UC Santa Barbara

CSISS Classics

Title

Claudius Ptolemaeus (Ptolemy): Representation, Understanding, and Mathematical Labeling of the Spherical Earth. *CSISS Classics*

Permalink https://escholarship.org/uc/item/4q10b6qk

Author Sprague, Ben

Publication Date 2003

different methods for projecting the Earth's surface on a map (an equal area projection, a stereographic projection, and a conic projection), the calculation of coordinate locations for some eight thousand places on the Earth, and the development of concepts of geographical latitude and longitude (Figure 1). Through his publications, Ptolemy dominated European cartography for nearly a century and inspired explorers like Christopher Columbus to test the spatial boundaries of the world.

Ptolemy suggested that people remap his data, and in Book I of *Geographica* he offers advice on how to draw maps. Later in *Geographica*, Ptolemy explains how to calculate the location of a place by using longitude and latitude, and how to represent the entire world on a flat map. Copies and reprints of Ptolemy's world maps made up the majority of navigation and factual maps for centuries to come, providing the base information for early European explorers. Ptolemy also standardized the orientation of maps, with North at the top and East on the left, thereby placing the known world in the upper left, a standard that remains to this day.

His ability to take in and understand the incredible amount of information developed before his time, add to it, and synthesis it into a map or a book of maps changed how people understood, perceived, and represented the world.

Today, we still use some of Ptolemy's original theories and debate the same problems that he faced. Longitude and latitude are still used to determine precise location on Earth. The equal-area projection, though updated substantially since Ptolemy's time, remains a fundamental tool for representing geographical distributions, and scholars continue to debate the best means of portraying a spherical Earth on a flat surface.

It is useful to speculate on how Ptolemy's work has influenced social understandings and the thinking and methodologies of the social sciences. His cartographic ideas provided a spatial framework for organizing and portraying information about the known world, allowing social thinkers to better understand the space in which different societies function. The first world atlas and the ideas of longitude and latitude facilitated a more accurate understanding of how societies work in space and compare to each other spatially. Furthermore, they encouraged speculation on possible relationships between social development and physical environments.

The concept of the equal area map projection may be the most important of Ptolemy's contributions to the social sciences—providing for the mapping and display of distributional information (e.g., population, resources, and cultural, geological, archaeological, historical, and phenomena) that is not biased by area distortions typical of some other projection methods. The display of data in an equal-area format allows for the visualization and analysis of spatial patterns for

	Ptolemy, Claudius. <i>Tetrabiblos</i> (Loeb Classical Library #435) Translation by F. E. Robbins, (October 1980).
	Ptolemy, Claudius. <i>Geographica</i> Translation by Edward Luther Stevenson, published by the New York Public Library, (1932). <i>Very controversial for content accuracy</i>
Related Works	Bagrow, L. 1964. <i>History of Cartography</i> . Cambridge MA: Harvard University Press, 75–86.
	Brown, L. B. 1949. The Story of Maps. New York: Bonanza Books, 58-80.
	Warntz, W. and P. Wolff. 1971. <i>Breakthroughs in Geography</i> . New York: New American Library, 13–60.
	Copyright © 2001-2011 by Regents of University of California, Santa Barbara, Page Author: Ben Sprague