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Abstract

Hydrogeologic Modeling at Unsampled Locations: A Bayesian View of Uncertainty
Quantification and Reduction

by

Ching-Fu Chang

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Yoram Rubin, Chair

Groundwater plays a crucial role in our water resources. To counteract the growing
demand and depletion of groundwater resources and devise sustainable management plans,
a wide range of models have been applied to make estimates/predictions of various hy-
drogeologic responses. However, uncertainty arises in all modeling applications, and the
quantification/reduction of modeling uncertainty has been a challenge for all hydrogeolo-
gists, especially at unsampled locations. The main challenge posed at unsampled locations
is the lack of in-situ data, forcing us to search for alternative sources of information, and
systematically assimilate the said information in order to obtain conditioned estimates of
hydrologic responses. To that end, the primary objective of this dissertation is the advance-
ment of stochastic modeling approaches targeting at unsampled locations. Under the context
of the primary objective, we propose three different stochastic modeling approaches that are
designed to assimilate three alternative sources of information, respectively.

First, we propose the Rapid Impact Modeling (RIM) approach to efficiently assimilate in-
situ soft data (i.e., in-situ data that are related to the target response via transfer functions)
for obtaining conditioned estimates. RIM improves upon the existing approximate Bayesian
computation approaches by (1) bypassing the estimation of posterior distributions of model
parameters, thus reducing the computation burden, and (2) relaxing the need to reduce
data into summary statistics, thus avoiding losing information. To demonstrate the power
of RIM, we address the challenge of data scarcity against the backdrop of a 7 km long and
hundreds of meters deep underground tunnel in China, a typical example of heavy-impact yet
poorly sampled site. Through the demonstration, we also recognize that goal-oriented site
characterization is in many cases more useful in applications compared to parameter-oriented
characterization.

Second, we turn our attention to the assimilation of ex-situ data (i.e., data from locations
other than the location of interest) via regionalization, transferring information obtained at
sampled locations to unsampled ones. The reliability of regionalization depends on (1) the
underlying system of hydrologic similarity, as well as (2) the approach by which information
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is transferred. We propose a nested structure to couple classification tree with Bayesian
additive regression tree, named the nested tree-based modeling approach. The nested tree-
based modeling approach is designed as an advanced regionalization technique that features
the capability of modeling non-linear predictor-response relationship, as well as Bayesian
representation of uncertainties of the model parameters and the model structure. In ad-
dition, we integrate the approach with a hypothesis of two-leveled hierarchical hydrologic
similarity to investigate the dynamic behavior of hydrologic similarity. In a case study of
groundwater recharge estimation, we show how the nested tree-based modeling approach
and the hierarchical similarity hypothesis can reveal the variation of the controls of hydro-
logic similarity under different conditions. The proposal of the nested tree-based modeling
approach and our hypothesis of hierarchical similarity contribute to the understanding of
the physical principles governing robust information transfer.

Third, we look at situations with extreme data scarcity where in-situ data are unavail-
able, and the ex-situ data takes the form of bounds of plausible value rather than point
observations. We propose a nuanced two-level Bayesian hierarchical model to assimilate
ex-situ bounds, where ex-situ bounds are assimilated via truncation of distributions rather
than data imputation, thus avoiding artificial biases. Furthermore, our approach features
the capability of modeling ex-situ bounds as random variables to account for the potential
uncertainties of ex-situ bounds. Our proposed approach not only contributes to the Bayesian
regionalization using ex-situ bounds but also provides guidance for future applications in the
establishment of ex-situ bounds.

The three approaches are all based on the concepts of Bayes’ rule and can all be considered
as applications of Bayesian inference. They represent sophisticated assimilation of various
alternative forms of information, and are designed to tackle the ultimate challenge of large
modeling uncertainty in the face of data scarcity. We expect the approaches proposed in
this dissertation to contribute to the advancement of Bayesian uncertainty quantification
and reduction at unsampled locations.
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Chapter 1

Introduction

Our heavy reliance on groundwater resources has been well documented. Groundwater
provides almost half of all drinking water worldwide and more than 40 % all consumptive
use of water for irrigation (Smith et al., 2016). A global inventory of water consumption
for irrigation published in 2010 suggested that the global consumptive groundwater use for
irrigation alone surpassed 500 km3yr−1; furthermore, the inventory showed growing trends
of the percentage of irrigated area that was irrigated with groundwater in the U.S.A. and
in India over the 20th century (Siebert et al., 2010). In response to the growing demand,
the groundwater has been increasingly depleted since the 20th century, as the abstraction of
groundwater at least tripled over the last 50 years (Smith et al., 2016; Wada et al., 2010),
which highlights the importance of sustainable groundwater resources management. To that
end, our ability to estimate and manage groundwater storage, groundwater table, and/or
groundwater recharge is of great importance. In this regard, numerical models with differ-
ent natures (e.g., physically based or data-driven), at different levels of complexity, and at
different spatiotemporal scales have been applied in a myriad of studies to model hydro-
logic/hydrogeologic responses (e.g., Gilbert and Maxwell, 2017; Kim et al., 2008; Mogaji
et al., 2015; Rahmati et al., 2016).

In all modeling applications, however, various forms of uncertainty exist, both within
and outside of the hydrologic/hydrogeologic modeling process. Starting from the outside,
uncertainty resides in the interface between hydrology/hydrogeology and related disciplines
such as climate science, sociology, and political science. Rubin et al. (2018) identified this
interface as the source of “unknown unknowns”, i.e., things we do not know that we do not
know. They further described a blind spot of stochastic hydrogeology where the modelers
focus on known unknowns, while some other variables are intentionally or unintentionally
ignored. The inclusion of the interface between hydrogeology and the related fields into the
modeling process is daunting. Fortunately, there is a growing recognition that real-world
situations are ripe with unknown unknowns (Rubin et al., 2018), and Harken (2017) and
Harken et al. (2019) have attempted a promising start by establishing a framework which fa-
cilitates conversations on uncertainty among hydrogeologists, regulators, managers/decision
makers, and the general public.
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Moving from the outside to the inside, we now turn our attention to uncertainties that
appear along the entire modeling process. Uncertainty resides in the forcing and response
data, in the model structure, and in the model parameters and/or the physical properties
that characterize the underlying physical processes (Beven, 2016; Refsgaard et al., 2007).

• Data uncertainty is primarily dependent on the processes through which observations
or measurements of a target property are made, as well as the interpretation of the
data. Despite the importance of data uncertainty, its assessment has been pointed out
as complex and full of pitfalls (Refsgaard et al., 2007), and the identification of an error
in the data may be computationally challenging depending on the model structures and
parameters tested (Beven, 2016).

• Model structure uncertainty is primarily caused by either the lack of knowledge or the
misinterpretation of the physical system that is being modeled, and may be observed
through equifinality, where there are multiple plausible models capable of explaining
the observations (Beven, 2006; Beven and Freer, 2001). The a priori presumption of
a known and fixed model structure, without justification, could obscure the modeling
results as the uncertainty in model structure gets compensated by other types of uncer-
tainty (Ajami et al., 2007; Beven et al., 2008; Nowak et al., 2010), especially by model
parameter uncertainty: a conceptually wrong model could possibly output results that
match the observations quite well, provided a forcible calibration process that makes
the model do so.

• Compared to the other two, model parameter uncertainty has been widely recognized,
quantified, and even reduced in many modeling applications by considering the param-
eters as random variables (e.g., Li et al., 2018; Rubin and Dagan, 1987a; Rubin et al.,
2010; Woodbury and Rubin, 2000).

In the following Sections, we start by providing an overview of how stochastic approaches
have been applied to tackle the uncertainties in hydrologic/hydrogeologic modeling, followed
by a discussion on a challenge in the application of stochastic approaches.

1.1 Stochastic modeling: Overview

In a typical modeling application, after data collection and the establishment of the model
structure, the next step would be to calibrate and validate the model (or alternatively, model
fitting) (Refsgaard et al., 2007). The conventional idea of calibration is to find the “best”
set of model parameters that reduces the expected predictive error to the best degree. This
concept can be applied to physically based models (e.g., Rodhe and Bockg̊ard, 2006; Xie
et al., 2017) as well as empirical or data-driven models (e.g., Chen et al., 2002; Gemitzi
et al., 2017; Mogaji et al., 2015). Hybrid models have also been built; for example, Xu
and Valocchi (2015) integrated statistical learning techniques with a calibrated groundwater
model to obtain predictive intervals that agree with available data.
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In the past few decades, the concept of model fitting has evolved from searching for an
optimal set of parameters that yields a minimum error, to estimating conditional metrics
and summary statistics (e.g., statistical moments, range, quantiles, etc.) or even conditional
distributions of the parameters and/or the modeled responses. The evolution is observed
together with the growing application of stochastic approaches, here used to refer to any
approach that use radon variables to account for the uncertainty associated with at least
one component of the model (parameters in the model, or the model structure, etc.). Vari-
ous stochastic modeling approaches have been developed and applied in that regard, which
has been exemplified by the blooming adoption of Bayesian inference and its variants in
hydrologic/hydrogeologic research (e.g., Beven and Binley, 2014; Nott et al., 2012; Nowak
et al., 2010; Over et al., 2015; Rubin et al., 2010; Smith et al., 2014; Xu et al., 2017; Yang
et al., 2015), and also exemplified by various ready-to-use software solutions to stochastic
modeling approaches (Table A.1). Regardless of the role stochastic approaches play in the
entire modeling process, ranging along the spectrum from the overarching framework at one
end to just an add-on supplemental tool at the other, stochastic approaches offer a way to
quantify and/or reduce uncertainty systematically in probabilistic terms.

Nonetheless, the application of stochastic approaches is not without challenges. Besides
the various factors outside the realm of hydrogeologic modeling (e.g., the law, regulations,
higher education, and profitability) that affect the application of stochastic hydrogeologic
models (Rubin et al., 2018), of particular interest in this dissertation is the challenge posed
by the lack of in-situ data, which will be discussed next.

1.2 Challenges in Stochastic Modeling: Lack of

In-situ Data

In all modeling applications, stochastic or not, of significant importance is the availability
of in-situ data, here defined as observations/measurements taken within the spatial domain
of the site of interest, and within a reasonable temporal domain that does not make the
observations obsolete. Unfortunately, most watersheds in the world still remain ungauged
(Hrachowitz et al., 2013; Ibrahim and Cordery, 1995). The term “ungauged watershed”
originates from the effort in the field of surface hydrology to predict runoff or its derivatives
(e.g., hydrograph, low flow, flood) at watersheds which are either (1) genuinely ungauged,
(2) poorly gauged, or (3) previously gauged, i.e., sampling was terminated (Blöschl et al.,
2013; Hrachowitz et al., 2013; Loukas and Vasiliades, 2014). Here the term “unsampled” is
used interchangeably with “ungauged”, for “unsampled” has a somewhat more general image
signifying the lack of in-situ observations of hydrological responses in any form (including
runoff gauge, piezometer reading, weir overflow, observation well, infiltrometer reading, etc.).
The lack of in-situ data poses a great challenge at both the intra-model level and the inter-
model level. There would be no data to condition model parameters on, and furthermore,
there would be no data to support any specific model structure. Consequently, one would
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not be surprised if large uncertainty is associated with any stochastic modeling application
that is without in-situ data.

The aforementioned large uncertainty might be misconceived as the seeming ”failure” of
stochastic approaches, which might fool one into thinking that a successful stochastic model
application requires a lot of data so that the uncertainty can be significantly reduced (e.g.,
obtaining a well-fitted variogram with many data points for a spatial random variable). On
one hand, a lack of in-situ data does affect the performance of a stochastic model (e.g., it
would be difficult to model the space random function, or that the plausible value of a model
parameter would have a wide range, etc.). On the other hand, the lack of data does not make
uncertainty disappear, and in fact, it only accentuates the need for quantifying uncertainty,
where stochastic methods shine the brightest (Rubin et al., 2018).

Now with the misconception sorted out, we are still faced with large uncertainty due to
the lack of in-situ data. Is this the best one can do at unsampled locations? Fortunately, the
answer is no. Bayesian stochastic approaches, which are based on Bayes’s rule and Bayesian
inference, offer a solution to the lack of in-situ data by having the capability of using a variety
of forms of information (Cirpka and Valocchi, 2016; Li et al., 2018; Rubin et al., 2018). In
the following subsections, we provide brief introductions to several types of information that
Bayesian approaches can use, along with some associated potential challenges that still need
to be addressed.

In-situ Soft Data

The concept of soft data originates from the concept of hard data, which is generally used
to described direct and collocated measurements of the target response variable. Broadly
speaking, soft data means data that are not hard data. The definition of soft data is some-
what vague and has been discussed in several previous studies. Rubin (2003) used the term
“soft information” to describe imprecise measurements in general, such as measurements
that are subject to sampling error, or range of values, or even probability density function
(pdf) of the target variable. Winsemius et al. (2009) used the same term to describe the
situation where the conditioning on the information is less effective and/or where the uncer-
tainty of the measurements cannot be objectively quantified. Stemming from the high cost
of obtaining direct measurements of soil hydraulic properties, Segal et al. (2008) used “soft
data” to describe estimates of the target variable from indirect approaches (e.g., estimates
of soil texture from electrical conductivity), which are of lower quality and confidence. Hou
and Rubin (2005) described soft information as measurements of variables that are related
to the target variable via transfer functions. Rubin et al. (2010) used the term “Type-B
data” to describe the same concept: data that are the outputs from a transfer function of
the target variable. This definition is more general, as it does not specify the form of the
transfer function; in this context, all the other definitions can be viewed as different cases
with different transfer functions. Therefore, in this dissertation, the term ”soft data” is
defined as observations/measurements of other responses that can be related to the target
response via transfer functions.
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Soft data has been applied as a source of information in addition to hard data, and
various studies have shown that soft data can reduce the uncertainty in inverse modeling
(i.e., obtaining estimates of model parameters that are conditioned on observations, Rubin
et al., 2010; Segal et al., 2008; Winsemius et al., 2009). However, few studies have directly
linked soft data with forward modeling (i.e., obtaining estimates of the target response
using a given set of parameters). Using soft data for forward modeling may seem natural:
information is first transferred from soft data to estimates of model parameters via inverse
modeling, and then transferred to estimates of hydrologic response via forward modeling.
Nonetheless, at unsampled sites with complicated settings, this transition of information
may be computationally demanding due to (1) large uncertainties in the parameters because
of the lack of in-situ hard data, which necessitates a large number of simulations, (2) the
combined computational demand for both inverse and forward modeling, and (3) the addi-
tional computational demand for the transfer function between hard and soft data. Although
computational demand is not absolutely insurmountable, it is still of great practical impor-
tance in many modeling applications. This poses the need for efficient conditioning of
hydrologic response on soft data.

Ex-situ Data and Regionalization

Studying unsampled watersheds has been a popular research topic for more than a decade,
especially since The Prediction in Ungauged Basins (PUB) initiative by the International
Association of Hydrological Sciences (IAHS) (Sivapalan et al., 2003). A way to tackle the
lack of in-situ data is to extract information from ex-situ data (namely, observations of the
target response that are not taken at the site of interest), and transfer the information to the
unsampled locations of interest. This information transfer is also termed ”regionalization”,
which could be applied to constrain the model in the form of (1) relationships between model
parameters and site characteristics, (2) subsets of the parameter space, or (3) plausible
parameter values from models at hydrologically similar watersheds (Blöschl et al., 2013;
Kuczera, 1982; Razavi and Coulibaly, 2017; Singh et al., 2014; Wagener and Montanari,
2011).

However, the application of regionalization is not without challenges. One of the key
factors of predictive uncertainty identified by the PUB initiative is the unsuitability of in-
formation transfer techniques, due to a lack of comparative studies across watersheds and a
lack of understanding of the physical principles governing robust regionalization (Hrachowitz
et al., 2013). Different regionalization techniques have been applied in different cases with
different assumptions. For example, Li et al. (2018) attempted a simple form of regionaliza-
tion, where kernel density estimation was applied on recharge values obtained from various
hydrologically similar sites, in order to build an ex-situ prior distribution (i.e., a prior dis-
tribution conditioned on ex-situ data). However, one limitation in Li et al. (2018) was that
hydrologic similarity was treated as a Boolean variable, and therefore, there was no way to
systematically distinguish a highly similar site from a slightly similar site.
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To pursue this further, we must ask the following question: How can we tell that two wa-
tersheds are hydrologically similar? Sawicz et al. (2011) applied Bayesian mixture clustering
to watersheds across the eastern U.S. They found that spatial proximity was a valuable first
indicator of hydrological similarity because it reflected strong climatic control in their study
area. Oudin et al. (2008) reported similar findings based on 913 French watersheds, despite
acknowledging the lack of some key physical descriptors in their data set. However, Smith
et al. (2014) attempted regionalization of hydrologic model parameters in eastern Australia,
and suggested that spatial proximity was an unreliable metric of hydrological similarity. For
their part, Tague et al. (2013) presented successful regionalization of hydrologic parameters
based on geologic similarity at watersheds in the U.S. Oregon Cascades, a mountain range
that features geological heterogeneity. Although not directly shown, their findings also went
against the use of applying spatial proximity, for they discussed the sharp contrasts in hy-
drology at proximal watersheds based primarily on geological differences. The indication
from these findings is that, although spatial proximity is of practical importance due to its
common use, its simplicity, and its demonstrated effectiveness in specific areas (Smith et al.,
2014), it is not the true controlling factor, but rather a confounding factor.

One can resort to other physical characteristics of watersheds for the determination of
hydrologic similarity. However, what those characteristics are may be a complicated ques-
tion. Razavi and Coulibaly (2017) tested the effect of combinations of neural-network-based
classification techniques and regionalization techniques in Canada, and found that classify-
ing watersheds before regionalization improves regionalization for streamflow, baseflow, and
peak flow predictions, but also discovered that the best combination of techniques varied
from one watershed to another. Singh et al. (2014) applied classification and regression tree
to determine the relationship between catchment similarity and regionalization in the U.S.,
finding that the dominant controls of successful regionalization vary significantly with the
spatial scale, with the region of interest, and with the objective function used. Similarly,
Kuentz et al. (2017) found that different physiographic variables controlled various flow
characteristics across Europe, showing how different descriptors could account for different
dominant hydrologic processes and flow characteristics. Loritz et al. (2018) suggested an
interesting perspective describing a dynamic hydrologic similarity system, where similarity
and uniqueness are not mutually exclusive; rather, they suggested that hydrologic systems
operate by gradually changing to different levels of organization in which their behaviors
are partly unique and partly similar. These studies indicate an important challenge, that
the factors determining hydrologic similarity may vary under different conditions, and a
universal system of hydrologic similarity still remains unavailable.

The need to understand the dynamic behavior of hydrologic similarity has been em-
phasized above, but how have researchers attempted to investigate it? Gibbs et al. (2012)
provided a generic framework of regression regionalization, which involves a multi-objective
optimization for calibration, a sensitivity analysis to determine the most important model
parameters, and a final step relating watershed characteristics with model parameters. The
framework is capable of assimilating information from exogenous variables to obtain an in-
formed inference of hydrologic similarity, while also accounting for the interaction between
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parameters. However, the framework does not include a straightforward quantification of un-
certainties in calibration and in regionalization. In comparison, Bayesian approaches offer a
solution to the quantification of uncertainty by outputting conditional distributions. Despite
the lack of in-situ data, one can still apply Bayesian approaches to establish prior distribu-
tions that are informed by data from previous studies or well-established databases (Hou
and Rubin, 2005; Woodbury, 2011; Woodbury and Rubin, 2000). More advanced pooling
of information from multiple sampled sites has also been demonstrated with the application
of Bayesian hierarchical models (Cucchi et al., 2019; Smith et al., 2014), which can account
for both intra- and inter-site uncertainty of the parameters. However, the aforementioned
Bayesian approaches have several disadvantages, including: (1) requiring a system of hydro-
logic similarity a priori that helps us decide which sampled sites or databases are suitable
as “information donor”, (2) requiring known or assumed distributional forms of the param-
eters, and (3) difficulties in accounting for complicated and highly non-linear dependence
on exogenous variables. Adding onto the challenge is that the aforementioned approaches,
regression-based or Bayesian, do not have a built-in component for the consideration of model
structure uncertainty. Model structure uncertainty does not only apply to the model for the
hydrologic response, but also to the model with which the regionalization is carried out (e.g.,
the regression model between watershed characteristics and hydrologic model parameters).
In summary, from the literature review above we have identified the need for a region-
alization approach that can simultaneously account for the dynamic hydrologic
similarity and the uncertainties in the model parameters as well as the model
structure.

Ex-situ Soft data

In some cases, the scarcity of data could reach a high level that even the in-situ soft data
and ex-situ data are in shortage. This extreme lack of data forces the modeler to consider
anything else that could possibly offer an additional piece of information. The importance
of ex-situ soft data becomes noticeable in such cases. Following the definitions introduced
in the previous subsections, ex-situ soft data are observations that are (1) not taken at the
site of interest, and (2) are some other responses that can be related to the target response
through transfer functions. Ex-situ soft data can be conceptualized as the outcome of two
sequential transfer functions: the transfer function between hard and soft data, and the
transfer function embedded in the regionalization process that transfers information from
one site to another. This naturally makes the ex-situ soft data only weakly correlated with
the target response, when compared to in-situ soft data or ex-situ hard data.

There are many potential sources of ex-situ soft data; among all, a promising one is
expert elicitation, which has been applied in various fields in previous studies. Garthwaite
et al. (2005) pointed out that the growing sophistication of computational approaches has
led to a dramatic increase in the breadth and complexity of Bayesian applications, which
relates to the increasing interest in expert elicitation in Bayesian context. Sebok et al.
(2016) elicited information from 35 experts to estimate watershed-scale water balance and
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to analyze the corresponding uncertainty. Warmink et al. (2010) analyzed the uncertainties
in river model and identified the most important components of uncertainty based on expert
opinion. Ye et al. (2008) integrated expert elicitation into a framework of Bayesian model
averaging to establish prior distribution of different groundwater recharge models. As they
pointed out, for complicated hydrologic systems, expert judgment is the basis of conceptual
model development, and may even be more informative than limited observations, which is
particularly true for hydrogeology.

Depending on the transfer functions, soft data can appear in various forms, including
statistical moments, quantiles/percentiles, point estimates with or without error estimates,
and bounds of plausible values (bounds, in short), the last of which is particularly common
in hydrogeology. For example, plausible bounds of hydraulic properties corresponding to
different soil or rock types can be found in almost every groundwater textbook (e.g., Fetter,
2001; Singhal and Gupta, 2010; Todd and Mays, 2004). Of course, it would be better to
have site-specific information, but when data scarcity is extremely limiting, these bounds
provide valuable information for the establishment of a weakly informative distribution of
the variable of interest.

Unfortunately, the assimilation of ex-situ soft data is still in its infant stage in hydrogeol-
ogy. Cucchi et al. (2019) provided a great start, by proposing a practical approach that uses
data imputation to convert various forms of ex-situ soft data into ex-situ hard data. While a
versatile method that can cater to many forms of soft data is ideal and desirable, the involve-
ment of imputation makes the approach sensitive to the number of imputed data, and thus
make the approach prone to artificial biases. To that end, we see the effort of Cucchi et al.
(2019) as a basis upon which we can improve, by identifying the need for an approach
for the assimilation of ex-situ bounds that is free of imputation-induced biases.

1.3 Research Objectives

While Bayesian approaches are capable of assimilating both soft data and ex-situ data,
some challenges have been identified in Section 1.2. In response, the overarching goal of
this dissertation is the development of advanced Bayesian stochastic modeling approaches
that overcome the aforementioned challenges. Under this context, there are three specific
research objectives, each of which involves the proposal of an innovative approach in order
to tackle a specific challenge, explained in details as follows.

Efficient Assimilation In-situ Soft Data for Forward Modeling

The first objective is to propose an efficient and goal-oriented Bayesian computation
approach that features significantly reduced computation demand for the conditioning of
estimates of hydrologic responses on in-situ soft data.
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Systematic Determination of Hydrologic Similarity and Full
Bayesian Regionalization

The second objective is to propose a general approach with which regionalization can
be carried out with (1) systematically determined hydrologic similarity, (2) full Bayesian
representation of both the model parameter uncertainty and the predictive uncertainty, and
(3) consideration of the model structure uncertainty. We also wish to be able to explain
how modeling uncertainty and the assimilation of ex-situ data are affected by the dynamic
behavior of hydrologic similarity with the proposed framework.

Imputation-free Assimilation of Bounds

The third objective is to formally and analytically derive a Bayesian model where one
specific type of ex-situ soft data —bounds —can be assimilated. By sacrificing versatility
and focus only on bounds, we propose this approach to solve the issue of imputation-induced
artificial biases in the approach proposed by Cucchi et al. (2019).

1.4 The Structure of This Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 provides the mathe-
matical background of Bayesian inference, Bayesian computation, and some of the derivatives
of Bayesian inference, providing the basis of all the innovations in our proposed Bayesian
stochastic approaches. In Chapter 3 through 5, we describe the innovations in the pro-
posed approaches corresponding to the three research objectives, respectively, each of which
will be demonstrated in a case study. Finally, Chapter 6 summarizes the findings and the
contributions of this dissertation.
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Chapter 2

Background

This Chapter provides the mathematical background of Bayesian inference and Markov
Chain Monte Carlo simulations. Then, several derivatives of Bayesian inference are intro-
duced to provide background knowledge for the innovations in the rest of the dissertation.

2.1 Bayesian Inference

The core of Bayesian inference is Bayes’ rule. Let Y be the target variable of interest (e.g.,
a hydrological response), which we modeled as a random variable. Let y be the data (i.e.,
observations/measurements of the target variable), and let θ be parameter(s) of the model
we use to estimate/predict Y . We use the term forward modeling to refer to the process
where we obtain estimates of Y with a given θ and some other model inputs. We use the
term inverse modeling to refer to the process where we obtain estimates of θ conditioned
on y. Bayesian statistical conclusions about θ are made in terms of probability statements
(Gelman et al., 2014). By the rule of conditional probability, the joint distribution of y and
θ can be expressed as follows:

p (θ, y) = p(θ)p(y|θ) = p(y)p(θ|y). (2.1)

The term p(θ) is referred to as the prior distribution (prior, in short) of θ. Rearranging
terms, one would obtain the general form of Bayes’ rule:

p (θ|y) =
p(θ)p(y|θ)
p(y)

, (2.2)

where the left hand side is the posterior distribution (posterior, in short) of θ. The term
p(y|θ) is by definition the conditional distribution of y if considered as a function of y, but
when it is considered as a function of θ for a given y, it is referred to as the likelihood
function (of θ). Bayesian inference refers to the statistical inference one makes by applying
Bayes’ rule to update the prior and obtain the posterior.
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The term p(y) could be obtained by the total probability rule as follows:

p(y) =

{∑
θ p(θ)p(y|θ) if θ is discrete∫

θ
p(θ)p(y|θ)dθ if θ is continuous

. (2.3)

As it only depends on y, p(y) is often omitted in many applications of Bayesian inference,
yielding the unnormalized posterior distribution, which is the right hand side in the following
equation:

p(θ|y) ∝ p(θ)p(y|θ). (2.4)

If a stochastic approach results in obtaining the posteriors of the variables of interest, it
can be described as ”full Bayesian” to differentiate it from other approaches that only results
in obtaining posterior statistics (e.g., posterior mean, posterior 95% confidence intervals,
etc.).

2.2 Markov Chain Monte Carlo (MCMC) Simulations

An analytical solution to Equation 2.2 can be obtained when both the prior and the like-
lihood can be expressed analytically. An even more analytically convenient situation is when
the prior and the likelihood form a conjugate pair (e.g., two Gaussian distributions, Beta
and binomial distributions, Gamma and Poisson distributions, etc.), so that the posterior
takes the same analytical form as the prior. However, for complicated or unusual models,
or in high dimensions, p(y) and p(y|θ) can be difficult to obtain, and thus more elaborate
algorithms are required to numerically approximate the posterior distribution.

In that regard, many clever methods have been devised for simulation-based approxi-
mations of the posterior. Among all the methods, Markov Chain Monte Carlo (MCMC)
simulation is adopted in this dissertation for it has been well developed and integrated with
many stochastic software packages (e.g., Chipman et al., 2010; Valpine et al., 2017). MCMC
is an indirect iterative method based on drawing values of θ from approximate distribu-
tions and then correcting those drawn values to better approximate the target posterior;
it is used when direct sampling from p(θ|y) is not feasible (due to model complexity, high
dimensionality, etc.) (Gelman et al., 2014). The Monte Carlo sampling is done sequentially
where the distribution of the current draw depends on the last drawn value, which fits the
definition of a Markov Chain where the probability of each event in a sequence of events
depends on the state attained in the previous event, thus the name Markov Chain Monte
Carlo. The critical factor of a successful application of MCMC is that the distribution of the
draws eventually converges towards a stationary distribution, which is the target posterior.
The application of MCMC usually starts with an initial condition, θ(0), and then follows a
transition distribution for the lth draw, pT

(
θ(l)|θ(l−1)

)
.

Brief introductions to two of the commonly used MCMC algorithms that are adopted in
this dissertation are provided as follows.
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Gibbs Sampler

The Gibbs sampler is particularly useful when the dimensionality of the parameter space
is high (i.e., θ consists of many parameters) (Gelman et al., 2014). Suppose the parameter
vector, θ, can be partitioned into D subvectors, θ = {θ1, ..., θD}, such that sampling of each
subvector given all the other subvectors and the data is feasible. If so, the Gibbs sampler
proceeds by applying the following transition distribution on the dth subvector for the lth

draw:
p
(
θ

(l)
d |θ

(l−1)
−d , y

)
, (2.5)

where θ
(l−1)
−d =

{
θ

(l)
1 , ..., θ

(l)
d−1, θ

(l−1)
d+1 , ..., θ

(l−1)
D

}
. Thus, it avoids the challenging sampling from

p(θ|y) by sampling from Equation 2.5. Within each MCMC draw, the Gibbs sampler sample
each subvector sequentially, and then proceeds to the next draw.

Metropolis and Metropolis-Hastings Algorithms

The Metropolis algorithm is an adaptation of a random walk with an acceptance/rejection
rule to converge to the target distribution (Gelman et al., 2014).

It requires an initial value, θ(0), as well as an initial distribution, p(θ(0)). A jumping distri-
bution (also termed proposal distribution) is defined for the lth draw, denoted as Jl(θ

∗|θ(l−1)),
where θ∗ is a proposal drawn from this jumping distribution. The jumping distribution is
symmetric, i.e., Jl(a|b) = Jl(b|a) for all a, b, and l.

After drawing the proposal, an acceptance ratio of the unnormalized posteriors is calcu-
lated as follows:

rJ =
p(y|θ∗)p(θ∗)

p(y|θ(l−1))p(θ(l−1))
. (2.6)

Finally, the lth draw is drawn from the following distribution:

θ(l−1) =

{
θ∗ with probability min(rJ , 1)

θ(l−1) otherwise
(2.7)

The Metropolis-Hastings algorithm generalizes the Metropolis algorithm by relaxing the
assumption that the jumping distribution must be symmetric, so the acceptance ratio is
calculated as follows:

rJ =
p(y|θ∗)p(θ∗)/Jl(θ∗|θ(l−1))

p(y|θ(l−1))p(θ(l−1))/Jl(θ(l−1)|θ∗)
. (2.8)

Other than the acceptance ratio, the Metropolis-Hastings algorithm proceeds in the same
way as the Metropolis algorithm does, where the transition distribution of the MCMC is a
mixture of a point probability mass centered at the previous draw and a weighted version of
the jumping distribution that adjusts for the acceptance ratio.
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2.3 Derivatives of Bayesian Inference

In this Section, we will introduce several well-documented Bayesian approaches, each of
which augments the simple Bayes’ rule in a certain way.

Approximate Bayesian Computation

Revisiting Equation 2.4, to obtain the posteriors of θ requires going through the calcula-
tion of the likelihood function, which is often computationally-intensive. This effort becomes
extremely unwieldy when a likelihood function cannot be analytically specified, requiring
alternatives such as non-parametric likelihood functions or some surrogate indicators of like-
lihood that can be obtained rather easily. The computational challenge has been addressed
in previous studies, but it is still formidable, especially in situations where θ is a vector of a
large number of parameters. Among all, an appealing alternative is offered by Approximate
Bayesian Computation (also known as ABC, Csilléry et al., 2012; Turner and Van Zandt,
2012). In ABC, the computation of the likelihood is bypassed altogether. Instead, a set of
summary statistics is computed from the simulated parameters and compared to the sum-
mary statistics obtained from the in-situ data (Csilléry et al., 2012), leading to approximate
posterior distributions of parameters. A similar concept, although in a different context,
was offered by Beven and Binley (1992) in the form of Generalized Likelihood Uncertainty
Estimation (GLUE). Although not a Bayesian approach, GLUE intends to bypass expensive
optimization searches in complex parameter spaces by ranking parameter sets based on a
comparison between simulated and observed data.

The simplest form of ABC is the ABC rejection sampling algorithm (Turner and Van
Zandt, 2012). First, a plausible parameter vector, θ∗, is sampled from the prior, p(θ). Then,
we use θ∗ in the forward model to obtain an estimate of the response, denoted by y∗. Here
we invoke a distance function, denoted by ρ(y, y∗), to quantify the deviation of y∗ from y. If
ρ(y, y∗) is smaller than a user-defined threshold, then θ∗ is kept because it is considered to
have a nonzero probability of being in the approximate posterior. Otherwise, θ∗ is discarded
(or “rejected”) and we move on to sample another plausible parameter vector (hence the
name rejection sampling). One may notice that the premise behind ABC is that ρ(y, y∗)
should be defined by the way of sufficient statistics (namely, the statistics that provides
the same information as the sample itself; e.g., sample mean is a sufficient statistics for the
mean of a Gaussian distribution with known variance, because no more information can be
extracted from the sample once the sample mean is known). The choice of ρ(y, y∗) can be
tricky and would affect the results of ABC. For the details of fairly robust choices of ρ(y, y∗)
with respect to some particular summary statistics, as well as some other variants of ABC
that feature more efficient sampling of θ∗, please refer to Nott et al. (2012) and Turner and
Van Zandt (2012).
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Bayesian Hierarchical Model

In many applications of statistical models, multiple model parameters can be regarded
as related or connected in some way by the structure of the problem, implying that a joint
probability model for these parameters should reflect their dependence (Gelman et al., 2014).
A key feature of such applications is that the observed data are somewhat grouped. For
example, a watershed can be divided into sub-watersheds, where a physical property of
interest (e.g., slope) can be modeled as a random variable of a fixed distribution form, but
the parameters defining that distribution vary from one sub-watershed to another. The
available dataset consists of observations grouped by sub-watersheds, where observations
from different groups are inter-correlated. Nonhierarchical models are usually inappropriate
for such data because in order to model the inter-correlation, the model often ends up using
too many parameters, which leads to overfitting. In contrast, hierarchical models can use
a population distribution to structure dependence into the parameters, thereby avoiding
problems of overfitting (Gelman et al., 2014).

One might be curious about why Bayesian hierarchical models are relevant to unsampled
sites. Recall that in Section 1.2 we introduced ex-situ information as a source of information
at unsampled locations. Ex-situ data may be collected at multiple sampled locations, and
may be inter-correlated from one location to another. The assimilation of such data, as well
as the transferring of information from sampled locations to unsampled ones, requires a sys-
tematic way to structure the dependence of parameters among locations. Here, we provide a
concise mathematical introduction a two-leveled hierarchical model, while interested readers
are referred to Gelman et al. (2014).

We start by having the data that are divided into Ni groups, each of which includes Ji
observations:

y = {yi,j; j = 1, ..., Ji, i = 1, ..., Ni} , (2.9)

where the subscripts in yi,j indicate the jth observation in the ith group. Each point ob-
servation in each group follows a group-specific distribution, which is parameterized by the
group-specific parameter vector, Θi:

yi,j ∼ p (y|Θi) , (2.10)

Uncertainties within each site, such as sampling uncertainty or the natural variability of the
target response, are all parameterized by Θi and modeled with this group-specific distribu-
tion.

Second, adding onto Equation 2.10 is the second level: the inter-group level, where un-
certainties among groups are taken into account. To that end, the group-specific parameters
are modeled by an inter-group distribution that depends on the hyperparameter vector (Φ):

Θi ∼ p (Θi|Φ) . (2.11)



CHAPTER 2. BACKGROUND 15

The conditional distribution of Φ can then be obtained by integrating the joint conditional
distribution of all parameters over the group-specific parameters:

p (Φ|y) =

∫
~Θ

p
(

Φ|y, ~Θ
)
p
(
~Θ|y

)
d~Θ, (2.12)

where ~Θ = {Θ1, ...,ΘNi
}. The conditional distribution of Φ is also an informative distribution

indicating an underlying mechanism that is shared among all groups. Such a hierarchical
model can account for (1) intra-group uncertainty, (2) inter-group uncertainty, and (3) inter-
group correlation/dependence of the group-specific parameters.

Bayesian Additive Regression Tree

The forward model can be physically based or data-driven/statistical. A typical type of
data-driven model is regression model, which models the relationship between some predictor
variables (or predictors) and the response variable of interest. A general form of data-driven
models can be expressed as follows:

Y = Ŷ + ε = f (θ, ξ) + ε, (2.13)

where f (·) denotes the statistical forward model that estimates of the response variable (Ŷ ),
with parameters (θ) and predictors (ξ), and ε is an error term characterized by Gaussian
white noise with finite variance, i.e., ε ∼ N(0, σ2). Among data-driven models, classification
and regression tree (CART, Breiman, 1984) is particularly suitable for studying various
hydrologic responses because:

1. it can account for non-linear and interaction effects of the predictors at low compu-
tational costs, which is desirable for complicated and non-linear hydrologic processes,
and

2. it can handle quantitative (e.g., annual rainfall), binary (e.g., snow existence), and
multinomial predictors (e.g., land cover type).

A schematic diagram of a CART model is shown in Figure 2.1(a), which resembles an upside-
down tree (root on top and leaves at the bottom). The root node of the tree represents the
space spanned by the predictor(s). As one moves downward from root to leaves, the said
space is recursively partitioned by a sequence of binary partitioning rules. This partitioning
and the corresponding partitioning rules define the tree structure, and can be represented
by the tree structure variable, denoted by T . After partitioning, output response values are
assigned to each and every leaf, where each leaf represents a partitioned subspace. These
output values can be collectively denoted by M. A CART model can be fully defined by
knowing its T and M. To further improve the predictive performance on an individual
CART, one can establish an additive ensemble tree model by summing J individual trees
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(Figure 2.1(b)), each of which has its tree structure (Tj, j = 1, ..., J) and its set of leaf values
(Mj, j = 1, ..., J), shown as follows:

Y = Ŷ + ε =
J∑
j=1

g (Tj,Mj, ξ) + ε, (2.14)

where g(·) denotes an individual tree. The output of an additive ensemble tree model is the
sum of the outputs from the J trees. If in-situ data are available, one can fit the ensemble
model with data by searching for the best Tj and Mj for every j, where the definition
of ”best” can be different under different contexts (e.g., least classification error, lowest
predictor error, etc.). However, this model fitting process does not allow for a straightforward
quantification of the uncertainty in the parameters.

Fortunately, Bayesian additive regression tree (BART) offers a solution. The details of
BART, including the establishment of prior, the calculation of likelihoods, and the posterior
inference statistics are well documented in Chipman et al. (2010) and Kapelner and Bleich
(2016). Here, we provide a brief conceptual introduction. BART replace model fitting with
Bayesian inferencing by first defining the following joint prior of all the tree structures, all
the sets of leaf values, and the white noise variance:

p
(
T1,M1, ..., Tj,Mj, σ

2
)

= p(σ2)
J∏
j=1

p(Tj)P (Mj|Tj) (2.15)

BART then applies a tailored version of backfitting MCMC simulation to condition the prior
on r, where backfitting means the jth tree is iteratively updated with its partial residual.
The stationary distribution toward which the MCMC simulations converge is then used to
approximate the true posterior:

p
(
T1,M1, ..., Tj,Mj, σ

2|r
)
. (2.16)

A schematic diagram of the MCMC simulation iteration procedure is shown in Figure 2.1(c).
Within each MCMC simulation, the Tj are sampled with Metropolis samplers, while Mj are
sampled with Gibbs samplers conditioned on the previously sampled Tj; this process is done
iteratively for all j, and is conceptualized as the loop in the blue circle in Figure 2.1(c). After
simulating all the trees, the error variance (σ2) is simulated with a Gibbs sampler conditioned
on previously sampled Tj and Mj for all j. The sampling of σ2 marks the end of one MCMC
simulation. We can then see by the loop in the red square in Figure 2.1(c), the MCMC
simulation is continuous, until the simulated values converge to a stationary distribution.
These post-convergence simulated values approximate realizations from Equation 2.16, and
thus we approximate the true posterior in Equation 2.16 by the stationary distribution
obtained by MCMC simulation. At this point, we have reached a BART model that is
conditioned on the response data, because all the BART parameters (tree structures, leaf
node values, and the white noise variance) have been conditioned on the response data.
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Figure 2.1: Schematic diagrams of (a) a regression tree model, (b) an ensemble tree model
which consists of J additive regression tree models, and (c) the loops structure that BART
uses to draw MCMC simulations (indexed by l), consisting of an inner loop for J additive
regression tree models and an outer loop for a total of L MCMC simulations.

In summary, BART can be understood as Bayesian inference applied on many individual
CART models, so that we obtain posteriors of the parameters, which could lead to conditional
predictive distributions of the target response variable.

Now let us tern our attention to making predictors given a new vector of predictors,
denoted by ξ̃. Plugging ξ̃. Firstly, Equation 2.13 can be rewritten as:

Y ∼ N
(
Ŷ , σ2

)
. (2.17)

Both the mean and the variance in Equation 2.17 are uncertain, and have their respective
posteriors. By combining Equations 2.14 and 2.17, and after plugging in the post-convergence
MCMC simulated values and ξ̃, we obtain a plausible realization (indexed by the superscript
l, l = 1, ..., L) of predictive distribution as follows:

N
(
Ŷ (l), (σ2)(l)

)
= N

(
J∑
j=1

g
(
T

(l)
j ,M

(l)
j , ξ̃

)
, (σ2)(l)

)
. (2.18)

The collection of many plausible realizations yields an approximated posterior of predictive
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distributions. Thus, for response of interest, we have now obtained a fully Bayesian Gaussian
predictive model, where the mean and the variance have their respective posteriors.

BART fits itself in a nice niche in between various data-driven models (such as regression
models, neural network models, etc.) and various Bayesian models. Compared to other
data-driven models, the advantage of BART is that it allows for the determination of a full
Bayesian posterior of parameters and thus full Bayesian predictive distributions, rather than
just a few estimates/predictions or posterior statistics. Compared to Bayesian models, the
advantage of BART is its built-in capability of taking multiple exogenous variables (i.e., the
predictors) in various forms (continuous, discrete, multinomial, etc.) into account to model
complicated non-linear predictor-response relationship.
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Chapter 3

Rapid Impact Modeling: Efficient
Computation for The Assimilation
In-situ Soft Data

3.1 Introduction

In this Chapter, we approach the challenges of efficient assimilation of in-situ soft data
at unsampled sites. Although a general description has been provided in Section 1.2, to
illustrate the challenges more vividly, let us turn our attention to an interesting example.

The Mingtang deep underground tunneling project is located in a mountainous region
in China, of 7.5 km in length and at depths exceeding 450 m in a mixed granite/gneiss
rock formation. From a few boreholes along the tunnel, prior to the tunnel construction
the local groundwater table was found to be only a few meters to twenty meters below the
ground surface, which is significantly smaller than the depth to the tunnel. During the tunnel
construction, significant groundwater drawdown was observed, and local farmers reported
that the local paddy fields were drying up (Figure 3.1), potentially as a consequence of
groundwater inflow into the tunnel. The main environmental impacts of concern relate to
ecosystem health and sustainable agriculture. The drawdown is expected to have a direct
impact on local residents in terms of domestic and agriculture water supply. First, local
groundwater is a relevant source for water uptake, especially during drought periods when
the soil moisture reserve is low (Domec et al., 2010; Peñuelas and Filella, 2003; Vincke
and Thiry, 2008). Severe drawdown could deprive the ecosystem of this drought resilience.
Second, rice paddies may be a valuable source of groundwater recharge (Anan et al., 2007;
Greppi, 2004; Imaizumi et al., 2006; Liu et al., 2005), but recharge is not the primary purpose
of actively farmed paddies, and drying paddy fields is against the local farmers’ interest
because rice paddies should be submerged in a shallow layer of water during the growing
season. Unfortunately, although the Mingtang tunnel connects two major urban areas, it is
located in a largely uninhabited area in a mountainous region with limited economic activity.
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As a result: (1) there is no information on the spatial variability any hydraulic parameter,
and there is no information on groundwater recharge; (2) there is no information available to
indicate the spatial extent of the groundwater basin and the boundary conditions; (3) there
is no information on water table elevation except at a few boreholes along the tunnel. The
only immediately available data are the measurements of groundwater infiltration into the
tunnel during the tunnel construction, which is an example of in-situ soft data.

Figure 3.1: Picture taken near the Mingtang site; following tunnel construction, the paddy
fields were dried up and ceased to be agriculturally productive.

This is a typical example of a heavy-impact yet poorly sampled project, a situation quite
common in large-scale projects in general, and deep underground structures in particular
(e.g., Molinero et al., 2002; Yang et al., 2009). The Mingtang Tunnel project quite accurately
reflects the challenges we want to address in this Chapter: the complexity of the site, on
one hand, and the scarcity of in-situ hard data on the other. The lack of in-situ hard
data forces us to look for alternative information sources (such as soft data), but the large
spatial scale and the heterogeneity in the area lead to: (1) high computational demand in
inverse modeling due to the difficulty in the computation of the likelihood function, (2) high
computational demand in forward modeling due to the large spatial scale and the complexity
of the site. Consequently, it is necessary to come up with an efficient approach to assimilate
the in-situ soft data, in order to provide informed estimates of the hydrologic response of
interest, assessment of the environmental impact of drawdown.
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3.2 Rapid Impact Modeling: Theoretical Background

To achieve our goal, we have to tackle the computational demand in the inverse modeling
and in the forward modeling. The approach of ABC introduced in Section 2.3 provides a
great starting point, but that is not enough. Wagener and Montanari (2011) pointed out
that the ultimate goal of predictions at ungauged watersheds is not to define parameters
of a model, but rather, to understand the expected behavior at the ungauged watersheds
of interest. Following the same thought, we recognize that in many situations the ultimate
targets of obtaining posteriors of parameters are not the model parameters per se, but the
resulting hydrologic/hydrogeologic responses (or their environmental impacts) from forward
models.

With that in mind, we propose a new approach, named Rapid Impact Modeling (RIM,
Li et al., 2018), which follows a somewhat similar line of thinking as ABC but takes it
in a different direction. By realizing that posterior distributions of parameters are but an
interim step along the way, we can avoid altogether the need to estimate posteriors of the
model parameters, focusing instead on stochastic modeling of hydrologic responses and the
associated environmental impacts (e.g.,, impacts of groundwater drawdown). With RIM,
one can address uncertainty in the presence of limited data availability, in a practical way
and without sacrificing rigor, and to evaluate the environmental impact of concern. The
mathematical details are as follows.

Following the same notation as in Section 2, let Y denote the random variable we use
to model the target response, let y denote the observations of the target response (which is
of course unavailable at unsampled sites), and let θ denote the vector of parameters for the
forward model.

1. Since y is unavailable, the first step in RIM is to determine a total of Ci intervals of y
(e.g., 0-1, 1-2, etc.), denoted as y′i, i = 1, ..., Ci.

2. We can then characterize Y by its probability mass function:

P (Y ∈ y′i), (3.1)

which denotes the probability the Y is within y′i. Equation 3.1 provides the uncondi-
tional distribution of Y .

3. Equation 3.1 can be solved with the aid of the total probability theorem, as follows:

P (Y ∈ y′i) =

∫
θ

{P (Y ∈ y′i)|θ} p(θ)dθ, (3.2)

where the integration is taken over the parameter space spanned by θ. Equation 3.2 can
be solved using Monte Carlo integration. This entails generating multiple realizations
of θ from p(θ) (just like the first step in ABC), followed by running the forward model.
Here we let θ∗ denote a plausible realization of θ, and let y∗ denote the estimated
response using θ∗.
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4. Further simplification of Equation 3.2 is enabled by dividing the parameter space into
hypercubes, with the aid of the Total Probability Rule, as follows:

P (Y ∈ y′i) =

Cj∑
j=1

{P (Y ∈ y′i)|Aj}P (Aj), (3.3)

where Aj denotes one of the Cj hypercubes defining subsets of the parameter space.
The probabilities P (Aj), j = 1, ..., Cj are obtained from priors, subject to the constraint∑Cj

j=1 P (Aj) = 1. Equation 3.3 provides us with the means to assign probabilities to
y∗ based on prior information.

5. The next step is to condition the probabilities in Equation 3.2 on in-situ soft data. Let
z denote the in-situ soft data, and let z∗ denote the output from the transfer function
using y∗. The conditioning is done by determining intervals of the absolute difference
between z and z∗, expressed as |z − z∗| ∈ ek, k = 1, ..., Ck for a total of Ck intervals.
The conditional probabilities can be expressed as follows:

P (Y ) ∈ y′i|ek) =

Cj∑
j=1

{P (Y ∈ y′i)|ek, Aj}P (Aj|ek). (3.4)

6. Because of the correspondence between z∗ and θ∗, by classifying |z−z∗| based on ek, we
are simultaneously classifying θ∗ based on ek. This will allow us to obtain the statistics
of Y for any given error interval. This is the essence of RIM as it provides the means to
analyze Y (and its impact) directly, without going through a computationally-intensive
inverse modeling.

Because RIM directly links ek with θ∗, it bypassed not only the interim step parameter
estimation, but also the step that converts the posterior of parameters into the posterior
of the hydrologic response. Thus, the computation demand for obtaining estimates that
are conditioned on in-situ soft data has been significantly reduced. Besides efficiency, a
noteworthy advantage of RIM is that the conditioning information is used in its original form,
without being reduced to summary statistics, and hence RIM does not lose any information
compared to alternative methodologies such as ABC. In addition, although the highlight of
RIM is on efficient assimilation of in-situ soft data, ex-situ information can also be accounted
for in terms of an ex-situ prior (i.e., a prior that is informed by ex-situ information), leading
to realizations θ∗ that are informed by ex-situ information.

One should note that the selection of the maximum error bracket to consider in Equation
3.4 is subjective. The range of values considered for the errors should reflect a wide range of
scenarios. Large errors may be associated with low probabilities, but they could represent
extreme scenarios, and need to be considered. This not only allows the modelers to cover
a wide range of scenarios, but also offers a simple mechanism by which the modelers can
adjust the degree of conditioning based on case-specific considerations.
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3.3 Case Study: The Mingtang Tunnel Project

In this Section, we will demonstrate the power of RIM in a case study. The case study
is built around the Mingtang tunnel project introduced in Section 3.1. As mentioned, the
Mingtang project is a typical example of a heavy-impact yet poorly sampled project. The
impact of groundwater drawdown due to tunnel construction is of concern, but only very
limited in-situ information is available, provided as follows.

Location

The Mingtang Site is located in Yuexi County, Anhui Province, mid-eastern China (Figure
3.2)). It connects Hubei province and Anhui province. The tunnel is 7.548 km long and runs
from east to west. The maximum depth of the tunnel is about 548 m below ground surface.
Our model domain consists of a study area of approximately 180 km2 around the Mingtang
tunnel.
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Figure 3.2: Location of Mingtang tunnel, the boreholes, and the model domain.
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In-situ Information

Despite the data scarcity, limited information about the Mingtang site is still available.
The topography is mountainous with moderate slopes. The average temperature is 14.5◦C.
The rainfall in spring and summer account for more than 70% of the roughly 1400 mm aver-
age annual precipitation. The land cover is primarily pine forests, with sparsely distributed
farmlands. At the boreholes, the pre-construction groundwater table was found to be about
several meters to twenty meters below the ground surface.

Information about the local geology is available along the tunnel and at the boreholes.
The rock mass along the tunnel axis consists primarily of moderately weathered granite and
gneiss (Figure 3.3). There are three major faults along the tunnel axis, marked as F7, F6,
and F14, respectively from west to east, but only two (F6 and F7) were encountered during
excavation and thus considered in the model. Additional details are provided in (Chen et al.,
2017; Li et al., 2016).

Figure 3.3: Geological cross-sections of the study area. The upper and lower diagrams
provide a planar view and vertical cross-section, respectively.

The only in-situ measurements are the groundwater infiltration into the tunnel, monitored
during tunnel construction. The infiltration was first collected by circumferential drains
installed outside of the tunnel’s waterproof later, and then gathered into a central drainage
pipe buried under the pavement of the tunnel (Figure 3.4(a)). The infiltration flow rate was
estimated as the flow cross-section (calculated from measured flow depth, Figure 3.4(b))
multiplied by the average flow velocity (Figure 3.4(c)) in the drainage pipe. Note that the
measured flow is the total infiltration of groundwater along the tunnel. Normalized by the
tunnel length, the average infiltration is 0.65m2/day, and the measurement error is estimated
to be 0.03m2/day.
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Figure 3.4: (a) Schematic diagram of tunnel cross-section and drainage system. (b) Mea-
surement of flow depth in the drainage pipe using a pocket tape. (c) Measurement of flow
velocity in the drainage pipe using a portable flowmeter.

3.4 Stochastic Modeling of Groundwater Drawdown

with RIM

We follow the same theoretical setup from Equation 3.1 through Equation 3.4 apply
RIM at the Mingtang site. Ideally, the hydraulic conductivity as well as the recharge to
the aquifer should be considered as spatial (or spatiotemporal) random variables, and we
should model the associated heterogeneity and uncertainty. However, due to the lack of
in-situ data, it would be difficult to do so as the uncertainty is likely to be prohibitively
large. In designing a solution strategy, we should note the multiple length scales that define
a groundwater flow and transport problem. This includes the scale of the flow domain, the
scales of heterogeneity, the scales of the target variables, measurement scales and problem-
specific scales (e.g., the scale of the solute plume). The relationship between the scales offers
opportunities for simplification (e.g., De Barros and Rubin, 2011; Rubin et al., 1999). The
strategy adopted for this study calls for populating the cells in the forward groundwater
model with effective hydraulic conductivities, which is modeled as a random variable in this
case study. The effective conductivity represents homogenization over large spatial extents.
With this simplification we trade the modeling local heterogeneity off against the stochastic
modeling of homogenized responses. Likewise, we apply the same simplification to recharge,
and consider the average recharge (here referring to recharge homogenized over a year and
over the whole model domain) as a random variable in this case study. Consequently, we end
up with a forward groundwater model with two random variables: the effective hydraulic
conductivity and the average recharge. To further reduce the computation demand, we made
a special design of model domain discretization, which is is detailed in Appendix B.
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Since groundwater drawdown is a spatial function, we let x denote the location and
rewrite Equation 3.4 as

P (Y (x) ∈ y′i|ek) =

Cj∑
j=1

{P (Y (x) ∈ y′i)|ek, Aj}P (Aj|ek). (3.5)

In this case study, Y (x) is the random variable we use to model the drawdown, y′i denotes the
ith interval of drawdown value, and ek is the kth interval of the error, obtained by comparing
the modeled infiltration into the tunnel with the measured infiltration.

Up to this point, the only thing left undefined is the prior. We need to define the prior for
the effective conductivities of granite and gneiss, as well as the prior of the average recharge.
At the Mingtang Site we have limited in-situ information, primarily of a qualitative nature,
not enough for establishing priors. However, qualitative in-situ information is sufficient for
providing some indications of which sampled sites could be used for borrowing information.
Compared to totally uninformative priors, even a weakly informative prior may greatly
improve computational efficiency in the application of RIM, because we may rule out unlikely
values of the parameters that do not need to be considered for sampling. Therefore, we will
be relying on ex-situ data for the establishment of priors; hence we refer to the priors as
ex-situ priors. The establishment of ex-situ priors, in a nutshell, involves a Boolean variable
that determines whether a candidate site is similar to the Mingtang site or not, and a set
of criteria we use to determine the value of the said Boolean variable. The concept of using
ex-situ priors is important in efficient assimilation of in-situ soft data because the sampling
in RIM is thus made more efficient. On the other hand, the details of how we established
ex-situ priors are not the innovation of RIM we want to highlight here, and thus are provided
in Appendix C.

3.5 Case Study Results

This Section explores the unconditional and conditional statistics of the drawdowns at
multiple locations, and evaluates: (1) the predictive power of the ex-situ informative priors
(unconditional predictions), and (2) the effect of conditioning the predictions on the tunnel
infiltration fluxes.

Exploring The Parameter Space

A scan of the parameter space is provided in Figure 3.5, showing, for each combina-
tion of parameter values, the corresponding estimation error of the tunnel infiltration flux.
The scan is performed over the full range of parameter values as defined by the priors in
Appendix C. This scan provides the means to distinguish between subsets of parameters
based on their predictive capabilities. For example, the region dominated by blue is defined
by parameter sets that most accurately predict the tunnel infiltration fluxes, whereas the
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yellow-dominated regions are populated by parameter combinations that provide a poorer
match with observations of tunnel infiltration flux.

Figure 3.5: Vertical cross-sections of the 3-D parameter space. The color code represents the
absolute error (in m2/day) in predicting the tunnel infiltration flux (defined as the absolute
difference between computed and measured fluxes). Note: Natural log scale used for the
conductivities.

The parameter scan is used to construct the conditional distributions of the model pa-
rameters, following Equation 3.4. Figure 3.6 shows the unconditional and conditional distri-
butions of the log effective conductivity of Granite. As mentioned in Section 3.3, the average
measured flux is about 0.65 m2/day, with measurement error approximately 0.03 m2/day.
Thus, we expect the total error to be in the “blue” parameter range in Figure 3.6, but we
allowed for a wider range of errors, corresponding to the parameter space scan, to be on the
conservative side and to allow project managers to decide on acceptable error ranges based
on the projected impacts.

One can observe from Figure 3.6 that as the error decreases, the distribution gradually
converges toward a unimodal and approximately Gaussian distribution, with a concentration
of probability around a well-defined mode. It shows a marked reduction in spread and
modality compared to unconditional or less conditional distributions. It is, of course, to be
expected that conditioning on field-data would have a favorable effect, but what is significant
here is the conditioning of the effective conductivity on soft information (the infiltration flux).
Furthermore, recalling that the effective conductivity represents homogenization over large
spatial extents, this result is important in that it shows the conditioning on the tunnel
infiltration flux carries an impact on a variable defined over large support volumes. The
second point above deserves further discussion. The effective conductivity is not a spatial
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Figure 3.6: The prior (unconditional, shown in red) and posterior (conditional) distributions
of the effective hydraulic conductivity of granite, ln(kef ). The colors represent error intervals:
(1) Yellow: 0.45 - 0.65 m2/day, (2) Green: 0.25 - 0.45 m2/day, and (3) Blue: below 0.25
m2/d, as defined in Figure 3.5. The plot in red is the unconditional ex-situ prior.

random function and it is not, in general, defined by a statistical distribution because it is
defined over the ergodic limit of a stationary variable. In the present study, the effective
conductivity is defined as a uniformly distributed random variable based on the prior, varying
between its lower and upper bounds, which opens the door for conditioning.

Statistics of Drawdown

This section analyzes the drawdowns at 4 different locations, shown in Figure 3.7, repre-
senting each a different combination of distances from the tunnel and from the fault planes.
Locations 1 and 2 are quite close to the tunnel and to faults. The cumulative distribution
function (CDF) of drawdown at these two locations are very similar, and are shown in Fig-
ure 3.8. The CDFs of drawdown at location 3 and 4 are shown in Figures 3.9 and 3.10,
respectively. These results suggest the following: (1) conditioning on the average flux has
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stronger impact at locations 3 and 4, whereas locations 1 and 2 show limited sensitivity to
conditioning; (2) the parameter set that leads to the smallest error (the ”blue” in Figure 3.6)
provides the narrower CDFs of simulated drawdown; (3) drawdowns increase as we get closer
to the tunnel or to the faults, but they are still significant at distances of several kilometers
from the tunnel. The drawdowns in locations 3 and 4 are quite similar, although location
4 is much closer to the tunnel. In both cases the drawdowns are much smaller than those
observed for locations 1 and 2. This shows the strong impact of the faults on the drawdowns,
with the effects of the faults stretching out over large distances away from the tunnel. Also,
locations 3 and 4 show much more sensitivity to conditioning, and that have a much stronger
impact on drawdowns compared to the tunnel. To summarize: the drawdowns in locations
1 and 2 are dominated by the faults and are insensitive to conditioning. Proximity to the
tunnel (not near faults) does not lead to extreme drawdowns.

Figure 3.7: Locations analyzed for drawdowns. The Mingtang tunnel is indicated by the thick
black line, with the boreholes at both ends marked. The green spots represent agricultural
areas identified from satellite images.

To understand the effect of conditioning, we should note that the tunnel infiltration flux,
i.e., the in-situ soft data used for conditioning, represents an average taken over a very
large stretch of the tunnel, and as such is not representative of local conditions, except
in an average sense. The infiltration flux is controlled by the effective conductivity and
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Figure 3.8: CDFs of the drawdowns for Location 1 and 2. The various colors represent the
error level used to condition the simulations, as defined in Figure 3.6.

not by local conditions, and as such, estimating the effective conductivity benefits from
conditioning on the fluxes. The drawdowns at locations 1 and 2 are dominated by local
conditions (proximity to the faults) and hence they are not informed by conditioning on the
average flux. At locations 3 and 4, on the other hand, being far removed from the faults, the
factors affecting the drawdown are less local, and hence the drawdown statistics are informed
by, and are sensitive to, the information on the average flux.

The takeaway messages are as follows.

1. The tunnel engineering perspective: tunnel structures experience enormous pressures.
The pressure can be reduced by allowing water to drain through the tunnel’s walls.
This obviously has an impact on construction costs, but it comes with an environ-
mental price. The larger the savings on construction costs, the larger would be the
environmental impacts.

2. The environmental impact perspective: despite the mitigating effects of the tunnel’s
construction details, drawdowns are significant, even at distances of a few kilometers
from the tunnel. For the agricultural practices common in the study area, even a small
drawdown of the order of 1–5 m is detrimental.

3. The stochastic approach perspective: the new concept that emerges from this discus-
sion is that of selective conditioning through the Total Probability Theorem. It was
formally summarized in Equation 3.4. What that means is that rather than deriving the
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Figure 3.9: CDFs of the drawdowns for Location 3. The various colors represent the error
level used to condition the simulations, as defined in Figure 3.6.

posterior distributions of the effective conductivity, conditional to the tunnel infiltra-
tion flux, we derive the conditional distribution of the drawdowns, limiting predictions
to only those parameter sets that are in the best agreement with the observations.
This offers significant savings in computations, because it eliminates the need to derive
the likelihood function (which is extremely demanding at the tails).

The Environmental Impact of The Drawdown

The pine forest at the Mingtang site is the dominant land cover. According to the criteria
listed by Eamus et al. (2006), it is likely a part of a groundwater-dependent ecosystem. To
assess the potential for impacts, a comparison is needed between the rooting depth of the
vegetation and the CDFs of drawdown. Canadell et al. (1996) showed that the maximum
rooting depth of pine trees on weathered granite could range from 4 m to 7.5 m, while
Peñuelas and Filella (2003) found evidence of hydraulic lift by pine tree at 8 m in depth.
This depth 8 m is deeper than the drawdown shown in Figures 3.9 and 3.10 , but corresponds
only to roughly the median values of the CDF value in Figures 3.8 . In other words, the
drawdowns at locations 1 and 2 are likely to exceed the maximum rooting depth. This leads
to considering how the pine trees would respond to drawdown in a drier environment.

The effects of drier environments on pine rooting depth have been found to be positive.
Laiho and Finér (1996) studied pine mire in southern Finland and showed that following
drawdown of tens of centimeters, the living root biomass increased considerably. Bakker
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Figure 3.10: CDFs of the drawdowns for Location 4. The various colors represent the error
level used to condition the simulations, as defined in Figure 3.6.

et al. (2006) studied the fine roots of Pinus pinaster and showed that when the water table
depth was 3 m instead of 1.3 m, the rooting depth was 3 m instead of 0.9 m. In other words,
it is reasonable to expect pine vegetation to be capable of growing deeper roots to fetch
deeper water. The depth to the water table at the Mingtang site ranges from 0.1 to 10 m.
Given the depth range at which pine trees can access water, a drawdown of the order of 1 m
is considered surmountable by either growing deeper roots (e.g., Bakker et al., 2006; Laiho
and Finér, 1996) or hydraulic lifts (e.g., Domec et al., 2010; Peñuelas and Filella, 2003).
According to Figures 3.9 and 3.10, the drawdowns at locations 3 and 4 are very likely to
be smaller than 3 m, which is likely to be overcome. However, the drawdown at locations 1
and 2 (as shown in Figure 3.8) could be as extreme as 10 m. Therefore, an environmental
impact would be expected at locations 1 and 2.

Drawdown is significantly higher when close to both tunnel and faults. If we move
away from the tunnel and the faults (e.g., the northern part of Basins A and B, and the
southern part of Basin D, in Figure 3.7), the modeled drawdown is generally smaller than
1 m, regardless of values of hydraulic parameters. Thus at these areas, the environmental
impact is expected to be negligible. One should note that drawdown does not necessarily
lead to wilting of the pine trees, as the available water content in the soil is still accessible.
The drawdowns are expected to (and in fact, shown, by local farmers) to affect the rice
paddies. During the growing season, rice paddies should be submerged in a shallow layer
of water. Schmidt et al. (2011) scanned the soil layers in a rice paddy and showed that the
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rooting depth of rice is roughly 20 cm; Morita et al. (1988) showed that the root density of
rice plunged significantly at depths larger than 25 cm. Both studies showed that the rooting
depth of rice is of orders of magnitude much smaller than the modeled drawdowns. Thus, the
effect of drawdown on rice paddies is obvious and significant and can happen at all locations
shown in Figure 3.7.

3.6 Conclusions

In this Chapter, we propose the approach of Rapid Impact Modeling, RIM, for efficient
conditioning of estimates of hydrologic responses on in-situ soft data. RIM’s primary in-
novations are (1) its capability of using all the information available, including in-situ soft
information and ex-situ information, to condition the estimates of hydrologic responses, and
(2) the efficiency in conditioning the estimates of hydrologic responses, and rapid assess-
ment of impacts, achieved by while bypassing the need for deriving statistical distributions
of model parameters. RIM provides a huge reduction in computational effort because it
replaces the computation of a likelihood function with integration over the parameter space
defined by priors. Thus, RIM offers a systematic way to assimilate both in-situ soft data and
ex-situ data for stochastic impact evaluation. By focusing on the total probability theorem
instead of posterior parameter distributions, RIM recognizes that in many applications the
identification of parameters is just an interim step towards the end goal, which is the esti-
mation of hydrologic responses and the associated impact assessment, and that this interim
step incurs disproportionally large computational effort and (in many cases) requires unnec-
essary data acquisition efforts. With this, RIM complements and augments previous efforts
on goal-oriented site characterization (Barros and Rubin, 2008; Barros et al., 2012; Maxwell
et al., 1999; Nowak et al., 2010) and on approximate Bayesian computation.

We demonstrated the power of RIM in a case study at the Mingtang tunnel project, a
typical example of heavy-impact yet poorly sampled project. The issues of primary concerns
include the potential impacts of drawdown in the water table on the natural vegetation of the
overlying ecosystem and on agricultural activities. Given that, estimating the extent of the
groundwater drawdown is identified as a variable of major concern. We showed how it can
be efficiently done to assess the impact of drawdown conditioned on the average groundwater
infiltration into the tunnel, a source of soft data, while also systematically accounting for
the associated uncertainty. From a broader perspective, this case study also addressed the
misconception mentioned in Section 1.2 that a successful application of stochastic modeling
requires lots of data.
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Chapter 4

Nested Tree-based Modeling:
Hierarchical Similarity and Bayesian
Regionalization

4.1 Introduction

In Chapter 3 and Appendix C, we have introduced the establishment of ex-situ priors.
Borrowing information from other sampled sites has been actively studied, especially in the
form of regionalization (see Section 1.2). However, treating similarity as a Boolean variable
may not be the best approach, because we then lose the ability to distinguish a highly similar
site from a slightly similar site. It is important and advantageous to consider similarity as a
continuous function: from previous studies referenced in Section 1.2, we have learned that the
factors determining hydrologic similarity may vary under different conditions, and a universal
system of hydrologic similarity still remains unavailable. From there, we recognized the need
for an approach to simultaneously (1) account for the dynamic hydrologic similarity system
and (2) quantify uncertainties in the parameters, the model structures, and the estimates. To
that end, in this Chapter the objectives are twofold. First, we would like to propose a general
approach of regionalization that serves the aforementioned need. Second, we would like to
integrate the approach with our hypothesized theory to explain how modeling uncertainty
and the assimilation of ex-situ data are affected by the dynamic behavior of hydrologic
similarity.

4.2 Nested Tree-based Modeling

We propose a general approach of regionalization, named the nested tree-based modeling
approach, explained in details in this Section.
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Bayesian Additive Regression Tree and Its Advantages

First, let us recall the Bayesian Additive Regression Tree (BART) method introduced in
Section 2.3, which is, in a nutshell, Bayesian inference done on an ensemble of classification
and regression tree (CART) models. There are two advantages of BART that makes it a good
starting point for our need. First of all, BART combines the non-linear regression for the
predictor-response relationship with Bayesian inference, allowing for full Bayesian quantifica-
tion of model parameter uncertainty, which means that we get the conditional distributions
of the parameters, rather than a few conditional estimates or conditional statistics. Second,
it is a pure data-driven machine learning technique, so it is applicable as long as there are
data, even when the data are ex-situ. Thus, regionalization can be done by conditioning the
BART parameters on ex-situ data, and one may apply the conditioned BART model at any
unsampled site of interest.

The second advantage above deserves a more detailed discussion, as one may argue where
does physical knowledge come into play. Prior knowledge of physics is only minimally ac-
counted for in BART, primarily in terms of the composition of the predictor set. Namely,
if one believes that a variable X can be used to estimate the response Y , then one should
include X in the predictor set of the BART model for Y . The underlying physical predictor-
response relationship is inferred from the ex-situ data via obtaining conditional distributions
of the BART parameters, and thus is implicitly embedded, rather than explicitly defined
as in physically based models. This of course is a common limitation of many data-driven
approaches: the extent to which physics could be inferred is restricted by the conditioning
data —in our context, the ex-situ data. However, in compensation, we avoid a disadvantage
of the application of physically based models in the case of unsampled sites. The available
information at unsampled sites is limited, and it is unrealistic to expect that a certain piece
of information should be known. Information unavailability could hinder the implementation
of powerful hydrologic models (Razavi and Coulibaly, 2017) because some of the required
model inputs may be unavailable (Gemitzi et al., 2017; Xie et al., 2017). It is possible to
treat missing inputs as parameters, and run simulations to impute them or apply stochastic
methods to estimate them. Nonetheless, the corresponding computational demand grows
in power law with the number and the plausible range of the missing inputs, which is of
great practical importance when evaluating the pros and cons of an approach. Note that we
have no intention to show the superiority of either the data-driven or the physically based
models. As Wagener and Montanari (2011) pointed out, the ultimate goal of predictions at
unsampled locations is not to define parameters of a model, but rather, to understand what
behavior we should expect. We have simply shown why BART is suitable for modeling at
unsampled sites.

With its two advantages, BART offers an elegant way to account for model parameter
uncertainty while at the same time performing regionalization. Nonetheless, there is still
a limitation behind the user-defined composition of the predictor set. The predictor set is
defined by answering the question “What variables should be considered for the estimation
of the target response?”, and thus implies a presumed model structure. As emphasized in
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Chapter 1, uncertainty resides not only in model parameters but also in model structures,
and thus model structure uncertainty should be considered. An intuitive solution to that is
the proposal of multiple plausible BART models, each of which features a unique predictor
set. However, that introduces the following problem: defining the weights of these plausible
models, or in probabilistic terms, the establishment of a probability mass function (PMF) of
plausible models. One can always define an uninformative PMF, i.e., a uniform distribution,
but if priors of parameters can be informed by ex-situ data, why cannot the PMF? To that
end, we invoke a nesting framework of BART, which will be explained in the next subsection.

Nesting BART under CART

We approach the challenge of defining a PMF of plausible BART models by using a
proposal-comparison procedure, which we termed the nested tree-based modeling approach.

We start by proposing K plausible BART models, denoted as Bk, k = 1, ..., K. The
model structure uncertainty is accounted for by obtaining a probability mass function of the
K plausible BART models, denoted by p(Bk). The determination of p(Bk) can be informed
by the data (namely, in an empirical Bayes way, where the prior is informed by the data).
At each available data point, we evaluate the performance of the plausible BART models by
a performance metric; a typical example is the mean squared error, but it can be any metric
that can be obtained from the conditioned predictive distribution. Then, a label is given to
each data point, indicating which plausible model has the highest performance measured by
the metric. Finally, we build a CART model to classify the data points based on their labels.
We refer to this as nesting multiple BART models in one CART model. Like introduced in
Section 2.3, this CART model is capable of partitioning the space spanned by all predictors,
resulting in partitioned subspaces represented by the leaf nodes. At each leaf node, we obtain
an empirical multinomial distribution of the K plausible BART models, indicating p(Bk) in
that predictor subspace. Thus, by investigating all the leaf nodes together, one can study
the variation of p(BK) with various predictors, thus exploring the variation of the dominant
controls of hydrologic similarity under different conditions.

A very simple example is illustrated in Figure 4.1, where we compare the performances
of two BART models (K = 2) using one predictor and a simple two-leveled classification
tree. The predictor space is partitioned into the positive subspace and the negative subspace
by the partitioning rule indicated in the diamond box. Thus, for any new data point with
positive predictor value, we would use p(B1) = 0.76 and p(B2) = 0.24 as the probability
mass function of plausible models. In real applications, of course, one can use an arbitrary
number of predictors to compare an arbitrary number of plausible BART models.

Up to this point, we have introduced the nested tree-based modeling approach. The
essence of it is the combination of the proposal-comparison-based consideration of model
structure uncertainty, and the various advantages of BART that were discussed before. For
estimation purpose, one would be interested in accounting for model structure uncertainty by
averaging the estimates over p(Bk), which can be done by invoking Bayesian model averaging.
However, the capability of the nested tree-based modeling approach does not stop here, as
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One Predictor

Predictor Value > 0

76% BART Model 1 performs better
24% BART Model 2 performs better

35% BART Model 1 performs better
65% BART Model 2 performs better

Yes No

𝑝 𝐵1 = 0.76
𝑝 𝐵2 = 0.24

𝑝 𝐵1 = 0.35
𝑝 𝐵2 = 0.65

Figure 4.1: Schematic diagrams of an example of nesting two BART models under a simple
two-leveled CART model, using only one predictor. The partitioning rule is expressed in the
diamond box, and the leaves are represented in blue boxes.

the approach also outputs the variation of p(Bk) under various conditions. This could be an
indication of the behavior of a dynamic hydrologic similarity system, and will be explained
in details next.

Hypothesis of hierarchical similarity

The variation of p(Bk) indicates the behavior of a dynamic hydrologic similarity system,
but the underlying theory for physical interpretation is still missing. Here, we propose
a hypothesis of hierarchical similarity to do so. We hypothesize the hydrologic similarity
follows a hierarchy that has two levels:

1. The lower level is termed the predictor similarity, meaning that if two sets of pre-
dictors are similar in some parts, their corresponding response will be similar. In
hydrology context, if two watersheds have some similar characteristics, then their hy-
drologic responses will be similar. This lower level corresponds to the BART models
in the nested tree-based modeling approach.

2. The higher level is the regionalization similarity, meaning that if two sets of pre-
dictors are similar in some parts, their corresponding predictor-response relationships
will be similarly controlled. In hydrology context, if two watersheds have some sim-
ilar characteristics, then their hydrologic responses will be governed by similar func-
tions/mechanisms. This higher level corresponds to the classification tree in the nested
tree-based modeling approach.
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Put simply, regionalization similarity determines the predictor-predictor relationship and
tells us which predictors to extract information from, while predictor similarity determines
the predictor-response relationship that actually estimates the response using the said ex-
tracted information. Note that the two sets of predictors respectively determining the two
levels of similarity are not mutually exclusive: they may or may not overlap. To elaborate
on the difference between the two levels of similarity, we present the following two example
statements under the example context of groundwater recharge estimation.

1. Systematic trends in recharge rates are often associated with climatic trends
(Healy, 2010). This is a statement of predictor similarity, indicating a predictor-
response relationship. One would be informed to association recharge rates with cli-
matic variables.

2. In arid regions, focused recharge from ephemeral streams is often the dom-
inant form of recharge (Healy, 2010). This is a statement of regionalization
similarity, indicating a predictor-predictor relationship. One would be informed to
pay more attention to the dominant factors of ephemeral streams, if the study area of
interest is in arid regions.

The two levels in the hypothesis correspond to the two levels in the nested tree-based
modeling approach. We use the BART models to explore predictor similarity with different
predictor sets, and use the classification tree to explore regionalization similarity by investi-
gating the variation of p(Bk) under various conditions. Note that as the condition changes,
the best performing BART model may change and so does the set of dominant predictors
in the predictor-response relationship. This offers a potential theory of why under different
conditions, the hydrologic similarity may be controlled by different watershed characteristics.

4.3 Case Study: The Eastern U.S.

In this Section, we will demonstrate how the nested tree-based modeling approach can
be used to condition estimates of hydrologic responses on ex-situ data while also quantifying
the associated uncertainty. More importantly, we will demonstrate how the approach can
inform us about the different controls of hydrologic similarity under different conditions. The
case study involves the estimation of mean annual groundwater recharge, a spatiotemporally
homogenized hydrologic response, in the Eastern U.S.

To estimate recharge, one should first identify a number of plausible predictors. Although
few studies have directly identified the controlling factors, some insights can be learned
from previous studies. For example, the effective recharge (i.e., the net source term in the
groundwater flow equation) in a steady, depth-integrated, and unbounded groundwater flow
was found to be correlated with the spatial distributions of transmissivity and hydraulic
head (Rubin and Dagan, 1987a,b). From a recharge-mechanism-based perspective, previous
studies have also found a list of plausible controlling factors of recharge via recharge potential
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mapping (Naghibi et al., 2015; Rahmati et al., 2016; Yeh et al., 2009, 2016). These variables
include watershed topography, land cover, soil properties, and geology. At the regional scale,
climate variables have been found to be among the primary controlling factors of groundwater
table depth (Fan et al., 2013), mean annual groundwater recharge (Nolan et al., 2007), and
mean annual baseflow (Rumsey et al., 2015), the latter of which is often used as a surrogate
of recharge under the steady state assumption. Other examples include Xie et al. (2017), who
showed that evapotranspiration data provided more conditioning power and more uncertainty
reduction than soil moisture data in long-term mean recharge estimation, and Hartmann
et al. (2017), who reported variations of the sensitivity of annual groundwater recharge
to annual precipitation with aridity. Although these studies did not apply regionalization
explicitly and did not target ungauged watersheds directly, their findings provide guidance
for us to identify some watershed characteristics—especially climate variables—that might
play an important role in the regionalization process for recharge estimation.

We will try to follow the indication from previous studies for the collection of predictors.
It is important to note, however, that this case study is not aimed at a thorough investigation
of the recharge mechanism, nor is the goal obtaining the most accurate recharge estimates.
Rather, the primary goals are the demonstration of the power of our approach, and showing
how the approach helps us understand the dynamic behavior of hydrologic similarity in the
study area.

Watersheds and Recharge Estimates

The conterminous United States can be divided into eight major river basins (MRBs, see
Figure 4.2), each of which consists of thousands of watersheds (Brakebill and Terziotti, 2011;
USGS, 2005). At each and every watershed, watershed-average annual recharge estimate and
watershed characteristics data are retrieved from publicly available databases, and will be
described in the following subsections. In our work, the recharge estimates are used as the
target response while the characteristics are used as predictors in the regionalization process.
as explained in Section 4.2.

In 2002, annual groundwater recharge at each watershed was estimated via baseflow
analyses by the U.S. Geological Survey (USGS) (Wieczorek and LaMotte, 2010d; Wolock,
2003, also shown in Figure 4.2). Streamflow-based estimation of recharge, such as baseflow
analysis, is commonly used in humid regions. As put forward by Healy (2010), there are three
key questions that should be carefully checked before applying baseflow analysis: (1) Is all
recharging water eventually discharged into the stream where the baseflow is measured? (2)
Do low flows consist entirely of groundwater discharge? (3) Does the contributing area of the
aquifer differ significantly from that of the watershed? Without a rigorous proof, we make
a working assumption about the reliability of baseflow analysis. Fortunately, from a post
hoc check, the recharge estimates fall within the typical scales at which baseflow analysis is
more suitable: a recharge scale from hundreds to thousands mm per year, a spatial scale of
hundreds of m2 to hundreds of km2, and temporal scales from months to decades (Scanlon
et al., 2002).
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(a) (b)

Figure 4.2: The study area includes (a) MRB 1 and (b) MRB 2 in the eastern U.S., colored
by the estimated annual groundwater recharge in the year of 2002 (Wolock, 2003). For the
details of the delineation of MRBs please refer to USGS (2005).

The more arid U.S. Midwest may have more pronounced localized recharge (Vries and
Simmers, 2002), which cannot be effectively captured by baseflow analysis (Scanlon et al.,
2002). This, then, does not fit well with our working assumption. Therefore, following the
suggestion of Nolan et al. (2007), our study area includes only the relatively humid eastern
parts of the U.S., namely MRB 1 and 2 (Figure 4.2). After excluding watersheds with
less desirable data coverage, we consider a total of 3609 watersheds in MRB 1 and 7413
watersheds in MRB 2. The distributions of the recharge data from all the watersheds in the
study area are shown in Figure 4.3(a).

Climate

At each watershed included in the study, the following data are retrieved from publicly
available databases: the long-term average annual precipitation (P̄ ) averaged from 1970 to
2000 (Wieczorek and LaMotte, 2010a), the annual precipitation in the year 2002 (P ) (Wiec-
zorek and LaMotte, 2010h), and the long-term average annual potential evapotranspiration
(Ep) averaged from 1960 to 1990 (Title and Bemmels, 2017). Note that limited by data
availability, the average periods of P̄ and Ep are different. Thus, we also make a working
assumption that at the decadal scale the averaged climate variables remain steady, with
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which we ignore the potential effect of climate change on the difference between the average
from 1960 to 1990 and that from 1970 to 2000. Given the precipitation and evapotranspi-
ration, we obtained two additional climate variables: the long-term aridity index, estimated
as φ̄ = Ep/P̄ , and the 2002 aridity index, estimated as φ = Ep/P . Given that the recharge
data are based on baseflow analysis for the year 2002, P and φ represent the climate controls
of that same year, while P̄ , Ep, and φ̄ represent climate controls over the long-term. The
distributions of P , P̄ , and Ep are shown in Figures 4.3(b), (c), and (d), respectively.

Normalization and Transformation of Recharge

The annual recharge data (in volume of water per unit watershed area) can be normalized
by P (also in volume of water per unit watershed area), as in Figure 4.3(e). This stems from
the concept of water budgets and has been commonly used in hydrological studies worldwide
(e.g., Heppner et al., 2007; Magruder et al., 2009; Obuobie et al., 2012; Rangarajan and
Athavale, 2000; Takagi, 2013; Yang et al., 2009). Here, we apply logit transformation,
which is common for proportions or probabilities (Gelman et al., 2014), to that normalized
recharge, relaxing the physical bounds (0 and 1) of the values of the target variable (Figure
4.3(f)). This step is advantageous as it opens the opportunity to estimate recharge with
classical parametric statistical approaches without special accommodations for the bounds.
Therefore, in this case study the logit normalized recharge (LNR) is used as the target
response.

Non-climate Predictors

We also consider various non-climate watershed characteristics in this study, including
topography, land cover, soil properties, and geology. The land cover is based on data pub-
lished in 2001, which we feel is close enough to 2002 to provide the appropriate information.
The other characteristics are based on raw data obtained in different years before 2002; it is
assumed that they remain steady at sub-century time scales.

The topographic predictors are taken from publicly available databases (Wieczorek and
LaMotte, 2010b); they are summarized in Table 4.1. The land cover variables are the per-
centages of watershed area corresponding to each land cover class (Wieczorek and LaMotte,
2010e); these are summarized in Table 4.2. The land cover classes are based on the 2001
National Land Cover Database (NLCD2001), the categories of which include water, devel-
oped land, barren land, forest, shrubland, herbaceous land, cultivated land, and wetland,
with each having its own sub-classes. The details of NLCD2001 can be found in Homer et al.
(2007).

The soil property predictors include watershed scale statistics (e.g., average, upper bound,
and lower bound) of soil properties (Wieczorek and LaMotte, 2010f); these are summarized
in Table 4.3. The spatial statistics of the soil properties within each watershed were ob-
tained over gridded source data values from the State Soil Geographic database (STATSGO)
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Figure 4.3: Histograms of (a) annual recharge in 2002, (b) annual precipitation in 2002,
(c) long term average annual precipitation, (d) long term average annual potential evapo-
transpiration, (e) normalized recharge, and (f) logit normalized recharge (LNR) at all the
watersheds in MRB 1 and 2. The black curves are estimates of the distributions based on
kernel density estimation.

(Schwarz and Alexander, 1995), which were depth-averaged overall soil layers (Wolock, 1997).

The geology predictors used in this study are also retrieved from publicly available
databases (Wieczorek and LaMotte, 2010c,g) and they can be classified into two subcat-
egories: surficial geology (surface sediment) and bedrock geology. As the predictors, we
used fractions of the watershed area corresponding to each of the 45 surficial geology types
(Clawges and Price, 1999) and each of the 162 bedrock geology types (Schruben et al., 1994).
Details regarding each geology type can be found in Wieczorek and LaMotte (2010c,g). Note
that in geological terminology, rock type or rock composition data are referred to as lithology
data. Compared to lithology, structural geology data might be more informative for ground-
water studies (e.g., orientation, fracture properties, discontinuity, etc.). However, structural
geology information usually requires in-situ investigation, which cannot be expected at un-
sampled watersheds. Therefore, we consider only lithology data in this study.

Data partitioning

Because we cannot evaluate the predictive accuracy at real unsampled watersheds due
to the lack of in-situ recharge observations, we follow the holdout method to partition the
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Table 4.1: Watershed topography predictors.

Variable Explanation Unit

Basin index
Watershed area divided by

squared watershed perimeter
dimensionless

Stream density
Reach length divided by

watershed area
m−1

Sinuosity

Reach length divided by
the distance between

the beginning and
the ending of the reach

dimensionless

Slope
Mean watershed slope

calculated from
digital elevation data

degree

watersheds into two mutually exclusive sets: the watersheds in MRB 1 are the testing wa-
tersheds, and the watersheds in MRB 2 are the training watersheds. The testing watersheds
will be treated as if they were unsampled, and we only condition the plausible BART models
on data from the training watersheds (which are the ex-situ data with respect to the testing
watersheds).

There are two reasons for this MRB-based data partitioning:

1. For reasons touched on in Section 1.2, we do not consider spatial proximity as a pre-
dictor in this study. Separating the two MRBs partly ensures the exclusion of the
confounding effect of spatial proximity, and thus the regionalization is solely based on
the watershed characteristics.

2. Considering the distributions of LNR (Figure 4.3(f)), the range of values in MRB 2
fully covers the range of values in MRB 1. However, the reverse is not true. It is thus
advantageous to train the models with MRB 2 to avoid poor model fitting due to lack
of data coverage.

After partitioning the watersheds, we now turn our attention to the partitioning of pre-
dictors. As mentioned in Section 4.1, climate variables are among the most important factors
in hydrology at the regional scale, but there might be other controlling factors to consider
as well, and the dominance of climate variables may not be always present. To investigate
the various effects of different predictors, we conceptually divide the predictors into four
sets: (1) climate controls that determine the input amount of water into the system, (2)
surface controls that determine the distribution of water at the surface, (3) soil controls that
determine the infiltration of water, and (4) lithology controls that indicates the properties
of the aquifer. We further break of the first set into three subsets to investigate the effect
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Table 4.2: Land cover classification by NLCD2001.

Class Subclass

Water
Open water
Perennial ice

Developed

Open space
Low intensity

Medium intensity
High intensity

Barren Barren land

Forest
Deciduous
Evergreen

Mixed

Shrubland
Dwarf shrub
Shrub/scrub

Herbaceous

Grassland
Sedge

Lichens
Moss

Cultivated
Pasture/hay

Crops

Wetlands
Woody wetland

Emergent herbaceous wetland

of dimensionless predictors. Therefore, we define a total of six different predictor sets to
build six unique BART models, which are indexed by k, k = 1, 2, ...6 (Table 4.4). Note that
the determination of the six predictor sets is guided by a conceptual division of predictors
and the idea of testing the relative importance of different categories of predictors under
different conditions, instead of aiming for high accuracy and precision. Therefore, by no
means is Table 4.4 an exhaustive list of all possible sets, nor does it necessarily include the
”best” set that leads to the ”best” predictive performance. The design of the six predictor
sets simply facilitates the investigation of the effects of various categories of predictors on
predictive accuracy and uncertainty.

In addition to the six BART models, we also build a simple model by using the estimated
distribution of LNR at the training watersheds via kernel density estimation (R Core Team,
2018; Sheather and Jones, 1991), without considering any predictor. In other words, this
is simply using the distribution of LNR at all the training watersheds as the predictive
distribution. This is a model that ignores hydrologic similarity altogether, and it can be
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Table 4.3: Soil property predictors.

Soil property Unit Statistics*

Calcium carbonate equivalent % Lower/higher bounds
Cation exchange capacity cmolc kg−1 Lower/higher bounds

Depth to the seasonally high water table m Average and Lower/higher bounds
Soil thickness m Lower/higher bounds

Hydrologic soil group classification % Average
Soil erodibility factor dimensionless Average

Permeability m h−1 Average and Lower/higher bounds
Available water content fraction Average and Lower/higher bounds

Bulk density g cm−3 Average and Lower/higher bounds
Organic matter content % Average and Lower/higher bounds

Clay soil content % Average and Lower/higher bounds
Silt soil content % Average

Sand soil content % Average
Percent finer Than nos.4, 10, and 200 sieve % Average and Lower/higher bounds

* Spatial statistics calculated across the watershed.

Table 4.4: Table of the six different predictor sets.

k predictors included Number of predictors

1 φ̄ and φ 2
2 P̄ , P , and Ep 3
3 All climate predictors: P̄ , P , Ep, φ̄ and φ 5
4 Topography and land cover predictors 20
5 Soil predictors 48
6 Geology predictors 206

considered as an extreme case of the ex-situ prior in Li et al. (2018), with a lot more
watersheds and much less stringent criteria of similarity. From this point forward, we refer
to this model as the benchmark model, for it is used as a benchmark against which the
BART models are compared.

Evaluation of predictive distributions

To apply the nested tree-based modeling approach, we should label each testing water-
shed by the best performing model. Thus, the metric with which we evaluate predictive
distributions matters. In this study, two different accuracy metrics are adopted. The first is
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the root mean squared error (RMSE), defined as

Ei,k =

√√√√ 1

L

L∑
l=1

(
R̂

(l)
i,k − r̃i

)2

(4.1)

where r̃i is the recharge data at the ith testing watershed, and Ei,k is the RMSE of the

kth model at the ith testing watershed. Note that R̂
(l)
i,k is obtained using BART (Equation

2.17), but we change the notation to specifically represent the target response, LNR, and now
subscripts are added to indicate that we plug in the predictors from the ith testing watershed
to the kth model. This metric evaluates the predictive performance in an estimation problem,
where we wish to obtain a ”best estimate” of recharge with minimal expected error.

The second metric is the median log predictive probability density (LPD) at the value of
recharge observation, defined as

Li,k = medianl=1,...,L

{
ln
[
p
(
R = r̃i|R̂(l)

i,k, (σ
2)

(l)
k

)]}
, (4.2)

where Li,k is the LPD of the kth model at the ith testing watershed. The subscript of (σ2)
(l)
k

indicates the kth model. This metric evaluates the predictive performance in a simulation
problem, where we wish the realizations from the predictive distributions are likely to be the
same as the observation.

In addition to accuracy, we also quantify the predictive uncertainty. This is done by
first recognizing the two components of uncertainty for the kth model at the ith testing
watershed:

1. σ2
k, which we refer to as the predictive variance, and is approximated as the sample

median of (σ2)
(l)
k over l = 1, ..., L, and

2. the posterior variance of R̂i,k, which we refer to as the estimate variance, and is

approximated as the sample variance of R̂
(l)
i,k over l = 1, ..., L.

The predictive variance indicates how informative the inferred predictor-response rela-
tionship is, while the estimate variance indicates how uncertain the said relationship is. In
this case study we weigh the two components equally, as we wish to obtain an informative
relationship with certainty. To that end, we define the total predictive variance as the
summation of the two components, and use it as the metric of predictive uncertainty in this
study.

4.4 Case Study Results: Predictor Similarity

As discussed above, we built six BART models (Table 4.4) with ex-situ data. In-situ
predictors were then fed into the models to yield posterior realizations of predictive distri-
butions (Eq. 2.18). With the metrics of accuracy and uncertainty defined, we are then able
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to quantify the predictive performance of the BART models, and classify them based on
either the RMSE-based labels or the LPD-based labels with the nested tree-based modeling
approach. This allows for the investigation of the effects of various predictors under different
conditions, which will be presented in this Section.

Predictive Uncertainty
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Figure 4.4: (a) The box plots of the estimate variances at the testing watersheds, (b) the
bar plot of the predictive variances with 95% intervals shown by the error bars , and (c) the
box plots of the total predictive variances at the testing watersheds. The red line indicates
the variance of the benchmark model, used for comparison.

The effect of regionalization with the different predictor sets on predictive uncertainty is
shown in Figure 4.4. The estimate variance (Figure 4.4 (a)) represents how well the BART
models capture the predictor-response relationships. We see that the geology predictors
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lead to the lowest estimate variance, probably because of the significantly larger number of
predictors used (see Table 4.4).

Yet, there is a surprise in Figure 4.4(a). First, at k = 1 and k = 2 the estimate vari-
ances are generally quite low, despite the low number of predictors. However, at k = 3, the
estimate variances increase significantly. Intuitively, since aridity is the ratio of evapotran-
spiration to precipitation, one would expect that the variances at k = 3 would be similar
to, if not lower than, those at k = 1 and k = 2. One plausible explanation here is that
although aridity indices and precipitation/evapotranspiration carry ample information to be
extracted and conditioned upon, the respective predictor-response relationships we get might
be significantly different. When used together, the BART models were not able to formulate
a universal relationship. This will be revisited later in Section 4.6.

The predictive variance (Figure 4.4(b)) represents how informative the predictor-response
relationships are, which is a different aspect of uncertainty compared to the estimate variance.
One could obtain a predictor-response relationship fairly confidently (low estimate variance),
but the relationship is less informative (high predictive variance), like that found at k = 6.
The opposite case is that one could not confidently obtain a predictor-response relationship,
but once that relationship is obtained it is quite informative, like that found at k = 5.

The total predictive variance (Figure 4.4(c)) provides an overall metric that considers
the above two sources of uncertainties. While the medians are rather similar, the spread
of the box plots does vary significantly with k. The condensed box plots (e.g., k = 1 and
k = 6) indicate that the total predictive variances are essentially constant throughout all
testing watersheds, while the spread-out box plots (e.g., k = 5) indicate that the effect of
the predictors may vary significantly from one testing watershed to another. This indicates
that there might not be one single predictor set that always leads to the lowest uncertainty,
and thus the effects of predictors on predictive uncertainty may vary from one condition to
another. That said, regardless of the testing watersheds and predictor sets, the total predic-
tive variance is always lower than the variance of the benchmark model, which clearly shows
that regionalization using watershed characteristics definitely improves predictive precision.

Predictive Accuracy

The effect of regionalization with the different predictor sets on RMSE is shown in Figure
4.5. The RMSE of the benchmark model (Figure 4.5 (a)) at each testing watershed is simply
the difference between the sample mean of the ex-situ recharge data and the in-situ recharge
observation. For the BART models (Figure 4.5 (b)), it is calculated by the root of the
average squared errors over post-convergence MCMC simulations. Regardless of k, we see
that, compared with the benchmark model, RMSE is reduced at least at half of the testing
watersheds. Surprisingly, the largest overall RMSE reduction is observed when only the
aridity indices are used for regionalization, indicating that at most of the watersheds tested
in this study, aridity similarity implies LNR similarity at regional and annual scales to a
high degree. On the other hand, we observe some outliers that have high RMSE reduction
at k = 4 through k = 6, indicating that topography, land cover, soil properties, and geology
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may not have an overall effect that is as strong, but under certain circumstances, they could
still be important factors.
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Figure 4.5: (a) The box plot of the RMSE of the benchmark model at the testing watersheds,
and (b) the box plots of the RMSE reduction introduced by applying the BART models at
the testing watersheds. The red line indicates zero RMSE reduction, used for comparison.

The effect of regionalization with different predictor sets on LPD is shown in Figure 4.6.
It is immediately clear that the accuracy improvement is not as prominent as that seen in
Figure 4.5. Only when k = 1 is LPD increased at most of the watersheds . We also find that
all of the distributions of LPD are heavily negatively skewed with a lot of outliers.

Looking at Figures 4.4 through 4.6 together, one can observe the different effects of the
predictor sets on predictive accuracy, stemming from the different natures of an estimation
and a simulation problem. From the point of view of the overall effect, for k = 2 through
k = 5 (i.e., the predictors other than aridity indices) RMSE is reduced at more than half of
the testing watersheds, but LPD does not increase to the same extent. This suggests that the
predictive distributions are centered closer to the in-situ observations due to regionalization,
but that the conditioning also significantly reduces the predictive variances, causing the
predictive distribution to be too narrow. Therefore, compared to a relatively flat, spread-
out, and uninformative or weakly informative distribution, the predictive density decays
too quickly when deviating from the predictive mean, resulting in low LPD. This might be
a sign of over-conditioning, or the disproportional reduction of predictive uncertainty, as
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Figure 4.6: (a) The box plot of the LPD of the benchmark model at the testing watersheds,
and (b) the box plots of the LPD increase introduced by applying the BART models at the
testing watersheds. The red line indicates zero LPD increase, used for comparison.

exemplified in Figure 4.7. The cyan curve is an example of an over-conditioned distribution.
Although its mean is somewhat close to the true value, the small variance causes rapid decay
of probability density; therefore, at the true value (red vertical line) the predictive density
is no better than that of the weakly informative or uninformative distributions. How could
this ever happen? Take k = 5 in Figure 4.4 as an example: the predictive variance is small,
meaning that the predictive distribution should be rather peaked (just like the cyan curve
in Figure 4.7). The only way one can get a high predictive density is then to make the
predictive mean close to the true value. Nonetheless, this would be very difficult at some of
the watersheds where the estimate variance is large. The only predictor set that improves
both RMSE and LPD at most of the testing watersheds is k = 1, the aridity indices, and
one could expect the corresponding predictive distributions to be somewhat similar to the
case of the ideal dark blue curve in Figure 4.7.

Over-conditioning can occur when model fitting or model calibration leads to well-
constrained parameters that are, in fact, subject to different forms of model uncertainty
(Beven et al., 2008; Hutton et al., 2014), which is an indication of why the determination
of p(Bk) is important. In this case study, we focused more on the variation of p(Bk) under
various conditions (to be shown shortly), and less on improving the estimates. However, in
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Figure 4.7: An example of over-conditioning: the probability density at the true value
(indicated by the red vertical line) of the over-conditioned distribution is not higher than
that of the non-informative distribution or that of the weakly informative distribution, not
because the conditioning does not work, but because of the disproportional reduction of the
variance of the distribution.

another application where the estimates are to be improved, model structure uncertainty
should be and can be considered in order to refine the estimates (e.g., via Bayesian model
averaging).

4.5 Case Study Results: Regionalization Similarity

The box plots in Figures 4.4 through 4.6 show different distributions of the predictive
performance metrics for the different predictor sets. An interesting follow-up question here
would be how model performance varies with watershed characteristics. It was shown that,
consistent with previous studies, aridity is indeed the most important controlling factor at
regional and annual scales on average, but there are few cases where this aridity dominance
is replaced. In other words, how might we identify the conditions under which a specific
predictor set could be more informative than others?

To investigate this further, we give each testing watershed two labels: the model with
the lowest RMSE, and the model with the highest LPD; we refer to these labels as the
RMSE labels and the LPD labels, respectively. The possible values of each label include
k = 1 through k = 6 and benchmark, representing the six BART models and the benchmark
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model, respectively. Then, using all the available predictors, we built two CART models to
classify watersheds based on the RMSE labels (Figure 4.8), and the LPD labels (Figure 4.9).

Nesting by RMSE

AWCAVE >= 0.16

ARID_IDX < 0.9

BGEOL_147 < 53

SLP_DEG < 4.5

PPT02MEAN < 1169

PPT02MEAN < 1332

NLCD01_41 >= 48

ARID_IDX02 < 0.99

PPT02MEAN < 1020

SLP_DEG < 2

 1049  743  402  194  237  83  102  62  104  278  355

k = 1 :  0.73 
 k = 2 :  0.18 

k = 1 :  0.53 
 k = 2 :  0.26 

k = 1 :  0.51 
 k = 2 :  0.21 

k = 1 :  0.39 
 k = 2 :  0.28 

k = 2 :  0.54 
 k = 1 :  0.19 

k = 4 :  0.46 
 k = 1 :  0.22 
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 k = 1 :  0.24 
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Figure 4.8: CART model classifying the RMSE labels of the testing watersheds. Splitting
rules are shown in white nodes, while leaf nodes are colored based on the classification results.
For each leaf node, the brightness of the coded color indicates the node impurity (the brighter
the more impure), where impurity is defined as the probability that two randomly chosen
watersheds within the node have different labels. On top of every node, in brackets, is the
node number, provided for convenient referencing. The predictors in the splitting rules are
expressed in code names for convenience; a reference list is found in Table 4.5. For each
leaf node, the model of the highest multinomial probability of having the best performance
is shown first, which also determines the classification result, followed by the model of the
second highest probability, also to indicate the impurity. Underneath each leaf node box
is the number of watersheds belonging to the leaf. Note that the legend does not include
benchmark because the benchmark model is never the best-performing model at any testing
watershed. k = 5 is marked as ”unused” in the legend because there is no leaf node where
p(B5) is the highest.

Figure 4.8 shows the variation of the top two best performing BART models and the
corresponding p(Bk) values under various conditions, where the performance of each BART
model is defined by the RMSE. This variation indicates the regionalization similarity in the
study area. At first glance, the available water content (AWC) stand out to be the first
indicator of regionalization similarity (Figure 4.8 node 1): at watersheds with high AWC,
aridity stands out as the dominant factor, which is consistent with the previous studies
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Table 4.5: Reference list of the splitting variables in Figures 4.8 and 4.9.

Code name Description

AWCAVE Average available water content
ARID IDX Long term average aridity index

ARID IDX02 Aridity index in 2002
PPT02MEAN Annual precipitation in 2002

SLP DEG Average slope in degree
NLCD01 41 % area of Deciduous forest
BGEOL 147 % area of Paragneiss and Schist bedrock

cited in Sect. 4.1. However, there is a potential risk if one uses aridity as the primary
indicator of hydrologic similarity regardless of AWC. In previous studies, AWC was found to
be an important predictor correlated with surface runoff, baseflow, and groundwater recharge
(Arnold et al., 2000), and it was among the most important parameters to which water
balance models are sensitive Finch1998. In the current study, we are not claiming that AWC
cannot be a predictor, but rather, we are suggesting a hierarchical structure in which AWC
is placed —together with other predictors —to help estimate LNR at ungauged watersheds.
Since AWC is governed by field capacity and wilting point, it is an indicator of the storage
capacity of the soil for usable/consumable water: the larger the storage capacity, the higher
the degree to which the system is supply-limited, thus pointing to aridity. If the storage
capacity is low, on the other hand, the more complicated interplay among various predictors
needs to be considered, and one cannot simply assume that aridity is the primary indicator
of hydrologic similarity. We also found the soil organic matter content a quite competitive
surrogate for AWC, meaning that if organic matter content was used here instead of AWC, we
would end up with a slightly less accurate but overall similar classification. We conjecture
that this is because of the high positive correlations between organic matter content and
AWC (Hudson, 1994).

Further down the classification tree, watersheds with lower AWC are classified roughly
as arid or humid watersheds by the long-term aridity index. For the more humid water-
sheds (Figure 4.8, nodes 4 through 14), regionalization similarity is controlled by different
predictors, but the dominant predictors for LNR estimation are almost always the climate
variables (nodes 6, 8, 11 and 12, which contain 1576 watersheds in total). Only at a handful
of watersheds (nodes 13 and 14, which contain only 185 watersheds in total) are aridity
indices not dominant. However, some interesting conjectures can be made by taking a closer
look at these two nodes.

Node 14 is a small but unique cluster, featuring watersheds that have low AWC, are
humid, and have relatively homogeneous paragneiss and/or schist bedrock. Both of these
bedrock types belong to the category of crystalline rock, and often feature layering in a
particular orientation. The groundwater movement in such rock formation often depends on
foliation, i.e., rock breaks along approximately parallel surfaces, which affect the direction
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of the regional groundwater flow (Singhal and Gupta, 2010). Hence we observe a condition
where the ample water supply cannot be substantially held by the soil due to low AWC,
and the regional groundwater movement might be controlled by bedrock layering and folia-
tion. Low AWC is an indication of less clayey soils, and implies that infiltration/percolation
through the soil layer might be facilitated by relatively higher permeability. Water could
thus easily enter the bedrock layer, which is rather horizontally homogeneous. To that end,
those predictor sets other than k = 6 become less informative, while the predictor set k = 6
becomes relatively more informative. In fact, these watersheds are mostly the positive out-
liers at k = 6 in Figure 4.5(b), where the predictive power of the geology predictors is at its
best.

Node 13 features watersheds that have low AWC, are humid, are not dominated by ho-
mogeneous paragneiss and/or schist, have a relatively steep average slope, and have a large
amount of annual precipitation. The low aridity is primarily driven by precipitation rather
than evapotranspiration. In fact, these watersheds are mostly outliers featuring extremely
low aridity index (below 0.65) due to ample precipitation. Under such condition, evapotran-
spiration is expected to operate to its full potential, i.e., it is shifting from water-limited
state to energy-limited and canopy-controlled state. In addition, as evapotranspiration is
near its full potential, the drainage of the excess precipitation would be controlled by the
topography of the watershed (e.g., the slope and the sinuosity of the stream). Fast drainage
leaves less water available for infiltration and recharge, and vice versa. To that end, the land
cover type and topography now start to play a dominant role in hydrologic similarity. It is
noteworthy to point out node 20 here. Node 20 features watersheds that are relatively humid
among the arid watersheds (φ̄ in the range from 0.9 to 0.99) and have ample precipitation.
The similarity of node 20 with node 13 supports our conjecture that the dominance of land
cover and topography predictors is due to the precipitation-driven humid environment that
is relatively more capable of catering to the evapotranspiration water demand and features
excess precipitation.

On the other side of the tree (Figure 4.8, node 15 through 21), the resulting classification
is quite diverse, and the impurity of each node is relatively high. Aridity no longer plays
the dominant role, and the hierarchical similarity structure becomes complicated that it is
difficult to make straightforward physical interpretations. The most important message we
get is the significant risk one would face if one considers aridity, or any climate variable
in general, as the primary indicator of hydrologic similarity when AWC is low and aridity
index is high. In summary, although climate predictors are still the most important ones on
average, within the context of the hierarchical similarity we have identified certain conditions
under which either non-climate predictors become dominant or no dominant predictor set can
be straightforwardly identified, all of which contribute to the understanding of the dynamic
hydrologic similarity.
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Figure 4.9: Same as Figure 4.8, except here the classification is done using LPD labels. The
predictors in the splitting rules are expressed in code names for convenience; a reference list
is found in Table 4.5.

Nesting by LPD

The classification of the LPD labels is shown in Figure 4.9. In general, the root part of the
classification tree (node 1 through 3) is quite similar to that found in Figure 4.8, where AWC
and long-term aridity define two sequential overarching separations of watersheds. However,
further down the tree the leaf part is significantly different. The classification essentially
leads to only three big clusters (Figure 4.9, nodes 2, 7, and 9), and the other leaf nodes only
contain a few watersheds. Node 9 features arid watersheds with low AWC, where we end up
with a highly impure leaf node, and even the highest multinomial probability is only 0.27.
No further splitting rule could significantly reduce classification error. This is supportive
towards our previous argument that when aridity index is high and AWC is low, it is risky
to resort to climate variables for hydrologic similarity, as shown here that it is difficult to even
identify a dominant predictor set. As mentioned earlier, underestimation of the predictive
variance (σ2

k) leads to low LPD, and thus it is difficult to make physical interpretation our
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of the results in Figure 4.9, except for node 1 through 3, which are quite similar to their
counterparts in Figure 4.8. Therefore, with the LPD labels we are only able to identify the
overarching regionalization similarity controlled by AWC and long-term aridity.

RMSE and LPD represent views of predictive accuracy in an estimation problem and
a simulation problem, respectively. Intuitively, if one only considers unimodal predictive
distribution with limited skewness, a high predictive density at a value directly implies a
closeness of the distribution central tendency to that value. However, the reverse is not
necessarily true: either over- or underestimation of variance might possibly lead to low
predictive density, even if the mean is close to the target value (e.g., Figure 4.7). Based
on whether RMSE or LPD is used as the accuracy metric —which implies the scope of
LNR estimation —we can observe some common features as well as some distinctions of the
structure of the hypothesized hierarchical similarity.

Fortunately, regardless of the metric of predictive accuracy, in both Figures 4.8 and 4.9
the first three nodes are remarkably consistent, and the effect of the metric of predictive
accuracy is only manifested at watersheds with low AWC. This supports the suggestion that
AWC plays a pivotal role in hydrologic similarity for mean annual LNR estimation.

4.6 Discussion

In this Section, we discuss the key features of the approach, the key findings from the
case study, as well as the limitations of the case study.

The Nested Tree-based Modeling Approach

The nested tree-based modeling approach proposed in this Chapter is essentially a cou-
pling of BART and CART. ABoth BART and CART are independent of the physical back-
ground, and are pure data-driven machine learning techniques. Therefore, in principle as
long as there are data, the nested tree-based modeling approach is applicable like any other
data-driven approach. However, one may argue that (1) the in-principle applicability does
not set the nested tree-based modeling approach apart from other data-driven machine-
learning approaches, and that (2) it would be counter-intuitive to advocate a data-driven
approach with a seemingly data-rich case study (here ”data-rich” refers to the fact that each
MRB consists of thousands of watersheds) when the whole dissertation actually emphasizes
ungauged watersheds.

Our explanation starts with explaining two significant advantages of the nested tree-
based modeling approach. First of all, one great advantage of BART is that it outputs the
posteriors of the model parameters, which could lead to posteriors of the target response.
The advantage of having the posteriors is that the users/modelers can then derive the desired
information at will, such as percentiles, moments, information gain, or the posterior mean
and variances like what was demonstrated in the case study. Conditional simulation is also
made easy when the posteriors are available, opening the door for Monte-Carlo analyses.
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Second, following the statement that one can obtain the statistics or representative metric
of interest, the nesting of BART models under CART can be done with the said metric,
resulting in the corresponding probability mass function of the plausible BART models. For
example, the classification shown in Figure 4.8 is based on RMSE, which is then based on
the posterior mean values. This is essentially a proposal-comparison-based consideration of
model structure uncertainty.

How do the aforementioned two advantages of the nested tree-based modeling approach
justify the use at ungauged watersheds? First, of course the performance of the model de-
pends on the quality and the quantity of training data. In this sense all modeling approaches
are the same, and applying BART does not disproportionally enhance the predictive accu-
racy when the data are limited. However, what sets BART apart is the Bayesian feature that
accounts for model parameter uncertainty properly in the form of conditional distribution,
which cannot be done as easily with only a few point estimates or a few posterior statistics.
Second, uncertainty exists not only for the model parameters but also for the models them-
selves. The nested tree-based modeling approach can help us obtain an informed empirical
probability mass function, p(Bk), of the plausible BART models (which was also exemplified
in the case study). The fact that at ungauged watersheds in-situ hard data are absent and
ex-situ data can be limited in quantity and/or quality accentuates the importance of uncer-
tainty quantification, and the nested tree-based modeling approach offers a Bayesian solution
to that, making itself not only applicable but also advantageous at ungauged watersheds.

One may then argue that how would a modeler make an informed proposal of plausible
BART models in the first place? This is where physical knowledge come into play, and
the proposal is indeed case specific. This is why we proposed the hypothesis of hierarchical
similarity, which can be integrated with the nested tree-based modeling approach to study
the behavior of a dynamic hydrologic similarity system, like what was demonstrated in the
case study. Unlike the generality and the merits of the nested tree-based modeling approach,
our findings regarding the variation of p(Bk) and the shifts in dominant controlling factors
of recharge are indeed specific to the context of the case study, which will be discussed next.

The Hierarchical Similarity Hypothesis and The Shift in
Dominant Physical Processes

With BART’s ability to simultaneously model non-linear and/or interaction effects and
present uncertainty in a fully Bayesian fashion, we are able to show how the controlling
factors of hydrologic similarity vary among different watersheds, among different conditions,
and among different accuracy metrics. These are all manifested in the case study under the
context of the hierarchical similarity hypothesis.

Climate variables have been identified as the dominant factors in previous studies (see
Section 4.1), and they are indeed on average the most dominant factors in our case study.
However, the hierarchical similarity shows potential risks if one resorts to climate variables
to define hydrologic similarity without considering other physical watershed characteristics,
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especially the soil available water content.
The details of the hierarchical similarity are inferred from the data in the fashion of su-

pervised machine learning, using six BART models and one benchmark model nested under
one classification tree. It is of great importance to have two levels in such a system, as it
allows for identification of the shifts of dominant factors under different conditions. These
shifts indicate shifts in dominant physical processes, as exemplified by node 13 and 20 in Fig-
ure 4.8 where we observed the shift from water-limited evapotranspiration to energy-limited
evapotranspiration. Therefore, we conjecture that it is the shift in dominant physical pro-
cesses that is driving, and thus is reflecting, the shift in the controlling factors of hydrologic
similarity under different conditions.

Limitations of The Case Study

While proudly presenting and demonstrating the nested tree-based modeling approach,
we do recognize several limitations of the case study from the aspects of the data set, the
target response, and the partitioning of data.

Scale of The Target Response

A major limitation of the case study is that the target hydrologic response is the logit nor-
malized watershed-averaged annual groundwater recharge. This is a large-scale spatiotempo-
rally homogenized response, and in this study, the data were based on baseflow analyses. To
that end, a working assumption about the reliability of the baseflow analysis was made with-
out rigorous proof. The findings of the case study are all under the context of this working
assumption, and thus, they should not be applied to recharge/LNR at other spatiotemporal
scales or to other hydrologic responses without careful considerations.

The MRB-based Partitioning of Watersheds

Although we tried to justify the MRB-based partitioning by the reasons listed in Section
4.3, we acknowledge that this may not be the best partitioning method for demonstrating
the full potential of the estimating power of BART. An associated limitation stems from
the data not covering a desirable range of values. An example was already presented in
Section 4.3 and Figure 4.3. The limitations in the data accentuate the advantage of our
approach regarding the consideration of uncertainty, but it is also recognized that it could
be challenging to discover the same findings if MRB 1 provided the training data for MRB 2,
which is part of the reason why we kept the MRB-based partitioning. Another case of lack
of data coverage can be found in our climate predictors data. Since aridity index is the ratio
of potential evapotranspiration to precipitation (φ = Ep/P ), one might be surprised by the
differences among the cases of k = 1, k = 2, and k = 3 in the results. The main reason is
revealed in Figure 4.10. The Ep values at the training and testing watersheds are so distinct
that, essentially, all the testing watersheds are outliers from the point of view of a BART
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model trained at the training watersheds. On the other hand, the φ values at the training
and testing watersheds share the range from about 0.6 to 1.2, and only differ at the two
extreme ends. In other words, the predictor-response relationships inferred by using φ can
be transferred due to the overlapping range (Figure 4.10(c)), but the relationships inferred
using Ep > 1000mm cannot be effectively transferred to watersheds with Ep < 1000mm
(Figure 4.10(b)). Although it is not shown, a similar case can be found by comparing φ̄
with Ep. Although this might have been avoidable by using a more sophisticated design of
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Figure 4.10: Distributions of (a) P , (b) Ep, and (c) φ, at watersheds in MRB 1 (the testing
watersheds) and MRB 2 (the training watersheds).

cross-validation, we kept the MRB-based holdout method on purpose. In addition to the
reasons that were explained in Section 4.3, another motivation is that, in reality, the data
at hand come in as is. This means there is no guarantee that the measurements will cover a
particular range or that the watershed characteristics of the ungauged watersheds of interest
are within a desirable range. The prevailing superiority of φ and φ̄ over P , P̄ , and Ep found
in our results shows an important advantage of dimensionless predictors, that they tend to
be more transferable from one site to another, and hence, they may be more suitable for
studies targeting ungauged watersheds.

Limited Temporal Data Coverage

Another limitation is the lack of temporal coverage. Given limited data coverage along
the time axis, in the case study we only studied the LNR in the year of 2002, and we
considered two types of climate predictors: those from the same year and those from the



CHAPTER 4. NESTED TREE-BASED MODELING: HIERARCHICAL SIMILARITY
AND BAYESIAN REGIONALIZATION 60

long term average. However, being the recharge process highly non-linear, it is not impossible
that some predictors representing the antecedent conditions, such as precipitation from years
prior to the year of 2002, could affect the LNR in the year of 2002. Not having multiple
years of climate data prevents us from testing the effects of antecedent conditions or the
effects that take place at various multi-year scales, and thus it is clearly a limitation of the
case study. Because of this limitation, we made a steady state working assumption, with
which we assume that the effect of climate predictors from the previous years are captured
by the long term average predictors, and also assume the effect of climate change to be
negligible. While acknowledging the inclusion of multiple years of climate data could have
made an impact, note that the highly consistent roots of the trees in Figures 4.8 and 4.9
are based on soil AWC and the long term average aridity index, both of which are expected
to be relatively insensitive to the inter-annual variation of climate predictors. Therefore,
we expect the findings corresponding to the roots of the trees in Figures 4.8 and 4.9 to be
relatively less affected by the limitation of not having multiple years of climate data.

Non-comprehensive list of plausible models

The proposal of plausible BART models was guided by a conceptual understanding and
grouping of the available predictors. Like mentioned in Section 4.3, our proposal does not
cover a comprehensive list of plausible models, nor does it necessarily include the ”best”
or the ”true” model. The effect of different proposals of plausible BART models, which
represents different perspectives of the conceptual understanding of the underlying physics,
was not investigated in the case study, and remains as an interesting follow-up that could
be pursued in future studies.

4.7 Conclusions

In this work, we proposed a nested tree-based modeling approach with three key features:
(1) full Bayesian quantification of parameter uncertainty, (2) non-linear regression in order
to model the predictor-response relationship, and (3) proposal-comparison-based considera-
tion of model structure uncertainty. We applied the nested tree-based modeling approach to
obtain logit normalized recharge estimates conditioned on ex-situ data at ungauged water-
sheds in a case study in the eastern U.S. We hypothesized a hierarchical similarity to explain
the variation of the probability mass function of plausible models, and thus to investigate
the behavior of a dynamic hydrologic similarity system. In addition to the demonstration
of the nested tree-based modeling approach for assimilation of ex-situ data and estimating
hydrologic responses at unsampled sites, we also showed how the approach can be used to
investigate the variation of the controls of hydrologic similarity under different conditions.
It should be pointed out that the nested tree-based modeling approach is independent of
the target response and the predictors of interest, so it could be integrated with future stud-
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ies within or beyond the field of hydrology in search of a hierarchical predictor-response
relationship.

Besides the proposal of the nested tree-based modeling approach, this Chapter also pro-
vides some findings that are specific to the case study, contributing to the understanding
of the physical principles governing robust regionalization among watersheds. Firstly, con-
sistent with previous studies, we found that the climate variables are on average the most
important controlling factors of hydrologic similarity at regional and annual scales, which
means a climate-based regionalization technique is on average more likely to result in better
estimates. However, with our hierarchical similarity hypothesis we revealed certain condi-
tions under which non-climate variables become more dominant than climate variables. In
particular, we demonstrated how soil available water content stood out to be the pivotal
indicator of the variable importance of aridity in hydrologic similarity. Moreover, we showed
that with hierarchical similarity one could identify shifts in dominant physical processes that
are reflecting shifts in the controlling factors of hydrologic similarity under different condi-
tions, such as water-limited evapotranspiration versus energy-limited evapotranspiration, or
homogeneous and foliated bedrock versus heterogeneous bedrock. As the controlling factors
change from one condition to another, the suitable regionalization technique also changes.
We demonstrated how the hierarchical similarity hypothesis could indicate mechanisms by
which available water content, aridity, and other watershed characteristics dynamically affect
hydrologic similarity. The nested tree-based modeling approach can be applied to identify
plausible sets of watershed characteristics to be considered in the regionalization process.

The specific contributions in groundwater recharge estimation at unsampled watersheds
may be viewed differently depending on individual cases. In a situation where groundwa-
ter recharge is the ultimate target variable at ungauged watersheds, the nested tree-based
modeling approach offers a systematic way to obtain informative predictive distributions
that are conditioned on ex-situ data. In a difference case, where recharge estimation at
ungauged watersheds is but one component of a greater project, the aforementioned infor-
mative predictive distributions can be treated as informative ex-situ priors, which could be
further updated and/or integrated into simulation-based stochastic analyses where recharge
is an input/component of other models/functions. At unsampled watersheds that will be-
come gauged in the foreseeable future (as described in Section 2), the informative predictive
distributions again serve as informative ex-situ priors that could guide the design of the
sampling campaign, as different recharge flux magnitudes require different quantifying tech-
niques (Healy, 2010; Scanlon et al., 2002). Lastly, the hierarchical similarity hypothesis
offers one plausible explanation of the dynamic nature of hydrologic similarity, which affects
the application of regionalization.
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Chapter 5

Imputation-free Assimilation of
Ex-situ Soft Data: Bounds

5.1 Introduction

In Section 1.2, we have discussed how ex-situ soft data could be a potentially valuable
source of information in hydrogeology, and we specifically looked at one type of ex-situ soft
information: bounds. We recognize the great work by Cucchi et al. (2019), who proposed a
practical approach that uses data imputation to convert ex-situ soft data into ex-situ hard
data, but also recognized that the involvement of imputation introduces artificial biases. In
this Chapter, we aim to improve upon Cucchi et al. (2019) by proposing an approach for
the assimilation of ex-situ bounds that is free of imputation-induced biases. In addition, we
allow bounds to be imprecise to account for the uncertainty in bounds due to, for example,
uncertainties from expert elicitation. The results of this study provide guidelines for the
consideration of bounds as a form of ex-situ soft data in situations of extreme data scarcity.

5.2 Bayesian Hierarchical Modeling:Assimilation of

Ex-situ Bounds

The Bayesian hierarchical model introduced in Section 2.3 (also in Cucchi et al. (2019))
provides a good starting point for our goal in this Chapter. We follow the same intra-site
model as in Equation 2.10. Note that when data scarcity is extreme, there might be no
ex-situ point observation available. In that case, instead of imputing point observations, we
propose to skip the intra-site model altogether and proceed to the inter-site model, where
we propose to introduce bounds.

At inter-site level, we rewrite Equation 2.11 as a truncated distribution as follows:

Θi ∼ p (Θi|Φ, Li ≤ Θi ≤ Ui) , (5.1)
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where we constrain Θi by not only the hyperparameters but also the site-specific upper
bound, Ui, and the site-specific lower bound, Li. By truncating the distribution of Θi, we
force the distribution to agree with the bounds, but still keep the flexibility of the distribution
to concentrate at any point within the bounds. To model the uncertainty of the bounds, we
model the upper and the lower bounds as random variables:

Li ∼ pL (Li|ai)
Ui ∼ pU (Ui|bi) , (5.2)

where ai and bi parameterize the distribution of Li and Ui, respectively. Thus, we obtain a
nuanced version of Equation 5.1 as follows:

Θi ∼ p (Θi|Φ, ai, bi) . (5.3)

Note that Equations 5.1 and 5.3 represent different degrees of uncertainty. In the former,
the bounds are certain and given, while in the latter, the bounds are uncertain and we are
only given the parameters that determine the distributions of bounds. Bayesian inference is
applied to obtain the distribution of the hyperparameters conditioned on all the data:

f (Φ|y, A,B) , (5.4)

where A = {ai; i = 1, ..., Ni}, and B = {bi; i = 1, ..., Ni}. Note that we kept y in Equation
5.4 to show that our approach does not deprive Bayesian hierarchical models of the capability
of assimilating ex-situ hard data.

Equations 5.3 and 5.4 are the essence of our approach. By incorporating the constraints
of bounds without data imputation, we avoid introducing artificial biases.

5.3 Synthetic Case Study: Ex-situ Prior of Effective

Hydraulic Conductivity

In this Section, we demonstrate our approach of the assimilation of ex-situ bounds in a
synthetic case study. In this case study we set the effective hydraulic conductivity of a site as
the target variable. Unlike in Chapter 3 where some in-situ soft information was available,
in this synthetic case study we focus on an extreme situation of data scarcity where both in-
situ hard and soft data are unavailable, and there are only three hydrologically similar sites
at hand. The goal of the case study is to first demonstrate the capability of our proposed
approach, and then to investigate how informative the ex-situ bounds could be in different
situations.

Data

Log-transformed hydraulic conductivity (log10K) observations from 3 coal-dominant sites
are retrieved from the World Wide Hydrogeological Parameters Database (WWHYPDA) (an
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open-source database of hydrogeologic parameters, Comunian and Renard, 2008). The three
selected sites are the only three coal-dominant sites in WWHYPDA, and can be looked
up in WWHYPDA with site ID 19, 21, and 25. The database is publicly available on an
as-is basis, with no warranties regarding the correctness of the data. For demonstration
purpose in this case study, a working assumption is made that the observations at those 3
coal-dominant sites are observations of the site-homogenized effective conductivity, i.e., the
target variable of interest. The histograms and the Gaussian Quantile-Quantile plots (also
known as QQ-plot, to show whether the data are in Gaussian distributions) are provided
in Figure 5.1. From the QQ-plots, since the data are not falling on the line of Gaussian
quantiles, the data are not in Gaussian distributions, which can also be observed from the
histograms. The data values range from −9 to −3, are more or less concentrated between
−5 and −6, and are skewed towards the negative side.
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Figure 5.1: Histograms of log-transformed hydraulic conductivity data from the 3 coal-
dominated sites (upper row), and the corresponding Gaussian Quantile-Quantile plots (lower
row). Each plot is labeled by the its ID number from the WWHYPDA database, and Ji is
the total number of observation at the ith site.
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Application of Hierarchical Bayesian Model

In this study, we model the log-transformed conductivity by Gaussian distribution, re-
sulting in the intra-site level Gaussian distribution of the point observations:

yi,j ∼ N
(
θi, σ

2
i

)
, (5.5)

where the site-specific parameter set includes the Gaussian mean and variance, i.e., Θi =
{θi, σ2

i }. If a sampled site does not have point observations, this intra-site level is skipped.
At the inter-site level, we applied three different distributions depending on the availabil-

ity of hard and/or soft data at the site from which we are borrowing information (which we
refer to as “donor site”).

1. If only hard data are available at a donor site, then the site-specific mean follows an
inter-site Gaussian distribution:

θi ∼ N
(
µ, τ 2

)
, (5.6)

and the site-specific variance follows an inter-site inverse-Gamma distribution:

1

σ2
i

∼ Gamma (α, β) , (5.7)

where the hyperparameters include the inter-site Gaussian mean and variance, and the
inter-site Gamma shape and rate parameters, i.e., Φ = {µ, τ 2, α, β}.

2. If both hard and soft data, i.e., the point observations and the bounds, are available
at a donor site, then we first model the bounds from uniform distributions:

Li ∼ Uni(a1,i, a2,i)

Ui ∼ Uni(b1,i, b2,i). (5.8)

where ai = {a1,i, a2,i} defines the lower of upper bounds of Li, and similarly does
bi = {b1,i, b2,i} define the lower and upper bounds of Ui. Next, we constrain the inter-
site Gaussian distribution by truncating it:

θi ∼ c ·N
(
µ, τ 2|Li ≤ θi ≤ Ui

)
, (5.9)

where c is a scaling constant that makes the truncated distribution integrate to one.
The site-specific variance is modeled in the same way as in the previous item, not
affected by bounds.

3. If only bounds are available at a donor site, then the site-specific mean is modeled with
the truncated Gaussian as in Equation 5.9, but the modeling of site-specific variance
is skipped.
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Figure 5.2: Schematic diagram of the application of the hierarchical Bayesian model in this
case study.

A summarizing schematic diagram is also provided in Figure 5.2.
The Bayesian inference computation is done within R environment using the package

nimble (Valpine et al., 2017), with which we run MCMC simulations (see Section 2.2) to
approximate the conditional distribution of Φ. Although there are four hyperparameters,
for this case study we focus only on µ, which is of greater importance in terms of estimating
the effective conductivity at an unsampled site of interest.

The Benchmark Ex-situ Prior

The ideal case in this synthetic case study is that the three donor sites are all sampled, so
one can obtain an ex-situ prior conditioned on ex-situ hard data from the 3 sites described
in Figure 5.1. This ex-situ prior is denoted by p(µ|y), and is the most informative ex-situ
prior one can get if ex-situ bounds are not considered (Figure 5.3). From this point forward,
we refer to it as the benchmark prior. To investigate the effect of ex-situ bounds, we will
proceed in two different directions by conducting two different numerical experiments, both
of which involve building different ex-situ priors and comparing them with the benchmark
prior.
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Figure 5.3: The benchmark ex-situ prior, and its Gaussian QQ-plot.

Numerical Experiment 1: Removal, Replacement, and
Augmentation of Ex-situ Hard Data by Bounds

The first numerical experiment is meant to test the information gain from the bounds.
Looping over the three donor site (i = 1, ..., 3), we build three additional ex-situ priors by
applying the following three designs:

1. Remove the ith donor site from the ex-situ data set altogether, thus ending up with an
ex-situ prior of µ conditioned only on data from the other two donor sites, denoted by
p(µ|y−i) where y−i includes all point observations but those from the ith site.

2. Remove the point observations from the ith site, but add the bounds of the ith site into
the ex-situ database. The bounds are defined according to the empirical confidence
intervals of the point observations, as follows: the 90% confidence intervals are used
to define a2,i and b1,i, and the 95% confidence intervals are used to define a1,i and b2,i.
The resulting ex-situ prior of µ is conditioned on hard data from two sites and soft
data from one site, denoted by p(µ|y−i, ai, bi).

3. Do not remove any point observation, and add the bounds at the ith donor site; namely
we augment the hard data by bounds at the ith donor site. The bounds are defined
in the same way as defined above. The resulting ex-situ prior of µ is conditioned on
hard data from all three sites, as well as soft data from the ith donor site, denoted by
p(µ|y, ai, bi).
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The three measures represent removal, replacement, and augmentation of ex-situ data at the
ith site. By comparing the ex-situ priors resulting from these measures with the benchmark
prior, we investigate the effect of bounds from different aspects: as an additional source of
information, or as an alternative source of information.

To quantify the difference between two ex-situ priors, we adopt the Kullback-Leibler
Divergence (KLD) as a quantitative metric. Corresponding to the aforementioned three
designs, three KLD values can be calculated:

Λremove,i =

∫ ∞
∞

p(µ|y) ln
p(µ|y)

p(µ|y−i)
dµ, (5.10)

Λreplace,i =

∫ ∞
∞

p(µ|y) ln
p(µ|y)

p(µ|y−i, ai, bi)
dµ, (5.11)

Λaugment,i =

∫ ∞
∞

p(µ|y, ai, bi) ln
p(µ|y, ai, bi)
p(µ|y)

dµ, (5.12)

where Λremove,i and Λreplace,i quantify the information loss due to removing and replacing the
hard data at the ith donor site, respectively, and Λaugment,i quantifies the information gain
due to augmenting the hard data at the ith donor site.

Numerical Experiment 2: Tightness and Precision of Bounds

The second numerical experiment is meant to test how our approach can account for the
uncertainty in the ex-situ bounds if the bounds are imprecise, and test the effect of bound
precision and tightness on the ex-situ prior of µ. In this numerical experiment, we introduce
the fourth donor site (i = 4), a hypothetical site, to the ex-situ data set. The fourth site
comes without point observations and only with bounds, but the bounds can be of different
levels of tightness or precision. The goal is to see the effect of bound precision and tightness
at this fourth site on the resulting ex-situ prior.

To begin with, we calculate the inter-quartile range of y,

Q = IQR(y) ≈ 0.52, (5.13)

which will be used as a unit of variability in this numerical experiment. We define three
levels of bound tightness as follows:

1. tight: b1,4 − a2,4 = 0.5Q;

2. less tight: b1,4 − a2,4 = Q;

3. loose: b1,4 − a2,4 = 1.5Q.

Similarly, we define three levels of bound precision:

1. precise: b2,4 − b1,4 = a2,4 − a1,4 = 0.5Q;
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2. less precise: b2,4 − b1,4 = a2,4 − a1,4 = Q;

3. imprecise: b2,4 − b1,4 = a2,4 − a1,4 = 1.5Q.

As a consequence, we can obtain nine different ex-situ priors, corresponding to nine different
bounds from the fourth site. These ex-situ priors are compared against the benchmark
ex-situ prior to investigate the effect of bound tightness and precision.

5.4 Case Study Results: Removal, Replacement, and

Augmentation of Ex-situ Hard Data by Bounds

The ex-situ priors obtained by removing, replacing, and augmenting the ex-situ hard
data at the three donor sites are shown in Figure 5.4. First of all, augmentation has a
limited effect, if any, on the ex-situ prior of µ. This shows that if the bounds are closely
agreeing with the point observations (e.g., the bounds are equal to the confidence intervals
of the point observations, as defined here), then having bounds as an additional source of
information does not have a significant effect.

However, if point observations are not available, then having bounds as an alternative
source of information does have a significant effect, as shown by the noticeable differences
between the red curves and the green curves in Figure 5.4. When bounds are available, the
mean value of the ex-situ prior is more concentrated towards that of the benchmark, and the
peak probability density is also higher. The same finding can be obtained from a different
aspect: the KLD values (Figure 5.5). At all three sites, we observe Λremove,i > Λreplace,i,
showing that the information loss is reduced if we at least have bounds. Information gain
due to augmentation is only noticeable at the site with ID 19, and even so, the magnitude
of Λaugment,i is at least on order smaller than that of Λremove,i or Λreplace,i.

It might sound tautological that having ex-situ bounds is better than having nothing,
and previous studies have already pointed out that soft data could be informative (e.g.,
from expert elicitation; Garthwaite et al., 2005). However, what is significant here is the
quantification of the effect of ex-situ bounds, in terms of the conditional distributions of µ
or KLD, under different condition.

Case Study Results: The Effect of Tightness and Precision of
Bounds

The effect of bound tightness is shown in Figure 5.6. Regardless of the level of precision,
the tightest bounds consistently lead to the most informative distribution with the highest
peaked probability density, which is expected. Surprisingly, however, the less tight bounds
are not always more informative than the loose bounds, indicating that some interplay
between tightness and precision might exist. Equally surprising is that the most precise
bounds do not necessarily lead to the most informative distribution at each level of tightness
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Figure 5.4: The ex-situ priors obtained by removing, replacing, and augmenting the ex-situ
hard data at the three sampled sites, compared against the benchmark ex-situ prior.

(Figure 5.7). What is expected, though, is that the most imprecise bounds consistently lead
to the least informative distribution, at each level of tightness.

The findings consist of some expected results as well as some surprising results. For the
expected part, of course when we have bounds, we would like them to be tight and precise,
thus potentially carrying more information for conditioning. So it is expected that the most
imprecise bounds lead to the least informative distribution at all tightness levels, and the
tightest bounds lead to the most informative distribution at all precision levels. What is
unexpected is that, if we are to improve a set of loose and imprecise bounds, improvement
in precision might have a slightly greater effect than an improvement in tightness.

That said, also note that Figures 5.6 and 5.7 are zoomed-in view of the ex-situ priors at
their peaks. If we zoom out and take the holistic view, the differences become less significant.
This is shown in Figure 5.8, where we compare the ex-situ prior obtained with imprecise and
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Figure 5.5: Scatter plot of the KLD values calculated from Equation 5.10 through 5.12
at the three sampled sites. The black line is the 45-degree line, indicating the case of
Λremove,i = Λreplace,i. The sites are labeled by their WWHYPDA site ID. The color, as shown
by the color bar, indicates the value of Λaugment,i.

loose bounds at the fourth site with a ”wrong example” of ex-situ prior, obtained with bounds
at the fourth site that are tight and precise but two orders of magnitude (−2 on log scale)
smaller. It is obvious that even a set of imprecise and loose bounds can provide additional
information to improve the benchmark ex-situ prior, but if the bounds are bounding a
“wrong” range of values that are is contradicting the data from the other donor sites, we end
up with a much less informative distribution, even when the bounds are quite precise and
tight. Note that in the case of imprecise/loose bounds, we allowed a room of adjustment
for precision and tightness to be roughly 1.5 orders of magnitude (1.5Q on log scale, with
Q ≈ 0.52), which is comparable to the −2 for the ”wrong example”. Thus, the result is not
due to disproportional adjustment the tightness, precision, and center of the bounds.

The takeaway message is that, when it comes to determining the bounds (e.g., via expert
elicitation), it is better to take a conservative view where we try to account for uncertainties
and determine relatively wide/imprecise bounds that have a higher chance of including the
true value, than to take a progressive view where we determine relatively narrow/precise
bounds that might fail to include the true value. The effects of tightness and precision are
indeed minor, when compared to the effect of accuracy.
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Figure 5.6: Ex-situ priors at different levels of tightness and precision, highlighting the effect
of tightness. Note that this is the zoomed-in view on the x axis, in order to make noticeable
the differences between ex-situ priors.

5.5 Conclusions

In this Chapter, we analytically established a Bayesian hierarchical model. In terms of
assimilation of ex-situ bounds, we improved upon Cucchi et al. (2019) by replacing data
imputation by truncation of distributions and allowing the truncating values to be impre-
cise, thus (1) avoiding imputation-induced artificial biases and (2) accounting for potential
uncertainties in the bounds. Compared to Cucchi et al. (2019), our improvement is made by
sacrificing the versatility of dealing with various forms of ex-situ soft data simultaneously.
We consider the search for an equally versatile and imputation-free model an interesting
follow-up study that could be pursued in the future.

We demonstrated the approach in a synthetic case study, and obtained a few specific
findings. While subject to limitations and working assumptions (e.g., the distribution forms
assumed in the case study, the assumption that the hard data are for the effective hydraulic
conductivity, and the choice of data in the case study), our specific findings are listed as
follows.

1. We investigated the information gain from bounds either as an additional or as an
alternative source of information, and quantitatively proved that when facing extreme
data scarcity, ex-situ bounds could be a significant source of ex-situ information.

2. When determining bounds, is it recommended to account for various sources of un-
certainty (e.g., in expert elicitation there could be multiple experts providing different
opinions, etc.) and be more conservative to obtain bounds that are more likely to
include the true value. The effect of tightness and precision of the bounds are relative
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Figure 5.7: Ex-situ priors at different levels of tightness and precision, highlighting the effect
of precision. Like Figure 5.6, this is the zoomed-in view on the x axis, in order to make
noticeable the differences between ex-situ priors.

minor, compared to the potentially immense price we pay when we falsely adopt precise
and tight bounds.

These suggestions may contribute to future applications of expert elicitation by highlighting
what the modelers need to consider and converse with experts about, to obtain a potentially
more informative ex-situ prior of the target variable of interest.
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µ.
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Chapter 6

Conclusions

This dissertation focuses on quantification and reduction of uncertainty in hydrogeological
modeling at unsampled locations. A Bayesian view is adopted throughout the dissertation,
where the objective is to obtain informative distributions of the target variable, e.g., hy-
drogeological parameters or responses, that are conditioned upon limited information from
various sources. In Chapter 1 we identified and discussed the challenges in stochastic hy-
drogeologic modeling under in-situ data scarcity. The overarching goal of this dissertation is
to develop advanced Bayesian stochastic modeling approaches that overcome the challenge
of the lack of in-situ data at unsampled locations. With that goal in mind, the research
objectives involve the proposal of three new approaches that improve upon the theoretical
basis introduced in Chapter 2.

In Chapter 3, we proposed a rapid, approximate Bayesian computational technique,
named Rapid Impact Modeling (RIM), that features efficient assimilation of in-situ soft
data in stochastic hydrogeologic modeling. The innovation of RIM behind its efficiency is
replacing the daunting and demanding tasks of likelihood computation and inverse modeling
with direct conditioning of the estimates of hydrogeologic responses on the available infor-
mation. Uncertainty in the estimates is accounted for in the form of conditional predictive
distribution. The advantages that set RIM apart from other data assimilation approaches are
its capability of assimilating both in-situ and ex-situ data, its efficiency, and its suitability for
large-scale hydrogeologic modeling at complicated, heavy-impact, yet poorly sampled sites.
We demonstrated RIM at the Mingtang tunnel project to investigate the environmental im-
pact of groundwater drawdown. With RIM, we conditioned the estimates of groundwater
drawdown on measured groundwater infiltration into the Mingtang tunnel, and successfully
assessed the environmental impact in the face of data scarcity.

In Chapter 4, we further investigated the assimilation of ex-situ data by proposing the
nested tree-based modeling approach, which is essentially a nested coupling of Bayesian
Additive Regression Tree (BART) and Classification/Regression Tree (CART). Although
both BART and CART have been published for decades, the innovation of the approach
is its nested structure, which makes our approach simultaneously feature (1) full Bayesian
quantification of parameter uncertainty, (2) non-linear regression for modeling the hydrologic
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response of interest, and (3) proposal-comparison-based consideration of model structure
uncertainty. In addition to the approach, we also proposed a hypothesis of hierarchical
similarity. The integration of the nested tree-based modeling approach and the hypothesis of
hierarchical similarity allows us to investigate the dynamic behavior of hydrologic similarity,
and to explain the variation of the controls of hydrologic similarity under different conditions.
In the case study of groundwater recharge estimation in the Eastern U.S., we identified
several conditions where hydrologic similarity is dominated by non-climate variables, such
as soil available water content, and revealed the potential risk one may face if one resorts
to climate variables for hydrologic similarity regardless. The proposed nested tree-based
stochastic modeling approach can be applied in any field to study a dynamic and hierarchical
predictor-response relationship, and the hierarchical similarity hypothesis contributes to the
understanding of the physical principles governing robust regionalization among watersheds.

In Chapter 5, we improved upon Cucchi et al. (2019) by analytically deriving a Bayesian
hierarchical model for the imputation-free assimilation of one type of ex-situ soft data: ex-
situ bounds. We replace data imputation with distribution truncation to avoid artificial
biases, and allow the truncating values to be imprecise to account for the uncertainty in
the ex-situ bounds. The approach was demonstrated in a synthetic case study that was
designed to represent extreme data scarcity, where in-situ information is unavailable and
ex-situ information is limited both in quantity and in quality. We quantitatively proved the
usefulness of ex-situ bounds under extreme data scarcity. Furthermore, we recommended
conservative ex-situ bounds that are more likely to cover the true value, over progressive
bounds that might underestimate uncertainty and lease to false conditioning.

All the stochastic approaches proposed in this dissertation are improvements based on
existing open-source and ready-to-use approaches. The proposed approaches are initially
designed for hydrogeologic modeling at unsampled locations, with the goal of representation
and reduction of uncertainty under Bayesian context, conditioning on in-situ soft data and/or
ex-situ data. While the proposed approaches were all demonstrated with hydrogeologic
case studies, the approaches themselves are general and independent of the field of study.
Thus, the new approaches proposed in this dissertation are expected to contribute to future
applications of stochastic modeling, within or beyond the field of hydrogeology.
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Appendix A

Compilation of Ready-to-use Software
Solutions to Stochastic Hydrgeologic
Modeling
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Appendix B

The Groundwater Forward Model for
The Mingtang Tunnel Case Study

The geographical scales of Mingtang tunnel and the impacted domain surrounding it are
challenging: the horizontal extent of the domain is in the tens of kilometers, with depths
to the tunnel reaching 500 m and more. Adding to the complexity is the need to employ
variable grid density, using small grid blocks (of the order of a few meters) to model the
tunnel and faults, while coarsening the grid (to tens and hundreds of meters) farther away
from these elements. To address the scale challenges, we adopted a nested-modeling strategy,
which we describe next.

To accurately simulate the groundwater flow system, a structured grid refinement method
referred to as nested modeling, also known as telescopic mesh refinement (TMR), was em-
ployed. Regional inter-basin flow effects were incorporated into the modeling analysis of
smaller model domains, and critical areas encompassing the local study site were simulated
with high grid resolution. Nested modeling with variable density grid has the advantage of
providing significant savings in computational cost (Dunning et al., 2004).

Figure B.1 presents schematically the nested modeling concept, as implemented in this
study. The nested modeling follows a progression of steps, from the multi-catchment to
regional to the local scales. This progression intends to (1) systematically communicate
boundary conditions across modeling scales; (2) preserve continuity and consistency across
scales, and (3) allow the use of fine grid near the tunnel and coarsening of the grid with
distance from the tunnel. As a starting point in this approach, the hydraulic heads at the
edges of the coarse-grid, multi-catchment scale model were determined using a regression
model which correlates water table elevations with topography, obtained from borehole data.
While similarly used in previous studies (Yang et al., 2009) and reasonably accurate, the
regression may not be upheld near major flow conduits and barriers such as rivers and
faults. Therefore, to ensure the accuracy of results near the tunnel, the regression model is
not directly implemented at the regional model boundaries where these features may be close
by. Next, the multi-catchment scale model is simulated to assign hydraulic head boundaries
to the regional model. The regional model is then processed with coarse grids to simulate
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regional flow effects outside of the local model area. Values of the hydraulic heads along the
domain of the local scale model were then used as prescribed boundary conditions around
the local flow model of the Mingtang tunnel site. The local model employs a fine grid, with
block size of the order of 0.1 m (following Zaidel et al., 2010). MODFLOW (Harbaugh,
2005) drain package was applied around the tunnel face to simulate zero pressure conditions
along the tunnel interior and the infiltration.

The nested modeling approach intends to transfer information across scales without af-
fecting the simulated flow effects in the local model. Specifically, the boundaries of the
local model should capture regional trends without affecting the local flow conditions in the
vicinity of the tunnel. Towards this end, the effects of boundary positions on simulated
drawdown and head results in the local model were iteratively analyzed to establish a safe
distance. We concluded that positioning the nested model boundaries at a close distance
of 100 m away from the tunnel resulted in drawdown simulations being greatly subdued.
In contrast, expanding the local model beyond a threshold distance of 500m away from the
tunnel displayed no observable changes in the gradient and values of simulated drawdowns
and heads. Hence, nested model boundary conditions were applied at a minimum of 500 m
away from the length and ends of the modeled Mingtang tunnel. This finding is in line with
Raposo et al. (2010).

Figure B.1: Schematic representation of the concept of nested modeling of the Mingtang
site. Prescribed hydraulic heads were transferred between model scales along the displayed
colored head boundaries.
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Appendix C

Defining the Ex-situ Informative
Priors for The Mingtang Tunnel Case
Study

The Ex-situ Prior of The Effective Conductivity
The objective here is to enrich the conditioning power by assimilating ex-situ data and

establish the priors for the effective conductivities. The approach we pursue here combines
the following elements: (1) establishing priors based on published data from similar sites
(namely, the ex-situ priors); (2) in the absence of ex-situ priors, exploring the bounds of
physical plausibility; (3) reducing data needs by identifying potential for homogenization.

While not directly informative on hydraulic conductivity, the rock type information (gran-
ite and gneiss) is useful for identifying hydrogeologically similar and better sampled sites
around the world, from which priors could be defined. Hydrogeologically similar sites are
obtained by screening candidate sites using a list of similarity criteria. Thus, similarity is
modeled as a Boolean variance in this study: a sampled site is either similar to the Mingtang
site if the criteria are met, or dissimilar otherwise.

A general description of the criteria is provided in Table C.1. We consider two different
perspective of site similarity: (1) the intrinsic perspective considers intrinsic properties of
the aquifer, such as lithology and tectonic activity, etc., and (2) the epistemic perspective
relates to our knowing of the aquifer, such as how and where were the sample collected.
Although an extended list of similarity criteria is always desirable as it increases the potential
of finding sites that are hydrogeologically similar, it is difficult to obtain the information
needed to evaluate all criteria, and we are often limited to employing a subset of criteria. A
subset of criteria consisting of the field testing method employed, the rock type, the fracture
condition, and the tectonic condition is used to establish the ex-situ priors in this case study.
The selection of the criteria is based on data availability at the Mingtang site and at the
candidate sites.

Using the criteria listed in Table C.1, we collect an ensemble of sampled sites, from which
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Table C.1: Site similarity criteria for hydraulic conductivity with emphasis on rock forma-
tions. Light-grey-colored rows indicate criteria used in this study.

Group Criteria General description Mingtang site description

Lithification
A process of porosity reduction

through compaction and
cementation

Granite (igneous) and
gneiss (metamorphic)

Mineral
ingredient

The mineral(s) of which the
geological structure consist

Rock mass consisting of
quartz, feldspar, and mica

Geological
structure

The outcome of the geological
formation process

Fine-grained structure,
granoblastic texture, and

gneissic structure

Weathering
degree

A qualitative engineering
perspective of rock mass

Overlay strata thickness
of strongly weathered rock

reaching 20m below
ground surface

Fracture
condition

Separation in a geologic formation,
such as a joint or a fault that

divides the rock into two or more
pieces; fluid movement may be
enhanced along open fractures

Highly developed joint fissures,
water bearing and conductive
in the shallow rock formations

Tectonic
condition

Common tectonic activities include
earthquakes, volcanoes, and

orogeny, where the edges of two
or more plates are in contact along

huge linear faults

Two or three major fault zones
almost normally intersecting with

tunnel longitudinal axis
Intrinsic

perspective

Ground stress
Stresses could deform or crash

rocks, which may induce space for
groundwater storage and flow.

Geostress consisting of
gravitational stress and
vertical tectonic stress

Sampling
depth

The depth at which the sample is
taken

The maximal depth of
the tunnel reaches 400m

below ground surface

Epistemic
perspective

Sampling
method

Including lab test, and in-situ
pumping test, injection test and
packer test etc., with each test

having its own assumptions and
limitations and support scale

Support volume
much smaller than
heterogeneity scale

the information can be borrowed to establish the ex-situ priors. The sites for granite are
listed in Table C.2, while those for gneiss are listed in Table C.3.

Statistics of the conductivity values from the sites listed in Tables C.2 and C.3 are used
to establish the priors of the effective conductivity. Our general approach for modeling the
conductivity of the granites is to homogenize the conductivity field and to represent it using
effective conductivities. Homogenization of the conductivity field is a viable strategy for
modeling the effects of spatial variability when dealing with average fluxes. In this study we
are interested in modeling large-scale average fluxes, and such fluxes can be modeled using
effective conductivities as has been shown in Dagan (1989) and Rubin (2003).

There are several models for the effective conductivity reported in the literature, and in
general they are associated with assumptions regarding the flow regime (2D, 3D, uniform in
the average, radial flow, etc., e.g., Binley et al., 1989; Dykaar and Kitanidis, 1992; Indelman
and Dagan, 1993) and the statistical distribution of the conductivity (e.g., normal, log-
normal, bimodal, etc.). As it is difficult to associate the Mingtang site flow regime with any
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Table C.2: List of similar sites for the ex-situ prior of the hydraulic conductivity of granite.

Study Site
Measurement
depth (m)

Measurement
Value (m/s)

Sampling method and
support volume dimension

Martinez-Landa and Carrera (2005)
Grimsel,

Switzerland
450 5E-7 Borehole pulse tests,

1 - 10 m450 5E-7

Zhao (1998) Singapore
40 - 70 5E-7

Borehole packer tests,
3 m

60 5E-11
120 1R-9

Heath (1985)
Carnmenellis,

England
525 1E-7 Borehole packer tests,

1 - 7 m580 1E-9

Magnusson and Duran (1984)
Krakemala,

Sweden
330 1E-5 Borehole packer tests,

2 m140 5E-9

Lee and Kim (2015)
Daejeon,

Korea
1 - 4 3.1E-11 Borehole packer tests,

3 m4 - 7 6E-7

Mej́ıas et al. (2009)
Cadalso de

losVidrios, Spain
190 2E-8 Borehole packer tests,

1 - 6 m161 8E-11

Stober (1996)
Black Forest,

Germany
100 7E-6

Borehole pumping tests
100 2E-9

Farvolden et al. (1988)
Atikokan,
Canada

100 1E-7 Borehole lab tests,
<1 m300 1E-12

Kun (2012)
Shandong,

China
200 1.1E-8 Borehole injection tests

Yin et al. (2005)
Liaoning,

China
317 5.2E-8 Borehole injection tests

Table C.3: List of similar sites for the ex-situ prior of the hydraulic conductivity of gneiss.

Study Site
Measurement
depth (m)

Measurement
Value (m/s)

Sampling method and
support volume dimension

Magnusson and Duran (1984)
Krakemala,

Sweden
330 1E-5 Borehole packer tests,

2 m140 5E-9

Stober (1996)
Black Forest,

Germany
100 7E-6

Borehole pumping tests
100 2E-9

Äikäs et al. (2000)
Olkiluoto,

Sweden
210 4E-6 Borehole lab tests,

2 - 5 m300 1.5E-8

Farvolden et al. (1988)
Atikokan,
Canada

100 1E-7 Borehole lab tests,
<1 m300 1E-7

Ma (2010)
Shandong,

China
200 3.4E-8

Borehole packer tests,
2 - 5 m

Guo (2005)
Hebai,
China

110 1E-7 Borehole pumping tests

Cui (2010)
Liaoning,

China
25 1.3E-6

Borehole packer tests,
5 - 7 m

Chen (2013)
Shanxi,
China

18 8.3E-8 Borehole pumping tests
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set of assumptions that would allow us to select a tightly-defined model, we must resort to
the least restrictive (and hence the most general) model (Rubin, 2003), which states that
the effective conductivity is bounded between the arithmetic and harmonic means of the
conductivity, depending neither on the flow regime nor on the shape of the distribution of the
conductivity. For this model to be valid, the following conditions must be met. First, the flow
domain needs to be stationary. As shown in Tables C.2 and C.3, the conductivity decreases
with depth, and so we limited the assumption of stationarity for fixed depth intervals, with
the bounds computed based on conductivity measurements of equal depth. Second, the
domain must be larger than the correlation length. Review of multiple studies (Erhel et al.,
2009; Follin, 1990; Jaquet et al., 2013; Poteri et al., 2002; Sawada et al., 2015; Walker et al.,
2005; Wen and Kung, 1993) indicates that the horizontal correlation lengths in granite rocks
vary from 1 to 300 m, with most domains showing correlation lengths between 20 to 50 m.
These length scales are smaller than the dimensions of the Mingtang flow domain, and at
the same time are larger than the measurement scale, which is typically of the order of 1 to
7m (see Tables C.2 and C.3).

To summarize, our approach for selecting values of the effective conductivities follows
these steps:

1. Define an ensemble of similar sites (following intrinsic and epistemic screening criteria).

2. Generate a scatterplot of the conductivities from the comparable sites while avoiding
bias due to disparities in the number of samples between sites.

3. Compute the upper and lower bounds on the effective conductivity at each depth
interval. With n values of the conductivity within a depth interval around a nodal
depth, Ki, i = 1, ..., n, the arithmetic and harmonic mean values (K̄A, K̄H) of that
nodal depth interval are given by the following definitions (Dagan, 1989; Dykaar and
Kitanidis, 1992; Indelman and Dagan, 1993; Rubin, 2003):

K̄A =
1

n

n∑
i−1

Ki, (C.1)

K̄H =

(
1

n

n∑
i−1

K−1
i

)
. (C.2)

4. Perform this analysis sequentially for different depth intervals.

5. Model the effective conductivity as a random variable, distributed uniformly between
the bounds.

6. Generate values for the vertical profiles of the effective conductivity to be used in
the numerical model. Each profile defines a realization of the conductivity field. The
ensemble of realizations is then used to generate the statistical distributions of the
dependent variables.
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The scatterplot of the log-conductivity of granite as a function of depth below ground
surface with data drawn from multiple, similar sites is shown in Figure C.1(a). The arith-
metic, geometric, and harmonic mean values of data at each nodal depth are shown in Figure
C.1(b), with the arithmetic and harmonic means constituting the upper and lower bounds
on the hydraulic conductivity, respectively (Rubin, 2003). The bounds are found to decrease
exponentially with depth, which is consistent with previous studies (Bense et al., 2013). The
bounds, as represented by the regression lines, form the upper and lower bounds on the ef-
fective conductivity. As shown in Figure C.1, the two Mingtang conductivity values lie next
to the computed upper bounds (as defined by the regression curves). These conductivity
values were measured near the faults’ damage zones, which are known to be characterized
by relatively high conductivity values. Indeed these values are in better agreement with
the prior information on damage zone conductivity as seen later in Figure C.1. Similarly,

Figure C.1: Prior of hydraulic conductivity for granite. (a) Scatterplot of hydraulic conduc-
tivities from the sites listed in Table C.2; (b) Effective conductivity bounds. In both cases,
decimal log scale used.

the scatterplot of log-conductivity and the regression curves for the bounds on the effective
conductivity as well as the geometric mean are shown in Figure C.2(a) and (b), respectively.
The Mingtang measurements are again closer to the upper bound, and scattered around the
regression curve.

The Ex-situ Prior of Fault Zone Hydraulic Conductivity
The hydraulic conductivities of the fault zones could be very distinct from those of the

fractured rocks. In general, average hydraulic conductivities are often assigned to fault
zones, which could be based on scaling factors from neighboring rock stratum (Yang et
al., 2009), reproduction of model parameters that fit observed water tables (Raposo et al.,
2010), derivation from an average of nearby borehole measurements (Molinero et al., 2002),
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Figure C.2: Prior of hydraulic conductivity for gneiss. (a) Scatterplot of hydraulic conduc-
tivities from the sites listed in Table C.3; (b) Effective conductivity bounds. In both cases,
decimal log scale used.

or statistical simulations assuming a representative average fault conductivity (Kitterød et
al., 2000). However, Bense et al. (2013) showed that this is not the case, instead depicting
the fault zone of crystalline rocks as a combination of highly conductive outer damage zones
enveloping a barely conductive inner fault core. These fault zones are thus highly anisotropic,
in that the hydraulic conductivities in the damage zone have been reported in many studies
to be several orders of magnitude higher than those near to the fault core. In this manner,
the damage zones act as conduits for flow parallel to the fault plane, whereas the fault core
acts as a barrier to flow normal to the fault plane. While the aforementioned core-damage-
zone framework may assume that several fault zone processes reducing fault permeability
are negligible (e.g., dissolution and cementation in fracture networks), we consider this to
be reasonable in light of the large water influx quantities observed at fault intersections
during the Mingtang tunnel excavation. At the Mingtang site, two faults were recognized
to be intersecting the tunnel, as described in Section 3.3. The outer damage zone has an
approximate width (normal to the fault plane) of 5–6m on either side of the 30 cm fault
core. A similar approach as the one applied for the conductivity of fractured rock is also
applied here for the fault zones, but two adjustments are made. First, due to less available
information about fault zones at the Mingtang site, among all criteria listed in Table C.1 only
the geological structure similarity criterion is adopted. Second, instead of 50 m, the depth
interval at which mean values are computed is set as 100 m, accounting for the reduction
in available observations at similar sites. This is expected, since boreholes only intersect
fault-affected areas at certain depths depending on a variety of factors including the width
of the fault architecture, fault inclination, etc.

Geologically similar sites for the ex-situ prior of the hydraulic conductivity of fault zones
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Table C.4: List of similar sites for the ex-situ prior of the hydraulic conductivity of fault
zones.

Study Site Rock type

Evans et al. (1997) Wyoming, U.S.A. Granite/gneiss
Gleeson and Novakowski (2009) Ontario, Canada Granite/gneiss

Morrow and Byerlee (1992) California, U.S.A. Granite/gneiss
Farvolden and Fritz (1988) Ontario, Canada Granite/gneiss

Stober, 1996 Black Forest, Germany Granite/gneiss

Rutqvist (2015) Gidea, Sweden
Crystalline rock

(assumed Granite/gneiss)

Géraud et al. (2010)
Soultz-sous-Forets,

France
Granite

Lockner et al. (2009) Nojima, Japan Granite

Mej́ıas et al. (2009)
Cadalso de losVidrios,

Spain
Granite

Morrow and Lockner (1997) Illinois, U.S.A. Granite

are listed in Table C.4, including information on whether the fault zones are embedded in
granite or gneiss, or a combination of both. Note that there is no information exclusively for
faults embedded in gneiss, with all compiled sites having either granite or a combination of
granite and gneiss as the dominant rock type. In reality, granite and gneiss rocks can either
be fused together in formation, or separated in alternating bands. However, it is unclear if
most conductivity measurements arise from granite or gneiss rocks exclusively. To that end,
an assumption is made that the ex-situ prior for faults embedded in gneiss can be established
by conditioning on the measurements from sites characterized by a combination of granite
and gneiss. The ex-situ prior for faults embedded in granite, on the other hand, can be
established by considering the measurements from all the sites listed in Table C.4.

Following the same steps, the prior uncertainty bounds of can be established, as shown
in Figure C.3. The difference between the hydraulic conductivities of damage zones and
of fault cores is about 3 orders of magnitude, which is actually quite consistent with the
range reported in the literature of ex-situ priors. The hydraulic conductivities of fault zones,
depending on whether they are damage zones or fault cores or are embedded in granite or
gneiss, are thus bounded by the upper and lower bounds shown in Figure C.3.

The Ex-situ Prior of Average Groundwater Recharge
In this study the average annual groundwater recharge (R) is modeled by R = CrP ,

whereP is the average annual precipitation and Cr is the recharge-precipitation ratio. The
model stems from the concept of water budget under the assumption that hydrologic pro-
cesses are distributing the total precipitation into the remaining hydrologic responses, which
include groundwater recharge. It is used quite commonly (e.g., Heppner et al., 2007; Ma-
gruder et al., 2009; Obuobie et al., 2012; Rangarajan and Athavale, 2000; Vries and Simmers,
2002). We shall adopt the model as a working hypothesis, without claiming optimality. The
estimation of recharge now becomes the estimation of Cr. The same approach is applied
here as the one applied for establishing ex-situ priors for the conductivities, but with a dif-
ferent set of similarity criteria. It would be ideal if we could consider watershed topography,
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Figure C.3: Prior of hydraulic conductivity for (A) damage zone embedded in granite, (B)
fault core embedded in granite, (C) damage zone embedded in gneiss, and (D) fault core
embedded in gneiss. In all cases, decimal log scale used.

climate, land cover, geological structure, and the existence of preferential flow path for the
intrinsic similarity, and consider the sampling method as well as the spatiotemporal scale
for epistemic similarity. Due to limited documentation at the Mingtang site as well as the
potentially similar sites collected in this study, only a subset of three intrinsic similarity
criteria is considered in this study: rock type, precipitation characteristic, and the dominant
land cover, and they represent similarities in geology, climate, and land cover, respectively.

The three selected criteria are applied qualitatively by direct comparison with the Ming-
tang site. The dominant rock types at the Mingtang site are granite and gneiss. Satellite
images and land use maps show that the Mingtang site is highly forested. The annual pre-
cipitation pattern over the Mingtang site is characterized by prominent wet-dry seasons;
roughly 45% of rainfall occurs from June to August and roughly 16% occurs from November
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to February; furthermore, snow/ice melt contribution is negligible. A number of studies
satisfying at least one of the aforementioned criteria are listed in Table C.5, as well as their
corresponding Cr values. The histograms and the estimated ex-situ priors (by kernel density
estimation) of Cr are shown in Figure C.4.
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Figure C.4: Histograms and priors from the sites listed in Table 5 based on (a) the whole data
set, (b) the subset of geologically similar sites, (c) the subset of geologically and climatically
similar sites, and (d) the ranges of each subset (the green lines spans the interval between
maximum and minimum values). The color of the histogram bars is scaled by value: the
darker the larger.
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Äikäs, Kari et al. (2000). “Engineering rock mass classification of the Olkiluoto investigation
site”. In: Posiva Oy, report POSIVA 8.

Ajami, Newsha K., Qingyun Duan, and Soroosh Sorooshian (2007). “An integrated hydro-
logic Bayesian multimodel combination framework: Confronting input, parameter, and
model structural uncertainty in hydrologic prediction”. In: Water Resources Research
43.1. doi: doi:10.1029/2005WR004745.

Anan, Mitsumasa et al. (2007). “Quantification of the effect of rice paddy area changes
on recharging groundwater”. In: Paddy and Water Environment 5.1, pp. 41–47. doi:
10.1007/s10333-006-0059-1.

Aquaveo (May 2013). “GMS User Manual (v9.1) The Groundwater Modeling System”. In:
Arnold, J. G. et al. (2000). “Regional estimation of base flow and groundwater recharge in

the Upper Mississippi river basin”. In: Journal of Hydrology 227.1–4, pp. 21–40. doi:
http://dx.doi.org/10.1016/S0022-1694(99)00139-0.

Bakker, M. R., L. Augusto, and D. L. Achat (2006). “Fine root distribution of trees and
understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites”.
In: Plant and Soil 286.1, pp. 37–51. doi: 10.1007/s11104-006-9024-4.

Barros, F. P. J. de and Y. Rubin (2008). “A risk-driven approach for subsurface site charac-
terization”. In: Water Resources Research 44.1, n/a–n/a. doi: 10.1029/2007WR006081.

Barros, Felipe P. J. de, Souheil Ezzedine, and Yoram Rubin (2012). “Impact of hydrogeologi-
cal data on measures of uncertainty, site characterization and environmental performance
metrics”. In: Advances in Water Resources 36, pp. 51–63. doi: http://dx.doi.org/10.
1016/j.advwatres.2011.05.004.

Bellin, Alberto and Yoram Rubin (1996). “HYDRO GEN: A spatially distributed random
field generator for correlated properties”. In: Stochastic Hydrology and Hydraulics 10.4,
pp. 253–278. doi: 10.1007/BF01581869.

Bense, V. F. et al. (2013). “Fault zone hydrogeology”. In: Earth-Science Reviews 127,
pp. 171–192. doi: http://dx.doi.org/10.1016/j.earscirev.2013.09.008.

Beven, Keith (2006). “A manifesto for the equifinality thesis”. In: Journal of Hydrology 320.1,
pp. 18–36. doi: https://doi.org/10.1016/j.jhydrol.2005.07.007.

— (2016). “Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hy-
pothesis testing, and communication”. In: Hydrological Sciences Journal 61.9, pp. 1652–
1665. doi: 10.1080/02626667.2015.1031761.

https://doi.org/doi:10.1029/2005WR004745
https://doi.org/10.1007/s10333-006-0059-1
https://doi.org/http://dx.doi.org/10.1016/S0022-1694(99)00139-0
https://doi.org/10.1007/s11104-006-9024-4
https://doi.org/10.1029/2007WR006081
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.05.004
https://doi.org/http://dx.doi.org/10.1016/j.advwatres.2011.05.004
https://doi.org/10.1007/BF01581869
https://doi.org/http://dx.doi.org/10.1016/j.earscirev.2013.09.008
https://doi.org/https://doi.org/10.1016/j.jhydrol.2005.07.007
https://doi.org/10.1080/02626667.2015.1031761


BIBLIOGRAPHY 93

Beven, Keith and Andrew Binley (1992). “The future of distributed models: model calibra-
tion and uncertainty prediction”. In: Hydrological processes 6.3, pp. 279–298.

— (2014). “GLUE: 20 years on”. In: Hydrological Processes 28.24, pp. 5897–5918. doi: doi:
10.1002/hyp.10082.

Beven, Keith and Jim Freer (2001). “Equifinality, data assimilation, and uncertainty esti-
mation in mechanistic modelling of complex environmental systems using the GLUE
methodology”. In: Journal of Hydrology 249.1-4, pp. 11–29. doi: 10 . 1016 / s0022 -

1694(01)00421-8.
Beven, Keith J., Paul J. Smith, and Jim E. Freer (2008). “So just why would a modeller

choose to be incoherent?” In: Journal of Hydrology 354.1, pp. 15–32. doi: https://doi.
org/10.1016/j.jhydrol.2008.02.007.

Binley, Andrew, Keith Beven, and John Elgy (1989). “A physically based model of hetero-
geneous hillslopes: 2. Effective hydraulic conductivities”. In: Water Resources Research
25.6, pp. 1227–1233. doi: 10.1029/WR025i006p01227.

Bleines, C et al. (2004). ISATIS software manual.
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