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Abstract 

A Landscape Ecology Approach to Informing the Ecology and Management of 

Coastal Marine Species and Ecosystems 

 
by 

Mary A. Young 

 

 Understanding what drives the distribution, abundance, structure and 

dynamics of populations and communities, and how this knowledge can inform 

effective conservation and management, are among the most fundamental goals of 

basic and applied ecology. Approaches developed in the field of landscape ecology 

have much to offer for achieving these goals. For my dissertation, I first conducted an 

extensive review of the literature for different approaches to applying landscape 

ecology in advancing our understanding of attributes of populations, communities and 

ecosystems, and its application to spatial approaches to conservation and 

management. In Chapter 1, I applied some of these insights to determine the 

importance of environmental variables on the spatial and temporal persistence of 

stands of giant kelp (Macrocystis pyrifera) along the central coast of California. I also 

used that knowledge to create a model to predict geographic patterns of giant kelp 

persistence and tested the accuracy of those predictions with empirical data. This 

chapter revealed strong relationships between giant kelp persistence and several 

environmental variables, which contributed to a model that accurately predicted 

spatial patterns of kelp persistence.  Chapter 2 used similar environmental variables to 

quantify the relationships between the density of seven species of nearshore fishes, as 
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well as the structure of the fish assemblage, with geomorphic and oceanographic 

habitat attributes. Again, this chapter identified several environmental variables that 

explained and predicted variation in the density and diversity of nearshore fishes 

along the coast of central California. In Chapter 3, I used landscape ecology 

approaches to evaluate the design of a network of marine protected areas (MPAs) 

along the central coast of California. I tested how well habitat representation and 

replication was achieved in the design of the MPA network and found that across the 

network, these design criteria were well met, but shortfalls occurred for individual 

MPAs. This dissertation demonstrates how landscape ecology can be applied to the 

marine environment to understand what drives the distribution, abundance and 

dynamics of populations,  the structure and diversity of the communities they 

constitute, and how this knowledge can be used in applications to conservation and 

management.  
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Introduction 

 Some of the fundamental goals of ecology include understanding what drives 

the distribution, abundance, structure and dynamics of populations and communities 

and how this knowledge can be applied to conservation and management. Approaches 

developed in the field of landscape ecology can be used to meet these goals. 

Beginning in 1807, a natural historian, Von Humboldt, began describing the 

latitudinal and altitudinal variation of plants and provided a launch point from which 

botanists and zoologists began to study the geographic variation of species (McIntosh 

1985). These studies found that the environmental factors across the landscape were 

largely responsible for species distributions (DeCandolle 1874; Merriam 1890; 

Turner 1989). In 1939, Troll coined the term "landscape ecology" to describe these 

studies of how species (i.e. vegetation) are geographically distributed across the 

landscape (Troll 1939; Turner 1989) and, throughout the 20th century, the use of 

landscape ecology began to gain impetus and helped advance understanding in many 

ecological systems (Turner 1989). 

 The study of landscape ecology combines concepts from geography and 

ecology to determine the effect of pattern (the spatial arrangement of the landscape) 

on the processes that drive the distribution and abundance of species (Wiens and 

Moss, 2005; Turner et al., 2001; Turner, 2005; Wiens, 2009). Landscape ecologists 

recognize that there is spatial heterogeneity throughout the landscape and that this 

heterogeneity influences the interactions of species with their environments (Risser et 
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al., 1984; Wu, 2013). "Heterogeneity" may be the one term that sums up the entire 

field of landscape ecology and delineates it from other subdisciplines within ecology 

(Risser et al., 1984; Wu, 2013). Turner et al. (2001) emphasize two aspects of 

landscape ecology that distinguish it from other subdisciplines of ecology: (1) it 

addresses the importance of the spatial arrangement and heterogeneity of the 

landscape on ecological processes and (2) it focuses on spatial scales that are much 

larger than traditional ecological studies (i.e. expands over greater areas than what is 

seen by a human observer). Since its beginnings, landscape ecology has become a 

very important and pervasive discipline in ecology. As humans continue to encroach 

on and fragment many of the world’s ecosystems, landscape ecology is needed to 

determine the spatial dynamics of populations. Landscape ecology bridges many 

disciplines including but not limited to ecology, conservation biology, evolutionary 

biology, geography, and human land use. It provides a way to understand and map the 

interactions of species with their environment, how changes in the environment can 

drive evolutionary diversification, what determines species distributions, and how 

human impacts on the landscape can affect all of these processes (Wiens et al. 2006).    

 Although it began as a predominantly terrestrial discipline, landscape ecology 

is equally applicable to marine systems and has relatively recently emerged as a 

useful approach for studying the distribution and habitat associations of many 

important marine species (i.e., Bell et al., 1999; Hovel and Lipicus, 2001; Purkis et 

al., 2007; Hinchey et al., 2008; Hovel and Regan, 2008; Chatfield et al., 2010; 

Pittman and Brown, 2011; Chatfield et al., 2012; Claisse et al., 2012; Carroll and 
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Peterson, 2013; D'Aloia et al., 2013). Marine ecosystems support substantial 

biodiversity that is under threat by many human activities including increasing 

populations along the coast, fishing, other forms of resource extraction, destructive 

fishing activities, run-off from poor land use practices, pollution, and others (Agardy, 

2000; Sloan, 2002; Lubchenco et al., 2003; Brown et al., 2009; Sherman et al., 2011). 

Loss of habitat or human encroachment on habitat are some of the leading causes of 

biodiversity decline (Polasky et al., 2005; Carroll and Miquelle, 2006; Falcucci et al., 

2007; Nagendra, 2008; Schindler et al., 2008). With the continued increase in 

anthropogenic effects on species' habitats and the realization that the single species 

approach to management is inadequate (Polasky et al., 2005), an ecosystem-based 

approach to management has become prominent in the oceans and areas continue to 

be set aside as marine protected areas (Babcock et al., 2005). Spatially-explicit, 

landscape ecology approaches; therefore, will be required to understand the processes 

in the oceans and the environmental patterns that shape them (Friedlander et al., 

2007). The purpose of my dissertation was to apply the techniques of landscape 

ecology developed in terrestrial studies to the marine realm. Through this process, I 

reviewed how landscape ecology is being applied to the study of marine ecosystems, 

applied landscape ecology approaches to understanding the spatial and temporal 

persistence of marine metapopulations, linked environmental variables to the 

distributions of fish species associated with kelp forests, and then applied metrics of 

landscape ecology to evaluating a network of marine protected areas along the central 

coast of California. 
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 Marine ecologists have already begun to apply principles of landscape 

ecology to the oceans but there still are far fewer applications than in terrestrial 

ecology.  In the development of my dissertation research, I first reviewed the current 

application of landscape ecology metrics in studies of both terrestrial and marine 

ecosystems and assess how landscape ecology is being applied to the design and 

evaluation of protected areas. Then, using the recently designated network of MPAs 

along the central coast of California, I considered how different metrics of landscape 

ecology can be successfully applied to evaluating the effectiveness of a MPA network 

using several case study examples. Through this review, I found that the application 

of landscape ecology is much more extensive in the terrestrial literature and, although 

many of the tools associated with landscape ecology are being applied in marine 

studies, the rigor with which they are being applied is still far below that of terrestrial 

applications. In addition, the application of landscape ecology to assessing protected 

areas is much more common in terrestrial studies but there is great promise in the 

application of landscape ecology to evaluating protected areas in the marine realm. 

From this review, it became clear that recently available, broad-scale data collected in 

the marine environment, allows for landscape scale assessments of drivers of species 

distributions, the ecosystems they constitute, and spatial conservation approaches, 

including networks of MPAs. 

 In Chapter 1, I applied landscape ecology techniques to determine the 

environmental factors responsible for the spatial and temporal persistence of a 

structure forming kelp species, Macrocystis pyrifera, along the central coast of 
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California. Giant kelp, Macrocystis pyrifera, is the world's most widely distributed 

kelp species (Henriquez et al., 2011) and is the foundation species for one of the most 

productive ecosystems on Earth (North, 1971; Foster and Schiel, 1985; Dayton, 1985, 

DeMartini and Roberts, 1990; Steneck et al., 2002; Carr and Reed in press). Along 

the Pacific coast of North America from Central California to Baja California, M. 

pyrifera is the most common and competitively dominant canopy forming kelp 

species (Bushing, 2000; Graham et al., 2007; Carr and Reed, in press) but varies 

spatially and through time (Dayton et al., 1992, Edwards 2004). The purpose of 

Chapter 1 was to determine what environmental parameters are correlated with the 

spatial and temporal persistence of M. pyrifera along the central coast of California 

and how well those environmental parameters can be used to predict areas where M. 

pyrifera is likely to persist. The environmental variables used in this study included 

depth of the seafloor, the structure of the rocky reef (complexity and topographic 

position), the proportion of rocky reef, the size of kelp patch, the biomass within a 

kelp patch, the distance from the edge of a kelp patch, sea surface temperature, wave 

orbital velocities, and the population connectivity of individual kelp patches. Using a 

generalized linear mixed effects model (GLMM), the persistence of M. pyrifera was 

found to have a significant association with depth, complexity of the rocky reef, 

proportion of rock, patch biomass, distance from the edge of a patch, population 

connectivity, and wave orbital velocity. These environmental variables were then 

used to predict the persistence of kelp across the central coast and these predictions 

were compared to a reserved dataset of M. pyrifera persistence, which was not used in 
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the creation of the GLMM. The Pearson correlation between these predictions and the 

reserved dataset was 0.71 and significant. Therefore, this study demonstrated that 

environmental variables can be used to accurately predict the persistence of kelp 

within the central coast of California. As a foundation species that can support 

upwards of 1,000 different species, understanding those factors that support persistent 

populations of M. pyrifera are important when attempting to protect the marine 

communities associated with kelp forests. 

 Along with the distributions of kelp, understanding the distributions of 

economically and ecologically important species that inhabit kelp forests is also 

needed. As management policies have moved towards a more habitat-based approach, 

there is a need to acquire reliable spatial information on species distributions 

(Fielding and Bell, 1997; Manel et al., 1999; Costello et al., 2010). A landscape 

approach, therefore, is necessary to differentiate the habitat types and the associations 

of species with those habitats to better understand how populations are distributed 

throughout their environment and, as a result, better inform management (Sala et al., 

2002; Monaco et al., 2005; Appeldoorn et al., 2003; Friedlander et al., 2007). The 

purpose of Chapter 2 was to determine the species-habitat associations for a variety of 

nearshore, kelp forest associated fish species along the central coast of California by 

answering the following questions: 1) Do densities of fish species vary predictably 

with environmental variables including the structure of the rocky reef, latitude, kelp 

biomass, and exposure to ocean swell (wave orbital velocities). If so, what is the 

relative importance of the variables in explaining this variation and how does it vary 
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among species? 2) Do species diversity and richness of the kelp forest fish 

assemblage vary predictably with environmental variables? 3) Can species 

distribution models (SDMs) generate reliable extrapolations of species densities, 

diversity and richness? 4) Do estimates of fish abundance generated by the SDMs 

differ substantially (both higher and lower) from those generated by simple uniform 

extrapolation of density estimates across the kelp forest habitat? My general approach 

to answering these questions was to test for predictive SDMs (in this case, 

generalized additive models) based on variables extracted from seafloor habitat maps, 

oceanographic variables and species densities estimated by the ecological surveys 

(Question 1), and use those models to extrapolate densities over the study area as well 

as species diversity and richness (Question 2). I tested the accuracy of these predicted 

extrapolations using an independent dataset not used in the creation of the models 

(Question 3). I then used the SDMs to estimate larger scale species densities and 

abundances to compare and with other estimates of species abundance (Question 4). 

Using generalized additive models (GAMs), I found that seven of the ten fish species 

I looked at had strong relationships with at least three of the environmental variables 

and that the relationships of those species with the environmental variables varied by 

species and community attribute (richness and diversity). In addition, the 

extrapolations proved to be fairly accurate and significant for all species but one. 

Finally, comparison of different methods for extrapolating species' abundances 

showed that those methods where variation in rocky reef structure is taken into 

consideration produce much lower estimates of abundance than methods assuming all 



 
 

8 
 

rocky habitat is the same. The results from this chapter show how landscape ecology 

approaches can be used to better understand and quantify the distributions of 

ecologically and economically important fish species across an entire network of 

marine protected areas. 

For the final chapter, Chapter 3, I applied landscape ecology techniques to the 

evaluation of a network of MPAs along the central coast of California. Human 

impacts on the oceans continue to increase (Halpern et al. 2008, Halpern et al. 2009, 

Lester et al. 2010, Brown 2011) and many nations throughout the world have 

acknowledged the need for more ecosystem-based conservation measures in the 

marine environment (Douvere 2008, Gilliland & Laffoley 2008, Costello et al. 2010, 

Halpern et al. 2012). Among these approaches, the use of marine protected areas 

(MPAs) is becoming widely adopted to protect ecosystems, their biodiversity and to 

supplement traditional fisheries management (Roberts & Hawkins 2000, Curley et al. 

2002, Allison et al. 2003, Carr et al. 2003, Lubchenco et al. 2003, Gaines et al. 2010, 

Halpern et al. 2010, Gleason et al. 2013). MPAs are areas within the ocean that are 

spatially protected from differing levels of human impacts, including resource 

exploitation and habitat alterations. MPAs can protect entire ecosystems, including 

habitats and unexploited species in addition to species targeted by fisheries (Agardy 

1994, Allison et al. 1998, Sobel & Dahlgren 2004, Claudet 2011).  The state of 

California recently implemented a coast-wide network of MPAs, a state-wide seafloor 

mapping program, and ecological characterizations of species and ecosystems 

targeted for protection by the network. Because the MPAs in the Central Coast region 
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of California were set up prior to completion of the State’s Seafloor Mapping 

Program, one purpose of this study was to use these maps to evaluate how well 

seafloor features, as proxies for habitats, are represented and replicated across the 

network and how well the ecological surveys representatively sampled fish habitats 

within MPAs. The seafloor data were classified into broad substrate categories (rock 

and sediment) and finer scale geomorphic classifications standard to marine 

classification schemes using surface analyses (slope, ruggedness, etc) done on the 

digital elevation model derived from multibeam bathymetry data. These 

classifications were then used to evaluate the representation and replication of 

seafloor structure within the MPAs and across the ecological surveys. Both the broad 

substrate categories and the finer scale geomorphic features were proportionately 

represented for many of the classes with deviations of 1-6% and 0-7%, respectively. 

Within MPAs, there were more dramatic differences in seafloor structure and 

abundance inside the MPA than what was originally thought with differences ranging 

up to 28%. However, all of the habitats of sufficient availability for replication were 

replicated across the network, with those habitat classes appearing in at least three 

MPAs. Seafloor structure in the biological monitoring design was adequately 

represented but there are mismatches between sampling in the MPAs and their 

corresponding reference sites and some seafloor structure classes were completely 

missed. The geomorphic parameters derived from multibeam bathymetry data used in 

this study have been shown to be of importance to the biodiversity of many marine 
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species (i.e. substrate type, depth, habitat complexity, etc.) and, therefore, can be used 

as a helpful and initial method of evaluating the MPAs across this region.  

Through this dissertation, I have demonstrated the application of concepts 

developed within the field of landscape ecology to understanding the distributions of 

populations and species throughout broad regions of the marine environment and the 

use of landscape ecology techniques to evaluating the placement of MPAs along the 

central coast of California. The application of landscape ecology techniques towards 

preserving biodiversity is becoming more common (Barbault, 1995). The field has 

progressed in this direction past simple descriptions to more spatial modeling and 

simulations using GIS and sound methodology (Hobbs, 1997), allowing for the ability 

to create maps and other figures to communicate results to other disciplines and 

planners (Antrop, 2001).   
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1.  Chapter 1: Explaining and predicting spatial patterns of 

persistence of giant kelp, Macrocystis pyrifera, forests in 

central California   

 

1.1 Abstract 

 Rocky reefs in many temperate areas worldwide serve as habitat for canopy 

forming macroalgae and these structure forming species of kelps (order Laminariales) 

often serve as important habitat for a great diversity of species. Macrocystis pyrifera 

is the most common canopy forming kelp species found along the coast of California 

but the distribution and abundance of M. pyrifera varies in space and time. The 

structure (i.e. species composition and relative abundance) of communities associated 

with forests of M. pyrifera has been related to forest persistence. The purpose of this 

study is to determine what environmental parameters are correlated with the spatial 

and temporal persistence of M. pyrifera along the central coast of California and how 

well those environmental parameters can be used to predict areas where M. pyrifera is 

more likely to persist. Nine environmental variables considered in this study included 

depth of the seafloor, the structure of the rocky reef (complexity and topographic 

position), the proportion of rocky reef, the size of kelp patch, the biomass of kelp 

within a patch, the distance from the edge of a kelp patch, sea surface temperature, 

wave orbital velocities, and the population connectivity of individual kelp patches. 

Using a generalized linear mixed effects model (GLMM), the persistence of M. 
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pyrifera was significantly associated with seven of the nine variables considered:  

depth, complexity of the rocky reef, proportion of rock, patch biomass, distance from 

the edge of a patch, population connectivity, and wave orbital velocity. These seven 

environmental variables were then used to predict the persistence of kelp across the 

central coast and these predictions were compared to a reserved dataset of M. pyrifera 

persistence, which was not used in the creation of the GLMM. The Pearson 

correlation between these predictions and the reserved dataset was 0.71 and 

significant (P<0.000). Therefore, the environmental variables were shown to 

accurately predict the persistence of M. pyrifera within the central coast of California. 

As a foundation species, whose forests can support on the order of 1,000 species, 

understanding those factors that support persistent populations of M. pyrifera are 

important when attempting to protect these ecosystems.      

 

1.2 Introduction 

 Rocky reefs in many temperate areas worldwide serve as habitat for canopy 

forming macroalgae (e.g. kelp; Schiel 1988; Graham et al., 2007; Connell & Irving 

2008; Springer et al., 2010; Carr and Reed, in press) and these structure forming kelp 

species often serve as important habitat for numerous other species (Foster and 

Schiel, 1985; Steneck et al. 2002; Graham et al., 2007; Springer et al., 2010; Carr and 

Reed, in press). Giant kelp, Macrocystis pyrifera, is the world's most widely 

distributed kelp species (Henriquez et al., 2011) and is the foundation species for one 

of the most productive ecosystems (North, 1971; Foster and Schiel, 1985; Dayton, 
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1985, DeMartini and Roberts, 1990; Steneck et al., 2002). Along the Pacific coast of 

North America from Central California to Baja California, M. pyrifera is the most 

common and competitively dominant canopy forming kelp species (Bushing, 2000; 

Graham et al., 2007; Carr and Reed, in press) but varies spatially and through time 

(Dayton et al., 1992; Edwards 2004; Edwards and Estes 2006). The purpose of this 

study is to determine the environmental correlates with the spatial and temporal 

persistence of M. pyrifera along the central coast of California.  

 As a foundation species that provides food and habitat for a wide range of 

species including marine invertebrates and fishes (reviewed recently by Carr and 

Reed, in press), understanding the distribution and persistence of M. pyrifera 

throughout its range is important to understanding the community dynamics within 

these kelp forests (Bushing, 2000; Arkema et al., 2009; Byrnes et al. 2011). 

Ecological persistence is simply defined as the continued existence of a species 

through time (Connell and Sousa, 1983). Although M. pyrifera tends to persist in 

certain areas, it is spatially patchy and temporally variable throughout its range and 

this variability is believed to be caused by a number of abiotic and biotic phenomena 

including effects of currents, temperature, substrate, depth, nutrient availability, swell 

intensity, size of kelp patch, species assemblages within the forest, planktonic 

distribution, and others (Dayton, 1985; Dayton et al., 1992).  

 Temporal and spatial scales of many marine studies are often not broad 

enough to answer the questions under study (Dayton et al., 1999). Many of the 

processes responsible for the temporal and spatial heterogeneity of patterns of marine 
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organisms occur over longer time periods and broader spatial scales than can be 

captured in the typical design of studies done in small, homogenous areas (Foster, 

1990; Carpenter, 1998; Dayton et al., 1999). Therefore, the use of classical field 

sampling techniques makes it difficult to look at broad scale patterns in coastal 

marine ecosystems (Cavanaugh et al., 2010). With an increase in the availability of 

high-resolution remote sensing technology, however, there is now the potential to 

make observations over broad spatial and temporal scales (Jensen et al., 1980; 

Belsher and Mouchot, 1992; North et al., 1993).  

 Because forests of M. pyrifera can form dense surface canopies, satellite 

images can be used to derive biomass estimates, which are verified through 

groundtruthing, to map the temporal and spatial extent of M. pyrifera biomass 

estimates (Cavanaugh et al 2010; Cavanaugh et al., 2011). These biomass estimates 

allow for the quantification of M. pyrifera over long time periods and over broad 

spatial scales and can then be combined with environmental information to determine 

those variables driving the distribution and persistence of M. pyrifera over its entire 

range. Previous studies have linked the distribution and persistence of M. pyrifera to 

attributes of the seafloor habitat such as bottom relief and wave action (Bushing, 

2000) but these studies have been done using low resolution data at broader spatial 

scales. Spatial heterogeneity of the seafloor including susceptibility to disturbance 

(Sousa, 1984) and variation in structural complexity (Pearsons and Li, 1992), 

however, could also play a significant role in the persistence of kelp.  
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  In this study, I use fine scale seafloor habitat variables derived from 

multibeam bathymetry along with other environmental factors to determine what 

habitat attributes are correlated with the temporal and spatial persistence of M. 

pyrifera along the central coast of California. The hypothesis is that M. pyrifera 

persistence will vary predictably with depth, variations in the structure of the rocky 

reef including complexity and relative elevation, patch characteristics including the 

size and biomass of individual patches, the distance from the edge of the patch, 

variations in wave orbital velocities, changes in sea surface temperature (SST), and 

the connectedness of a kelp patch. Specifically, the following relationships are 

predicted:  

H1: M. pyrifera persistence will have a non-linear (hyperbolic) relationship 

with depth of the seafloor; persistence will be greatest at intermediate depths, 

decreasing with shallower (Graham, 1996; Swanson & Druehl, 2000) and 

deeper depths (Cribb, 1954; Foster and Schiel, 1985; Graham, 1997; Graham, 

2007). 

H2: M. pyrifera persistence decreases with increases in topographic 

complexity of the rocky reef (Grove et al. 2002; Deysher et al. 1998).  

H3: Because kelp patches have a moderating effect on currents and waves, M. 

pyrifera found in larger patches, more abundant patches, and further toward 

the center of a patch will increase in persistence (Jackson and Winant, 1983; 

Jackson, 1984; Rosman et al., 2007). 
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H4: M. pyrifera persistence will increase with higher proportions of rocky 

substratum. because Macrocystis plants require rocky substrate for attachment 

(Cribb, 1954; Foster & Schiel, 1985; Westermeier & Möller, 1990; Schiel et 

al., 1995; Carr and Reed, in press) and can be disturbed with increases in 

sediment (Devinny and Volse, 1978; Geange et al., 2014, Shaffer and Parks, 

1994; Spalding et al., 2003; Shepherd et al., 2009).  

H5: M. pyrifera persistence will decrease with increases in wave orbital 

velocities (Dayton et al., 1984, Seymour et al., 1989; Edwards, 2004). 

H6: M. pyrifera persistence will decrease with increases in SST (Zimmerman 

& Robertson, 1985; Tegner et al., 1996; Hernández-Carmona et al., 2001). 

H7: M. pyrifera persistence will increase with the population connectivity of a 

kelp patch (Reed et al., 2004; Alberto et al., 2011) 

H8: Strong relationships between M. pyrifera with some combination of 

environmental variables will allow for accurate predictions M. pyrifera 

persistence. 

These hypotheses are addressed using a spatially-explicit, predictive modeling 

approach to determine the habitat variables important to the persistence of M. 

pyrifera. Then, these predictions are used to predict the persistence of M. pyrifera  

across the region and tested against a reserved dataset to see how well the habitat can 

determine the persistence of M. pyrifera . 
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1.3 Methods 

1.3.1 Study Location  

 The study area for this project is along the central coast of California, which 

extends from Pigeon Point in the north (37°10'57" Lat 122°23'38" Long) to Point 

Conception in the south (34°26'55" Lat 120°28'14" Long). M. pyrifera has a patchy 

and variable distribution along this section of the California coast (Figure 1-1). In 

addition there is also variation in seafloor substrate complexity, depth, currents, 

temperature, and wave orbital velocities, making it an ideal area to determine the 

relative extent to which these different environmental parameters correlate with the 

persistence of M. pyrifera. 

 

1.3.2 Using Satellite Data to Estimate Kelp Canopy Biomass and Persistence 

 M. pyrifera forms very distinct, dense floating canopies at the ocean surface, 

which are distinguishable with satellite imagery (Jensen et al., 1980; Belsher and 

Mouchot, 1992; North et al., 1993). Using the methods developed by Cavanaugh et 

al. (2010, 2011), high resolution satellite imagery was used to quantify M. pyrifera 

biomass along the central coast of California. To calculate persistence, those 

estimates of M. pyrifera biomass for each of the 30m resolution Landsat pixels within 

the region were converted to binary presence/absence maps derived from the annual 

mean biomass. With absence assigned a value of "0" and presence assigned a value of 

"1", these binary maps were collated to produce a map of the number of years that M. 

pyrifera was present in each of the Landsat pixels (Figure 1-2). A centroid point from 
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each of the Landsat pixels within the region was created and used as the response 

variable in the predictive models.   

 

1.3.3 Environmental Variables 

Seafloor Structure Variables 

 Multibeam data coverage is available for the majority of the region under 

study and at 2m resolution within the depth range of the kelp distribution with the 

completion of the California Seafloor Mapping Program (CSMP) in the Central Coast 

Region (http://seafloor.otterlabs.org/csmp/csmp.html). There is a gap in data coverage 

between the shore and where multibeam data ends (anywhere between the 2m and 

10m contour). This gap exists because multibeam data cannot be acquired using 

traditional, ship-based mapping methods due to navigation hazards such as breaking 

waves and rocks exposed at the surface. Therefore, the analyses in this study were 

limited to the region where multibeam data is available. Where available, multibeam 

data provide full coverage depth values for the seafloor, which were converted into 

2m resolution digital elevation models (DEMs). The resulting DEMs were used to 

provide depth information and to derive other structure variables likely to be of 

importance to the distribution and persistence of M. pyrifera within the central coast 

region of California. 

 The first variable derived from the multibeam data was the complexity of the 

rocky reef. Complexity of the rocky reef is likely to be associated with the persistence 

of M. pyrifera through the increase in microhabitats (Sousa 1984; Pearsons and Li, 
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1992). More complex reefs also have more variation in physical conditions (i.e. light, 

sediment cover, water motion, etc) (Toohey, 2007), which can influence the presence 

of algae (Seymour et al., 1989; Thomson et al., 2012). In this study, complexity of the 

rocky reef is based on the slope of slope of the terrain (rate of change of slope) and 

was calculated within ArcGIS 10.x using the Spatial Analyst toolbox (ESRI, 2014). 

Slope of slope is computed by using the "Slope" tool within Spatial Analyst surface 

analysis tools to calculate the slope between each of the 2m cells of the DEM and 

their eight neighbors and then repeating this process on the resulting slope raster. This 

process yields a raster with slope of slope values specified for each of the 2m 

resolution cells throughout the DEM. Previous work has shown that slope of slope is 

a useful measure of complexity for better understanding how species are distributed 

throughout the marine environment (Pittman & Brown, 2011).  

 The next variables derived from the DEM included varying scales of 

topographic position index (TPI). TPI is a measure of relative elevation and can be 

used to delineate features such as valleys and peaks at multiple spatial scales. TPI 

provides another measure of the complexity of the rocky habitat. To compute TPI for 

the study region, the Benthic Terrain Modeler (BTM) toolbox was used within 

ArcGIS. TPI uses an annulus-shaped neighborhood and the scale of the analyses can 

be specified by the user choosing the radius of the annulus (for more information on 

how TPI is calculated, see Lundblad et al., 2006). For this study, TPI was calculated 

at both fine (50m) and broad (250m) scales. These layers were then standardized 
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using the "Standardize BPI" tool within the BTM to provide standardized measures of 

TPI for better comparison across scales. 

 Along with those variables measuring the complexity of the rocky reef, the 

amount of hard substrate is likely to be important to the persistence of M. pyrifera. 

With only a few exceptions, kelp forests occur on hard substrates where they are 

better able to attach their holdfasts (Dayton, 1985; Smith et al., 2004; Carr and Reed, 

in press). Additionally, greater coverage of rock reduces the amount of soft sediment 

in the area that could potentially result in sediment coverage of hard substrate. 

Coverage of hard substrate by sediment has been shown to affect the recruitment of 

kelp (Devinny and Volse, 1978; Geange et al., 2014). In addition, increased sediment 

could result in increases in turbidity and reduced irradiance and, as a result, affect 

abundance and depth distribution of kelp (Shepherd et al., 2009). Therefore, the 

rock/sediment substrate maps developed in the seafloor mapping project using a 

measure of "rugosity" as a threshold for rock or sediment, were used to calculate the 

proportion of hard substrate within each of the Landsat pixels. The resulting layer 

provides a measure of available suitable habitat within each of the Landsat pixels. 

 All of the 2m resolution seafloor habitat variables were scaled to the 30m 

resolution Landsat pixels by using the "Focal Statistics" tool within ArcGIS Spatial 

Analyst. The mean and standard deviation of depth, complexity and TPI were 

computed with a 30m by 30m square moving window. The resulting 900m2 scale 

focal statistics maps were then spatially associated with the kelp persistence values to 

be used in the predictive models. 
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Patch-Based Variables 

 In addition to the effect of seafloor on the persistence of M. pyrifera 

throughout the central coast of California, there are also likely to be effects of the 

kelp patches themselves. For example, structure of the kelp plants has been shown to 

buffer against wave action as you move away from the edge of the kelp patch 

(Jackson and Winant, 1983; Jackson, 1984; Rosman et al., 2007; Rosman et al., 

2010). Rosman et al. (2007) found that currents are reduced at a rate correlated with 

the coverage of surface canopy.  In addition to the inward distance from the edge of 

the kelp patch (i.e. toward the center), the overall size of a kelp patch and abundance 

within the patch is potentially correlated with the persistence of the M. pyrifera. To 

include the effect of the individual patches on the persistence of M. pyrifera, the kelp 

patches had to be defined for the region. To define the kelp patches, Landsat pixels 

that contained M. pyrifera at any time during the duration of this study were 

designated as "kelp presence", and contiguous "presence" pixels were combined to 

form individual patches (Figure 1-3a). Once the patches were defined, the "Euclidean 

Distance" tool within the "Spatial Analyst Tools" toolbox was used to find the 

distance from the edge of these patches and the "Calculate Geometry" tool was used 

to calculate the area of each of these patches.  To account for patch abundance, using 

the biomass for each of the kelp patches, the average annual biomass was computed 

for each Landsat pixel across the entire region. These values were then summed 
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within each individual patch to estimate total biomass of each patch for the time 

period of the study. 

 

Connectivity of Kelp Populations  

 In previous work, Cavanaugh et al. (2014) developed a framework using 

graph theory and spatial autocorrelation for distinguishing “subpatches” 

(subpopulations) within contiguous "mega-patches" of M. pyrifera off the coast of 

southern California. The dynamics of subpatches within these megapatches match 

theoretical expectations better than any other scale of patches and, therefore, likely 

represent subpopulations within metapopulations (Cavanaugh et al., 2014). These 

methods were employed in the central California region in this study to delineate 

patches of M. pyrifera representing subpopulations within the overall metapopulation 

(Figure 1-3b). These subpatches were used to determine the relative connectivity of 

M. pyrifera across the study region. 

 Connectivity of kelp patches based on spore transport times using 

oceanographic models has proven an effective tool for understanding gene flow 

across populations of M. pyrifera (Alberto et al., 2011). To estimate connectivity 

between kelp patches, I used a three step process (Raimondi unpublished manuscript).  

The first step was the determination of biomass for patches of M. pyrifera in central 

California. This was done as described using Landsat information for 30 by 30 meter 

pixels that were aggregated into patches of coherent synchrony as described by 

Cavanaugh et al. (2014).  Because biomass is strongly related to spore production, it 
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was used as a measure of transportable individuals in the metapopulation context.  

The second step was to determine the number of days it would take a spore to transit 

among pixels. This was accomplished using Regional Ocean Modeling Systems 

(ROMS) simulations for the central coast study region. Because ROMS cells are 

much larger than kelp patches, the relationship between transit time and distance was 

evaluated and the fit was very strong (r2> 0.9) when the model was run separately for 

transits to the north vs to the south. In this way it was possible to calculate the 

estimated transit time between any patches of kelp. In ROMS modelling particles are 

immortal and never settle, which is obviously wrong. Thus, the third step was to 

incorporate a reasonable loss rate of spores during transit between patches. I used a 

rate of 90% per day, which is consistent with the results of Reed et al (1998), who 

showed that swimming in spores ended with 24 hours, indicating a loss of lipid 

reserves also necessary for successful settlement and metamorphosis. The relative 

connectivity of each patch could therefore be estimated as the sum of the products of 

the biomass, transit time (between the recipient and donor patch) and loss rate for all 

other patches in central California. 

 

Sea Surface Temperature 

 Nitrogen limitation is one of the key factors that has been found to reduce the 

productivity of kelp (Jackson, 1977, Dayton et al., 1999) and ocean temperature is 

correlated with an absence of detectable nitrogen in waters at 16°C or greater in 

southern California and, therefore, can be used as a proxy for nitrogen availability 
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(Jackson, 1977; Zimmerman and Robertson, 1985; Tegner et al., 1997; Reed et al., 

1997). Sea surface temperature (SST) data were downloaded from the NOAA website 

using the Marine Geospatial Ecology Toolbox (MGET) within ArcGIS. The SST data 

used in this study come from the NOAA AVHRR satellite data, which provides 

monthly averaged daytime SST data for the region of interest at a resolution of 4.5 

km2. These monthly averages were used to calculate annual averages to match the 

temporal resolution of the kelp data. In addition, because the scale of the rest of the 

analyses were done at 30m resolution, the SST data were binned into four categories 

of SST based on 1°C bins and treated as a categorical variable in the models.  

 

Wave Orbital Velocity 

 Wave exposure is often one of the main environmental factors affecting the 

distribution of marine organisms (Denny, 1988; Utter and Denny, 1996; Sundblad et 

al., 2014) and has been shown to affect the distribution and persistence of kelp in 

many regions throughout the world (Foster and Schiel, 1985; Graham 1997; Graham 

et al., 1997, 2007; Reed et al 2011, Carr and Reed, in press). Wave forces (velocities 

and acceleration) can tear M. pyrifera stipes away from the remainder of the plant or 

remove entire plants (Koehl and Wainwright, 1977; Seymour et al., 1989). In fact, 

Seymour et al. (1989) showed that predictions of maximal velocity were strongly 

correlated with the dislodgment of kelp. As a result, the magnitude of local wave 

forces could greatly impact the local and regional persistence of kelp. 
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The measure of wave forces used in this study is wave orbital velocity and 

models developed at USGS were used. Patterns of wave energy and orbital velocities 

along the California coast were simulated with the numerical wave model SWAN 

(Simulating Waves Nearshore, Delft University of Technology, The Netherlands). 

SWAN is a third-generation spectral wave model capable of simulating wind-wave 

growth, propagation, refraction, dissipation, and depth-induced breaking (Booij et al., 

1999; Ris et al, 1999). A set of 15 SWAN model grids were developed and used to 

simulate wind-wave growth and propagation across the inner portion of the California 

continental shelf. All grids were curvi-linear, with an average cross- and along-shore 

resolution of 30 to 50 m and 60 to 100 m, respectively, in the shallow inshore regions. 

Model grid cells were smaller in the cross-shore direction, in shallow water, and 

around complex bathymetry to enable accurate wave refraction and shoaling. 

Latitudinal extents were defined based on local geography and computation 

limitations. The offshore extent of the model grids were defined by 64 Wave 

Information System (WIS, http://wis.usace.army.mil/) model output stations located 

approximately 20 km offshore along the entire California coast. Wave parameters 

(significant wave heights, peak wave period, and mean wave direction) derived from 

the WIS database were applied at the boundaries of the 15 SWAN grids. The WIS 

data encompass the 32 years from 1980 through 2011 were used to calculate seasonal 

(arithmetic) mean and extreme (arithmetic mean of highest 5%) conditions. Seasons 

were defined as: winter = December through February; spring = March through May; 

summer = June through August; and fall = September through November.  

http://wis.usace.army.mil/
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Parametric wave descriptors (wave heights, periods, and wave direction) 

derived from the WIS database were applied along the open boundaries of the SWAN 

domains; these were represented in spectral space with a JONSWAP shape and a 3.3 

peak enhancement factor. In all grids, 10-degree direction bins and 36 frequencies 

spaced log-normally from 0.0417 Hz to 1.0000 Hz were used. The bottom friction 

coefficient was set to 0.038m2/s for swell conditions (Hasselmann et al., 1973 in 

SWAN technical documentation, 2013), whitecapping was computed with the Komen 

et al. (1984) formulation, and depth induced breaking with the Battjes and Janssen 

(1978) formulation. Winds from the most centrally located WIS station of each grid 

were applied uniformly across the domains to allow for inclusion of locally wind-

generated waves in addition to (usually greater) energy contributions from distantly 

generated swell waves. All grids were solved in the spherical coordinate system and 

run in a stationary mode. In shallow water, the orbital motions of water particles 

induced by surface waves extend down to the seabed. The resulting wave-induced 

orbital velocities near the seabed are considered to be a representative measure of 

how waves influence the sea floor and as such are a focus of this study; SWAN 

calculates bottom orbital velocity (Uorb) as the maxima of the root mean square (rms) 

bottom velocity (Urms).  

The ability of the SWAN model to accurately simulate wave propagation was 

tested by running the model forced with hourly wave parameters of the WIS database 

over a week long time period from 18-25 January 2010. The simulation period 

encompasses a large storm event when wave heights exceeded 9 m (e.g., CDIP Pt. 
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Reyes buoy) and affected the entire California coast. The ability of the SWAN model 

to reproduce observed wave conditions was evaluated with a skill score (Willmott 

1981); the skill score ranges from 0 to 1, with a skill score of 1 indicating perfect 

agreement. The analysis was done over the entire simulated time-series. The 

skill scores were quite good (mean±1 SD = 0.89±0.05; range = 0.81-0.97) at all sites 

evaluated. Although observations are not available within all grids, the high skill 

scores and lack of clear geographic trend in changes of the skill score suggest that 

model results in grids with no buoys are likely also reflective of true conditions. 

 

1.3.4 Tests of Hypotheses 

Tests of Assumptions of Analyses 

 Prior to testing hypotheses regarding the relationship between M. pyrifera 

persistence and habitat variables, I tested for violations of assumptions of the analyses 

(e.g., independence, normality, linearity, homogeneity of variance) following the 

guidelines of Zuur et al., (2009). Cleveland dotplots were used to view the 

distribution of the variables to determine if there were outliers and if any variables 

required transformation. Multi-panel scatterplots, Spearman-rank correlation 

coefficients, and variance inflation factors (VIF) were applied to test for collinearity 

between explanatory variables. Those paired variables that had a correlation 

coefficient greater than 0.50 or a VIF greater than three were not included in models 

together (Zuur et al., 2009). Elimination of VIF values greater than three is a 

conservative approach for eliminating collinearity in the models. The only variable 
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that required a square-root transformation was the measure of mean topographic 

complexity (slope of slope). Relationships between M. pyrifera persistence and depth 

and wave orbital velocity were non-linear, so a quadratic function was used within the 

models for both of these variables.  

 Spatial autocorrelation violates the assumption of independence of 

observations and is common in spatially defined observations (Zuur et al., 2009). I 

used Moran's I to test for spatial autocorrelation among the M. pyrifera persistence 

values. I detected significant spatial autocorrelation in the response variable (M. 

pyrifera persistence) and used a modeling approach that accounted for it (see 

Results).   

 

Modeling Approach  

 To test the hypothesized relationships between persistence of M. pyrifera and 

habitat variables, I applied a generalized linear mixed effects model (GLMM). The 

persistence data met the assumptions of the Poisson distribution so I used a GLMM 

with a Poisson distribution and a log-link function. The GLMM was trained using 

half of the persistence observations to determine the relationship between persistence 

and the environmental variables (30,785 points were used to train the models while 

30,784 points were reserved to test the accuracy of the predictions). I used a GLMM 

because this modeling approach allows for datasets that are hierarchically structured 

and accounts for dependencies within those hierarchical groups by the use of random-
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effects (Pinheiro and Bates, 2000; Zuur et al., 2009). Persistence of M. pyrifera was 

spatially autocorrelated within subpatches. I accounted for this spatial autocorrelation 

by using the subpatch as a random-effect in the GLMM. I used a spline correlogram 

of the Pearson residuals to verify that the spatial autocorrelation was accounted for in 

the GLMM. The spline correlogram used was smoothed using the spline function 

(Bjornstad and Falck, 2001; Zuur et al., 2009) (see results). The relative variance 

explained by variables in the GLMM cannot be modeled for fixed effects using 

restricted maximum likelihood approximation, therefore the relative importance of 

the variables is ranked by their absolute values of the z scores, reflecting the 

likelihood of their explanatory value. 

  The “lme4” package in R v3.1.0 was used to run the GLMM. Prior to running 

the GLMM, all of the variables were standardized using the "scale" function in R. 

The standardization of the coefficients removes the unit of measurement for the 

variables and allows for the comparison of coefficients across a variety of scales. 

Once standardized, I ran a series of GLMM models to determine the best model for 

explaining the persistence of kelp along the central coast of California by using AIC 

model selection and the significance of variables. Once the best model was chosen, I 

used the "predict" function to come up with predicted persistence values across the 

central coast and compared these to the actual values within the reserved persistence 

points to determine the accuracy of the model in predicting kelp persistence.   
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1.4 Results 

1.4.1 Using Satellite Data to Estimate Kelp Canopy Biomass and Persistence 

 Landsat data for the central coast of California estimated 61.4 km2 of M. 

pyrifera canopy cover within the shallow subtidal. The majority of M. pyrifera was 

on hard substrate within the 5m to 30m depth range. Annual persistence (number of 

years) of M. pyrifera varied throughout this region, ranging from 1 to 29 years, but 

was fairly persistent throughout the region with over 60% of the Landsat pixels 

containing kelp for 15 or more years (Figure 1-3; yellow, orange and red hues). 

 

1.4.2 Tests of Hypotheses 

There were a total of 61,569 points of M. pyrifera observations within the 

study region that overlapped with the environmental variables. Comparison of spatial 

autocorrelation of residuals from a generalized linear model (GLM), which did not 

account for spatial autocorrelation, with spatial autocorrelation of residuals of the 

GLMM indicated that spatial autocorrelation was better and adequately accounted for 

in the GLMM (Figure 1-4). The best GLMM (i.e. with lowest AIC containing all 

significant variables) generated from the restricted subset of the dataset to explain 

persistence of M. pyrifera included depth (squared), topographic complexity, top five 

percent orbital velocity (squared), the distance to the edge of the patch, relative 

connectivity, the area of the patch, and the proportion of rock (Table 1-1).  
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H1: M. pyrifera persistence will have a non-linear (hyperbolic) relationship with 

depth of the seafloor; persistence will be greatest at intermediate depths, 

decreasing with shallower and deeper depths 

The depth distribution of M. pyrifera in the central coast region varied from 

0.1 meters to 50 meters with an average depth of 15.1 meters and the majority of the 

kelp, as predicted, occurred in the intermediate 10-20 meter depth range (Figure 1-

5a). As predicted, the relationship between persistence and depth was non-linear 

(hyperbolic) and highly significant (GLMM: P< 0.000). Depth was the second most 

important variable of those tested (Z score= -40.98; Table 1-1). 

 

H2: M. pyrifera persistence decreases with increases in topographic complexity 

of the rocky reef.  

Contrary to my prediction based on the literature, I detected a positive 

relationship between persistence and both complexity and higher topography.  M. 

pyrifera was found on hard substrate of varying complexity with mean slope of slope 

values of 40.1 (moderate complexity) with a range of 0.38 (very low complexity) to 

139.2 (very high complexity). The majority of the kelp, however, occurs in the 30-40 

range, or moderate complexity (Figure 1-5b). The relationship between persistence 

and geomorphic complexity was highly significant (GLMM: P< 0.000) and the third 

most important variable of those tested (Z score= 37.30; Table 1-1). In addition to 

complexity, M. pyrifera was found on "peaks" of topography, with an average TPI 

value of 2.54. However, TPI values ranged from -8 to 28 in locations where kelp was 
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present along the central coast (Figure 1-5c). TPI was removed from the GLMM for 

explaining variation in persistence of M. pyrifera because it was not significant. 

 

H3: Because kelp patches have a moderating effect on currents and waves, M. 

pyrifera found in larger patches, more abundant patches, and further toward the 

center of a patch will increase in persistence. 

There were a total of 409 contiguous patches defined within the central coast 

study region and, along with the seafloor structure variables, the frequency of M. 

pyrifera occurrences varied with variation in each of the variables derived from these 

patches. The size (area) of the contiguous kelp patches varied from 0.004 km2 to 2.47 

km2, with an average kelp patch size of 0.89 km2 (Figure 1-6a). Biomass within those 

kelp patches varied from 33.18 kg to 6,864,400 kg, however, the distribution is highly 

skewed to the right, many more pixels at the lower end of the biomass levels and a 

median biomass across all patches of 808,717 kg (Figure 1-6b). The relationship 

between persistence and patch biomass was highly significant (GLMM: P< 0.000) 

and the fourth most important variable of those tested (Z score= 30.19; Table 1-1). 

The distance from the edges of these patches ranged from 0 meters to 566 meters with 

an average distance of 75.2 meters. The relationship between M. pyrifera persistence 

and distance inward from the edge of the patch was highly significant (GLMM: P< 

0.000) and was the most important variable in the model (Z score= 105.66; Table 1-

1). 
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H4: M. pyrifera persistence will increase with higher proportions of rocky 

Substratum because Macrocystis plants require rocky substrate for attachment.  

The average proportion of rock found within each Landsat pixel was 0.58 with 

an increase in M. pyrifera occurrences as the proportion of rock increases (Figure 1-

4d). The relationship between M. pyrifera persistence and proportion of rock cover 

was very significant (GLMM: P< 0.006) the sixth most important variable (i.e. 

likelihood) in explaining variation in persistence (Z score= 2.84; Table 1-1). 

 

H5: M. pyrifera persistence will decrease with increases in wave orbital 

velocities. 

M. pyrifera is found across a variety of wave environments from areas where 

the wave orbital velocity values are close to 0 m/s to areas where the velocity reaches 

2.27 m/s. The average orbital velocity values where M. pyrifera occurs is 0.89 m/s 

(Figure 1-6d). I detected collinearity between  the mean and the top five percent 

orbital velocity, so only one of the variables from that pair was included in the 

different GLMM runs. The relationship between M. pyrifera persistence and wave 

orbital velocity was highly significant (GLMM: P< 0.000) and was the fifth most 

important variable in the model (Z score= 3.98; Table 1-1). 

 

H6: M. pyrifera persistence will decrease with increases in sea surface 

temperature (SST). 
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Where kelp was present, SST for the central coast region generally ranged 

from just over 11°C to just under 15°C with an average temperature of 13.6°C. SST 

was not included as an explanatory factor in the GLMM for explaining variation in 

persistence of M. pyrifera because it was not significant.  

 

H7: M. pyrifera persistence will increase with the population connectivity of a 

kelp patch. 

The definition of subpatches across the study region resulted in a total of 168 

individual subpatches (or subpopulations) within the metapopulation. The relative 

connectivity values computed for these subpatches ranged from almost no 

connectivity (<0.000) to complete connectivity (1.00) with a 90% rate of spore loss 

(Figure 1-6c).  The relationship between M. pyrifera persistence and connectivity of a 

patch was significant (GLMM: P< 0.043) and the least most important variable in the 

model (Z score= 1.92; Table 1-1). 

 

H8: Strong relationships between M. pyrifera with some combination of 

environmental variables will allow for accurate predictions M. pyrifera 

persistence. 

When the best GLMM (Table 1-1) was used to predict the spatial patterns of 

M. pyrifera persistence for of a dataset not used in the creation of the model, the 

predictions from the GLMM and the actual observed persistence in the reserved 
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dataset were strongly and significantly correlated  (Pearson correlation coefficient= 

0.71, P<0.000).  

 

1.5 Discussion 

 Understanding the spatial and temporal patterns of persistence of M. pyrifera 

and the factors responsible for its persistence is critical to understanding the 

distribution and abundance of the highly diverse and economically important species 

that associate with forests of M. pyrifera and the communities they constitute.  I 

found that persistence of M. pyrifera is significantly correlated with many 

environmental variables including depth, the structural complexity of the seafloor, the 

proportion of rock in an area, the distance from the edge of a kelp patch, the biomass 

of a kelp patch, the oceanographic connectivity of the subpopulations, and the wave 

environment. These variables can be used to accurately predict those locations where 

kelp is likely to be more persistent and potentially predict into the future where kelp 

may persistently occur as the wave environment changes with the effects of climate 

change. 

 The non-linear, quadratic relationship between kelp persistence and depth is 

expected based on previous knowledge of the depth distribution of M. pyrifera. As 

you move into deeper depths, M. pyrifera becomes less abundant as water clarity 

decreases (Graham et al. 2007; Carr and Reed  in press). On the other hand, the 

inshore, shallower limit of kelp is related to increases in wave action (Dayton et al. 

1992) and an increase in irradiance (Graham 1996; Swanson & Druehl, 2000). The 
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significant, non-linear relationship between kelp persistence and depth, therefore, is 

expected but nonetheless contributes to the overall quantitative predictions of 

persistence.    

 In contrast to other studies that have looked at the relationship of kelp 

persistence with the complexity of the hard substrate and found that kelp is more 

persistent on lower relief, less complex rocky habitat (Grove et al. 2002; Deysher et 

al. 1998), my results indicate that M. pyrifera persistence increases with increases in 

the structural complexity of the substrate. These contrasting results are likely due to 

differences in rocky substrate in southern California, where the majority of M. 

pyrifera studies have been done, versus central California. In southern California, the 

majority of the hard substrate is made up of low relief, sedimentary rock while central 

California is made up of granitic rocky reef of much higher and more varying 

topographic complexity and is much less susceptible to erosion than the sedimentary 

formations in southern California.   

 Increases in the proportion of rock were found to be significantly correlated 

with increases in the persistence of M. pyrifera as well. Not only does Macrocystis 

require rocky substrate for attachment (Cribb, 1954; Foster & Schiel, 1985; 

Westermeier & Möller, 1990; Schiel et al., 1995; Carr and Reed, in press) but the 

increase in the proportion of rock also signifies a decrease in sediment. Areas of 

lower sediment cover are less likely to experience periodic coverage of rock by 

sediment (Devinny and Volse, 1978; Geange et al., 2014) and sediment in the water 
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column, which results in higher turbidity and lower irradiance (Shaffer and Parks, 

1994; Spalding et al., 2003; Shepherd et al., 2009).  

 As expected, M. pyrifera persistence increased with the distance from the 

edge of kelp patch. The moderating effect of kelp on the currents and waves is 

probably responsible for this pattern. With increasing distance from the edge of a 

patch and into the center, the effects of currents and waves decrease (Jackson and 

Winant, 1983; Jackson, 1984; Rosman et al., 2007; Rosman et al., 2010). In addition, 

the biomass of the patch may have a role in moderating water motion as it was also 

found to be important. Those kelp patches that have higher biomass values also 

experience higher persistence. The effect of increasing biomass; however, could be 

tied to other processes not related to water motion such as higher abundance for 

reproduction and recruitment. Although the size of a patch was included as a variable 

in the GLMM, it did not come out as significant. Therefore, the abundance within a 

kelp patch appears to be more important to persistence than the overall size of the 

patch.   

 The significant, non-linear (quadratic) relationship between M. pyrifera 

persistence and wave orbital velocity was not expected but makes sense in hindsight. 

It was predicted that M. pyrifera persistence would increase as wave orbital velocity 

decreases because waves are the most frequent disturbance responsible for tearing out 

plants (Graham, 1997) and bull kelp (Nereocystis luetkeana) persists in areas of 

higher wave intensity (Foster and Schiel, 1986; Graham, 1997). The results from this 

study show, however, that M. pyrifera occurs across the range of wave orbital 



 
 

38 
 

velocity values along the central coast of California but is most abundant in a 

moderate wave environment (average 0.86 m/s orbital velocity). One reason for this 

result could be the solid, granitic rocky reefs available for attachment along the 

central coast of California. By providing a solid surface for attachment, the rocky 

reefs could decrease the susceptibility of M. pyrifera to being torn out by strong wave 

forces (Carr and Reed, in press). Additionally, the rugosity of the rocky reefs was 

used in the models to produce the maps of wave orbital velocity and higher rugosity 

values are associated with higher wave orbital velocities. Consequently, the 

relationship of M. pyrifera persistence with higher complexity rocky habitat results in 

the plants attaching to habitat found in areas of higher orbital velocities.  

 Population connectivity between the subpatches was also found to be a 

significant variable in the model. Previous studies have shown that the population 

connectivity of marine species within the coastal environment is linked to the 

'oceanographic distance' between populations, as measured by oceanographic currents 

(Mitarai et al., 2009; Alberto et al., 2011). In this study, using a loss rate of 90% 

(Reed et al. 1998), it was found that those subpatches at closer oceanographic 

distances were more persistent than those subpatches that were more isolated. 

Population connectivity is, understandably, an important factor in the persistence of 

kelp because those patches that are more 'connected' to the rest of the patches are 

more likely to experience more consistent spore recruitment and greater persistence 

through time.  
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 One of the main limitations on the distribution of M. pyrifera throughout the 

world is nutrient availability, mostly nitrogen (Ladah et al., 1999; Hernández-

Carmona et al., 2000; Edwards, 2004; Graham et al., 2007). Because nitrogen 

availability has been linked to the temperature of the ocean in previous studies, I used 

sea surface temperature (SST) as a proxy for nitrogen. Along the central coast of 

California, however, SST varies only slightly and this variable did not have an effect 

on the persistence of kelp. In southern California, south of Point Conception, it is 

more likely that nitrogen would play a role in the persistence of kelp populations 

because there is more variability and greater temperature extremes within that region 

(Carr and Reed, in press).    

 Another factor that is often linked to the presence of kelp but was not explored 

in this study is the abundance of grazers. In many parts of the world, kelp populations 

are dramatically affected by the overgrazing by marine organisms (Graham et al., 

2007). Along the coast of California, sea urchins are one of the main grazers of kelp 

(Carr and Reed, in press). In this study, however, the presence of grazers was not 

taken into consideration due to the presence of a population of sea otters that overlaps 

with the range of this study. The sea otters forage on the urchins and keep their 

populations in check, greatly diminishing their numbers (Carr and Reed in press). In 

the areas outside of the range of sea otters, including southern California and north of 

Pigeon Point, sea urchin populations increase greatly in size and can have a large 

impact on the population of M. pyrifera (Carr and Reed, in press). 
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1.6 Conclusions 

 Overall, this study shows that the persistence of M. pyrifera along the central 

coast of California has predictable relationships with a suite of environmental 

variables and that these environmental variables can be used to predict those areas 

where this important structure-forming kelp species is likely to persist. In addition, 

the incorporation of oceanographic variables including the wave environment, the 

currents affecting the connectivity between kelp patches, and the sea surface 

temperature allows for forecasting of how changes in the ocean environment due to 

climate change are likely to affect the persistence of M. pyrifera. As a foundation 

species that can support upwards of 1,000 different species (Foster and Schiel, 1985), 

understanding those factors that support persistent populations of M. pyrifera are 

important when attempting to protect the marine communities associated with kelp 

forests.  
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1.8 Figures 

 

Figure 1-1: The study region is shown in the map on the right, which extends from 

Pigeon Point in the north to Point Conception in the south along the central coast of 

California. M. pyrifera coverage derived from the Landsat imagery is shown in dark 

gray. Figure 1a, 1b, and 1c correspond to the boxes shown in the map on the right and 

display the patchy distribution of kelp along small sections of the coastline. 
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Figure 1-2: The persistence of M. pyrifera along a small portion of the central coast of 

California. The warmer colors represent higher persistence (greater number of years 

when M. pyrifera is present in a certain location) compared to the cooler colors, 

which represent areas where M. pyrifera is less persistent. Persistence is measured at 

30m resolution (the resolution of the Landsat data). 
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Figure 1-3: Examples of the contiguous patches used to calculate the patch variables 

(a) and the subpatches used to calculate the connectivity between the subpopulations 

(b). The different colors in both maps represent different patches and the inset maps 

show a close-up view of one area of patches to highlight the variation in the different 

methods for defining patches within the central coast of California. (Service Layer 

Credits: Copyright @2013 Esri, DeLorme, NAVTEQ) 
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Figure 1-4: Spline correlegrams showing the comparison of (a) the spatial 

autocorrelation of the residuals of a generalized linear model (GLM), which does not 

take into account spatial autocorrelation, and (b) the spatial autocorrelation of the 

residuals from the generalized linear mixed model (GLMM). The correlation of the 

residuals at close distances in the GLM were significantly correlated, whereas there is 

almost no spatial autocorrelation at any distance class in the GLMM.  
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Figure 1-5: Frequency distributions of the occurrence of Macrocystis pyrifera in 

relation to variation in depth (a), slope of slope or topographic complexity (b), 

topographic position index (c), and the proportion of rock (d). Vertical axes are the 

number of Landsat pixels where kelp is present within each of the categories of 

geomorphic structure.  
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Figure 1-6: Frequency distributions of the occurrence of Macrocystis pyrifera in 

relation to variation in kelp patch area (a), total biomass within a kelp patch (b), the 

relative connectivity of the patch (c), and the wave orbital velocity (d). Vertical axes 

are the number of Landsat pixels where kelp is present within each of the categories 

of the patch-based and environmental variable categories.  
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1.9 Tables 

Table 1-1: The results from the best GLMM for predicting the persistence of kelp on 

the central coast of California based on AIC and deviance explained. The variables 

used as fixed effects are shown with their corresponding z scores and p-values. 

Variance and standard deviation of the random effect used (SubPatch) is shown. 

  

FIXED EFFECTS    

 Coefficient abs(Z score) P-Value 

(Intercept) 3.067  85.72 < 0.000 

Distance to Edge of Patch 0.162 100.68 < 0.000 

Depth -0.019 37.91 < 0.000 

Mean Complexity 0.125 35.44 < 0.000 

Patch Biomass 0.152 29.06 < 0.000 

(Depth)2 -0.022 17.71 < 0.000 

Wave orbital Velocity -0.033 14.89 < 0.000 

(Wave orbital Velocity)2 -0.011 11.75 < 0.000 

Proportion Rock 0.011 3.46 0.001 

Subpatch Connectivity 

(survivorship = 0.10) 

0.152 2.76 0.006 

RANDOM EFFECTS:   

 Variance Std. Dev. 

SubPatch (168 individual 

subpatches) 

    0.151   0.389 
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2.  Chapter 2: Application of species distribution models to 

explain and predict the distribution and abundance of 

nearshore temperate reef fishes 

 

2.1 Abstract 

 As the fields of resource management and conservation continue to move 

toward more spatial and ecosystem-based approaches, there is a growing need for 

spatially explicit, quantitative information on species distributions and a better 

understanding of the biotic and abiotic determinants of those distributions. To address 

the need for making quantitative predictions of how species densities are distributed 

over broader spatial scales, species distribution models (SDMs), also known as 

predictive habitat distribution models, have been developed and applied. The purpose 

of this study was to create predictive SDMs (generalized additive models) for 

temperate fish species densities and fish assemblage diversity and richness by 

associating them with variables extracted from seafloor habitat maps, biogenic 

structure, and oceanographic variables and extrapolating densities and fish diversity 

and richness over the study area. The accuracy of these predicted extrapolations was 

tested using an independent dataset not used in the creation of the models and the 

SDMs were used to estimate larger scale species densities and abundances to compare 

with other estimates of species abundance (uniform density extrapolation over rocky 

reef and density extrapolations taking into account variations in geomorphic 
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structure). The SDMs successfully modeled the species-habitat relationships of seven 

kelp forest associated fish species and showed that the species densities varied with 

their relationships to the environmental variables. Topographic complexity was the 

only variable that was found to be significant across all models. The predictive 

accuracy of the SDMs ranged from 0.26 to 0.60 (Pearson’s r correlation between 

observed and predicted density values). The SDMs created for the fish diversity and 

richness were much simpler with only one and two variables used, respectively. The 

accuracies of the predictions from these community-level models were higher with 

Pearson’s r values of 0.61 for diversity and 0.71 for richness. The comparisons of the 

different methods for extrapolating species densities over a single MPA varied greatly 

in their abundance estimates with the uniform extrapolation (density values 

extrapolated evenly over the rocky reef) always estimating much greater abundances. 

The other two methods, which took into account variation in the geomorphic structure 

of the reef, provided much lower abundance estimates. The application of landscape-

scale approaches shows great promise for both explaining and predicting the 

distribution and abundance of species and communities in the marine environment 

and for informing spatial and ecosystem-based approaches to conservation and 

fisheries management. 

 

2.2 Introduction 

 As the fields of resource management and conservation continue to move 

toward more spatial and ecosystem-based approaches, there is a growing need for 
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spatially explicit, quantitative information on species distributions and a better 

understanding of the biotic and abiotic determinants of those distributions (Franklin 

1995; Austin 1998; Elith and Burgman 2002) Landscape approaches that discriminate 

habitat types and quantify species-habitat associations at broad geographic scales 

have become critical to increasing our understanding of how and why populations are 

distributed throughout their environment and, as a result, better inform spatial 

ecosystem-based  management (Guisan and Zimmermann 2000; Hirzel and Guisan 

2002). While the need for and application of landscape ecology for informing spatial 

and ecosystem-based management has long been recognized by managers and 

conservation scientists in terrestrial environments (Saunders et al. 1991; Franklin 

1993), it has more recently been recognized in the marine environment (Sala et al. 

2002; Monaco et al. 2005; Appeldoorn et al. 2003; Friedlander et al. 2007). This more 

recent interest by marine managers and scientists reflects both a growing interest in 

spatial, ecosystem-based management in the marine environment and the recent 

development of technologies (e.g., high resolution seafloor mapping, remotely sensed 

environmental information, GIS tools) to support landscape approaches. Of particular 

interest in marine ecosystem-based management is the growing application of marine 

protected areas (MPAs) and coastal and marine spatial planning (Douvere 2008; 

Halpern et al. 2008; Crowder et al. 2008; Foley et al. 2010). 

 To address the need for making quantitative predictions of how species 

densities are distributed over broader spatial scales, species distribution models 

(SDMs), also known as predictive habitat distribution models, have been developed 
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and applied (Guisan and Zimmermann 2000; Guisan and Thuiller 2005; Chatfield et 

al. 2010).  The past few decades have seen a large increase in the development and 

use of SDMs (Guisan and Thuiller 2005; Mellin et al. 2010) and these models are 

becoming recognized as an important aspect of conservation planning, especially in 

terrestrial ecosystems (Austin 1998; Guisan and Zimmermann 2000; Austin 2002). 

SDMs combine quantitative species surveys with environmental data to identify 

quantitative species-habitat relationships and predict how species are distributed 

across landscapes (Guisan and Thuiller 2005). SDMs were originally developed in the 

terrestrial realm (Guisan and Zimmermann 2000; Brown et al. 2011) and are now 

being applied to the marine environment (Mellin et al. 2010). 

 In temperate marine environments, numerous studies have detected strong 

spatial associations between, for example, temperate demersal fishes and either biotic 

(e.g., Choat and Ayling 1987; Levin and Hay 1996; Dean et al. 2000; Anderson and 

Millar 2004) or abiotic (e.g., Carr 1991; Curley et al. 2002; Harman et al. 2003; 

Pittman et al. 2007) environmental variables. Unfortunately, many of these 

descriptions of species-habitat associations are strictly qualitative and do not allow 

for making quantitative predictions of species densities beyond the areas sampled 

(Chatfield et al. 2010). However, the development and application of SDMs in the 

marine environment has increased with recent advances in acoustic technology to 

collect high resolution habitat maps (Hughes Clarke et al. 1996; Anderson et al. 2008; 

Cogan et al. 2009), the ability to collect spatially explicit information on species 

distributions and abundance (Valavanis et al. 2008), and the development of 
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geographic information systems (GIS) tools that allow the integration of species 

distribution with habitat structure (Rotenberry et al. 2006; Young et al. 2010). While 

researchers now have the resources necessary to create and apply SDMs in many 

areas of the marine environment, demonstration of this approach and its application 

for informing spatial, ecosystem-based management approaches are rare. 

 The purpose of this study is to develop an analytical approach to creating 

SDMs that integrates high resolution bathymetric maps with in situ species surveys to 

(i) characterize benthic habitats, (ii) determine species-habitat associations, (iii) 

generate species density distributions across coastal seafloor landscapes, which I use 

to (iv) estimate species abundances.  To develop the approach, I use several species of 

nearshore fishes along the central coast of California. I focus on central California 

because of the confluence of sources of information (habitat maps, ecological 

surveys) required to develop SDMs and the need for this information to inform the 

evaluation and adaptive management of the recently established network of marine 

protected areas there. 

 The state of California, USA, recently (2007-2012) established a state-wide 

network of marine protected areas along the 1200 km coastline (13,688 km2 of state 

waters, 2207 km2 or 16% in MPAs; http://www.dfg.ca.gov/mlpa/). Combined with 

ecological and oceanographic monitoring programs, the network provides resource 

managers and scientists with unique opportunities to inform and advance a variety of 

marine spatial and ecosystem-based management approaches and policies (Kirlin et 

al. 2013; Gleason et al. 2013). These policies include advances in ecosystem-based 



 
 

61 
 

management, marine spatial planning, fisheries, and climate change (Gaines et al. 

2010; Halpern et al. 2010; Carr et al. 2011). Characterizing the distribution and 

abundance of species, communities and ecosystems both inside and outside of MPAs 

across the network is also necessary for evaluating how effective MPAs are at 

protecting ecosystems and the biodiversity of economically and recreationally 

important species they support (Hamilton et al. 2010; Carr et al. 2011; Grorud-

Colvert et al. 2011, 2014; Botsford et al. in press). The development and application 

of SDMs could be particularly valuable for both the evaluation and adaptive 

management of California’s network of MPAs and realizing its application for 

informing spatial and ecosystem-based management.  

 Recognizing the need for more and better information on the structure of the 

seafloor to inform spatial, ecosystem-based management, including the design of 

California’s network of MPAs, the state simultaneously designed and implemented a 

state-wide seafloor mapping project (California Seafloor Mapping Program; CSMP). 

One objective of this program was to inform the placement and evaluation of marine 

protected areas (MPAs) by characterizing habitats and their distributions and using 

that information to ensure the network of MPAs representatively included the variety 

of seafloor features and the biodiversity and communities they support (Kvitek and 

Iampietro 2010). Because many species display preferences for specific depths and 

habitat types (Wright and Heyman 2008; Dunn and Halpin 2009; Brown et al. 2011), 

the highly-detailed maps of seafloor geomorphology produced by the CSMP are also 

likely to provide an extremely valuable resource for developing SDMs. By combining 
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these maps with species data generated by ecological surveys, species-habitat 

relationships to inform SDMs can be created and advance the understanding of 

ecosystems further than what is achievable through the use of ecological data alone 

(Brown et al. 2011). 

 In conjunction with the implementation of the California network of MPAs, 

ecological surveys were initiated to characterize the structure and distribution of 

populations and biological communities. These surveys of kelp forest ecosystems 

conducted by SCUBA divers were continued at several MPAs to characterize initial 

ecological responses to the establishment of the MPAs and develop ecological time 

series that would allow the MPAs to inform various marine management issues (e.g., 

fisheries management, climate change). Among the ecological metrics of interest are 

estimates of species abundance that inform how abundances respond to MPA 

establishment, including potential larval production that contributes to replenishment 

of coastal populations. Surveys were designed to estimate these and other ecological 

metrics by stratifying sampling across the forest ecosystems., One limitation of this 

sampling design, however, is the inability to extrapolate the in situ observations over 

broader spatial areas (within and outside MPAs) to make predictions as to the 

distributions of species and communities where they did not make direct 

observations. 

 In this study, I draw from these sources of information and use geographic 

information systems (GIS), to create SDMs for the purpose of estimating species 

distributions and abundances at spatial scales relevant to informing the adaptive 
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management and application of a network of MPAs. I use the SDMs to answer the 

following suite of questions: 

1) Do densities of fish species vary predictably with environmental variables 

including the structure of the rocky reef, latitude, kelp biomass, and exposure 

to ocean swell (wave orbital velocities)? If so, what is the relative importance 

of the variables in explaining this variation and how does it vary among 

species? 

2) Do species diversity and richness of the kelp forest fish assemblage vary 

predictably with environmental variables? 

3) Can SDMs generate reliable extrapolations of species densities, diversity 

and richness? 

4) Do estimates of fish abundance generated by the SDMs differ substantially 

(both higher and lower) from those generated by simple uniform extrapolation 

of density estimates across the kelp forest habitat? 

 Collectively, answers to these questions may demonstrate the utility of SDMs 

in enhancing our ability to estimate species distributions and abundances and their 

application for informing spatial and ecosystem-based management approaches.  

 

2.3 Methods 

 My general approach to answering these questions was to test for predictive 

SDMs (generalized additive models) based on variables extracted from seafloor 

habitat maps, oceanographic variables and species densities estimated by the 
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ecological surveys (Question 1). The fish assemblage diversity and richness from the 

ecological surveys were also associated with the environmental variables using the 

same methods as for the densities (Question 2). The SDMs were then use those 

models were used to extrapolate densities, diversity, and richness over the study area. 

I tested the accuracy of these predicted extrapolations using an independent dataset 

not used in the creation of the models (Question 3). I then used the SDMs to estimate 

species abundances and compare with other methods for estimating species 

abundance (Question 4). 

 

2.3.1 Study System 

 I focus on fish assemblages that inhabit shallow (5-20 m depth) forests of 

giant kelp, Macrocystis pyrifera, along the central coast of California, USA (Figure 2-

1A),  extending from Pigeon Point in the north (37°10'57" Lat 122°23'38" Long) to 

Point Conception in the south (34°26'55" Lat 120°28'14" Long). This study area 

corresponds to the Central Coast Study Region of the state Marine Life Protection 

Act (MLPA) Initiative that created a network of 29 MPAs with differing levels of 

fishing restrictions across the study area (Figure 2-1B). The depth range for this study 

is restricted to 20 meters depth due to the limited depth range of the ecological 

surveys. 

 I focused analyses on ten focal species of fishes that were frequently observed 

in the surveys of the central California kelp forests: tubesnout (Aulorhynchus 

flavidus), black surfperch (Embiotoca jacksoni), striped surfperch (Embiotoca 
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lateralis), kelp greenling (Hexagrammos decagrammus), olive rockfish (Sebastes 

serranoides), kelp rockfish (Sebastes atrovirens), gopher rockfish (Sebastes 

carnatus), black rockfish (Sebastes melanops), and blue rockfish (Sebastes mystinus). 

In contrast, species diversity and richness was estimated for the entire assemblage of 

the 70+ conspicuous species of fishes recorded on ecological surveys. 

 

2.3.2 Estimates of fish densities, diversity and richness 

 Fish densities were estimated for the ten focal species by visual surveys using 

SCUBA, conducted by the Partnership for Interdisciplinary Studies of Coastal Oceans 

(PISCO:  http://www.piscoweb.org/research/science-by-discipline/ecosystem-

monitoring/kelp-forest-monitoring/subtidal-sampling-protoco) at 85 sampling sites 

distributed across the study area (Figure 2-1B). Surveys were conducted from 2007 to 

2011 at each site. Three consecutive 30m long by 2m tall by 2m wide (120m3) 

transects were sampled in each of four depth zones (5m, 10m, 15m, and 20m) at each 

sampling site. Transects are stratified from the offshore to onshore margins of the 

forests and at mid-depth and along the bottom to encompass the 3-dimensional habitat 

of the kelp forests (Figures 2-1C, D). I combined the three transects, including the 

two portions of the water column, as a single 720m3 transect as a more conservative 

estimate of the location of the surveys relative to the seafloor maps (Figure 2-1C, D). 

The locations of these transects were recorded using a GPS unit to mark the location 

at the beginning of each transect. Only those transects with available position data 

and overlap with mapped seafloor data were used in this study. From these transects, 

http://www.piscoweb.org/research/science-by-discipline/ecosystem-monitoring/kelp-forest-monitoring/subtidal-sampling-protoco
http://www.piscoweb.org/research/science-by-discipline/ecosystem-monitoring/kelp-forest-monitoring/subtidal-sampling-protoco
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the mean density of each of the ten species within each depth zone. Species diversity 

(H’, Shannon Diversity Index) and richness (number of species) was also calculated 

for each 720m3 transect. 

 

2.3.3 Quantifying Habitat Characteristics 

 Seafloor maps generated by the CSMP were used to derive a variety of habitat 

variables that were potentially useful for predicting the density distributions and 

diversity and richness of the ten fish species. Geomorphic variables from the seafloor 

included depth, slope, slope of the slope (complexity), topographic position at 

multiple scales, and substrate type (rock versus sediment). In addition to these 

variables, latitude, wave orbital velocities (a metric of exposure to ocean swell), and 

kelp biomass estimates were used (Figure 2-2).  

Depth is likely to be an important predictor of fish distributions due to the 

known associations of species within specific depth ranges (Eschmeyer et al. 1983, 

Allen and Pondella book chapter 4). Depth information was derived directly from the 

digital elevation models (DEMs) produced by the CSMP. DEMs are raster datasets 

that consist of depth values at regularly spaced intervals and all DEMs used in this 

study were at 2m resolution. 

 The Spatial Analyst extension in ArcGIS 10 (ESRI 2012) was used to 

calculate both slope and slope of the slope from the DEMs. Previous studies have 

shown that species distributions vary with changes in slope and areas of high slope 

are often correlated with greater densities of fish than areas with little to no slope 
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(McClatchie et al. 1997). The slope of the slope, which is a measure of topographic 

complexity, has been shown to be an important predictor of fish species distributions 

in coral reefs (Pittman and Brown 2011). 

 Topographic position index (TPI) is a measure of relative elevation and is 

calculated by comparing the elevation of each cell in a DEM to the cells in the 

surrounding landscape. TPI is useful for delineating features that could be of 

importance to many species of fish such as peaks, ridges, flat plains, valleys, and 

crevices. TPI was calculated using the algorithm of Weiss (2001), which uses an 

annulus ('donut') shaped neighborhood and were created using the bathymetric 

position index (BPI) tool within the Benthic Terrain Modeler (BTM) toolbar. TPI was 

calculated at 20m and 50m scales with a 5 cell (10m) annulus thickness. Previous 

studies have used TPI to explain variation in the distribution of multiple species 

(Weiss 2001; Iampietro et al. 2005; Lundbland et al. 2006; Young et al. 2010). 

 To create rasters that distinguish between rock and sediment, vector 

ruggedness measure (VRM) grids were created from the DEMs using the Terrain 

Tools toolbox in ArcGIS 9.x (Sappington et al. 2007).  VRM is a measure of terrain 

ruggedness using vector analysis where the 3-dimensional orientation of the grid cells 

is taken into account, allowing for variation in slope and aspect (Hobson 1974). The 

values associated with VRM vary from 0 (flat, smooth areas) to 1 (areas of higher 

complexity). Because rock is often more complex than the surrounding sediment, 

VRM can be used to help distinguish between rock and sediment areas (i.e. "rough" 

and "smooth" areas, respectively). VRM was, therefore, used as a proxy for "rock" 
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and "sediment."  From the VRM analysis, a binary raster was created with 0 

signifying soft sediment and 1 signifying rocky substrate. The breakpoints for these 

two classes were based on a threshold of VRM that captured the majority of the 

"rock" without erroneously classifying artifacts or sediment features. If necessary, a 

substrate mask was used to mask out any problematic areas. The resulting, classified 

raster was used as factor input into the model.  

In addition to variations in reef structure, fish assemblages have been shown 

to change with variation in latitude (McClatchie et al. 1997; Stephens et al. 2006 in 

Allen book (chapter 9); Carr and Reed in press) and kelp (Dean et al. 2000; Stephens 

et al 2006 in Allen book (chapter 9); Carr and Reed in press). In order to account for 

the latitudinal variation, a latitude raster was created using the ArcGIS raster 

calculater '$$YMAP' function. Kelp biomass rasters were created from kelp biomass 

values derived from high-resolution satellite imagery and aerial photography 

(Cavanaugh et al. 2010, 2011). 

 

2.3.4 Wave Orbital Velocity 

The measure of wave forces used in this study is wave orbital velocity and 

extracted from wave maps developed by USGS using the following methods. Patterns 

of wave energy and orbital velocities along the California coast were simulated with 

the numerical wave model SWAN (Simulating Waves Nearshore, Delft University of 

Technology, The Netherlands). SWAN is a third-generation spectral wave model 

capable of simulating wind-wave growth, propagation, refraction, dissipation, and 
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depth-induced breaking (Booij et al. 1999; Ris et al. 1999). A set of 15 SWAN model 

grids were developed and used to simulate wind-wave growth and propagation across 

the inner portion of the California continental shelf. All grids were curvi-linear, with 

an average cross- and along-shore resolution of 30 to 50 m and 60 to 100 m, 

respectively, in the shallow inshore regions. Model grid cells were smaller in the 

cross-shore direction, in shallow water, and around complex bathymetry to enable 

accurate wave refraction and shoaling. Latitudinal extents were defined based on 

local geography and computation limitations. The offshore extent of the model grids 

were defined by 64 Wave Information System (WIS, http://wis.usace.army.mil/) 

model output stations located approximately 20 km offshore along the entire 

California coast. Wave parameters (significant wave heights, peak wave period, and 

mean wave direction) derived from the WIS database were applied at the boundaries 

of the 15 SWAN grids. The WIS data encompass the 32 years from 1980 through 

2011 were used to calculate seasonal (arithmetic) mean and extreme (arithmetic mean 

of highest 5%) conditions. Seasons were defined as: winter = December through 

February; spring = March through May; summer = June through August; and fall = 

September through November.  

Parametric wave descriptors (wave heights, periods, and wave direction) 

derived from the WIS database were applied along the open boundaries of the SWAN 

domains; these were represented in spectral space with a JONSWAP shape and a 3.3 

peak enhancement factor. In all grids, 10-degree direction bins and 36 frequencies 

spaced log-normally from 0.0417 Hz to 1.0000 Hz were used. The bottom friction 

http://wis.usace.army.mil/
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coefficient was set to 0.038m2/s for swell conditions (Hasselmann et al. 1973 in 

SWAN technical documentation, 2013), whitecapping was computed with the Komen 

et al. (1984) formulation, and depth induced breaking with the Battjes and Janssen 

(1978) formulation. Winds from the most centrally located WIS station of each grid 

were applied uniformly across the domains to allow for inclusion of locally wind-

generated waves in addition to (usually greater) energy contributions from distantly 

generated swell waves. All grids were solved in the spherical coordinate system and 

run in a stationary mode. In shallow water, the orbital motions of water particles 

induced by surface waves extend down to the seabed. The resulting wave-induced 

orbital velocities near the seabed are considered to be a representative measure of 

how waves influence the sea floor and as such are a focus of this study; SWAN 

calculates bottom orbital velocity (Uorb) as the maxima of the root mean square (rms) 

bottom velocity (Urms).  

The ability of the SWAN model to accurately simulate wave propagation was 

tested by running the model forced with hourly wave parameters of the WIS database 

over a week long time period from 18-25 January 2010. The simulation period 

encompasses a large storm event when wave heights exceeded 9 m (e.g., CDIP Pt. 

Reyes buoy) and affected the entire California coast. The ability of the SWAN model 

to reproduce observed wave conditions was evaluated with a skill score (Willmott 

1981); the skill score ranges from 0 to 1, with a skill score of 1 indicating perfect 

agreement. The analysis was done over the entire simulated time-series. The 
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skill scores were quite good (mean±1 SD = 0.89±0.05; range = 0.81-0.97) at all sites 

evaluated. Although observations are not available within all grids, the high skill 

scores and lack of clear geographic trend in changes of the skill score suggest that 

model results in grids with no buoys are likely also reflective of true conditions. 

 

Sampling of Environmental Variables  

After quantifying the seafloor and environmental variables within the study 

region, all variables except for substrate type were sampled for the mean and standard 

deviation at a 50m spatial scale using the focal statistics geoprocessing function in 

ArcGIS's Spatial Analyst extension. Fifty meters was the finest scale at which 

predictions could be made with the ecological survey data due to the spatial 

uncertainty of the sampling locations. For substrate, the proportion of rocky substrate 

was computed within each of the buffers. To spatially associate species density and 

diversity with corresponding habitat data, these 50m units were then sampled using 

ArcGIS's Extract Multi-values to Points tool within Spatial Analyst at each of the 

ecological survey sites. 

 

2.3.5 Do densities of fish species vary predictably with environmental variables? 

If so, what is the relative importance of the variables in explaining this variation 

and how does it vary among species? 

 To test the hypotheses that species densities vary predictably with 

environmental variables and that the relative importance of these variables differ 
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among species, I used generalized additive models (GAMs). Because the response 

variables in the majority of ecological studies do not have a linear relationship with 

environmental data, the use of linear regression techniques is often not appropriate 

(Austin 1999). Other regression techniques including generalized linear models 

(GLMs) and generalized additive models (GAMs), however, allow for nonlinear 

relationships (Yee and Mitchell 1991; Austin 1999). Therefore, GLMs and GAMs 

have become widely used in modeling the distribution of species (Guisan and 

Zimmermann 2000; Scott et al. 2002). I initially conducted analyses with both GLM 

and GAM models and found that GAMs explained greater variation in, and produced 

more accurate predictions for, fish density. Therefore, within the "mgcv" package in 

R, GAMs were used to test for significant predictive relationships between density of 

each species of fish and environmental variables and to identify the relative 

importance of each environmental variable in contributing to the model. A smoother 

was applied to those variables in the GAM that did not have a linear relationship with 

density. The total number of transects used in these models were combined across 

2007 and 2008 sampling years (n=265). Best fit models were developed for each 

species through a process of elimination; variables were removed from the models 

based on their lack of significance and their collinearity with other variables until the 

model with the lowest AIC and highest deviance explained was produced. I then 

compared models among the focal fish species to determine differences in the relative 

importance of environmental variables in explaining and predicting variation in 

density.   
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 Prior to these analyses, a data exploration was carried out following the 

protocols of Zuur et al. (2009). Cleveland dotplots were created for each of the habitat 

variables and each of the density estimates resulting in a square root transformation 

for the slope of slope standard deviation and the TPI standard deviations at the 50m 

scale. None of the other habitat variables required data transformation. Multi-panel 

scatterplots, Pearson correlation coefficients, and variance inflation factors (VIF) 

were used to test for collinearity between explanatory variables. Those paired 

variables that had a Pearson correlation coefficient greater than 0.50 were not 

included in models together. In addition, variables producing a VIF greater than 3 

were excluded from the models, although most VIF values were below two in all the 

models used (Zuur et al. 2009). 

 I tested for violations of the assumption of independence of observations, 

including spatial autocorrelation (Hurlbert 1984; Zuur et al. 2009). Spatial 

autocorrelation is a common occurrence in spatially defined observations where 

observations that are made close together are more similar than those that are further 

apart (Zuur et al. 2009). For this study, Moran's I was used to test for spatial 

autocorrelation among the observations and no significant spatial autocorrelation was 

found. 
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2.3.6 Do species diversity and richness of the kelp forest fish assemblage vary 

predictably with environmental variables? 

 I also used generalized additive models (GAMs) to test the hypotheses that 

species diversity and richness vary predictably with environmental variables. The 

Shannon Diversity Index (H’) and species richness (number of species) calculated for 

each 720m3 transect was used as the response variable and the same environmental 

variables used to test density relationships were used as the independent variables. 

The total number of transects used in these models were combined across 2007 and 

2008 sampling years (n=265). I tested for violations of assumptions of these GAMs 

as described for the density models.  

 

2.3.7 Can SDMs generate reliable extrapolations of species densities, diversity 

and richness? 

 Significant density-habitat relationships were detected for seven of the ten 

species tested. Following model selection for each these seven species, the GAM 

tools within the marine geospatial ecology toolbox (MGET) were used to create 

predictive maps extrapolating the density predictions over the study area (Roberts et 

al., 2010). I used 70% (n= 178) of the survey transects for these models, reserving the 

remaining 30% (= 87 transects) for the test of accuracy of the density extrapolations. I 

used Pearson's correlation coefficient to test the accuracy of density extrapolations of 

each species by testing for a significant correlation between the density values 

predicted by the GAM and the actual density values in the reserved dataset. 
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Additionally, to test if the Pearson correlation was statistically significant, a Markov 

chain Monte Carlo (MCMC) simulation was run with 1000 iterations to determine if 

the likelihood of these correlations were greater than random chance.  The same 

procedure was used to generate and test the reliability of extrapolated distributions of 

diversity and richness of the entire sampled fish assemblage. 

 

2.3.8 Effect of Different methods for Estimating Population Abundances within 

the Central Coast MPA Network 

 For this comparison, three methods were used to extrapolate species densities 

across the kelp forests in the 0-20m depth zone of one of the MPAs in this region: 

Point Sur State Marine Reserve (SMR). The first method used the assumption that all 

rock is similar (i.e. no difference in any of the environmental variables used in the 

GAMs). To extrapolate fish density assuming all rock is equal, I simply averaged the 

density of each species across all transects and multiplied that density by the total 

area of rocky reef identified in the 0-20m depth zone (the depth range of the 

biological transects) within the MPA. The resulting calculation gives an estimation of 

the total number (i.e. abundance) of each species in the 0-20m depth zone of the 

MPA. 

 The second method used data extracted from the CSMP seafloor maps and 

habitat categories for slope (four levels) and rugosity (five levels) defined by Greene 

et al. (2007) and for two spatial scales (20m and 50m) of six levels of TPI defined by 

Iampietro et al. (2005) to characterize transects by the relative area of these 
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geomorphological categories. Samples based on the ecological surveys conducted 

across the entire study area included a 10m buffer to both sides of each transect (total 

area= 2000m2) to incorporate the spatial uncertainty in the exact location of that 

transect, with the assumption that the transect was conducted within that 20m-wide 

band. In addition to transects from the ecological surveys, I sampled 3250 transects 

that I placed randomly throughout the entire study area in rocky habitat at comparable 

depths of the kelp forest surveys to assess the general availability of rocky habitat 

types across the region. Transects were the same dimensions used by the ecological 

surveys, including a 10m buffer around each transect. The relative (percent) area of 

slope, rugosity and TPI levels was calculated for each transect across the study area.   

 I then used these transects characterized by their relative area of the slope, 

rugosity and TPI levels in a cluster analysis within the statistical software package 

Primer to identify discrete habitat classes comprised of transects of similar 

combinations of slope, rugosity and TPI levels across the entire study area.  Once 

clustered, the dendrogram was searched for the appropriate merging distance to break 

transects into a number of geomorphic classes suitable for the sample size of actual 

surveyed transects. These geomorphic classes were defined by unique combinations 

of the relative abundance of the slope, rugosity and TPI levels (Table 2-1). The 

proportion of transects of each of the geomorphic classes and the total reef area 

within the Point Sur MPA was used to calculate the area of each geomorphic class. 

Then, the average density of each species within those geomorphic classes was 

calculated and multiplied by the total area of the corresponding class to generate an 
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abundance estimate for each species within the geomorphic class. The abundances 

were then added up across all geomorphic classes to get a total abundance estimate 

for each species within the MPA. 

 For the third method, the predictive density maps created from the spatially-

explicit species-habitat associations developed in this study were used to calculate the 

total abundance of each species across the region. To do this, the density values for 

each of the 2m pixels from the predictive density maps were used to calculate total 

abundance within the Point Sur MPA.  

  

2.4 Results 

2.4.1 Do densities of fish species vary predictably with environmental variables? 

If so, what is the relative importance of the variables in explaining this variation 

and how does it vary among species? 

 The GAMS detected strong correlations between fish density and 

environmental variables for seven of the ten species analyzed. Three species, A. 

flavidus, H. decagrammus, and S. mystinus, did not have strong associations with the 

habitat variables and the predictive power of these models was very weak so they 

were not used further in the analysis. Densities of the other seven species showed 

strong positive or negative correlations (i.e. predictive models) with at least three 

environmental variables (Table 2-2). Topographic complexity (slope of slope) was 

the only variable that was consistently significant in all the GAMs. Across all species, 

the densities had an asymptotic relationship with topographic complexity and, 
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therefore, a smoother was applied to this variable in all models (Appendix A). 

Density of three species, S. atrovirens, S. chrysomelas, and S. melanops, were 

significantly correlated with kelp biomass. S. atrovirens and S. melanops had a 

positive, linear relationship with mean kelp biomass. The remaining species, S. 

chrysomelas had a non-linear but positive trending relationship with kelp biomass 

(Appendix A). Density of E. lateralis and E. jacksoni increases with shallower 

depths. S. chrysomelas and S. carnatus had a unimodal relationship with depth where 

the densities tended to be highest in the middle depths of the depth range. Densities of 

three species exhibited negative correlations with exposure to ocean swell (mean 

orbital velocity) and density of only one species, S. chrysomelas, was positively 

correlated with orbital velocity. Density of three species, E. lateralis, S. serranoides 

and S. melanops was positively correlated with latitude and only one species, S. 

carnatus, increased in density to the south.    

 

2.4.2 Do species diversity and richness of the kelp forest fish assemblage vary 

predictably with environmental variables? 

 Species diversity (H’) and richness of the fish assemblage were both 

positively correlated with increases in mean complexity (i.e. slope of slopes) (Table 

2-3). Species richness was negatively correlated with exposure to ocean swell (mean 

orbital velocity). No other environmental variables contributed significantly to 

predictive models of species diversity or richness.  
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2.4.3 Can SDMs generate reliable extrapolations of species densities, diversity 

and richness? 

 For all but one of the seven species tested, correlation between densities 

predicted by the GAMs and densities observed in ecological surveys not included in 

development of the models was strongly significant (Pearson's r, P< 0.000). Predicted 

densities of S. serranoides were not significantly correlated with observed densities 

(Pearson's r = 0.26, P= 0.35). Of the significant models, correlation coefficients 

varied among species from a high of 0.60 (P< 0.000) for S. atrovirens to a low of 0.40 

(P< 0.000) for S. chrysomelas. Correlations for the two surfperch species, E. jacksoni 

and E. lateralis were similar; Pearson's r = 0.42, P<0.000, and r = 0.46, P<0.000, 

respectively. GAMs for the remaining two species, S. carnatus and S. melanops, were 

0.55 (P<0.000) and 0.44 (P<0.000), respectively. Thus, the average accuracy of the 

models based on the Pearson’s correlation coefficient across all the models was 0.45. 

Using the same validation approach, the GAMs were good at predicting spatial 

patterns of diversity (Pearson’s r= 0.61; P< 0.000) and richness (r= 0.71; P< 0.000) of 

the entire fish assemblage sampled across the study area. 

 

2.4.4 Effect of Different methods for Estimating Population Abundances within 

the Central Coast MPA Network 

 The comparison between the three methods for calculating species 

abundances (uniform geomorphology, non-spatial geomorphometric-based, and 

SDM) indicate that density extrapolations assuming spatially invariant 
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geomorphology produces much greater estimates of species abundance than the 

variable geomorphology and spatially explicit environment-based estimates (Table 2-

4). The magnitude of the differences in estimated abundance varied markedly among 

the seven species, ranging from two to 17-times greater abundance estimates. With 

the exception of Embiotoca jacksoni, the abundance estimates from the SDM 

calculations produced the lowest predicted abundance of the three methods. In 

addition, the difference between the non-spatial geomorphic and the spatially explicit 

SDM-based extrapolations were more similar to each other than either predictions 

were to the uniform geomorphic extrapolation (Table 2-4). 

 

2.5 Discussion 

 Most of the temperate, nearshore fishes examined in this study exhibited 

strong associations with environmental variables that constitute their habitat, which 

allowed for accurate extrapolation of their densities within kelp forests across the 

study region. Quantitative relationships between fish density and environmental 

variables also made it possible to better understand potential sources of variation in 

the distribution of six of the ten species originally targeted in the study. Across all six 

species with significant density-habitat relationships, species density was correlated 

with more than one variable, indicating multiple aspects of the environment must be 

considered when explaining spatial variation and mapping species distributions. All 

six of these species density models were characterized by relatively low Pearson’s r 

and very significant (P< 0.0001). These two results reflect the large number of 
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samples that were used to create the models. Although combinations of 

environmental variables best explained spatial variation in density of the six species, 

their densities were also strongly correlated with single environmental variables, 

indicating strong species associations with individual variables that can explain 

spatial variation in density of a species.  Moreover, the individual environmental 

variables differed markedly in the strength of these relationships as well as the 

number of species for which they explained variation.  

 The three-dimensional complexity (topographic complexity) of the rocky 

habitat (slope of slope) was the only variable that was significant across all seven 

species models. Three-dimensional complexity was measured as slope of slope of the 

terrain. The relationship between complexity and all the response variables, including 

species-specific density and the fish assemblage characteristics, was asymptotic. The 

fish densities, diversity, and richness all increased with increasing complexity up to 

slope of slope values between 10 and 20. After that, there was not a lot of variation in 

the response variables with complexity. This signifies that complexity values 

associated with suitable habitat begin between slope of slope values of 10 to 15 and 

any slope of slope value greater than that provides suitable habitat.  The significance 

of structural complexity of the reef in explaining variation in fish densities  is 

consistent with other species distribution models generated for coral reef fishes 

(Beger et al. 2003; Kendall and Miller 2010; Pittman and Brown 2011). Thus, 

heterogeneity of the rocky substratum is a key correlate with the distribution of many 
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demersal species and a likely critical component of any predictive species distribution 

model. 

 The proportion of rock was not a significant variable in any of the GAMs for 

the species successfully modeled. Topographic complexity; however, was a strong 

correlate with density. During the design of the network of MPAs along the central 

coast of California, "rock" and "sediment" were the only substrate variables 

considered  across four depth ranges (0-30m, 30-100m, 100-200m, and >200m; 

Gleason et al. 2013; Saarman et al. 2013). The magnitude to which topographic 

complexity explains variation in fish density of the species examined here indicates 

that consideration of rock substratum alone without recognition of topographic 

complexity can fail to identify important patterns of species abundance. Given the 

number of species whose density distribution correlated with topographic complexity, 

and that diversity and richness were also strongly correlated with topographic 

complexity, these results indicate that spatial and ecosystem-based management 

should strive to identify and consider patterns of topographic complexity. 

 Correlations between species density and depth reflected the relative spatial 

scale of the ecological surveys and the depth ranges of the species.  First, depth 

contributed to models only in those species whose depth range did not span the entire 

depth range of the surveys and for which depth has previously been shown to be an 

important correlate with density across the depth range sampled by the ecological 

surveys. The distribution of two species pairs, E. lateralis and E. jacksoni, and S. 

chrysomelas and S. carnatus, are depth stratified, reflecting interspecific competition 
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within these pairs. E. lateralis and S. chrysomelas inhabit shallower depths relative to 

their respective congeners within the depth range sampled (Hixon 1980; Larson 

1980a,b; Schmitt and Holbrook 1990). Nonetheless, for both species of surfperches 

(genus Embiotoca) and S. chrysomelas, density was more strongly correlated with 

variables other than depth (e.g., topographic complexity, swell exposure). Only for S. 

carnatus, was depth the strongest correlate with density, probably because their 

distribution includes only the deeper depths surveyed. These results suggest that 

within the depth range of kelp forests (5-20m depth) other variables are as important 

correlates with density. This effect of the relative spatial scales of surveys to the 

species depth range is greater for those species for which depth was not a significant 

correlate.  Depth ranges of all of these species (e.g., S. atrovirenss, S. melanops, S. 

serranoides) span and extend beyond the depth range of the surveys.  To better 

understand the relative contribution of depth to species-habitat relationships for these 

species, observations across their entire depth range would need to be incorporated in 

the models. 

 Latitude was an important variable in helping to explain the distribution of E. 

lateralis, S. carnatus, S. melanops and S. serranoides and the distribution and 

abundance of rocky reef fishes is known to vary latitudinally along the coast of 

California (McClatchie et al. 1997; Stephens et al. 2006 in Allen book (chapter 9); 

Carr and Reed in press).  Of these four species, S. carnatus was the only one whose 

density decreased to the north along the central coast of California. These correlations 

with latitude likely reflect relationships with other environmental variables that co-
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vary with latitude along the coast including temperature, upwelling, exposure to 

ocean swell and the persistence of kelp forests (Graham et al. 2008, Reed et al. 2011, 

Carr and Reed in press).  

 The majority of fine-scale species distribution modeling studies generated in 

the past has only looked at the association of species with the benthic habitat. The 

water column, however, also plays an important role in the distribution and 

abundance of species. In this study, only two aspects of the water column were taken 

into account: the biomass of the structure-forming marine macroalgae, Macrocystis 

pyrifera, and variation in swell exposure (wave orbital velocities) along the central 

coast of California. Biomass of M. pyrifera proved to be an important variable, 

positively correlated with the density of three species, and was the most important 

variable in explaining the distribution of S. chrysomelas. These results add to a 

number of other studies that have identified correlations between fish density and the 

presence or density of M. pyrifera (reviewed by Stephens et al. 2006, Carr and Reed 

in press). Wave orbital velocities had a negative relationship with the density of E. 

jacksoni, S. serranoides, and S. atrovirens and a positive relationship with S. 

chrysomelas. These limited results show that features of the water column are 

important correlates with the distribution and abundance of shallow dwelling fish 

species. Incorporation of features of the water column in species distribution models 

for shallow benthic species will likely increase their explanatory power and capacity 

to predict species distributions across nearshore seascapes (Hinchey et al. 2008).   
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 Although the majority of the species showed strong habitat affinities, some of 

the species were not successfully modeled in this study. Aulorhynchus flavidus, 

Hexagrammas decagrammas, and Sebastes mystinus all failed to show any strong 

relationship with any of the habitat variables used. The reason for the lack of 

significance of the variables could be due to the number of observations of each of 

these species. H. decagrammas and A. flavidus both had fewer observations than the 

rest of the species used in this study. The fewer observations could have contributed 

to the failure of the model to find any significant relationship with habitat variables. 

On the other hand, S. mystinus had a large number of observations but were found 

over a wide variety of habitats and appeared to be more of a habitat generalist. S. 

mystinus and A. flavidus aggregate in the water column well above the reef surface. 

This behavior may have contributed to the lack of any significant relationship with 

finer scale habitat variables associated with the reef.  

 Models that predicted spatial variation in attributes of the fish assemblage 

(species diversity and richness), were much simpler than those for the individual 

species. Both richness and diversity were positively and strongly associated with the 

structural complexity of the rocky reef. Fish species richness was also negatively 

affected by wave orbital velocity. These community-level models were most likely 

simpler than the species-specific models because of the variety of fish species 

examined, which collectively exhibited more general habitat associations than the 

individual species. However, as with the individual fish species, complexity was still 

an important variable in explaining the distributions of the fish communities.  
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The comparison between the different methods for calculating abundance for 

the six species successfully modeled with the SDMs, showed that incorporating 

habitat heterogeneity greatly decreased estimates of abundance. The uniform 

extrapolation, where all rock is considered uniform, produces much higher estimates 

of abundance than both of the higher resolution habitat-based estimates. In addition, 

abundance estimates generated by the non-spatial and SDM derived estimates were 

closer to one another than those derived from the uniform extrapolations. These 

results warn that, by not accounting for habitat variation, calculations of abundance 

could greatly over-estimate population sizes. This has critical implications when, for 

example, larval production or stock/population biomass is being estimated for 

populations within an MPA or across a region.  

 

2.6 Conclusions 

 The application of species distribution models along the central coast of 

California shows that many species of temperate, rocky reef associated fishes have 

predictable relationships with a number of habitat variables. These species-habitat 

associations can be used to model and predict the distribution and abundance of these 

species over the entire region, including areas where biological observations were not 

acquired. In addition, the results from these types of SDMs can be further used to 

better estimate the sizes of populations and evaluate their change through time across 

a network of MPAs. Overall, application of landscape-scale approaches shows great 

promise for both explaining and predicting the distribution and abundance of species 
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and communities in the marine environment and for informing spatial and ecosystem-

based approaches to conservation and fisheries management. 
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2.8 Figures 

 

 

Figure 2-1: Study location: (A) Location of the study area along the central coast of 

California; (B) Central Coast MLPA Region indicated in dark gray with the MPAs 

across the region shown in white, and the points signifying the locations of ecological 

monitoring sites; (C and D) Zoomed in views of the ecological monitoring sites (light 

gray boxes) with the 100m survey transects (black lines) overlaid on the 2m 

resolution seafloor data. 
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Figure 2-2: Close-up view of a small portion of the study area on the Monterey 

peninsula along the central coast of California (A), along with examples of the habitat 

variables (B-F) used in the species distribution models. Depth values (B) derived 

from the 2m bathymetric DEM with warmer colors representing shallower depths and 

cooler colors representing deeper depths. Substrate map (C) classified from the VRM 

analysis with red areas representing "rock" and tan areas representing "sediment". 

The complexity (slope of slope) of the habitat (D) derived from the 2m bathymetric 

DEM with warmer colors representing more complex structure. Map of kelp biomass 

values (E) derived from LANDSAT data with the darker browns representing greater 

biomass. Map of wave orbital velocity values (F) with the warmer colors representing 

higher velocities.  



 
 

99 
 

 

 

Figure 2-3: Examples of the species density distribution maps created for four of the 

seven species successfully modeled in this study. The warmer colors represent higher 

densities. The variation in density distribution for these four species can clearly be 

seen in this one small area within the Central Coast MLPA region. 
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2.9 Tables 

Table 2-1: Summary of the geomorphic classes defined in the Central Coast MLPA 

region from the cluster analysis with the habitat class, the characterists that define that 

habitat class, and the percentage of habitat that class makes up in the region. 

Geomorphic 

Class 

Characteristics Defining 

 Geomorphic Classes 

Percentage of Class  

in the CA CC 

A 

Low complexity rock with broad  

scale peaks 8% 

B 

Low to moderate complexity rock on  

slightly sloping terrain 5% 

C 

Moderate complexity rock with broad  

scale peaks 26% 

D 

Moderate to high complexity rock with  

broad scale peaks 11% 

E  

High complexity rock with moderate  

to high broad scale peaks 9% 

F 

Moderate to high complexity rock on 

sloping  

terrain with broad scale peaks 42% 
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Table 2-2: Results from the GAM analysis for the seven species of kelp forest 

associated fishes and the fish community variables for which significant relationships 

with environmental variables were detected. Significance of each environmental 

variable and the deviance explained by the GAM model are presented for each 

species. Those variables that required a smoothing function are followed by an “(s)” 

in the environmental variables column. 

Species Common 

Name 

Environmental   

Variables 

 

Variable 

Significance 

(p-value) 

Deviance 

Explained 

Embiotoca 

jacksoni 

Black Perch Topographic 

     Complexity (s) 

3.73e-08 0.42 

Orbital Velocity (s) 6.66e-05  

Mean Depth 0.0229  

Embiotoca 

lateralis 

Striped Perch Topographic 

     Complexity (s) 

8.18e-13 0.62 

Orbital Velocity 1.14e-06  

Latitude 0.038  

Sebastes 

serranoides 

Olive Rockfish Orbital Velocity (s) 1.28e-09 0.55 

Latitude (s) 1.38e-09  

Topographic 

     Complexity (s) 

4.34e-06  

Sebastes 

atrovirens 

Kelp Rockfish Orbital Velocity 3.58e-07 0.51 

Kelp Biomass 1.64e-05  

Topographic    

     Complexity (s) 

0.0001  

Sebastes 

carnatus 

Gopher 

Rockfish 

Depth (s) <2e-16 0.69 

Latitude 2.27e-15  

Topographic 

     Complexity (s) 

0.009  

Sebastes 

chrysomelas 

Black and 

Yellow 

Rockfish 

Depth (s) 4.21e-07 0.51 

Topographic    

     Complexity (s) 

5.8e-07  

Kelp Biomass (s) 0.001  

Orbital Velocity (s) 0.011  

Sebastes 

melanops 

Black Rockfish Kelp Biomass (s) 5.47e-09 0.48 

  Orbital Velocity (s) 7.51e-09  

  Topographic    

     Complexity (s) 

0.001  
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Table 2-3: Results from the GAM analysis for the community variables of the fish 

assemblages. Significance of each environmental variable and the deviance explained 

by the GAM model are presented for each species. Those variables that required a 

smoothing function are followed by an “(s)” in the environmental variables column. 

Community 

Attribute 

Environmental    

Variables 

 

Variable 

Significanc

e (p-value) 

Deviance 

Explained 

Species Diversity 

(Shannon-Weiner) 

Mean Topographic    

     Complexity (s) 

5.64e-12 0.83 

Species Richness 

(no. of species) 

Mean Topographic    

     Complexity (s) 

<2e-16 0.83 

 Mean Orbital Velocity (s) 5.27e-07  
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Table 2-4: Comparison of methods for extrapolating species density within the Point 

Sur MPA for seven species of fish: uniform extrapolation treating all rock as equal, 

non-spatial habitat-based extrapolation, and the abundances predicted from the 

spatially-explicit species distribution models. 

Species 

 

Common 

Name 

Uniform  

Extrapolated 

Abundance 

Geomorphic-

Based  

Extrapolated 

Abundance 

SDM-Based 

Extrapolated 

Abundance 

Embiotoca 

jacksoni 

Black 

Perch 9,149 2,897 4,890 

Embiotoca 

lateralis 

 

Striped 

Perch 59,065 23,014 22,655 

Sebastes 

serranoides 

Olive 

 Rockfish 157,071 46,466 19,895 

Sebastes 

atrovirens 

 

Kelp 

Rockfish 38,133 13,313 9,198 

Sebastes 

carnatus 

Gopher 

Rockfish 69,650 19,072 14,621 

Sebastes 

chrysomelas 

Black & 

Yellow 

Rockfish 20,977 11,315 10,817 

Sebastes 

melanops 

Black 

Rockfish 161,165 12,844 8,666 
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3. Chapter 3: Assessment of habitat representation across a 

network of marine protected areas with implications for 

the spatial design of monitoring 

3.1 Abstract 

Networks of marine protected areas (MPAs) are being adopted globally to 

protect ecosystems and supplement fisheries management. The state of California 

recently implemented a coast-wide network of MPAs, a state-wide seafloor mapping 

program, and ecological characterizations of species and ecosystems targeted for 

protection by the network. Because the MPAs in the central coast region of California 

were set up prior to completion of the seafloor mapping project, one purpose of this 

study was to use these maps to evaluate how well seafloor features, as proxies for 

habitats, are represented and replicated across the network and how well the 

ecological surveys representatively sampled fish habitats within MPAs. Seafloor data 

were classified into broad substrate categories (rock and sediment) and finer scale 

geomorphic classifications standard to marine classification schemes using surface 

analyses (slope, ruggedness, etc.) done on the digital elevation model derived from 

multibeam bathymetry data. These classifications were then used to evaluate the 

representation and replication of seafloor structure within the MPAs and across the 

ecological surveys. Both the broad substrate categories and the finer scale 

geomorphic features were proportionately represented for many of the classes with 

deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of 
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seafloor features differed markedly from original estimates, with differences ranging 

up to 28%. All of the habitats except for 30-100m sediment habitat had sufficient 

replication per the linear distance and area guidelines outlined in the goals for the 

MPAs. Seafloor structure in the biological monitoring design was adequately 

represented, but there are mismatches between sampling in the MPAs and their 

corresponding reference sites and some seafloor structure classes were missed 

entirely. The geomorphic variables derived from multibeam bathymetry data for these 

analyses (i.e. substrate type, depth, habitat complexity, etc.) are known determinants 

of the distribution and abundance of  marine species and for coastal marine 

biodiversity. Thus, analyses like those performed in this study can be a valuable  

initial method of evaluating and predicting the conservation value of MPAs across a 

regional network .  

 

3.2 Introduction 

Human impacts on the oceans continue to increase (Halpern et al. 2008, 

Halpern et al. 2009, Lester et al. 2010, Brown 2011) and several governments 

throughout the world have acknowledged the need for more ecosystem-based 

conservation measures in the marine environment (Douvere 2008, Gilliland & 

Laffoley 2008, Costello et al. 2010, Halpern et al. 2012). Among these approaches, 

the use of marine protected areas (MPAs) is becoming widely adopted to protect 

ecosystems, their biodiversity and to supplement traditional fisheries management 
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(Roberts & Hawkins 2000, Curley et al. 2002, Allison et al. 2003, Carr et al. 2003, 

Lubchenco et al. 2003, Gaines et al. 2010, Halpern et al. 2010, Gleason et al. 2013). 

MPAs are areas within the ocean that are spatially protected from differing levels of 

human impacts, including resource exploitation and habitat alterations. MPAs can 

conserve habitats and unexploited species in addition to species targeted by fisheries 

(Agardy 1994, Allison et al. 1998, Sobel & Dahlgren 2004, Claudet 2011).  

One major consideration when designing a network of MPAs for the purpose 

of conserving biodiversity and ecosystems is the representation of habitat and the 

ability to capture the diversity and heterogeneity of habitat features that support 

biodiversity (Roberts et al. 2003, Jordan et al. 2005, Stevens & Connolly 2005, 

Gaines et al. 2010, Halpern et al. 2010, Gleason et al. 2013, Saarman et al. 2013). 

MPAs will only be successful tools for biodiversity conservation if they protect the 

diversity of habitats that support the variety of ecosystems that generate and sustain 

the biodiversity targeted for protection. In addition, especially when designing 

networks of MPAs, replication of habitats among MPAs is required for reducing the 

likelihood of losing an ecosystem targeted for protection to a natural (e.g., hurricane) 

or anthropogenic (e.g., oil spill) perturbation, contributing to larval connectivity of 

species populations and communities across the network, and for the analysis and 

evaluation of MPA effects to inform their adaptive management  (Allison et al 1998, 

2003, Saarman et al. 2013; Grorud-Colvert et al. 2014; Botsford et al in press). Also, 

for MPAs to contribute to a network based on larval connectivity, individual MPAs 

have to contain enough habitat to support large enough populations to provide 
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sufficient larval production, and MPAs have to be spaced at appropriate distances to 

one another. Therefore, representation and replication of sufficiently sized habitats 

across MPA networks has major implications for the ecological connectivity of 

populations and the resulting effectiveness of the network (Carr et al. 2010; Saarman 

et al. 2013; Grorud-Colvert et al 2014  Botsford et al in press).  

Seabed mapping, both in situ and remotely sensed, has emerged as a much 

needed endeavor to determine the level of representation of the different habitat types 

inside and outside MPAs (Stevens & Connolly 2005, Cogan et al. 2009, Copeland et 

al. 2013). Habitat assessments using in situ observations such as SCUBA or remotely 

operated vehicles (ROVs) are widely utilized but are limited in their depth ranges and 

the ability to efficiently sample large areas (Jagielo et al. 2003). With the advent and 

improvements in remote sensing equipment and techniques, remote sensing in the 

marine environment has become a very efficient and cost effective means for 

comprehensive habitat mapping by covering large areas of the ocean floor at high 

resolution (Hughes Clarke et al. 1996, Nasby-Lucas et al. 1996, Cogan et al. 2009). 

Once mapped, the seafloor can be combined with biological observation data and 

characterized into distinct habitat classes to be used for the placement of new and 

assessment of already existing MPAs at the scale of entire networks.  

Products produced from remotely-sensed data have become fundamental to 

many applications of coastal marine science (Copeland et al. 2013). Maps generated 

from seafloor mapping have been used to help identify habitat of importance to many 
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commercially important species (Kostyleve eta l. 2001, Young et al. 2010, Copeland 

et al. 2013) and to identify habitats associated with biodiversity "hotspots" (Copeland 

et al. 2013). Cogan et al. (2009) states that marine habitat mapping should be the 

"launch point" for ecosystem-based management (EBM) by allowing for the 

characterization of habitat features across the ecosystem of interest.   

The state waters of California offer a unique opportunity to develop methods 

to assess the representation of habitat inside and outside of MPAs across a regional 

network and the replication of those habitats. Not only has California adopted the 

Marine Life Protection Act (MLPA), which produced a 1200 km state-wide network 

of MPAs (Gleason et al. 2010), but they also implemented the California State 

Mapping Program (CSMP); a statewide mapping program resulting in a high-

resolution geologic and habitat basemap for much of the 14,500 square kilometers of 

California state waters (Kvitek & Iampietro 2010). For this study, I used the 

multibeam echosounder (MBES) and inter-ferometric sonar data because they 

provided the best available seafloor data for the region of interest.  

There is also a need to evaluate the design of monitoring programs that are 

being used to assess the efficacy of networks of MPAs. Many fish populations have 

been shown to vary in abundance based on the three-dimensional structure of their 

environment (Garcia-Charton & Perez-Ruzafa 1998, Claudet et al. 2006, Hamilton et 

al. 2010; Pittman et al. 2011). It is important; therefore, for MPA monitoring 

programs to characterize and account for variability in that structure (Westera et al. 
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2003, Claudet et al. 2006, Carr et al. 2011) when comparing the biological data 

collected inside and outside MPAs so that variation in populations can be linked to 

the effect of the MPAs rather than confounded by differences in habitat 

characteristics (Claudet et al. 2006). The Partnership for Interdisciplinary Studies of 

Coastal Oceans (PISCO) has characterized fish populations and kelp forest 

ecosystems within the nearshore (0-20m depth range) of the Central Coast MLPA 

region.  The basic monitoring design for this region includes kelp forest sites within 

and outside each MPA. These monitoring sites, however, were set up with little 

knowledge of the underlying seafloor structure because the seafloor data did not exist 

at the time the monitoring sites were chosen. 

The purpose of this study is to use multibeam bathymetry data acquired by the 

CSMP and the baseline monitoring data acquired by PISCO to evaluate the 

distributions of habitat in the Central Coast MPA network and the representation of 

those habitats in the kelp forest monitoring design. The seafloor structure data along 

the coast in this region were classified into potential habitat variables of known 

importance to many species (i.e. depth, rugosity, slope, etc.) and used to answer the 

following questions for the region: 

1. How well does the current network of MPAs representatively (i.e. 

proportionately) capture the habitat types designated for protection by the 

MLPA design process? 
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2. How well are those same MLPA habitats replicated throughout the region 

(i.e. is there sufficient habitat within MPAs to contribute to population 

connectivity)? 

3. How well are regional seafloor structure classes based on finer scale 

topographic metrics, which were not considered when the MPAs were 

designed, represented across the MPA network? 

4. Does the kelp forest monitoring program adequately capture the variability 

in seafloor structure inside the MPAs? 

5. How well does seafloor structure within reference sites outside MPAs 

match those sampled within the MPAs? 

The null hypotheses are that relative amounts of habitat within the MPAs are 

representative of (proportional to) the region, the habitats are adequately replicated 

with sufficient habitat area based on the guidelines in the MLPA, and that the kelp 

forest monitoring program has adequately captured all available habitats in their 

monitoring design. Therefore, I test for deviation from these hypotheses.  

 

3.3 Methods 

The study site for this project is along the Central Coast of California in the 

Central Coast MLPA region (http://www.dfg.ca.gov/marine/mpa/ccmpas_list.asp). 

This region extends from Pigeon Point in the north (37°10'57" Lat 122°23'38" Long) 

http://www.dfg.ca.gov/marine/mpa/ccmpas_list.asp
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to Point Conception in the south (34°26'55" Lat 120°28'14" Long) and consists of a 

network of 29 MPAs with differing levels of protection (Figure 3-1).  

3.3.1 MLPA Habitat Classification 

In the MLPA master plan, eight habitat classes were developed for the 

subtidal that described the substrate and depth zones that are associated with specific 

distributions of species and communities (Allen et al. 2006; MLPA Master Plan 2008, 

Saarman et al. 2013). These habitat classes were based on two substrate types 

(sediment vs. rock) in four depth zones. The following depth zones and substrates are 

often associated with changes in species composition and were used as the break 

points for the habitat classes: 0-30 meters, 30-100 meters, 100-200 meters, and 

greater than 200 meters. One of the products for the CSMP included the classification 

of the bathymetry data into these eight habitat classes and the resulting habitat 

products are posted online at http://seafloor.csumb.edu (i.e. Figure 3-2).  

 The MLPA habitat products were created using the digital elevation models 

(DEMs) from the multibeam bathymetry data. A DEM is a raster dataset with 

elevation values at regularly spaced intervals. The DEMs varied in resolution based 

on the range of bottom depths they captured (0-85m at 2m resolution, 85-250m at 5m 

resolution, and >250m at 10m resolution). To distinguish between rock and sediment, 

vector ruggedness measure (VRM) grids were created from the DEMs using the 

Terrain Tools toolbox in ArcGIS 9.x (Sappington et al. 2007).  VRM is a measure of 

terrain ruggedness using vector analysis where the 3-dimensional orientation of the 
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grid cells is taken into account, allowing for variation in slope and aspect (Hobson 

1974). The values associated with VRM vary from 0 (flat, smooth areas) to 1 (areas 

of higher complexity). Because rock is often more complex than the surrounding 

sediment, VRM can be used to help distinguish between rock and sediment areas (i.e. 

"rough" and "smooth" areas, respectively). VRM was, therefore, used as a proxy for 

"rock" and "sediment."   

From the VRM analysis, a binary raster was created with "0" signifying soft 

sediment and "1" signifying rocky substrate. The breakpoints for these two classes 

were based on a threshold of VRM that captured the majority of the "rock" without 

erroneously classifying artifacts or sediment features. When necessary, a substrate 

mask was used to mask out any problematic areas. To determine how well the class 

breaks matched up with a visual interpretation of the substrate type, 100 random 

points were placed throughout each block1 and the substrate underlying those points 

was visually classified as either "sediment" or "rock." The visual classification was 

then compared to the results from the VRM classification to determine the accuracy 

of the habitat classification. Accuracies greater than 90% were considered sufficient. 

If the accuracy fell below 90%, the site was reclassified by adjusting the threshold 

value of the VRM. 

                                                           
1 The "blocks" are the original survey blocks from the CSMP mapping. Each region was broken up into 
a series of blocks for data acquisition purposes and does not have any significance for the habitat 
classification other than organizing the data in manageable pieces. 
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To make the final MLPA habitat classified raster, the DEM was reclassified 

into the specified depth zones and combined with the binary raster from the substrate 

classification. The resultant product from this combination is a raster with eight 

unique values: one for each of the designated MLPA habitat classes (i.e., Figure 3-2). 

These methods were completed on all of the existing bathymetry data for the Central 

Coast MLPA region 

 

3.3.2Assessment of Regional Representation of MLPA-designated Habitats 

Within the Central Coast MPA Network 

Once all the bathymetry data were classified into the MLPA habitat 

categories, I used these data layers to quantify the habitat across the entire region and 

within the MPAs. First, a regional ESRI shapefile was created for the Central Coast 

region based on the extents specified in the MLPA. Then, using the tabulate area tool 

within the spatial analyst toolbox in ArcGIS, I was able to quantify the total area of 

each habitat class within the region. To quantify the habitat within the MPAs, I used 

the MPA shapefile provided by the California Department of Fish and Wildlife and, 

using the same methods as for the region, I tabulated the area of each habitat class 

within the MPAs. The total area of each MLPA habitat class within the MPAs 

compared to the available MLPA habitat across the region. These values were 

compared to the predicted values derived from the best available data used at the time 

that the MPAs were designated (MLPA 2008a) to determine if the representation of 
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habitat was different based on the habitat observed in the seafloor maps. For the 

purposes of this study, differences were determined based on a 20% threshold, which 

is a common threshold when comparing percentages (Mapstone 1996). 

 

3.3.3 Assessment of Regional Replication of MLPA-designated Habitats Within 

the Central Coast MPA Network 

Any differences found in the amount of habitat expected to be in an MPA 

compared to the amount that is actually in an MPA only matters if there is 

substantially less area than was required of that MPA to be considered a replicate for 

that type of habitat (i.e. contribute to larval production and connectivity of 

populations associated with that habitat). If individual MPAs are found to contain an 

inadequate amount of habitat, they may not contribute to the network (MLPA 2008a). 

Guidelines for the minimum abundance of a habitat within an MPA to qualify for 

replication of that habitat were generated by the MLPA Science Advisory Team for 

the North Central Coast Study Region (MLPA 2008b). These guidelines were 

calculated from species-area curves based on ecological surveys conducted in the 

Central Coast Study Region. The minimum area required to include 90% of the 

species in each habitat was the basis for the guideline. For shallow (0-30m depth) 

habitats (e.g., rocky reef, kelp forests and sand bottom), the guideline was a linear 

distance of habitat along the coast (1.8 km).  Species-area curves were available for 

kelp forests, not shallow rocky reef, so the same guideline was applied to both 
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habitats. Deeper (30-100m depth) habitats were area-based; deep rocky reef and 

sandy bottom were 0.52 km2 and 26 km2, respectively. To assess the adequacy of 

habitat within each MPA, I used the CSMP seafloor maps to measure the linear 

distance of shallow (0-30m depth) rocky reef and sand bottom habitat, and the area 

(km2) of deeper (30-100m depth) rocky reef and sandy bottom.  The linear distance 

measurements for the kelp forest habitat were derived from the max coverage of kelp 

using LANDSAT data (Cavanaugh et al. 2010, 2011). Linear distance of shallow 

habitats was measured along the 15m depth isobath. In addition, the MLPA specifies 

that there needs to be a minimum of three, ideally five, replicate MPAs for each of the 

habitat classes (MLPA 2008a).  

 

3.3.4 Assessment of Regional Representation of Finer-scale Rocky Habitat 

Classes within the Central Coast MPA Network 

As specified in the MLPA, substrate (i.e. rock or sediment) was deemed an 

important habitat factor affecting the distribution of species. However, habitat 

structure, including habitat complexity and heterogeneity, is often shown to cause 

variation in fish population size and differences in assemblage structure (Luckhurst & 

Luckhurst 1978, Fowler 1990, McCormick 1994, Iampietro et al. 2005). Shown 

clearly in the CSMP data, there are obvious distinctions in rocky reef structure along 

the coast of California (Figure 3-3). Taking into consideration these finer scale 
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differences in seafloor structure, therefore, would further help to analyze the 

representation of habitat within MPAs.  

To look at the finer scale variations in rocky reef structure, the rocky reefs 

along the central coast region were broken up into slope, rugosity, and topographic 

position index (TPI) classes. These reef characteristics have been shown to explain 

some of the variation in species-habitat associations across rocky reefs (Iampietro et 

al. 2005, Young et al. 2010). Once the rocky reef was classified into the distinct 

geomorphic classes, the area of each of those classes was tabulated for both the 

regions and the MPAs within the region to determine the representation of those 

seafloor structure classes across the MPA networks. 

Slope was calculated using the Spatial Analyst extension in ArcGIS 9.x (ESRI 

2013). Slope is calculated by determining the max slope value between an individual 

DEM and its eight neighbors. These slope values were then classified into the slope 

categories from the deep water marine benthic classification scheme: "Flat", 

"Sloping", "Steeply Sloping", and "Vertical" (Greene et al. 1999). 

Rugosity was calculated using the rugosity calculator within the Benthic 

Terrain Modeler toolbox [48] in ArcGIS 10.x (ESRI 2013). However, rather than 

using one threshold value to distinguish between rock and sediment, multiple 

thresholds were chosen to distinguish between differing degrees of "ruggedness" (i.e. 

very low, low, moderate, high, very high) (Greene et al. 1999). 
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Topographic position index (TPI) is a measure of relative elevation, which 

indicates the position of a given point in the overall surrounding landscape. TPI can 

be used to identify and delineate landforms such as peaks, ridges, cliffs, slopes, flat 

plains, and valleys, and is calculated by comparing the elevation of each cell in the 

DEM to that of its neighborhood. Because the neighborhood size can be adjusted, TPI 

can be calculated at various scales. For this analysis, I calculated TPI at two 

neighborhood sizes using the bathymetric position index (BPI) tool within the 

Benthic Terrain Modeler toolbar (BTM). I calculated TPI at 20m (fine scale) and 50m 

(broad scale) to look at features on these two scales, which have been shown to be 

good predictors of fish distribution (Young et al. 2010). These TPI grids were then 

standardized and classified into 6 "slope position" landscape feature values based on 

the relative elevation and slope of the cells following the classifications of Iampietro 

et al. (2005): "Valley/Crevice", "Lower Slope", "Flat/Plain", "Middle Slope", "Upper 

Slope", and "Peak/Ridge".  

The proportionality of each of these fine-scale structure classes within the 

region was then compared to the proportions within the MPAs to see how well these 

classes represented their availability throughout the region. Again, a 20% difference 

threshold was used to determine if there were significant differences between the 

percentage of each of the habitat classes found throughout the region compared to the 

percentages observed in the MPAs (Mapstone 1996). 
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3.3.5 Assessment of Habitat Representation in the Kelp Forest Monitoring 

Transects 

Because species assemblages vary across habitat types, it is important to 

design MPA monitoring programs to incorporate representative habitat inside and 

outside of MPAs so that any differences are not confounded by the sampling of 

different habitat types. To determine the habitat representation in the monitoring 

design, GPS waypoints along with the initial diver recorded compass heading for the 

kelp forest survey transects were used to replicate the location where the transects 

were conducted in ArcGIS. To do this, a 100m polyline was created from the 

waypoint utilizing the initial heading of the diver and adjusted to the bathymetric 

contours, as specified in the PISCO sampling protocols 

<http://www.piscoweb.org/research/science-by-discipline/ecosystem-

monitoring/kelp-forest-monitoring/subtidal-sampling-protoco>. A 10m buffer was 

then placed around each transect to incorporate the spatial uncertainty in the exact 

location of that transect, with the assumption that the transect was conducted within 

that 10m buffer. In addition to the PISCO transects, I sampled 3,250 transects that I 

placed randomly throughout the region in rocky habitat at comparable depths of the 

kelp forest surveys to assess the general availability of rocky habitat types across the 

region. Transects were the same dimensions used by the kelp forest surveys, 

including a 10m buffer around each transect.  

Once the buffered survey and random transects were created, the habitat 

within each of those was quantified using the same habitat categories that were used 
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for the rocky reef classification and the diversity calculations. After quantifying the 

habitat within each of those transects, a cluster analysis was run within the statistical 

software package Primer to determine the breakage points to designate separate 

geomorphic classes.  Once clustered, the dendrogram was searched for the 

appropriate merging distance to break transects into a number of geomorphic classes 

suitable for the sample size of actual kelp monitoring transects. These geomorphic 

classes were defined by certain characteristics of the rocky reef and were used to 

determine the extent of habitat representation within the kelp forest survey transects 

and to compare the MPA transects to those within the MPA reference sites. Because 

of the low number of monitoring transects that were collected, the presence of any 

number or percentage of transects falling within a habitat category was considered to 

be representative of that habitat category. Only 13 of the 29 MPAs were used in this 

analysis because they overlapped with the kelp forest monitoring sites. 

 

3.4 Results 

3.4.1 Assessment of Regional Representation of MLPA-designated Habitats in 

the Central Coast MPA Network 

Across the Central Coast region,  observed abundance of the four MLPA 

designated habitat categories in the 0-100m depth range,  based on substrate 

classification derived from the CSMP data, produced values similar to those predicted 

from the best available data during the MPLA design process   (Table 3-1). None of 
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these differences between habitat areas observed from the seafloor maps and those 

predicted during the design process exceeded the 20% threshold. However, where 

comparisons could be made at deeper depths (>100m),differences  in habitat 

abundance observed by the CSMP data and that predicted during the design phase did 

exceed the 20% threshold of dissimilarity and there was mismatch in one habitat, 

100-200m rock, that was predicted but not observed in the CSMP data (Table 3-1). 

Overall, the absolute differences in observed and predicted habitat areas ranged from 

0-4%. Sediment is the most dominant substrate type in all depth zones making up a 

total of 91% of the mapped state waters of the Central Coast region, with the largest 

percentage falling in the 30-100m depth zone. Rocky habitat, compared to sediment, 

makes up a much smaller percentage of the mapped state waters (9%) with the largest 

percent cover falling in the shallowest depth range (0-30m). Across the central coast 

region, shallow (0-30m depth) sediment and rock were over and under predicted by 

the MLPA planning process by 3% and 1%, respectively (Table 3-1). This level of 

difference (< 3%) was similar for both sediment and rock habitats across the deeper 

depth zones as well. Within the MPAs, there was no difference in the observed and 

predicted areas of shallow (0-30m depth) sand and rock, and only 1% difference in 

sand or rock in the 30-100m depth zone (Table 3-1). With the exception of sediment 

at depths greater than 200m, all other deeper (> 100m) habitat categories differed by 

no more than 2% cover (Table 3-1).  

Although the best data available when setting up the MPAs provided good 

region-wide estimates of habitat percent cover in shallow depth zones, the CSMP data 
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revealed that, at the scale of individual MPAs, there were some very large differences 

in the predicted percentage of habitat and the observed habitat from the CSMP data 

across all depth zones. The percentage deviation between the predicted (MLPA) and 

observed (CSMP) substrate coverage of rock and sediment ranged from 0.2% to 

332.8% across the Central Coast MPAs with an average deviation of 39.1% (Table 3-

2). The Piedras Blancas MPA is a good example of where the original predictions 

grossly underestimated the observed area of rocky reef within the MPA and over-

estimated soft sediment. In this case, the seafloor maps revealed over three times as 

much rock as to what was originally predicted (Table 3-2; Figure 3-4). In fact, at the 

scale of individual MPAs, there were large differences for many of the MPAs in the 

amount of habitat thought to be there compared to the habitat observed in the seafloor 

maps. Only four of the 23 MPAs used in this analysis fell below the percent deviation 

threshold of 20% when comparing the predicted and observed coverage of rocky reef. 

The predictions for sediment were slightly better, but only 14 of the 23 MPAs had 

predicted and observed coverage within the 20% deviation threshold (Table 3-2).  

 

3.4.2 Assessment of Regional Replication of MLPA-designated Habitats within 

the Central Coast MPA Network 

 The CSMP seafloor map-based classifications of the MLPA habitat were also 

used to determine the number of replicates of each habitat class contained within the 

Central Coast network of MPAs. Three of the four habitat classes are adequately 
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replicated within the MPAs as specified in the MLPA guidelines (Table 3-3). Based 

on the linear distance guidelines for rock, sediment, and kelp in the 0-30m depth 

range, 13, 8, and 9 MPAs serve as replicates, respectively. In addition, the rock 

habitat within the 30-100m depth range has sufficient replication with a total of 10 

replicates. The only habitat that does not reach the minimum number of three 

replicates is sediment habitat in the 30-100m depth range with only two MPAs 

containing enough area of sediment in that depth range to serve as a replicate.  

 

3.4.3 Assessment of Regional Representation of Finer-scale Seafloor Structure 

Classes Within the Central Coast MPA Network 

The relative abundance of geomorphic categories based on fine-scale seafloor 

structure metrics within the MPA network were close approximations of the regional 

availability of these features for the majority of the habitat categories (Figure 3-5).  

The deviation in coverage of each of the categories varied from 0.5% to 119% and the 

majority of the habitat classes were well represented across the MPAs. The rarer 

habitat classes, however, were not well represented across the MPAs and their 

deviations from the regional availability fell outside the 20% threshold chosen 

(Figure 3-5).  
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3.4.4 Assessment of Habitat Representation in the Kelp Forest Monitoring 

Transects 

 The cluster analysis of the habitat within the surveyed and my randomly 

generated transects produced 6 distinct habitat classes that were defined by distinctive 

combinations of geomorphological characteristics. These geomorphic classes were 

defined by the complexity of the rocky reef and made up a certain percentage of the 

region: low complexity (8%), low to moderate complexity (5%), moderate 

complexity (26%), moderate to high complexity (11%), high complexity (9%), and 

high complexity on slope (42%). These geomorphic classes were significantly 

clustered at close distances. To reduce the number of unique geomorphic classes to a 

number of categories more amenable to the sample size of kelp monitoring transects, 

a distance cutoff of 1000 was used. This cutoff value allowed for the incorporation of 

slightly outlying clusters to be merged into larger clusters without forcing dissimilar 

clusters to become combined.  

 Using these geomorphic classes, I analyzed the percentage of each class found 

throughout the Central Coast MPAs and compared those percentages to the 

percentage of baseline monitoring transects that fell in those classes to determine how 

well the surveyed transects sampled representatively  within the MPAs. From this 

analysis, I found that, in most MPAs, the monitoring sites allowed for sampling of all 

the geomorphic categories (Figure 3-6). In some MPAs, the classes were sampled 

proportionately very well (Edward F. Ricketts SMCA, Lovers Point SMR, Point 

Buchon SMR). In other MPAs, however, the classes were sampled 
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disproportionately. For example, in the Carmel Bay SMCA, the "moderate 

complexity" class was over sampled while the "high complexity on slope" class was 

under sampled by large percentages (46% and 43%, respectively). In some MPAs, 

geomorphic classes were not sampled at all. In the Point Lobos SMR, the second 

most dominant class was not sampled and the third most dominant class in the Big 

Creek SMR was not sampled. 

 Using the same geomorphic classes from the cluster analysis used to look at 

the representation of MPA habitat in the PISCO monitoring design, I also looked at 

the match-up between the classes in the MPA sites and their corresponding reference 

sites. Only five of the thirteen MPAs had complete match-up with the types of 

seafloor structure sampled inside the MPAs compared to the types sampled in the 

reference areas (Figure 3-7). The remaining eight MPAs had structure classes that 

were not sampled across both the MPAs and their corresponding reference sites. For 

example, three types of geomorphic structure were sampled within the Asilomar 

MPA but only one of those classes was captured in the reference site. In addition, the 

representation of seafloor structure transect in the reference areas was fairly 

disproportionate except in a few cases. 

 

3.5 Discussion 

 This study provides an assessment of the habitat representation and replication 

across a network of MPAs along the central coast of California. During the 
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designation of these MPAs, there were limited data on the availability (i.e. amount 

and distribution) of habitat across the region. Since the completion of the California 

State Mapping Program (CSMP), an unprecedented dataset is now available that 

allows for the detailed delineation of the habitat categories used in the design of the 

network, as well as fine-scale geomorphic features. This assessment of habitat 

representation is a first step in evaluating how well the currently designated network 

of MPAs representatively include the marine ecosystems in California state waters 

and the biodiversity they support . 

 The results from this study showed that, during the implementation of the 

Central Coast MLPA network, the best available data allowed for adequate 

representation of habitat within the MPAs on a broad scale for the shallower MLPA 

depth classes (0-30m and 30-100m). On the other hand, there were larger 

discrepancies between the predictions of habitat coverage in the depths below 100m 

for both rocky reef and sediment. Therefore, proxies of habitat type such as the 

availability of kelp and local fishermen knowledge provided a good basis for the 

distribution of those habitat categories  (i.e. rocky versus soft bottom by large depth 

zones) important to the species and ecosystems targeted for protection by the MLPA 

in the shallow nearshore. In addition, when finer scale geomorphic classifications 

were defined and compared between MPAs and regional availability, there was also 

good representation within the central coast network of MPAs for the more abundant 

classes. The fine-scale structure classes that were rarer throughout the region; 

however, were not sufficiently represented based on the 20% threshold chosen. The 



 
 

126 
 

former result might not be too surprising, given (i) the ability of traditional 

technologies (e.g., sonar) to determine bathymetry and distinguish hard and soft 

substrata, (ii) over large sections of the central coast (from Monterey Bay to Point 

Buchon) kelp is a reasonable proxy for the presence of shallow (<20 m) rocky 

bottom, and (iii) the extensive human use of the shallow subtidal of the central coast 

to generate spatially extensive characterizations of the seafloor across the region. 

However, it is surprising that the finer-scale categories of reef structure were well 

represented, given no knowledge of these features from these traditional sources. One 

key implication of this result is that the finer scale geomorphic classes are sufficiently 

ubiquitous and simply capturing hard bottom sufficed for capturing these higher 

resolution seafloor structure differences as well. In addition, the variation in the 

abundance of the fine-scale categories appears to occur at large geographic scales. 

Therefore, by distributing these large MPAs across the geographic variation in these 

finer scale features, the network captured that variation representatively. 

 Conversely, when the substrate cover predicted in the design process of the 

MLPA was compared to the substrate coverage derived from the seafloor data at the 

scale of individual MPAs, there are much larger discrepancies in the representation of 

habitat, such as the under-representation of rock in the predicted substrate maps of the 

Piedras Blancas MPA (Figure 3-4).  These can be very important differences with 

respect to both the design and effectiveness of the MPA network. A key goal of the 

network is to ensure that young produced in one MPA contributes to the larval 

replenishment of populations in adjacent MPAs. This “larval connectivity” is a key 



 
 

127 
 

element of MPA networks (Saarman et al. 2013). For populations to contribute to 

such a network, sufficient habitat to support those populations needs to be included in 

enough replicate MPAs that contribute to the network. The MLPA design process 

used cumulative species-area relationships to identify the minimum area of habitat to 

contribute to a network (where 90% of the species richness of a community is 

included in the minimum area; (MLPA 1999).  The results from the replication 

analysis show that, although there were some large discrepancies in the area of habitat 

within individual MPAs compared to the predicted coverage of those habitats, there is 

adequate replication of three of the four habitats across the network to meet the 

design guidelines of the MLPA. The only habitat that is not adequately replicated is 

sediment habitat in the 30-100m depth range. This result is likely due to the 

unavailability of reliable proxies for predicting habitat coverage in the deeper depth 

ranges when designing the central coast network of MPAs.  

 The analyses in this study only look at finer scale features and variations 

across rocky reefs. Previous studies; however, have shown that there are ecologically 

important variations in sediment habitats where rippled scour depressions (RSDs) 

occur (Hallenbeck et al. 2012). RSDs are features that contain coarser grained 

sediment and are depressed relative to the surrounding sediment. Davis et al. (2013) 

showed that these sediment features are adequately represented across the central 

coast MLPA region. 
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 Because of the inability of traditional, vessel-based seafloor mapping to 

collect data in the shallow (0-5m) surf zone in the nearshore environment along the 

coast, the use of seafloor data to estimate the distribution of habitats may be an under-

representation of the rocky reef in the 0-30m depth class. Moving inshore, data 

collection is usually terminated at the point of unsafe navigation or the inability of the 

boat to move in further due to navigational hazards such as the presence of emergent 

rocks, thick kelp canopy, or unsafe wave environment. Most of these impediments to 

surveying are usually indicators of subsurface rock. Therefore, most of the benthic 

maps for the state waters end slightly offshore from the coastline in many areas where 

there is most likely rocky habitat. The development of new sampling methods and 

platforms that allow mapping of these shallow nearshore habitats, or analytical tools 

that allow for accurate extrapolation of adjacent habitat into these zones, is critical 

because of the abundance and diversity of species in these habitats and the ecosystem 

functions and services they produce (Carr and Reed in press).  Unfortunately, a 

number of kelp forest monitoring transects were conducted in shallow depths that do 

not overlap with the seafloor habitat data due to the reasons discussed above and, 

therefore, were not used in the analyses (~ 40%).  

 Seafloor structure is often correlated with changes in fish abundance (García-

Charton & Pérez-Ruzafa 1998); therefore, the spatial design of MPA monitoring 

programs must capture this variability of structure to accurately estimate the 

demographic responses (e.g., abundance, size structure, larval production) of 

populations to establishment of MPAs (Westera et al. 2003, Hamilton et al. 2010, 
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Starr et al. 2010). Within the MPAs, the kelp forest monitoring program captures the 

available structure in most of the MPAs. When comparing the MPA sites to their 

corresponding reference sites, however, there are miss-matches between the seafloor 

structures sampled. These differences could confound comparisons of population 

trajectories over time inside and outside of the MPAs and conclusions regarding 

species responses to MPA establishment. In fact, taking into account the variation in 

reef structure greatly alters abundance estimates of fish species compared to methods 

that assume all rocky reef provides the same quality of habitat (Chapter 2). The kelp 

forest monitoring program in the central coast could adjust the locations of transects 

to ameliorate the effect of habitat differences on estimates of species responses to 

MPAs. Spatial designs of future monitoring studies should capitalize on the 

availability of seafloor maps to enhance the statistical power of monitoring studies to 

detect population responses. Using seafloor habitat data to evaluate MPA 

performance does have some limitations that need to be considered. Seafloor structure 

of the benthos is only one type of variable that can influence the distribution and 

abundance of species across the region. Other variables such as biogenic habitat 

structure, variations in species assemblages, patterns of upwelling, and differing 

levels of swell exposure could also play an important role and should be considered 

when analyzing the overall performance of MPA networks (MLPA, 2008; Carr et al 

2010). As stated previously, the classification of seafloor habitat is an important first 

step in evaluating the placement of MPAs and can be combined with other measures 
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of habitat quality to create predictive models of species abundance across the region 

using the biological observation data collected during monitoring surveys. 

 

3.6 Conclusions 

 As marine conservation continues to move in the direction of ecosystem-based 

management and the designation of marine protected areas, there is a need for the 

development of methods that help to choose areas that are likely to meet the goals of 

the conservation criteria (Ward et al. 1999). Because of the lack of complete 

information on the distributions of species and the processes that maintain diversity, 

populations, species, and ecosystems (Conroy et al. 1996), surrogates that are linked 

to the maintenance of biodiversity are used in place of complete information (Ward et 

al. 1999). The variables derived from multibeam bathymetry data used in this study 

(i.e. substrate type, depth, habitat complexity, etc.) have been shown to be important 

to many marine species and overall biodiversity and, therefore, can be used as a 

helpful and initial method of evaluating the design of MPA networks. In addition, the 

generation of species-habitat relationships with the derivatives of the multibeam 

bathymetry data can be used to further our understanding of how the variation in 

seafloor structure affects the distribution and population sizes of species for which 

MPAs are created to protect. 
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3.8 Figures 

 

Figure 3-1: Central Coast MLPA Region. Image on the left is the Central Coast 

MLPA region along the Central Coast of California and the MPAs within the region. 

SMCA are State Marine Conservation Areas with limited allowable take, SMR are 

State Marine Reserves with no recreational or commercial take. The Central Coast 

MLPA Region extends three nautical miles (boundary of state waters) from shore. 

The image on the right shows where this region falls along the California coast. 
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Figure 3-2: Example of results from the seafloor habitat classification within and 

around the Big Creek MPA. The different shades of gray represent the different 

substrate types and depth zones. 
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Figure 3-3: Shaded relief imagery of the seafloor produced from the digital elevation 

models (Sun Azimuth: 315, Sun Altitude: 45, Z-Factor: 3). These images show the 

ecologically relevant variation in the structure of rocky reef along the central coast of 

California. 
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Figure 3-4: Comparison of the MLPA habitat classifications predicted using the best 

available data during the designation of the MPAs (left) and the habitat derived from 

the CSMP seafloor data (right) in the Piedras Blancas MPA. 
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Figure 3-5: Comparison of the percentage of habitat classes derived from the CSMP 

data across the region (light gray) and within the MPAs (dark gray). The asterisks (*) 

above the bars represent those pairs that fell outside the 20% threshold of similarity. 
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Figure 3-6: Comparison of the total percentage of each of the habitat classes derived 

from the cluster analysis within each of the 13 MPAs used in this analysis (light gray) 

and the percentage of PISCO transects that fell in those habitat classes (dark gray). 

The size of the circles represent the percentage of transects in each of the 

corresponding habitat classes and are labeled with the percentage value. The red 

asterisks represent those habitat classes that were not well-represented by the 

monitoring transects based on the 20% deviance threshold. 
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Figure 3-7: Comparison of the habitat represented in the MPA monitoring transects 

(black) and the habitat represented in the reference site transects (white) for each of 

the 13 MPAs looked at for this analysis. The size of the circles represent the number 

of transects in each of the corresponding habitat classes and are labeled with the 

number value. *Note: the transects represented in this figure are only those containing 

fish data. The invertebrate and algae transects were excluded from this analysis.   
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3.9 Tables 

Table 3-1: Percentage of each habitat type across the central coast region and within 

the Central Coast MPAs predicted by the MLPA Science Advisory Team (SAT) in 

the design process and the values derived from the CSMP seafloor habitat 

classification, along with percent deviations between those values for the region and 

the MPAs. The bold text identifies those habitat categories whose differences 

exceeded the 20% deviation threshold and also those habitat categories predicted to 

exist in the design process but was not detected in the CSMP seafloor data. 

Habitat 

MLPA 

Predicted 

Habitat 

in CC 

Region 

CSMP 

Derived 

Habitat 

in CC 

Region 

 

 

 

Percent 

Deviation 

between 

predicted 

and 

derived 

habitat in 

the CC 

Region 

MLPA 

Predicted  

Habitat 

inside 

CC 

MPAs 

CSMP 

derived 

Habitat 

inside 

CC 

MPAs 

 

 

 

Percent 

Deviation 

between 

predicted 

and 

derived 

habitat in 

the CC 

MPAs 

0-30m 

Sediment 24% 21% 

-12.5% 

20% 20% 

0% 

0-30m 

Rock 6% 5% 

-16.7% 

8% 8% 

0% 

30-100m 

Sediment 49% 51% 

4.1% 

43% 42% 

-2.3% 

30-100m 

Rock 4% 4% 

0% 

6% 5% 

-16.7% 

100-

200m 

Sediment 5% 7% 

40% 

7% 9% 

28.6% 

100-

200m 

Rock 1% 0% 

n/a 

3% 0% 

n/a 

>200m 

Sediment 9% 12% 

33.3% 

11% 15% 

36.4% 

>200m 

Rock 1% 0% 

n/a 

2% 0% 

n/a 
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Table 3-2: Percentage of each substrate type within the individual MPAs in the 

Central Coast region predicted by the MLPA Science Advisory Team (SAT) 

("Predicted") compared to the values derived from the CSMP seafloor substrate 

classification ("Observed"). Those deviation values highlighted in bold represent 

those values that exceed the 20% threshold of dissimilarity. 

 

  

 

MPA 

Substrate 

Rock Sediment 

Predicted 

(%) 

Observed 

(%) 

Deviation 

(%) 

Predicted 

(%) 

Observed 

(%) 

Deviation 

(%) 

Año Nuevo SMCA 28.4 39.5 39.1 71.6 60.5 -15.5 

Greyhound Rock 

SMCA 

10.4 10.6 
1.9 

89.6 89.4 
-0.2 

Soquel Canyon 

SMCA 

22.4 1.4 
-93.8 

77.6 98.6 
27.1 

Portuguese Ledge 

SMCA 

32.0 5.1 
-84.1 

68.0 94.9 
39.6 

Pacific Grove 

Marine Gardens 

SMCA 

 

74.3 

 

55.1 
 

-25.8 

 

25.7 

 

44.9 
 

74.7 

Asilomar SMR 71.5 59.9 -16.2 28.5 40.1 40.7 

Lover's Point SMR 35.9 26.9 -25.1 64.1 73.1 14.0 

Edward F. Ricketts 

SMCA 

31.5 17.9 
-43.2 

68.5 82.1 
19.9 

Carmel Pinnacles 

SMR 

83.4 75.8 
-9.1 

16.6 24.2 
45.8 

Carmel Bay SMCA 43.0 33.2 -22.8 57.0 66.8 17.2 

Point Lobos SMCA 33.7 5.6 -83.4 66.3 94.4 42.4 

Point Lobos SMR 39.2 44.1 12.5 60.8 55.9 -8.1 

Point Sur SMR 55.3 36.2 -34.5 44.7 63.8 42.7 

Point Sur SMCA 18.6 11.0 -40.9 81.4 89.0 9.3 

Big Creek SMCA 1.2 0.3 -75.0 98.8 99.7 0.9 

Big Creek SMR 4.9 2.5 -49.0 95.1 97.5 2.5 

Piedras Blancas 

SMR 

12.5 33.6 
168.8 

87.5 66.4 
-24.1 

Piedras Blancas 

SMCA 

6.4 27.7 
332.8 

93.6 72.3 
-22.8 

Cambria SMCA 22.8 29.5 29.4 77.2 70.5 -8.7 

White Rock 

(Cambria) SMCA 

38.5 48.4 
25.7 

61.5 51.6 
-16.1 

Point Buchon SMR 17.2 21.4 24.4 82.8 78.6 -5.1 

Point Buchon 

SMCA 

6.1 3.2 
-47.5 

93.9 96.8 
3.1 

Vandenberg SMR 8.1 5.6 -30.9 91.9 94.4 2.7 
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Table 3-3: Linear distances for the habitat types in the 0-30m depth range (rock, 

sediment and kelp) and areas of habitat types in the 30-100m depth range (rock and 

sediment) within each MPA along the Central Coast MLPA region. Those 

percentages that do not meet the criteria to be considered a replicate as specified in 

the MLPA (1.8 kilometers for 0-30m rock, sediment and kelp; 0.52 km2 for 30-100m 

rock; 26 km2 for 30-100m sediment) are in bold typeface. “n/a” indicates a depth 

range is not present in an MPA and, therefore, that habitat is not present in the MPA. 

MPA 

Linear 
Distance 
Rock in  
0-30m 

depth 
range 
(km) 

Linear 
Distance 
Sediment 

in  

0-30m 
depth 

range (km) 

Linear 
Distance 

Kelp in 0-

30m depth 
range 
(km) 

Rock 
Area  
in 30-
100m 

depth  
range 
(km2) 

Sediment 
Area 

30-100m 

depth  
range 
(km2) 

Lovers PointSMR 0.1 1.2 0.0 n/a n/a 
Piedras Blancas 
      SMR 4.6 5.4 3.3 1.390 5.823 

Piedras Blancas 
      SMCA n/a n/a n/a 6.080 16.270 

Carmel Pinnacles 
      SMR n/a n/a n/a 0.763 0.287 

E.F. Ricketts 
      SMCA 0.3 1.1 0.2 n/a n/a 

Carmel Bay SMCA 2.5 2.2 4.1 0.322 0.922 

Point Lobos SMR 4.1 1.5 4.5 3.583 5.314 

Point Lobos SMCA n/a n/a n/a 0.557 0.211 

Ano Nuevo SMCA 5.9 3.7 0.0 2.030 4.241 

P.G.M.G. SMCA 2.0 0.9 1.7 0.251 4.241 

Asilomar SMR 2.3 0.8 1.8 0.156 0.061 

Soquel Canyon 

      SMCA n/a n/a n/a 0.350 38.143 
Portuguese Ledge 
      SMCA n/a n/a n/a 0.337 4.177 

White Rock SMCA 3.5 2.0 5.3 0.256 1.043 

Cambria SMCA 5.2 4.3 7.4 0.002 0.378 

Point Sur SMR 7.0 4.7 8.1 2.471 7.541 

Point Sur SMCA n/a n/a n/a 2.832 22.397 

Point Buchon SMR 4.4 0.7 3.5 1.229 11.809 

Point Buchon 
SMCA n/a n/a n/a 0.837 20.991 

Greyhound Rock 

       SMCA 4.3 0.7 0.0 0.090 22.302 

Big Creek SMR 2.6 6.8 5.6 0.151 8.212 

Big Creek SMCA n/a n/a n/a 0.020 2.612 

Vandenberg SMR 3.4 19.6 0.0 0.219 26.724 
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Discussion 

Through this dissertation, I demonstrated the application of concepts 

developed within the field of landscape ecology to understanding what drives the 

distribution, abundance, structure and dynamics of populations and communities and 

how this knowledge can be applied to conservation and management. As conservation 

biologists continue to move away from the single species approach to management 

and shift the emphasis towards ecosystems and landscapes (Franklin 1993), the 

application of landscape ecology techniques towards preserving biodiversity is 

becoming more common (Barbault 1995). The field has progressed in this direction 

past simple descriptions to more spatial modeling and simulations using GIS and 

sound methodology (Hobbs, 1997), allowing for the ability to create maps and other 

figures to communicate results to other disciplines and planners (Antrop 2001).    

The application of landscape ecology to the understanding of terrestrial 

systems has been aided by the ability to map out large areas of the habitat using 

optical remote sensing technologies (Brown et al. 2011). The application of these 

technologies to the mapping of the ocean floor is limited to only those depths that 

light can penetrate and; therefore, greatly decreases the area of seafloor habitat that 

can be mapped using these technologies (Brown et al. 2011). More recently, acoustic 

technology has allowed for increasing the depth range of seafloor mapping at 

resolutions that are comparable or better than those collected in the terrestrial realm 

(Hughes Clarke et al., 1996; Lurton, 2002; Mayer, 2006; Brown et al. 2011). 

Currently only 5-10% of the seafloor is mapped at comparable resolution to terrestrial 
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maps (Wright and Heyman 2008; Brown et al. 2011) but that area continues to grow 

(Brown et al., 2011). If not for the seafloor habitat maps provided through the CSMP, 

I could not derive many of the landscape metrics outlined in this dissertation. Moving 

forward, we can take into account the effect of the landscape on the distributions of 

species and communities to better understand metapopulations, species distributions, 

and how management actions affect the marine environment. 

To fully understand the interaction of species with their habitat, complete 

knowledge of the environment is necessary, which includes the seabed and the water 

column both spatially and temporally (Brown and Blondel 2009). Unfortunately, 

many oceanographic measures are collected at much coarser resolution (meters to 

tens of kilometers) (Kenny et al. 2003) than the acoustically or laser acquired seabed 

information (tens of centimeters to tens of meters) (Brown et al. 2011). Those habitat 

mapping studies that rely on oceanographic variables are usually conducted at much 

broader scales (Kostylev and Hannah 2007; Brown et al. 2011). Through this 

dissertation, I was able to apply some aspects of the water column to understanding 

the distributions of the species and populations but there is still a lot of progress to be 

made in the incorporation of oceanographic variables. Without acknowledging the 

third dimension in our application of landscape ecology, we are missing those 

attributes that are important to the supply of food, nutrients, gametes, and new 

recruits within the ecosystem (Brown et al. 2011).  
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Appendix A: Relationships of densities with environmental variables 

for (a) E. lateralis, (b) E. jacksoni, (c) S. serranoides, (d) S. 

atrovirens, (e) S. carnatus, (f) S. chrysomelas, and (g) S. melanops. 

The x-axes show the explanatory variables and the range of values of those 

explanatory variables and the y-axes are the smooth functions along with the degrees 

of freedom.  

a) Embiotoca lateralis: 
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b) Embiotoca jacksoni 
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c) Sebastes serranoides 
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d) Sebastes atrovirens 
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e) Sebastes carnatus 
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f) Sebastes chrysomelas 
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g) Sebastes melanops 

 

 

 

  

 

  

 
 




