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Abstract 

Decision diffusion models are commonly used to explain the 
processes underlying decision-making. Many software options 
exist for cognitive scientists to fit diffusion models to data; 
however, they tend to lack customizability beyond existing 
model formulations that are already built into them, stymying 
new theoretical contributions.  We introduce FlexDDM, a new 
Python package that requires minimal coding to develop new 
diffusion models. The package is equipped with four standard 
models of cognitive conflict tasks and a suite of fitting 
techniques. Our development of FlexDDM aims to broaden the 
accessibility and applicability of computational methods in 
cognitive science, thereby accelerating theoretical innovation 
and contributing to advancements in the field of behavioral 
sciences.  

Keywords: computational modeling; decision diffusion; 
decision-making; Python; software 

Introduction 

In the dynamic realm of behavioral science, decision 

diffusion models (DDMs) have emerged as a pivotal tool for 

explaining the cognitive processes underlying decision-

making (Ratcliff, 1978; Ratcliff et al., 2016). These models 

are based on the concept that decision-making is a process of 

accumulating evidence over time until a threshold is reached, 

which then triggers a decision. The DDM represents this 

process as a particle undergoing a random walk in a two-

dimensional space, where the movement of the particle is 

influenced by the incoming evidence for or against a 

particular choice. This approach has been particularly useful 

in explaining the speed-accuracy trade-off in decision-

making tasks and in modeling reaction time distributions in 

simple choice tasks, such as those presenting two forced-

choice alternatives. By varying the parameters of the model, 

such as the rate of evidence accumulation and the decision 

threshold, researchers can predict how changes in task 

conditions or neural processing might affect decision-making 

behavior. Yet, despite their theoretical appeal and empirical 

successes, DDMs present notable challenges for cognitive 

scientists striving to forge new theoretical frontiers. 

The ability to formalize and validate new theoretical 

models is a force for innovation in cognitive science. It 

ensures that models of behavior evolve in tandem with 

insights from the latest empirical work and theoretical 

directions. To implement DDMs in their research, most 

cognitive scientists rely on off-the-shelf fitting software (e.g. 

Ahn et al., 2017; Wagenmakers et al., 2007; Wiecki et al., 

2013). Unfortunately, most standard software packages tend 

to lack the flexibility necessary to construct original models. 

Cognitive scientists are left with the choice to either limit 

themselves to testing older, albeit well-established models, or 

code their own modeling software from scratch. This of 

course, imposes a substantial barrier of entry to anyone 

interested in making new theoretical contributions with 

DDMs. Software should be both flexible and accessible, 

accommodating unique formulations while requiring 

minimal programming experience. To address these 

limitations in currently available software, we developed 

FlexDDM, a simulation-based model fitting package written 

in Python. FlexDDM comes with pre-written scripts for 

multiple leading DDM variants, and user-friendly tools for 

either modifying those scripts or creating new scripts from 

scratch with ease. 

In this paper, we introduce obstacles for cognitive 

scientists interested in extending the DDM and FlexDDM’s 

solutions. We discuss FlexDDM’s features including 

optimizers, loss functions, and parallelization, and the user 

experience for writing diffusion models from scratch. 

Finally, to demonstrate a use-case for FlexDDM and a 

common practice in computational cognitive modeling, we 

re-analyze open experimental data from the Erikson Flanker 

task, identifying a best-fitting model of cognitive control and 

conflict processing. 

Obstacles for extending the DDM 

The DDM in its simplest form is typically limited to four 

parameters: drift rate, boundary separation, initial starting 

position, and non-decision time. These four parameters 

represent a person’s average rate of evidence accumulation, 

response caution, choice biases, and decision-unrelated 

delays (such as pre-motor planning), respectively. This 

classical DDM is a powerful tool for cognitive scientists who 

seek an explanatory account for decision-making, however it 

does have empirical faults. Among these faults is an inability 

to account for fast and slow errors relative to correct response 

times. A number of extensions to the model have been made 

to account for such faults, such as between-trial variability 

parameters for Gaussian-distributed drift rate, and uniformly-

distributed starting position and non-decision time. Together, 
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Figure 1: Schematic of the decision diffusion model. In this 

model, a particle diffuses through 2D-space, reflect evidence 

for one of two alternatives. Evidence accumulates noisily 

until a threshold is met, culminating in a decision and 

response time. 

 

they form what is commonly referred to as the “full DDM”. 

Despite the improvement to fit yielded by the full DDM, 

some authors claim that between-trial variability parameters 

lack theoretical motivation (Tillman et al., 2020), and the 

behaviors they capture can be better modeled with different 

formulations. Furthermore, the fit may be “too” good, 

disallowing falsifiability in favor of infinitely flexible models 

(Jones & Dzhafarov, 2014). Whether or not these extensions 

are worth reconsidering, I t is clear that model development 

benefits from theoretical constraints. 

Despite the necessity to recognize theoretically motivated 

constraints, modelers need to be free to explore new models 

beyond those well-established in support of more 

contemporary theory. There are essentially an unlimited 

number of ways to conceptualize a decision diffusion 

process, from incorporating an urgency signal into the drift 

rate that builds as time passes (Ditterich, 2006) to collapsing 

boundaries that throw caution aside as a deadline approaches 

(Hawkins et al., 2015). Modifications to the standard decision 

diffusion model are at the forefront of new theoretical 

developments. Notable among these are the Dual-Stage Two-

Phase (DSTP; Hübner et al., 2010) model, the Shrinking 

Spotlight (SSP; White et al., 2011) model, and the Diffusion 

Model for Conflict (DMC; Ulrich et al., 2015). These models 

are unified by a key characteristic: the dynamic nature of 

evidence accumulation over time, albeit through different 

mechanisms. The DSTP model posits two separate diffusion 

processes: one for attention selection and another for 

decision-making. Initially, the decision-making process 

gathers information from all stimuli; however, if the attention 

selection process terminates first, the focus shifts to solely 

gathering evidence from the chosen target. Conversely, the 

SSP model envisages a continuously shrinking "spotlight" 

over stimuli, zeroing in on the target until a decision is 

reached upon meeting an evidence threshold. The DMC 

model instead suggests two competing accumulation 

processes: a controlled process that concentrates on the target 

and an automatic process that inadvertently includes 

evidence from distractors, fluctuating over time. These three 

models offer diverse theoretical frameworks for 

understanding how information is processed in conflict tasks, 

such as the Erikson Flanker task (Eriksen & Eriksen, 1974). 

Cognitive scientists interested in fitting these models to 

their own data or developing models to explore new 

theoretical directions will be disappointed to find that most 

conventional software for decision diffusion modeling tends 

to be rigid, constraining researchers to pre-existing 

formulations of diffusion models. A significant reason for 

this impediment arises from the reliance of most model fitting 

routines on finding analytical solutions with known 

likelihood functions. These functions measure the probability 

of a set of parameters given specific observed data, and are a 

critical ingredient for popular optimization or search methods 

like Maximum Likelihood Estimation or Markov Chain 

Monte Carlo. Unfortunately, when new formulations or 

seemingly benign modifications are introduced to DDMs, the 

resulting likelihood functions can lack closed-form analytical 

solutions or become so complex that they are 

computationally intractable (Ratcliff, 1980). These 

intractabilities limit theoretical advancement, as researchers 

are unable to explore new model dynamics due to 

computational constraints.  

Due to the complexity of their likelihood functions, these 

models are omitted from the standard diffusion modeling 

software relying on likelihood-based fitting routines. 

Researchers are instead limited to more niche software 

specifically designed for fitting these models with simulation 

methods (Grange, 2016; Mackenzie & Dudschig, 2021). The 

process involves generating simulated data from a model and 

then comparing those simulated data to one’s actual empirical 

data. A key tool in this comparison is a loss function, such as 

the likelihood ratio Chi-square statistic or Kullback-Leibler 

divergence, which serves as a measure of the discrepancy 

between the simulated and observed data distributions 

(Ratcliff & Smith, 2004). This loss function quantifies how 

well the model explains the observed data; a lower value 

indicating better fit. Optimization routines then iteratively 

simulate and compare, aiming to minimize loss. With each 

iteration, the model parameters are adjusted to reduce the 

discrepancy between the simulated and empirical data, until 

the best fitting parameter values are discovered.  

To our knowledge only two packages exist for fitting 

customizable DDMs with likelihood-free methods, CHaRTr 

(Chandrasekaran & Hawkins, 2019) and PyDDM (Shinn et 

al., 2020). These packages offer previously unprecedented 

flexibility in model formulation; however, they also have a 

number of practical limitations. Like FlexDDM, CHaRTr 

relies on trial-wise simulation to approximate the probability 

distribution of response times. Simulation is slow, and so to 

improve efficiency CHaRTr defines models in the compiled 

C language which directly translates to machine code. 

Although having models written in C substantially speeds up 

simulation, it presents a notable barrier to users less familiar 

with the language. Conversely, PyDDM uses an alternative 

approach to reduce simulation time: Solving the Fokker- 

Planck equation (Voss & Voss, 2008). This method sidesteps 
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Figure 2: Workflow for the FlexDDM fitting routine. The user specifies a model from the model library, either provided by 

FlexDDM or a custom script. The user also provides a number of inputs as arguments to the fitting function, including settings 

for model parameters (initial values and boundaries), optimization (number of CPUs to parallelize across, loss function, and 

optimizer-specific hyperparameters), and simulation (number of simulated trials and Numba-specific togglable features). After 

fitting, a csv is written with fitted parameter values, loss value, and approximate BIC. 

 

trial-wise simulation in favor of an algorithmic, numerical 

solution, which proves much faster than simulation. 

Unfortunately, these numerical solutions do not allow for 

certain model formulations, such as those including a 

between-trial variability parameter for drift rate, as is in the 

full DDM. Users can manipulate PyDDM’s set of user-

defined functions for DDM ingredients like drift rate, 

boundary separation, etc., but some formulations like DSTP 

are not possible to specify. 

FlexDDM improves on existing software by operating 

entirely on straightforward Python. Users only need requisite 

knowledge of elementary Python features, like looping, and 

gold-standard libraries like NumPy (Harris et al., 2020). For 

efficiency, models are wrapped with the Numba JIT compiler 

(Lam et al., 2015), which translates Python models to fast 

machine code. Virtually any diffusion model can be 

formalized and simulated with FlexDDM. In the following 

section, we will discuss the features unique to FlexDDM that 

afford it greater flexibility and accessibility in comparison to 

alternative software.  

Features of FlexDDM 

At its core, FlexDDM allows users to understand how 

accurately a drift diffusion model represents their 

participants’ latent decision-making processes through 

completing an iterative process that compares user-provided 

reaction-time data to data simulated from the chosen 

diffusion model. FlexDDM relies on optimization routines 

along with multiprocessing to produce accurate and efficient 

results. The code for this package is deployed on GitHub: 

https://github.com/joyfan00/FlexDDM. An illustration of the 

package workflow can be found in Figure 2. 
 

Writing Models with Python 

FlexDDM currently provides code for four diffusion models: 

a standard DDM, SSP, DMC, and DSTP models. Using the  

Figure 3: Example Python code for simulating a DDM. 

 

scripts for these models as templates, users are encouraged to 

write code for their own models. In place of abstract 

functions which may not be immediately transparent to the 

user, FlexDDM requires that users write out the diffusion 

process explicitly. We provide an example of this in Figure 

3. Using two simple loops and the basic NumPy functions, 

the code in Figure 3 successfully simulates response time data 

according to the standard DDM. The outer for loop cycles 

through trials, during each of which the accumulation process 

propagates. Time t starts at non-decision time tau, and 

starting evidence at a percentage beta of boundary separation 

alpha. A seed is set with the numpy.random.seed() function 

to initialize a pseudorandom number generator, ensuring that 

random behaviors over the course of the trial (e.g., diffusion 

noise) are reproducible. The inner while loop increments time 

by dt and accumulates evidence proportional to the drift rate 

randomly sampled noise. When a threshold is met, the 

decision is made and both the decision and the time it took to 
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reach the threshold is saved. This process repeats for each 

trial. These few lines of code can be easily replicated and 

modified to represent a range of models.  
 

Compiling Models with Numba 

FlexDDM uses Numba, a powerful just-in-time (JIT) 

compiler that translates Python code into fast machine code, 

significantly accelerating computational tasks, especially 

those involving numerical computations and array 

operations. By using decorators, Numba allows developers to 

mark functions for optimization; when these functions are 

called, Numba compiles them to machine code "just in time" 

for execution. A key feature of Numba is its "nopython" 

mode, which ensures that the compiled code does not rely on 

the Python C API. This mode guarantees maximum 

performance gains because it bypasses the Python interpreter 

entirely. Additionally, Numba supports caching, meaning 

that once a function is compiled, the machine code version is 

stored, so subsequent calls to the function do not require 

recompilation. This feature is particularly useful for 

applications that execute the same functions multiple times 

during their lifecycle. Numba also offers an option for 

"fastmath", which relaxes certain mathematical precision and 

ordering rules, enabling further optimizations that can lead to 

speedups in numerical computations. Together, these features 

make Numba a powerful tool for optimizing Python code, 

making it an attractive option for developers looking to boost 

the performance of computationally intensive tasks. 

FlexDDM includes toggles for each of these Numba features 

to improve simulation efficiency. 
 

Optimization Routine 

FlexDDM seeks to optimize a solution to an objective 

function 𝐺2, otherwise known as the likelihood ratio chi-

squared. 𝐺2 provides a measure of the similarity of response 

time (RT) distributions between an empirical and simulated 

data set. RTs are grouped by trial type (congruent vs 

incongruent) and accuracy (correct vs incorrect) and, next, 

proportions of RTs falling within bins bounded by empirical 

percentiles are compared. 

 

𝐺2 = 2∑𝑁𝑝𝑖 ln (
𝑝𝑖
𝜋𝑖
)

𝑖

(1) 

 

Where 𝑝𝑖  is the proportion of empirical RTs in bin 𝑖, 𝜋𝑖 is the 

proportion of simulated RTs in bin 𝑖, and 𝑁 is the number of 

trials. See Figure 4 for a visual representation of binned 

proportions being compared for 𝐺2 calculation. 

To identify the best fitting parameter values for simulating 

RTs which minimize the 𝐺2 objective function, FlexDDM 

uses an iterative fitting process that starts with the use of a 

global optimizer known as Differential Evolution (DE; 

Ahmad et al., 2022). DE starts with randomly generated 

solutions and then creates new ones by mixing the differences 

of randomly selected pairs. These new solutions undergo a 

crossover and selection process, where they are mixed with 

existing solutions and the better-performing ones are kept. 

This cycle repeats until an optimal solution is found or a 

predefined condition is met. DE allows FlexDDM to explore 

the entire parameter space while avoiding local minima. 

After DE, FlexDDM continues to refine best fitting 

parameters with the Nelder-Mead simplex algorithm (Wang 

& Shoup, 2011). This pairing combines DE's global search 

capability with the simplex's local optimization precision. DE 

effectively identifies promising areas in the search space, but 

may lack precision in pinpointing the exact optimum. 

Simplex algorithms, known for their ability to perform 

detailed local searches, can then refine the solution to a higher 

accuracy. This approach leverages DE's strength in exploring 

diverse solutions and the simplex's efficiency in fine-tuning, 

making it ideal for complex optimization problems requiring 

both exploration and exploitation to achieve the best result. 

 

 
Figure 4: Illustration of empirical and simulated RT 

proportions being compared for 𝐺2   calculation. A binned 

region is shaded, and the likelihood ratio is calculated with 

the proportion of RTs that fall under each curve. 
 

Once the fitting process concludes, FlexDDM calculates 

the approximate Bayesian information criterion (aBIC). 

Similar to 𝐺2, aBIC measures how well the selected model 

fits the empirical data. aBIC also considers the complexity of 

the model, making it a fairer metric for model comparison. 

Models with a larger number of parameters (𝑀) will be 

penalized with slightly higher aBIC values, so that models 

can be evaluated in terms of both accuracy and parsimony.  
 

𝑎𝐵𝐼𝐶 = −2∑𝑁𝑝𝑖 ln(𝜋𝑖)

𝑖

+𝑀ln(𝑁) (2) 

 

FlexDDM outputs a CSV file containing the 

discovered parameter values along with the 𝐺2 and aBIC 

values. With this information, the user understands the fit and 

complexity of their model along with the relative influence of 

each parameter.  

Empirical Demonstration 

To demonstrate the typical use of the FlexDDM package, 

we present the following case study. Here, we model choice 

and response time data from an open public dataset 

containing the Erikson Flanker task (Hedge et al., 2022). In 

the Flanker task component of this experiment, participants 

(N=50; 38 F; Mean age = 20.06, SD = 2.24) were instructed 
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to respond to the direction of a centrally presented arrow, 

flanked above and below by other symbols, using specific 

keyboard keys. A total 1,008 trials were completed, divided 

equally among congruent, neutral, and incongruent trial types 

(336 trials/type). On congruent trials, the flanking symbols 

were arrows pointed in same direction as the centermost 

arrow, whereas on incongruent trials the flanking symbols 

were arrows facing the opposite direction. Neutral trials used 

straight lines as flanking stimuli, and were excluded from our 

analyses. Trials remained on screen until a response was 

made and were interleaved with 750ms inter-trial-intervals. 

In their original report, the authors of this dataset were 

interested in fitting the Diffusion Model for Conflict Tasks 

(DMC) to dissociate conflict from nonconflict-related 

processes (e.g., the distinction between one’s processing 

efficiency and susceptibility to prepotent response activity). 

Conversely, we were interested in fitting the DMC model to 

these data, in addition to fitting the DSTP, SSP, and standard 

DDM. Each of these models purport qualitatively different 

predictions about response time distributions and processes 

for cognitive control. DSTP, SSP, and DMC assume that 

targets and distractors are processed sequentially, 

continuously, and simultaneously, respectively, whereas the 

standard DDM fails to provide any explanatory account for 

conflict (Servant et al., 2014).  

Considering their divided support for opposing theories of 

cognitive control, it is important to compare these models’ 

goodness-of-fit to empirical data and identify a leading 

hypothesis. Previous research, however, has yielded mixed 

results, with support found for DSTP (Servant et al., 2015), 

SSP (White et al., 2011), and DMC (Servant & Evans, 2020) 

over their competitors. To contribute to the growing body of 

knowledge on these models and their appropriateness for 

modeling conflict tasks, we used FlexDDM to fit the four 

models separately to each of the N=50 participants’ Flanker 

data. 

 

Model Fitting 

The DSTP model had nine free parameters: two boundary 

separations 𝛼𝑆𝑆 and 𝛼𝑅𝑆 for the first and second diffusion 

phases in which a stimulus (target or flanker) and response is 

selected, respectively; two starting points 𝛽𝑆𝑆 and 𝛽𝑅𝑆 for 

each phase; four drift rates for the stimulus selection phase 

(𝛿𝑆𝑆), the evidence for a response provided by the target and 

flankers if no stimulus is selected (𝛿𝑡𝑎𝑟 and 𝛿𝑓𝑙), and evidence 

for the stimulus if selected before a response is made (𝛿𝑅𝑆); 
and one non-decision time 𝜏. 

The SSP model had six free parameters: one boundary 

separation 𝛼; one perceptual strength for all stimuli 𝑝; two 

parameters to describe the initial width of the attentional 

spotlight (𝑠𝑑0) and its shrinking rate (𝑠𝑑𝑟); and one non-

decision time 𝜏. 

The DMC model had seven free parameters: one boundary 

separation 𝛼; one starting point 𝛽; one drift rate for controlled 

processing 𝜇𝑐; three parameters describing the drift rate for 

automatic processing, including its shape 𝑎, peak amplitude 

𝜁, and characteristic time 𝑇; and one non-decision time 𝜏. 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Best fitting parameter estimates from DDM, DSTP, 

SSP, and DMC models. Error bars are SE. 

 

 
Figure 6: Average BIC across participants from DDM, 

DSTP, SSP, and DMC models. Error bars are 95% CI. 

 

Finally, the DDM model had six free parameters: two 

boundary separations 𝛼𝐶 and 𝛼𝐼 for congruent and 

incongruent trials, respectively; one starting point 𝛽; two drift 

rates 𝛿𝐶 and 𝛿𝐼; and one non-decision time 𝜏. 

For optimization, we opted for DE to cycle through a 

maximum 1,000 generations with a population multiplier of 

100. 10,000 trials were simulated per calculation of 𝐺2. 

Model selection was conducted with BIC, such that the best 

fitting model was determined by having the relatively 

smallest BIC value. 

 

Results 

Best fitting parameter estimates are summarized in Figure 

5. BICs averaged across subjects are illustrated in Figure 6 

for model comparison. The Diffusion Model for Conflict 

returned the smallest BIC, and therefore best accounted for 
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the empirical data. The Shrinking Spotlight Model provided 

an only slightly inferior average fit, with the Dual-Stage Two 

Phase Model close behind. The worst fitting and most 

divisive model was the standard DDM. 

General Discussion 

In the presented paper, we address a significant challenge 

in cognitive science: The lack of flexible and accessible 

software for fitting decision diffusion models (DDMs) to 

data, thereby hampering theoretical innovation. By 

introducing FlexDDM, a Python-based package, we provide 

a solution that not only simplifies the development of new 

diffusion models but also includes standard models for 

cognitive conflict tasks alongside a suite of fitting techniques. 

This development is particularly notable for its aim to 

democratize computational methods in cognitive science, 

making them accessible to researchers without extensive 

programming experience in languages such as C. By 

facilitating the exploration of novel model formulations 

beyond those pre-built into existing software, FlexDDM 

stands to accelerate theoretical advancements in the 

behavioral sciences. 

FlexDDM is not without its limitations. Users should be 

aware that, at present, FlexDDM is limited to non-

hierarchical models, restricting the ability to capture 

variations across individuals or groups within a single model 

framework. This limitation means that the software provides 

only point estimates for parameters without accounting for 

any posterior distribution or uncertainty associated with these 

estimates. Such an approach contrasts with Bayesian 

hierarchical modeling, which can offer deeper insights into 

the data by considering the distribution of parameters and 

allowing for the estimation of individual-level effects. 

Furthermore, the simulation-based nature of FlexDDM, while 

offering flexibility in model construction, inherently suffers 

from the standard weaknesses associated with simulation 

methods. These include slower computational speeds 

compared to analytical solutions, especially as model 

complexity increases. The process of simulating thousands of 

trials to approximate the probability distribution of response 

times can be computationally demanding, making FlexDDM 

less efficient for large datasets or complex models without 

access to resources for parallelization. 

Looking to the future, continued development of FlexDDM 

presents several promising avenues that could significantly 

enhance its utility and applicability in cognitive science 

research. Key among these is the integration of advanced 

model validation tools, which could offer users robust 

methodologies for assessing the fit and predictive accuracy 

of their custom models. In future versions of the software, we 

will add functions for testing model and parameter recovery. 

Expanding the library of template models within FlexDDM 

would also enable researchers to quickly adapt and test a 

wider range of theoretical frameworks without the need for 

extensive coding, thereby further lowering the barrier to 

entry. Additionally, the introduction of sophisticated plotting 

functions could facilitate more intuitive visualization of 

model behaviors, parameter effects, and fit diagnostics, 

making the iterative process of model refinement more 

accessible to users. Furthermore, incorporating options for 

grouping data by experimental factors beyond simple trial 

types would allow for a more nuanced analysis of decision-

making processes, accommodating the investigation of how 

various cognitive and environmental factors interact to 

influence decision outcomes. Such enhancements would not 

only solidify FlexDDM's position as a versatile tool for 

cognitive modeling but also broaden its impact by enabling 

more detailed and comprehensive explorations of decision-

making dynamics. 
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