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Prmt5 is a regulator of muscle stem cell expansion
in adult mice
Ting Zhang1, Stefan Günther1, Mario Looso1, Carsten Künne1, Marcus Krüger1, Johnny Kim1, Yonggang Zhou1

& Thomas Braun1

Skeletal muscle stem cells (MuSC), also called satellite cells, are indispensable for main-

tenance and regeneration of adult skeletal muscles. Yet, a comprehensive picture of the

regulatory events controlling the fate of MuSC is missing. Here, we determine the proteome

of MuSC to design a loss-of-function screen, and identify 120 genes important for MuSC

function including the arginine methyltransferase Prmt5. MuSC-specific inactivation of Prmt5

in adult mice prevents expansion of MuSC, abolishes long-term MuSC maintenance and

abrogates skeletal muscle regeneration. Interestingly, Prmt5 is dispensable for proliferation

and differentiation of Pax7þ myogenic progenitor cells during mouse embryonic

development, indicating significant differences between embryonic and adult myogenesis.

Mechanistic studies reveal that Prmt5 controls proliferation of adult MuSC by direct

epigenetic silencing of the cell cycle inhibitor p21. We reason that Prmt5 generates a poised

state that keeps MuSC in a standby mode, thus allowing rapid MuSC amplification under

disease conditions.
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O
rgan-specific adult stem cells enable continuous regen-
eration of various tissues throughout adult life. Most
adult stem cells are assumed to undergo constant

turnover to ascertain self-renewal and tissue homeostasis,
although dormant adult stem cells have been described in the
haematopoietic system, which remain in a quiescent state for
most of their lifetime and divide only rarely under severe stress
conditions1,2. Adult skeletal muscle stem cells (MuSC) are
represented by a specialized subset of myofibre-associated cells
called satellite cells and own a remarkable regenerative potential,
which enables them to continuously replace myofibres by
undergoing repeated rounds of activation and expansion under
persisting disease conditions. Satellite cells originate during early
embryonic development from a population of proliferating cells
of the paraxial mesoderm. While most cells activate myogenic
genes and form skeletal muscle fibres, some remain
undifferentiated, adopt a satellite cell position in postnatal
muscle and acquire a quiescent state3–5. After injury or
excessive exercise, Pax7þ cells exit quiescence, proliferate and
differentiate to generate new myofibres or fuse with existing
myofibres, thereby fully restoring damaged skeletal muscle
tissues6–9. Several recent studies demonstrated that ablation of
Pax7þ MuSCs prevents muscle repair under pathological
conditions and during ageing (review in ref. 10). However, the
molecular mechanisms that control satellite cell functions during
skeletal muscle regeneration are only partially understood,
although several factors directing the fate of MuSC have been
identified (reviewed in refs 2,11).

To identify new regulators of MuSC activation, self-renewal,
expansion and differentiation, we establish a systematic screening
approach taking advantage of mass spectrometry-based protein
profiling of FACS (fluorescence-activated cell sorting)-sorted
MuSC6,12,13 combined with short hairpin RNA (shRNA)-
mediated knockdown of MuSC-specific genes. Several genes are
identified that strongly affect activities of MuSC in vitro, of which
the histone arginine methyltransferase Prmt5 is chosen for in-
depth functional analysis. We find that Prmt5 is essential for
adult MuSC proliferation and muscle regeneration by restricting
p21 expression via direct epigenetic silencing, thereby allowing
rapid expansion of MuSC. Since the lack of Prmt5 does not affect
embryonic myogenesis, we postulate that prenatal muscle
development and adult muscle regeneration use distinct genetic
and epigenetic mechanisms for the control of muscle progenitor
cell expansion.

Results
Identification of novel regulators controlling MuSC homeostasis.
To determine the proteome of MuSCs, we isolated GFP-labelled
stem cells (SCGFP) from skeletal muscles of Pax7ICN/ZEG mice6,14

via FACS (Supplementary Fig. 1a), which all expressed Pax7
protein and readily differentiated into myocytes (Supplementary
Fig. 1b,c). Protein extracts of freshly isolated MuSCs were
subjected to mass spectrometry analysis (n¼ 3) resulting in the
identification of 135,341 peptides in all samples combined
corresponding to 5,031 proteins in MuSC with at least one
unique peptide (Supplementary Data 1). Notably, we detected
numerous proteins known to be highly expressed in MuSCs
including CD34, integrin a7, caveolin-1, Numb and b1-integrin,
but not haematopoietic or endothelial cell markers such as
CD45 or CD31 (refs 12,13,15). Comparison with proteome data
sets obtained from myofibres, Pax7- mononuclear cells and the
MuSCPG fraction (satellite cells after percoll gradient and
before FACS sorting) allowed us to identify 441 proteins that
are exclusively present in MuSC but not in differentiated
myofibres (Fig. 1a and Supplementary Data 2). Mass

spectrometry data of randomly selected proteins (Wdr61,
ABCC4, Lxn, Mustn1, P2RX4 and Prmt5) were validated by
immunofluorescence staining of freshly isolated myofibres
(Fig. 1b).

To analyse the function of MuSC-specific proteins, we
generated a custom-arrayed lentiviral shRNA library (400 genes,
one shRNA per well, on average five different shRNAs per gene;
Fig. 1c and Supplementary Data 2). FACS-purified Pax7ZsGreen

MuSC12 were transduced with shRNA expressing lentiviruses
and analysed by high-throughput fluorescent microscopy
96 h post transduction for the ratio of Pax7þ versus total
4,6-diamidino-2-phenylindole (DAPI)þ cells (Fig. 1d), providing
a read-out for genes affecting self-renewal, proliferation and
differentiation of MuSC. shRNAs targeting Pax7 and Nf1 were
included as quality controls (n¼ 4 wells for each plate). After
selecting for genes, which yielded a strong shift of the ratio of
Pax7þ versus total DAPIþ cells after knockdown, we ended up
with 30 genes inducing and 90 genes decreasing Pax7/DAPIþ cell
ratios after knockdown (Fig. 1e, Supplementary Fig. 1d and
Supplementary Data 3).

Prmt5 is required for muscle regeneration. Next, we initiated a
thorough analysis of the function of an exemplary candidate, the
arginine methyltransferase Prmt5, that mediates H3R8 symmetric
dimethylation (H3R8me2s; ref. 16). Prmt5 was recently
implicated in the regulation of proliferation of embryonic stem
cells17,18 and neural progenitor cells (NPCs) during brain
development19, but its function in adult stem cells has
remained elusive. Inactivation of Prmt5 using Prmt5loxP/loxP

(Supplementary Fig. 2a) and Pax7CreERT2 mice6,7 (¼MuSC-
specific Prmt5 knockout mice, Prmt5sKO) (Supplementary
Fig. 2b) efficiently depleted Prmt5 mRNA in adult MuSC
(Ctrl: 1.000±0.339, n¼ 3; Prmt5sKO: 0.033±0.020, n¼ 4;
Supplementary Fig. 2c). Interestingly, tamoxifen (TAM)-treated
Prmt5sKO mice remained viable and displayed no obvious
phenotype under physiological conditions 21 days after
treatment compared with control animals (Ctrl¼ Pax7CreERT2/
Prmt5þ /loxP; Supplementary Fig. 2d). No significant change of
body weight (Ctrl 23.60±3.18; Prmt5sKO 22.67±2.52, each
n¼ 3) and no morphological alterations of skeletal muscle
tissue were apparent (Supplementary Fig. 2e f). Likewise, the
number of satellite cells on sections of tibialis anterior (TA)
muscle (Ctrl 20.33±2.08; Prmt5sKO 20.33±1.53, each n¼ 3) and
freshly isolated flexor digitorum brevis (FDB) myofibres (Ctrl
30.00±3.61; Prmt5sKO 30.00±2.00, each n¼ 3) did not differ
between control and mutant littermates (Supplementary
Fig. 2g,h). To investigate whether Prmt5-deficient satellite cells
contribute to muscle regeneration, TA muscles of TAM-treated
Prmt5sKO and control littermates were injected with cardiotoxin
(CTX; Fig. 2a and Supplementary Fig. 2i). Strikingly, muscle
regeneration was completely abolished in Prmt5sKO mice at all
investigated time points (7 and 14 days, and 4 months after
injury). The virtually complete lack of regenerated muscle fibres
(Fig. 2b and Supplementary Fig. 2j) was accompanied by a
massive increase of fibrosis (Fig. 2c and Supplementary Fig. 2k).
To analyse whether Prmt5 affects long-term satellite cell
maintenance, we determined the number of MuSC 4 months
after the initial TAM treatment. Importantly, we detected a
significant decline of Pax7þ MuSC numbers both on
cryosections from TA muscles (Fig. 2d; Ctrl 15.00±2.19;
Prmt5sKO 5.17±2.32, each n¼ 6) and on freshly isolated
myofibres from FDB muscle (Ctrl 23.00±2.65; Prmt5sKO

13.33±4.93, each n¼ 3; Fig. 2e), indicating that Prmt5 is
required for MuSC expansion during regeneration and needed
to replenish the MuSC niche during physiological ageing.
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Prmt5 prevents depletion of the MuSC pool in mdx mice. To
further explore the role of Prmt5 in replenishing the MuSC pool,
we utilized mdx mice, which lack functional dystrophin resulting
in continuous degeneration/regeneration of myofibres, accom-
panied by repeated activation and enhanced turnover of satellite
cells20. Treatment of 8-week-old Prmt5sKO/mdx compound
mutant mice for 3 weeks with TAM (Fig. 3a) resulted in
progressive loss of body weight, whereas Prmt5-deficient and mdx
mice gained weight similar to wild-type littermates (Fig. 3b,c).
Prmt5sKO/mdx mice had a markedly lower body weight 4 months
after initiation of the TAM treatment (Fig. 3b,c), and the
diaphragm was markedly thinner compared with controls
(Fig. 3d). Magnetic resonance imaging (MRI) measurements
revealed a massive decrease of the total muscle mass normalized
to tibia length of Prmt5sKO/mdx (87.5±27.2 mm3 per mm, n¼ 4)
but not of Prmt5 mutants (211.5±10.0 mm3 per mm, n¼ 3),
wild-type mice (224.9±32.3 mm3 per mm, n¼ 5) and mdx mice
(332.0±30.8 mm3 per mm, n¼ 5), which gained muscle mass
due to myofibre hypertrophy (Fig. 3e). Furthermore, Prmt5sKO

(4.67±2.52, n¼ 3) and Prmt5sKO/mdx mice (2.80±2.49, n¼ 5)
displayed a significant reduction of Pax7þ MuSC at 6 months of
age compared with controls (Ctrl 15.20±2.39, n¼ 5; mdx
32.67±18.72, n¼ 3; Fig. 3f). We concluded that Prmt5 plays an
essential role to maintain the MuSC pool and enables continuous
muscle regeneration under chronic disease conditions.

Prmt5 controls proliferation and differentiation of MuSC.
To investigate the cellular mechanisms responsible for the loss of

the satellite cell pool and impaired muscle regeneration in
Prmt5sKO mice, we first analysed FACS-purified MuSCs from
Prmt5sKO and control mice in vitro. Prmt5-deficient MuSCs
showed a virtually complete arrest of cell proliferation as reflected
by a marked reduction of the number of Pax7þ , 5-ethynyl-20-
deoxyuridine (EdU)-incorporating cells (Ctrl 32.55±5.94%;
Prmt5sKO 8.29±4.24%, each n¼ 6), which is in line with the
results from Prmt5 knockdown experiments (Fig. 4a). Conversely,
lentiviral overexpression of human Prmt5 stimulated prolifera-
tion of MuSC indicated by increased EdU incorporation (CtrlGFP

36.90±2.52%, n¼ 8; Prmt5OE 43.43±4.13%, n¼ 6; Fig. 4b).
Moreover, we found a virtually complete absence of the formation
of myogenic colonies on single myofibres from FDB muscles of
TAM-treated Prmt5sKO mice (1.00±1.00, n¼ 3) despite the
presence of Pax7þ satellite cells (Fig. 4c). Genetic labelling of
MuSC using a Rosa26nlacZ reporter in which removal of a stop-
lox cassette by Pax7CreERT2 resulted in activation of nlacZ
expression uncovered a marked reduction of lacZ-positive MuSC
in regenerating muscle of Prmt5sKO mice 3 days after CTX
injection (Ctrl 925±104; Prmt5sKO 212±6, each n¼ 3; Fig. 4d),
indicating that Prmt5 is required for MuSC proliferation during
the early phase of injury-induced muscle regeneration. Additional
lineage tracing of MuSC using a Rosa26YFP reporter revealed that
Prmt5-deficient MuSC cells activated MyoD expression both on
isolated myofibres and in single-cell cultures despite the failure to
proliferate, suggesting that activation and proliferation of MuSC
are not necessarily linked (Fig. 5a,b). However, activated, non-
proliferative Prmt5-mutant MuSC failed to differentiate properly.
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Expression of myogenin (MyoG), an early marker of muscle cell
differentiation, was massively reduced in Prmt5 mutant MuSC
attached to myofibres even after extended culture (Ctrl
27.17±2.25%; Prmt5sKO 5.87±0.78%, each n¼ 3; Fig. 5c). In
addition, isolated MuSC from Prmt5sKO mice expressed lower
levels of MyoG (Ctrl 72.58±5.30%; Prmt5sKO 11.13±1.50%, each
n¼ 4) and did not form MF20þ myotubes efficiently (Ctrl
257.50±33.61 mm2; Prmt5sKO 56.53±8.27 mm2, each n¼ 3;
Fig. 5d,e). To further investigate the role of Prmt5 for myogenic
differentiation, we inactivated the Prmt5 gene in vitro by treat-
ment with 4-hydroxy-TAM (4-OH) (Fig. 6a) after amplification

of isolated Prmt5sKO MuSC and induction of differentiation.
Although we observed expression of the early differentiation
marker MyoG in this experimental setting (Fig. 6b), differentia-
tion of MuSC into MF20þ myotubes was essentially abrogated
(Fig. 6c). We concluded that Prmt5 plays an additional role at a
late stage of myogenic differentiation, independent of its function
in proliferation and regulation of MyoG expression. Intriguingly,
we also detected an increase of apoptosis in isolated Prmt5sKO

MuSCs after induction of differentiation (Ctrl 0.27±0.12%;
Prmt5sKO 9.00±1.75%, each n¼ 3), but not under con-
ditions stimulating proliferation (Ctrl 0.08±0.07%; Prmt5sKO

0.11±0.11%, each n¼ 3; Fig. 6d), suggesting that either Prmt5
promotes cell survival during differentiation of MuSC or that lack
of proliferation before differentiation favours apoptosis.

Prmt5 represses the cell cycle inhibitor p21 in MuSC. To gain a
better mechanistic understanding of the action of Prmt5 in MuSC
and to identify genes that might be directly regulated by Prmt5,
we performed transcriptome analysis in 4-OH-treated MuSC
from control and Prmt5sKO mice by RNA-sequencing (RNA-seq;
Supplementary Data 4). Gene ontology (GO)-term analysis
revealed an up- or downregulation of B500 genes (false discovery
rate o0.05) involved in cell cycle control, DNA metabolism and
replication after inactivation of Prmt5 (Supplementary Fig. 3a,b),
which is consistent with the proliferation defects observed in
Prmt5-deficient MuSC17,21. The upregulation of the cell cycle
inhibitor p21 attracted our particular attention22–24. qRT–PCR
analysis of freshly isolated FACS-sorted MuSC confirmed a
strong upregulation of p21 expression in Prmt5-deficient MuSCs
indicating a transcriptional inhibition of p21 by Prmt5 (Fig. 7a).
In addition, we detected a clear upregulation of p21 in 4-OH-
treated MuSC from Prmt5sKO mice (Fig. 7b) together with
downregulation of CyclinB1, a p21 target gene, while
transcription of myogenic factors including Pax7, MyoD and
Myf5 was not altered (Fig. 7b). To investigate a potential direct
repression of the p21 gene by Prmt5, we performed chromatin
immunoprecipitation (ChIP) assays concentrating on four well-
characterized regulatory regions of the murine p21 gene:
upstream enhancer like region (En), p53 binding site (p53BS),
transcriptional start site (TSS) and downstream intronic CpG
island (CpG; Fig. 7c; refs 25,26). In control MuSC, Prmt5 was
highly enriched at the En and p53BS but not at the TSS and CpG
sites, which was lost after treatment of Prmt5sKO MuSC with 4-
OH (Fig. 7d). Loss of Prmt5 binding caused a significant
reduction of H3R8me2s at the p53BS site in Prmt5-deficient
MuSCs (Fig. 7e), a significant loss of nucleosome occupancy at
the TSS site (Fig. 7f) and increased H3K4 trimethylation at the
CpG site (Fig. 7g), which is all consistent with suppression of p21
by Prmt5. Binding of Prmt5 to the p53BS prompted us to ask
whether Prmt5 suppresses p21 expression by preventing
recruitment of p53. Surprisingly, inactivation of Prmt5
prevented binding of p53 to the p53BS in the p21 locus,
thereby suggesting p53-independent upregulation of p21 in
Prmt5-deficient MuSCs (Fig. 7h). This conclusion was also
supported by normal p53 mRNA and protein levels in Prmt5
mutant compared with control MuSCs, although we detected
accumulation of Mdm4 splicing variants that were shown to
stabilize p53 in Prmt5-deficient NPCs (Fig. 7i,j; ref. 19).

To investigate whether impaired proliferation of Prmt5-mutant
MuSC is mediated by p21, we generated Prmt5sKO/p21� /�

compound mutant mice22. Intriguingly, we observed a significant
increase of proliferation of MuSC isolated from Prmt5sKO/
p21� /� (25.25±1.47%, n¼ 3) compared with Prmt5sKO mice
(11.34±1.50%, n¼ 3; Fig. 8a). Furthermore, we found an
increase of the number of myogenic colonies on 3-day cultured
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FDB myofibres in Prmt5sKO/p21� /� mice (22.40±7.30%, n¼ 5)
compared with Prmt5sKO mice (6.00±2.16%, n¼ 4; Fig. 8b).
However, inactivation of p21 in Prmt5 mutant mice failed to
restore skeletal muscle regeneration, indicating that Prmt5
controls MuSC expansion and differentiation not exclusively by
direct regulation of the p21 gene (Fig. 8c,d).

Prmt5 is dispensable for embryonic muscle development. It is
widely assumed that embryonic and adult myogenesis are regu-
lated by similar molecular cues, although a number of important
differences are apparent10. Hence, we wanted to know whether
Prmt5 does not only control MuSC and muscle regeneration but
is also involved in the formation of skeletal muscles during
development, in particular, since Prmt5 has been claimed to
regulate expression of Myf5, MyoD, Myogenin and Mef2c during
zebrafish myogenesis27. Therefore, we deleted the Prmt5 gene in
the myogenic lineage using the constitutively active Pax7Cre
knock-in mouse strain (Pax7Cre)14. qRT–PCR analysis of FACS-
sorted Pax7ZsGreen myogenic cells from Pax7Cre/Prmt5loxP/loxP

mutant embryos (hereafter referred to as Prmt5mKO) verified
efficient inactivation of Prmt5 expression in embryonic muscle
progenitor cells (data not shown). Analysis of control and
Prmt5mKO mutant embryos at E9.5, E12.5 and E16.5 revealed no
obvious defects in skeletal muscle formation (Fig. 9a). The normal
presence of Pax7þ , MyoGþ and MF20þ cells in embryonic
forelimbs muscle of E12.5 and E14.5 Prmt5mKO embryos
(Fig. 9b,c) suggested that loss of Prmt5 in Pax7þ myogenic
progenitor cells neither affects their expansion nor differentiation
during embryonic muscle development. Similarly, lack of Prmt5

had no effects on Pax7, MyoD and MyoG expression in forelimb
and hindlimb muscles at E16.5 when Pax7þ muscle progenitor
cells play an essential role for fetal muscle growth28 or on prenatal
muscle growth until birth (Fig. 9d,e). Despite the absence of an
apparent skeletal muscle phenotype, most Prmt5mKO mutants
died around birth, which we attributed to the activity of Pax7Cre

and consecutive loss of Prmt5 in the central nervous system
(CNS)19.

Discussion
Our screen identified several novel potential regulators together
with molecules that have already been documented to control the
fate of MuSC. Prominent examples include Smad3 (ref. 29) and
syndecan-4 (ref. 30). We also identified several epigenetic
modifiers including Wdr91, the poly (ADP-ribose) polymerase
Parp12 and Ash2l, a component of the Mll2 complex that
mediates H3K4 methylation, which has been shown to form a
complex with the transcription factor Pax7 to regulate Myf5
expression and satellite cell proliferation31,32. The histone
arginine methyltransferase Prmt5 attracted our particular
attention also because we identified several known interaction
partners of Prmt5 in the screen including Myd88 (ref. 33) and
Mapk13 (also known as p38delta), a component of the mitogen-
activated protein (MAP) kinase pathway34, suggesting that
Prmt5-dependent mechanisms play a preeminent role in the
regulation of MuSC proliferation and differentiation.

During adulthood MuSC mostly exist in a resting, quiescent
state but must be able to expand rapidly in order to regenerate
damaged muscle tissue. Relaxed control of quiescence might lead
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(e) MRI measurements of decreased and increased muscle volume (brown colour) in Prmt5sKO/mdx and mdx mice, respectively, 3 months after TAM

administration (WT and mdx, n¼ 5 each; Prmt5sKO, n¼ 3; Prmt5sKO/mdx, n¼4). Quantification of muscle volume normalized to tibia length is shown on the

right. Error bars represent s.d.’s of the mean (t-test: ****Po0.0001; ***Po0.001; NS, P40.05). (f) Decreased numbers of Pax7þ cells in TA muscles of

Prmt5sKO/mdx mice (n¼ 5) compared with WT (n¼ 5 and mdx (n¼ 3) littermates. The number of Pax7þ cells per 10 mm2 area was counted on

cryosections. Error bars represent s.d.’s of the mean (t-test: **Po0.01; NS, P40.05). Control (Ctrl): Pax7CreERT2þ /�/Prmt5þ /loxP; Prm5sKO:

Pax7CreERT2þ /�/Prmt5loxP/loxP. NS, not significant.
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to over-proliferation, depletion of the stem cell pool and might
favour tumour formation. Failure to respond appropriately to
proliferative cues will impair self-renewal of MuSC and
compromise regeneration. Prmt5 seems to be a decisive
component of the regulatory network that maintains this intricate
balance and keeps MuSC in a poised standby mode (Fig. 10). In
contrast, embryonic myogenesis is characterized by the rapid
expansion of myogenic progenitor cells, which need to form
skeletal muscles in a relatively short time period alleviating the
need to enter a quiescent, non-proliferative state. Hence, it makes
sense that the role of Prmt5 in the regulation of cell proliferation
differs significantly between embryonic and adult myogenesis,
whereas the control of muscle lineage determination and
differentiation seems to follow a similar pattern10,35–37.

A major function of Prmt5 for conferring a reversible resting
state to MuSC is apparently the restriction of p21 expression.
Reduced expression of Prmt5 in MuSC will result in upregulation
of p21, which increases the threshold for cell cycle re-entry
(Fig. 10). Although we detected Prmt5 by immunofluorescence in
virtually all MuSC, its level of activity and hence regulation of p21

might vary, thereby contributing to the heterogeneity of MuSC.
MuSC with lower Prmt5 activity might constitute a reserve
population that is only activated under severe stress conditions.
Alternatively, differential regulation of Prmt5 activity in asym-
metrically dividing MuSC might distinguish cells returning to
quiescence from those that undergo rapid expansion. Careful
quantitative evaluation of Prmt5 activity in single MuSC will
solve these questions in the future.

We do not claim that the epigenetic repression of p21 is the
only mechanism by which Prmt5 arrests MuSC proliferation, in
particular, since RNA-seq analysis identified several additional
cell cycle regulators that might also be regulated by Prmt5 either
directly or indirectly. Inactivation of p21 in Prmt5-deficient
MuSC failed to rescue muscle regeneration fully, although
proliferation of MuSC could be partially restored, indicating
different modes of action of Prmt5 independent of p21. In fact,
additional functions of Prmt5 in the regulation of progenitor cell
behaviour have been reported previously. In embryonic stem (ES)
cells, Prmt5 promotes pluripotency by modulating the cytoplas-
mic LIF/Stat3 signalling pathway, indirectly suppressing genes
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that are associated with ES cell differentiation17. In NPCs, Prmt5
regulates alternative splicing of Mdm4 that in turn stabilizes p53,
which causes upregulation of p21 and inhibition of cell cycle
progression19. Superficially, the findings in NPC appear to
partially recapitulate the situation in MuSC, but a more careful
analysis reveals fundamental differences in the mode of action.
Inactivation of Prmt5 in MuSC does not change the mRNA and
protein level of p53, although alternative splicing of Mdm4 was
altered. Furthermore, we found that binding of p53 to the p21
locus was lost after inactivation of Prmt5, indicating that
activation of p21 in Prmt5-deficient MuSC does not depend
on p53.

Although suppression of MuSC expansion by upregulation of
p21 dominated the phenotype of Prmt5sKO mice, lineage-tracing
experiments revealed that Prmt5-deficient MuSC failed to express
myogenin, indicating that Prmt5 mutant MuSCs are unable to
differentiate and form myofibres in vivo. This conclusion was also
supported by the failure of MuSC to form myotubes even when
Prmt5 was deleted after initiation of MyoD expression, a
phenomenon that was also observed in C2C12 myoblasts38. In
addition, the timed inactivation of Prmt5 in differentiating MuSC
suggests an additional role for terminal myogenic differentiation
after expression of MyoG has commenced. Interestingly,
induction of differentiation of Prmt5 mutant MuSC triggered
apoptosis, which might be related to the differentiation block
and contribute to the loss of MuSC during regeneration and
ageing.

Our study revealed that inactivation of Prmt5 in MuSC of mdx
mice resulted in a severe loss of muscle volume and recapitulated
several symptoms of human Duchenne muscular dystrophy
within 90 days. The findings emphasize the pivotal role of MuSC
in maintaining muscle mass under disease conditions. A similar
phenotype was described recently using mdx mice completely
lacking telomerase activity (mdx/mTR2G mice)20. However, in
mdx/mTR2G mice, a massive atrophy of the diaphragm was only
visible after 60 weeks, indicating that the lack of Prmt5 had more
severe consequences in MuSC function than loss of telomerase
activity. We believe that Prmt5sKO/mdx mice might serve as a
valuable model to study effects of therapeutic interventions on
dystrophin-deficient myofibres without the interference of MuSC
constantly replenishing lost or damaged myofibres.

Remarkably, muscle mass remained rather stable in Prmt5sKO

mice under physiological conditions for at least 3 months despite
a significant decline of the number of MuSC and the failure of
MuSC to expand. This finding allows two conclusions: (i) under
physiological conditions, MuSC contribute only to a minor degree
to the maintenance of muscle mass; and (ii) a significant
proportion of MuSC undergoes self-renewal during a 3-month
period. However, the second conclusion has to be viewed with
caution, since it is possible that the lack of Prmt5 induces cell
death of MuSC without prior activation and induction of
proliferation, although we did not find evidence for such a
scenario in our experiments. In the future, it will be interesting to
further exploit the Prmt5sKO model (Fig. 10) to study the role of
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MuSC in muscle dystrophies, analyse their function in muscle
hypertrophy or to block proliferation of tumour cells in
rhabdomyosarcomas.

Methods
Animals. The Prmt5loxP/loxP mouse strain was obtained from EUCOMM.
Rosa26nlacZ and C57BL/10ScSn-Dmdmdx/J (mdx) mouse strain was obtained from
The Jackson Laboratory (Bar Harbor, ME). Generation of Pax7CreERT2 (ref. 7),
Rosa26YFP (ref. 39) Pax7ICN (ref. 14), p21 null (ref. 22), Pax7ZsGreen (ref. 12) and
Z/EG reporter6 mice have been described previously. Primers used for genotyping
are shown in Supplementary Table 1. TAM (Sigma) was administered
intraperitoneally at 3 mg per 40 g body weight per injection. CTX (0.06 mg ml� 1,
Sigma) was injected into TA muscles in a volume of 50ml. All animal experiments
were done in accordance with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (NIH Publication No.
85-23, revised 1996) and according to the regulations issued by the Committee for
Animal Rights Protection of the State of Hessen (Regierungspraesidium Darmstadt).

Myofibre isolation and MuSC purification. The FDB muscles were isolated
and digested with 0.2% collagenase P (Roche) in DMEM medium. The isolated
myofibres were either fixed directly with 4% paraformaldehyde (PFA) or fixed after
3-day culturing in DMEM medium with 20% fetal calf serum (FCS) and basic
fibroblast growth factor (bFGF) (5 ng ml� 1). Satellite cell isolation and purification
were performed according to established methods6. Briefly limb and trunk muscles

were minced, digested with 100 CU Dispase (BD) and 0.2% type II collagenase
(Worthington Biochemicals), and consecutively filtered through 100-, 70- and 40-
mm cell strainers (BD). Cells were applied to a discontinuous Percoll gradient
consisting of 70% Percoll overlayed with 30% (vol/vol) Percoll. Mononuclear cells
were collected at the 70/30 interphase and subjected to FACS (BD FACSAriaII)
either using immunostaining with fluorescence-coupled primary antibodies
(CD11b� , CD45� , CD31� , CXCR4þ and CD34þ ; refs 6,13,40) or GFP
fluorescence of satellite cells from Pax7ZsGreen mice and Pax7CreERT2/Rosa26YFP

mice. FACS-purified SCs were cultured on Matrigel-coated 384-well mClear plates
(BD Biosciences, Greiner) in DMEM medium with 20% FCS and bFGF
(5 ng ml� 1; refs 6,8). EdU incorporation assay was performed by adding EdU with
a final concentration of 10 mM 3 h before fixation and then analysed using the
Click-iT EdU kit (Invitrogen) according to the manufacturer’s protocol. TUNEL
assays to monitor apoptosis were carried out with the In Situ Cell Death Detection
Kit (Roche) according to the manufacturer’s protocol. For Cre recombinase-
mediated in vitro ablation of Prmt5, cultured satellite cells were treated with
4-OH-TAM (0.4 mM, Calbiochem) for 4 days and were analysed 5 days later.
Lentiviruses overexpressing the coding region of human Prmt5 were generated
with a modified lentiviral vector derived from plko.1 (Sigma-Aldrich) in HEK293T
cells using the helper plasmids pMD2.G and psPAX2, and used for infection
of MuSC.

Immunofluorescence and morphological analysis. Cultured cells and myofibres
were fixed in 4% PFA. Frozen muscle sections (5–10 mm) were fixed in cold
acetone. Primary antibodies for immunohistochemical staining are shown in
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(c) Representative macroscopic images of non-injured and injured TA muscles of control, p21� /� , Prmt5sKO and Prmt5sKO/p21� /� mice (n¼ 3, each)

14 days after CTX injection. Scale bar, 1 cm. (d) Haematoxylin and eosin (H&E) staining of muscle section from non-injured (upper panel) and injured

TA (CTX lower panel) muscles of control, p21� /� , Prmt5sKO and Prmt5sKO/p21� /� mice (n¼ 3, each) 14 days after CTX injection. Control (Ctrl):

Pax7CreERT2þ /�/Prmt5þ /loxP; Prm5sKO: Pax7CreERT2þ /�/Prmt5loxP/loxP. Scale bar, 50mm.
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Figure 9 | Prmt5 is dispensable in embryonic Pax7þ muscle progenitor cells. (a) Representative images of control and Prmt5mKO embryos at embryonic

day E12.5, E14.5 and E16.5. (n¼ 3, each). Scale bar, 10 mm. (b,c) Immunofluorescence images of cryosectioned forelimbs and hindlimbs. (b) E12.5
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E16.5 transverse sections: upper panel and forelimbs. E16.5 frontal sections: lower panel, Pax7 (green), myogenin (red; d), and Pax7 (green) and MyoD

(red; e). DNA is stained by DAPI (blue). Scale bars, 50mm. Scale bars in inserts 20mm. Control (Ctrl): Pax7CreERT2þ /�/Prmt5þ /loxP; Prm5sKO:

Pax7CreERT2þ /�/Prmt5loxP/loxP.
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Supplementary Table 2. LacZ staining of regenerating or normal TA muscle sec-
tions 3 days after CTX injection was carried out according to standard protocols,
Eosin staining was used to visualize muscle fibres. Masson’s Trichrome staining
was carried out using the ACCUSTAIN trichrome staining kit (Sigma-Aldrich)
following the manufacturer’s instructions.

ChIP and RT–qPCR. ChIP assays on purified satellite cells were performed
according to established protocols modified for small cell numbers41. FACS-
purified satellite cells (100,000) were first crosslinked with 1% formaldehyde for
10 min and then quenched by 0.125 M glycine for 15 min at room temperature.
Chromatin was sheared to lengths of 300–500 bp using Bioruptor (Diagenode) and
subjected to immunoprecipitation with antibodies are shown in Supplementary
Table 2. Primers used for ChIP–qPCR are shown in Supplementary Table 3. For
RT–qPCR assays, total RNA from satellite cells and muscles was isolated using
Trizol reagent (Invitrogen) according to the manufacturer’s protocol. An amount
of 1 mg of purified RNA was subjected to reverse transcriptase reaction in the
presence of 25 ng ml� 1 random primers and 2.5 mM dA/C/G/TTP with
10 U ml� 1 SuperScript II Reverse Transcriptase (Invitrogen). Primers used for
RT–qPCR are shown in Supplementary Table 4.

Western blot analysis. For western blot assays in vitro cultured satellite cells were
harvested, washed with ice-cold PBS and lysed in cell lysis buffer (20 mM Tris
(pH 7.5), 400 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM
sodium pyrophosphate, 1 mM b-glycerophosphate, 1 mM Na3VO4 and 1 mg ml� 1

leupeptin). Whole-cell lysates (10 mg) were subjected to SDS–PAGE and western
blotting using antibodies are shown in Supplementary Table 2. Protein expression
was visualized using an enhanced chemiluminescence detection system (GE
Healthcare, Little Chalfont, UK) and quantified using a ChemiDoc gel doc-
umentation system (Bio-Rad). Uncropped images of original western blots are
presented in (Supplementary Fig. 4).

RNA-seq. For RNA-seq, RNA was isolated from cultured satellite cells using the
miRNeasy micro Kit (Qiagen) combined with on-column DNase digestion
(DNase-Free DNase Set, Qiagen) to avoid contamination by genomic DNA.
RNA and library preparation integrity were verified with a BioAnalyzer (Agilent).
Ribosomal depletion was performed using RiboMinus Eukaryote System v2 (Life
Technologies) with 500 ng total RNA as input following the low input protocol.
Libraries were prepared with the Ion Total RNA-Seq Kit v2 (Life Technologies)
adjusting the total amount of depleted and fragmented RNA to standard protocols.
Sequencing was performed on the Ion Torrent Proton platform using V3 chemistry
(Ion PI Template OT2 200 Kit v3, Life Technologies) and PIV2 Chips (Ion PI Chip
Kit v2, Life Technologies). For each run, two RNA-seq libraries were measured
resulting in 82M reads in total and at least 40M reads per library. Raw reads were
assessed for quality, adaptor content and duplication rates with FastQC 0.10.1,

trimmed by Reaper version 13–100 (ref. 42) and terminally aligned to the Ensemble
mouse genome version mm10 (GRCm38) by STAR 2.4.0a (ref. 43). Differentially
expressed genes were identified using DESeq2 version 1.62 (ref. 44). Only genes
with a minimum fold change of ±2, a maximum Benjamini–Hochberg corrected
P value of 0.05 and a minimum combined mean of 5 reads were classified as
significantly differentially expressed. The Ensemble annotation was enriched with
UniProt data (release 06.06.2014) based on Ensemble gene identifiers. Gene
ontology analysis was performed using DAVID Bioinformatics Resources
(http://david.abcc.ncifcrf.gov)45. Heatmaps of cell cycle-related genes were
generated using ‘heatmap.2’ in R ‘gplots’ package. Gene expression data were
deposited in the NCBI Geo database (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE66822) under the accession number GSE66822.

Mass spectrometry. Muscle and satellite cell samples were homogenized in
lysis buffer (4% SDS in 100 mm Tris/HCl, pH 7.6). Lysates were loaded on an
SDS–PAGE (NuPAGE 4–12% BisTris gel, Invitrogen) and stained with colloidal
Protein Staining Solution (Invitrogen). Evenly sized gel pieces were excised for
in-gel digestion using trypsin after reduction and alkylation of gel pieces. Gel pieces
were washed twice with 50% (50 mM NH4HCO3/50% ethanol) for 20 min,
dehydrated with 100% ethanol for 10 min and vacuum dried. Gel pieces were
reduced with 10 mM dithiothreitol for 45 min at 56 �C and alkylated with 55 mM
iodocetamide (BioUltra, Sigma-Aldrich) for 30 min at room temperature in the
dark. After two steps of washing/dehydration, samples were dehydrated twice with
100% ethanol for 15 min and vacuum dried. Gel pieces were digested overnight at
37 �C in 50 ml of digestion buffer containing 12.5 ng ml of Sequencing Grade
Modified Trypsin (Promega Corp., Madison, USA). Released peptides were
extracted (collecting separately the liquid mixture of each samples at each step)
once by adding 100 ml of 30% acetonitrile liquid chromatography/mass spectro-
metry (LC/MS) grade (Thermo Scientific)/3% trifluoroacetic acid (Sigma-Aldrich)
in water, and twice by adding 70% acetonitrile, followed by two final extractions
with 100% acetonitrile. Extracts were vacuum dried to remove acetonitrile and
subsequently acidified with 0.5% trifluoroacetic acid (TFA)46. Peptides were
purified by stop and go extraction tips47, and were run on a LC system coupled to a
LTQ-Orbitrap XL or a LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher
Scientific) equipped with a nanoelectrospray source (Proxeon). Full-survey scan
spectra (m/z¼ 300–1,650) were acquired in the Orbitrap with a resolution of
R¼ 60,000 after accumulation of 1,000,000 ions. Raw data were analysed using the
MaxQuant software package48. Database searches were performed with the Mascot
search engine against a murine FASTA database (IPI 3.54). A false discovery rate of
1% was used, and only peptides with a minimum of six amino-acid length with at
least one unique peptide were included for data analysis.

High-throughput screen and hit validation. A customized shRNA library against
selected genes was robotically re-arrayed from a murine genome-wide The RNAi
Consortium (TRC) shRNA library49 (Sigma-Aldrich). Plasmids were purified with
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Figure 10 | Model of the role of Prmt5 during fetal myogenesis and adult muscle regeneration. Prmt5 controls proliferation of adult MuSC by direct
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GenElute HP 96-Well Miniprep Kits (Sigma-Aldrich) and tested for integrity with
a PvuII digest. High-throughput production of lentivirus was performed by
Ca3(PO4)2 transfection of HEK293T cells with helper plasmids pMD2.G and
psPAX2. Four-hundred fifty freshly isolated satellite cells per well were seeded into
384-well tissue culture plates freshly coated with Matrigel (Greiner). Twenty-four
hours later, cells were transduced with lentiviral supernatants supplemented with
8 mg ml� 1 polybrene for 6 h. After media exchange, cells were incubated for 72 h.
Each 384-well plate contained 56 controls including 12 individual GFP-producing
lentiviruses to monitor transduction efficiency, four positive controls for Pax7
knockdown (shRNA Pax7) and four positive controls for Nf1 knockdown (shRNA
Nf1). Cells were fixed in 4% PFA and whole-well images were acquired and
analysed using an ImageXpress Micro automated high-throughput fluorescence
microscope and MetaXpress software (Molecular Devices). Pax7/DAPI ratios were
determined for each individual well. Only plates with Z0 values 40.5 according to
1� (2spos þ 2sneg/mneg� mpos) were used for further processing. Values as
reference for Pax7 expression in percentage were then calculated according to
z¼ (x/m) (� 1) (x, value of particular sample; m, mean of plko1 empty vector;
n¼ 4). Target genes qualified as hits if percentiles were higher or lower than 25%
compared with control.

Magnetic resonance imaging. All MRI experiments were performed on a 7.0-T
superconducting magnet (Bruker Biospin, Pharmascan, 70/16, 16 cm; Ettlingen,
Germany) equipped with an actively shielded imaging gradient field of
300 mT m� 1 (ref. 50). The frequency for the 1H isotope is 300.33 MHz. A 60-mm
inner diameter linear-polarized 1H volume resonator was used for RF pulse
transmission and signal reception (Bruker Biospin). Localized images were
acquired using a spin-echo sequence and corrections of slice angulation were
performed, if necessary. RARE (Rapid Acquisition with Relaxation Enhancement)
sequences (repetition time (TR)¼ 2,500 ms, echo time (TE)¼ 36.7 ms, slice
thickness¼ 1 mm) in axial and coronal orientation were used to determine exact
positioning of the lower part of the mouse body. A coronal MSME (Multi-Slice-
Multi-Echo)-spin-echo-sequence with an echo time TE¼ 8.6 ms, repetition time
TR¼ 453 ms, a field of view FOV¼ 7� 7 cm2, matrix size MTX¼ 512� 256 and a
slice thickness of 1 mm was recorded. Volumetric quantification of fat and muscle
tissue from images was processed by software ImageJ. A list of anatomically defined
landmarks was used to derive tissue-specific signal intensity thresholds and to
define the region of interest for intensity sensitive region growing segmentation.
The resulting tissue voxel volumes inside the region of interest were determined as
cubic millimetres for each tissue class. Mice were measured under volatile
isoflurane (1.5–2.0% in oxygen and air with a flow rate of 1.0 l min� 1) anaesthesia;
the body temperature was maintained at 37 �C by a thermostatically regulated
water flow system during the entire imaging protocol.

Statistics. For statistical analysis, the two following tests (two-tailed) were used:
(1) three or more groups: one factorial ANOVA; (2) two groups: unpaired t-test.
P values o0.05 were considered statistically significant. Data were analysed using
GraphPad Prism v5.03 (GraphPad Software, San Diego, CA).
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