful solution: client side process management

Most existing bridges to R have taken a stateful approach. Tools such as Rserve
(Urbanek, 2013b) and shiny (RStudio Inc., 2014b) expose a low-level interface to
a private R process over a (web)socket. This gives clients freedom to run arbitrary
R code, which is great for implementing something like a web-based console or
IDE. The main problem with existing stateful solutions is lack of interoperability.
Because these tools are in essence a remote R console, they do not specify any
standardized interface for calling methods, data I/0, etc. A low-level interface
requires extensive knowledge of logic and internals of R to communicate, which
again leads to high coupling. The client needs to be aware of R syntax to call
R methods, interpret R data structures, capture graphics, etc. These bridges are
typically intended to be used in combination with a special client. In the case of
shiny, the server comes with a set of widget templates that can be customized
from within R. This allows R users to create a basic web GUI without writing any
HTML or JavaScript, which can be very useful. However, the shiny software is not
designed for integration with non-shiny clients and serves a somewhat different

purpose and audience than tools for embedded scientific computing.

Besides high coupling and lack of interoperability, stateful bridges also introduce
some technical difficulties. Systems that allocate a private R process for each client
cannot support concurrent requests within a session. Each incoming request has
to wait until the previous requests are finished for the process to become available.
In addition to suboptimal performance, this can also be a source of instability.
When the R process gets stuck or raises an unexpected error, the server might
become unresponsive causing the application to crash. Another drawback is that
stateful servers are extremely expensive and inefficient in terms of memory alloca-
tion. The server has to keep each R process alive for the full duration of a session,
even when idle most of the time. Memory that is in use by any single client does

not free up until the user closes the application. This is particularly unfortunate

40

because memory is usually the main bottleneck in data intensive applications of
scientific computing. Moreover, connectivity problems or ill-behaved clients re-
quire mechanisms to timeout and terminate inactive processes, or save and restore

an entire session.

3.3 A hybrid solution: functional state

We can take the best of both worlds by abstracting the notion of state to a
higher level. Interactivity and state in OpenCPU is provided through persistence
of objects rather than a persistent process. As it turns out, this is a natural and
powerful definition of state within the functional paradigm. Functional program-
ming emphasizes that output from methods depends only on their inputs and not
on the program state. Therefore, functional languages can support state without
keeping an entire process alive: merely retaining the state of objects should be
sufficient. As was discussed before, this has obvious parallels with mathematics,
but also maps beautifully to stateless protocols such as HTTP. The notion of state
as the set of objects is already quite natural to the R user, as is apparent from
the save.image function. This function serializes all objects in the global envi-
ronment to a file on disk which described in the documentation as “saving the
current workspace”. Exploiting this same notion of state in our interface allows
us to get the benefits of both traditional stateless and stateful approaches without
introducing additional complexity. This simple observation provides the basis for

a very flexible, stateful RPC system.

To facilitate this, the OpenCPU API defines a mapping between HTTP requests and
R function calls. After executing a function call, the server stores all outputs
(return value, graphics, files) and a temporary key is given to the client. This
key can be used to control these newly created resources in future requests. The
client can retrieve objects and graphics in various formats, publish resources, or

use them as arguments in subsequent function calls. An interactive application

41

consists of a series of RPC requests with keys referencing the objects to be reused as
arguments in consecutive function calls, making the individual requests technically
stateless. Besides reduced complexity, this system makes parallel computing and
asynchronous requests a natural part of the interaction. To compute f(g(z), h(y)),
the client can perform RPC requests for g(z) and h(y) simultaneously and pass the
resulting keys to f() in a second step. In an asynchronous client language such as
JavaScript this happens so naturally that it requires almost no effort from the

user or application developer.

One important detail is that OpenCPU deliberately does not prescribe how the
server should implement storing and loading of objects in between requests. The
APT only specifies a system for performing R function calls over HTTP and referenc-
ing objects from keys. Different server implementations can use different strategies
for retaining such objects. A naive implementation could simply serialize objects
to disk after each request and immediately terminate the process. This is safe and
easy, but writing to disk can be slow. A more sophisticated implementation could
keep objects in memory for a while longer, either by keeping the R process alive
or through some sort of in-memory database or memcached system. Thereby the
resources do not need to be loaded from disk if they are reused in a subsequent
request shortly after being created. This illustrates the kind of optimization that

can be achieved by carefully decoupling server and client components.

4 The OpenCPU HTTP API

This section introduces the most important concepts and operations of the API.
At this point the concerns discussed in earlier chapters become more concrete as
we illustrate how the pieces come together in the context of R and HTTP. It is not
the intention to provide a detailed specification of every feature of the system. We

focus on the main parts of the interface that exemplify the separation of concerns

42

central to this work. The online documentation and reference implementations
are the best source of information on the specifics of implementing clients and

applications.

4.1 About HTTP

One of the major strengths of OpenCPU is that it builds on the hypertext transfer
protocol (Fielding et al., 1999). HTTP is the most used application protocol on the
internet, and the foundation of data communication in browsers and the world
wide web. The HTTP specification is very mature and widely implemented. It
provides all functionality required to build modern applications and has recently
gained popularity for web API’s as well. The benefit of using a standardized
application protocol is that a lot of functionality gets built-in by design. HTTP
has excellent mechanisms for authentication, encryption, caching, distribution,
concurrency, error handling, etc. This allows us to defer most application logic
of our system to the protocol and limit the API specification to logic of scientific
computing.

The OpenCPU APT defines a mapping between HTTP requests and high-level opera-
tions such as calling functions, running scripts, access to data, manual pages and
management of files and objects. The API deliberately does not prescribe any
language implementation details. Syntax and low-level concerns such as process
management or code evaluation are abstracted and at the discretion of the server
implementation. The API also does not describe any logic which can be taken
care of on the protocol or application layer. For example, to add support for
authentication, any of the standard mechanisms can be used such as basic auth
(Franks et al., 1999) or OAuth 2.0 (Hardt, 2012). The implementation of such
authentication methods might vary from a simple server configuration to defining
additional endpoints. But because authentication will not affect the meaning of

the API itself, it can be considered independent of this research. The same holds

43

for other features of the HTTP protocol which can be used in conjunction with the
OpenCPU API (or any other HTTP interface for that matter). What remains after
cutting out implementation and application logic is a simple and interoperable
interface that is easy to understand and can be implemented with standard HTTP
software libraries. This is an enormous advantage over many other bridges to R

and critical to make the system scalable and extensible.

4.2 Resource types

As was described earlier, individual requests within the OpenCPU APT are stateless
and there is no notion of a process. State of the system changes through creation
and manipulation of resources. This makes the various resource types the con-
ceptual building blocks of the API. Each resource type has unique properties and

supports different operations.

4.2.1 Objects

Objects are the main entities of the system and carry the same meaning as within
a functional language. They include data structures, functions, or other types
supported by the back-end language, in this case R. Each object has an individual
endpoint within the API and unique name or key within its namespace. The
client needs no knowledge of the implementation of these objects. Analogous to
a UI, the primary purpose of the API is managing objects (creating, retrieving,
publishing) and performing procedure calls. Objects created from executing a
script or returned by a function call are automatically stored and gain the same
status as other existing objects. The API does not distinguish between static
objects that appear in e.g. packages, or dynamic objects created by users, nor
does it distinguish between objects in memory or on disk. The API merely provides

a system for referencing objects in a way that allows clients to control and reuse

44

them. The implementation of persistence, caching and expiration of objects is at

the discretion of the server.

4.2.2 Namespaces

A namespace is a collection of uniquely named objects with a given path in the
API. In R, static namespaces are implemented using packages and dynamic names-
paces exist in environments such as the user workspace. OpenCPU abstracts the
concept of a namespace as a set of uniquely named objects and does not distin-
guish between static, dynamic, persistent or temporary namespaces. Clients can
request a list of the contents of any namespace, yet the server might refuse such

a request for private namespaces or hidden objects.

4.2.3 Formats

OpenCPU explicitly differentiates a resource from a representation of that resource
in a particular format. The API lets the client rather than the server decide on the
format used to serve content. This is a difference with common scientific practices
of exchanging data, documents and figures in fixed format files. Resources in
OpenCPU can be retrieved using various output formats and formatting parameters.
For example, a basic dataset can be retrieved in csv, json, Protocol Buffers
or tab delimited format. Similarly, a graphic can be retrieved in svg, png or
pdf and manual pages can be retrieved in text, html or pdf format. In addition
to the format, the client can specify formatting parameters in the request. The
system supports many additional formats, but not every format is appropriate
for every resource type. When a client requests a resource in a format using an

invalid format, the server responds with an error.

45

4.2.4 Data

The API defines a separate entity for data objects. Even though data can techni-
cally be treated as general objects, they often serve a different purpose. Data are
usually not language specific and cannot be called or executed. Therefore it can be
useful to conceptually distinguish this subclass. For example, R uses lazy loading

of data objects to save memory when for packages containing large datasets.

4.2.5 Graphics

Any function call can produce zero or more graphics. After completing a remote
function call, the server reports how many graphics were created and provides the
key for referencing these graphics. Clients can retrieve each individual graphic in
subsequent requests using one of various output formats such as png, pdf, and
svg. Where appropriate the client can specify additional formatting parameters

during the retrieval of the graphic such as width, height or font size.

4.2.6 Files

Files can be uploaded and downloaded using standard HTTP mechanics. The client
can post a file as an argument in a remote function call, or download files that
were saved to the working directory by the function call. Support for files also
allows for hosting web pages (e.g. html, css, js) that interact with local API
endpoints to serve a web application. Furthermore files that are recognized as

scripts can be executed using RPC.

4.2.7 Manuals

In most scientific computing languages, each function or dataset that is available

to the user is accompanied by an identically named manual page. This manual

46

page includes information such as description and usage of functions and their
arguments, or comments about the columns of a particular dataset. Manual pages

can be retrieved through the API in various formats including text, html and pdf.

4.2.8 Sources

The OpenCPU specification makes reproducibility an integrated part of the API
interaction. In addition to results, the server stores the call and arguments for
each RPC request. The same key that is used to retrieve objects or graphics can
be used to retrieve sources or automatically replicate the computation. Hence for
each output resource on the system, clients can lookup the code, data, warnings
and packages that were involved in its creation. Thereby results can easily be
recalculated, which forms a powerful basis for reproducible practices. This feature
can be used for other purposes as well. For example, if a function fetches dynamic
data from an external resource to generate a model or plot, reproduction is used

to update the model or plot with new data.

4.2.9 Containers

We refer to a path on the server containing one or more collections of resources as
a container. The current version of OpenCPU implements two types of containers.
A package is a static container which may include a namespace with R objects,
manual pages, data and files. A session is a dynamic container which holds
outputs created from executing a script or function call, including a namespace
with R objects, graphics and files. The distinction between packages and sessions
is an implementation detail. The API does not differentiate between the various
container types: interacting with an object or file works the same, regardless of
whether it is part of a package or session. Future versions or other servers might

implement different container types for grouping collections of resources.

47

4.2.10 Libraries

We refer to a collection of containers as a library. In R terminology, a library is a
directory on disk with installed packages. Within the context of the API, the con-
cept is not limited to packages but refers more generally to any set of containers.
The /ocpu/tmp/ library for example is the collection of temporary sessions. Also
the API notion of a library does not require containers to be preinstalled. A re-
mote collection of packages, which in R terminology is called a repository, can also
be implemented as a library. The current implementation of OpenCPU exposes the
/ocpu/cran/ library which refers to the current packages on the CRAN repository.
The API does not differentiate between a library of sessions, local packages or
remote packages. Interacting with an object from a CRAN package works the same
as interacting with an object from a local package or temporary session. The API
leaves it up to the server which types of libraries it wishes to expose and how to
implement this. The current version of OpenCPU uses a combination of cron-jobs
and on-the-fly package installations to synchronize packages on the server with

the CRAN repositories.

4.3 Methods

The current API uses two HTTP methods: GET and POST. As per HTTP standards,
GET is a safe method which means it is intended only for information reading
and should not change the state of the server. OpenCPU uses the GET method
to retrieve objects, manuals, graphics or files. The parameters of the request
are mapped to the formatting function. A GET requests targeting a container,
namespace or directory is used to list the contents. The POST method on the
other is used for RPC which does change server state. A POST request targeting a
function results in a remote function call where the HTTP parameters are mapped

to function arguments. A POST request targeting a script results in an execution

48

of the script where HTTP parameters are mapped to the script interpreter. Table
2.1 gives an overview using the MASS package (Venables and Ripley, 2002) as an

example.

4.4 Status codes

Each HTTP response includes a status code. Table 2.2 lists some common HTTP
status codes used by OpenCPU that the client should be able to interpret. The
meaning of these status codes is conform HTTP standards. The web server may
use additional status codes for more general purposes that are not specific to

OpenCPU.

4.5 Content-types

Clients can retrieve objects in various formats by adding a format identifier suffix
to the URL in a GET request. Which formats are supported and how object types
map to a particular format is at the discretion of the server implementation. Not
every format can support any object type. For example, csv can only be used to
retrieve tabular data structures and png is only appropriate for graphics. Table
2.3 lists the formats OpenCPU supports, the respective internet media type, and
the R function that OpenCPU uses to export an object into a particular format.
Arguments of the GET requests are mapped to this export function. The png
format has parameters such as width and height as documented in 7png, whereas
the tab format has parameters sep, eol, dec which specify the delimiting, end-

of-line and decimal character respectively as documented in ?write.table.

4.6 URLs

The root of the APT is dynamic, but defaults to /ocpu/ in the current implementa-

tion. Clients should make the OpenCPU server address and root path configurable.

49

In the examples we assume the defaults. As discussed before, OpenCPU currently
implements two container types to hold resources. Table 2.4 lists the URLs of the

package container type, which includes objects, data, manual pages and files.

Table 2.5 lists URLs of the session container type. This container holds outputs
generated from a RPC request and includes objects, graphics, source code, stdout
and files. As noted earlier, the distinction between packages and sessions is con-
sidered an implementation detail. The API does not differentiate between objects

and files that appear in packages or in sessions.

4.7 RPC requests

A POST request in OpenCPU always invokes a remote procedure call (RPC). Requests
targeting a function object result in a function call where the HTTP parameters
from the post body are mapped to function arguments. A POST targeting a script
results in execution of the script where HTTP parameters are passed to the script
interpreter. The term RPC refers to both remote function calls and remote script
executions. The current OpenCPU implementation recognizes scripts by their file
extension, and supports R, latex, markdown, Sweave and knitr scripts. Table

2.6 lists each script type with the respective file extension and interpreter.

An important conceptual difference with a terminal interface is that in the OpenCPU
API, the server determines the namespace that output of a function call is assigned
to. The server includes a temporary key in the RPC response that serves the same
role as a variable name. The key and is used to reference the newly created re-
sources in future requests. Besides the return value, the server also stores graphics,
files, warnings, messages and stdout that were created by the RPC. These can be
listed and retrieved using the same key. In R, the function call itself is also an

object which is added to the collection for reproducibility purposes.

Objects on the system are non-mutable and therefore the client cannot change

50

or overwrite existing keys. For functions that modify the state of an object, the
server creates a copy of the modified resource with a new key and leaves the

original unaffected.

4.8 Arguments

Arguments to a remote function call can be posted using one of several methods.
A data interchange format such as JSON or Protocol Buffers can be used to
directly post data structures such as lists, vectors, matrices or data frames. Alter-
natively the client can reference the name or key of an existing object. The server
automatically resolves keys and converts interchange formats into objects to be
used as arguments in the function call. Files contained in a multipart/form-data
payload of an RPC request are copied to the working directory and the argument
of the function call is set to the filename. Thereby, remote function calls with a

file arguments can be performed using standard HTML form submission.

The current implementation supports several standard Content-type formats for
passing arguments to a remote function call within a POST request, including
application/x-www-form-urlencoded, multipart/form-data, application/json
and application/x-protobuf. Each parameter or top level field within a POST
payload contains a single argument value. Table 2.7 shows a matrix supported

argument formats for each Content-types.

4.9 Privacy

Because the data and sources of a statistical analysis include potentially sensitive
information, the temporary keys from RPC requests are private. Clients should
default to keeping these keys secret, given that leaking a key will compromise
confidentiality of their data. The system does not allow clients to search for

keys or retrieve resources without providing the appropriate key. In this sense, a

o1

temporary key has a similar status as an access token. Because temporary keys
are private, multiple users can share a single OpenCPU server without any form of
authentication. Each request is anonymous and confidential, and only the client

that performed the RPC has the key to access resources from a particular request.

However, temporary keys do not have to be kept private per se: clients can choose
to exchange keys with other clients. Unlike typical access tokens, the keys in
OpenCPU are unique for each request. Hence by publishing a particular key, the
client reveals only the resources from a specific RPC request, and no other confiden-
tial information. Resources in OpenCPU are not tied to any particular user, in fact,
there are no users in OpenCPU system itself. Clients can share objects, graphics or
files with each other, simply by communicating keys to these resources. Because
each key holds both the output as well as the sources for an RPC request, shared
objects are reusable and reproducible by design. In some sense, all clients share
a single universal namespace with keys containing hidden objects from all RPC
requests. By knowing a key to a particular resource it can be used as any other
object on the system. This shapes the contours of a social analysis platform in
which users collaborate by sharing reproducible, reusable resources identified by

unique keys.

52

spoyjeul dIIH pojusweidul AJuaring :1°g 9[qR],

Y- 1ouo/sadtaos/gsyn/LreaqiT/ndoo/ 1S0d — I999adIsjur [0I3UOD 1drIos una o[y
wrour/y/sqess/LreaqrT/ndoo/ 1S0d syueWINGIR UOIOUN] uUoIouny s 309lqo 1sod

/sadtaos/gSyN/LrexqrT/ndoo/ 199 - SJULIUOD 98| yyed

SMAN/SSVW/Arezqr1/ndoo/ 13D - preo[umop ory

8ud/1/sot1ydexd/{£Lex}/dwi/ndoo/ 14H Sur)yeuLIo] Ispual orydeid

Tway/uiI/uew/SSyn/Areiqi1/ndoo/ 19D Sur)yeULIO] peol [enuew
uos(/sqeo/erep/gSyn/LAreiqiT/ndoo/ 1HD Sur)3RULIO] 9AQLI)OI 100[qo 199
ardwnzsy S4IJIULDUD uoy pebuny poylo

93

SOPO9 sNe)S JILH posn A[UOWWO)) gz 9[qR],

(s80] 10110 99G) — QIN[Ie] I9AISS pua-yoeyg 43sanbey peqg g£0g
(s80] 10110 99G) — QUIPJO I0AI9S pUo-Preyg Lemsien peg gog

ureTd/3xe7 Ul Y WOIJ 98eSSOW JO1If] Y Ul J0110 Teuorjeindwod u() asenbey peg 00%

UOTYBOO] J9ITPAY 190ITPY punog Z0¢
uoryeoo] pue Loy ndinQ 1sonbal 150d [NJssedons uQ) peaeaId 10Z
)ep Porsonbayy 1sonbal 17D [MJssedons u() 0 002

JUIUO0D ISUOASIY uaym suaddvfy apo;y) SNIDIG

54

ad£q-3uequo) Jurpuodsor1od pue sjeurio] jrodxe peytoddns A[jueriny) :¢°g 9[qr],

8as/1/sotydead/{Lex}/dua/ndoo/ 3as: :se0TABQIS Tux+3Aas /oFeuwt 3as
1pd/1/sotydead/{Lex}/dwa/ndoo/ Jpd: :seoTABQIS spd/uotqeot1dde Ipd
8ud/1/sot1ydex8d/{£Lsyq}/dua/ndoo/ Sud: :seoTneqa3 Sud/s3eut Sud
ASD /sqeD /Bdep/SSyH/uead /ndoo/ ASD 93TIM: ISTIAN ASD /9X09 ASD
qe1/s3ed/erep/SSyn/uead /ndoo/ oTqe3 93TIM: :STTIIN ure1d/1x91 qes
qd/saes/eqep/gSy/uerd/ndoo/ qd ezTITerIes::Ingoloxdy Fnqoaoxd-x/uotqeot1dde qd
uos(/sqed/erep/SSyn/uexd /ndoo/ NOSroa: :eatTuos(uos(/uotgest1dde uos(
spi/sied/elep/SSyH/uero /ndoo/ Sgyeres::eseq wesIls-19300/uorrestrdde spx
BpI/S3ed/eqep/SSYW/ueld /ndoso/ oAeS::9SBq WESI]S-39300/uorqedTTdde epI
qutad/wix/4/SSYW/ueid/ndoo/ qutad: :eseq uterd/axeq qutad
adwnxsy uowgounf guodxiy adfig-quogu0y) IDULO]

%)

"so[y pue soged [enurwr ‘ejep ‘s300(qo sepnpoul Iourejuod sgexped oy, g ORI,

/sadtaos/gsyn/uead /ndoo/

SMAN/SSYi/ue1s/ndoo/ 3001 o} aFexpred 03 aATjR[ad ‘A10109IIp UOIJR[[RISUL UI SAI] */°
TWAY/WI/wen/SSyW/uexd /ndoo/

/ueun/SSy/uexo /ndoo/ (Auo 139 dLIH) oSexed oy ut seded [enue]y weu/°
uos(/sqed/e3ep/SSYNH/URId /ndd0/

/®3ep/SSyi/ue1o /ndoo/ (Auo 139 dLLH) oSexped oyy ur s300lqo vye ®©IRP/”
qutad/wrx/4/SSYW/uexd /ndoo/

/4/SSVi/ueid/ndoo/ $309[q0 sordsoureu pojrodxy u/°

/SSYW/uexs /ndoo/ UOT)RULIOJUT d8exoe]
sopdwnzsy %01 d14989 (] Yy

o6

"SO[pue INopIs ‘0oInos ‘sorgders ‘s300(qo sopnouUI IoURIUOd UOISSIS O, :G'g ORI,

zAx oTT3Au/se113/{Lex}/dwa/ndoo/ 1sonbol 9dy oY} Aq IIp SUL{IOM 0} POARS SOl *x/S9TTI/"
eTosuod/{Lex}/duy/ndoo/ 9ndino o[osuoo Jurjemnure INQJLS PUe 90INOS POXI[©TOSU0d/*
anopas/{£ex}/dwa/ndoo/ jsenba1 gy oy £q woij 1N0ALS nopas/"
eoanos/{£Lsy}/dma/ndoo/ 1sonbal Ddy JO 9pod 92IN0g 90Ino0s/ "
8ud/1/sotydead/{Lsy}/dua/ndoo/
/sotydexd/{Lex}/dua/ndoo/ jsonbar pdy oy} Aq pojeard soryderr) sotydead/-
uos(/erepAu/y/{Lex}/dwa/ndoo/
/4/{£ex}/dua /ndoo/ 1senbal Ddy o3 Aq pajeaId s3299(qQ) /-
/{£ex} /dua/ndoo/ 9ST] JUDIUOD UOISSOG
sopdwnzsy 01 d14989 (T Y

57

UOTSUD)X0 Ol SUIZLID)ORIRYD IO} pur s)dLIDS Se PoZIUS0dal SI[I] :9°C 9[qR],

MaIq: 1MaIq maIq meIq-eTTJ

oopued: :I3TUN + 2TUN: :I3TUY UMOPHIRW IqTU puI‘oTTF
oopued: : 13TUN umopyIeu puroTTy

FpdzTx99::8T009 + ATUN: : IFTUY eAeeOMS /I1TUY MuI oTTI
spdzTxeq::sT00] A1 X893 9TT]

99ENTeAD: :9]BNTRAD u IeTT]

d49794duadguy adfip uo0IsUITI 4]

o8

syeur1o} juowngre pojroddns pue sedfa-quequo) jsenbor pejdeody :1°g 9[qRl,

- - - SO 3O snqosoxd-x/uotqeottdde

- - - SO 310 uos(/uotgeot1dde

MO - MO (uwos(ourur) 30 MO PepoOUSTIN-WIOJF-MMM-X/uoTqedsTTdde

30 IO MO (uwos(aurur) 30 MO eqep-mIoy/qredraTnu

fioy dwiay — sop,g opod moy SAUNIONAIS DID(] SIAUIWLL] adfiy-quaguoy)

99

BIBLIOGRAPHY

A. M. Kuchling. Functional programming. Python Documentation, 2014. URL

http://docs.python.org/2/howto/functional.html. Release 0.31.

John M Chambers, Mark H Hansen, David A James, and Duncan Temple Lang.
Distributed computing with data: A corba-based approach. Computing Science
and Statistics, 1998.

David B. Dahl and Scott Crawford. Rinruby: Accessing the r interpreter from
pure ruby. Journal of Statistical Software, 29(4):1-18, 1 2009. ISSN 1548-7660.
URL http://www. jstatsoft.org/v29/i04.

Dirk Eddelbuettel and Romain Francois. Repp: Seamless r and ¢+ integration.
Journal of Statistical Software, 40(8):1-18, 4 2011. ISSN 1548-7660. URL

http://www.jstatsoft.org/v40/108.

Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, 1 edition, 8 2003. ISBN 9780321125217. URL
http://amazon.com/o/ASIN/0321125215/.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. URL http://www.ietf.org/rfc/rfc2616.txt. Up-
dated by RFCs 2817, 5785, 6266, 6585.

Roy T Fielding. Rest apis must be hypertext-driven. Untangled musings
of Roy T. Fielding, 2008. URL http://roy.gbiv.com/untangled/2008/

rest-apis-must-be-hypertext-driven.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000. URL https://www.ics.uci.edu/

~fielding/pubs/dissertation/top.htm. AAI9980887.

60

http://docs.python.org/2/howto/functional.html
http://www.jstatsoft.org/v29/i04
http://www.jstatsoft.org/v40/i08
http://amazon.com/o/ASIN/0321125215/
http://www.ietf.org/rfc/rfc2616.txt
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

John Franks, P Hallam-Baker, J Hostetler, S Lawrence, P Leach, Ari Luotonen,
and L Stewart. RFC 2617: HTTP Authentication: Basic and Digest Access

Authentication, 1999. URL https://tools.ietf.org/html/rfc2617.

L Gautier. mpy2: A simple and efficient access to R from Python, 2012. URL

http://rpy.sourceforge.net/rpy2.html.

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard), October 2012. URL http://www.ietf.org/rfc/rfc6749.txt.

Richard M. Heiberger and Erich Neuwirth. R Through Fxcel: A Spreadsheet
Interface for Statistics, Data Analysis, and Graphics (Use R!). Springer, 2009
edition, 8 2009. ISBN 9781441900517. URL http://amazon.com/o/ASIN/
1441900519/.

George T. Heineman and William T. Councill. Component-Based Software En-
gineering: Putting the Pieces Together. Addison-Wesley Professional, 6 2001.
ISBN 9780201704853. URL http://amazon.com/o/ASIN/0201704854/.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach (The Morgan Kaufmann Series in Computer Architecture and
Design). Morgan Kaufmann, 5 edition, 10 2011. URL http://amazon.com/o/
ASIN/BOO67KU84U/.

Michi Henning. The rise and fall of corba. Queue, 4(5):28-34, 2006.

J. Horner and D Eddelbuettel. littler: a scripting front-end for GNU R. littler
version 0.1.5, 2011. URL http://dirk.eddelbuettel.com/code/littler.
html.

Jeffrey Horner. RApache: Web application development with R and Apache, 2013.

URL http://www.rapache.net.

61

https://tools.ietf.org/html/rfc2617
http://rpy.sourceforge.net/rpy2.html
http://www.ietf.org/rfc/rfc6749.txt
http://amazon.com/o/ASIN/1441900519/
http://amazon.com/o/ASIN/1441900519/
http://amazon.com/o/ASIN/0201704854/
http://amazon.com/o/ASIN/B0067KU84U/
http://amazon.com/o/ASIN/B0067KU84U/
http://dirk.eddelbuettel.com/code/littler.html
http://dirk.eddelbuettel.com/code/littler.html
http://www.rapache.net

Max Kuhn. CRAN Task View: Reproducible Research, 2014. URL http://cran.

r-project.org/web/views/ReproducibleResearch.html.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014. URL http://

www.R-project.org/.

Chris Reade. Elements Of Functional Programming (International Computer Sci-
ence Series). Addison-Wesley, 1 edition, 1 1989. ISBN 9780201129151. URL
http://amazon.com/o/ASIN/0201129159/.

RStudio Inc. httpuv: HTTP and WebSocket server library, 2014a. URL http:

//CRAN.R-project.org/package=httpuv. R package version 1.3.0.

RStudio Inc. shiny: Web Application Framework for R, 2014b. URL http:

//CRAN.R-project.org/package=shiny. R package version 0.9.1.

Duncan Temple Lang. The omegahat environment: New possibilities for statistical
computing. Journal of Computational and Graphical Statistics, 9(3):423-451,
2000.

Simon Urbanek. rJava: Low-level R to Java interface, 2013a. URL http://CRAN.

R-project.org/package=rJava. R package version 0.9-6.

Simon Urbanek. Rserve: Binary R server, 2013b. URL http://CRAN.R-project.

org/package=Rserve. R package version 1.7-3.

Stef van Buuren and Jeroen CL Ooms. Stage line diagram: An age-conditional
reference diagram for tracking development. Statistics in medicine, 28(11):
1569-1579, 2009. URL http://onlinelibrary.wiley.com/doi/10.1002/

sim.3567/abstract.

62

http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
http://www.R-project.org/
http://www.R-project.org/
http://amazon.com/o/ASIN/0201129159/
http://CRAN.R-project.org/package=httpuv
http://CRAN.R-project.org/package=httpuv
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve
http://onlinelibrary.wiley.com/doi/10.1002/sim.3567/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.3567/abstract

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New
York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4.
ISBN 0-387-95457-0.

63

http://www.stats.ox.ac.uk/pub/MASS4

CHAPTER 3

The RAppArmor Package: Enforcing Security
Policies in R Using Dynamic Sandboxing on

Linux

1 Security in R: introduction and motivation

The R project for statistical computing and graphics (R Development Core Team,
2012) is currently one of the primary tool-kits for scientific computing. The soft-
ware is widely used for research and data analysis in both academia and industry,
and is the de-facto standard among statisticians for the development of new com-
putational methods. With support for all major operating systems, a powerful
standard library, over 3000 add-on packages and a large active community, it is
fair to say that the project has matured to a production-ready computation tool.
However, practices in statistical computation have changed since the initial design
of R in 1993 (Thaka, 1998). Internet access, public cloud computing (Armbrust
et al., 2010), live and open data and scientific super computers are transforming
the landscape of data analysis. This is only the beginning. Sharing of data, code
and results on social computing platforms will likely become an integral part of
the publication process (Stefanski et al., 2013). This could address some of the
hardware challenges, but also contribute towards reproducible research and fur-
ther socialize data analysis, i.e. facilitate learning, collaboration and integration.
These developments shift the role of statistical software towards more general pur-

pose computational back-ends, powering systems and applications with embedded

64

analytics and visualization.

However, one reason developers might still be reluctant to build on R is concerns
regarding security and management of shared hardware resources. Reliable soft-
ware systems require components which behave predictably and cannot be abused.
Because R was primarily designed with the local user in mind, security restrictions
and unpredictable behavior have not been considered a major concern in the de-
sign of the software. Hence, these problems will need to be addressed somehow
before developers can feel comfortable making R part of their infrastructure, or
convince administrators to expose their facilities to the public for R based services.
It is our personal experience that the complexity of managing security is easily
underestimated when designing stacks or systems that build on R. Some of the
problems are very domain specific to scientific computing, and make embedding
R quite different from embedding other software environments. Properly address-
ing these challenges can help facilitate wider adoption of R as a general purpose

statistical engine.

1.1 Security when using contributed code

Building systems on R has been the main motivation for this research. However,
security is a concern for R in other contexts as well. As the community is growing
rapidly, relying on social courtesy in contributed code becomes more dangerous.
For example, on a daily basis, dozens of packages and package updates submitted
to the Comprehensive R Archive Network (CRAN) (Ripley, 2011). These packages
contain code written in R, C, Fortran, C++, Java, etc. It is unfeasible for the
CRAN maintainers to do a thorough audit of the full code that is submitted,
every time. Some packages even contain pre-compiled Java code for which the
source is not included. Furthermore, R packages are not signed with a private
key as is the case for e.g. packages in most Linux distributions, which makes it

hard to verify the identity of the author. As CRAN packages are automatically

65

build and installed on hundreds, possibly thousands of machines around the world,
they form an interesting target for abuse. Hence there is a real dangler of packages
containing malicious code making their way unnoticed into the repositories. Risks
are even greater for packages distributed through channels without any form of
code review, for example by email or through the increasingly popular Github

repositories (Torvalds and Hamano, 2010; Dabbish et al., 2012).

In summary, it is not overly paranoid of the R user to be a bit cautious when
installing and running contributed code downloaded from the internet. However,
things don’t have to be as critical as described above. Controlling security is
a good practice, even when there are no immediate reasons for concern. Some
users simply might want to prevent R from accidentally erasing files or interfering
with other activities on the machine. Making an effort to ensure R is running
safely with no unnecessary privileges can be reassuring to both user and system

administrator, and might one day prevent a lot of trouble.

1.2 Sandboxing the R environment

This paper explores some of the potential problems, along with approaches and
methods of securing R. Different aspects of security in the context of R are illus-
trated using personal experiences and examples of bad or malicious code. We will
explain how untrusted code can be executed inside a sandboxed process. Sand-
boxing in this context is a somewhat informal term for creating an execution
environment which limits capabilities of harmful and undesired behavior. As it
turns out, R itself is not very suitable for implementing such access control poli-
cies, and the only way to properly enforce security is by leveraging features from
the operating system. To exemplify this approach, an implementation based on
AppArmor is provided which can be used on Linux distributions as the basis for
a sandboxing toolkit. This package is used throughout the paper to demonstrate

one way of addressing issues.

66

However, we want to emphasize that we don’t claim to have solved the problem.
This paper mostly serves an introduction to security for the R community, and
hopefully creates some awareness that this is a real issue moving forward. The
RAppArmor package is one approach and a good starting point for experimenting
with dynamic sandboxing in R. However it mostly serves as a proof of concept of
the general idea of confining and controlling an R process. The paper describes
examples of use cases, threats, policies and anecdotes to give the reader a sense of
what is involved with this topic. Without any doubt, there are concerns beyond
the ones mentioned in this paper, many of which might be specific to certain
applications or systems. We hope to invoke a discussion in the community about
potential security issues related to using R in different scenarios, and encourage
those comfortable with other platforms or who use R for different purposes to join

the discussion and share their concerns, experiences and solutions.

2 Use cases and concerns of sandboxing R

Let us start by taking a step back and put this research in perspective by describing
some concrete use cases where security in R could be a concern. Below three simple
examples of situations in which running R code in a sandbox can be useful. The
use cases are ordered by complexity and require increasingly advanced sandboxing

technology.

2.0.1 Running untrusted code

Suppose we found an R package in our email or on the internet that looks inter-
esting, but we are not quite sure who the author is, and if the package does not
contain any malicious code. The package is too large for us to inspect all of the
code manually, and furthermore it contains a library in a foreign language (e.g.

C++, Fortran) for which we lack the knowledge and insight to really understand

67

its implications. Moreover, programming style (or lack thereof) of the author can
make it difficult to assess what exactly is going on (IOCCC, 2012). Nevertheless
we would like to give the package a try, but without exposing ourselves to the risk

of potentially jeopardizing the machine.

One solution would be to run untrusted code on a separate or virtual machine. We
could either install some local virtualization software, or rent a VPS/cloud server
to run R remotely, for example on Amazon EC2. However this is somewhat
cumbersome and we will not have our regular workflow available: in order to
put the package to the test on our own data, we first need to copy our data,
scripts, files and package library, etc. Some local virtualization software can be
configured for read-only sharing of resources between host and guest machine,
but we would still need separate virtual machines for different tasks and projects.
In practice, managing multiple machines is a bit unpractical and not something
that we might want to do on a daily basis. It would be more convenient if we
could instead sandbox our regular R environment for the duration of installing and
using the new package with a tailored security policy. If the sandbox is flexible
and unobtrusive enough not to interfere with our daily workflow, we could even
make a habit out of using it each time we use contributed code (which to most

users means every day).

2.0.2 Shared resources

A second use case could be a scenario where multiple users are sharing a single
machine. For example, a system administrator at a university is managing a large
computing server and would like to make it available to faculty and students. This
would allow them to run R code that requires more computing power than their
local machine can handle. For example a researcher might want to do a simulation
study, and fit a complex model a million times on generated datasets of varying

properties. On her own machine this would take months to complete, but the

68

super computer can finish the job overnight. The administrator would like to set
up a web service for this and other researchers to run such R scripts. However
he is worried about users interfering with each others work, or breaking anything
on the machine. Furthermore he wants to make sure that system resources are
allocated in a fair way such that no single user can consume all memory or cpu

on the system.

2.0.3 Embedded systems and services

There have numerous efforts to facilitate integration of R functionality into 3rd
party systems, both for open source and proprietary purposes. Major commercial
vendors like Oracle, IBM and SAS have included R interfaces in their products.
Examples of open source interfaces from popular general purpose languages are
RInside (Eddelbuettel and Francois, 2011), which embeds R into C++ environ-
ments, and JRI which embeds R in Java software (Urbanek, 2011, 2013b). Sim-
ilarly, rpy2 (Moreira and Warnes, 2006; Gautier, 2012) provides a Python inter-
face to R, and RinRuby is a Ruby library that integrates the R interpreter in Ruby
(Dahl and Crawford, 2009). Littler provides hash-bang (i.e. script starting with
#!/some/path) capability for R (Horner and Eddelbuettel, 2011). The Apache2
module rApache (mod-R) (Horner, 2011) makes it possible to run R scripts from
within the Apache2 web server. Heiberger and Neuwirth (2009) provide a series of
tools to call R from DCOM clients on Windows environments, mostly to support
calling R from Microsoft Excel. Finally, RServe is TCP/IP server which provides

low level access to an R session over a socket (Urbanek, 2013a).

The third use case originates from these developments: it can be summarized as
confining and managing R processes inside of embedded systems and services. This
use case is largely derived from our personal needs: we are using R inside various
systems and web services to provide on-demand calculating and plotting over the

internet. These services need to respond quickly and with minimal overhead to

69

incoming requests, and should scale to serve many jobs per second. Furthermore
the systems need to be stable, requiring that jobs should always return within
a given timeframe. Depending on user and the type of job, different security
restrictions might be appropriate. Some services specifically allow for execution
of arbitrary R code. Also we need to dynamically enforce limits on the use of
memory, processors and disk space on a per process basis. These requirements
demand a more flexible and finer degree of control over the process privileges
and restrictions than the first two use cases. It encouraged us to explore more
advanced methods than the conventional tools and has been the most central

motivation of this research.

2.1 System privileges and hardware resources

The use cases described above outline motivations and requirements for an R sand-
box. Two inter-related problems can be distinguished. The first one is preventing
system abuse, i.e. use of the machine for malicious or undesired activity, or com-
pletely compromising the machine. The second problem is managing hardware
resources, i.e. preventing excessive use by constraining the amount of memory,

cpu, etc that a single user or process is allowed to consume.

2.1.1 System abuse

The R console gives the user direct access to the operating system and does not
implement any privilege restrictions or access control policies to prevent malicious
use. In fact, some of the basic functionality in R assumes quite profound access
to the system, e.g. read access to system files, or the privilege of running system
shell commands. However, running untrusted R code without any restrictions
can get us in serious trouble. For example, the code could call the system()

function from where any shell commands can be executed. But also innocent

70

looking functions like read.table can be used to extract sensitive information
from the system, e.g. read.table("/etc/passwd") lists all users on the system

or readLines("/var/log/syslog") exposes system log information.

Even an R process running as a non-privileged user can do a lot of harm. Po-
tential perils include code containing or downloading a virus or security exploit,
or searching the system for sensitive personal information. Appendix 2 demon-
strates a hypothetical example of a simple function that scans the home directory
for documents containing credit card numbers. Another increasing global prob-
lem are viruses which make the machine part of a so called “botnet”. Botnets are
large networks of compromised machines (“bots”) which are remotely controlled
to used for illegal activities (Abu Rajab et al., 2006). Once infected, the botnet
virus connects to a centralized server and waits for instructions from the owner
of the botnet. Botnets are mostly used to send spam or to participate in DDOS
attacks: centrally coordinated operations in which a large number of machines on
the internet is used to flood a target with network traffic with the goal of taking
it down by overloading it (Mirkovic and Reiher, 2004). Botnet software is often
invisible to the user of an infected machine and can run with very little privileges:

simple network access is sufficient to do most of its work.

When using R on the local machine and only running our own code, or from trusted
sources, these scenarios might sound a bit far fetched. However, when running
code downloaded from the internet or exposing systems to the public, this is a
real concern. Internet security is a global problem, and there are a large number
of individuals, organizations and even governments actively employing increas-
ingly advanced and creative ways of gaining access to protected infrastructures.
Especially servers running on beefy hardware or fast connections are attractive
targets for individuals that could use these resources for other purposes. But also
servers and users inside large companies, universities or government institutions

are frequently targeted with the goal of gathering confidential information. This

71

last aspect seems especially relevant, as R is used frequently in these types of

organizations.

2.1.2 Resource restrictions

The other category of problems is not necessarily related to deliberate abuse,
and might even arise completely unintentionally. It involves proper management,

allocation and restricting of hardware.

It is fair to say that R can be quite greedy with system resources. It is easy to
run a command which will consume all of the available memory and/or CPU,
and does not finish executing until manually terminated. When running R on the
local machine through the interactive console, the user will quickly recognize a
function call that is not returning timely or is making the machine unresponsive.
When this happens, we can easily interrupt the process prematurely by sending
a SIGINT, i.e. pressing CTRL+C in Linux or ESC in Windows. If this doesn’t work
we can open the task manager and tell the operating system to kill the process,

and if worst comes to worst we can decide to reboot our machine.

However, when R is embedded in a system, the situation is more complicated and
we need to cover these scenarios in advance. If an out-of-control R job is not
properly detected and terminated, the process might very well run indefinitely
and take down our service, or even the entire machine. This has actually been
a major problem that we personally experienced in an early implementation of a
public web service for mixed modelling (Ooms, 2010) which uses the 1me4 package
(Bates et al., 2011). What happened was that users could accidentally specify a
variable with many levels as the grouping factor. This causes the design matrix to
blow up even on a relatively small dataset, and decompositions will take forever
to complete. To make things worse, 1me4 uses a lot of C code which does not

respond to time limits set by R’s setTimeLimit function. Appendix 4 contains a

72

code snippet that simulates this scenario. When this would happen, the only way
to get things up and running again was to manually login to the server and reset

the application.

Unfortunately this example is not an exception. The behavior of R can be un-
predictable, which is an aspect easily overlooked by (non-statistician) developers.
When a system calls out to e.g. an SQL or PHP script, the procedure usually runs
without any problems and the processing time is proportional to the size of the
data, i.e. the number of records returned by SQL. However, in an R script many
things can go wrong, even though the script itself is perfectly fine. Algorithms
might not converge, data might be rank-deficient, or missing values throw a span-
ner in the works. Statistical computing is full of such intrinsic edge-cases and
unexpected caveats. Using only tested code or predefined services does not en-
tirely guarantee smooth and timely completion of R jobs, especially if the data is
dynamic. When embedding R in systems or shared facilities, it is important that
we acknowledge this facet and have systems in place to manage jobs and mitigate

problems without manual intervention.

3 Various approaches of confining R

The current section introduces several approaches of securing and sandboxing R,
with their advantages and limitations. They are reviewed in the context of our
use cases, and evaluated on how they address the problems of system abuse and
restricting resources. The approaches are increasingly low-level: they represent
security on the level of the application, R software itself and operating system
respectively. As will become clear, we are leaning towards the opinion that R is
not very well suited to address security issues, and the only way to do proper
sandboxing is on the level of the operating system. This will lead up to the

RAppArmor package introduced in section 4.

73

3.1 Application level security: predefined services

The most common approach to prevent malicious use is simply to only allow a
limited set of predefined services, that have been deployed by a trusted developer
and cannot be abused. This is generally the case for websites containing dynamic
content though e.g. CGI or PHP scripts. Running arbitrary code is explicitly pre-
vented and any possibility to do so anyway is considered a security hole. For

example, we might expose the following function as a web service:

liveplot <- function (ticker) {

url <- paste("http://ichart.finance.yahoo.com/table.csv?s=",
ticker, "&a=07&b=19&c=2004&d=07&e=13&f=2020&g=d&ignore=.csv",
sep = "")

mydata <- read.csv(url)

mydata$Date <- as.Date(mydata$Date)

myplot <- ggplot2::gplot(Date, Close, data = mydata, geom = c("line",
"smooth"), main = ticker)

print (myplot)

The function above downloads live data from the public API at Yahoo Finance
and creates an on-demand plot of the historical prices using ggplot2 (Wickham,
2009). It has only one parameter: ticker, a character string identifying a stock
symbol. This function can be exposed as a predefined web service, where the
client only supplies the ticker argument. Hence the system does not need to
run any potentially harmful user-supplied R code. The client sets the symbol to
e.g. "GOOG" and the resulting plot can be returned in the form of a PNG image
or PDF document. This function is actually the basis of the “stockplot” web
application (Ooms, 2009); an interactive graphical web application for financial

analysis which still runs today.

Limiting users and clients to a set of predefined parameterized services is the

74

standard solution and reasonably safe in combination with basic security methods.
For example, Rserve can be configured to run with a custom uid, umask, chroot.
However in the context of R, predefined services severely limit the application and
security is actually not fully guaranteed. We can expose some canned calculations
or generate a plot as done in the example, but beyond that things quickly becomes
overly restrictive. For example in case of an application that allows the user to fit
a statistical model, the user might need to be able to include transformations of
variables like I(cos(x~ 2)) or cs(x, 3). Not allowing a user to call any custom

functions makes this hard to implement.

What distinguishes R from other statistical software is that the user has a great
deal of control and can do programming, load custom libraries, etc. A predefined
service takes this freedom away from the user, and at the same time puts a lot
of work in the hands of the developer and administrator. Only they can expose
new services and they have to make sure that all services that are exposed cannot
be abused in some way or another. Therefore this approach is expensive, and not
very social in terms of users contributing code. In practice, anyone that wants
to publish an R service will have to purchase and manage a personal server or
know someone that is willing to do so. Also it is still important to set hardware
limitations, even when exposing relatively simple, restricted services. We already
mentioned the example of the 1me4 web application, where a single user could
accidentally take down the entire system by specifying an overly complex model.
But actually even some of the most basic functionality in R can cause trouble with
problematic data. Hence, even restricted predefined R services are not guaranteed
to consistently return smooth and timely. These aspects of statistical computing
make common practices in software design not directly generalize to R services,
and are easily under appreciated by developers and engineers with a limited back-

ground in data analysis.

75

3.1.1 Code injection

Finally, there is still the risk of code injection. Because R is a very dynamic
language, evaluations sometimes happen at unexpected places. One example is
during the parsing of formulas. For example, we might want to publish a service
that calls the 1m() function in R on a fixed dataset. Hence the only parameter
supplied by the user is a formula in the form of a character vector. Assume in the
code snippet below that the userformula parameter is a string that has been set

through some graphical interface.

coef (Im(userformula, data = cars))

For example the user might supply a string "speed~dist" and the service will
return the coefficients. On first sight, this might seem like a safe service. However,
formulas actually allow for the inclusion of calls to other functions. So even though

userformula is a character vector, it can be used to inject a function call:

userformula <- "speed ~ dist + system(’whoami’)"

Im(userformula, data = cars)

In the example above, 1m will automatically convert userformula from type char-
acter to a formula, and subsequently execute the system(’whoami’) command.
Hence even when a client supplies only simple primitive data, unexpected oppor-
tunities for code injection can still arise. Therefore it is important when using this
approach, to sanitize the input before executing the service. One way is by setting
up the service such that only alphanumeric values are valid parameters, and use a
regular expression to remove any other characters, before actually executing the

script or service:

myarg <- gsub("["a-zA-Z0-9]", "", myarg)

76

3.2 Sanitizing code by blacklisting

A less restrictive approach is to allow users to push custom R code, but inspect the
code before evaluating it. This approach has been adopted by some web sites that
allow users to run R code, like Banfield (1999) and Chew (2012). However, given
the dynamic nature of the R language, malicious calls are actually very difficult
to detect and such security is easy to circumvent. For example, we might want to
prevent users from calling the system function. One way is to define some smart
regular expressions that look for the word “system” in a block of code. This way

it would be possible to detect a potentially malicious call like this:

system("whoami")

However, it is much more difficult to detect the equivalent call in the following

block:

foo <- get(paste("sy", "em", sep = "st"))

bar <- paste("who", "i", sep = "am"

foo(bar)

And indeed, it turns out that the services that use this approach are fairly easy to
trick. Because R is a dynamic scripting language, the exact function calls might
not reveal themselves until runtime, when it is often too late. We are actually
quite convinced that it is nearly impossible to really sanitize an R script just by

inspecting the source code.

An alternative method to prevent malicious code is by defining an extensive black-
list of functions that a user is not allowed to call, and disable these at runtime.
The sandboxR package (Daroczi, 2013) does this to block access to all R func-
tions providing access to the file system. It evaluates the user-supplied code in an
environment in which all blacklisted functions are masked from the calling names-

pace. This is fairly effective and provides a barrier against smaller possible attacks

7

or casual errors. However, the method relies on exactly knowing and specifying
which functions are safe and which are not. The package author has done this
for the thousands of R functions in the base package and we assume he has done
a good job. But it is quite hard to maintain and cumbersome to generalize to
other R packages (by default the method does not allow loading other packages).
Everything falls if one function has been overlooked or changes between versions,
which does make the method vulnerable. Furthermore, in R even the most prim-
itive functions can be exploited to tamper with scoping and namespaces, so it is

unwise to rely solely on this for security.

Moreover, even when sanitizing of the code is successful, this method does not
limit the use of hardware resources in any way. Hence, additional methods are still
required to prevent excessive use of resources in a public environment. Packages
like sandboxR should probably only be used to supplement system level security
as implemented in the RAppArmor package. They can be useful to detect prob-
lematic calls earlier on and present informative errors naming a specific forbidden
function rather than just ”permission denied”. But blacklisting solutions are not

waterproof and should not be considered a full security solution.

3.3 Sandboxing on the level of the operating system

One can argue that managing resources and privileges is something that is outside
the domain of the R software, and is better left to the operating system. The R
software has been designed for statistical computing and related functionality;
the operating system deals with hardware and security related matters. Hence,
in order to really sandbox R properly without imposing unnecessary limitations
on its functionality, we need to sandbox the process on the level of the operating
system. When restrictions are enforced by the operating system instead of R itself,
we do not have to worry about all of the pitfalls and implementation details of R.

The user can interact freely with R, but won’t be able to do anything for which

78

the system does not grant permission.

Some operating systems offer more advanced capabilities for setting process re-
strictions than others. The most advanced functionality is found in UNIX like sys-
tems, of which the most popular ones are either BSD based (FreeBSD, 0SX, etc)
or Linux based (Debian, Ubuntu, Fedora, Suse, etc). Most UNIX like systems
implement some sort of ULIMIT functionality to facilitate restricting availability
of hardware resources on a per-process basis. Furthermore, both BSD and Linux
provide various Mandatory Access Control (MAC) systems. On Linux, these are
implemented as Kernel modules. The most popular ones are AppArmor (Bauer,
2006), SELinux (Smalley et al., 2001) and Tomoyo Linux (Harada et al., 2004).
MAC gives a much finer degree of control than standard user-based privileges, by
applying advanced security policies on a per-process basis. Using a combination
of MAC and ULIMIT tools we can do a pretty decent job in sandboxing a single R
process to a point where it can do little harm to the system. Hence we can run ar-
bitrary R code without losing any sleep over potentially jeopardizing the machine.
Unfortunately, this approach comes at the cost of portability of the software. As
different operating systems implement very different methods for managing pro-
cesses and privileges, the solutions will be to a large extend OS-specific. In our
implementation we have tried to hide these system calls by exposing R functions to
interact with the kernel. Going forward, eventually these functions could behave
somewhat OS specific, abstracting away technicalities and providing similar func-
tionality on different systems. But for now we limit ourselves to systems based

on the Linux kernel.

4 The RAppArmor package

The current section describes some security concepts and how an R process can

be sandboxed using a combination of ULIMIT and MAC tools. The methods are

79

illustrated using the RAppArmor package: an implementation based on Linux and
AppArmor. AppArmor (“Application Armor”) is a security module for the Linux
kernel. It allows for associating programs and processes with security profiles that
restrict the capabilities and permissions of that process. There are two ways of
using AppArmor. One is to associate a single, static security profile with every
R process. This can be done only by the system administrator and does not
require our R package (see also section section 4.9). However, this is usually
overly restrictive. We want more flexibility to set different policies, priorities and

restrictions for different users or tasks.

The RAppArmor package exposes R functions that interface directly to Linux sys-
tem calls related to setting privileges and restrictions of a running process. Besides
applying security profiles, RAppArmor also interfaces to the prlimit call in Linux,
which sets RLIMIT (resource limit) values on a process (RLIMIT are the Linux
implementation of ULIMIT). Linux defines a number of RLIMIT’s, which restrict
resources like memory use, number of processes, and stack size. More details on
RLIMIT follow in section 4.7. Using RAppArmor, the sandboxing functionality is
accessible directly from within the R session, without the need for external tools
or programs. Once RAppArmor is installed, any user can apply security profiles
and restrictions to the running process; no special permissions are required. Fur-
thermore, it allowed us to create the eval.secure function: an abstraction which
mimics eval, but has additional parameters to evaluate a single call under a given

uid, priority, security policy and resource restrictions.

The RAppArmor package brings the low level system security methods all the way
up to level of the R language. Using eval.secure, different parts of our code
can run with different security restrictions with minimal overhead, something we
call dynamic sandboxing. This is incredibly powerful in the context of embedded
services, and opens the door applications which explicitly allow for arbitrary code

execution; something that previously always had to be avoided for security rea-

80

sons. This enables a new approach to socialize statistical computing and lies at
the core of the OpenCPU framework (Ooms, 2013), which exposes a public HTTP

API to run and share R code on a central server.

4.1 AppArmor profiles

Security policies are defined in profiles which form the core of the AppArmor soft-
ware. A profile consists of a set of rules specified using AppArmor syntax in an ascii
file. The Linux kernel translates these rules to a security policy that it will enforce
on the appropriate process. A brief introduction to the AppArmor syntax is given
in section 5.1. The appendix of this paper contains some example profiles that
ship with the RAppArmor package to get the user started. When the package is
installed through the Debian/Ubuntu package manager (e.g. using apt-get) the
profiles are automatically copied to /etc/apparmor.d/rapparmor.d/. Because
profiles define file access permissions based the location of files and directories on
the file system, they are to some extent specific to a certain Linux distribution, as
different distributions have somewhat varying conventions on where files are lo-
cated. The example profiles included with RAppArmor are based on the file layout
of the r-base package (and its dependencies) by Bates and Eddelbuettel (2004)
for Debian/Ubuntu, currently maintained by Dirk Eddelbuettel.

The RAppArmor package and the included profiles work “out of the box” on Ubuntu
12.04 (Precise) and up, Debian 7.0 (Wheezy) and up. The package can also be
used on OpenSuse 12.1 and up, however Suse systems organize the file system
in a slightly different way than Ubuntu and Debian, so the profiles need to be
modified accordingly. The RAppArmor website contains some specific instructions

regarding various distributions.

Again, we want to emphasize that the package should mostly be seen as a refer-

ence implementation to demonstrate how to create a working sandbox in R. The

81

RAppArmor package provides the tools to set security restrictions and example
profiles to get the user started. However, depending on system and application,
different policies might be appropriate. It is still up to the administrator to de-
termine which privileges and restrictions are appropriate for a certain system or
purpose. The example profiles are merely a starting point and need fine-tuning

for specific applications.

4.2 Automatic installation

The RAppArmor package consists of R software and a number of example security
profiles. On Ubuntu it is easiest installed using binary builds provided through
launchpad:

sudo add-apt-repository ppa:opencpu/rapparmor

sudo apt-get update

sudo apt-get install r-cran-rapparmor

Binaries in this repository are build for the version of R that ships with the operat-
ing system. For builds of R version 3.0 and up, use ppa:opencpu/rapparmor-dev
instead. The r-cran-rapparmor package can also be build from source using
something along the lines of the following:

sudo apt-get install libapparmor-dev devscripts

wget http://cran.fhcrc.org/src/contrib/Archive/RAppArmor/RAppArmor_1.0.0.tar.gz
tar xzvf RAppArmor_1.0.0.tar.gz

cd RAppArmor/

debuild -uc -us

cd ..

sudo dpkg -i r-cran-rapparmor_x*.deb

The r-cran-rapparmor package will automatically install required dependen-
cies and security profiles. The security profiles are installed in the directory

/etc/appamor.d/rapparmor.d/.

82

4.3 Manual installation

On distributions for which no system installation package is available, manual

installation is required. Start with installing required dependencies:

sudo apt-get install r-base-dev libapparmor-dev apparmor apparmor-utils

Note that R version 2.14 or higher is required. Also the system needs to have an
AppArmor enabled Linux kernel. After dependencies have been installed, install

RAppArmor from CRAN:

wget http://cran.r-project.org/src/contrib/RAppArmor_1.0.0.tar.gz
sudo R CMD INSTALL RAppArmor_1.0.0.tar.gz

This will compile the C code and install the R package. After the package has been
installed successfully, the security profiles need to be copied to the apparmor.d
directory:

cd /usr/local/lib/R/site-library/RAppArmor/

sudo cp -Rf profiles/debian/* /etc/apparmor.d/

Finally, the AppArmor service needs to be restarted to load the new profiles. Also
we do not want to enforce the global R profile at this point:

sudo service apparmor restart

sudo aa-disable usr.bin.r

This should complete the installation. To verify if everything is working, start R

and run the following code:

library ("RAppArmor")
AppArmor LSM is enabled.

Current profile: mnone (unconfined).
See Zaa_change_profile on how switch profiles.
aa_change_profile("r-base")

Switching profiles...

83

If the code runs without any errors, the package has successfully been installed.

4.4 Linux security methods

The RAppArmor package interfaces to a number of Linux system calls that are
useful in the context of security and sandboxing. The advantage of calling these
directly from R is that we can dynamically set the parameters from within the R
process, as opposed to fixing them for all R sessions. Hence it is actually possible

to execute some parts of an application in a different security context other parts.

The package implements many functions that wrap around Linux C interfaces.
However it is not required to study all of these functions. To the end user, every-
thing in the package comes together in the powerful and convenient eval.secure ()
function. This function mimics eval (), but it has additional parameters that de-

fine restrictions which will be enforced to a specific evaluation. An example:

myresult <- eval.secure(myfun(), RLIMIT_AS = 1024 * 1024, profile = "r-base")

This will call myfun() with a memory limit of IMB and the “r-base” security
profile (which is introduced in section 5.2). The eval.secure function works by
creating a fork of the current process, and then sets hard limits, uid and AppArmor
profile on the forked process, before evaluating the call. After the function returns,
or when the timeout is reached, the forked process is killed and cleaned up. This
way, all of the one-way security restrictions can be applied, and evaluations that

happen inside eval.secure won’t have any side effects on the main process.

4.5 Setting user and group ID

One of the most basic security methods is running a process as a specific user.
Especially within a system where the main process has superuser privileges (which

could be the case in for example a webserver), switching to a user with limited

84

privileges before evaluating any code is a wise thing to do. We could even consider
a design where every user of the application has a dedicated user account on
the Linux machine. The RAppArmor package implements the functions getuid,
setuid, getgid, setgid, which call out to the respective Linux system calls.
Users and groups can either be specified by their name, or as integer values as

defined in the /etc/passwd file.

system("whoami", intern = TRUE)
[1] "root"

getuid)

(11 o

getgid ()

[11 0

setgid(1000)

setuid(1000)

getgid()

[1] 1000

getuid)

[1] 1000

system("whoami", intern = TRUE)

[1] "jeroen"

The user/group ID can also be set inside the eval.secure function. In this case
it will not affect the main process; the UID is only set for the time of the secure

evaluation.

eval (system("whoami", intern = TRUE))
[1] "root"
eval.secure(system("whoami", intern = TRUE), uid = 1000)

[1] "jeroen"

eval (system("whoami", intern = TRUE))

[1] "root"

85

Note that in order for setgid and setuid to work, the user must have the appro-
priate capabilities in Linux, which are usually restricted to users with superuser

privileges. The getuid and getgid functions can be called by anyone.

4.6 Setting Task Priority

The RAppArmor package implements interfaces for setting the scheduling priority
of a process, also called its nice value or niceness. Linux systems use a priority
system with 40 priorities, ranging from -20 (highest priority) to 19 (lowest prior-
ity). By default most processes run with nice value 0. Users without superuser
privileges can only increase this value, i.e. lower the priority of the process. In
RAppArmor the getpriority and setpriority functions change the priority of

the current session:

getpriority()

(11 o

setpriority(5)

(11 &

system("nice", intern = TRUE)
[1] "s"

setpriority(0)

Error: Failed to set priority.

Again, the eval.secure function is used to run a function or code block with a

certain priority without affecting the priority of the main R session:

getpriority()

(11 5

eval.secure(system("nice", intern = TRUE), priority = 10)
[1] "10"

getpriority()

(11 5

86

4.7 Linux Resource Limits (RLIMIT)

Linux defines a number of RLIMIT values that can be used to set resource limits on
a process (Free Software Foundation, 2012). The RAppArmor package has functions
to get/set to the following RLIMITs:

e RLIMIT_AS — The maximum size of the process’s virtual memory (address

space).
e RLIMIT CORE — Maximum size of core file.
e RLIMIT_CPU — CPU time limit.
e RLIMIT_DATA — The maximum size of the process’s data segment.
e RLIMIT FSIZE — The maximum size of files that the process may create.
e RLIMIT MEMLOCK — Number of memory that may be locked into RAM.

e RLIMIT_MSGQUEUE — Max number of bytes that can be allocated for POSIX

message queues
e RLIMIT NICE — Specifies a ceiling to which the process’s nice value (priority).
e RLIMIT_NOFILE — Limit maximum file descriptor number that can be opened.

e RLIMIT_NPROC — Maximum number of processes (or, more precisely on Linux,

threads) that can be created by the user of the calling process.

e RLIMIT RTPRIO — Ceiling on the real-time priority that may be set for this

process.

e RLIMIT_RTTIME — Limit on the amount of CPU time that a process scheduled
under a real-time scheduling policy may consume without making a blocking

system call.

87

e RLIMIT_SIGPENDING — Limit on the number of signals that may be queued

by the user of the calling process.

e RLIMIT_STACK — The maximum size of the process stack.

For all of the above RLIMITs, the RAppArmor package implements a function which
name is equivalent to the non-capitalized name of the RLIMIT. For example to
get /set RLIMIT_AS, the user calls rlimit as(). Every rlimit_ function has ex-
actly 3 parameters: hardlim, softlim, and pid. Each argument is specified as an
integer value. The pid arguments points to the target process. When this argu-
ment is omitted, the calling process is targeted. When the softlim is omitted, it
is set equal to the hardlim. When the function is called without any arguments,

it returns the current limits.

The soft limit is the value that the kernel enforces for the corresponding resource.
The hard limit acts as a ceiling for the soft limit: an unprivileged process may
only set its soft limit to a value in the range from 0 up to the hard limit, and
(irreversibly) lower its hard limit. A privileged process (under Linux: one with the
CAP_SYS RESOURCE capability) may make arbitrary changes to either limit value.
(Free Software Foundation, 2012)

A <- rnorm(1e+07)

rm(A)
gc

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 377297 20.2 667722 35.7 597831 32.0

Vcells 548431 4.2 9056788 69.1 10562454 80.6
rlimit_as(10 * 1024 * 1024)
A <- rnorm(1e+07)

Error: cannot allocate vector of size 76.3 Mb

Note that a process owned by a user without superuser privileges can only modify

RLIMIT to more restrictive values. However, using eval.secure, a more restrictive

88

RLIMIT can be applied to a single evaluation without any side effects on the main
process.

A <- eval.secure(rnorm(1e+07), RLIMIT_AS = 10 * 1024 * 1024)

Error: cannot allocate vector of size 76.3 Mb

A <- rnorm(1e+07)

object.size(A)

80000040 bytes

The exact meaning of the different limits can be found in the RAppArmor package
documentation (e.g. ?rlimit_as) or in the documentation of the distribution, e.g.

Canonical, Inc (2012).

4.8 Activating AppArmor profiles

The RAppArmor package implements three calls to the Linux kernel related to ap-
plying AppArmor profiles: aa_change profile, aa change hat and aa_revert_hat.
Both the aa_change profile and aa change hat functions take a parameter
named profile: a character string identifying the name of the profile. This pro-
file has to be preloaded by the kernel, before it can be applied to a process. The
easiest way to load profiles is to copy them to the directory /etc/apparmor.d/

and then run sudo service apparmor restart.

The main difference between a profile and a hat is that switching profiles is an
irreversible action. Once the profile has been associated with the current pro-
cess, the process cannot call aa_change profile again to escape from the profile
(that would defeat the purpose). The only exception to this rule are profiles that
contain an explicit change profile directive. The aa_change hat function on
the other hand is designed to associate a process with a security profile in a way
that does allow it to escape out of the security profile. In order to realize this,
the aa_change hat takes a second argument called magic_token, which defines a

secret key that can be used to revert the hat. When aa_revert_hat is called with

89

the same magic_token that was used in aa_change_hat, the security restrictions

are relieved.

Using aa_change hat to switch in and out of profiles is an easy way to get started
with RAppArmor and test some security policies. However it should be emphasized
that using hats instead of profiles is also a security risk and should be avoided
in production settings. It is important to realize that if the code running in the
sandbox can find a way of discovering the value of the magic_token (e.g. from
memory, command history or log files), it will be able to escape from the sandbox.
Hence aa_change hat should only be used to prevent general purpose malicious
activity, e.g. when testing a new R package. When hosting services or otherwise
exposing an environment that might be specifically targeted, hackers could write
code that attempts to find the magic token and revert the hat. Therefore it
is recommended to only use aa_change profile or eval.secure in production
settings. When a profile is applied to a process using aa_change profile or
eval.secure, the kernel will keep enforcing the security policy on the respective

process and all of its children until they die, no matter what.

The RAppArmor package ships with a profile called testprofile which contains a
hat called testhat. We use this profile to demonstrate the functionality. The
profiles have been defined such that testprofile allows access to /etc/group but
denies access to /etc/passwd. The testhat denies access to both /etc/passwd

and /etc/group.

aa_getcon()$con
Getting task confinement information...
[1] "unconfined"

result <- read.table("/etc/passwd")

aa_change_profile("testprofile")

Switching profiles...

90

aa_getcon()$con

Getting task confinement information...
[1] "testprofile"

passwd <- read.table("/etc/passwd")

Error: cannot open the connection

group <- read.table("/etc/group")

switch into the ’hat’

mytoken <- 13337

aa_change_hat ("testhat", mytoken)
Setting AppArmor Hat...

aa_getcon()$con

Getting task confinement information...
[1] "testprofile//testhat"

passwd <- read.table("/etc/passwd")

Error: cannot open the connection

group <- read.table("/etc/group")

Error: cannot open the connection
revert the ’hat’

aa_revert_hat (mytoken)

Reverting AppArmor Hat...
aa_getcon()$con

Getting task confinement informationm...
[1] "testprofile"

passwd <- read.table("/etc/passwd")

Error: cannot open the connection

group <- read.table("/etc/group")

Just like for setuid and rlimit functions, eval.secure can be used to en-
force an AppArmor security profile on a single call, witout any side effects. The

eval.secure function uses aa_change profile and is therefore most secure.

91

out <- eval(read.table("/etc/passwd"))
nrow (out)
[1] 66

out <- eval.secure(read.table("/etc/passwd"), profile = "testprofile")

4.9 AppArmor without RAppArmor

The RAppArmor package allows us to dynamically load an AppArmor profile from
within an R session. This gives a great deal of flexibility. However, it is also
possible to use AppArmor without the RAppArmor package, by setting a single

profile to be loaded with any running R process.

To do so, the RAppArmor package ships with a profile named usr.bin.r. At the
installation of the package, this file is copied to /etc/apparmor.d/. This file is
basically a copy of the r-user profile in appendix 3, however with a small change:

where r-user defines a named profile with

profile r-user {

The usr.bin.r file defines a profile specific to a filepath:

/usr/bin/R {

When using the latter syntax, the profile is automatically associated every time
the file /usr/bin/R is executed (which is the script that runs when R is started
from the shell). This way we can set some default security restrictions for our
daily work. Profiles tied to a specific program can be activated only by the

administrator using:

92

sudo aa-enforce usr.bin.r

This will enforce the security restrictions on every new R process that is started.

To stop enforcing the restrictions, the administrator can run:

sudo aa-disable usr.bin.r

After disabling the profile, the R program can be started without any restric-
tions. Note that the usr.bin.r profile does not grant permission to change
profiles. Hence, once the usr.bin.r profile is in enforce mode, we cannot use
the eval.secure or aa_change profile functions from the RAppArmor package

to change into a different profile, as this would be a security hole:

library (RAppArmor)

AppArmor LSM is enabled.

Current profile: /usr/bin/R (enforce mode)
aa_change_profile("r-user")

Switching profiles...

Getting task confinement information...

Warning: The standard profile in usr.bin.r is already being enforced!

Run sudo aa-disable usr.bin.r to disable this.

Error: Failed to change profile from: /usr/bin/R to: r-user.

4.10 Learning using complain mode

Finally AppArmor allows the administrator to set profiles in complain mode, which

is also called learning mode.

sudo aa-complain usr.bin.r

This is useful for developing new profiles. When a profile is set in complain mode,
security restrictions are not actually enforced; instead all violations of the security

policy are logged to the syslog and kern.log files. This is a powerful way of

93

creating new profiles: a program can be set in complain mode during regular use,
and afterwards the log files can be used to study violations of the current policy.
From these violations we can determine which permissions need to be added to the
profile to make the program work under normal behavior. AppArmor even ships
with a utility named aa-logprof which can help the administrator by parsing
these log files and suggesting new rules to be added to the profile. This is a nice
way of debugging a profile, and figure out which permissions exactly a program

requires to do its work.

5 Profiling R: defining security policies

The “hard” part of the problem is actually profiling R. With profiling we mean
defining the policies: which files and directories should R be allowed to read and
write to? Which external programs is it allowed to execute? Which libraries
or shared modules it allowed to load, etc. We want to minimize ways in which
the process could potentially damage the system, but we don’t want to be overly
restrictive either: preferebly, users should be able to do anything they normally
do in R. Because R is such a complete system with a big codebase and a wide range
of functionality, the base system actually already requires quite a lot of access to

the file system.

As often, there is no “one size fits all” solution. Depending on which functionality
is needed for an application we might want to grant or deny certain privileges. We
might even want to execute some parts of a process with tighter privileges than
other parts. For example, within a web service, the service process should be able
to write to system log files, which should not be writable by custom code from a
user. We might also want to be more strict on some users than others, e.g. allow

all users to run code, but only allow privileged users to install a new package.

94

5.1 AppArmor policy configuration syntax

The AppArmor policy configuration syntaz is used to define the access control
profiles in AppArmor. Other mandatory access control systems might implement
different functionality and require other syntax, but in the end they address mostly
similar issues. AppArmor is quite advanced and provides access control over many
of the features and resources found in the Linux kernel, e.g. file access, network
rules, Linux capability modes, mounting rules, etc. All of these can be useful, but
most of them are very application specific. Furthermore, the policy syntax has

some meta functionality that allows for defining subprofiles, and includes.

The most important form of access control which will be the focus of the remain-
ing of the section are file permission access modes. Once AppArmor is enforcing
mandatory access control, a process can only access files and directories on the
system for which it has explicitly been granted access in its security profile. Be-
cause in Linux almost everything is a file (even sockets, devices, etc) this gives
a great deal of control. AppArmor defines a number of access modes on files and

directories, of which the most important ones are:

r — read file or directory.

w — write to file or directory.

m — load file in memory.

px — discrete profile execute of executable file.
cs — transition to subprofile for executing a file.
ix — inherit current profile for executing a file.

ux — unconfined execution of executable file (dangerous).

95

Using this syntax we will present some example profiles for R. Because the profiles
are defined using absolute paths of system files, we will assume the standard file
layout for Debian and Ubuntu systems. This includes files that are part of r-base
and other packages that are used by R, e.g. texlive, libxml2, bash, 1libpango,

libcairo, etc.

5.2 Profile: r-base

Appendix 1 contains a profile that we have named r-base. It is a fairly basic
and general profile. It grants read/load access to all files in common shared
system directories, e.g. /usr/1ib, /usr/local/lib, /usr/share, etc. However,
the default profile only grants write access inside /tmp, not in e.g. the home
directory. Furthermore, R is allowed to execute any of the shell commands in

/bin or /usr/bin for which the program will inherit the current restrictions.

aa_change_profile("r-base")

Switching profiles...

This profile denies access to most systems files and the home directory:

list.files("/")

character(0)

list.files("™")

character(0)

file.create(""/test")

Warning: cannot create file ’~/test’, reason ’Permission denied’
[1] FALSE

list.files("/tmp")

character (0)

96

However the profile does grant access to the global library and temporary direc-

tory:

library (MASS)
setwd (tempdir ())
pdf ("test.pdf")
plot(speed ~ dist, data = cars)
dev.off ()
pdf
2
list.files()
[1] "test.pdf"
file.remove("test.pdf")

[1] TRUE

The r-base profile effectively protects R from most malicious activity, while still
allowing access to all of the libraries, fonts, icons, and programs that it might need.
One thing to note is that the profile does not allow listing of the contents of /tmp,
but it does allow full rw access on any of its subdirectories. This is to prevent
one process from reading/writing files in the temp directory of another active R

process (given that it cannot discover the name of the other temp directory).

The r-base profile is a quite liberal and general purpose profile. When using
AppArmor in a more specific application, it is recommended to make the profile a
bit more restrictive by specifying exactly which of the packages, shell commands
and system libraries should be accessible by the application. That could prevent
potential problems when vulnerabilities are discovered in some of the standard

libraries.

97

5.3 Profile: r-compile

The r-base profile does not allow access to the compiler, nor does it allow for
loading (m) or execution (ix) of files in places where it can also write. If we
want user to be able to compile e.g. C++ code, the policy needs grant access to
the compiler. Assuming GCC is installed, the following lines can be added to the

profile:

/usr/include/** r,
/usr/lib/gcc/** rix,

/tmp/** rmw,

Note especially the last line. The combination of w and m access modes allows R
to load a shared object into memory from after installing it in a temporary direc-
tory. This does not come without a cost: compiled code can potentially contain
malicious code or even exploits that can do harm when loaded into memory. If
this privilege is not needed, it is generally recommended to only allow m and ix
access modes on files that have been installed by the system administrator. The
new profile including these rules ships with the package as r-compile and is also

printed in appendix 2.

After adding the lines above and reloading the profile, it should be possible to

compile a package that contains C++ code and install it to somewhere in /tmp:

eval.secure(install.packages("wordcloud", 1ib = tempdir()),

profile = "r-compile")

5.4 Profile: r-user

Appendix 3 defines a profile named r-user. This profile is designed to be a

nice balance between security and freedom for day to day use of R. It extends

98

the r-compile profile with some additional privileges in the user’s home direc-
tory. The variable @{HOME} is defined in the /etc/apparmor.d/tunables/global
include that ships with AppArmor and matches the location of the user home direc-
tory, i.e. /home/jeroen/. If a directory named R exists inside the home directory
(e.g /home/jeroen/R/), R has both read and write permissions here. Furthermore,
R can load and execute files in the directories 1686-pc-1linux-gnu-library and
x86_64-pc-linux-gnu-library inside of this directory. These are the standard

locations where R installs a user’s personal package library.

With the r-user profile, we can do most of our day to day work, including in-
stalling and loading new packages in our personal library, while still being pro-
tected against most malicious activities. The r-user profile is also the basis of

the default usr.bin.r profile mentioned in section 4.9.

5.5 Installing packages

An additional privilege that might be needed in some situations is the option to
install packages to the system’s global library, which is readable by all users. In
order to allow this, a profile needs to include write access to the site-library

directory:

/usr/local/lib/R/site-library/ rw,

/usr/local/lib/R/site-library/** rwm,

With this rule, the policy will allow for installing R packages to the global site
library. However, note that AppArmor does not replace, but supplements the
standard access control system. Hence if a user does not have permission to write
into this directory (either by standard Unix access controls or by running with
superuser privileges), it will still not be able to install packages in the global site

library, even though the AppArmor profile does grant this permission.

99

6 Concluding remarks

In this paper the reader was introduced to some potential security issues related
to the use of the R software. We hope to have raised awareness that security is an
increasingly important concern for the R user, but also that addressing this issue
could open doors to new applications of the software. The RAppArmor package
was introduced as an example that demonstrates how some security issues could
be addressed using facilities from the operating system, in this case Linux. This
implementation provides a starting point for creating a sandbox in R, but as was
emphasized throughout the paper, it is still up to the administrator to actually

design security policies that are appropriate for a certain application or system.

Our package uses the AppArmor software from the Linux kernel, which works for
us, but this is just one of the available options. Linux has two other mandatory
access control systems that are worth exploring: TOMOYO and SELinux. Especially
the latter is known to be very sophisticated, but also extremely hard to set up.
Other technology that might be interesting is provided by Linux CGroups. Using
CGroups, control of allocation and security is managed by hierarchical process
groups. The more recent LXC (Linux Containers) build on CGroups to provide
virtual environments which have their own process and network space. A com-
pletely different direction is suggested by renjin (Bertram, 2012), a JVM-based
interpreter for the R Language. If R code can be executed though the JVM, we
might be able to use some tools from the Java community to address similar is-
sues. Finally the TrustedBSD project provides advanced security features which

could provide a foundation for sandboxing R on BSD systems.

However, regardless of the tools that are used, security always comes down to the
trade off between use and abuse. This has a major human aspect to it, and is a
learning process in itself. A balance has to be found between providing enough

freedom to use facilities as desired, yet minimize opportunities for undesired ac-

100

tivity. Apart from technical parameters, a good balance also depends on factors
like what exactly constitutes undesired behavior and the relation between users
and provider. For example a process using 20 parallel cores might be considered
abusive by some administrators, but might actually be regular use for a MCMC
simulation server. Security policies are not unlike legal policies in the sense that
they won’t always immediately work out as intended, and need to evolve over
time as part of an iterative process. It might not be until an application is put in
production that users start complaining about their favorite package not working,
or that we find the system being abused in a way that was hard to foresee. We
hope that our research will contribute to this process and help take a step in the

direction of a safer R.

101

APPENDIX A

Example profiles

This appendix prints some of the example profiles that ship with the RAppArmor
package. To load them in AppArmor, an ascii file with these rules needs to be copied
to the /etc/apparmor.d/ directory. After adding new profiles to this directory
they can be loaded in the kernel by running sudo service apparmor restart.
The r-cran-rapparmor package that can be build on Debian and Ubuntu does
this automatically during installation. Once profiles have been loaded in the ker-
nel, any user can apply them to an R session using either the aa_change _profile

or eval.secure function from the RAppArmor package.

1 Profile: r-base

#include <tunables/global>
profile r-base {
#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,
/etc/R/ T,
/etc/R/* r,
/etc/fonts/**x mr,
/etc/xml/* r,
/tmp/** rw,
/usr/bin/* rix,

/usr/1lib/R/bin/* rix,

102

/usr/1ib{,32,64}/** mr,
/usr/1ib{,32,64}/R/bin/exec/R rix,
/usr/local/lib/R/** mr,
/usr/local/share/** mr,

/usr/share/** mr,

2 Profile: r-compile

#include <tunables/global>
profile r-compile {
#include <abstractions/base>

#include <abstractions/nameservice>

/bin/* rix,

/etc/R/ T,

/etc/R/* T,
/etc/fonts/** mr,
/etc/xml/* r,

/tmp/** rmw,

/usr/bin/* rix,
/usr/include/** r,
/usr/lib/gcc/** rix,
/usr/1ib/R/bin/* rix,
/usr/1ib{,32,64}/** mr,
/usr/1ib{,32,64}/R/bin/exec/R rix,
/usr/local/lib/R/** mr,
/usr/local/share/** mr,

/usr/share/** mr,

103

3 Profile: r-user

#include <tunables/global>
profile r-user {
#include <abstractions/base>

#include <abstractions/nameservice>

capability kill,
capability net_bind_service,

capability sys_tty_config,

@{HOME}/ r,

©@{HOME}/R/ T,

©@{HOME}/R/** rw,
©0{HOME}/R/{i686,x86_64}-pc-linux-gnu-library/** mrwix,
/bin/* rix,

/etc/R/ r,

/etc/R/* r,

/etc/fonts/** mr,

/etc/xml/* r,

/tmp/** mrwix,

/usr/bin/* rix,

/usr/include/** r,

/usr/lib/gcc/** rix,
/usr/1ib/R/bin/* rix,
/usr/1ib{,32,64}/** mr,
/usr/1ib{,32,64}/R/bin/exec/R rix,
/usr/local/lib/R/** mr,
/usr/local/share/** mr,

/usr/share/** mr,

104

APPENDIX B

Security unit tests

This appendix prints a number of unit tests that contain malicious code and which

should be prevented by any sandboxing tool.

1 Access system files

Usually R has no business in the system logs, and these are not included in the

profiles. The codechunk below attempts to read the syslog file.

readSyslog <- function() {

readLines("/var/log/syslog")

When executing this with the r-user profile, access to this file is denied, resulting

in an error:

eval.secure(readSyslog(), profile = "r-user"

2 Access personal files

Access to system files can to some extend by prevented by running processes as
non privileged users. But it is easy to forget that also the user’s personal files can
contain senstive information. Below a simple function that scans the Documents

directory of the current user for files containing credit card numbers.

105

findCreditCards <- function() {

pattern <- "([0-9]1{4}[- 1){3}[0-9]{4}"

for (filename in dir("~/Documents", full.names = TRUE, recursive = TRUE)) {
if (file.info(filename)$size > 1le+06)

next

doc <- readLines(filename)
results <- gregexpr(pattern, doc)
output <- unlist(regmatches(doc, results))
if (length(output) > 0) {

cat(paste(filename, ":", output, collapse = "\n"), "\n")

This example prints the credit card numbers to the console, but it would be just
as easy to post them to a server on the internet. For this reason the r-user profile

denies access to the user’s home dir, except for the ~/R directory.

3 Limiting memory

When a system or service is used by many users at the same time, it is important
that we cap the memory that can be used by a single process. The following

function generates a large matrix:

memtest <- function() {

A <- matrix(rnorm(1e+07), 10000)

When R tries to allocate more memory than allowed, it will throw an error:

A <- eval.secure(memtest(), RLIMIT_AS = 50 * 1024 * 1024)

Error: cannot allocate vector of size 76.3 Mb

106

4 Limiting CPU time

Suppose we are hosting a web service and we want to kill jobs that do not finish
within 5 seconds. Below is a snippet that will take much more than 5 seconds
to complete on most machines. Note that because R calling out to C code, it will
not be possible to terminate this function prematurely using R’s setTimeLimit
or even using CTRL+C in an interactive console. If this would happen inside of a

bigger system, the entire service might become unresponsive.

cputest <- function() {
A <- matrix(rnorm(1le+07), 1000)
B <- svd(A)

In RAppArmor we have actually two different options to deal with this. The first
one is setting the RLIMIT_CPU value. This will cause the kernel to kill the process

after 5 seconds:

system.time(x <- eval.secure(cputest(), RLIMIT_CPU = 5))
Error: Terminating process.

Timing stopped at: 4.846 0.175 5.102

However, this is actually a bit of a harsh measure: because the kernel auto-
matically terminates the process after 5 seconds we have no control over what
should happen when this happens, nor can we throw an informative error. Set-
ting RLIMIT_CPU is a bit like starting a job with a self-destruction timer. A more
elegant solution is to terminate the process from R using the timeout argument
from the eval.secure function. Because the actual job is processed in a fork, the

parent process stays responsive, and is used to kill the child process.

107

system.time(x <- eval.secure(cputest(), timeout = 5))
Error: R call did not return within 5 seconds. Terminating process.

Timing stopped at: 0.001 0.002 5.003

One could even consider a Double Dutch solution by setting both timeout and a
slightly higher value for RLIMIT_CPU, so that if all else fails, the kernel will end up

killing the process and its children.

5 Fork bomb

A fork bomb is a process that spawns many child processes, which often results
in the operating system getting stuck to a point where it has to be rebooted.

Performing a fork bomb in R is quite easy and requires no special privileges:

forkbomb <- function() {
repeat {

parallel: :mcparallel (forkbomb())

Do not call this function outside sandbox, because it will make the machine unre-
sponsive. However, inside our sandbox we can use the RLIMIT_NPROC to limit the

number of processes the user is allowed to own:

eval.secure(forkbomb(), RLIMIT_NPROC = 100)

Error: wunable to fork, possible reason: Resource temporarily unavailable

Note that the process count is based on the Linux user. Hence if the same Linux
user already has a number of other processes, which is usually the case for non-
system users, the cap has to be higher than this number. Also note that in
some Linux configurations, the root user is exempted from the RLIMIT NPROC

limit. Different processes owned by a single user can enforce different NPROC

108

limits, however in the actual process count all active processes from the current
user are taken into account. Therefore it might make sense to create a separate
Linux system user that is only used to process R jobs. That way RLIMIT NPROC
actually corresponds to the number of concurrent R processes. The eval.secure
arguments uid and gid can be used to switch Linux users before evaluating the

call. E.g to add a system user in Linux, run:

sudo useradd testuser --system -U -d/tmp -c"RAppArmor Test User"

If the main R process has superuser privileges, incoming call can be evaluated as

follows:

eval.secure(run_job(), uid = "testuser", RLIMIT_NPROC = 10, timeout = 60)

109

BIBLIOGRAPHY

M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach
to understanding the botnet phenomenon. In Proceedings of the 6th ACM SIG-
COMM conference on Internet measurement, pages 41-52. ACM, 2006. URL

conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf.

M. Armbrust et al. A view of cloud computing. Communications of the ACM, 53
(4):50-58, 2010. URL http://dl.acm.org/citation.cfm?id=1721672.

Jeff Banfield. Rweb: Web-based statistical analysis. Journal of Statistical Software,
4(1):1-15, 3 1999. ISSN 1548-7660. URL http://www.jstatsoft.org/v04/
i01.

D. Bates and D Eddelbuettel. Using R on Debian: Past, Present, and
Future, 2004. URL http://www.r-project.org/conferences/useR-2004/

abstracts/Eddelbuettel+Bates+Gebhardt.pdf. UseR 2004.

Douglas Bates, Martin Maechler, and Ben Bolker. Ime4: Linear Mized-Effects
Models Using S4 Classes, 2011. URL http://CRAN.R-project.org/package=
1me4. R package version 0.999375-309.

M. Bauer. Paranoid Penguin: an Introduction to Novell AppArmor. Linux Journal,

2006(148):13, 2006. URL www.linuxjournal.com/article/9036.

Alex Bertram. Renjin: JVM-based Interpreter for R, 2012. URL http://code.

google.com/p/renjin/.

Canonical, Inc. Ubuntu 12.04 Precise Manual: GETRLIMIT(2),2012. URL http:

//manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html.

Kai Chew. Cloudstat: Analyze Big Data With R in the Cloud, 2012. URL http:

//www.cloudstat.org.

110

conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf
http://dl.acm.org/citation.cfm?id=1721672
http://www.jstatsoft.org/v04/i01
http://www.jstatsoft.org/v04/i01
http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=lme4
www.linuxjournal.com/article/9036
http://code.google.com/p/renjin/
http://code.google.com/p/renjin/
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html
http://www.cloudstat.org
http://www.cloudstat.org

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Trans-
parency and collaboration in an open software repository. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, pages 1277—
1286. ACM, 2012. URL http://dl.acm.org/citation.cfm?id=2145396.

David B. Dahl and Scott Crawford. Rinruby: Accessing the r interpreter from
pure ruby. Journal of Statistical Software, 29(4):1-18, 1 2009. ISSN 1548-7660.
URL http://www. jstatsoft.org/v29/i04.

Gergely Daroczi. The sandbozR package: Filtering "malicious” Calls in R, 2013.

URL https://github.com/Rapporter/sandboxR.

Dirk Eddelbuettel and Romain Francois. RInside: C++ Classes to Embed R in C++
Applications, 2011. URL http://CRAN.R-project.org/package=RInside. R

package version 0.2.4.

Free Software Foundation. GETRLIMIT - Linux Programmer’s Manual,
2012. URL http://www.kernel.org/doc/man-pages/online/pages/man2/

setrlimit.2.html.

L Gautier. rpy2: A simple and efficient access to R from Python, 2012. URL

http://rpy.sourceforge.net/rpy2.html.

T. Harada, T. Horie, and K. Tanaka. Task Oriented Management Obviates Your
Onus on Linux. In Linux Conference, 2004. URL http://sourceforge. jp/

projects/tomoyo/document/1c2004-en.pdf.

Richard M. Heiberger and Erich Neuwirth. R Through Fxcel: A Spreadsheet
Interface for Statistics, Data Analysis, and Graphics (Use R!). Springer, 2009
edition, 8 2009. ISBN 9781441900517. URL http://amazon.com/o/ASIN/
1441900519/.

111

http://dl.acm.org/citation.cfm?id=2145396
http://www.jstatsoft.org/v29/i04
https://github.com/Rapporter/sandboxR
http://CRAN.R-project.org/package=RInside
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://www.kernel.org/doc/man-pages/online/pages/man2/setrlimit.2.html
http://rpy.sourceforge.net/rpy2.html
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://sourceforge.jp/projects/tomoyo/document/lc2004-en.pdf
http://amazon.com/o/ASIN/1441900519/
http://amazon.com/o/ASIN/1441900519/

J. Horner and D Eddelbuettel. littler: a scripting front-end for GNU R. littler
verston 0.1.5, 2011. URL http://dirk.eddelbuettel.com/code/littler.

html.

Jeffrey Horner. rdpache: Web Application Development with R and Apache.,
2011. URL http://www.rapache.net/.

Ross Thaka. @ Past and future history. Computing Science and Statistics, pages

392-396, 1998.

IOCCC. The international obfuscated ¢ode contest, 2012. URL http://www.

ioccc.org.

J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense mecha-
nisms. ACM SIGCOMM Computer Communication Review, 34(2):39-53, 2004.

URL www.eecis.udel.edu/~sunshine/publications/ccr.pdf.

W. Moreira and G.R. Warnes. RPy: R from Python, 2006. URL http://rpy.

sourceforge.net/rpy/README.

J.C.L. Ooms. Stockplot web application: A Web Interface for Plotting Historical
Stock Values., 2009. URL http://rweb.stat.ucla.edu/stockplot.

J.C.L. Ooms. Imej web application: A Web Interface for the R Package lmed,
2010. URL http://rweb.stat.ucla.edu/lme4.

Jeroen Ooms. OpenCPU: Producing and Reproducing Results, 2013. URL http:

//www .opencpu.org.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2012. URL
http://www.R-project.org/. ISBN 3-900051-07-0.

112

http://dirk.eddelbuettel.com/code/littler.html
http://dirk.eddelbuettel.com/code/littler.html
http://www.rapache.net/
http://www.ioccc.org
http://www.ioccc.org
www.eecis.udel.edu/~sunshine/publications/ccr.pdf
http://rpy.sourceforge.net/rpy/README
http://rpy.sourceforge.net/rpy/README
http://rweb.stat.ucla.edu/stockplot
http://rweb.stat.ucla.edu/lme4
http://www.opencpu.org
http://www.opencpu.org
http://www.R-project.org/

Brian Ripley. The &evelopment process. The R User Conference 2011,
2011. URL http://web.warwick.ac.uk/statsdept/user2011/invited/

user2011_Ripley.pdf.

S. Smalley, C. Vance, and W. Salamon. Implementing SELinux as a Linux Security
Module. NAI Labs Report, 1:43, 2001. URL http://www.nsa.gov/research/

_files/publications/implementing_selinux.pdf.

Leonard Stefanski et al. The future of publication in the statistical sci-
ences. The Membership Magazine of the American Statistical Association,
2013. URL http://magazine.amstat.org/wp-content/uploads/2013an/

FuturePublicationsReport.pdf.

Linus Torvalds and Junio Hamano. Git: Fast version control system. 2010. URL

http://git-scm.com.

Simon Urbanek. JRI - Java- R Interface, 2011. URL http://www.rforge.net/

JRI/index.html. JRI is now part of rJava.

Simon Urbanek. Rserve: Binary R server, 2013a. URL http://CRAN.R-project.

org/package=Rserve. R package version 0.6-8.1.

Simon Urbanek. rJava: Low-Level R to Java Interface, 2013b. URL http:

//CRAN.R-project.org/package=rJava. R package version 0.9-4.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/

book.

113

http://web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf
http://web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf
http://git-scm.com
http://www.rforge.net/JRI/index.html
http://www.rforge.net/JRI/index.html
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=rJava
http://CRAN.R-project.org/package=rJava
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book

CHAPTER 3

The jsonlite Package: A Practical and

Consistent Mapping Between JSON Data and R
Objects

1 Introduction

JavaScript Object Notation (JSON) is a text format for the serialization of struc-
tured data (Crockford, 2006a). It is derived from the object literals of JavaScript,
as defined in the ECMAScript programming language standard (Ecma Interna-
tional, 1999). Design of JSON is simple and concise in comparison with other text
based formats, and it was originally proposed by Douglas Crockford as a “fat-free
alternative to XML” (Crockford, 2006b). The syntax is easy for humans to read
and write, easy for machines to parse and generate and completely described in
a single page at http://www. json.org. The character encoding of JSON text is
always Unicode, using UTF-8 by default (Crockford, 2006a), making it naturally
compatible with non-latin alphabets. Over the past years, JSON has become hugely
popular on the internet as a general purpose data interchange format. High qual-
ity parsing libraries are available for almost any programming language, making it
easy to implement systems and applications that exchange data over the network
using JSON. For R (R Core Team, 2014), several packages that assist the user in
generating, parsing and validating JSON are available through CRAN, including
rjson (Couture-Beil, 2013), RJSONIO (Lang, 2012), and jsonlite (Ooms et al.,
2014).

114

http://www.json.org

The emphasis of this paper is not on discussing the JSON format or any particular
implementation for using JSON with R. We refer to Nolan and Temple Lang (2014)
for a comprehensive introduction, or one of the many tutorials available on the
web. Instead we take a high level view and discuss how R data structures are
most naturally represented in JSON. This is not a trivial problem, particularly for
complex or relational data as they frequently appear in statistical applications.
Several R packages implement toJSON and fromJSON functions which directly con-
vert R objects into JSON and vice versa. However, the exact mapping between the
various R data classes JSON structures is not self evident. Currently, there are
no formal guidelines, or even consensus between implementations on how R data
should be represented in JSON. Furthermore, upon closer inspection, even the most
basic data structures in R actually do not perfectly map to their JSON counter-
parts, and leave some ambiguity for edge cases. These problems have resulted in
different behavior between implementations, and can lead to unexpected output
for certain special cases. Furthermore, best practices of representing data in JSON
have been established outside the R community. Incorporating these conventions

where possible is important to maximize interoperability.

1.1 Parsing and type safety

The JSON format specifies 4 primitive types (string, number, boolean, null) and

two universal structures:

e A JSON object: an unordered collection of zero or more name-value pairs,
where a name is a string and a value is a string, number, boolean, null,

object, or array.

e A JSON array: an ordered sequence of zero or more values.

Both these structures are heterogeneous; i.e. they are allowed to contain elements

of different types. Therefore, the native R realization of these structures is a

115

named list for JSON objects, and unnamed list for JSON arrays. However, in
practice a list is an awkward, inefficient type to store and manipulate data in R.
Most statistical applications work with (homogeneous) vectors, matrices or data
frames. In order to give these data structures a JSON representation, we can define
certain special cases of JSON structures which get parsed into other, more specific
R types. For example, one convention which all current implementations have in
common is that a homogeneous array of primitives gets parsed into an atomic
vector instead of a 1ist. The RJSONIO documentation uses the term “simplify”

for this behavior, and we adopt this jargon.

txt <- "[12, 3, 7]"

x <- fromJSON(txt)

is(x)

[1] "numeric" "vector"
print(x)

[1] 12 3 7

This seems very reasonable and it is the only practical solution to represent vectors
in JSON. However the price we pay is that automatic simplification can compromise
type-safety in the context of dynamic data. For example, suppose an R package
uses fromJSON to pull data from a JSON API on the web and that for some partic-
ular combination of parameters the result includes a null value, e.g: [12, null,
7]. This is actually quite common, many API’s use null for missing values or
unset fields. This case makes the behavior of parser ambiguous, because the JSON
array is technically no longer homogeneous. And indeed, some implementations
will now return a list instead of a vector. If the user had not anticipated this

scenario and the script assumes a vector, the code is likely to run into type errors.

The lesson here is that we need to be very specific and explicit about the mapping
that is implemented to convert between JSON data and R objects. When relying on

JSON as a data interchange format, the behavior of the parser must be consistent

116

and unambiguous. Clients relying on JSON to get data in and out of R must
know exactly what to expect in order to facilitate reliable communication, even
if the content of the data is dynamic. Similarly, R code using dynamic JSON data
from an external source is only reliable when the conversion from JSON to R is
consistent. Moreover a practical mapping must incorporate existing conventions
and use the most natural representation of certain structures in R. In the example
above, we could argue that instead of falling back on a list, the array is more
naturally interpreted as a numeric vector where the null becomes a missing value
(NA). These principles will extrapolate as we start discussing more complex JSON

structures representing matrices and data frames.

1.2 Reference implementation: the jsonlite package

The jsonlite package provides a reference implementation of the conventions
proposed in this document. It is a fork of the RJISONIO package by Duncan Temple
Lang, which builds on libjson C++ library from Jonathan Wallace. jsonlite
uses the parser from RJSONIO, but the R code has been rewritten from scratch.
Both packages implement toJSON and fromJSON functions, but their output is
quite different. Finally, the jsonlite package contains a large set of unit tests to
validate that R objects are correctly converted to JSON and vice versa. These unit
tests cover all classes and edge cases mentioned in this document, and could be

used to validate if other implementations follow the same conventions.

library(testthat)

test_package("jsonlite")

Note that even though JSON allows for inserting arbitrary white space and inden-

tation, the unit tests assume that white space is trimmed.

117

1.3 Class-based versus type-based encoding

The jsonlite package actually implements two systems for translating between R
objects and JSON. This document focuses on the toJSON and fromJSON functions
which use R’s class-based method dispatch. For all of the common classes in R,
the jsonlite package implements toJSON methods as described in this document.
Users in R can extend this system by implementing additional methods for other
classes. This also means that classes that do not have the toJSON method defined
are not supported. Furthermore, the implementation of a specific toJSON method
determines which data and metadata in the objects of this class gets encoded
in its JSON representation, and how. In this respect, toJSON is similar to e.g.
the print function, which also provides a certain representation of an object
based on its class and optionally some print parameters. This representation
does not necessarily reflect all information stored in the object, and there is no
guaranteed one-to-one correspondence between R objects and JSON. L.e. calling
fromJSON(toJSON(object)) will return an object which only contains the data
that was encoded by the toJSON method for this particular class, and which might

even have a different class than the original.

The alternative to class-based method dispatch is to use type-based encoding,
which jsonlite implements in the functions serializeJSON and unserializeJSON.
All data structures in R get stored in memory using one of the internal SEXP stor-
age types, and serializeJSON defines an encoding schema which captures the
type, value, and attributes for each storage type. The resulting JSON closely
resembles the internal structure of the underlying C data types, and can be per-
fectly restored to the original R object using unserializeJSON. This system is
relatively straightforward to implement, but the resulting JSON is very verbose,
hard to interpret, and cumbersome to generate in the context of another language
or system. For most applications this is actually impractical because it requires

the client/consumer to understand and manipulate R data types, which is difficult

118

and reduces interoperability. Instead we can make data in R more accessible to
third parties by defining sensible JSON representations that are natural for the
class of an object, rather than its internal storage type. This document does not
discuss the serializeJSON system in any further detail, and solely treats the class
based system implemented in toJSON and fromJSON. However the reader that is
interested in full serialization of R objects into JSON is encouraged to have a look

at the respective manual pages.

1.4 Scope and limitations

Before continuing, we want to stress some limitations of encoding R data structures
in JSON. Most importantly, there are limitations to the types of objects that can be
represented. In general, temporary in-memory properties such as connections, file
descriptors and (recursive) memory references are always difficult if not impossible
to store in a sensible way, regardless of the language or serialization method. This
document focuses on the common R classes that hold data, such as vectors, factors,
lists, matrices and data frames. We do not treat language level constructs such as
expressions, functions, promises, which hold little meaning outside the context of
R. We also don’t treat special compound classes such as linear models or custom
classes defined in contributed packages. When designing systems or protocols
that interact with R, it is highly recommended to stick with the standard data

structures for the interface input/output.

Then there are limitations introduced by the format. Because JSON is a human
readable, text-based format, it does not support binary data, and numbers are
stored in their decimal notation. The latter leads to loss of precision for real
numbers, depending on how many digits the user decides to print. Several dialects
of JSON exists such as BSON (Chodorow, 2013) or MSGPACK (Furuhashi, 2014), which
extend the format with various binary types. However, these formats are much less

popular, less interoperable, and often impractical, precisely because they require

119

binary parsing and abandon human readability. The simplicity of JSON is what
makes it an accessible and widely applicable data interchange format. In cases
where it is really needed to include some binary data in JSON, we can encode a

blob as a string using base64.

Finally, as mentioned earlier, fromJSON is not a perfect inverse function of toJSON,
as is the case for serialializeJSON and unserializeJSON. The class based map-
pings are designed for concise and practical encoding of the various common data
structures. Our implementation of toJSON and fromJSON approximates a re-
versible mapping between R objects and JSON for the standard data classes, but
there are always limitations and edge cases. For example, the JSON representa-
tion of an empty vector, empty list or empty data frame are all the same: "[
1". Also some special vector types such as factors, dates or timestamps get co-
erced to strings, as they would in for example CSV. This is a quite typical and
expected behavior among text based formats, but it does require some additional

interpretation on the consumer side.

2 Converting between JSON and R classes

This section lists examples of how the common R classes are represented in JSON.
As explained before, the toJSON function relies on method dispatch, which means
that objects get encoded according to their class attribute. If an object has
multiple class values, R uses the first occurring class which has a toJSON method.

If none of the classes of an object has a toJSON method, an error is raised.

2.1 Atomic vectors

The most basic data type in R is the atomic vector. Atomic vectors hold an
ordered, homogeneous set of values of type "logical" (booleans), character

(strings), "raw" (bytes), numeric (doubles), "complex" (complex numbers with

120

a real and imaginary part), or integer. Because R is fully vectorized, there is no
user level notion of a primitive: a scalar value is considered a vector of length 1.

Atomic vectors map to JSON arrays:

x <- C(l, 2, pi)
cat (toJSON(x))

[1, 2, 3.14]

The JSON array is the only appropriate structure to encode a vector, even though
vectors in R are homogeneous, whereas the JSON array is actually heterogeneous,

but JSON does not make this distinction.

2.1.1 Missing values

A typical domain specific problem when working with statistical data is presented
by missing values: a concept foreign to many other languages. Besides regular
values, each vector type in R except for raw can hold NA as a value. Vectors of
type double and complex define three additional types of non finite values: Nal,
Inf and -Inf. The JSON format does not natively support any of these types;
therefore such values values need to be encoded in some other way. There are two

obvious approaches. The first one is to use the JSON null type. For example:

x <- c(TRUE, FALSE, NA)
cat (toJSON(x))

[true, false, null]
The other option is to encode missing values as strings by wrapping them in double
quotes:

x <- c(1, 2, NA, NaN, Inf, 10)
cat (toJSON(x))

[1’ 2, "NA”, "NaN", ”Inf”, 10]

121

Both methods result in valid JSON, but both have a limitation: the problem with
the null type is that it is impossible to distinguish between different types of
missing data, which could be a problem for numeric vectors. The values Inf,
-Inf, NA and NaN carry different meanings, and these should not get lost in the
encoding. The problem with encoding missing values as strings is that this method
can not be used for character vectors, because the consumer won’t be able to
distinguish the actual string "NA" and the missing value NA. This would create a
likely source of bugs, where clients mistakenly interpret "NA" as an actual string
value, which is a common problem with text-based formats such as CSV. For this

reason, jsonlite uses the following defaults:

e Missing values in non-numeric vectors (logical, character) are encoded

as null.

e Missing values in numeric vectors (double, integer, complex) are encoded

as strings.

We expect that these conventions are most likely to result in the correct interpre-

tation of missing values. Some examples:

cat (toJSON(c(TRUE, NA, NA, FALSE)))

[true, null, null, false]

cat (toJSON(c("FOO", "BAR", NA, "NA")))

["FOO", "BAR", null, "NA"]
cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf)))

[3.14, "NA", "NaN", 21, "Inf", "-Inf"]

cat(toJSON(c(3.14, NA, NaN, 21, Inf, -Inf), na = "null"))

[3.14, null, null, 21, null, null]

122

2.1.2 Special vector types: dates, times, factor, complex

Besides missing values, JSON also lacks native support for some of the basic vector
types in R that frequently appear in data sets. These include vectors of class Date,
POSIXt (timestamps), factors and complex vectors. By default, the jsonlite

package coerces these types to strings (using as.character):

cat (toJSON(Sys.time() + 1:3))

["2014-05-11 17:27:03", "2014-05-11 17:27:04", "2014-05-11 17:27:05"]
cat(toJSON(as.Date(Sys.time()) + 1:3))

["2014-05-13", "2014-05-14", "2014-05-15"]

cat (toJSON(factor(c("foo", "bar", "foo"))))

["foo", "bar", "foo"]

cat (toJSON(complex(real = runif(3), imaginary = rnorm(3))))

["0.4-2.6i", "0.61+0.05i", "0.6+1.9i"]

When parsing such JSON strings, these values will appear as character vectors. In
order to obtain the original types, the user needs to manually coerce them back to
the desired type using the corresponding as function, e.g. as.P0SIXct, as.Date,
as.factor or as.complex. In this respect, JSON is subject to the same limitations

as text based formats such as CSV.

2.1.3 Special cases: vectors of length 0 or 1

Two edge cases deserve special attention: vectors of length 0 and vectors of length

1. In jsonlite these are encoded respectively as an empty array, and an array of

length 1:

cat (toJSON(vector()))

[1]
cat (toJSON(pi))

[3.14]

123

cat (toJSON(1list (foo
{ "foo" : [1 1%
cat (toJSON(1list (foo

vector())))

pi)))
{ "foo" : [3.14] }

cat (toJSON(1list (vector())))
L[11
cat (toJSON(1list(pi)))

[[3.14 1] 1

This might seem obvious but these cases result in very different behavior between
different JSON packages. This is probably caused by the fact that R does not have
a scalar type, and some package authors decided to treat vectors of length 1 as if
they were a scalar. For example, in the current implementations, both RJSONIO
and rjson encode a vector of length one as a JSON primitive when it appears

within a list:

cat(rjson: :toJSON(list(n = c(1))))

{"n":1}

cat(rjson::toJSON(list(n = c(1, 2))))
"n":[1,2]}

When encoding a single dataset this seems harmless, but in the context of dynamic
data this inconsistency is almost guaranteed to cause bugs. For example, imagine
an R web service which lets the user fit a linear model and sends back the fitted
parameter estimates as a JSON array. The client code then parses the JSON, and
iterates over the array of coefficients to display them in a GUI. All goes well,
until the user decides to fit a model with only one predictor. If the JSON encoder
suddenly returns a primitive value where the client is assuming an array, the

application will likely break. Therefore, any consumer or client would need to be

124

aware of the special case where the vector becomes a primitive, and explicitly take
this exception into account when processing the result. When the client fails to
do so and proceeds as usual, it will probably call an iterator or loop method on
a primitive value, resulting in the obvious errors. To avoid this, jsonlite uses
consistent encoding schemes which do not depend on variable object properties
such as its length. Hence, a vector is always encoded as an array, even when it is

of length 0 or 1.

2.2 Matrices

Arguably one of the strongest sides of R is its ability to interface libraries for
basic linear algebra subprograms (Lawson et al., 1979) such as LAPACK (Anderson
et al., 1987). These libraries provide well tuned, high performance implemen-
tations of important linear algebra operations to calculate anything from inner
products and eigen values to singular value decompositions, which are in turn
building blocks of statistical methods such as linear regression or principal com-
ponent analysis. Linear algebra methods operate on matrices, making the matrix
one of the most central data classes in R. Conceptually, a matrix consists of a 2
dimensional structure of homogeneous values. It is indexed using 2 numbers (or

vectors), representing the rows and columns of the matrix respectively.

x <- matrix(1:12, nrow = 3, ncol = 4)
print(x)
[,11 [,21 [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
(3,] 3 6 9 12
print(x[2, 41)
[1] 11

A matrix is stored in memory as a single atomic vector with an attribute called

125

"dim" defining the dimensions of the matrix. The product of the dimensions is

equal to the length of the vector.

attributes(volcano)
$dim

[1] 87 61
length(volcano)

[1] 5307

Even though the matrix is stored as a single vector, the way it is printed and
indexed makes it conceptually a 2 dimensional structure. In jsonlite a matrix

maps to an array of equal-length subarrays:

x <- matrix(1:12, nrow = 3, ncol = 4)
cat (toJSON(x))

(C1,4,7,120]1, [2,5,8,111], [3,6,9,12]]

We expect this representation will be the most intuitive to interpret, also within
languages that do not have a native notion of a matrix. Note that even though R
stores matrices in column major order, jsonlite encodes matrices in row major
order. This is a more conventional and intuitive way to represent matrices and
is consistent with the row-based encoding of data frames discussed in the next
section. When the JSON string is properly indented (recall that white space and

line breaks are optional in JSON), it looks very similar to the way R prints matrices:

[[1,4,7,101,
[2’ 5’ 8, 11]3
[3,6,9,12]]

Because the matrix is implemented in R as an atomic vector, it automatically
inherits the conventions mentioned earlier with respect to edge cases and missing

values:

126

x <- matrix(c(l, 2, 4, NA), nrow = 2)
cat (toJSON(x))

(1,471, [2, "NA"]]
cat(toJSON(x, na = "null"))
[[1,4]1, [2, null] 1

cat (toJSON(matrix(pi)))

[[3.141]]

2.2.1 Matrix row and column names

Besides the "dim" attribute, the matrix class has an additional, optional attribute:
"dimnames". This attribute holds names for the rows and columns in the matrix.
However, we decided not to include this information in the default JSON mapping
for matrices for several reasons. First of all, because this attribute is optional,
either row or column names or both could be NULL. This makes it difficult to
define a practical mapping that covers all cases with and without row and/or
column names. Secondly, the names in matrices are mostly there for annotation
only; they are not actually used in calculations. The linear algebra subroutines
mentioned before completely ignore them, and never include any names in their
output. So there is often little purpose of setting names in the first place, other

than annotation.

When row or column names of a matrix seem to contain vital information, we
might want to transform the data into a more appropriate structure. Wickham
(2014) calls this “tidying” the data and outlines best practices on storing statistical
data in its most appropriate form. He lists the issue where “column headers are
values, not variable names” as the most common source of untidy data. This often
happens when the structure is optimized for presentation (e.g. printing), rather
than computation. In the following example taken from Wickham, the predictor

variable (treatment) is stored in the column headers rather than the actual data.

127

As a result, these values do not get included in the JSON output:

x <- matrix(c(NA, 1, 2, 5, NA, 3), nrow = 3)

row.names(x) <- c("Joe", "Jane", "Mary")
colnames(x) <- c("Treatment A", "Treatment B")
print(x)

Treatment A Treatment B

Joe NA 5
Jane 1 NA
Mary 2 3
cat (toJSON(x))

(["~A", 51, [1, "NA"], [2, 311

Wickham recommends that the data be melted into its tidy form. Once the data

is tidy, the JSON encoding will naturally contain the treatment values:

library(reshape2)
y <- melt(x, varnames = c("Subject", "Treatment"))
print (y)

Subject Treatment value

1 Joe Treatment A NA
2 Jane Treatment A 1
3 Mary Treatment A 2
4 Joe Treatment B 5
5 Jane Treatment B NA
6 Mary Treatment B 3

cat(toJSON(y, pretty = TRUE))

L

{
"Subject" : "Joe",
"Treatment" : "Treatment A"

},

{
"Subject" : "Jane",
"Treatment" : "Treatment A",

128

"value" : 1

},

{
"Subject" : "Mary",
"Treatment" : "Treatment A",
"value" : 2

},

{
"Subject" : "Joe",
"Treatment" : "Treatment B",
"value" : 5

},

{
"Subject" : "Jane",
"Treatment" : "Treatment B"

i

{
"Subject" : "Mary",
"Treatment" : "Treatment B",
"value" : 3

}

In some other cases, the column headers actually do contain variable names, and
melting is inappropriate. For data sets with records consisting of a set of named
columns (fields), R has more natural and flexible class: the data-frame. The
toJSON method for data frames (described later) is more suitable when we want
to refer to rows or fields by their name. Any matrix can easily be converted to a

data-frame using the as.data.frame function:

cat(toJSON(as.data.frame(x), pretty = TRUE))
[

129

Il$rowll o "JOG" s

"Treatment B" : 5

},
{
"$row" : "Jane",
"Treatment A" : 1
},
{
"$row" : "Mary",

"Treatment A" : 2,

"Treatment B" : 3

For some cases this results in the desired output, but in this example melting

seems more appropriate.

2.3 Lists

The 1ist is the most general purpose data structure in R. It holds an ordered
set of elements, including other lists, each of arbitrary type and size. Two types
of lists are distinguished: named lists and unnamed lists. A list is considered
a named list if it has an attribute called "names". In practice, a named list is
any list for which we can access an element by its name, whereas elements of an

unnamed lists can only be accessed using their index number:

mylistl <- list(foo = 123, bar = 456)
print (mylisti$bar)

[1] 456

mylist2 <- 1ist(123, 456)

print (mylist2[[2]])

[1] 456

130

2.3.1 Unnamed lists

Just like vectors, an unnamed list maps to a JSON array:

cat (toJSON(list(c(1, 2), "test", TRUE, list(c(1l, 2)))))
[1,27, ["test" 1, [true], [[1, 2111

Note that even though both vectors and lists are encoded using JSON arrays, they
can be distinguished from their contents: an R vector results in a JSON array
containing only primitives, whereas a list results in a JSON array containing only
objects and arrays. This allows the JSON parser to reconstruct the original type

from encoded vectors and arrays:

x <- list(c(1, 2, NA), "test", FALSE, list(foo = "bar"))
identical (fromJSON (toJSON(x)), x)

[1] TRUE

The only exception is the empty list and empty vector, which are both encoded

as [] and therefore indistinguishable, but this is rarely a problem in practice.

2.3.2 Named lists

A named list in R maps to a JSON object:

cat (toJSON(1list(foo = c(1, 2), bar = "test")))

I "Fee® 3 [1, 21, "ba® 3 ["Besi®] B

Because a list can contain other lists, this works recursively:

cat (toJSON(list (foo=1list(bar=1list(baz=pi)))))

{ "foo" : { "bar" : { "baz" : [3.14 1 } } }

Named lists map almost perfectly to JSON objects with one exception: list elements

can have empty names:

131

x <- list(foo = 123, "test", TRUE)
attr(x, "names"

[1] "foo" "" o

x$foo

[1] 123

x[[2]]

[1] "test"

In a JSON object, each element in an object must have a valid name. To ensure
this property, jsonlite uses the same solution as the print method, which is to

fall back on indices for elements that do not have a proper name:

x <- list(foo = 123, "test", TRUE)
print(x)

$foo

[1] 123

[[21]

[1] "test"

[[3]]
[1] TRUE
cat (toJSON(x))

{ "foo" : [123], "2" : ["test"], "3" : [true] }

This behavior ensures that all generated JSON is valid, however named lists with
empty names should be avoided where possible. When actually designing R objects
that should be interoperable, it is recommended that each list element is given a

proper name.

132

2.4 Data frame

The data frame is perhaps the most central data structure in R from the user
point of view. This class holds tabular data in which each column is named and
(usually) homogeneous. Conceptually it is very similar to a table in relational data
bases such as MySQL, where fields are referred to as column names, and records
are called rows. Like a matrix, a data frame can be subsetted with two indices,
to extract certain rows and columns of the data:

is(iris)

[1] "data.frame" "list" "o0ldClass" "vector"

names (iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

[5] "Species"

print(iris[1:3, c(1, 5)1)

Sepal.Length Species

1 5.1 setosa
2 4.9 setosa
3 4.7 setosa

print(iris[1:3, c("Sepal.Width", "Species")])

Sepal.Width Species

1 3.5 setosa
2 3.0 setosa
8 3.2 setosa

For the previously discussed classes such as vectors and matrices, behavior of
jsonlite was quite similar to the other available packages that implement toJSON
and toJSON functions, with only minor differences for missing values and edge
cases. But when it comes to data frames, jsonlite takes a completely different
approach. The behavior of jsonlite is designed for compatibility with con-
ventional ways of encoding table-like structures outside the R community. The
implementation is more involved, but results in a powerful and more natural way

of representing data frames in JSON.

133

2.4.1 Column based versus row based tables

Generally speaking, tabular data structures can be implemented in two different
ways: in a column based, or row based fashion. A column based structure consists
of a named collection of equal-length, homogeneous arrays representing the table
columns. In a row-based structure on the other hand, the table is implemented
as a set of heterogeneous associative arrays representing table rows with field
values for each particular record. Even though most languages provide flexible
and abstracted interfaces that hide these implementation details from the user,
they can have huge implications for performance. A column based structure is
efficient for inserting or extracting certain columns of the data, but it is inefficient
for manipulating individual rows. For example to insert a single row somewhere
in the middle, each of the columns has to be sliced and stitched back together.
For row-based implementations, it is the exact other way around: we can easily
manipulate a particular record, but to insert/extract a whole column we would
need to iterate over all records in the table and read /modify the appropriate field

in each of them.

The data frame class in R is implemented in a column based fashion: it con-
stitutes of a named list of equal-length vectors. Thereby the columns in the
data frame naturally inherit the properties from atomic vectors discussed before,
such as homogeneity, missing values, etc. Another argument for column-based
implementation is that statistical methods generally operate on columns. For ex-
ample, the 1m function fits a linear regression by extracting the columns from a
data frame as specified by the formula argument. R simply binds the specified
columns together into a matrix X and calls out to a highly optimized FORTRAN
subroutine to calculate the OLS estimates 3 = (XTX)XTy using the QR factor-
ization of X. Many other statistical modeling functions follow similar steps, and

are computationally efficient because of the column-based data storage in R.

134

Unfortunately R is an exception in its preference for column-based storage: most
languages, systems, databases, API’s, etc, are optimized for record based opera-
tions. For this reason, the conventional way to store and communicate tabular
data in JSON seems to almost exclusively row based. This discrepancy presents
various complications when converting between data frames and JSON. The re-
maining of this section discusses details and challenges of consistently mapping
record based JSON data as frequently encountered on the web, into column-based

data frames which are convenient for statistical computing.

2.4.2 Row based data frame encoding

The encoding of data frames is one of the major differences between jsonlite
and implementations from other currently available packages. Instead of using the
column-based encoding also used for lists, jsonlite maps data frames by default

to an array of records:

cat(toJSON(iris[1:2,], pretty = TRUE))

L

{
"Sepal.Length" : 5.1,
"Sepal.Width" : 3.5,
"Petal.Length" : 1.4,
"Petal.Width" : 0.2,
"Species" : "setosa"

X,

{
"Sepal.Length" : 4.9,
"Sepal.Width" : 3,
"Petal.Length" : 1.4,
"Petal.Width" : 0.2,
"Species" : "setosa"

b

135

This output looks a bit like a list of named lists. However, there is one major
difference: the individual records contain JSON primitives, whereas lists always

contain JSON objects or arrays:

cat(toJSON(list(list(Species = "Foo", Width = 21)), pretty = TRUE))
[

{
"Species" : [
"Foo"
1 e
"Width" : [
21
]
}

This leads to the following convention: when encoding R objects, JSON primitives
only appear in vectors and data-frame rows. Primitives within a JSON array
indicate a vector, and primitives appearing inside a JSON object indicate a data-
frame row. A JSON encoded list, (named or unnamed) will never contain JSON
primitives. This is a subtle but important convention that helps to distinguish
between R classes from their JSON representation, without explicitly encoding any

metadata.

2.4.3 Missing values in data frames

The section on atomic vectors discussed two methods of encoding missing data
appearing in a vector: either using strings or using the JSON null type. When a
missing value appears in a data frame, there is a third option: simply not include

this field in JSON record:

136

x <- data.frame(foo = c(FALSE, TRUE, NA, NA), bar = c("Peach", NA, NA, "Mario"))
print(x)
foo bar
1 FALSE Peach
2 TRUE <NA>
& NA <NA>
4 NA Mario

cat(toJSON(x, pretty = TRUE))

C
{
"foo" : false,
"bar" : "Peach"
},
{
"foo" : true
},
{},
{
"par" : "Mario"
}

The default behavior of jsonlite is to omit missing data from records in a data
frame. This seems to be the most conventional method used on the web, and we
expect this encoding will most likely lead to the correct interpretation of missing-

ness, even in languages without an explicit notion of NA.

2.4.4 Relational data: nested records

Nested datasets are somewhat unusual in R, but frequently encountered in JSON.
Such structures do not really fit the vector based paradigm which makes them
harder to manipulate in R. However, nested structures are too common in JSON

to ignore, and with a little work most cases still map to a data frame quite nicely.

137

The most common scenario is a dataset in which a certain field within each record
contains a subrecord with additional fields. The jsonlite implementation maps
these subrecords to a nested data frame. Whereas the data frame class usually
consists of vectors, technically a column can also be list or another data frame

with matching dimension (this stretches the meaning of the word “column” a bit):

options(stringsAsFactors=FALSE)

x <- data.frame(driver = c("Bowser", "Peach"),
occupation = c("Koopa", "Princess"))
x$vehicle <- data.frame(model = c("Piranha Prowler", "Royal Racer"))

x$vehicle$stats <- data.frame(speed = c(55, 34), weight = c(67, 24),
drift = c(35, 32))
str(x)
’data.frame’: 2 obs. of 3 variables:
$ driver : chr "Bowser" "Peach"
$ occupation: chr "Koopa" "Princess"
$ vehicle :’data.frame’: 2 obs. of 2 variables:
..$ model: chr "Piranha Prowler" "Royal Racer"
..$ stats:’data.frame’: 2 obs. of 3 variables:
..$ speed : num 55 34
..$ weight: num 67 24
..$ drift : num 35 32
cat (toJSON(x, pretty=TRUE))

L
{
"driver" : "Bowser",
"occupation" : "Koopa",
"vehicle" : {
"model" : "Piranha Prowler",
"stats" : {
"speed" : 55,
"weight" : 67,
"drift" : 35
}

138

I,
{
"driver" : "Peach",
"occupation" : "Princess",
"vehicle" : {
"model" : "Royal Racer",
"stats" : {
"speed" : 34,
"weight" : 24,
"drift" : 32
}
b
X

]

myjson <- toJSON(x)
y <- fromJSON(myjson)
identical(x,y)

[1] TRUE

When encountering JSON data containing nested records on the web, chances are
that these data were generated from relational database. The JSON field containing
a subrecord represents a foreign key pointing to a record in an external table. For
the purpose of encoding these into a single JSON structure, the tables were joined
into a nested structure. The directly nested subrecord represents a one-to-one or
many-to-one relation between the parent and child table, and is most naturally
stored in R using a nested data frame. In the example above, the vehicle field
points to a table of vehicles, which in turn contains a stats field pointing to a
table of stats. When there is no more than one subrecord for each record, we

easily flatten the structure into a single non-nested data frame.

139

y <- fromJSON(myjson, flatten = TRUE)
str(y)

’data.frame’: 2 obs. of 6 variables:

$ driver : chr "Bowser" "Peach"

$ occupation : chr "Koopa" "Princess"

$ vehicle.model : chr "Piranha Prowler" "Royal Racer"
$ vehicle.stats.speed : num 55 34

$ vehicle.stats.weight: num 67 24

$ vehicle.stats.drift : num 35 32

2.4.5 Relational data: nested tables

The one-to-one relation discussed above is relatively easy to store in R, because
each record contains at most one subrecord. Therefore we can use either a nested
data frame, or flatten the data frame. However, things get more difficult when
JSON records contain a field with a nested array. Such a structure appears in
relational data in case of a one-to-many relation. A standard textbook illustration
is the relation between authors and titles. For example, a field can contain an

array of values:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(c("Iliad", "Odyssey"), c("Eclogues", "Georgics", "Aeneid"),
vector());

names (x)

[1] "author" "poems"

cat(toJSON(x, pretty = TRUE))

L

"author" : "Homer",
"poems" : [
"Iliad",

"Odyssey"

140

},
{
"author" : "Virgil",
"poems" : [
"Eclogues",
"Georgics",
"Aeneid"
]
I
{
"author" : "Jeroen",
"poems" : []
}

As can be seen from the example, the way to store this in a data frame is using
a list of character vectors. This works, and although unconventional, we can still
create and read such structures in R relatively easily. However, in practice the
one-to-many relation is often more complex. It results in fields containing a set of
records. In R, the only way to model this is as a column containing a list of data

frames, one separate data frame for each row:

x <- data.frame(author = c("Homer", "Virgil", "Jeroen"))

x$poems <- list(
data.frame(title=c("Iliad", "Odyssey"), year=c(-1194, -800)),
data.frame(title=c("Eclogues", "Georgics", "Aeneid"), year=c(-44, -29, -19)),
data.frame()

)

cat (toJSON(x, pretty=TRUE))

[

"author" : "Homer",

141

"poems" : [
{
"title"
"year"
¥e
{
"title"

Ilyear n

"author"
"poems" : [
{
"title"

Ilyear n

"title"

Ilyear n

"title"

Ilyear n

"author"

"poems" : []

"Iliad",

: -1194

"Odyssey",

: -800

"Virgil",

"Eclogues",

. —44

"Georgics",

: -29

"Aeneid",

: -19

"Jeroen",

142

Because R doesn’t have native support for relational data, there is no natural class
to store such structures. The best we can do is a column containing a list of sub-
dataframes. This does the job, and allows the R user to access or generate nested
JSON structures. However, a data frame like this cannot be flattened, and the
class does not guarantee that each of the individual nested data frames contain

the same fields, as would be the case in an actual relational data base.

3 Structural consistency and type safety in dynamic data

Systems that automatically exchange information over some interface, protocol
or API require well defined and unambiguous meaning and arrangement of data.
In order to process and interpret input and output, contents must obey a steady
structure. Such structures are usually described either informally in documenta-
tion or more formally in a schema language. The previous section emphasized
the importance of consistency in the mapping between JSON data and R classes.
This section takes a higher level view and explains the importance of structure
consistency for dynamic data. This topic can be a bit subtle because it refers
to consistency among different instantiations of a JSON structure, rather than a
single case. We try to clarify by breaking down the concept into two important

parts, and illustrate with analogies and examples from R.

3.1 Classes, types and data

Most object-oriented languages are designed with the idea that all objects of a
certain class implement the same fields and methods. In strong-typed languages
such as S4 or Java, names and types of the fields are formally declared in a
class definition. In other languages such as S3 or JavaScript, the fields are not
enforced by the language but rather at the discretion of the programmer. One way

or another they assume that members of a certain class agree on field names and

143

types, so that the same methods can be applied to any object of a particular class.
This basic principle holds for dynamic data exactly the same way as for objects.
Software that process dynamic data can only work reliably if the various elements
of the data have consistent names and structure. Consensus must exist between
the different parties on data that is exchanged as part an interface or protocol.
This requires the structure to follow some sort of template that specifies which
attributes can appear in the data, what they mean and how they are composed.
Thereby each possible scenario can be accounted for in the software so that data
can be interpreted and processed appropriately with no exceptions during run-

time.

Some data interchange formats such as XML or Protocol Buffers take a formal
approach to this matter, and have well established schema languages and inter-
face description languages. Using such a meta language it is possible to define
the exact structure, properties and actions of data interchange in a formal ar-
rangement. However, in JSON, such formal definitions are relatively uncommon.
Some initiatives for JSON schema languages exist (Galiegue and Zyp, 2013), but
they are not very well established and rarely seen in practice. One reason for this
might be that defining and implementing formal schemas is complicated and a lot
of work which defeats the purpose of using an lightweight format such as JSON
in the first place. But another reason is that it is often simply not necessary to
be overly formal. The JSON format is simple and intuitive, and under some gen-
eral conventions, a well chosen example can suffice to characterize the structure.
This section describes two important rules that are required to ensure that data

exchange using JSON is type safe.

3.2 Rule 1: Fixed keys

When using JSON without a schema, there are no restrictions on the keys (field

names) that can appear in a particular object. However, a source of data that

144

returns a different set of keys every time it is called makes it very difficult to write
software to process these data. Hence, the first rule is to limit JSON interfaces
to a finite set of keys that are known a priory by all parties. It can be helpful
to think about this in analogy with for example a relational database. Here, the
database model separates the data from metadata. At run time, records can be
inserted or deleted, and a certain query might return different content each time
it is executed. But for a given query, each execution will return exactly the same
field names; hence as long as the table definitions are unchanged, the structure
of the output consistent. Client software needs this structure to validate input,
optimize implementation, and process each part of the data appropriately. In
JSON, data and metadata are not formally separated as in a database, but similar

principles that hold for fields in a database, apply to keys in dynamic JSON data.

A beautiful example of this in practice was given by Mike Dewar at the New York
Open Statistical Programming Meetup on Jan. 12, 2012 (Dewar, 2012). In his
talk he emphasizes to use JSON keys only for names, and not for data. He refers
to this principle as the “golden rule”, and explains how he learned his lesson the
hard way. In one of his early applications, timeseries data was encoded by using
the epoch timestamp as the JSON key. Therefore the keys are different each time

the query is executed:

{ "1325344443" : 124 1},
{ "1325344456" : 131 1},
{ "1325344478" : 137 }

Even though being valid JSON, dynamic keys as in the example above are likely to
introduce trouble. Most software will have great difficulty processing these values
if we can not specify the keys in the code. Moreover when documenting the API,

either informally or formally using a schema language, we need to describe for each

145

property in the data what the value means and is composed of. Thereby a client or
consumer can implement code that interprets and process each element in the data
in an appropriate manner. Both the documentation and interpretation of JSON
data rely on fixed keys with well defined meaning. Also note that the structure is
difficult to extend in the future. If we want to add an additional property to each
observation, the entire structure needs to change. In his talk, Dewar explains that

life gets much easier when we switch to the following encoding;:

L
{ "time": "1325344443" : "price": 124 },
{ "time": "1325344456" : "price": 131 },
{ "time": "1325344478" : "price": 137 }
]

This structure will play much nicer with existing software that assumes fixed keys.
Moreover, the structure can easily be described in documentation, or captured in
a schema. Even when we have no intention of writing documentation or a schema
for a dynamic JSON source, it is still wise to design the structure in such away
that it could be described by a schema. When the keys are fixed, a well chosen
example can provide all the information required for the consumer to implement
client code. Also note that the new structure is extensible: additional properties

can be added to each observation without breaking backward compatibility.

In the context of R, consistency of keys is closely related to Wikcham’s concept
of tidy data discussed earlier. Wickham states that the most common reason for
messy data are column headers containing values instead of variable names. Col-
umn headers in tabular datasets become keys when converted to JSON. Therefore,
when headers are actually values, JSON keys contain in fact data and can become
unpredictable. The cure to inconsistent keys is almost always to tidy the data

according to recommendations given by Wickham (2014).

146

3.3 Rule 2: Consistent types

In a strong typed language, fields declare their class before any values are assigned.
Thereby the type of a given field is identical in all objects of a particular class,
and arrays only contain objects of a single type. The S3 system in R is weakly
typed and puts no formal restrictions on the class of a certain properties, or the
types of objects that can be combined into a collection. For example, the list

below contains a character vector, a numeric vector and a list:

x <- 1list("FOO", 1:3, list(bar = pi))
cat (toJSON(x))

[[rOO" 1, [1, 2,31, {"par" : [3.14 1] } 1]

However even though it is possible to generate such JSON, it is bad practice.
Fields or collections with ambiguous object types are difficult to describe, interpret
and process in the context of inter-system communication. When using JSON to
exchange dynamic data, it is important that each property and array is type
consistent. In dynamically typed languages, the programmer needs to make sure
that properties are of the correct type before encoding into JSON. For R, this
means that the unnamed lists type is best avoided when designing interoperable

structures because this type is not homogeneous.

Note that consistency is somewhat subjective as it refers to the meaning of the
elements; they do not necessarily have precisely the same structure. What is
important is to keep in mind that the consumer of the data can interpret and
process each element identically, e.g. iterate over the elements in the collection
and apply the same method to each of them. To illustrate this, lets take the

example of the data frame:

147

conceptually homogenous array

x <- data.frame(name = c("Jay", "Mary", NA, NA), gender = c("M", NA, NA, "F"))

cat(toJSON(x, pretty = TRUE))
L
{
"name" : "Jay",
"gender" : "M"
},
{
"name" : "Mary"
},
{},
{
"gender" : "F"
3

The JSON array above has 4 elements, each of which a JSON object. However, due
to the NA values, some records have more fields than others. But as long as they
are conceptually the same type (e.g. a person), the consumer can iterate over the
elements to process each person in the set according to a predefined action. For
example each element could be used to construct a Person object. A collection

of different object classes should be separated and organized using a named list:

x <- list(
humans = data.frame(name = c("Jay", "Mary"), married = c(TRUE, FALSE)),
horses = data.frame(name = c("Star", "Dakota"), price = c(5000, 30000))
)
cat (toJSON(x, pretty=TRUE))
{
"humans" : [

{

”Ilame n 9 lIJayII

148

"married" : true

I
{
"name" : "Mary",
"married" : false
}
1,
"horses" : [
{
"name" : "Star",
"price" : 5000
I
{
"name" : "Dakota",
"price" : 30000
}
]

This might seem obvious, but dynamic languages such as R can make it danger-
ously tempting to generate data containing mixed-type collections. Such inconsis-
tent typing makes it very difficult to consume the data and creates a likely source
of nasty bugs. Using consistent field names/types and homogeneous JSON arrays
is a strong convention among public JSON API’s, for good reasons. We recommend

R users to respect these conventions when generating JSON data in R.

149

BIBLIOGRAPHY

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK
Users’ Guide (Software, Environments and Tools). Society for Industrial and
Applied Mathematics, 3 edition, 1 1987. ISBN 9780898714470. URL http:
//amazon.com/o/ASIN/0898714478/.

Kristina Chodorow. MongoDB: The Definitive Guide. O’Reilly Media, second
edition edition, 5 2013. ISBN 9781449344689. URL http://amazon.com/o/
ASIN/1449344682/.

Alex Couture-Beil. rjson: JSON for R, 2013. URL http://CRAN.R-project.

org/package=rjson. R package version 0.2.13.

D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Informational), July 2006a. URL http://www.ietf.org/
rfc/rfcd627.txt. Obsoleted by RFCs 7158, 7159.

Douglas Crockford. JSON: The fat-free alternative to XML. In Proc. of XML,
volume 2006, 2006b. URL http://www. json.org/fatfree.html.

Mike Dewar. First steps in data visualisation using d3.js, 2012. URL http:
//vimeo.com/35005701#t=7m17s. New York Open Statistical Programming
Meetup on Jan. 12, 2012.

Ecma International. ECMAScript Language Specification. European
Association for Standardizing Information and Communication Systems,
1999. URL http://www.ecma-international.org/publications/files/

ECMA-ST/Ecma-262. pdf.

Sadayuki Furuhashi. MessagePack: It’s like JSON. but fast and small, 2014. URL

http://msgpack.org/.

150

http://amazon.com/o/ASIN/0898714478/
http://amazon.com/o/ASIN/0898714478/
http://amazon.com/o/ASIN/1449344682/
http://amazon.com/o/ASIN/1449344682/
http://CRAN.R-project.org/package=rjson
http://CRAN.R-project.org/package=rjson
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.json.org/fatfree.html
http://vimeo.com/35005701#t=7m17s
http://vimeo.com/35005701#t=7m17s
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://msgpack.org/

F. Galiegue and K. Zyp. JSON Schema: core definitions and terminology. draft-
zyp-json-schema-04 (work in progress), 2013. URL https://tools.ietf.org/

html/draft-zyp-json-schema-04.

Duncan Temple Lang. RJSONIO: Serialize R Objects to JSON, JavaScript Object
Notation, 2012. R package version 0.98-0.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308-
323, September 1979. ISSN 0098-3500. doi: 10.1145/355841.355847. URL
http://doi.acm.org/10.1145/355841.355847.

Deborah Nolan and Duncan Temple Lang. XML and Web Technologies for Data
Sciences with R. Springer, 2014. URL http://1link.springer.com/book/10.
1007/978-1-4614-7900-0.

Jeroen Ooms, Duncan Temple Lang, and Jonathan Wallace. jsonlite: A smarter
JSON encoder/decoder for R, 2014. URL http://github.com/jeroenooms/

jsonlite#treadme. R package version 0.9.7.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2014. URL http://

www.R-project.org/.

Hadley Wickham. Tidy Data. Under review, 2014. URL http://vita.had.co.

nz/papers/tidy-data.pdf.

151

https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-04
http://doi.acm.org/10.1145/355841.355847
http://link.springer.com/book/10.1007/978-1-4614-7900-0
http://link.springer.com/book/10.1007/978-1-4614-7900-0
http://github.com/jeroenooms/jsonlite#readme
http://github.com/jeroenooms/jsonlite#readme
http://www.R-project.org/
http://www.R-project.org/
http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf

CHAPTER 4

Possible Directions for Improving Dependency

Versioning in R

1 Package management in R

One of the most powerful features of R is its infrastructure for contributed code
(Fox, 2009). The base R software suite that is released several times per year
ships with the base and recommended packages and provides a solid foundation
for statistical computing. However, most R users will quickly resort to the pack-
age manager and install packages contributed by other users. By default, these
packages are installed from the “Comprehensive R Archive Network” (CRAN), fea-
turing over 4300 contributed packages as of 2013. In addition, other repositories
like BioConductor (Gentleman et al., 2004) and Github (Dabbish et al., 2012) are

hosting a respectable number of packages as well.

The R Core team has done a tremendous job in coordinating the development of
the base software along with providing, supporting, and maintaining an infras-
tructure for contributed code. The system for sharing and installing contributed
packages is easily taken for granted, but could in fact not survive without the
commitment and daily efforts from the repository maintainers. The process from
submission to publication of a package involves several manual steps needed to
ensure that all published packages meet standards and work as expected, on a
variety of platforms, architectures and R versions. In spite of rapid growth and

limited resources, CRAN has managed to maintain high standards on the quality

152

of packages. Before continuing, we want to express appreciation for the count-
less hours invested by volunteers in organizing this unique forum for statistical
software. They facilitate the innovation and collaboration in our field, and unite
the community in creating software that is both of the highest quality and pub-
licly available. We want to emphasize that suggestions made in this paper are in
no way intended as criticism on the status quo. If anything, we hope that our
ideas help address some challenges to support further growth without having to

compromise on the open and dynamic nature of the infrastructure.

1.1 The dependency network

Most R packages depend on one or more other packages, resulting in a complex
network of recursive dependencies. Each package includes a DESCRIPTION file
which allows for declaration of several types of dependencies, including Depends,
Imports, Suggests and Enhances. Based on the type of dependency relationship,
other packages are automatically installed, loaded and/or attached with the re-
quested package. Package management is also related to the issue of namespacing,
because different packages can use identical names for objects. The NAMESPACE file
allows the developer to explicitly define objects to be exported or imported from
other packages. This prevents the need to attach all dependencies and lookup
variables at runtime, and thereby decreases chances of masking and naming-
conflicts. Unfortunately, many packages are not taking advantage of this feature,
and thereby force R to attach all dependencies, unnecessarily filling the search
path of a session with packages that the user hasn’t asked for. However, this is

not the primary focus of this paper.

153

1.2 Package versioning

Even though CRAN consistently archives older versions of every package when
updates are published, the R software itself takes limited advantage of this archive.
The package manager identifies packages by name only when installing or loading
a package. The install.packages function downloads and installs the current
version of a CRAN package into a single global library. This library contains a
single version of each package. If a previous version of the package is already
installed on the system, it is overwritten without warning. Similarly, the library

function will load the earliest found package with a matching name.

The DESCRIPTION file does allow the package author to specify a certain version
of a dependency by postfixing the package name with >=, <= or == and a version
string. However, using this feature is actually dangerous because R might not
be able to satisfy these conditions, causing errors. This is again the result of R
libraries, sessions and repositories being limited to a single current version of each
package. When a package would require a version of a dependency that is not
already installed or current on CRAN; it can not be resolved automatically. Fur-
thermore, upgrading a package in the global library to the current CRAN version
might break other packages that require the previously installed version. Experi-
enced R users might try to avoid such problems by manually maintaining separate
libraries for different tasks and projects. However, R can still not have multiple
versions of a package loaded concurrently. This is perhaps the most fundamental
problem because it is nearly impossible to work around. If package authors would
actually declare specific versions of dependencies, any two packages requiring dif-
ferent versions of one and the same dependency will conflict and cannot be used
together. In practice, this limitation discourages package authors to be explicit
about dependency versions. The >= operator is used by some packages, but it
only checks if an installed dependency is outdated and needs to be synchronized

with CRAN. It still assumes that any current of future version will suffice, and

154

does not protect packages from breaking when their dependency packages change.

The <= and == operators are barely used at all.

When identifying a package by its name only, we implicitly make the assumption
that different versions of the package are interchangeable. This basic assumption
has far-reaching implications and consequences on the distributed development
process and reliability of the software as a whole. In the context of the increas-
ingly large pool of inter-dependent packages, violations of this assumption are
becoming increasingly apparent and problematic. In this paper we explore this
problem is greater detail, and try to make a case for moving away from this as-
sumption, towards systematic versioning of dependency relationships. The term
dependency in this context does not exclusively refer to formally defined relations
between R packages. Our interpretation is a bit more general in the sense that any
R script, Sweave document, or third party application depends on R and certain
packages that are needed to make it function. The paper is largely motivated by
personal experiences, as we have come to believe that limitations of the current
dependency system are underlying multiple problems that R users and developers
might experience. Properly addressing these concerns could resolve several linger-
ing issues at once, and make R a more reliable and widely applicable analytical

engine.

2 Use cases

A dependency defines a relationship wherein a certain piece of software requires
some other software to run or compile. However, software constantly evolves,
and in the open source world this happens largely unmanaged. Consequently, any
software library might actually be something different today than it was yesterday.
Hence, solely defining the dependency relationship in terms of the name of the

software is often insufficient. We need to be more specific, and declare explicitly

155

which version(s), branch(es) or release(s) of the other software package will make

our program work. This is what we will refer to as depencency versioning.

This problem is not at all unique to R; in fact a large share of this paper consist
of taking a closer look at how other open source communities are managing this
process, and if some of their solutions could apply to R as well. But first we will
elaborate a bit further on how this problem exactly appears in the context of R.
This section describes three use cases that reveal some limitations of the current
system. These use cases delineate the problem and lead towards suggestions for

improvements in subsequent sections.

2.1 Case 1: Archive / repository maintenance

A medium to large sized repository with thousands of packages has a complicated
network of dependencies between packages. CRAN is designed to consider the
very latest version of every package as the only current version. This design relies
on the assumption that at any given time, the latest versions of all packages are
compatible. Therefore, R’s built-in package manager can simply download and
install the current versions of all dependencies along with the requested package,
which seems convenient. However, to developers this means that every package
update needs to maintain full backward compatibility with all previous versions.
No version can introduce any breaking changes, because other packages in the
repository might be relying on things in a certain way. Functions or objects may
never be removed or modified; names, arguments, behavior, etc, must remain
the same. As the dependency network gets larger and more complex, this policy
becomes increasingly vulnerable. It puts a heavy burden on contributing devel-
opers, especially the popular ones, and results in increasingly large packages that

are never allowed to deprecate or clean up old code and functionality.

In practice, the assumption is easily violated. Every time a package update is

156

pushed to CRAN, there is a real chance of some reverse dependencies failing due to
a breaking change. In the case of the most popular packages, the probability of this
happening is often closer to 1 than to 0, regardless of the author. Uwe Ligges has
stated in his keynote presentation at useR that CRAN automatically detects some
of these problems by rebuilding every package up in the dependency tree. However,
only a small fraction of potential problems reveal themselves during the build of a
package, and when found, there is no obvious solution. One recent example was the
forced roll-back of the ggplot2 (Wickham, 2009) update to version 0.9.0, because
the introduced changes caused several other packages to break. The author of
the ggplot2 package has since been required to announce upcoming updates to
authors of packages that depend on ggplot2, and provide a release candidate
to test compatibility. The dependent packages are then required to synchronize
their releases if any problems arise. However, such manual solutions are far from
flawless and put even more work on the shoulders of contributing developers. It
is doubtful that all package authors on CRAN have time and resources to engage
in an extensive dialogue with other maintainers for each update of a package. We
feel strongly that a more systematic solution is needed to guarantee that software

published on CRAN keeps working over time; current as well as older versions.

When the repository reaches a critical size, and some packages collect hundreds of
reverse dependencies, we have little choice but to acknowledge the fact that every
package has only been developed for, and tested with certain versions of its depen-
dencies. A policy of assuming that any current or future version of a dependency
should suffice is dangerous and sets the wrong incentives for package authors. It
discourages change, refactoring or cleanup, and results in packages accumulating
an increasingly heavy body of legacy code. And as the repository grows, it is
inevitable that packages will nevertheless eventually break as part of the process.
What is needed is a redesign that supports the continuous decentralized change

of software and helps facilitate more reliable package development. This is not

157

impossible: there are numerous open source communities managing repositories
with more complex dependency structures than CRAN. Although specifics vary,
they form interesting role models to our community. As we will see later on, a
properly archived repository can actually come to be a great asset rather than a

liability to the developer.

2.2 Case 2: Reproducibility

Replication is the ultimate standard by which scientific claims are judged. How-
ever, complexity of data and methods can make this difficult to achieve com-
putational science (Peng, 2011). As a leader in scientific computing, R takes a
pioneering role in providing a system that encourages researchers to strive towards

the gold standard. The CRAN Task View on Reproducible Research states that:

The goal of reproducible research is to tie specific instructions to data
analysis and experimental data so that scholarship can be recreated,

better understood and verified.

In R, reproducible research is largely facilitated using literate programming tech-
niques implemented in packages like Sweave that mix (weave) R code with IXTEX-
markup to create a “reproducible document” (Leisch, 2002). However, those ever
faced with the task of actually reproducing such a document might have experi-
enced that the Sweave file does not always compile out of the box. Especially if it
was written several years ago and loads some contributed packages, chances are
that essential things have changed in the software since the document was cre-
ated. When we find ourselves in such a situation, recovering the packages needed

to reproduce the document might turn out to be non-trivial.

An example: suppose we would like to reproduce a Sweave document which was
created with R 2.13 and loads the caret package (Kuhn, 2013). If no further

instructions are provided, this means that any of the approximately 25 releases of

158

caret in the life cycle of R 2.13 (April 2011 to February 2012) could have been
used, making reproducibility unlikely. Sometimes authors add comments in the
code where the package is loaded, stating that e.g. caret 4.78 was used. How-
ever, this information might also turn out to be insufficient: caret depends on
4 packages, and suggests another 59 packages, almost all of which have had nu-
merous releases in R 2.13 time frame. Consequently, caret 4.78 might not work
anymore because of changes in these dependencies. We then need to do further
investigation to figure out which versions of the dependency packages were current
at the time of the caret 4.78 release. Instead, lets assume that the prescient re-
searcher anticipated all of this, and saved the full output of sessionInfo() along
with the Sweave document, directly after it was compiled. This output lists the
version of each loaded package in the active R session. We could then proceed by
manually downloading and installing R 2.13 along with all of the required pack-
ages from the archive. However, users on a commercial operating systems might
be up for another surprise: unlike source packages, binary packages are not fully
archived. For example, the only binary builds available for R 2.13 are respectively
caret 5.13 on Windows, and caret 5.14 on OSX. Most likely, they will face
the task of rebuilding each of the required packages from source in an attempt to

reconstruct the environment of the author.

Needless to say, this situation is suboptimal. For manually compiling a single
Sweave document we might be willing to make this effort, but it does not provide
a solid foundation for systematic or automated reproducible software practices.
To make results generated by R more reproducible, we need better conventions
and/or native support that is both explicit and specific about contributed code.
For an R script or Sweave document to stand the test of time, it should work at
least on the same version of R that was used by the author. In this respect, R
has higher requirements on versioning than other software. Reproducible research

does not just require a version that will make things work, but one that generates

159

exactly the same output. In order to systematically reproduce results R, package
versions either need to be standardized, or become a natural part of the language.
We realize this will not archive perfect reproducibility, as problems can still arise
due to OS or compiler specific behavior. However, it will be a major step forward
that has the potential of turning reproducibility into a natural feature of the

software, rather than a tedious exercise.

2.3 Case 3: Production applications

R is no longer exclusively used by the local statistician through an interactive con-
sole. It is increasingly powering systems, stacks and applications with embedded
analytics and graphics. When R is part of say, an application used in hospitals
to create on-demand graphics from patient data, the underlying code needs to
be stable, reliable, and redistributable. Within such an application, even a minor
change in code or behavior can result in complete failure of the system and cannot
easily be fixed or debugged. Therefore, when an application is put in production,

software has to be completely frozen.

An application that builds on R has been developed and tested with certain ver-
sions of the base software and R packages used by the application. In order to
put this application in production, exactly these versions need to be shipped,
installed and loaded by the application on production servers. Managing, dis-
tributing and deploying production software with R is remarkably hard, due to
limited native dependency versioning and the single global library design. Admin-
istrators might discover that an application that was working in one place doesn’t
work elsewhere, even though exactly the same operating system, version of R,
and installation scripts were used. The problem of course is that the contributed
packages constantly change. Problems become more complicated when a machine
is hosting many applications that were developed by different people and depend

on various packages and package versions.

160

The default behavior of loading packages from a global library with bleeding edge
versions is unsuitable for building applications. Because the CRAN repository
has no notion of stable branches, one manually needs to download and install the
correct versions of packages in a separate library for each application to avoid
conflicts. This is quite tricky and hard to scale when hosting many applications.
In practice, application developers might not even be aware of these pitfalls, and
design their applications to rely on the default behavior of the package manager.
They then find out the hard way that applications start breaking down later on,

because of upstream changes or library conflicts with other applications.

3 Solution 1: staged distributions

The problem of managing bottom-up decentralized software development is not
new; rather it is a typical feature of the open source development process. The
remainder of this paper will explore two solutions from other open source com-
munities, and suggest how these might apply to R. The current section describes

the more classic solution that relies on staged software distributions.

A software distribution (also referred to as a distribution or a distro) is a collec-
tion of software components built, assembled and configured so that it can be used
essentially "as is” for its intended purpose. Maintainers of distributions do not
develop software themselves; they collect software from various sources, package
it up and redistribute it as a system. Distributions introduce a formal release
cycle on the continuously changing upstream developments and maintainers of
a distribution take responsibility for ensuring compatibility of different packages
within a certain release of the distribution. Software distributions are most com-
monly known in the context of free operating systems (BSD, Linux, etc). Staging
and shipping software in a distribution has proven to scale well to very large code

bases. For example, the popular Debian GNU/Linux distribution (after which

161

R’s package description format was modeled) features over 29000 packages with
a large and complex dependency network. No single person is familiar with even
a fraction of the code base that is hosted in this repository. Yet through well
organized staging and testing, this distribution is known to be one of the most
reliable operating systems today, and is the foundation for a large share of the

global IT infrastructure.

3.1 The release cycle

In a nutshell, a staged distribution release can be organized as follows. At any
time, package authors can upload new versions of packages to the devel pool, also
known as the unstable branch. A release cycle starts with distribution maintainers
announcing a code freeze date, several months in advance. At this point, package
authors are notified to ensure that their packages in the unstable branch are up
to date, fix bugs and resolve other problems. At the date of the code freeze, a
copy (fork) of the unstable repository is made, named and versioned, which goes
into the testing phase. Software in this branch will then be subject to several
iterations of intensive testing and bug fixing, sometimes accompanied by alpha or
beta releases of the distribution. However, software versions in the testing branch
will no longer receive any major updates that could potentially have side effects or
break other packages. The goal is to converge to increasingly stable set of software.
When after several testing rounds the distribution maintainers are confident that
all serious problems are fixed, the branch is tagged stable and released to the
public. Software in a stable release will usually only receive minor non-breaking
updates, like important compatibility fixes and security updates. For the next
“major release” of any software, the user will have to wait for the next cycle of
the distribution. As such, everyone using a certain release of the distribution is
using exactly the same versions of all programs and libraries on the system. This

is convenient for both users and developers and gives distributions a key role in

162

bringing decentralized open source development efforts together.

3.2 R: downstream staging and repackaging

The semi annual releases of the r-base software suite can already be considered
as a distribution of the 29 base and recommended packages. However in the case
of R, this collection is limited to software that has been centrally developed and
released by the same group of people; it does not include contributed code. Due
to the lack of native support for dependency versioning in R, several third party
projects have introduced some form of downstream staging in order to create
stable, redistributable collections R software. This section lists some examples
and explains why this is suboptimal. In the next section we will discuss what

would be involved with extending the R release cycle to contributed packages.

One way of staging R packages downstream is by including them in existing soft-
ware distributions. For example, Eddelbuettel and Blundell (2009) have wrapped
some popular CRAN packages into deb packages for the Debian and Ubuntu sys-
tems. Thereby, pre-compiled binaries are shipped in the distribution along with
the R base software, putting version compatibility in the hands of the maintainers
(among other benefits). This works well, but requires a lot of effort and commit-
ment from the package maintainer, which is why this has only been done for a
small subset of the CRAN packages. Most distributions expect high standards on
the quality of the software and package maintenance, which makes this approach
hard to scale up to many more packages. Furthermore, we are tied to the release
cycle of the distribution, resulting in a somewhat arbitrary and perhaps unfortu-
nate snapshot of CRAN packages when the distribution freezes. Also, different
distributions will have different policies on if, when and which packages they wish

to ship with their system.

Another approach is illustrated by domain-specific projects like BioConductor (ge-

163

nomic data) and REvolution R Enterprise (big data). Both these systems combine
a fixed version of R with a custom library of frozen R packages. In the case of
REvolution, the full library is included with the installer; for BioConductor they
are provided through a dedicated repository. In both cases, this effectively pre-
vents installed software from being altered unexpectedly by upstream changes.
However, this also leads to a split in the community between users of R, BioCon-
ductor, and REvolution Enterprise. Because of the differences in libraries, R code
is not automatically portable between these systems, leading to fragmentation and
duplication of efforts. E.g. BioConductor seems to host many packages that could
be more generally useful; yet they are unknown to most users of R. Furthermore,
both projects only target a limited set of packages; they still rely on CRAN for

the majority of the contributed code.

The goal of staging is to tie a fixed set of contributed packages to a certain
release of R. If these decisions are passed down to distributions or organizations,
a multitude of local conventions and repositories arises, and different groups of
users will still be using different package versions. This leads to unnecessary
fragmentation of the community by system, organization, or distribution channel.
Moreover, it is often hard to assess compatibility of third party packages, resulting
in somewhat arbitrary local decision making. It seems that the people who are
in the best position to manage and control compatibility are the package authors
themselves. This leads us to conclude that a more appropriate place to organize

staging of R packages is further upstream.

3.3 Branching and staging in CRAN itself

Given that the community of R contributors evolves mainly around CRAN, the
most desirable approach to organizing staging would be by integrating it with the
publication process. Currently, CRAN is managed as what distributions would

consider a development or unstable branch. It consists of the pool of bleeding-edge

164

versions, straight from package authors. Consequently it is wise to assume that
software in this branch might break on a regular basis. Usually, the main purpose
of an unstable branch is for developers to exchange new versions and test com-
patibility of software. Regular users obtain software releases from stable branches
instead. This does not sound unfamiliar: the r-base software also distinguishes
between stable versions r-release and r-release-old, and an unstable development

version, r-devel.

The fact that R already has an semi-annual release cycle for the 29 base and
recommended packages, would make it relatively straightforward to extend this
cycle to CRAN packages. A snapshot of CRAN could be frozen along with every
version of r-release, and new package updates would only be published to the
r-devel branch. In practice, this could perhaps quite easily be implemented by
creating a directory on CRAN for each release of R, containing symbolic links to
the versions of the packages considered stable for this release. In the case of binary
packages for OSX and Windows, CRAN actually already has separate directories
with builds for each release of R. However currently these are not frozen and
continuously updated. In a staged repository, newly submitted packages are only
build for the current devel and testing branches; they should not affect stable
releases. Exceptions to this process could still be granted to authors that need to
push an important update or bugfix within a stable branch, commonly referred

to as backporting, but this should only happen incidentally.

To fully make the transition to a staged CRAN, the default behavior of the package
manager must be modified to download packages from the stable branch of the
current version of R, rather than the latest development release. As such, all users
on a given version of R will be using the same version of each CRAN package,
regardless on when it was installed. The user could still be given an option to
try and install the development version from the unstable branch, for example

by adding an additional parameter to install.packages named devel=TRUE.

165

However when installing an unstable package, it must be flagged, and the user
must be warned that this version is not properly tested and might not be working
as expected. Furthermore, when loading this package a warning could be shown
with the version number so that it is also obvious from the output that results
were produced using a non-standard version of the contributed package. Finally,
users that would always like to use the very latest versions of all packages, e.g.
developers, could install the r-devel release of R. This version contains the latest
commits by R Core and downloads packages from the devel branch on CRAN,

but should not be used or in production or reproducible research settings.

3.4 Organizational change

Appropriate default behavior of the software is a key element to encourage adop-
tion of conventions and standards in the community. But just as important is
communication and coordination between repository maintainers and package au-
thors. To make staging work, package authors must be notified of upcoming
deadlines, code freezes or currently broken packages. Everyone must realize that
the package version that is current at the time of code freeze, will be used by the
majority of users of the upcoming version of R. Updates to already released stable
branches can only be granted in exceptional circumstances, and must guarantee
to maintain full backward compatibility. The policies of the BioConductor project

provide a good starting point and could be adapted to work for CRAN.

Transitioning to a system of “stable” and “development” branches in CRAN,
where the stable branch is conventional for regular users, could tremendously
improve the reliability of the software. The version of the R software itself would
automatically imply certain versions of contributed packages. Hence, all that
is required to reproduce a Sweave document created several years ago, is which
version of R was used to create the document. When deploying an application

that depends on R 2.15.2 and various contributed packages, we can be sure that a

166

year later the application can be deployed just as easily, even though the authors
of contributed packages used by the application might have decided to implement
some breaking changes. And package updates that deprecate old functionality or
might break other packages that depend on it, can be uploaded to the unstable
branch without worries, as the stable branches will remain unchanged and users
won’t be affected. The authors of the dependent packages that broke due to the
update can be warned and will have sufficient time to fix problems before the next

stable release.

4 Solution 2: versioned package management

The previous section described the “classical” solution of creating distributable
sets of compatible, stable software. This is a proven approach and has been
adopted in some way or another by many open-source communities. However,
one drawback of this approach might be that some additional coordination is
needed for every release. Another drawback is that it makes the software a bit
more conservative, in the sense that regular users will generally be using versions
of packages that are at least a couple of months old. The current section describes
a different approach to the problem that is used by for example the Javascript
community. This method is both reliable and flexible, however would require some

more fundamental changes to be implemented in R.

4.1 Node.js and NPM

One of the most recent and fastest growing open source communities is that of the
node.js software (for short: node), a Javascript server system based on the open
source engine V8 from Google. One of the reasons that the community has been
able to grow rapidly is because of the excellent package manager and identically

named repository, NPM. Even though this package manager is only 3 years old,

167

it is currently hosting over 30000 packages with more than a million downloads
daily, and has quickly become the standard way of distributing Javascript code.
The NPM package manager is a powerful tool for development, publication and
deployment of both libraries and applications. NPM addresses some problems
that Javascript and R actually have in common, and makes an interesting role

model for a modern solution to the problem.

The Javascript community can be described as decentralized, unorganized and
highly fragmented development without any quality control authority. Similar
to CRAN, NPM basically allows anyone to claim a “package name” and start
publishing packages and updates to the repositories. The repository has no no-
tion of branches and simply stores every version of a package indefinitely in its
archives. However, a major difference with R is how the package manager handles

installation, loading and namespacing of packages.

4.2 Dependencies in NPM

Every NPM package ships with a file named package. json, which is the equiv-
alent of the DESCRIPTION in R packages, yet a bit more advanced. An overview
of the full feature set of the package manager is beyond the scope of this paper,
but the interested reader is highly encouraged to take a look over the fence at this
well designed system: https://npmjs.org/doc/json.html. The most relevant

feature in the context CRAN is how NPM declares and resolves dependencies.

Package dependencies are defined using a combination of the package name and
version range descriptor. This descriptor is specified with a simple dedicated

syntax, that extends some of the standard versioning notation. Below a snippet

168

https://npmjs.org/doc/json.html

taken from the package. json file in the NPM manual:

"dependencies" : {
"foo" : "1.0.0 - 2.9999.9999",
"bar" : ">=1.0.2 <2.1.2",
"baz" : ">1.0.2 <=2.3.4",
"boo" : "2.0.1",
"qux" : "<1.0.0 || >=2.3.1 <2.4.5",
"asd" : "http://asdf.com/asdf.tar.gz",
"til" . "71.2",
"elf" : "71.2.3",
"two" : "2.x",
"thr" : "3.3.x",
3

The version range descriptor syntax is a powerful tool to specify which version(s)
or version range(s) of dependencies are required. It provides the exact information
needed to build, install and/or load the software. In contrast to R, NPM takes
full advantage of this information. In R, all packages are installed in one or more
global libraries, and at any given time a subset of these packages is loaded in
memory. This is where NPM takes a very different approach. During installation
of a package, NPM creates a subdirectory for dependencies inside the installation
directory of the package. It compares the list of dependency declarations from
the package. json with an index of the repository archive, and then constructs a
private library containing the full dependency tree and precise versions as specified
by the author. Hence, every installed package has its own library of dependencies.
This works recursively, i.e. every dependency package inside the library again has

its own dependency library.

169

jeroen@ubuntu: ~/Desktop$ npm install d3
jeroen@ubuntu:~/Desktop$ npm list
/home/ jeroen/Desktop
L. d302.10.3
—T jsdom@0.2.14
contextify@0.1.3
__[—— bindings@1.0.0
— cssom@0.2.5

— htmlparser@1.7.6

—T request02.12.0

form-data@0.0.3
async@0.1.9
combined-stream@0.0.3

delayed-stream@0.0.5

— mime@1.2.7

— sizzle@1.1.0

By default, a package loads dependencies from its private library, and the names-
pace of the dependency is imported explicitly in the code. This way, an installed
NPM package is completely unaffected by other applications, packages, and pack-
age updates being installed on the machine. The private library of any package
contains all required dependencies, with the exact versions that were used to de-
velop the package. A package or application that has been tested to work with
certain versions of its dependencies, can easily be installed years later on another
machine, even though the latest versions of dependencies have had major changes

in the mean time.

4.3 Back to R

A similar way of managing packages could be very beneficial to R as well. It

would enable the same dynamic development and stable installation of packages

170

that has resulted in a small revolution within the Javascript community. The only
serious drawback of this design is that it requires more disk space and slightly
more memory, due to multiple versions packages being installed and/or loaded.
Yet the memory required to load an additional package is minor in comparison
with loading and manipulating a medium sized dataset. Considering the wide
availability of low cost disk space and memory these days, we expect that most
users and developers will happily pay this small price for more reliable software

and reduced debugging time.

Unfortunately, implementing a package manager like NPM for R would require
some fundamental changes in the way R installs and loads packages and names-
paces, which might break backward compatibility at this point. One change that
would probably be required for this is to move away from the Depends relation
definition, and require all packages to rely on Imports and a NAMESPACE file to
explicitly import objects from other packages. A more challenging problem might
be that R should be able to load multiple versions of a package simultaneously
while keeping their namespaces separated. This is necessary for example when
two packages are in use, which both depend on different versions of one and the
same third package. In this case, the objects, methods and classes exported by

the dependency package should affect only to the package that imported them.

Finally, it would be great if the package manager was capable of installing multi-
ple versions of a package inside a library, for example by appending the package
version to the name of the installation directory (e.g. MASS_7.3-22). The library
and require functions could then be extended with an argument specifying the
version to be loaded. This argument could use the same version range descriptor
syntax that packages use to declare dependencies. Missing versions could auto-

matically be installed, as nothing gets overwritten.

171

library(ggplot2, version = "0.8.9")
library(MASS, version = "7.3-x")

library(Matrix, version = ">=1.0")

Code as above leaves little ambiguity and tremendously increases reliability and
reproducibility of R code. When the code is explicit about which package versions
are loaded, and packages are explicit about dependency versions, an R script or
Sweave document that once worked on a certain version of R, will work for other
users, on different systems, and keep working over time, regardless of upstream
changes. For users not concerned with dependency versioning, the default value of
the version argument could be set to "*". This value indicates that any version
will do, in which case the package manager gives preference to the most recent

available version of the package.

The benefits of a package manager capable of importing specific versions of pack-
ages would not just be limited to contributed code. Such a package manager would
also reduce the necessity to include all of the standard library and more in the
R releases. If implemented, the R Core team could consider moving some of the
base and recommended packages out of the r-base distribution, and offer them
exclusively through CRAN. This way, the R software could eventually become
the minimal core containing only the language interpreter and package manager,
similar to e.g. Node and NPM. More high-level functionality could be loaded on
demand as versioning is controlled by the package manager. This would allow for
less frequent releases of the R software itself, and further improve compatibility

and reproducibility between versions of R.

5 Summary

The infrastructure for contributed code has supported the steady growth and

adoption of the R software. For the majority of users, contributed code is just as

172

essential in their daily work as the R base software suite. But the number of pack-
ages on CRAN has grown beyond what could have been foreseen, and practices
and policies that used to work on a smaller scale are becoming unsustainable. At
the same time there is an increasing demand for more reliable, stable software,
that can be used as part of embedded systems, enterprise applications, or repro-
ducible research. The design and policies of CRAN and the package manager
shape the development process and play an important role in determining the fu-
ture of the platform. The current practice of publishing package updates directly
to end-users facilitates a highly versatile development, but comes at the cost of
reliability. The default behavior of R to install packages in a single library with
only the latest versions is perhaps more appropriate for developers than regular
users. After nearly two decades of development, R has reached a maturity where

a slightly more conservative approach could be beneficial.

This paper explained the problem of dependency versioning, and tried to make
a case for transitioning to a system that does not assume that package versions
are interchangeable. The most straightforward approach would be by extending
the r-release and r-devel branches to the full CRAN repository, and only publish
updates of contributed packages to the r-devel branch of R. This way, the stable
versions of R are tied to a fixed version of each CRAN package, making the code
base and behavior of a given release of R less ambiguous. Furthermore, a release
cycle allows us to concentrate coordination and testing efforts for contributed

packages along with releases of R, rather than continuously throughout the year.

In the long term, a more fundamental revision of the packaging system could be
considered, in order to facilitate dynamic contributed development without sacri-
ficing reliability. However, this would involve major changes in the way libraries
and namespaces are managed. The most challenging problem will be support for
concurrently loading multiple versions of a package. But when the time is ready

to make the jump to the next major release of R, we hope that R Core will con-

173

sider revising this important part of the software, adopting modern approaches
and best practices of package management that are powering collaboration and

uniting efforts within other open source communities.

174

BIBLIOGRAPHY

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: Trans-
parency and collaboration in an open software repository. In Proceedings of the
ACM 2012 conference on Computer Supported Cooperative Work, pages 1277—
1286. ACM, 2012. URL http://dl.acm.org/citation.cfm?id=2145396.

Dirk Eddelbuettel and Charles Blundell. cran2deb: A fully automated cran to
debian package generation system. Presented at UseR Conference, July 10-12,

Rennes, 2009. URL https://r-forge.r-project.org/projects/cran2deb/.

J. Fox. Aspects of the Social Organization and Trajectory of the R Project. The
R Journal, 1(2):5-13, 2009. URL http://journal.r-project.org/archive/

2009-2/RJournal_2009-2_Fox.pdf.

R.C. Gentleman, V.J. Carey, D.M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: open software
development for computational biology and bioinformatics. Genome biology, 5

(10):R80, 2004. URL http://www.ncbi.nlm.nih.gov/pubmed/15461798.

Max Kuhn. caret: Classification and Regression Training, 2013. URL http:

//CRAN.R-project.org/package=caret. R package version 5.16-04.

F. Leisch. Sweave: Dynamic generation of statistical reports using literate data

analysis. Proceedings of CompStat 2002, 2002.

Roger D. Peng. Reproducible Research in Computational Science. Science, 334
(6060):1226-1227, December 2011. ISSN 1095-9203. doi: 10.1126/science.
1213847. URL http://dx.doi.org/10.1126/science.1213847.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/

book.

175

http://dl.acm.org/citation.cfm?id=2145396
https://r-forge.r-project.org/projects/cran2deb/
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Fox.pdf
http://journal.r-project.org/archive/2009-2/RJournal_2009-2_Fox.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret
http://dx.doi.org/10.1126/science.1213847
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book

	The Changing Role of Statisticians and their Software
	The rise of data
	Current developments
	Integration and interoperability

	Motivation and scope
	Definition
	Overview
	About R

	The OpenCPU System: Towards a Universal Interface for Scientific Computing through Separation of Concerns
	Introduction
	Separation of concerns
	The OpenCPU system
	History of OpenCPU

	Practices and domain logic of scientific computing
	It starts with data
	Functional programming
	Graphics
	Numeric properties and missing values
	Non deterministic and unpredictable behavior
	Managing experimental software
	Interactivity and error handling
	Security and resource control
	Reproducible research

	The state problem
	Stateless solutions: predefined scripts
	Stateful solution: client side process management
	A hybrid solution: functional state

	The OpenCPU HTTP API
	About HTTP
	Resource types
	Methods
	Status codes
	Content-types
	URLs
	RPC requests
	Arguments
	Privacy

	The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux
	Security in R: introduction and motivation
	Security when using contributed code
	Sandboxing the R environment

	Use cases and concerns of sandboxing R
	System privileges and hardware resources

	Various approaches of confining R
	Application level security: predefined services
	Sanitizing code by blacklisting
	Sandboxing on the level of the operating system

	The RAppArmor package
	AppArmor profiles
	Automatic installation
	Manual installation
	Linux security methods
	Setting user and group ID
	Setting Task Priority
	Linux Resource Limits (RLIMIT)
	Activating AppArmor profiles
	AppArmor without RAppArmor
	Learning using complain mode

	Profiling R: defining security policies
	AppArmor policy configuration syntax
	Profile: r-base
	Profile: r-compile
	Profile: r-user
	Installing packages

	Concluding remarks

	Example profiles
	Profile: r-base
	Profile: r-compile
	Profile: r-user

	Security unit tests
	Access system files
	Access personal files
	Limiting memory
	Limiting CPU time
	Fork bomb

	The jsonlite Package: A Practical and Consistent Mapping Between JSON Data and R Objects
	Introduction
	Parsing and type safety
	Reference implementation: the jsonlite package
	Class-based versus type-based encoding
	Scope and limitations

	Converting between JSON and R classes
	Atomic vectors
	Matrices
	Lists
	Data frame

	Structural consistency and type safety in dynamic data
	Classes, types and data
	Rule 1: Fixed keys
	Rule 2: Consistent types

	Possible Directions for Improving Dependency Versioning in R
	Package management in R
	The dependency network
	Package versioning

	Use cases
	Case 1: Archive / repository maintenance
	Case 2: Reproducibility
	Case 3: Production applications

	Solution 1: staged distributions
	The release cycle
	R: downstream staging and repackaging
	Branching and staging in CRAN itself
	Organizational change

	Solution 2: versioned package management
	Node.js and NPM
	Dependencies in NPM
	Back to R

	Summary

