
UCLA
UCLA Previously Published Works

Title
Characterization of methylation profiles in spontaneous preterm birth placental villous 
tissue.

Permalink
https://escholarship.org/uc/item/4q17r4b1

Journal
PloS one, 18(3)

ISSN
1932-6203

Authors
Brockway, Heather M
Wilson, Samantha L
Kallapur, Suhas G
et al.

Publication Date
2023

DOI
10.1371/journal.pone.0279991

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4q17r4b1
https://escholarship.org/uc/item/4q17r4b1#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Characterization of methylation profiles in

spontaneous preterm birth placental villous

tissue

Heather M. Brockway1¤*, Samantha L. Wilson2, Suhas G. Kallapur3, Catalin

S. Buhimschi4, Louis J. MugliaID
5, Helen N. Jones1

1 Department of Physiology and Functional Genomics, College of Medicine at the University of Florida,

Gainesville, Florida, United States of America, 2 Princess Margaret Cancer Centre, University Health

Network, University of Toronto, Toronto, Ontario, Canada, 3 Divisions of Neonatology and Developmental

Biology, David Geffen School of Medicine at the University of California, UCLA Mattel Children’s Hospital, Los

Angeles, California, United States of America, 4 Department of Obstetrics and Gynecology, The University of

Illinois College of Medicine, Chicago, Illinois, United States of America, 5 Burroughs Wellcome Fund,

Research Triangle Park, North Carolina, United States of America

¤ Current address: Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United

States of America

* brockwayhm@gmail.com

Abstract

Preterm birth is a global public health crisis which results in significant neonatal and mater-

nal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontane-

ous preterm birth, and we have few diagnostic markers for adequate assessment of

placental development and function. Previous studies of placental pathology and our tran-

scriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm

birth. It is known that placental DNA methylation changes over gestation. We hypothesized

that if placental hypermaturity is present in our samples, we would observe a unique idio-

pathic spontaneous preterm birth DNA methylation profile potentially driving the gene

expression differences we previously identified in our placental samples. Our results indi-

cate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term

birth methylation pattern suggesting hypermaturity. Only seven significant differentially

methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the

controls) profile were identified, indicating unusually high similarity in DNA methylation

between idiopathic spontaneous preterm birth and term birth samples. We identified an

additional 1,718 significantly methylated regions in our gestational age matched controls

where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term

birth methylation pattern, again indicating a striking level of similarity between the idiopathic

spontaneous preterm birth and term birth samples. Pathway analysis of these regions

revealed differences in genes within the WNT and Cadherin signaling pathways, both of

which are essential in placental development and maturation. Taken together, these data

demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature

methylation signature than expected given their respective gestational age which likely

impacts birth timing.
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Introduction

Preterm birth (PTB), defined as delivery at less than 37 weeks of gestation is the leading cause

of neonatal mortality worldwide. Prematurity affects an average of 10% of infants born in the

United States with rates increasing and costs approximately $26.2 billion dollars a year (annual

societal cost including medical, educational, and lost productivity) [1, 2]. The majority (50%)

of preterm births are idiopathic and spontaneous (isPTB), rather than being medically indi-

cated (e.g., pre-eclampsia). Risk factors include but are not limited to genetic ancestry, fetal

sex, environmental exposures, and economic disparities [3]. Complications include develop-

mental delays, growth restriction, chronic respiratory problems as well as adult sequelae [3].

Studies into the etiology of preterm birth have implicated a role for the placenta, a central com-

ponent of the maternal-fetal interface, which has a vital role in pregnancy maintenance, com-

munication, and birth timing as well as fetal growth and development [4]. As such, proper

placental development, maturation, and function are essential for a successful pregnancy out-

come and life-time offspring health. Each of these processes is an intricate balance of molecular

interactions that are not fully understood even in healthy, normal, term pregnancies.

Placental maturation is accompanied by a marked increase in placental surface area due to

placental remodeling initiated between 20–24 weeks gestation and continuing throughout the

remainder of gestation which accommodates exponential fetal growth across the second half

of gestation [4]. Under normal physiological conditions, placental maturation is recognized by

specific histological hallmarks including increased quantities of terminal villi (<80 microns in

diameter), syncytial nuclear aggregates (SNAs, 10+ syncytial nuclei being extruded from the

syncytiotrophoblast), and formation of the vasculosyncytial membranes (VSM) which when

observed in significant quantities prior to 37 weeks, signify placentas with advanced villous

maturation (AVM) [5, 6]. Histological studies of pathological placentas indicate AVM occurs

in 50–60% of isPTB and medically indicated preterm births [7, 8]. This indicates a potential

developmental disconnect between placental maturation and the corresponding fetal matura-

tion. In infection associated preterm births, AVM was observed in less than 20% of pathologic

placentas [7, 8]. These studies indicate multiple morphological endotypes exist, underlying the

classical clinical PTB phenotypes, especially those of spontaneous PTB which are based on ges-

tational age and simply defined as early, moderate, and late [9]. The identification of these

morphological endotypes further highlights the heterogeneity confounding the identification

of PTB etiology and potential diagnostic biomarkers.

Multiple levels of heterogeneity confound elucidation of molecular mechanisms involved in

PTB, from inconsistent sampling of interface tissues to the numerous cell types within those

tissues to individual differences within larger populations [10–13]. However, traditional epide-

miological studies have not accounted for this morphological, molecular, and physiological

heterogeneity. Instead, the use of extensive covariate data to attempt to overcome population-

based heterogeneity has resulted in statistical overfit of models to specific datasets and loss of

reproducibility and generalizability of biological inference across datasets [14, 15]. This has led

to a dearth of robust biomarkers capable of assessing spontaneous PTB risk and managing

real-time clinical care. Our approach differs from the population based epidemiological

approaches in that we focus molecular profiling in smaller, prescreened datasets with com-

bined with select harmonizable covariate data that can be obtained for any dataset.

We have previously identified transcriptomic profiles of AVM in a small cohort using clini-

cally phenotyped placental villous samples from spontaneous PTB births, including isPTB and

infection associated births, between 29 and 36 weeks and normal term births (TB) between 38

and 42 weeks [16]. In our datasets, we define infection associated preterm births as acute histo-

logic chorioamnionitis (AHC) which have been identified via histological assessment of
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inflamed fetal membranes or molecular assessment [16]. Given the importance of DNA meth-

ylation (DNAm) to placental development and maturation [17–20], we hypothesized the gene

expression differences we observed in our transcriptome data could be due to changes in

DNAm at CpG islands between the birth types. Therefore, we sought to identify specific

DNAm profiles of placental maturation associated with our transcriptional profiles of

maturation.

Materials and methods

Study population

This study was approved by the Cincinnati Children’s Hospital Medical Center institutional

review board (#IRB 2013–2243, 2015–8030, 2016–2033). De-identified TB (n = 8), isPTB

(n = 11), and AHC (n = 8) placental villous samples along with appropriate covariate informa-

tion were obtained from the following sources: The Global Alliance to Prevent Prematurity

and Stillbirth (GAPPS) in Seattle Washington USA, the Research Centre for Women’s and

Infant’s Health (RCWIH) at Mt Sinai Hospital Toronto Canada, the University of Cincinnati

Medical Center (UCMC) and The Ohio State University College of Medicine, Department of

Obstetrics & Gynecology. Samples contained only placental villous tissue originating from the

fetus. Inclusion criteria included: maternal age 18 years or older, singleton pregnancies with

either normal term delivery (38–42 weeks’ gestation) or preterm delivery (29–36 weeks’ gesta-

tion) without additional complications including maternal disease, fetal disease or genetic

disorders.

Statistical analyses

Cohort data were analyzed in Prism v8 (GraphPad). Data were evaluated for normality and

non-parametric tests applied as appropriate. Parametric data are expressed as median and

range and were analyzed by one-way ANOVA with Tukey’s Multiple Corrections testing

across all group means. Categorical data were analyzed using Fisher’s Exact Test. These analy-

ses were run independently of those included in [16].

Intersection of transcriptomic candidate genes and CpG islands

Using the table function of the UCSC Genome Browser build hg38, we conducted a batch

query using the 340 candidate genes from our previous transcriptome study [16]. Using these

genes as identifiers, we created an intersection with the CpG Island Track [21]. This created an

output table with gene names, genomic positions, and overlapping CpG islands including

introns, exons, and regulatory regions 5’ and 3’. We then calculated the percentage of gene’s

protein coding regions that overlapped with CpG islands for initial assessment of potential

impact on transcription. We then utilized this table in subsequent analyses to determine the

location of DMRs in relation to gene structure and regulation.

DNA methylome generation

DNA was isolated from homogenized, snap frozen placental villous samples using the DNeasy

Kit (Qiagen). DNA quantity and quality was assessed using Qubit 4 Fluorometer (Invitrogen)

and Nanodrop Spectrophotometer (Thermo Fisher Scientific). A minimum of 500ng was sub-

mitted to the University of Minnesota Genomics Center and the University of Cincinnati

Genomics, Epigenomics and Sequencing Core where DNA quantity and quality assessment

were performed on a Bioanalyzer (Aligent), bisulfite conversion, and methylome generation

conducted on the Illumina Methylation EPIC Bead Chip.

PLOS ONE Characterization of methylation profiles in spontaneous preterm birth placental villous tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0279991 March 23, 2023 3 / 23

https://doi.org/10.1371/journal.pone.0279991


DNA methylation array data processing

Methylation data processing and analyses were based on a previously developed workflow

[22]. All packages are available within Bioconductor [23] and all package scripts were run in

RStudio/R v4.0.2 [24, 25]. IDAT file preprocessing and probe quality control was conducted in

R using scripts based on minfi [26] and methylumi [27]. IDAT files and a sample file contain-

ing covariate and BeadChip metadata were loaded into R where data quality was assessed

using the mean detection p-values for the probes in each sample. We applied Functional Nor-

malization(preprocessFunnorm) [28] for the algorithm’s ability to utilize the internal control

probes for each individual sample in an unsupervised manner to control for unwanted

variation.

After normalization, we excluded individual low-quality probes with a detection p-

value > 0.1 in more than 2 samples or bead count<3 in at least 5% of samples, sex chromo-

some probes, cross-hybridizing probes, and probes where SNPs (within the binding region or

within 5-10bp of the binding region) could potentially affect hybridization [22]. To ensure

appropriate filtering of problematic probes, we utilized several resources including the Illu-

mina Methylation EPIC BeadChip hg38 manifest and Zhou et al. [29] to identify additional

variation that would interfere with probe hybridization. We utilized McCartney et al. [30] to

filter the cross-hybridizing probes that are not listed in the manifest. We removed all probes

that reside in the ENCODE DAC black-list regions [31]. All filtering criteria and number of

probes filtered can be found in S1 Table in S1 File.

Once probe filtering was complete, we assessed the data for batch effects using principal

component analysis (PCA) and no significant batch effect was observed, therefore no correc-

tion was applied [32]. The resulting data matrix contained M-values which were utilized for

the statistical analyses of the pairwise comparisons due to their statistical robustness. β-values,

which are transformed M-values, represent the ratio of all methylated probe intensities over

total signal intensities or a percentage of methylation [33]. All methylation values are delta M-

values unless otherwise stipulated as they provide a better detection and true positive rates

while reducing heteroscedasticity for methylation sites that are highly or non-methylated [33].

Identification of differentially methylated positions

To assess differentially methylated positions (DMPs), we utilized generalized linear models

within limma [34] to assess differential methylation for each individual probe within the M-

value matrix as in [22] with adjustment for birth types and fetal sex as covariates within model.

Due to the small sample numbers in our dataset, we did not assess any additional covariate data

in this analysis as to not overfit the statistical models to this specific dataset and to increase gen-

eralizability of our findings in future studies. The following pairwise comparisons were used to

identify significant positions of differential methylation: isPTB versus AHC, TB versus AHC

and isPTB versus TB. The resulting output for these comparisons is a delta M-value represent-

ing the statistical difference in methylation at that position between the conditions being com-

pared. Multiple corrections testing was conducted using the Benjamini Hochberg method [35]

at multiple Q values:<0.05,<0.1,<0.2 and<0.3 (S2 Table in S1 File). We tested Q values to

determine if our lack observations in one pairwise comparison at Q = 0.05 were due to a techni-

cal error or if these represented a true lack biological variability despite the statistical parameter

selection. We opted to define significant DMPs with a Q<0.3 and a log2 fold-change of>±1.

Methylome profile identification

To identify methylation profiles, we used Venny 2.0 [36] to generate Venn diagrams to inter-

sect significant DMPs from each pairwise comparison to identify potential profiles for isPTB
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and AHC. An isPTB profile was defined as any DMP where the delta M-value of isPTB vs TB

or AHC was differentially methylated compared to the delta M-values of AHC vs TB which

were non-significant. An AHC profile was defined as any DMP where the AHC vs TB or AHC

delta M-value was differentially methylated from the isPTB vs TB delta M-values which were

non-significant. Heatmaps were generated in Prism v8 (GraphPad) using delta M-values. To

assess if the differential methylation was influenced by outliers or by artifacts, we generated

violin plots with β-values with median and quartiles in Prism v8 to check the distribution

within selected individual samples.

Differentially Methylation Region (DMR) identification

We used DMRcate v2.2.3 [22, 37] to identify differentially methylated regions comprised of

significant DMPs within a specified distance using moderated t statistics. To identify signifi-

cant DMPs within DMRcate, we used the M-value matrix (normalized and filtered) and set a

threshold of Benjamini Hochberg adjusted p-value <0.3. Since DMRcate uses limma to deter-

mine the significant DMPs, we were able to utilize the same glm design from the initial DMPs

analysis against adjusting for fetal sex. Once significant DMPs were identified, DMR identifi-

cation thresholds were set at lamba = 1000, C = 2, and minimum cpgs = 5. As we are analyzing

array data, we opted to use the default lambda and C (scaling factor) which allows for optimal

differentiation with 1 standard deviation of support to account for Type 1 errors. Once signifi-

cant DMRs were identified in each pairwise comparison, we intersected them using Venny 2.0

to identify isPTB and AHC specific DMRs. The isPTB profile was defined as any DMR that

was differentially methylated when compared to the AHC and TB, with the AHC vs TB. The

AHC profile was defined as any DMR that was differentially methylated compared to isPTB

and TB and where the isPTB vs TB methylation was non-significant meaning no DMR was

identified in DMRcate. We also set a mean difference in differentiation threshold of 0.01.

Heatmaps were generated in Prism v8 (GraphPad) using delta M-values.

Functional analyses of DMRs with associated genes

Genes with associated DMRs were entered into the Panther Pathway DB [38] for statistical

overrepresentation analyses for Reactome Pathways and to assess gene ontology (GO) for bio-

logical and molecular processes. Fisher’s Exact tests were used to determine significance and

Bonferroni correction for multiple comparisons. Pathways were considered significant if they

had an adjusted p-value <0.05.

Intersection of DMRs with transcriptome candidate genes

To determine if any of our significant DMR’s impacted candidate gene expression, we inter-

sected the DMR’s genomic locations with our candidate gene locations. All genomics regions

were mapped to hg38. Where there was overlap, indicating a potential regulatory event, we

took those locations and intersected with using the UCSC Genome Table browser (hg38) and

the CpG island tracks [21], using the feature-by-feature function. This allowed for identifica-

tion of DMRs in CpG regions of our candidate genes.

Results

Methylation study characteristics

Maternal and fetal characteristics for the three different pregnancy outcomes included in the

DNAm analyses are presented in Table 1. Transcriptomes from these samples were previously

published [16]. Due to the amount of sample required for DNA extraction only a subset of the
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samples were used and the statistical analyses repeated but did not change. Significant differ-

ences were observed in gestational age and fetal weights between AHC and isPTB samples

compared to the TB samples (p<0.05). All AHC and TB for which there were fetal weights

available were appropriate for gestational age. We included males and females in each sample

set and adjusted the linear models for fetal sex in addition to birth outcome. It is important to

note that in this study, we have mixed genetic ancestry within each of the sample sets.

Identification of transcriptomic profile candidate genes with overlapping

CpG islands

The intersection of isPTB specific methylation profiles with the previously identified 170 upre-

gulated genes in isPTB samples yielded 102 candidates (60%) overlapping with CpG islands in

their coding regions. In the AHC profile, 120/170 (81%) candidate genes intersected with CpG

islands within coding regions.

Identification of significant differentially methylated positions (DMP)

Preliminary quality control identified one sample with mean probe detection p-value >0.1

and it was subsequently removed from methylation analyses. Prior to normalization and sub-

sequent probe filtering, there were 866,901 probes in the data matrix. After normalization and

filtering, 108,691 probes were removed, leaving 758,210 probes in the matrix for analyses (S1

Table in S1 File).

Our initial statistical testing using the Benjamini Hochberg Q cutoff of 0.05 did not yield

any significant DMPs in the isPTB vs TB pairwise comparison. With a Type 1 error rate of 5%,

we expected to observe approximately 37,910 statistically significant DMPs in this comparison;

however, we observed 0. By relaxing the rate of acceptable Type 1 errors to 30%, we would

expect to observe 227, 463 statistically significant DMPs, yet we only observed a total of 662

significant DMPs (S2 Table in S1 File). We test modeled various statistical parameters to deter-

mine if our observations were due to technical errors or true biological differences. At every Q

value tested and with different statistical models, we observed the number of DMPs between

Table 1. Clinical characteristics of the placental villous samples included in this study.

Characteristics Acute Histological Chorioamnionitis Births (AHC) Idiopathic Spontaneous Preterm Births (isPTB) Term Births p-values

Number of samples 8 11 8

Maternal Age 34.5(25–40) 25(18–39) 28(19–37) NS1

Gestational Age 32(29–35)� 33(30–36)� 39(38–41) <0.00011

Fetal sex (% female) 3(38%) 6(55%) 4(50%) NS2

Fetal weight (grams) 1765(1360–2300)� 2105(1450–2722)� 3820(3650–4527) <0.00011

Birth weight percentile 55(20–80)� 60(3–80) 90(60–99) 0.041

SGA % 0 18.0% 0

Delivery type

Cesarean (%) 4(50%) 4(37%) 4(50%) NS2

Infection Status

(% Positive) 8(100%)� 0(0%) 1(13%) <0.00012

Data shown as median with range or total number with percent

�Significant statistical difference from term NS = Not significant
1ANOVA with Tukey’s correction for multiple comparisons across all pairwise group means
2Chi Square Analyses

https://doi.org/10.1371/journal.pone.0279991.t001
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isPTB and TB to be significantly less than expected. Ultimately, we opted on a Q cutoff of 0.3

in limma [34].

We then set a threshold for differential methylation of log2 fold-change of>1. The DMP

analysis identified a total of 24,202 significant DMPs across all pairwise comparisons in the

model. In the isPTB vs AHC comparison we identified 8,309 DMPs, 4,334 with reduced meth-

ylation and 3,975 more methylated in isPTB compared to AHC. In the TB vs AHC compari-

son, we identified a total of 15,817 DMPs with 7,170 less methylated and 8,647 more

methylated in TB. Lastly, in the isPTB vs TB comparison, 85 DMPs were identified as signifi-

cant with 13 more methylated and 72 less methylated (Fig 1A).

We observed differences in genomic location of the DMPs between the pairwise comparisons

and thus, analyzed the genomic location distribution of the DMPs per comparison (Fig 1B). In

the isPTB vs AHC and TB vs AHC comparisons the majority of DMPs were associated with CpG

islands, shores, shelves (isPTB = 70% and TB = 65%) while the remaining DMPs were in open

sea locations which are typically 3-4kb away from CpG islands (isPTB = 30% and TB = 35%

respectively). In contrast, in the isPTB vs TB comparison, 70% of the DMPs were associated with

open sea positions while only 30% associated with CpG islands, shores, and shelves. The first step

in identification of a DMP methylation profile was to intersect the significant DMPs from each

pairwise comparison and determine which would potentially segregate into an isPTB or AHC

profile (Fig 1C).

Isolation of isPTB and AHC DNA methylation profiles using DMPs

As a result of the intersection of significant DMPs, we identified 47 potential isPTB specific

DMPs. Upon examining the DNAm patterns for these DMPs across all pairwise comparisons,

we wanted to know which DMPs has differential methylation in the isPTB versus the AHC

and TB. We ultimately isolated 3 isPTB specific DMPs out of the 47 potential isPTB DMPs.

Our examination of the individual sample beta values and their distribution for each DMP

confirmed our findings were not due to artifacts or outliers (Fig 2A). Although we initially

identified 8,306 potential AHC specific DMPs via the intersection, upon further examination

of the DNAm pattern, we ultimately isolated 6,177 where the AHC samples were differentially

methylated compared TB or isPTB (Fig 2B). Of these, 3,002 are more methylated and 3,175 are

less methylated. We also examined the genomic location distribution of the AHC profile

DMPs and found that 76% were located within CpG islands, shores, and shelves with remain-

ing 24% located in open sea regions (S1 Fig).

Identification of differentially methylated regions (DMRs)

To identify differentially methylated regions, we used the M-value matrix of data values previ-

ously generated in our initial analyses. We utilized again a relaxed Q<0.3 to ensure we would

be able to identify enough CpG sites to identify DMRs in the isPTB vs TB comparison (S3

Table in S1 File). Only then, we were able to identify significant DMRs within all pairwise

comparisons (Table 2). 56 DMRs were observed within the isPTB vs TB comparison in con-

trast to the thousands significant DMRs identified in the isPTB and TB verses AHC pairwise

comparisons. All isPTB vs TB DMRs were under 2000bp wide and had no more than 18 CpG

sites in any given DMR. In contrast, the DMRs in the isPTB and TB vs AHC comparisons

were wider and encompassed more probes (Table 2). We intersected the DMRs and identified

potential candidate DMRs for isPTB and AHC methylation profiles (S2 Fig). Ultimately, we

identified 51 potential isPTB specific and 12,843 AHC specific DMRs. These DMRs overlap

with coding and non-coding loci across the genome as per the annotation from DMRcate

package [37].
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Fig 1. Identification of methylation profiles using a comparative approach. A. Differentially methylated positions were identified using

pairwise comparisons in limma. Red points indicate significant DMPs with a threshold of log2 fold-change>1 and Benjamini Hochberg

adjusted p-value<0.3. Blue lines represent log2 fold-change of 1. B. Genomic distribution of DMPs in the pairwise comparisons. The majority
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Identification and function of DMRs specific to isPTB and AHC

Of the 51 candidate isPTB DMRs, only seven demonstrated an isPTB specific profile (Fig 3

and Table 3). Six isPTB specific DMRs overlap coding/non-coding loci with only one sitting in

an upstream promoter region, LINC02028 (Table 4). This is the only isPTB-specific DMR that

overlaps with a CpG island. Four of the DMRs sit within transcripts for FAM186A, NOD2,

UBL7-AS1, and PDE9A, more specifically within introns or at intron/exon boundaries. The

remaining two DMRs sit in the 3’UTR of genes, ZBTB4 and STXB6, with the ZBTB4 DMR

crossing the last exon/UTR boundary (Table 4). No over-represented pathways were

identified.

Of the 12,843 AHC specific DMRs, only 1,718 demonstrated an AHC specific methylation

pattern. These DMRs include coding and non-coding loci (Fig 4A and S4 Table in S1 File). Of

these, 801 DMRs are more methylated while 917 are less methylated than corresponding

DMRs in the isPTB or TB pairwise comparison. In the top 25 more/less methylated loci, the

lack of significant differences in methylation can clearly be observed in TB vs isPTB (Fig 4B).

Of these, 19% (n = 328) had direct overlap with CpG islands. The remaining 81% had no over-

lap at all with CpG islands.

We assessed the potential implications of the AHC specific DMRs using statistical over-

representation analyses for pathways and GO terms. In the more methylated DMRs, we identi-

fied two significantly over-represented pathways: WNT and Cadherin signaling (Table 5). Sig-

nificant Biological Process GO terms included homophilic cell adhesion via plasma membrane

adhesion molecules (GO:0007156) and cell-cell adhesion via plasma-membrane adhesion mol-

ecules (GO:0098742).

No significant over-represented pathways were identified in the less methylated DMRs. The

significant Biological Process GO terms that were associated with the less methylated dataset

include cell morphogenesis involved in differentiation (GO:0000904), cell morphogenesis

(GO:0000902) and detection of chemical stimulus (GO:0009593). For Molecular Function, the

following significant GO terms were identified: ion binding (GO:0043167), protein binding

(GO:0005515), protein binding (GO:0005515), and olfactory receptor activity (GO:0004984)

(Table 6).

Identification of DMRs in regulatory elements of transcriptome candidate

genes

Upon intersection of significant DMRs and the candidate genes, none of the isPTB DMRs

intersected with any of the isPTB candidate genes. Out of the 1,718 significant AHC DMRs,

only eight intersected with the AHC candidate genes (Table 7). Interestingly, six of these

DMRs have methylation patterns, in all cases less methylated, that agree with upregulated tran-

scription status. The remaining two have no correlation between profiles (S5 Table in S1 File).

For each of these eight genes, we examined the genomic location to determine if these

DMRs were in promoters or CpG islands, potentially regulating gene expression. We observed

only one DMR, CDKN2A, that overlapped with CpG islands 5’ upstream of their transcripts.

The DMR upstream of CDKN2A also resides in the same genomic area as a non-coding tran-

script, CDKN2B. The remaining seven DMRs did not overlap any CpG islands although, two

were in the promoter or first intronic region of their associated genes. CENPM and RBPMS2

of DMPs in the isPTB and TB versus AHC comparisons are located inside or close to known CpG islands. However, in the isPTB versus TB

comparison, the majority of DMPs are in open sea regions with no known islands within 4kb. C. The Venn diagram represents the intersection

of pairwise comparisons to classify significant DMPs into isPTB and AHC specific methylation profiles.

https://doi.org/10.1371/journal.pone.0279991.g001
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Fig 2. Identification of significant methylation profiles for isPTB and AHC DMPs. A. Three DMPs identified as having an isPTB specific

methylation pattern where the isPTB samples were differentially methylated compared to the AHC or TB samples. The distribution of

individual sample beta values was assessed to determine if there were outliers or artifacts influencing the methylation patterns. The dark
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have multiple transcripts and the location of the DMR varies depending on the specific tran-

script length and start site. Three DMRs reside in introns or across intron/exon boundaries

(Table 7).

Discussion

To gain insight into the role of DNA methylation in spontaneous preterm birth, we utilized

pairwise comparisons of methylation between spontaneous preterm births and normal term

births using a general linear model adjusting for fetal sex and gestational age at delivery. It is

essential to note that normal gestationally age-matched placental samples are typically not

available for studies such as this depending on ethical restrictions of the geographical locale of

the study. Therefore, we opted to use with acute histologic chorioamnionitis samples (AHC)

which been previously shown to have much lower occurrences of AVM than other clinically

defined preterm birth types including PE and IUGR [7, 8] We were able to identify distinct

methylation profiles at both the positional (DMP) and regional (DMR) levels in isPTB and

AHC. Through bioinformatic functional assessment, we were able to identify pathways of

interest pertaining to placental maturation.

Our preliminary analyses indicated that there were very few DMP and DMR between the

isPTB and TB birth types regardless of the statistical parameters applied. We tested multiple

parameters within the statistical models to ensure that lack of differences was likely due to bio-

logical factors, not technical errors. Given the sheer number of datapoints being examined, we

felt that relaxing the Q value to 0.3 would not adversely affect our analyses and we were willing

to accept the potential increase in false positives [39, 40]. This allowed us to better assess any

potential differences between isPTB and TB despite the potential increase in false positives.

The Benjamini Hochberg correction is dependent on the overall number of samples to be cor-

rected and considered to be rather conservative. Regardless of the statistical parameters

applied, the isPTB profile mimicked the TB profile to a high degree which, agrees with the

transcriptomic profiles we previously identified [16] and provides additional evidence of a

potential placental hypermaturity profile associated with isPTB. Although this a preliminary

study investigating DNA methylation in spontaneous preterm birth, this pattern of DNA

methylation was also observed in studies of iatrogenic preterm births in DMP and DMR analy-

ses, for both PE and IUGR [20]. In the second study, focusing on imprinted regions found that

IUGR samples also mimicked the PE and term controls [41]. Pyrosequencing from this second

study confirmed no differences in the DMRs suggesting the detection of hypermaturity

bands represent the mean of the methylation values while the lighter grey bands represent the interquartile range. B. 6,177 DMPs

demonstrating a methylation pattern where the AHC samples were differentially methylated compared to the isPTB or TB samples. The

breakout heatmap shows the pattern or the top 25 more and less methylated samples and demonstrates the similarity of methylation between

the isPTB and TB samples. The distribution of individual sample beta values was assessed to determine if there were outliers or artifacts

influencing the methylation patterns.

https://doi.org/10.1371/journal.pone.0279991.g002

Table 2. Summary of significantly differentiated DMRs identified by DMRcate encompassing both coding and non-coding loci.

Pairwise comparison Number of Significant DMRs

Identified�
Width of DMR

(Range)

Number of Significant Probes in DMR (Range)

isPTB vs TB 56 180-1750bp 5–18 probes

isPTB vs AHC 12,883 83–9,386bp 5–110 probes

TB vs AHC 19,006 37–14,383bp 5–202 probes

�minimum smoothed FDR <0.05

https://doi.org/10.1371/journal.pone.0279991.t002
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molecular profile. Given that hypermaturity is estimated to affect 50–60% of all preterm births

including PE and IUGR [7, 8], these results provide additional evidence supporting the use of

placental DNAm clinically to classify pathophysiologies such as hypermaturity [20, 42].

DMRs are associated with numerous disease pathologies in multiple tissues [43, 44]. While

DNAm has been studied in the other adverse pregnancy outcomes such as PE and IUGR, this

study is the first to look specifically at isPTB. Our analysis resulted in the identification of

seven DMRs with isPTB specific methylation patterns; two are associated with non-coding

transcripts (LINC02028 and UBL7-AS), five with genes (ZBTB4, STXBP6, PDE9A, NOD2, and
FAM186A). Of these genes, four are of particular interest due to their potential function in or

previous association with PTB.

ZBTB4 is a placentally expressed gene coding for a transcription factor that binds methylated

CpGs in a repressive manner, controls TP53 responses in cells, and inhibits cell growth and pro-

liferation [45–47]. TP53 was identified as a potential biological pathway of interest in our micro-

array meta-analysis of spontaneous PTB [48] and has been implicated in isPTB from a uterine

perspective in mice [49]. STXBP6, also known as AMISYN, binds SNARE complex proteins

together [50]. As SNARE complexes have been well described in synaptic vesicle formation and

exocytosis [51] and regulation of membrane fusion dynamics [52, 53], the presence of this pro-

tein in the placenta suggests potential role in placental extracellular vesicle formation or the

mediation of membrane fusion during cytotrophoblast differentiation [52, 54].

PDE9A functions in the hydrolysis of cAMP into monophosphates, modulating the bio-

availability of cAMP and cGMP in cells [55]. cAMP signaling is essential to cytotrophoblast

differentiation into syncytiotrophoblast [56]; therefore, alteration of PDE9A expression or

function impacts cAMP bioavailability potentially altering this specific trophoblast differentia-

tion pathway. In fact, PDE9A has been proposed as a potential first trimester maternal serum

biomarker for Trisomy 21 [57]. Placentas from Trisomy 21 fetuses have multiple defects in

cytotrophoblast differentiation, specifically cell fusion, resulting in what appears to be delayed

villous maturation, indicating a key role for this gene in normal placental maturation [57–60].

NOD2 has a role in activation of the innate inflammatory response and has been implicated

in NFKB activation [61–63]. NFKB activation is a central component of pro-inflammatory

/labor pathways in both normal term and preterm pathophysiology [62, 64, 65]. As a member

of the NOD-like receptor family, NOD2 has been previously associated with recognition of

pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns

Fig 3. isPTB specific DMR profile. Differentially methylated DMRs were identified by differences in the mean of the

probe values across the DMR. Only 7 isPTB DMRs had an isPTB specific profile where the isPTB DMRs were less

methylated than the TB or AHC DMRs. Two of the DMRs overlap non-coding regions. No DMRs were identified that

were more methylated.

https://doi.org/10.1371/journal.pone.0279991.g003

Table 3. Summary of isPTB profile DMRs.

Mean Difference Methylation for all probes in DMR

Locus isPTB vs TB isPTB vs AHC TB vs AHC DMR coordinates

LINC02028 -0.033 -0.028 0.007 chr3:194072066–194072416

FAM186A -0.0416 -0.0175 0.0192 chr12:50343856–50344626

NOD2 -0.043 -0.015 0.022 chr16:50715192–50715700

UBL7-AS1 -0.054 -0.028 0.005 chr15:74466794–74467158

ZBTB4 -0.058 -0.045 0.0008 chr17:7461421–7462028

PDE9A -0.059 -0.066 0.054 chr21:42733397–42733894

STXB6 -0.087 -0.0466 0.042 chr14:24808650–24810213

https://doi.org/10.1371/journal.pone.0279991.t003
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(DAMPs) both of which have been associated with preterm labor and birth [62]. The activation

of pathways associated with PAMPs and DAMPs have previously been associated with sPTB

and iatrogenic PTB [48, 66–68]. NOD2 has been studied primarily in the context of a proin-

flammatory factor in fetal membranes and myometrium; however, NOD2 is expressed in first

trimester and term placental tissues, specifically in syncytiotrophoblast and stromal cells [61,

69]. Furthermore, NOD2 polymorphisms have been associated with preterm birth in several

genetic studies examining innate immunity, preterm premature rupture of membranes

(PPROM), and early onset PE and HELLP (Hemolysis, Elevated Liver enzymes and Low Plate-

lets) syndromes [62, 67, 70, 71].

Taken together, these isPTB DMRs and their associated genes suggest that altered DNA

methylation maybe highly influential in isPTB; however, from these data alone, it cannot be

determined if this is causative or the result of isPTB as the samples were obtained at delivery.

Although we cannot sample placental tissues throughout gestation to determine cause or

effect, using DNAm profiling on delivered placental tissues will provide key insights in the

pathophysiological underpinnings of adverse pregnancy outcomes.

In contrast to the isPTB DNAm profile, our examination of the AHC samples compared to

the isPTB and TB samples identified 1,718 DMRs. We observed within the top 25 more/less

methylated DMRs, multiple DMRs were associated with genes of interest that were previously

associated with adverse pregnancy outcomes including IUGR and PE. Several have also been

associated gestational diabetes mellitus (GDM) which can also result in preterm birth. These

genes of interest include: MLLT1 [72], FGFR2 [72], CACNA1A [73], GCK [74, 75], FER1L6
[76], CTSH [77], and ACAP3 [78]. Additionally, GSE1 [79], VSTM1 [80], and ACSS1 [79] are

expressed in the placenta but have not yet been associated with an adverse pregnancy outcome.

Our pathway analyses of the more methylated DMRs, yielded two pathways with statistical

over-representation, WNT and Cadherin signaling. Both pathways are necessary for placental

development and maturation [81–84] and a prior methylation study in PE also identified dif-

ferential methylation (increased methylation) in WNT and cadherin signaling [85], which

agrees with our findings. Given that over 50% of PE cases have hypermaturity along with the

pathological hallmarks of PE, this may indicate a role for these pathways in placental

maturation.

We initially hypothesized that changes in methylation at CpG islands could be driving the

transcriptional differences we previously observed. However, when we intersected our signifi-

cant DMRs with our candidate genes, we did not observe any overlap in the isPTB profiles and

only eight examples of overlap in the AHC profiles. Of those eight DMR/gene combinations,

only CDKN2A/CDKN2B-AS overlapped with a CpG island. CDKN2A, also known as p16, is a

gene with multiple transcripts which have different first exons. Known as an important tumor

suppressor, its primary role is regulating cell cycle progression through the regulation of TP53.

Loss of function studies of Cdkn2a and Tp53 in mice have demonstrated histopathological

Table 4. Functional information for the isPTB DMRs.

Locus Overlaps with CpG Island Location

LINC02028 chr3:194070715–194071468 Promoter

FAM186A NA Intronic

NOD2 NA Intronic

UBL7-AS1 NA Intronic

ZBTB4 NA 3’UTR/last exon

PDE9A NA Intron/exon boundary

STXB6 NA 3’UTR

https://doi.org/10.1371/journal.pone.0279991.t004
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changes in placenta and upregulated senescence markers as well as mitotic inhibition [86].

CDKN2B-AS is a functional RNA with regulatory roles via interaction with PRC1 and PRC1
which regulates the rest of the genes in this locus epigenetically [87]. Additionally,

CDKN2B-AS, also known as ARNIL, has been implicated in preterm birth.

Fig 4. AHC specific DMR profile. A. Differentially methylated DMRs were identified by differences in the mean of

the probe values across the DMR. AHC specific DMRs are defined by when the AHC DMRs were differentially

methylated compared to the TB or isPTB DMRs. B. The top 25 more and less methylated DMRs demonstrates the

clarity of the molecular profile, as there is no significant differential methylation in the TB vs isPTB comparison.

https://doi.org/10.1371/journal.pone.0279991.g004
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Interestingly, this DMR resides in locus consisting of CDKN2A/CDKN2A-DT/
CDKN2B-AS/CDKN2B, a locus vital to cell cycle control and is dysregulated in many cancers.

CDKNA-DT is a divergent transcript with no known function. However, CDKN2B, also

known as p15, is another critical tumor suppressor, which inhibits cyclin kinases CDK4 and

CDK6 [87]. These data along with our methylation data suggest the correct expression of the

CDKN2A/CDKN2A-DT/CDKN2B-AS/CDKN2B locus is critical to the structure, function, and

potentially the rate of maturity of the placenta and normal healthy pregnancy.

CENPM and SUSD2 have roles in cell cycling and proliferation with mutations associated

with cancers. In many cancers the loss of methylation is associated with cell proliferation and

migration via metastasis. However, in the developing and maturing placenta these processes

Table 5. Bioinformatic functional assessment of more methylated AHC profile DMRs via PantherDB.

Homo sapiens (all genes in

database)

Genes from input

list

Expected Fold

Enrichment

Adjusted p-

value�

PANTHER Pathways

Cadherin signaling pathway (P00012) 164 21 5.34 3.94 6.51E-05

Wnt signaling pathway (P00057) 317 30 10.31 2.91 1.03E-04

GO biological process complete

homophilic cell adhesion via plasma membrane adhesion

molecules (GO:0007156)

168 26 5.47 4.76 4.62E-06

cell-cell adhesion via plasma-membrane adhesion molecules

(GO:0098742)

257 28 8.36 3.35 1.05E-03

GO molecular function complete

ion binding (GO:0043167) 6354 277 206.71 1.34 5.61E-05

binding (GO:0005488) 16539 593 538.05 1.1 8.90E-05

molecular_function (GO:0003674) 18245 631 593.55 1.06 4.23E-03

metal ion binding (GO:0046872) 4268 192 138.85 1.38 4.82E-03

cation binding (GO:0043169) 4354 194 141.65 1.37 9.08E-03

adenyl nucleotide binding (GO:0030554) 1572 84 51.14 1.64 3.90E-02

�Fisher Test Bonferroni Corrected for multiple comparisons

https://doi.org/10.1371/journal.pone.0279991.t005

Table 6. Bioinformatic functional assessment of less methylated AHC profile DMRs via PantherDB.

Homo sapiens (all genes in

database)

Genes from input

list

Expected Fold

Enrichment

Adjusted p-

value�

GO biological process complete

cell morphogenesis involved in differentiation (GO:0000904) 568 49 21.68 2.26 5.15E-03

detection of chemical stimulus (GO:0009593) 522 2 19.92 0.1 8.02E-03

cell morphogenesis (GO:0000902) 721 56 27.52 2.04 1.96E-02

detection of chemical stimulus involved in sensory perception

(GO:0050907)

486 2 18.55 0.11 3.64E-02

GO molecular function complete

binding (GO:0005488) 16539 689 631.2 1.09 2.56E-04

protein binding (GO:0005515) 14359 615 548.01 1.12 4.39E-04

molecular_function (GO:0003674) 18245 739 696.31 1.06 1.33E-03

ion binding (GO:0043167) 6354 310 242.5 1.28 1.69E-03

olfactory receptor activity (GO:0004984) 441 2 16.83 0.12 4.87E-02

�Fischer Test Bonferroni Corrected for multiple comparison

https://doi.org/10.1371/journal.pone.0279991.t006
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are essential for growth, function, and maturation [42, 88, 89]. Less methylation at the DMRs

associated with RAD51, RBPMS2, ATN1 and the corresponding upregulation could be indica-

tive of senescence given their respective roles in DNA repair, regulation of cell differentiation,

and transcriptional repression. While the intersection of our matched transcriptional and

methylation data did not necessarily support our original hypothesis of gene regulation via

CpG islands in promoter regions, we were able to identify a potentially critical biological func-

tion, cell proliferation and an essential locus, CDKN2A/CDKN2A-DT/CDKN2B-AS/CDKN2B,

for further study.

One of the caveats to studying placental villous omics of any nature is the lack of normal

gestational age matched tissue due to limited accessibility throughout gestation. We previously

utilized infection associated samples in our transcriptome analyses as our gestational age con-

trols as their villi did not appear to be inflamed via pathological assessment. While we cannot

rule out that changes at AHC loci may be due to infection, we did not observe pathways or GO

terms associated with immunity or infection. Our data suggests that the overall AHC DNAm

profile is reflective of appropriate villous maturation rather than an infection profile as was

observed in our transcriptome data [16].

This is the first study to examine DNAm in spontaneous preterm birth in the context of pla-

cental maturity. The identification of hypermaturity profiles by both positional and regional

differences in methylation highlights importance of DNAm to placental maturation and thus

warrants further study. These differences could be due to altered trophoblast biology. These

data when taken in the context of a potential epigenetic clock, suggests that perhaps epigenetic

aging may have a role as it has in other fetal tissue and stem cells [90, 91]. Future studies need

to investigate the origin of the observed hypermaturity and its impact on the maternal-fetal

interface and pregnancy outcomes.
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Table 7. DMR characterization and comparison to transcriptome profiles.

DMR Genomic

Location

DMR Associated Gene DMR

Size

(bp)

Total

CpGs in

DMR

DMR location Island

Intersection

Methylation

status at DMR

AHC

Transcriptome

profile

Methylation and

Transcriptome

Agreement

chr9:21993972–

21995735

CDKN2A-CDKN2B-AS 1764 13 In promoter chr9:21993972–

21995735

Less Upregulated Yes

chr12:6938111–

6939048

ATN1 938 6 Mid-gene

intron/exon

boundary

No Less Upregulated Yes

chr22:41939981–

41941494

CENPM 1514 14 Transcript

Dependent

No Less Upregulated Yes

chr7:108095719–

108097606

LAMB4 1888 11 Mid Gene

intronic

No Less Downregulated No

chr16:23680392–

23681287

PLK1 896 5 Mid Gene

intronic

No More Upregulated No

chr15:40731625–

40735036

RAD51 1605 15 In promoter No Less Upregulated Yes

chr15:64752519–

64753130

RBPMS2 612 6 Transcript

Dependent

No Less Upregulated Yes

chr22:24180492–

24181665

SUSD2 1174 11 In promoter No Less Upregulated Yes

https://doi.org/10.1371/journal.pone.0279991.t007
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S1 Fig. Genomic Distribution of DMPs within the AHC methylation profile. The distribu-

tion of 6,177 DMPs in the AHC profile. Most probes are found within CpG islands or closely

associated with islands.

(TIF)

S2 Fig. Intersection of significant DMRs. The Venn diagram representing the intersection of

pairwise comparisons to classify significant DMRs into isPTB and AHC specific profiles.

(TIF)
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