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ABSTRACT OF THE DISSERTATION

Simulation for Reliability, Hardware Security, and Ising Computing in VLSI Chip Design

by

Chase W. Cook

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2019

Dr. Sheldon X.-D. Tan, Chairperson

The continued scaling of VLSI circuits has provided a wealth of opportunities and

challenges to the VLSI circuit design area. Both these challenges and opportunities, how-

ever, require new simulation tools that can enable their solution or exploitation as classical

methods typically dealt with problem domains with smaller scales or less complexity. In

this dissertation, simulation methods are presented to address the emerging VLSI design

topics of Electromigration induced aging and Ising computing and are then applied to the

application areas of hardware security and graph partitioning respectively.

The Electromigration aging effect in VLSI circuits is a long-term reliability issue

affecting current carrying metal wires leading to IR drop degradation. Typically, simple

analytical equations can determine a wire’s effective age or if it will be affected by the EM

aging effect at all. However, these classical methods are overly conservative and can lead to

over design or unnecessary design iterations. Furthermore, it is expected that the EM aging

effect will become more severe in future Integrated Circuits (ICs) due to increasing current

densities and the prevalence of polycrystaline copper atom structures seen at small wire
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dimensions. For this reason, more comprehensive simulation techniques that can efficiently

simulate the EM effect with less conservative results can help mitigate over design and

increase design margins while reducing design iterations.

The area of Hardware Security is becoming increasingly important as the chip

supply chain becomes more globalized and the integrity of chips becomes more difficult to

verify. Utilizing the accurate simulation techniques for EM, we can utilize this reliability

effect to demonstrate how a reliability based attack could be perpetrated. Furthermore, we

can utilize this aging effect as a defense mechanism to help us validate the integrity of an

IC and detect counterfeit chips in the component supply chain market.

Ising computing is an emerging method of solving combinatorial optimization prob-

lems by simulating the interactions of so-called spin glasses and their interactions. Borrow-

ing concepts from quantum computing, this methods mimics the quantum interaction be-

tween spin glasses in such a way that finding a ground state of these spin glass models leads

to the solution of a particular problem. In this dissertation, effective methods of simulating

the spin glass interactions using General Purpose Graphics Processing Units (GPGPUs)

and finding their ground state are developed.

In addition to the GPU based Ising model simulations, important combinatorial

problems can be mapped to the Ising model. In this dissertation the Ising solver is applied

to graph partitioning which can be utilized in VLSI design and many other domains as

well. Specifically, solvers for the max-cut problem and the balanced min-cut partitioning

problem are developed.
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Chapter 1

Introduction

This dissertation focuses on the effecient and practical simulation of physical phe-

nomenon in ICs and applies these simulations to practical problem domains. Specifically,

simulation of the Electromigration aging effect is firstly explored and then applied to the

area of Hardware Security. The dissertation then explores the simulation of Ising Spin

glasses as a method of solving combinatorial optimization problems. An introduction to

each of these subjects is presented in the following.

1.1 Electromigration

Electromigration (EM) is the primary long term aging effect in Integrated Circuits

(IC) affecting the metal interconnects subjected to electrical current. It has been estimated

that the EM induced lifetime of interconnects will be halved for each new generation of

process technology node [44]. This is due to the increasing current density and also because

the metal deposition process of copper dual damascene interconnects at small scales leads
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to polycrystalline grain structures which are more susceptible to EM failure. As a long term

aging effect, electromigration affects the expected lifetime of an IC and must be considered

during reliability sign-off.

The electromigration effect comes from the momentum transfer between electrons

colliding with the metal atoms in a confined metal wire [14,51]. In a perfectly uniform atomic

lattice the number of collisions is minimal, however; in the presence of discontinuities in this

lattice, which is the scenario involving polycrystalline grain structures described previously,

the collisions are more frequent leading to more momentum transfer resulting in stress

generation in the wire. Typically, this stress will remain in an equilibrium state, with tensile

stress in the cathode of a wire and compressive stress in the anode of the wire. However, if

the stress reaches a critical level, the atoms in the cathode of the wire can defuse and end

up deposited at the anode. This metal migration can then cause the resistance of the wire

to increase as a void forms in the cathode of the wire which decreases the volume of the

conducting metal volume and ultimately may even force electrons to conduct through the

highly resistive liner of the metal wire.

Traditionally, semi-empirical analytical methods are used to predict a wire’s sus-

ceptibility to EM. Primarily, Blacks equation [14] is used to estimate a wire’s Mean Time

To Failure (MTTF) as shown below in (1.1).

MTTF = Aj−nexp{Ea/kBT} (1.1)

In this equation, j is the current density, kB is the Boltzmann constant; T is the

absolute temperature, Ea is the EM activation energy, A is a process dependent constant. A
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is typically determined from a variety of parameters such as the metal grain structure, wire

geometry, wire test conditions and others. The current density exponent n is also dependent

on a number of parameters but primarily is material dependent. However, it has been found

to be a variable parameter that heavily depends on the stressing conditions and is overly

conservative which leads to over design and between 2X and 3X larger guard-bands than

necessary [9]. This comes from the fact that parameters such as n are highly dependent

on the stressing conditions and EM testing, which is used to determine these parameters,

is done at high stressing conditions and then extrapolated to normal use conditions. In

addition to resulting in over design, certain applications require accurate Time To Failure

estimations, in which these traditional methods are not adequate.

To mitigate these issues, Physics-based models have been proposed which more

accurately describe the EM effect and its subsequent failure mechanics. A good summary of

these models can be found in [28]. The primary models in use are the stress-based Korhonen

equation [51] and the metal atom vacancy concentration based model by Clement [25]. In

this work the stress based Korhonen model is used. However, it should be noted that these

models are actually the same and can both be used to derive each other but the stress based

method is more intuitive for conceptualization of the EM mechanics.

The Korhonen model has been extended in [72] to describe a two phased failure

process consisting of a nucleation phase and a growth phase. In the nucleation phase stress

is generated in the wire until the wire reaches a critical tensile stress level which causes

atoms to migrate. Once atoms begin to migrate, the second phase known as the growth

phase starts and describes the growing void volume due to atom depletion [72].
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Efficiently solving this physics model can generate less conservative EM assess-

ments leading to less over-design and less design iterations. Furthermore, specific appli-

cations that require high accuracy EM simulation can benefit greatly. This manuscript

presents a numerical solution technique for the EM-induced stress dynamics PDE for both

the void nucleation and void growth phases in multi-branch interconnects. Additionally,

a model reduction technique is employed to vastly accelerate simulation time while also

considering time-varying temperature and current densities.

1.2 Hardware Security

The integrated circuit (IC) supply chain has become increasingly globalized giving

semiconductor companies unprecedented access to over-seas markets. A consequence of

this proliferation is that it is becoming increasingly difficult to validate the integrity of the

component supply chain [81] giving rise to illicit markets that deal in counterfeit ICs or

even the malicious alteration or otherwise unsanctioned uses of electronics components.

The counterfeiting of ICs pose significant financial and security risks. The Inter-

national Chamber of Commerce estimated losses due to counterfeiting and IP theft for G20

nations to be as high as $1.7 trillion in 2015 [20]. Furthermore, the illicit market discourages

innovation as companies become more weary of disclosing technologies with the public. The

concern over counterfeit ICs in these critical application areas was validated when the U.S.

military discovered counterfeit ICs in several defense systems [85] which highlights the need

to develop countermeasures.
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Furthermore, the risk of malicious attacks from so-called hardware Trojans is an

increasing concern. Often it is the case that IC design companies utilize 3rd party foundries

to fabricate their ICs. Many of these dedicated foundries are over-seas and out of reach

for domestic regulatory oversight and are difficult for their clients to directly monitor the

manufacturing process. Because of this, the potential for bad actors at these 3rd party

foundries to maliciously alter a device to create a hardware Trojan exists.

The security concern over both counterfeit ICs and hardware Trojans, primarily

for critical applications (e.g. aerospace, defense, utility, and medical) has resulted in nu-

merous calls for research from government agencies such as the IARPA TIC program [4],

and the DARPA TRUST [3] and IRIS [2] programs. To combat these threats, developing

novel methods of attack and defense are required to build an effective defensive toolbox

for IC designers. The work in this dissertation builds upon the modeling and simulation

methods developed for EM and applies these tools to create novel contribution in the space

of hardware security.

1.2.1 Hardware Trojans

Hardware Trojans are malicious alterations or additions to an IC. They may be

implemented at a foundry without the original IC designer’s knowledge. The scope of these

malicious alterations can vary and may be as small as a single gate or may contain more

complex logic modules. Hardware Trojans typically have two main components, a trigger

and a payload [79, 88]. The Trojan trigger activates the Trojan so it can carryout the task

it was designed for. Trojan Triggers may be activated by a certain bit pattern in the IC’s

logic, they may use external sensors to utilize temperature or other environmental effects, or
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they may even be timer based. The Trojan payload is the part of the Trojan that actually

performs the attack. The attack can be as simple as disabling a logic gate or may be as

complicated as to leak sensitive information to the outside world.

One method of attack, reliability-based Trojans, utilizes the semiconductor aging

effects to carry out an attack [69,71,83]. Attacks utilizing reliability effects may attempt to

accelerate IC aging so as to cause premature failure of the victim chip. Primarily, reliability-

based attacks utilize device reliability effects such as Bias Temperature Instability (BTI) and

Hot Carrier Injection (HCI). However, on a couple attacks have been proposed that utilize

long term interconnect aging [69,71]. These works propose both EM and Time-Dependent

Dielectric-Breakdown (TDDB) type attacks but they only rely on current density based

methods and semi-empirical aging models, such as Black’s equation, which are meant for

conservative reliability sign-off and are not suitable for Trojan designs.

Reliability-based Trojan attacks have a tremendous advantage over classical Tro-

jans, that rely on sensors and logic, as they are more difficult to activate. The most com-

monly proposed methods of detecting hardware Trojans involves functional testing designed

to trigger the Trojan during testing and allowing the observation of the attack and may

also measure chip parameters such as temperature and power [79,88]. However, if a Trojan

utilizes reliability effects, it can be difficult to produce the conditions required to cause the

activation of such a Trojan.
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In this dissertation, the EM effect and the simulations methods presented are utilized to

conceptualize and design EM-based hardware Trojans that can be utilized as a trigger,

payload, or combination of both. Advanced EM failure dynamics are also considered which

allow for finer control of the failure process.

1.2.2 Counterfeit IC Detection

Counterfeit ICs represent the portion of the illicit IC market that sales ICs that

do not conform to the original design specification, are old ICs that are sold as new, or are

remarked to misrepresent the IC as something it is not. It often is the case that counterfeit

ICs are combinations of these attributes, e.g., an old used IC remarked as a new IC with

enhanced features that the actual IC does not have [7, 34]. Counterfeit ICs represent a

significant financial and security threat.

The typical method of detecting a counterfeit IC involves visually inspecting a

batch of electronics components [85]. More advanced visual inspection methods have been

proposed such as the work in [33] that relies on thermal imaging in conjunction with statis-

tics to increase the efficiency of visual inspection. However, these are time consuming

processes requiring special expertise and are not always reliable [85]. For this reason, on-

chip aging sensors have been proposed to combat counterfeit ICs [80]. Early aging sensors

used counters but these are vulnerable to attack. This led to the development of sensors

based on the semiconductor aging effects. The first proposed aging sensor used transistor

aging in a ring oscillator which, as it aged, would have frequency variations which could use

be used to indicate a used IC. However, these methods can only detect short lifetimes, on

the order of weeks, making false positives due to testing during manufacturing possible.
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To measure long term aging, EM-based aging sensors were proposed [37,38]. Unlike

the BTI effect, EM is a long term aging aging effect which makes it ideal for measure age

in units of years rather than weeks. The initially proposed EM-based aging sensors had the

draw back of being highly area inefficient, requiring a large number of long redundant wires

and multiple modules for detecting multiple ages.

The work presented in this manuscript shows a novel self-calibrating EM-based

aging sensor that vastly improves upon the previously proposed aging sensors by removing

the need for redundant wires and also for multiple sensors to measure larger ranges of ages.

1.3 Ising Computing and Graph Partitioning

There are many hard combinatorial optimization problems such as max-flow, max-

cut, graph partitioning, satisfiability, and tree based problems, which are important for

many scientific and engineering applications. With respect to VLSI design automation,

these problems translate to finding optimal solutions for cell placement, wire routing, logic

minimization, via minimization, and many others. The vast complexity of modern inte-

grated circuits (ICs), some having millions or even billions of integrated devices, means

that these problems are almost always computationally intractable and require heuristic

and analytical methods to find approximate solutions. It is well-known that traditional

von Neumann based computing can not deterministically find polynomial time solutions to

these hard problems [67].

To mitigate this problem, a new computing paradigm utilizing the Ising spin glass

model or Ising model has been proposed [61]. The Ising model is a mathematical model
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describing interactions between magnetic spins in a 2D lattice [59]. The model consists of

spins, each taking one of two values {+1,-1} (to represent up and down states of a spin

along a preferred axis) and are generally arranged in a 2D lattice. The spin’s value is deter-

mined so that its energy is minimized based on interactions with its neighbor spins. Such

local spin updates will lead to the ground state (globally lowest energy configuration) of the

Ising model. It was shown that many computationally intractable problems (such as those

in class NP complete or NP hard) can be converted into Ising models [56]. Some natural

processes, such as quantum annealing process, were proposed as an effective way for finding

such a ground state [17, 48]. D-Wave [6] is one such quantum annealing (also called adia-

batic quantum computation) solver based on the Ising model and it shows 108 speedup over

simulated annealing on the weak-string cluster pair problem [30]. However, existing quan-

tum annealing requires close to absolute zero temperature operating on superconductive

devices, which are very complicated and expensive. Furthermore, these machines currently

are very limited on the size and complexity of the problems they can solve.

While quantum computing has yet to reach maturity, there exists a number of

other hardware-based annealing solutions which have been proposed to exploit the highly

parallel nature of the annealing process used to solve the Ising model. In [89], a novel

CMOS based annealing solver was proposed in which an SRAM cell is used to represent

each spin and thermal annealing process was emulated to find the ground state. In [35,90],

the FPGA-based Ising computing solver has been proposed to implement the simulated

annealing process. However, those hardware based Ising model annealing solvers suffer

several problems as detailed in Section 7.1.
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In this dissertation, a GPU-based Ising model solver is proposed, using a modified

simulated annealing heuristic, that can handle any combinatorial problem that is mapped to

the Ising model as well as any general problem case associated with it. The maxcut solution

is presented first as it is relevant to many VLSI design automation problems. Furthermore,

max-cut is a relatively difficult problem to solve without highly efficient heuristic solvers.

This manuscript will show that Ising computing by the simulated annealing process is

very amenable to fine-grain GPU-based parallel computing. Further proposed is an update

method that utilizes the GPU scheduler to achieve a random update pattern enabling

independent parallel spin updates. This allows us to maximize thread utilization while also

avoiding sequential and deterministic update patterns for a more natural annealing process.

In addition to the max-cut problem, which has a trivial mapping to the Ising model,

a solution method is presented for the balanced min-cut bi-partitioning problem. In this

problem, the balance constraint will lead to a complete graph in the resulting Ising model.

The reason is that the balance constraint is a global constraint. As a result, each Ising spin

glass is connected to all the Ising spins glasses in the graph, therefore; each local spin update

becomes a global update. Current Ising model solvers and quantum annealing computers

often do not have architectures amenable to the embedding of problems with complete

graphs, e.g., the Chimera graph architecture used in D-wave computer [6]. However, recent

study shows that balanced min-cut problems on the D-wave computer indeed yields better

results than the state of the art partitioning solvers like METIS [82], but the problem

sizes solved are still limited to thousands of nodes and requires co-processing on traditional

hardware due to the limited number of available qubits in the QA machine.
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In this dissertation, an effecient method for mapping the balanced min-cut biparti-

tioning problem is presented that handles the balancing constraint more efficiently avoiding

the complete graph structure and essentially decoupling the spins globally.

Furthermore, unlike other hardware accelerated solvers for the Ising model (e.g.

FPGA and ASIC implementations), the proposed method for both max-cut and min-cut

solvers do not require solving the NP-hard graph embedding problem which would drasti-

cally increase the computational complexity of the solver.

1.4 Contributions

The work presented in this manuscript presents several contributions in the area

of simulation and the application of those simulation techniques to the area of reliability

based hardware security:

• The first proposed numerical solution to the Korhonen PDE for transient simulation

of EM-induced Stress Dynamics for multi-branch interconnects considering both void

nucleation and void growth phases.

• A Krylov subspace based model reduction technique to drastically speed-up the nu-

merical solution of the Korhonen PDE. This novel approach is also the only known

model reduction method for transient EM simulation that can consider time varying

current and temperature.
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• The first proposed comprehensive EM-based Hardware Trojan design utilizing physics

based models and advanced EM failure dynamics for both Trojan triggers and pay-

loads.

• A Novel self-calibrating EM-based aging sensor to combat counterfeit ICs. The pre-

sented approach drastically improves upon previously proposed EM-based aging sen-

sors, and aging sensors in general, in terms of circuit area, accuracy, and range of

lifetimes measurable.

• A GPU accelerated method for solving generally connected Ising spin-glass models

with applications in graph partitioning. The solver presented avoids costly graph

embedding required for other hardware-based solutions when considering complex

graph structures. The work addresses both the max-cut and balanced min-cut bi-

partitioning problems.
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Chapter 2

Review of EM physics and stress

modeling

This chapter presents a review of the Electromigration (EM) aging effect. EM

is a physical phenomenon of the migration of metal atoms along the direction of the ap-

plied electrical field. Atoms (either lattice atoms or defects / impurities) migrate along

the trajectory of conducting electrons. During the migration process, hydrostatic stress

is generated inside the embedded metal wire due to momentum exchange between lattice

atoms and electrons resulting in tension at the cathode and compression at the anode ends

of the line. Void and hillock formation are created by the depletion and subsequent deposi-

tion of atoms respectively. Fig. 2.1 shows the typical copper dual damascene interconnect

structure, which has three terminal vias connecting to other interconnect wires, and the

steady-state stress distributions before void nucleation. As time goes on, the lasting unidi-

rectional electrical load will increase hydrostatic stress, as well as the stress gradient which
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Figure 2.1: Two-segment wire with steady-state EM induced stress.

acts as a counter-force for atomic migration along the metal line. Generally, when a wire is

long, this stress can reach a critical level, resulting in void nucleation at the cathode and/or

hillock formation at the anode end of line.

The currently employed method for estimating time to failure is based on Black’s

equation [14],

MTTF = Aj−nexp{Ea/kBT} (2.1)

where j is the current density, kB is the Boltzmann’s constant; T is the absolute tempera-

ture; and Ea is the EM activation energy. The symbol A is a constant, which depends on a

number of factors, including grain size, line structure and geometry, test conditions, current

density, thermal history, etc. The current exponent n was found to be 2 for aluminum in-

terconnects in [14]. However, Black’s equation is under growing criticism as the extracted

parameters, for example, the current exponent n and activation energy Ea, are not con-

stant and are stress condition-dependent. This is problematic because these parameters are

typically found using high stressing accelerated test conditions which are extrapolated to

the real use case. This essentially means the parameters used at testing and not realistic

representations of the parameters that should be used in real use conditions. Furthermore,

this equation is only applicable to a single wire segment.
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Physics based EM models have been proposed [25, 28, 51] which can be used to

mitigate the issues with Black’s equation. For a general interconnect wire in two dimen-

sions, transient hydrostatic stress evolution due to EM effects is analyzed in the Korhonen

model [51] and stress σ(x, t) is described by Korhonen’s partial differential equation (PDE)

with the following zero-flux boundary conditions (BC) and initial stress condition (IC):

PDE :
∂σ

∂t
=

∂

∂x

[

κ

(

∂σ

∂x
+Gx

)]

+
∂

∂y

[

κ

(

∂σ

∂y
+Gy

)]

BC :
∂σ

∂x
(0, t) = Gx,

∂σ

∂y
(0, t) = Gy

BC :
∂σ

∂x
(L, t) = −Gx,

∂σ

∂y
(L, t) = −Gy

at 0 < t < tnuc

IC :σ(0) = [σ1(0), σ2(0), ..., σn(0)] at t = 0

(2.2)

Here, κ = DaBΩ/kBT and G = eZρj
Ω , which is a function of current density j and Da =

D0exp(−
ED−Ω∗σT

kBT
) is the effective atomic diffusivity where ED is the activation energy of

the atom diffusion, T is the absolute temperature and k is the Boltzmann constant. B is

the effective bulk elasticity modulus. And G = eZρj
Ω , where e is the electron charge, eZ is

the effective charge of the migrating atoms, ρ is the wire electrical resistivity, and j is the

current density.

When tensile stress reaches a critical level, a void is formed at the cathode. When

this void is formed, the stress at the void location will immediately go to zero, however; the

stress around the void will be close to the same stress level as it was immediately prior to the

void nucleation [51, 72]. This creates a large stress gradient around the void at nucleation

time as described by [51]:
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∂σ

∂x
(xnuc, t) =

σ(xnuc, t)

δ
, at tnuc < t <∞ (2.3)

In Equation (2.3), xnuc is the location of the void nucleation at a boundary and δ is the

width of the void interface [73].
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Figure 2.2: EM-stress evolution in the nucleation phase (a) and growth phase (b).

Fig. 2.2 shows stress development over time in a two-segment wire (shown in

Fig. 2.1 ) for Korhonen’s equation for both nucleation phase (Fig. 2.2(a)) and growth phase

(Fig.2.2(b)). For nucleation phase, over time, tensile (positive) stress will be developed at

the cathode (left) node and compressive (negative) stress will be developed at the anode

(right) node. The built-up stress (its gradient) will serve as the back force for atomic flux.

If the highest stress at the cathode node exceeds the critical stress, voids will be created.

The time to reach the critical stress is called nucleation time(tnuc).
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Chapter 3

Finite Difference Method for

Simulating Electromigration in

Multi-Branch interconnects

This chapter presents the Finite Difference Time Domain method (FDTD) used

for simulating dynamic stress evolution in the IC back-end-of-line. By solving the PDE for

dynamic stress evolution from 2 that leads to EM failure, this method avoids the conserva-

tiveness introduced by the semi-empirical Black’s equation and the Blech Limit [15](unlike

Black’s equation, the Blech limit does not estimate a time to failure but rather determines

EM mortality). The new simulation method captures both the nucleation and growth stress

dynamics and also enables the simulation of EM in multi-branch interconnects. This is an

important consideration as it has been shown that wires in an interconnect tree are not

independently effected by EM but instead their stress distribution and generation are cou-
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pled with neighboring segments in the tree [21, 58]. We further calculate the void volume

growth allowing for the determination of resistance degradation in the interconnect tree.

3.1 Void Volume Calculation

During the void growth phase, a void has actually nucleated in the wire and begins

to grow. This void causes changes to the electrical properties of the wire, resistance for

example, and leads to the eventual failure of the interconnect. For this reason, being able

to measure the void volume growth is critical to the proper analysis of the interconnect.

Using the dynamic stress evolution of the wire, which will be calculated by the proposed

FDTD method, the volume of the void can be calculated as it grows. This is accomplished

by calculating the atom drift volume in the wire [76]. Essentially, the stress σ over bulk

elasticity modulus B is integrated over the length L of the wire and multiplied by the wire’s

cross-sectional area A.

V (t) = A

∫ L

0

σ(t)

B
dx (3.1)

From this equation we can then begin to make inferences about the effect the

growth will have on the interconnect’s electrical properties.

3.2 Finite Difference Method for EM Analysis

The Finite Difference Time Domain (FDTD) method is a numerical method of

solving a Partial Differential Equation (PDE) [66]. A Numerical method finds an approx-
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imate solution by iteratively obtaining values as apposed to analytically finding a solution

to a PDE. FDTD gives us the ability to quickly and easily find a solution for complicated

PDEs that would otherwise be difficult to solve using analytical methods. Furthermore, it

has the ability to handle complex geometries.

FDTD works by discretizing both the time and spatial variables in a PDE. This

discretization is accomplished by employing the local Taylor expansion to PDE, in conjunc-

tion with the wire geometry being discretized, which yields a system of linear equations

which are solved for the discrete values within the geometry. While there are several dis-

cretization schemes, this work uses the central difference method to discretize the spatial

variable x and the first order backward method to discretize time t.

σn+1
i − σn

i

∆t
= κ

σn+1
i+1 − 2σn+1

i + σn+1
i−1

∆x2
(3.2)

In (3.2), the superscript n indicates the time step and subscript i is the space

index, x.

−Sσn+1
i+1 + (1− 2S)σn+1

i − Sσn+1
i−1 = σn

i
(3.3)

where S = κ ∆t
∆x2 . This discretization method gives us an implicit scheme for solving the

PDE numerically. This Implicit scheme allows us more freedom on how large the time

step ∆t can be as we don’t need to worry about stability, which is a problem in explicit

methods [66].
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For the boundary conditions, stress is dependent on the derivative of the stress

function. Thus, Neumann boundaries are used and discretized [53].

σx(0, t) = G =
∂σn

i

∂x
(3.4)

σx(0, t) =
∂σn

i

∂x
=

σn+1
i − σn+1

i−1

∆x
= G (3.5)

We can now use this discretization scheme and plug it into (3.3) to obtain the

following.

(S + 1)σn+1
i − Sσn+1

i+1 = σn
i − SG∆x (3.6)

Note that the derivation for the second boundary condition σx(L, t) is omitted.

The resulting system of equations can be mapped to an equation in the form of Aσn+1 = σn.

A is a tri-diagonal coefficient matrix with the diagonal elements equal to (1− 2S) and the

lower and upper diagonal elements equal to (−S). The vector σn+1 is a vector of unknown

stress along the wire and σn is a vector of previously solved for stress. The first element

in σn is σn
left + β and the last element is σn

right − β. These correspond to the boundary

conditions at each end of the wire where β is equal to SG∆x.

Each solution of the system of equations results in a vector containing the stress

of the wire at a single time step. Subsequent solution of this system, using previous time

step solution as the σn vector, can produce a vector containing the stress at the respective

time steps. By iteratively solving the system of equations, we obtain the transient stress

evolution for the entire wire length.
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This previous section shows the basic FDTD scheme for a one dimensional wire,

however; this can be easily expanded to the two or three dimensional case. The discretization

for the two dimensional case used in this work is presented below, albeit without derivation.

−Syσ
n+1
i+1,j + (1 + 2Sy + 2Sx)σ

n+1
i,j − Syσ

n+1
i−1,j−

Sxσ
n+1
i,j+1 − Sxσ

n+1
i,j−1 = σn

i,j

(3.7)

In this equation, i is the discrete variable in the x − axis and j is the discrete

variable in the y−axis. The value S also is specified as Sx or Sy to differentiate discretization

steps used in either direction.

The void growth phase follows the void nucleation phase. For void growth phase,

the A matrices are similar (with different boundary and initial conditions). When solving,

an arbitrary vector of initial conditions can be used or the output stress distribution from

the previous void nucleation phase can be used. Once this has been determined by the

user, the growth phase portion of the framework operates the same as the void nucleation

phase. That is, the new growth phase discretized equation Aσn+1 = σn is formed and is

then solved iteratively to generate transient data for the wire stress.

3.3 Numerical result and discussions

The proposed FDM-based EM analyzer was prototyped in MATLAB. COMSOL

multiphysics [1] is used to validate the numerical solver.

In order to validate our result, a FEA tool, COMSOL [1] is used. In the nucleation

phase, the initial conditions are set to be zero and default zero flux boundary conditions are

used. In the growth phase, initial conditions come from the time at which the cathode in
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the nucleation phase reaches critical stress. We summarize the major notations and typical

parameter values in Table 3.1.

Table 3.1: Notations and typical value in our transient simulation

Term Typical value Description

ρ 3.00e-8Ω· m Electrical resistivity

e 1.60e-19C Electric charge

Z∗ 10 Effective valence charge

Ω 1.18e-29 m3 Atomic volume

k 1.38e-23J/K Boltzmann constant

B 1.10e11Pa Back flow stress modular

D0 7.56e-5m2/ s Self-diffusion coefficient

Ea 1.76e-19J Activation energy

σcrit 500MPa Critical stress

T 373K Absolute temperature

δ 3e-7m Effective thickness of the void interface

3.3.1 Validation for single 2-terminal wire

For the 2-terminal single wire as shown in Fig 3.1(a), tensile stress was generated

in the cathode (left node) while the anode node experiences compressive stress. This agrees

with our expectations which say that a void should be nucleated at the cathode end of the

single wire. Root Mean Squared Error(RMSE) when compared to COMSOL for the void

nucleation phase, seen in Fig 3.3.1, and void growth phase, seen in Fig 3.3.1, are 0.8033%

and 0.4435% respectively.
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(a)

(b)

Figure 3.1: The testing interconnect structures: (a) 1-wire (b) 2 connected wires

3.3.2 Validation for three wire T-shape intersection

In the three wire T-shaped interconnect shown in Fig 3.1(b), currents were applied

as: j1 = 5× 109A/m2, j2 = −6× 109A/2, j3 = −7× 109. With current flowing in through

wire one, we expect the void to nucleate here. Results show that our expectations are

met and the numerical data agrees with the COMSOL results for both nucleation, seen in

Fig 3.3.2 and Fig 3.3.2 and growth phases, Fig 3.3.2 and Fig 3.3.2. RMSE for the nucleation
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Figure 3.2: EM-stress distribution change over time with j = 5 × 109A/m2 in single 2-
terminal wire for void growth

phase is 2.011% and 2.23% for the growth phase. Results for other current configurations

are omitted for space but produce similar results.

Once the dynamic stress evolution data has been collected from the FDTD anal-

ysis, we can apply the void volume calculation to see the transient void volume growth.

These results are shown in Fig 3.8(a).
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Figure 3.3: EM-stress distribution change over time with j = 5 × 109A/m2 in single 2-
terminal wire for void growth

3.4 Summary

In this chapter, an accurate EM simulation method using FDTD in multi-branch

interconnects based on the first principle of EM physics was presented. The presented

numerical method is the first consider both the nucleation and growth phase simulations for

multi-branch interconnects. Void volume during the void growth phase was also calculated.

The presented method also can easily accommodate existing non-uniform residual stress

distribution which is another new contribution. lastly, Numerical results showed that the

proposed method agrees with the COMSOL based Finite Element Analysis in terms of

accuracy which provides validation of the proposed method.
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Chapter 4

Krylov Subspace Method for Fast

Electromigration Simulation

This chapter builds upon the previously presented FDTD method for simulating

dynamics stress evolution for Electromigration analysis. While the FDTD based method

provides a simulation framework for simulating nucleation and growth phases in multi-

branch interconnects, the numerical solution time can scale poorly for large interconnect

trees. To combat this, this chapter proposes a Krylov subspace-based model reduction

technique, called “FastEM”, to accelerate simulation time while maintaining a high degree of

simulation accuracy. Furthermore, this chapter also presents a method for transient current

density and thermal simulation in the model reduced simulation framework. Numerical

results show that the proposed method can lead to 1-2 orders of magnitude speed-up over

the existing method.
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4.1 The linear time invariant ordinary differential equations

for EM stress evolution

In this section, we show how to perform the finite difference discretization for the

given stress partial differential equation, also known as the Korhonen equation in (5.1), to

create the LTI ODE system. While the derivation is similar to the FDTD presented in the

previous chapter, we utilize an implicit method to formulate an LTI System of equations

this time.

A two-segment wire example is used throughout the section for demonstration

with total length L and separate G values for each segment as shown in Fig. 4.1. The wire

is discretized into five nodes; two edge boundary nodes at each end of the wire, one junction

node at the middle of the wire, and two non-boundary nodes, each between the junction

and an edge node.

Figure 4.1: Discretization of the two-segment wire with length L, and segment lengths L
2 .

The finite difference method (FDM) is a method of finding a numerical solution to

partial differential equations (PDEs) [66]. The PDE can be discretized using many different

methods; in our implementation, a central difference method (4.1) is used to discretize
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the spatial variable x (and y in the two-dimensional case as shown later). We use the

central difference method due to the low truncation error compared to other discretization

methods, such as the forward and backward differences, at the cost of only adding one

term to each equation. Note that this is different from the Finite Difference Time Domain

method (FDTD) in [26], where time is also discretized.

∂σ

∂t
(x, t) = κ

σi+1 − 2σi + σi−1

∆x2
, κ =

DaBΩ

kT
(4.1)

Boundary conditions are discretized depending on location (internal junctions or edges) and

EM phase (nucleation or growth). Edge boundaries are introduced during the handling of

ghost points in the discretization scheme. These ghost points are terms in the central dif-

ference scheme that do not correspond to physical points on the wire structures. Boundary

conditions are discretized using the backward difference scheme shown in (4.2).

Nucleation :
∂σ

∂x
(0, t) =

σi − σi−1

∆x
= G

∂σ

∂x
(L, t) =

σi+1 − σi
∆x

= −G

Growth :
∂σ

∂x
(0, t) =

σi − σi−1

∆x
=

σ(0, t)

δ

∂σ

∂x
(L, t) =

σi+1 − σi
∆x

= −G

(4.2)

By isolating the ghost point term to one side of the equation, we can replace it

in the original central difference equation (4.1) allowing us to eliminate the non-existent

point while also introducing the boundary condition. Equation (4.3) demonstrates the new

central difference equation when the ghost point is eliminated at the cathode.

∂σ

∂t
(0, t) =

κ

∆x2
(G1∆x− σi + σi+1) (4.3)
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Internal junctions require no ghost point replacement and instead use the fact that

flux is continuous at wire junctions to introduce the boundary conditions as in (4.4).

∂σ

∂t
(
L

2
, t) =

κ

∆x2
(σi−1 − 2σi + σi+1 + (G2 −G1)) (4.4)

In (4.4), G1 and G2 belong to the two respective wire segments that meet at the

junction. Additionally, L
2 indicates that the example is a single wire with two segments

where the junction boundary occurs at half the length of the whole wire.

As previously mentioned, we preserve the continuity of the time domain term

which allows us to rewrite these equations as an ODE and LTI dynamic system. Using the

previously derived equations (4.1), (4.2), and (4.4) for boundary and internal nodes, we can

rewrite these equations into matrix format:

































σ̇1

σ̇2

σ̇3

σ̇4

σ̇5

































=
κ

∆x2

































−1 1 0 0 0

1 −2 1 0 0

0 1 −2 1 0

0 0 1 −2 1

0 0 0 1 −1

































×










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


















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σ5


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

























+

































κβρ
∆x

0

0 0

−2κ(βρ)
∆x

2κ(βρ)
∆x

0 0

0 −κβρ
∆x









































j1

j2









(4.5)

where β = eZ
Ω .
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For the growth phase, the void is nucleated at the cathode node. Then, the

resulting LTI system for the two-segment wire case becomes:


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
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
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


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0 0

0 0
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∆x

2κ(βρ)
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0 0

0 −κβρ
∆x
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
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j2









(4.6)

As a result, in both the void nucleation and growth phases, we can write the LTI ODE for

stress evolution in the following general form:

Cσ̇(t) = Aσ(t) +Bj(t), (4.7)

σ(0) = [σ1(0), σ2(0), ..., σn(0)]

In the case of (4.5), A is the 5 × 5 coefficient matrix, C is a 5 × 5 identity matrix, B is

5 × 2 input matrix, and j(t) is the 2 × 1 column vector containing the current density of

each wire segment for the respective time t.

We note that the presented example only requires equations for the one-dimensional

case. However, to handle more general cases, these equations can simply be extended to

the two-dimensional domain as shown in (4.8).
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∂σ

∂t
(x, y, t) =

κ
σi+1,j − 2σi,j + σi−1,j

∆x2
+ κ

σi,j+1 − 2σi,j + σi,j−1

∆y2

(4.8)

4.1.1 Steady-state analysis for nucleation phase

In this subsection, we show that the ODE for the nucleation phase which we

derived from Korhonen’s equation shown in (4.5) has the same steady-state stress result as

the recently proposed voltage-based EM method in [74]. We demonstrate this using one

simple example, a two-terminal wire as shown in Fig. 4.2. We let the total length be L. We

Figure 4.2: A two-terminal wire with the electron flow indicated by the arrow.

then use this wire segment length as the spatial step size and use the backward difference

method shown in (4.2) for boundary derivation. The resulting system of equations for the

two-terminal case is presented in equations (4.9).









σ̇0

σ̇1









=
κ

L2









−1 1

1 −1









×









σ0

σ1









+









κG
L

−κG
L









(4.9)

We then rewrite these equations into the following format:

σ̇(t) = Aσ(t) +B

y(t) = Eσ(t)

(4.10)
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In (4.10), E = (1, 0), meaning we select node 0, the cathode, as the output node for which

we are obtaining the steady-state stress. Then, a Laplace transform can be applied and the

resulting transfer function becomes

F(s) = E(sI−A)−1B (4.11)

Then we go back to (4.9), the resulting transfer function for the single wire case becomes:

F (s) =
κGL

(sL2 + 2κ)
(4.12)

Under step response, which is 1/s in frequency domain, we can then use the Final Value

Theorem to obtain the stress at t =∞, which is the steady-state result of the system under

step response as:

σsteady = lim
t→∞

f(t) = lim
s→0

sF (s)
1

s
=

GL

2
(4.13)

We then can compute the steady-state stress based on the voltage-based method [74]:

σsteady = VE
eZ

Ω
=

jLρeZ

2Ω
=

GL

2
(4.14)

where VE = jLρ/2 is the EM voltage at the cathode node (node 0) [74]. As we can see, the

results from the two methods are identical.

In general, this is the case for general multi-segment interconnects and the steady-

state EM stress can be computed by either method. Furthermore, the voltage-based EM

method [74] can provide an important relationship for stress values at different nodes as

shown in (4.15) in the next section.
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4.2 The proposed Krylov fast EM stress analysis

In this section, we will present our new Krylov subspace-based fast EM stress

analysis method. The following section contains several steps necessary for explanation of

the proposed method and are outlined below:

• We first show that the linear time-invariant system describing the dynamic stress

evolution must be pre-processed to handle the inherent singularity of the A matrix.

• We then compare the steady-state response of the LTI system with a recently proposed

steady-state method for EM stress evolution using frequency domain methods.

• Next, we show the proposed Krylov-based model reduction technique using a modified

Arnoldi process.

• The temperature dependence of the EM effect and our method for handling time-

varying temperatures is presented.

• Lastly, we outline our method for normalization of the results to maintain numeric

stability during model reduction and simulation.

4.2.1 Singularity mitigation for EM ODE matrices

Before we introduce our Krylov subspace-based method, we notice that the EM

matrix A in (4.5) or in (4.8) in general is singular for our case. We notice that this is

typically true for the nucleation phase; however, this will cause problems for the Krylov

subspace-based method, which requires computing the inverse of A to obtain the Krylov

subspace. The reason is that the stress variables for the wire nodes are not independent as

38



there is no “ground” stress node. As a result, one more independent equation is required

to make this matrix non-singular and we will show the mitigation method below. We note

that this singularity issue has also been observed in [22].

To mitigate this problem, we need to introduce one more independent equation

(to replace one dependent equation) into the stress LTI system (4.8).

It turns out that such an independent stress equation can be found in the dynamic

and steady-state stress of the LTI system (4.8) as a result of mass conservation and stress-

strain relationship, and it has been shown in [29, 74] that

∑

k

akσk = 0 (4.15)

where ak is the total area of branches connected to the node k. This equation represents

the conservation in the stress kinetics. Equation (4.15) is independent of any rows in the

A matrix. As an example, for the two-segment wire in Fig. 4.1 with same width for all the

segments, we have

σ1 + 2σ2 + 2σ3 + 2σ4 + σ5 = 0 (4.16)

Therefore, we can use this equation to replace a dependent row (for example the

middle row of theAmatrix). With the new row, the Amatrix becomes an invertible matrix.

As an example, the modified equation (4.17), where the second equation or row is replaced,

is shown below:
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(4.17)

We notice that the A for the growth phase is not singular any more and no

mitigation is required for growth phase analysis.

4.2.2 Fast Krylov subspace-based stress analysis

In this subsection we present our Krylov subspace-based complexity reduction and

simulation method, which is based on the the similar principles in the traditional model

order reduction methods [65, 78]. After the stress evolution PDE has been discretized into
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the ODE as shown in (4.1), (4.2), and (4.3), it can be written into the following linear

time-invariant (LTI) dynamic system:

Cẋ(t) = Ax(t) +Bj(t), (4.18)

x(0) = [x1(0), x2(0), ..., xn(0)]

where the stress vector is represented by x(t), x(0) is the initial stress at t = 0 due to

thermal-mechanical interaction. C,A are n× n matrices and B is the b× p input matrix,

where p is the number of inputs or the size of driving current density sources, j(t), which

can be time-varying and is represented by the piecewise constant linear waveform as shown

in Fig. 4.3. The piecewise constant linear input current density j(t) can be represented by

Figure 4.3: Example piecewise constant current density j input as a function of time t.

u(t) = u1(t) + u2(t− t1) + u3(t− t2) + ...+ uN(t− tN−1) (4.19)

We transform the problem domain into the frequency domain using the Laplace

transformation of the state equation (4.19), which can be rewritten as

sCX(s)−Cx(0) = AX(s) +
1

s
BJ1, (4.20)
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The Laplace transformation of j(t) is computed as

J(s) =
1

s
(

N
∑

i=1

uie
ti−1) =

1

s
J1 (4.21)

J1 = (

N
∑

i=1

uie
ti−1). (4.22)

It may be noted that in contrast to traditional model order reduction of the LTI

systems, where the inputs are the impulse function and we perform reduction on the trans-

fer functions [8], here the input is piecewise constant linear (or any arbitrary waveform

represented by the piecewise linear function 1). As a result, we have to consider the in-

put signal subspace during the reduction process. Essentially the reduction process is no

longer the traditional model order reduction, but is just the reduction step for a given

signal input and is the pre-process step of the whole simulation. Notice that the extended

Krylov subspace (EKS) method has been previously proposed for fast power grid network

analysis [86]. In this paper, we follow a similar idea, but we use a simple Arnoldi-like or-

thonormalization process to compute the Krylov subspace of the response space instead of

using the more complicated EKS method. Specifically, let X̃(s) = sX(s), then the above

equation becomes:

sCX̃(s)− sCx(0) = AX̃(s) +BJ1, (4.23)

We then expand the X̃(s) using Taylor’s series at s = 0, to get:

sC(m0 +m1s+m2s
2 + ...)− sCX(0)

= A(m0 +m1s+m2s
2 + ...) +BJ1 (4.24)

1For the EM-induced stress analysis, piecewise constant linear current density input is sufficient as most
of the power models of a real chip can be modeled as a piecewise constant linear waveform.
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We then obtain the recursive response moment computation formula as follows:

m0 = −A
−1BJ1

m1 = A−1C(m0 − x(0))

m2 = A−1Cm1

...

mq−1 = A−1Cmq−2

(4.25)

For the Krylov subspace method, instead of computing the raw moments as shown

in (4.25), a modified Arnoldi process is used to compute the orthonormalized response

moment space. We let

G = A−1C and b = −A−1BJ1, and the modified Arnoldi process is shown in Algorithm 1.

We call this a modified Arnoldi process, as the computed space Vq is not strictly

a Krylov subspace which is defined as:

Kq(G,b) = span(b,Gb,Gb2, ...,Gq−1b) (4.26)

However, due to line 4 and lines 6-8 [8] our algorithm does not satisfy this. Instead,

the subspace Vq is the response signal space for X̃(s) as it considers the initial condition

x(0) and the input signal vector J(S). In this paper, we call it the response Krylov subspace.

In our case, the signal space in the frequency domain only has the 1
s
moment term, but in

general, a piecewise linear input has non-zero component coefficients in all moments. Hence,

lines 7 and 9 will be changed accordingly in this case. Due to the orthonormalization process
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Algorithm 1 Modified Arnoldi method for orthonormalization of moment space.

1: Modified Arnoldi process ()

2: input: (G,b,x(0), q)

3: output: (Vq,Hq)

4: v1 = b/||b||2

5: for (j = 1; j <= q; j ++) do

6: if (j == 1) then

7: w = G(vj − x(0))

8: else

9: w = Gvj

10: end if

11: for (i = 1; i <= j − 1; i++) do

12: hi,j = wTvi

13: w = w − hi,jvi

14: end for

15: hj+1,j = ||w||2

16: if (hj+1,j ! = 0) then

17: vj+1 = w/hj+1,j

18: end if

19: end for

20: Vq = [v1 · · ·vq]

21: Hq = (hi,j), i, j = 1, · · · , q
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in Algorithm 1, the moment computation process will become much more numerically stable

than the raw moment computation as shown in (4.25).

Once we obtain the projection matrix Vq, the original circuit matrix A, C, B and

initial stress x(0) in (4.19) can be order-reduced to the following matrices by the congruence

transformation:

Â = VT
q AVq, Ĉ = VT

q CVq, B̂ = VT
q B, x̂(0) = VT

q x(0)

where Â and Ĉ are q× q matrices and B̂ is the reduced q× p input matrix. x̂(0) is reduced

initial condition q× 1 vector. Then the resulting reduced ODE LTI stress evolution system

with the initial condition can be written as:

Ĉ ˙̂x(t) = Âx̂(t) + B̂j(t), (4.27)

x̂(0) = [x̂1(0), x̂2(0), ..., x̂q(0)]

Then transient simulations in the time domain using Back Euler time integration method

can be performed on (4.28), which will be much more efficient to simulate than the original

ODE LTI system in (4.19). After the reduced response is obtained x̂(t), then the original

response can be obtained by x(t) = Vqx̂(t).

4.2.3 EM simulation under time-varying temperature

To accommodate the time-varying temperature impact on the stress evolution in

the Korhonen equation (5.1), which can effectively accelerate or decelerate the stress build-

up as shown in Fig. 4.4, we need to consider the time-varying diffusion parameter κ(T ) as

it is a function of temperature T . As a result, the elements of matrix A in the resulting
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LTI system in (4.8) will be a function of the temperature. As a result, the response Krylov

subspace computation has to be carried out for each different temperature value, which will

not be a viable solution in our case.

Figure 4.4: Cathode stress over time for multiple wire temperatures

Fortunately, there is a better way to deal with this situation. Specifically, Let

σi(x, t, κ(T1)) and σi(x, t, κ(T2)) (i = 1, 2) be the solutions to the stress evolution equation

(4.8) with the diffusivities κ(T1) and κ(T2), due to different temperature T1 and T2, for the

same initial and boundary conditions, respectively. Let ∆t be the time period, then we can

have following relationship [23, 55]:

σi(x,∆t, κ(T2)) = σi(x,
κ(T2)

κ(T1)
∆t, κ1(T1)). (4.28)
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From (4.28), we can see that the temperature impact on the stress σ(T, t) during the period

∆t can be translated to the time period change for a metal wire. In other words, stress

development in a metal wire over a period ∆t under temperature T2 will be equal to stress

development for a metal wire over a period κ(T2)
κ(T1)

∆T under temperature T1, where ∆T =

T2 - T1. As a result, we convert the temperature-varying stress computation problem into

a constant temperature problem.

Going back to our problem when we perform the time-domain stress simulation

on the reduced model described in (4.28), a constant temperature T0 is used for all the

response Krylov subspace generation and reduction steps. Then during the simulation, we

first create a virtual ith time step τi:

τi =
i

∑

i=1

κ(Ti)

κ(T0)
∆ti (4.29)

to perform the analysis under different temperatures Ti over the virtual time. However, the

real time step for the simulated stress results are still ti =
i
∑

i=1
∆ti.

4.2.4 Scaling schemes for numerical stability

One important implementation issue is that the parameters used in the Korhonen

equation can differ by a few orders of magnitude. As a result, direct application of modified

Krylov subspace-based method on the resulting PDE may not be stable. This problem can

be mitigated by parameter scaling. After the scaling, calculated stress and time should be

scaled back to obtain the real stress condition and time information. In the following, we

discuss two scaling schemes:
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Stress scaling scheme

For the stress scaling, steady-state stress is used as a reference. As mentioned in

equation (4.14), the steady-state stress is proportional to GL. The equation G = eZρj
Ω ,

in eq. (5.1) is one of the dependents for the steady-state stress and is scaled to 1 when

current density j is set to 5MA/cm2. In other words, Gscale = j/j0 after scaling where

j0 = 5MA/cm2 and we can call the corresponding G value G0 when Gscale = 1.

The scaled length of the branch is given by Lscale = L/L0 where L0 is 100um

in our example case. After the scaled stress value σscale is calculated, the real stress σ =

σscaleG0L0.

Time scaling scheme

The time scale is dependent on κ
∆x2 as shown in equation (4.1). That is, time

is proportional to ∆x2

κ
. ∆x is one segment of the branch and is scaled using the length

L0, which means ∆x = ∆xscaleL0. Additionally, κ is scaled to 1 in our analysis, and the

relationship between time and scaled time is t = tscaleL
2
0/κ.

4.3 Numerical results and discussions

We have implemented the proposed FastEM method in MATLAB and this section

presents the numerical results for accuracy of the proposed fast Krylov subspace-based

EM analysis method and speed-up over the finite difference time domain (FDTD) method,

which was also implemented in MATLAB. The experiments were carried out on a Linux

server with dual 3.3GHz Xeon processors and 316GB memory, with each processor having
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2x22 cores (44 threads each). We want to stress that the both FastEM and FDTD were

implemented in MATLAB. As a result, their performance comparison based on the same

numerical package and computing server is fair.

4.3.1 Accuracy study

In our numerical analysis, a netlist for the interconnect tree is first discretized to

form the LTI ODE system which is then used as input for the solver. In addition to constant

current density, we also show the results from the piecewise constant current density inputs

as well as simulation under dynamic temperature variations. To validate our proposed

method, the two-segment case is simulated with the FastEM method and compared to the

Finite Element Analysis (FEA) and the FDTD method proposed in [26]. This two-wire

structure contains two 50um wire segments connected in series as presented in section 2.

Each simulation is conducted using 7 poles for reduction (q = 7). All FEA simulations are

performed using COMSOL Multiphysics software using 2D structures.

In Fig. 4.5 the nucleation stage stress under asymmetrical current density distribu-

tion (1E10A/m2 in segment 1 and 8E10A/m2 in segment 2) for three time steps is shown.

The results show agreement between all three methods with less than 0.02% error. We use

the stress results from the nucleation phase to generate a critical stress profile (the stress

in the wire when σ(0, t) <= 500MPa) which is then used as the initial condition for the

growth phase simulation while also applying the same current density distribution. Vali-

dation of the three methods in the growth phase is shown in Fig. 4.6 for three time steps.

Again, the methods agree almost perfectly with negligible errors.
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Figure 4.5: Nucleation stage validation for two wire segments. FastEM solved using q = 7
with 0.0155% average error.

The results for both the nucleation and growth phases show good agreement with

the other methods under constant asymmetric current density conditions, which validates

our FastEM method. To validate the time-dependent current density handling, a periodic

piecewise constant current density input, oscillating from 1E10A/m2 to 0A/m2, is applied

and cathode stress during the nucleation phase is compared for the three methods and

presented in Fig.4.7. The three methods again agree with negligible error. Simulation

results are also compared for the temperature-dependent modeling. Results show that both

FDTD and FastEM agree with the COMSOL result using different temperatures during the

simulation and are presented in Fig. 4.8.
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Figure 4.6: Growth stage validation for two wire segments. FastEM solved using q = 7 with
0.0123% average error.

4.3.2 Eigenvalue analysis

The modified Krylov subspace-based method relies on the computation of several

Eigenvalues for reduction. To better understand how many poles q need to be computed in

the FastEM method, we compute and plot the Eigenvalues in Fig.4.9 and Fig.4.10.

In Fig.4.9 we can see that the first Eigenvalue, the smallest pole of our system,

determines the time constant of the system, and thus the trend of the stress development.

Additionally, we see that only the first few Eigenvalues, and thus poles, have an effect on

the system. Fig.4.10 omits the first two Eigenvalues allowing us to better see the values

that follow.
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Figure 4.7: Cathode stress comparison under piecewise constant current density input.

Additionally, the driving current and the structure of the tree being analyzed

will also affect the number of poles needed. In this work, we use an ad-hoc method of

determining the poles required by seeing how many dominant poles exist in our system.

This type of analysis would need to be performed for each structure under test, however;

we find that no more than 17 poles were ever needed for the trees that we tested in this

work.

For demonstration, we show the stress simulation for a large 174-segment tree with

non-uniform current density distribution in Fig.4.11, using different numbers of computed

poles. Using 7 and 9 poles proves inaccurate as the large number of different current

densities and segments require more poles for accurate simulation. However, the use of 11
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Figure 4.8: Cathode stress under varying temperature T= 360K, 370K, 365K, 390K.

Table 4.1: Single-threaded performance comparison between FDTD and FastEM on inter-
connect trees from the IBM power grid benchmark ibmpg2

IBM Tree FDTD (seconds)
FastEM (seconds)

Speed-up
MOR BE Total

tree1 16.985 0.1562 0.0312 0.1890 81x
tree2 63.727 0.6664 0.0345 0.7009 78x
tree3 185.224 1.8681 0.1960 1.9117 86x

and 17 poles leads to accurate results, with the 17 computed poles having less than 1%

error.

To demonstrate the performance of our proposed method, we use both a real

power grid benchmark and also arbitrary n-segmented trees.The IBM power grid bench-

mark ibmpg3 structure [60] is firstly used for a realistic simulation using three different
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Figure 4.9: Eigenvalue plot showing all eigenvalues.

Table 4.2: Multi-threaded performance comparison between FDTD and FastEM on inter-
connect trees from the IBM power grid benchmark ibmpg2

IBM Tree FDTD (seconds)
FastEM (seconds)

Speed-up
MOR BE Total

tree1 14.670 0.1530 0.1809 0.1809 90x
tree2 53.914 0.6512 0.0337 0.6849 90x
tree3 150.963 1.7437 0.0416 1.7575 97x

trees extracted from the ibmpg3 benchmark. Secondly, we perform FDTD and FastEM

simulations using increasingly large n-segmented trees in order to demonstrate the scalabil-

ity of the our method.

For the power grid simulation, we choose a small tree (tree 1) with 58 segments,

a medium-sized tree (tree 2) with 109 segments, and the largest tree (tree 3) with 174

segments for the simulation structures. Both methods discretize each branch in the trees

into 21 nodes and compute the stress for 1000 time steps. The proposed method used 17

poles to compute each simulation. We perform the simulation with all 88 threads available
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Figure 4.10: Eigenvalue plot without the two largest values.

and also while enforcing single-threaded computation. We do this to provide a better

idea of the performance the simulation can achieve on various platforms as multi-threaded

computation performance will be system-specific.

The results in Table 4.1 and Table 4.2 show the average computation time of the

two methods using the three different ibmpg3 trees. The results show significant speed up

of over 90X and reaching close to 100X. We can also see from this table that the FastEM

method is broken down into the time for the model order reduction (MOR) algorithm, the

Backward-Euler solver (BE), and the total time.

The results show that the MOR portion of the proposed method dominates the

computation time while the Backward-Euler solver takes much less time. We remark that

MOR is dependent on the size of the input system and the number of poles that used for

model reduction while BE is dependent on both. However, because we perform MOR, the
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Table 4.3: Scalability performance results comparing FDTD and FastEM using increasingly
large n-segment trees.

n-segments
FDTD
(seconds)

FastEM (seconds)
Speed-upMOR BE Total

20 6.26 0.0354 0.0309 0.663 94.41x
50 8.613 0.0820 0.0233 0.1053 81.79x
100 37.445 0.4058 0.0203 0.4261 87.87x
200 205.504 2.5983 0.0335 2.6318 78.08x
400 1519.715 20.2112 0.0407 20.2519 75.04x
500 2376.478 34.0633 0.0481 34.1114 69.66x
750 7609.128 107.6036 0.0501 107.6537 70.68x
1000 15354 252.8880 0.0958 252.9838 60.69x
1250 28840 460.5587 0.1167 460.6754 62.60x
1500 52096 791.4289 0.1372 791.5661 65.81x
1750 80542 1240.455 0.1451 1240.455 64.92x
2000 110810 1815.1380 0.1624 1815.3 61.04x
3000 363660 6023.0290 0.1711 6022.3 60.37x
4000 8.61E5 14236.81 0.01876 14237 60.45x
5000 1.7339E6 27729.8 0.1951 27730 62.52x

input to BE will always be a matrix of q × q where q is the number of poles. Since we

have set the number of poles to 17 in this test, the BE computation time will remain about

constant with only negligible increases in duration due to congruence transformations at the

beginning and the end of BE. Furthermore, we compute mean errors of 0.0678%, 0.0251%,

and 0.0362% for test trees 1, 2, and 3 respectively. As a result, the error caused by the

reduction is basically negligible when compared to the FDTD method.

In addition to the benchmark test, performance scalability is studied by simulating

increasingly larger n-segmented trees. Each tree is a straight wire, with n segments. Each

segment is discretized into 11 nodes, and FastEM is computed with 17 poles. We can see

from Table 4.3 that FastEM maintains the performance improvement even with very large

systems achieving a 60-94X performance increase over FDTD. We also observe that as the

number of segments increases, performance gain converges to around 60X.
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Chapter 5

Electromigration Based Hardware

Trojans Design

In recent years the concern over Hardware Trojans has come to the forefront

of hardware security research as these types of attacks pose a real and dangerous threat

to both commercial and mission-critical systems. One interesting threat model utilizes

semiconductor physics, specifically aging effects such as Electromigration (EM). However,

existing methods for EM-based Trojans rely on empirical Black’s models can easily lead

to performance degradation and less accuracy in Trojan activation time prediction. This

chapter presents EM-based Trojan attacks based on recently developed physics-based EM

models and the previously presented simulation techniques. This includes a novel EM attack

techniques in which the EM-induced hydrostatic stress increase in a wire is caused by wire

structure or layer changes without changing the current density of the wires. The proposed

techniques consist of sink/reservoir insertion or sizing and layer switching techniques based
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on the early and late failure modes of EM wear-out effects. As a result, the presented

techniques can have minimal impact on circuit performance, which is in contrast with

existing current-density-based EM attacks. The proposed techniques can serve as a trigger

for the EM attack on power/ground networks and signal and clock networks. Furthermore,

two potential EM attack mitigation techniques, namely, split fabrication and burn-in testing

are discussed.

5.1 Three-phase EM model

Building upon the presented EM physics and models from chapter2, a more accu-

rate three phase EM model has been recently developed [77]. In the new model, we have

three phases including (1) the nucleation phase from t = 0 to tnuc; (2) the incubation phase

from tnuc to ti; and (3) the growth phase starting from ti to t50. The term t50 indicates the

time-to-failure in statistical terms (50% of the samples fail). This model was later extended

to consider more general multi-segment interconnect structures [75]. The following is a

brief summary of this EM model.

In the nucleation phase, the void is formed at nucleation time (tnuc) . Hydro-

static stress increases from the initial value to critical level. In order to model that, a more

complete physics based modeling of transient hydrostatic stress evolution was proposed

by Korhonen [51]. We illustrate the equation in the one dimensional case for the sake of

presentation. Then stress σ(x, t) is described by Korhonen’s partial differential equation

(PDE) with liner(Ta) blocked boundary conditions (BC):
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PDE :
∂σ

∂t
=

∂

∂x

[

κ

(

∂σ

∂x
+G

)]

BC :
∂σ

∂x
(0, t) = G,

∂σ

∂x
(L, t) = −G

(5.1)

where, κ = DaBΩ/kT , B is the effective bulk elasticity modulus, Ω is the atomic lattice

volume, G = eZρj
Ω is the EM driving force, where e is the electron charge, eZ is the effective

charge of the migrating atoms, ρ is the wire electrical resistivity. If the stress calculated by

that model saturates before the critical level, the wire will never fail. Otherwise, the time

in which stress reaches the critical level is tnuc.

In the incubation phase, which is defined by the time period tnuc to ti, the void

is nucleated, but its size is not significant. Hence the change in wire resistance will be very

small and can be neglected. The incubation time(ti − tnuc) can be estimated as:

ti − tnuc =
∆Lcrit

vd
(5.2)

Here ∆Lcrit is the length of critical void size and vd is the void’s growth rate. For a single

segment wire, vd is expressed as a function of atomic flux J , vd = ΩJ [76], where Ω is atomic

volume. Atomic flux, J = Daf
ΩkT

, is the number of atoms crossing a unit area per unit time.

Thus, the atoms crossing per unit length can be expressed as JW , where f is electron wind

force per atom: f = eZρj.

For a multi-segment tree, all segments that share a terminal with the void can

contribute to its growth. Electron wind at each segment can accelerate or slow down the

void growth based on their direction. Hence, the total atom flux can be expressed as a

combination of all the fluxes on the segments. For multi-segment wires, the effective atomic

flux per unit length vdWm is the void’s growth rate on the main segment. This is expressed
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as:

vd = ΩJ∗
m = Ω

1

Wm

∑

i

JiWi =
DaeZρ

kTWm

∑

i

jiWi (5.3)

Here ji and Wi are the current density and width of the ith segment. Wm is the width

of the main segment where the void is formed and Jm is the total flux contributing to the

void. Here, we use J∗
m = 1

Wm

∑

i JiWi to compute the effective atomic flux Jm on the main

segment. Note that if we only have one segment, then vd = DaeZρj
kT

as shown in [39].

If the void volume saturates before it reaches the critical length, the wire will

never fail. The Incubation phase ends when the void reaches Lcrit at ti. If the wire is

a via-above wire, after the via is blocked by the void the current flow will also be blocked

since the capping layer is fabricated with dielectrics such as Si3N4. This is referred to as

early-failure and results in an immediate critical failure of the wire. However, if the wire is a

via-below wire, the current flow can still pass but resistance of the wire will increase because

current has to go through the liner which has much higher resistivity. This is referred to as

late-failure. These concepts are explained in more detail further in the article.

Finally, in the growth phase, defined by time period from ti to t50 the wire

resistance starts increasing. Note that this phase is only possible in a via-below configuration

and is unique to late-failure. After the via is blocked by the void, current is forced to flow

through the liner. Since this liner is very thin, and its resistivity is much larger than copper,

the current density and resistance on the liner will be very high. Resistance change can be

expressed as [42]:

t− ti =
∆R(t)

vd[
ρTa

hTa(2H+W ) −
ρCu

HW
]

(5.4)
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where ρTa and ρCu are the resistances of the liner material (Ta for instance) and copper

respectively, W is the line width of the segment where void is formed (main segment), H is

the copper thickness, and hTa is the liner layer thickness.

A critical observation is that commercial tools do not utilize the Korhonen model

or the three-phased model but instead still rely on the conservative Black’s model. Using

the simulation methods presented in this dissertation in conjunction with the three-phased

Korhonen based method of modeling the EM-failure process is much more accurate. As

such, commercial tools would be insufficient for the level of analysis we require to perform

the attacks in this paper. Further, this three-phase model allows us to make use of the

complex EM failure process to engineer specific wire topologies that can be leveraged as a

reliability based attack while the currently available commercial tools could not consider

these effects.

5.2 EM-based hardware attack modeling

Reliability-based attacks are made possible due to the vulnerabilities in the design

and manufacturing process of modern IC’s as depicted in Fig. 5.1.

Once the design house sends the final physical design to the third party foundry,

masks are created from the design which the lithography tools use to fabricate the chip. An

attacker at a foundry could modify these masks, without the design house knowing, and

compromise the chip. :w

The challenge for an attacker creating an EM-based Trojan is to design a wire with

structure and configuration such that the wire fails at a desired time and accomplishes some
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Figure 5.1: IC design and manufacturing flow showing attack and detection opportunities

malicious task without compromising the circuit performances and other design constraints

prior to activation. Furthermore, with respect to the particular attacks presented in this

article, an attacker must identify wires that are susceptible to these attacks. Primarily this

requires an attacker to find wires with sufficient chip area around it or excess metal for

modification and then find attack parameters that achieve the target life-time reduction.

While automation tools could help in this regard, a determined attacker should not be too

tightly constrained that they could not find candidate wires simply using visual inspection
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of the mask or layout in combination with commercially available physical design tools and

published EM models such as the one we employ in this work.

In the following sections we outline some primary challenges to EM-based attack

design, attack opportunities based on newly proposed physics-based EM models, and the

newly proposed attacks.

5.2.1 Challenges in EM-based attacks

In order for a wire to fail due to EM, it must be stressed by electrical current.

An attacker must increase the EM stress conditions so that the EM-induced lifetime of the

wire will be reduced. Furthermore, an EM Trojan must have minimal impact on circuit

performance to maintain its stealthiness and effectiveness. For these reasons the stress

source in a wire must be considered, as well as the method an attack uses to induce failure.

The wire’s stress source, wire current, is a major contributor to its EM vulnera-

bility. Furthermore, it is known that there exists a stress relaxation effect in a wire that

becomes unstressed [41]. If the stress source is not considered, a wire may never generate

enough stress to result in void nucleation, or the TTF of the wire may be much larger

than estimated. When designing an EM attack, there are three primary stress sources:

power/ground networks (p/g), clock trees, and signal nets. P/G networks have strong uni-

directional currents giving them a good stress profile. Clock trees, while periodic, have

high enough frequency ensuring long term averaging current providing a good stress source.

Signal nets that are highly active are good stress sources but other nets, that have little

activity, may not carry enough current to induce EM failure.
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Additionally, simple alterations to a wire, such as altering its width to increase

current density, can have unintended consequences on the wire’s IR drop. In the case of

p/g network wires, this can cause switching speed degradation to front end devices, thus

affecting chip timing. This has two major consequences. Firstly, it can render the chip

immediately inoperable. Secondly, it can cause enough change in performance that the

EM Trojan is detectable through side-channel analysis. For this reason, novel techniques

of inducing EM failure without degrading chip performance is required for effective EM

attacks.

5.2.2 Electromigration topology effects

Multi-mode failure

EM induced atom migration results in parametric failure, e.g., causes resistance to

change. However, depending on the wire topology, a wire may gradually experience resis-

tance change once a void is nucleated (late failure), or the wire may immediately experience

drastic resistance change causing an open circuit once a void has grown to a certain size

(Early Failure) [39, 91].

Late failure typically occurs in a so-called via-below (or up-stream) structure when

electron flow is from a lower layer of metalization to a higher level of metalization. In this

case the void will form in the upper portion of the wire which will allow current flow for

some time as shown in Fig. 5.2(a). Even after the void has saturated, current can still

flow through the Ta barrier layer, albeit, with much higher resistance. This results in a

gradual parametric failure. In contrast, early failure occurs in the via-above (or down-
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stream) structure, where electron flow is from a higher layer of metalization to a lower level

of metalization as shown in Fig. 5.2(b). In this case, the void will form in the upper part of

the wire at the via interface. This void quickly grows to the diameter of the via, blocking

current flow. Current cannot continue to flow as the only remaining path is the wire capping

layer which is typically a dielectric such as Si3N4 and does not shunt the current flow. This

causes immediate resistance change and effectively an open circuit.

void
Capping 
layer

Barrier 
layer

e-

(a)

void

e-

(b)

Figure 5.2: Via-below (a) and Via-above (b) wire structures showing void formation loca-
tions.

Multi-segment wires

Electromigration sign-off typically considers only single wire segments individually,

however, the stress in neighboring wires can effect each other. Because of this, the Korhonen

model has been expanded to handle these multi-segment interconnect trees. Depending on

the wire topology and current flow in neighboring segments, the stress can vary drastically

in the wire under test.
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To illustrate this point, we consider a simple two-segment wire as shown in Fig. 5.3.

We compare the TTF results using equal unidirectional current against equal opposing

currents.

e
_

e
_

e
_

Figure 5.3: A two segment wire structure with the same current density (below) and different
current densities (above)

Simulation results for these two structures show that the case with opposing cur-

rents has a TTF = 7.03 years and the case with a single unidirectional current has a TTF

= 4.92 years which is quite a large difference.

Specific multi-segment configurations act as atomic reservoirs or sinks. These

configurations have previously been observed to have effects on the TTF of a wire when

either passive (having no current) or active (carrying current) [54]. The reservoir is situated
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at the cathode end of a target wire and when passive, can extend the TTF of a wire.

Consequently, reduction or removal of this reservoir can reduce the TTF of a wire. The

sink is attached to the anode of a wire. When the sink is passive, the stress is increased in

the cathode end of the wire which decreases the TTF of the overall wire.

Power/ground network redundancy

The p/g network is seemingly the best place to insert a Trojan due to its high

constant unidirectional current flow which provides a great stressing source for an EM

Trojan. At first inspection, it is also enticing to simply modify an existing wire in the p/g

network to induce premature failure of the entire chip. However, this is also not as simple

as it seems due to the inherent redundancy of the p/g network.

Redundancy in the p/g network comes from its mesh structure [42]. Wire failure

may only cause minor IR degradation in the network and there may still exists other paths

allowing current to reach the front-end devices.

This is both an advantage and disadvantage depending on the attacker’s objective.

If attempting to render the chip inoperable through an attack on the p/g network, an

attacker must determine which wire(s) will result in enough IR degradation to meet this

objective which is not trivial. However, if an attacker wishes to utilize the p/g network to

stress an EM-based Trojan which has some other effect other than disabling the chip, then

the redundancy works to the attackers’ advantage. This is because the wire failure in the

network can achieve the attacker’s objective without compromising the power integrity of

the chip.
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5.3 EM attack methods

With the proper modeling, simulation, and design challenges in mind, we can

formulate specific attacks using the EM wear-out effect. As mentioned previously, a naive

method of attack relies on Black’s equation where current density is the only parameter

available to implement an attack. Practically, this means an attacker can simply decrease

wire widths. While this can be an effective method, it has the drawbacks of affecting other

circuit performance parameters, e.g., wire delay and IR drop. However, in this work we

utilize the wire structure impacts on EM as presented in 5.2.2. In the following presented

attacks IR drop and delay are not affected because, as we will present, we only need modify

non-current carrying metal to create the attack.

In the following sections, to demonstrate our attacks, we generated EM resilient

wire configurations. Then, we ran several simulations, using Finite Element Analysis and

the three-phase model, on the target wire while sweeping attack parameters to find effective

attack formulations.

5.3.1 EM as a Trojan payload

As a payload, the EM-based attack results in performance or functionality degra-

dation upon wire failure. This can be accomplished by modifying an existing wire to cause

wire failure earlier than anticipated by the designers. An EM payload can be used to cause

IR degradation in the p/g network, disrupt the functionality of the clock tree, or even

disable highly active signal nets.
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Figure 5.4: Illustrations of the reservoir reduction and sink insertion attacks

Reservoir reduction p/g network attack

As discussed in 5.2.2, a passive reservoir structure in a multi-segment wire can

help increase the TTF of a wire. In practice, passive reservoirs are a common occurrence in

the p/g network. Often it is the case that large reservoirs are added for reliability reasons,

primarily in the p/g network, or simply as a consequence of power grid synthesis that results

in excess metal. Thus, an effective and stealthy attack would be to reduce or remove the

reservoirs from the p/g network of a chip. Because they are passive, their removal will not

cause IR degradation.
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Figure 5.5: An example reservoir reduction attack

To demonstrate the reservoir reduction attack, shown in Fig. 5.4, we design an

immortal wire (meaning it will never fail due to EM) with a passive reservoir and show the

attack in Fig. 5.5. The wire is 0.05µm×100µm with a reservoir size of 0.05µm×5µm. After

removing the reservoir, the initially immortal wire has a TTF of 5.197 years, rendering the

wire quite vulnerable to EM aging.

Sink insertion attack

Many wires in a chip will not have passive reservoirs already attached to them,

typically these will be clock tree and signal nets. In these cases, a reservoir reduction cannot

be attempted as reservoirs will likely be active and their removal will immediately cause

chip failure at worst or performance degradation at best.

To target these wires, we can use a sink insertion attack, depicted in Fig. 5.4. As

mentioned in 5.2.2, a passive sink added to a target wire will reduce its TTF. This type

of attack is ideal for causing a target wire to fail when a passive reservoir is not present.

Furthermore, like the previously mentioned reservoir reduction attack, this small addition
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will not have any large effect on the IR drop of the net since we are only adding passive

metal to the wire.

Figure 5.6: An example sink insertion attack

As a demonstration, we consider an immortal wire, shown in Fig.5.6, with periodic

current density similar to that of a wire in a clock tree. We then insert a passive sink to

the wire and observe the effects on TTF. It should be noted that for this simulation, we

model the current density as the average current density due to the periodicity. It has been

shown that for high frequency periodic signals, like we would find in a clock tree, the long

term averaging effects mean that using the average current density is adequate [40]. The

initially immortal wire is 0.05µm × 20µm and the inserted passive sink is 3µm × 15µm.

After inserting the sink, the initially immortal wire has a TTF of 0.7253 years, a drastic

reduction in the TTF.

We note that in this particular example, the size of the reservoirs required can be

quite large compared to the target wire. However, the area taken up by the reservoir is

relatively small compared to the entire chip. Still, an attacker could be constrained by high

density routing. In this case, care must be taken to find appropriate target wires to attack

72



where room is available for a sink insertion. Additionally, sinks need not be rectangular

but can take on all matter of shapes and sizes so long as the sink area is sufficient for the

attack. Furthermore, it is not uncommon for large areas of a metal layer to be unoccupied

requiring the insertion of passive dummy filler metal to maintain structural stability in the

die during fabrication [70]. This provides an excellent opportunity for an attacker to attach

the dummy metal to the anode of a wire, thereby creating a large passive reservoir without

adding large amounts of metal.

Layer demotion attack

In 5.2.2, it was shown that depending on the wire positioning, either up-stream

or down-stream, a wire can experience the Early or Late failure effects. While this is

something we can leverage in any EM attack, it can also be used as an attack by itself while

also maintaining all the advantages of the topological attacks presented previously.

e-

e-

Figure 5.7: The originally up-stream wire is moved to a lower level of metalization to put
it in the down-stream configuration in the layer demotion attack

In this attack, a mortal wire that is normally positioned in the up-stream config-

uration, may have an acceptable TTF. However, if the wire were to be in the down-stream
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configuration, the Early failure mode would result in much more rapid failure. To achieve

this, we can perform a layer demotion attack on an up-stream configured wire by moving

the wire to a lower level of metalization than the wire its cathode is attached to. This will

maintain the same electrical paths and IR drop of the circuit but will cause the wire to be

in the down-stream configuration, and thus, experience Early failure.

To demonstrate this attack, we identify a mortal wire in the up-stream configu-

ration with reasonably high TTF. In this case the wire has an initial TTF of 6.69 years.

However, after reconfiguring the wire to a down-stream configuration, the TTF falls to 3.94

years.

5.3.2 EM as a Trojan trigger

In some cases, it may be desirable to activate a Trojan that does not render the

chip inoperable. In this case, the challenge for an attacker is to embed a trigger for their

payload in the chip that is difficult to activate or detect by the design house. EM-based

Trojans offer a stealthy and lightweight option to triggering a Trojan payload due to their

inherent stealthiness.

An EM-based trigger can utilize any of the modeling and attack techniques pre-

viously mentioned but are configured in such a way that their failure activates some other

Trojan payload. In this case, it is best to use an early failure configured wire that, when

activated, will quickly redirect current to (or from) the Trojan payload. We propose to use

the EM-trigger to control current flow such that during the aging process, the functional
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Figure 5.8: Example circuit of an EM Trojan wire being used as a trigger for a Trojan gate
payload

behavior of the circuit is unchanged. However, after activation, when the Trojan wire fails,

the current flow will be redirected such that the Trojan payload becomes activated.

In another example, shown in Fig. 5.8, an EM-based trigger wire is used in con-

junction with pass logic transistors to attack a victim gate. In this case, the pass logic

transistors allow for normal functional operation of the circuit, so long as voltage is suf-

ficient at either input to the transistors. Prior to activation, the victim NAND gate will

operate normally with inputs “A” and “B”. However, after the EM Trojan wire fails, the

pass logic transistors will no longer allow the “B” net to pass and will create a SA-0 fault at

the “B” input of the victim net. At this point, the victim gate’s output “Out” will always

retain a high logic level.

The only drawback of using the EM-based Trojan wire as a trigger is that it likely

requires the introduction of more circuitry to ensure the wire is stressed. That is, the

wire needs a sufficient stressing source which requires the introduction of circuitry to create

current flow which will have some effect on chip power consumption. This is because the
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current generated on signal nets may not be sufficient to stress an EM-Trojan wire. In

the above examples we utilized a resistor connecting to a reference which will complete

a circuit and allow constant current flow through the EM Trojan wire while ensuring we

avoid shorting the circuit all together. However, this resistor could potentially be any

circuit or structure that ensures the Trojan wire is stressed. Furthermore, making use of

the structural attacks presented earlier can help mitigate the added power consumption as

current draw may not have to be as significant compared to a purely current density based

EM Trojan design. Lastly, other methods could be utilized to stress the wire that would

not result in significant additional power consumption, e.g., the current from the charging

and discharging of gate capacitance generated by a periodic signal such as a clock net could

be sufficient to stress the Trojan wire.

5.4 Mitigation techniques for EM-based Trojans

EM-based Trojans pose a real threat due to the difficulty in detecting them through

conventional testing methodologies. However, there are measures that chip designers can

take to mitigate the possibility of an EM-based attack and to also enhance traditional

testing methodologies to increase their chance of detecting these types of attacks.

5.4.1 Split-fabrication

As discussed previously,the primary concern over hardware Trojan attacks stems

from the decentralization of the design and fabrication of ICs, due to increasing costs asso-

ciated with manufacturing these devices, thus making them vulnerable to attack by third
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party fabs. The primary reason for the rising costs of manufacturing has to do with the

highly advanced technology nodes, specifically the front end devices of the IC. However, the

process for manufacturing the back-end-of-line interconnects is relatively unchanged from

previous technology nodes. Split-fabrication has been proposed in several works [45,46,83]

to take advantage of this fact and effectively makes the IC design process immune to EM-

based attacks.

Split-fabrication separates the front-end and back-end-of-line manufacturing which

provides several advantages with respect to the integrity of the fabrication process. The

idea is to allow the third party fabs, which have invested in the advanced fabs with the

tools and processes to manufacture at advanced technology nodes, continue to manufacture

the front-end devices while the design house or other trusted manufacturer can finish the

IC’s back-end with a relatively less expensive fab.

This methodology provides a few advantages. Firstly, the design house no longer

needs to provide detailed design files that reveal the actual architecture of their designs.

This makes the insertion of hardware Trojans that target the chip logic extremely difficult

while also protecting the design house’s IP. Secondly, this methodology allows the design

house to visually inspect the front-end of the chip before the back-end is manufactured, thus

allowing the detection of any Trojan logic gates. Lastly, with respect to EM-based attacks,

this methodology would be particularly effective. EM-based attacks target the back-end-

of-line interconnects, however, if the design house is using a split-fabrication process, then

any untrusted fab could not insert this type of attack.
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While not yet adopted by industry, real ICs have been manufactured using split-

fabrication by researchers [83] showing its feasibility.

5.4.2 Burn-in testing

EM-based attacks are particularly difficult to detect due to their passive behavior

prior to activation due to aging. While test vectors and side-channel analysis will fail to

detect these types of attacks on their own, they could be used for detecting an EM-based

Trojan if the Trojan was forced to activate during test time.

Burn-in testing is already a common methodology for ensuring an IC or PCB

is free of defects or excessive process variation. These tests subject a chip to high stress

conditions, outside of the normal use conditions, designed to cause failure in chips that do

not meet reliability specifications. After testing, the chips that pass are considered reliable

and can be introduced into the market where the expectation is that they will be used in the

normal use condition which is far less extreme than the high stressing conditions they have

been subjected to in the burn-in testing. Additionally, this type of testing is often employed

by fabs to judge the EM resilience of a particular fabrication process by subjecting wires

with varying dimensions and current densities to high stress until they fail. These results

are then extrapolated to real world use cases to determine design rules for EM sign-off.

By subjecting a chip to burn-in testing, an EM Trojan, which is designed to fail

early already, can be subjected to high stress conditions which will accelerate their aging.

Coupling this with traditional logic based testing and side channel analysis, EM-Trojans

which are forced to fail early during this process can be detected. Not all EM-Trojans will

be detected in this manner however.
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This technique will only affect Trojans with aggressive failure targets. However,

this effectively reduces the design margin for the attacker by limiting the aging range that

can be selected for the EM-attack. In other words, an attacker cannot create a Trojan

that will fail very early without risking its activation during a burn-in test. This may be

enough to limit an attacker to such an extent that an EM-based Trojan may never even be

activated, even if inserted and not detected.

The burn-in technique is illustrated in Fig. 5.9. We simulate the EM-induced TTF

for a wire under high stressing conditions of 390K with a voltage scaled to +5% and assume

a burn-in duration of one week. Trojan wires with failure times below the 7 day burn-in

duration under these conditions would likely have been activated at test time and detected.

Figure 5.9: Burn-in testing reduces the range of failure times available to an attacker by
inducing failure in aggressive TTF targets.
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5.5 Conclusion

In this chapter, the recently proposed advanced EM modeling and simulation

techniques were utilized to formulate novel reliability-based Trojan payloads. Two topology-

based EM attacks were presented that leverage the multi-segment stressing dynamics from

atomic sinks and reservoirs. Also presented is a payload that exploits multi-mode failure

mechanisms, early and late failure, by converting a wire from the up-stream configuration to

the down-stream configuration. Furthermore, we proposed an EM-based Trojan triggering

mechanism for stealthy time-delayed activation of hardware Trojans. These Trojans utilize

the topology and structure of wires which gives them an advantage over previously proposed

current density based EM-Trojans which can affect circuit performance. Finally, a discussion

is presented for two potential EM attack mitigation techniques including split fabrication

and burn-in testing.
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Chapter 6

On-Chip Counterfeit IC Detection

Using Electromigration Aging

Sensor

The counterfeiting of Integrated Circuits (ICs), especially recycled ICs, has become

increasingly problematic for the electronics industry due to its financial impact and threat to

the security of mission critical electronic systems. One viable way to detect counterfeit ICs

is by means of on-chip aging sensors by leveraging natural aging and degradation processes

such as Negative Bias Temperature Instability (NBTI) in devices and electromigration (EM)

in interconnects. In this chapter, a novel EM based hardware aging sensor is presented to

precisely record the aging process of a chip. Compared to exiting EM-based aging sensors,

the proposed aging sensor consists of three major improvements. First, the EM-aging sensor

uses post-voiding resistance changes and subsequent signal delay as the measurement of
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aging process instead of using the nucleation effects, which are difficult to detect and more

susceptible to variations. As a result, the new design does not need many redundant wires

to reduce variation. Second, a novel configurable multi-segment wire structure is utilized

to significantly reduce the void formation time while preserving long void growth time

for wire resistance change in the normal chip working conditions. The new sensor can

perform a novel self-calibration process during fabrication, which can significantly improve

the prediction accuracy of the aging sensor. Third, the new EM sensor measures the RC

delay changes of the stressed wires instead of the resistance itself as in the existing EM aging

sensor. This new method leads to a simplified hardware design. As resistance change has a

linear dependency on stressing time, such a sensor design can give the continuous aging time

estimations after the sensor is self-calibrated, which is not possible in existing EM-aging

sensor designs. Lastly, the new sensor design makes use of advanced EM topology effects, as

presented in 5.1, to accelerate the nucleation of a void to facilitate the self calibration prior

to IC distribution. Experimental results show the proposed EM-aging sensors are more

accurate and more area efficient at nearly 10× smaller than previously proposed methods.

6.1 Existing on-chip aging sensor design

Many previous works have been proposed for lightweight aging detection sensor

designs [37,38,84,92,93]. The method in [93] designed a Ring-Oscillator(RO)-based aging

sensor that relies on the aging effects of MOSFETs to change an RO frequency in comparison

with a reference frequency embedded in the chip. As the chip ages, due to the wear-

out mechanisms such as Negative-Bias Temperature Instability (NBTI) and Hot Carrier

82



Injection (HCI), the threshold voltage of the MOSFET devices begins to shift, while also

changing the frequency of the RO, and provides a simple indicator for the IC age. However,

this method can only give a very rough estimation of the usage age of the chip as the shift

in frequency depends on many factors.

In order to mitigate the inaccuracy problem, an antifuse (AF)-based sensor was

developed in [80]. The AF-based sensor essentially is a counter, which counts the clocks or

derivatives of the clock events to log the usage of the chip. The antifuse memory is used to

make sure the data in the count will not be erased or altered by attackers. However, AF-

based sensors suffer from large area overhead, especially when a more accurate indication of

usage is required [80]. Another problem with this method is that it may not reflect the true

aging-dependent usage of a chip. For instance, it will log the same usage time for different

on-chip temperatures, however, the temperature has been shown to have a dramatic impact

on the aging effects from electromigration, NBTI and HCI [47].

Recently He et al. proposed to uses the electromigration (EM) aging effect in

metal interconnects to create aging sensors that indicate when a certain lifetime has been

reached on the chip [37, 38] . The sensor works by designing a copper wire to fail at a

specified time, due to the EM effect, which then acts as an indicator that the specified age

has been exceeded. We show in Fig. 6.1(b) the schematic of the EM-based aging sensor

circuit from [38]. The sensor circuit utilizes a set of EM stressed wires (consisting of 10-20

wires [38]) which are identical and are designed to fail at the desired time. An unstressed

reference wire provides the reference voltage which will be compared to the voltage of the

aged wire set. The comparison of the voltage between the EM stressed wire set and the
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reference wire is performed by a 1-bit ADC who’s output is connected to a multiplexer which

in turn outputs the status of the sensor when the input Read en is set. If the sensor has been

aged long enough, then the voltage across the EM stressed wires will have changed enough

to cause the ADC to output a 1 instead of 0, indicating the specified age was reached.

However this method also is not without its shortcomings. While able to accurately

indicate a specific time of failure, this method relies on the voltage differential between a

failed wire and a reference wire. Due to the small voltages and resistance inherent in modern

ICs, this means a high accuracy ADC must be utilized to detect small differences in voltages

requiring large area usage. Furthermore, to account for inherent variation in failure time,

multiple redundant wires are used in parallel, as shown in Fig. 6.1(a), to increase accuracy

of the sensor. Lastly, this sensor must be repeated to detect more than one failure time.

For example, if the aging sensor needs to detect failure at 5 years and 7 years, then two

separate aging modules are required as shown in Fig. 6.1(b), which can lead to large area

overhead.

6.2 EM aging sensor based on configurable multi-segment

wire structure

In this work we propose to create a self calibrating EM-based aging sensor module

to indicate the age of an IC by designing a wire that will experience resistance degradation

over a long period of time. A consumer, or the chip vendor can check the status of this

module to determine if a chip has been used, and to what extent it has been used. This
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(a) The existing multi-wire structure for the aging sensor and its stressed condition

(b) The schematic of the existing EM-based aging sensor

Figure 6.1: The existing EM-based aging sensor design [37, 38]

will assist in the identification of counterfeit, recycled and remarked ICs. This method

can be employed quickly and on large batches of chips as only a single signal must be
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checked rather than visually inspecting sample chips. In the following sections, we present

the architecture of the proposed EM-based aging sensor and the associated models and

methodologies. Parameters used are consistent with a 90nm process technology.

To facilitate the implementation of the aging sensor, we propose to utilize a pre-

distribution calibration methodology. We make use of the fact that void growth, and thus

resistance change, contains a linear region prior to its saturation. Because of this, by

determining the resistance of the aged wire, we can calculate its age as long as we know the

initial age and the resistance change rate.

The methodology to calibrate the aging module, shown in Fig. 6.2, contains several

steps. Firstly, the chip, and its module are subjected to burn-in testing, a normal step in

IC sorting during the IC fabrication process. This burn-in testing subjects the chip to

high temperatures and voltages which will cause the stress generation in wires due to the

EM effect to accelerate. We design the aging module such that it is more susceptible to

void nucleation during this phase using topological modification as presented in [68] to

accelerate this aging even further. Once burn-in is complete and the void has nucleated in

the aging module wire, we measure its initial resistance R1 (measurement of this resistance

is explained in a later section). We then subject the wire to normal operating conditions

for a certain amount of time (e.g. 1 week) and then measure the resulting resistance R2

and calculate the resistance change ∆R. The values R1 and ∆R are then stored on-chip in

the aging module using an anti-fuse memory which is a one time writable memory difficult

to tamper with. The host chip is then ready for distribution.
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Figure 6.2: The EM aging sensor self calibration methodology

6.2.1 Chip authentication methodology

After the IC has been calibrated at the foundry, it is ready to be introduced into

the electronics supply chain 6.3. Vendors, OEMs, consumers and suppliers can all check the

status of the aging module to validate that the IC is indeed a new chip and not recycled.

As the chip is used, the resistance will continue to increase due to the void growth

mechanics and the continued stressing. At any point in its life cycle Rem can be measured,

and using the stored values of the initial resistance and the resistance growth rate, the age

of the host chip tage can be calculated. This allows the determination of not only if a chip

has been used previously, but also to what extent the chip has been aged. If the chip is used
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Figure 6.3: The IC supply chain life cycle depicting the pre-distribution self calibration
stage, potential counterfeiting, and authentication during the IC distribution.

and then recycled and reintroduced into the electronics supply chain then the counterfeit

part will show signs of aging determinable at the output of the aging module.

tage =
Rem −R1

∆R
(6.1)

6.2.2 Age sensing by wire delay estimation

Unlike ideal wires, a wire in an IC can be modeled as an RC component, and

that each wire will have some inherent delay associated with it. This is due to the natural

resistivity of the metal wire itself and also the parasitic capacitance inherently present in

ICs due to the close proximity of charged metal wires.
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The voltage V (t) of the RC model is given in (6.2). In this equation, V0 is the

voltage of the input signal and τ is the RC time constant given by the product of the resistor

value R and the capacitor value C. From this equation, we can see that if R increases then

so does τ which effectively increases the time it takes for V (t) to reach the input voltage of

V0. This shows that EM degradation not only effects the resistance of a wire but also has

a delay degradation associate with it as well.

V (t) = V0(1− e
−t
τ ) (6.2)

In Fig 6.4, we show the SPICE transient simulation of a step response in an RC modeled

wire. In this simulation we show the results for a 30Ω wire and sweep the resistance to

40Ω, which is consistent with parametric failure of a wire due to EM, showing the effect

that resistance degradation has on the wire delay. Specifically, it increases the rise time of

the input signal.

6.2.3 New configurable hybrid multi-segment wire design

A critical part of this work is the ability to create a wire that can quickly nucleate

a void but will have a long growth phase with reasonably large resistance change over time.

To facilitate this, we propose to utilize advanced EM models [77] and EM acceler-

ation techniques [68]. As demonstrated in [68], we can create a configurable multi-segment

wire that can vastly accelerate the void nucleation in a wire as shown in Fig. 6.5. Addi-

tionally, we can alter the operating mode of this wire such that the accelerated effects are

disabled, allowing for non-accelerated void growth behavior needed for the age measurement
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Figure 6.4: Transient SPICE simulation of the RC model while sweeping the resistance
value showing the gradual degradation of rise time, and thus signal delay

in this work. Essentially, the acceleration of the EM effect in this wire works by creating

a large stress gradient at the wire cathode by enabling current in both the sink and the

two reservoirs in this structure. By disabling these currents, the EM effect is returned to

normal.

In this work, we choose wire geometry parameters consistent with a wire that

would be found in an IC power delivery network for 90nm technology nodes. We then

can sweep these parameters in EM simulation to find appropriate wire, sink, and reservoir

geometries to meet the needs of the design. To accomplish this, we use a Finite Element

Analysis solver to solve the equation in (5.1) and determine the void nucleation and growth

kinetics of these wires.
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To ensure that the wire has a significantly long enough growth phase with measur-

able resistance change during normal aging operation, We can apply the following equation

formulated in [42]:

t− ti =
∆R(t)

vd[
ρTa

hTa(2H+W ) −
ρCu

HW
]

(6.3)

Figure 6.5: The proposed hybrid multi-segment wire structure design

6.2.4 The complete aging sensor design

Delay-based EM aging circuit

Using the previously proposed hybrid wire design, we can implement the EM aging

and delay based circuit as shown in Fig. 6.6. The circuit works by stressing a wire in the EM

stressed wire branch, which will result in resistance degradation, and then comparing the

RC delay (essentially the rise time) between this aged branch and an unstressed reference

branch which is designed to have the same resistance and delay as the aged wire. This delay
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can then be used to calculate the resistance of the aged wire which can be used to infer the

age of module.

The circuit has three modes which are controlled by the control signals AccSignal

and EN . When initially accelerating the void nucleation at the foundry, AccSignal is set

to 1 and EN is set to 0. This will allow an acceleration stress source VAS to produce the

current flow needed to put the hybrid structure into its accelerated aging mode by providing

current in the main wire RMB (previously referred to as REM ) as well as activating the sink

Rsink and reservoirs Rres,1 and Rres,2. This accelerated stress source VAC will typically be

larger than Vstress as it will be used during burn-in, however, this depends on the desired

void nucleation time. During normal aging operation, AccSignal and EN are both set to

0. A multiplexer is used to provide a stressing source Vstress to RMB during this aging

mode. When measurement is needed, EN is set to 1. This will generate a signal (such as a

unit-step) which will drive both the EM stressed wire branch, as well as the reference wire

Rref . The signal arrives at the inputs of the differential amplifier which then outputs the

difference of these two signals VDiff . As the resistance in RMB increases due to aging, so

to does the rise time of the signal on this branch which leads to larger voltage in VDiff

In Fig. 6.7 the HSPICE simulation of the response from the differential amplifier

using resistance value for Rem = 40Ω and Rref = 30Ω. Wire capacitance consistent with

parasitics found in the power delivery network were also used and were equal in each wire.

The aging module components and the differential amplifier were built using a Synopsys

90nm PDK. From the results we can see that the differential amplifier is indeed capable of

detecting the small timing variation in the two wires, validating our proposed approach.
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Figure 6.6: The EM induced delay-based aging sensor architecture

Figure 6.7: SPICE simulation of the differential amplifier showing the detection of the delay
degradation caused by increased resistance in an EM failed wire

To calculate the resistance of Rem, we can write equation (6.2) for Vem and Vref

in addition to the equation for the output of the differential amplifier which is VDiff =
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Vg(Vref − Vem) where Vg is the amplifier gain. We can then solve this equation for Rem

yielding the following equation:

Rem =
−t

ln(e
−t

RrefC +
VDiff

VgV0
)C

(6.4)

In this equation, t is the time when the output of the differential amplifier is

measured with respect to the starting time of the test signal.

The overall aging sensor module architecture

Using the proposed circuit, the module architecture can be formulated as shown

in Fig. 6.8

Figure 6.8: The proposed EM induced delay-based aging sensor architecture
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In this module, the two control signals AccSignal and EN are the signal inputs

to the aging circuit which outputs VDiff . This value is then sent to an ALU (simply per-

forms multiplications with VDiff ) which calculates the resistance using parameter constants

from 6.4. These parameters are stored in the Anti-fuse memory module (AF). The AF also

stores the initial resistance Rinit and ∆R. AF also has two control signals. One for writing to

the AF module, which is a one time operation after the self-calibration, and one for reading

from the module. We note that the parameter constants are known to the designers so these

are not initially needed for calibration and can be stored as a single coefficient. Instead,

the raw VDiff can be used by the design team to perform calibration. Post-calibration, and

after writing to the AF, the AF module sends the parameters necessary to calculate RMB

to the ALU. The aging sensor module outputs Rinit and ∆R and the calculated RMB which

can be used by the distributor or consumer to calculate the age of the chip.

6.3 Numerical results and comparison

In this section we present a comparison of the proposed method against the pre-

viously proposed EM-base aging sensor in [38]. To facilitate the comparison, we set a

specification that each module needs to detect up to 10 years of aging.

As a first step, we present the design of the hybrid structure to facilitate the de-

sign specification of 10 years aging measurement. To obtain the parameters of wires, we

perform finite element analysis to solve the partial differential equations presented in (5.1)

for the multi-segment wire structure shown in Fig. 6.5 and then sweep the physical pa-

rameters within the range of appropriate values. Additionally, void growth kinetics were
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Table 6.1: The designed hybrid wire sensor parameters

Parameter Value

Main branch length 90µm

Sink length 30µm

Reservoir length 30µm

Width 0.24µm

Thickness 0.12µm

Current density 5E9A/m2

Temperature 345K

Resistance change per year 3.26Ω

Resistance when void saturate 40.9Ω

Void Saturation time 12.6 years

simulated to determine the ∆R and eventual RMB saturation value which govern the ages

that can be measured. Simulations were done under both accelerated conditions with the

wire configured in the acceleration mode, to cause the rapid void nucleation and reduction

of incubation time, and also under normal aging condition for void growth phase simulation

with the accelerated configuration disabled. The results of the final wire parameters along

with the normal aging conditions are shown in Table 6.1. Additionally, the burn-in condi-

tions used in conjunction with the accelerated configuration are presented in Table 6.2. This

design allows us to nucleate a void extremely quickly, after only 6.5 hours instead of the 126

hours (about 5 days) needed with just the hybrid structure configured in the acceleration

mode, which is still reasonably quick. The resulting wire has a maximum measurable age of

12.6 years with a ∆R of 3.26Ω/year which is easily detectable using the delay based sensor.

As a result, we can start the self-calibration process in the foundry to get the void growth

rate under typical or effective temperature conditions. Once we know the void growth rate,

we can compute the ages based on the future resistance change measurements.
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Table 6.2: Acceleration operating conditions of designed wire

Current densities (jMB = jR = jS) 2E10A/m2

Normal condition temperature 373K

Burn-in condition temperature 423K

Time before growth phase normal condition 126hr

Time before growth phase in burn-in condition 6.5hr

We also design aging modules following the methodology in [38]. However, a

primary difference between the proposed method and the method in [38] is that the proposed

method can measure age continuously throughout its lifetime while the previous method

only indicates that single discrete age has been exceeded. As per the recommendation

in [38], we can increase the granularity of this method by designing multiple timer modules

that will fail at several different ages. To meet our requirement of measuring age up to

10 years, we chose to create three modules that will fail at 3, 5, and 10 years using the

previous method. Again, we use FEA to solve the stress equations in (5.1) to design these

wires to the correct specifications. Lastly, to ensure accurate nucleation time prediction, we

employ 6 redundant wires for each aging module. A summary of the comparison between

this method and our proposed method is presented in Table 6.3.

From the resulting designs, we can see that the proposed method achieves better

area efficiency as well as better aging accuracy through fine granularity compared to the

previous method. To match the aging accuracy, the previous method would need more

modules than is realistic. Lastly, we remind the reader that the method in [38] is only

able to achieve accurate nucleation time predictions by implementing redundant wires as

discussed in section 6.1 which is the reason for using 6 wires per aging module. The result

is a vastly larger aging sensor that is nearly 10× larger than out proposed method. We
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Table 6.3: Comparison with the EM-sensor in [38]

Parameter Proposed method Method in [38]

Target ages (t years) t ≤ 10 t ∈ {3, 5, 10}

Number of stressed
wires

1 18 (6 wires, 3 modules)

Total area estimated 43.2µm2 460.8µm2

Single wire and module
area breakdown

RMB = 21.6µm2,
Rsink = 7.6µm2,
Rrsv,1+2 = 14.4µm2

10 year: 19.2µm2, 5 year:
26.4µm2, 3 year: 31.2µm2

Area overhead N/A 966.66%

lastly note that only wire areas are reported as they dominate the area overhead of both

our proposed method and the method in [38].

This chapter presented a novel on-chip aging sensor module for the detection of

counterfeit ICs. The proposed module allows consumers and electronics component man-

ufacturers to verify that an IC is genuinely new and has not been recycled and remarked.

This module utilizes the electromigration failure effect to induce resistance degradation in a

stressed wire which results in measurable changes in the RC delay and the subsequent cal-

culation of the wire age. The new module makes use of advanced EM modeling techniques

that enable the utilization of a configurable multi-segment wire structure to accelerate the

void nucleation and facilitate the control of the void growth rate. This new module also

relies on a novel self-calibration methodology that removes the necessity for large numbers

of redundant wires that other methods require. The resulting design vastly increases mea-

surable age granularity and has very high area efficiency, nearly 10× smaller, compared to

previously proposed methods.

98



Chapter 7

GPU-based Ising Computing for

Max-cut

In VLSI physical design, many algorithms require the solution of difficult combi-

natorial optimization problems such as max/min-cut, max-flow problems etc. Due to the

vast number of elements typically found in this problem domain, these problems are com-

putationally intractable leading to the use of approximate solutions. This chapter explores

the Ising spin glass model as a solution methodology for hard combinatorial optimization

problems using the general purpose GPU (GPGPU). The Ising model is a mathematical

model of ferromagnetism in statistical mechanics. Ising computing finds a minimum energy

state for the Ising model which essentially corresponds to the expected optimal solution

of the original problem. Many combinatorial optimization problems can be mapped into

the Ising model. In this chapter the focus is on the max-cut problem as it is relevant to

many VLSI design automation problems. Our method is inspired by the observation that
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Ising annealing process is very amenable to fine-grain massive parallel GPU computing.

The chapter will illustrate how the natural randomness of GPU thread scheduling can be

exploited during the annealing process to create random update patterns and allow better

GPU resource utilization. Furthermore, the proposed GPU-based Ising computing can han-

dle any general Ising graph with arbitrary connections, which was shown to be difficult for

existing FPGA and other hardware based implementation methods. Numerical results show

that the proposed GPU Ising max-cut solver can deliver more than 2000X speedup over

the CPU version of the algorithm on some large examples, which shows huge performance

improvement for addressing many hard optimization algorithms for solving practical VLSI

design automation problems.

7.1 Review of existing work

There have been several works previously proposed to utilize hardware accelera-

tion techniques, other than quantum computers, as a solver for the Ising model to solve

combinatorial optimization problems. The previous works have utilized accelerators such

as GPUs [13,16, 87], FPGAs [35,90], and even ASIC implementations [89].

The Ising model for many practical problems can lead to very large connec-

tions among Ising spins or cells. Furthermore, embedding those connections into the 2-

dimensional fixed degree spin arrays in VLSI chips is not a trivial problem. Doing so

requires mitigation techniques such as cell cloning and splitting using graph minor embed-

ding (another NP-hard problem) as proposed in [35, 36, 90]. This stems from the fact that

these hardware based methods must convert every problem to a nearest-neighbor model to
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ensure that their regularly arranged hardware spins can accommodate any graph problem.

The solution to this NP-hard problem will drastically increase pre-processing time for the

Ising solver. Additionally, graph embedding requires the cloning and splitting of nodes in

the graph which means the number of spins in the model will also greatly increase. Fur-

thermore, after the solution has been obtained, post-processing must be done to extract the

real solution from the solver by deconstructing the graph embedding. This leads to another

problem, that being hardware utilization, since the number of spins increases when a graph

is embedded into the nearest neighbor model which will make it more difficult to fit larger

problems on an FPGA or require more area in an ASIC implementation. Alternatively,

hardware designs would require drastic increases in routing and connectivity hardware,

however, even then it would not be guaranteed to handle every problem. In essence, ASIC

implementations are not flexible and can only handle a specific problems or utilize graph

embedding due to the fixed topology among spins, and FPGA implementations require ar-

chitectural redesign, and thus recompilation, for each different problem if graph embedding

is not utilized. Lastly, one has to design hardware for the random number generator for

each spin cell and simulate the temperature changes, which occupies significant chip area

resulting in scalability degradation.

Based on the above observations and the highly parallel nature of the Ising model,

in this work, the General Purpose Graphics Processing Unit (GPGPU or simply GPU) is

explored as the Ising model annealing computing platform. The GPU is a general comput-

ing platform, which can provide much more flexibility over VLSI hardware based annealing

solutions as a GPU can be programmed in a more general way, enabling it to handle any
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problem that can be mapped to the Ising model. That is, it is not restricted by the topology

or complex connections that some problems may have. At the same time, it provides mas-

sive parallelisms compared to existing CPUs. The GPU is an architecture that utilizes large

amounts of compute cores to achieve high throughput performance. This allows for very

good performance when computing algorithms that are amenable to parallel computation

while also having very large data sets which can occupy the computational resources of the

GPU [63, 64]. The problem sizes in the design automation domain can easily accomplish

this and heuristic methods can solve the Ising model in a parallel manner which makes the

GPU ideal for this application. We remark that extensive work for Ising computing on

GPUs have been proposed already [13,16,87], however; they still focus on physics problems

which assume a nearest neighbor model only. This model is highly amenable to the GPU

computing as it is easily load balanced across threads but is not general enough to handle

problems such as max-cut without extensive pre-processing, again through graph embed-

ding. Furthermore, many GPU-based methods use a checkerboard update scheme to ensure

spin updates are uncorrelated, but this is still only practical for the nearest neighbor model.

7.2 Ising model and Ising computing

7.2.1 Ising model overview

The Ising model consists of a set of spins interconnected with each other by a

weighted edge. For the general Ising model, spin connections can take on any topology. One

of the connection topologies is the 2D lattice, referred to as the nearest neighbor model,

shown in Fig. 7.1, which describes the ferromagnetic interactions between so-called spin
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glasses. Many computationally intractable problems can be mapped to this Ising model.

It was shown that finding the ground state in the 2D lattice Ising model is an NP-hard

problem [12]. However, it has certain characteristics that make it more amenable to the

annealing process as each local update results in energy minimization and spin glass updates

can be performed in a highly parallel manner.

Figure 7.1: The 2D nearest neighbor Ising model.

Specifically, each spin σi, has two discrete spin values σi ∈ {−1, 1} and some

interaction with adjacent spins in the form of a weighted edge. Then the local energy or

Hamiltonian of the spin is described by (7.1):

Hi(σi) = −
∑

j

Ji,jσiσj − hiσi (7.1)
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In this equation, Ji,j is the interaction weight between σi and σj , and hi is a bias

or external force acting on σi.

Local spin update: by finding the minimum value of Hi(σi), we can determine

the local spin value σi. Specifically (7.1) can be written as

Hi(σi) =



−
∑

j

Ji,jσj − hi



σi = −S × σi (7.2)

From (7.2), we can see that σi can be determined just from the sign of the S value.

If S > 0, σi = 1, otherwise, σi = −1. If S = 0, it can take any value of {−1, 1}. This is

called a local spin update or update, in Ising computing. We note that such an update

for obtaining the minimum value of Hi(σi) only depends on its neighbors. That is, each

individual spin only needs to know the energy of the spins that are directly connected to it

for it to determine its next spin value. By ensuring that spin updates are not correlated,

then all the spin updates can be done independently and thus in parallel [13, 16, 35, 89, 90].

The global energy of the model is simply the summation of the local energies. It is

apparent then that minimizing the local energies will lead to the ground state of the model.

The global energy of the whole Ising model is given by the following (7.3):

H(σ1, σ2, ..., σn) = −
∑

〈i,j〉

Ji,jσiσj −
∑

i

hi σi (7.3)

Note that 〈i, j〉 indicates the combination of all spin interactions, and thus the

energy of the whole model. Minimizing the energy of this equation essentially requires

finding the optimal spin configurations given the interaction of each individual spin with

their neighbors. While (7.2) describes the energy of a single spin, this new equation in (7.3)

describes the total summation of off spins and their interactions.
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In general, we refer the problem of finding the minimum energy of the Ising Model,

or equivalently the ground state of Ising Hamiltonian, as the Ising problem. It can be

shown that the Ising problem shown is equivalent to the problem of quadratic unconstrained

Boolean optimization (QUBO) [18]. It was shown that many computationally intractable

problems (such as those in class NP-complete or NP-hard) can be converted into Ising

models [56].

Previous methods have focused on solving the nearest neighbor Ising model [35,89,

90]. However, this model has the drawback of not being able to handle any general problem

which may have arbitrary and complex connections. To do so, another NP-hard problem,

the graph embedding problem, must be solved first to convert a generally connected graph to

the nearest neighbor model which will be very computationally intensive and even resource

prohibitive for certain hardware implementations. Therefore, in this work, we assume that

a spin glass’s connections, or edges, are able to connect to any other spin glass in the model,

an example of which is shown in Fig. 7.2. Using this more general model removes the nearest

neighbor restriction on the Ising model and allows us to handle more complex problems.

From the Hamiltonian equations presented in this section, we can see that if we

minimize the local energy of each spin, we also minimize the global energy of the entire

system which leads to the ground state of the model. We can then map a combinatorial

optimization problem to this Ising model such that the ground state of the Ising model

corresponds to the global solution of the corresponding optimization problem. In this way,

finding the local energy of each spin, which leads to finding the ground state of the Ising

model, is the same as finding the optimal solution to the problem in question.
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Figure 7.2: An example of a generally connected Ising model.

7.2.2 Annealing method for Ising model solution

A classical and well known heuristic for combinatorial optimization is Simulated

Annealing (SA) [50]. This heuristic mimics the behavior of thermal annealing, found in

metallurgy. Essentially, it works by setting the environment to a high “temperature,” giv-

ing the model high energy and allowing for higher probability of changing states, and then

gradually decreases the temperature as the simulation runs. More precisely, it iteratively

calculates and evaluates the global solution quality of neighbor states of a model and prob-

abilistically allows the acceptance of a new state even if its solution quality is worse than

the previous state by utilizing the Metropolis criteria. The probability of accepting a worse
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state is dependent on the temperature of the system which gradually decays over time. This

allows the heuristic to avoid local minima as depicted in Fig. 7.3.

Figure 7.3: Depiction of the local minima and global minimum in the energy minimization
problem.

In this proposed work, we use a simplified/modified Metropolis annealing algo-

rithm to find the ground state as shown in Algorithm 2 that better exploits the features

of the Ising model while also allowing us to avoid local minima. In our proposed method,

we allow each spin update to minimize its own local energy and do not compute a global

solution quality (which would add a large computational penalty). In order to avoid local
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Algorithm 2 Modified Ising annealing algorithm

1: input: (M , N , S)

2: initialize all σi in S

3: for sweep-id in {1, 2, . . . , M} do

4: for σi in S do

5: σi ← argmin(H(σi)) based on (7.2)

6: end for

7: randomly choose and flip N spin glasses in S

8: decrease N

9: end for

minima we add energy to our Ising model by utilizing random flip probabilities that decay

over time.

In algorithm 2, M is the maximum number of sweeps, N is the number of spins

to randomly flip, and S is the set of all spin glasses. Once the spin glasses are initialized,

all spin glasses are updated iteratively to propagate the interactions between each spin (a

process we will call a “sweep”). When a spin glass updates based on (7.2), it computes and

chooses the spin value that will minimize its local Hamiltonian. At the end of a sweep, N

glasses are randomly flipped and N is decreased according to an annealing schedule. After

this, the process is repeated for M sweeps or until convergence is achieved.

Following this process, the local energy of each spin glass, and thus the global

energy of the model, is gradually decreased. Furthermore, we avoid the local minima by

introducing energy to the model by using uncorrelated random flips which slowly decrease

over time.
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We want to remark that the modified Ising annealing process can be viewed as

a simplified Metropolis Monte Carlo method as we essentially accept the positive energy

changes of a spin flip based on a temperature dependent probability [57]. As a result, we

should have the convergence properties of the Metropolis method [52], which means that

the objective function will be minimized in a statistical way for a sufficient time. We notice

that similar Ising annealing processes have been used for FPGA and ASIC based Ising

computing [35, 36, 89].

7.3 Ising model for the max-cut problem

The Ising model and the method introduced in this paper can be applied to many

NP class problems, however, we use the max-cut problem as a practical example. The max-

cut problem, in practice, can help find solutions to several EDA and VLSI design problems.

For example, the general via minimization problem, the act of assigning wire segments to

layers of metalization such that the number of vias is minimized, can be modeled as a

max-cut problem [10, 11, 24]. The max-cut problem is highly amenable to the Ising model,

making it an ideal candidate to introduce the proposed methodology. Furthermore, we also

note that the Ising spin model and max-cut have been used as a solution technique for the

via-minimization problem in the past [11].

The max-cut problem is defined as partitioning a graph into two subsets S and S̄

such that the weighted edges between the vertices of one subset and the other subset are

maximized. This is mathematically formulated by (7.4) assuming a graph G = (V,E) has

a variable xi assigned to each vertex:
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max
1

2

∑

i,j∈V,i<j

wi,j(1− xixj)

s.t. xi ∈ {1,−1}

(7.4)

In this equation, V is the set of vertices in the graph G, wi,j is the edge weights

in E between the ith and jth elements in V , and xi is an indication of which subset the

vertex belongs to and can take the values {−1, 1}.

Intuitively, looking as the Ising spin glass problem in (7.3), we can see how the

max-cut problem should map to the Ising model by associating the spin of a spin glass σi

with a subset of the graph in the max-cut problem. That is, we can say that if a spin

is 1 then the spin glass is in S and if a spin is −1 then it is in S̄, which is analogous to

xi. Furthermore, the weights between vertices wi,j is the same as the interaction weights

between spin glasses Ji,j and, in this case, there is no bias or external force so the h term

in the Ising model is simply zero. The global energy minimization of the Ising model for

the max-cut problem is shown below in (7.5):

H = −
∑

〈i,j〉

Ji,jσiσj (7.5)

Once mapped to the Ising model, the max-cut problem can then be solved by

finding the ground state of the model using the methods proposed in this paper. While

there are other ways to solve this problem, the method we propose is highly amenable to

parallel computation and large problem sets have great performance when implemented on

the GPU, thus, giving our method an advantage in scalability.
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7.4 GPU Implementation

7.4.1 GPU Architecture

The general purpose GPU is an architecture designed for highly parallel workloads

which is leveraged by Nvidia’s CUDA, Compute Unified Device Architecture, programming

model [63]. GPUs offer massive parallelism favoring throughput oriented computing in

contrast to traditional CPUs which focus primarily on latency optimized computation.

This gives the GPU an advantage in scalability so long as a problem does not contain large

amounts of sequential operations. The Nvidia GPU architecture is comprised of several

Symmetric Multiprocessors (SMs), each containing a number of “CUDA” cores, and a very

large amount of DRAM global memory [64]. The Kepler architecture based Tesla K40c

GPU, for example, has 15 SMs for a total of 2880 CUDA cores (192 cores per SM), and

12GB DRAM global memory. Additionally, each SM has several special function units,

shared memory, and its own cache.

The CUDA programming model, shown in Fig. 7.4, extends the C language adding

support for thread and memory allocation and also the essential functions for driving the

GPU [62]. The model makes a distinction between the host and device or the CPU and

GPU respectively. The model uses an offloading methodology in which the host can launch

a device kernel (the actual GPU program) and also prepare the device for the coming

computation, e.g., the host will create the thread organization, allocate memory, and copy

data to the device. In practice, a programmer must launch many threads which will be

used to execute the GPU kernel. Thread organization is therefore extremely important in

GPU programming. Threads are organized into blocks which are organized into grids. Each
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Figure 7.4: The Nvidia CUDA programming model showing the Host (CPU) and Device
(GPU) and the relation between threads, blocks, and grid s.

block of threads also has its own shared memory which is accessible to all the threads in

that block. Additionally, the threads in the block can also access a global memory on the

GPU which is available to all threads across all blocks.

The GPU fundamentally focuses on throughput over speed. This throughput is

achieved through the massive compute resources able to be run in parallel. Because of

this, it is important to realize that the GPU is not meant for small data sets or extremely

complicated operations that may be better suited for a powerful CPU. Instead, the GPU is

meant to execute relatively simple instructions on massive data in parallel that can occupy

the GPU resources for an extended period of time. This computing paradigm gives the

GPU a huge advantage in scalability so long as it has sufficient hardware resources for the

problem being solved. So long as this is the case, and there is no significant sequential

operations in the GPU kernel, the GPU computation time for a problem will not grow

significantly.
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7.4.2 Ising model implementation

The GPU, while lacking the massive scaling of a quantum computer, has much

larger scaling capabilities than CPUs, allowing it to handle very large problem sizes. Indeed,

smaller problems that are unable to fully utilize the GPU resources may achieve worse

performance than a CPU.

In order to ensure the best utilization of GPU resources, it is necessary to devise

a spin glass update scheme more amenable to parallel computation. Algorithm 2 relies on

sequential updates to propagate the interactions between the spin glasses. However, this

would be highly inefficient on the GPU as it would mean each thread would have to wait

for previous threads to update.

In previous works that have addressed the nearest neighbor Ising model, a checker-

board update scheme is implemented which allows for many spin glasses to be updated in

parallel [87]. While the spin glass updates are independent of their neighbors, they are not

truly independent since the update pattern is deterministic and can introduce autocorre-

lation between spin updates but this autocorrelation generally does not affect the global

balance of the model [87]. For the problem addressed in this work, however; interactions are

not confined to nearest neighbors nor are they restricted to regular patterns. This results

in very complex interactions in which spins can be dependent on many other spins across

the entire model. Consequently, a different update scheme must be developed for such a

general solver to ensure the independence of parallel updates.

To address the above mentioned issues, we modify the original algorithm in algo-

rithm 2. Firstly, we assign each thread to a single spin glass, and make it responsible for
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updating that glass. One may notice that since each spin glass may have a different number

of neighbors, then the threads will not be perfectly load balanced. However, the alternative

is to use graph minor embedding, another NP-hard problem [19], to create clone nodes such

that every thread will have an equal number of updates [35]. However, this means that we

need to have the CPU do some intensive pre-processing on the model, and it also means that

after each update sweep, a reduction must be performed on each spin glass’s clones so that

the true spin value can be determined. For these reasons, it is much better to allow for some

load imbalance and suffer some computational penalty on the GPU, instead of increasing

the complexity of the algorithm. Furthermore, while each update sweep is synchronized, we

do not synchronize the updates of each spin which makes them uncorrelated. In practice,

this means that threads will update their assigned spin glass as soon as they are scheduled

and will use whatever spin status their respective neighbors have at the time of data access.

Therefore, there is no guarantee that a spin’s neighbors will contain the spin value from the

current sweep or from the previous sweep. This naturally propagates the updates of each

spin glass in a non-deterministic pattern which ensures that each spin update can be done

in independently of its neighbor and in parallel.

Another major change to the algorithm is the implementation of the random flips.

Instead of randomly selecting a number of spin glasses to be flipped at the end of an update

sweep, we let each thread independently decide if it should flip or not. A global variable,

visible to all threads, gives the flip probability in the form of a floating point number between

0.0 and 1.0. Each thread then independently generates a random number between 0.0 and

1.0, generated by the CUDA cuRAND library for efficient random number generation, and
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flips if the number is below the global flip probability. The cuRAND library used for the

random number generations allows us to create a random number generator for each thread

at the very beginning of the program. Each thread is then responsible for calling its own

generator when it requires a random number. The advantage of using the cuRAND library

is that the random numbers can be generated completely in parallel and independent of

each other by allowing the GPU threads to do their own random number generation work.

This also is amenable to our asynchronous update scheme since each thread is responsible

for its own flipping and can decide to flip or not as soon as it finishes its update without

waiting for other threads which may still be updating. Consequently, a thread may not

only update using an already updated neighbor, it may actually update using a neighbor

that has been randomly flipped also. The flip probability is then reduced as update sweeps

are completed.

Algorithm 3 GPU Simulated Annealing method for Ising model

input: (Fp,S)

initialize ALL σi in S

while Fp > 0 do

for all σi ∈ S in parallel do

σi ← argmin(H(σi))

flip σi with probability Fp

end for

reduce Fp

end while
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In algorithm 3, the parallel simulated annealing solver for the Ising model is pre-

sented. While mostly similar to the algorithm 2, There are some differences. We replace the

number of random flips input with a variable Fp which represents the flip probability men-

tioned above. Next, we have each thread generate a random number, using the cuRAND

library, between 0.0 and 1.0 and compare this to Fp. If it is less, then the thread will flip

the spin value. While these changes are subtle, the effect is large as it allows the parallel

computation of an entire update sweep.

With respect to GPU programming optimizations, the typical best practices were

followed or considered during implementation. We observe that thread divergence is not an

issue in our algorithm due to the fact that each thread performs the exact same operations.

This means that when a group of threads are running in parallel, they will not be serialized at

anytime. Furthermore, while memory coalescing is a standard method of enhancing memory

access speeds, we recognize that memory accesses in the Ising model are not regular. This

means implementing memory coalescing would result in unnecessary storage complexity.

7.5 Experimental Results

In this section, we present the experimental results showing both the accuracy and

speed of our parallel GPU-based Ising model solver for the max-cut problem. The CPU-

based solution is done using a Linux server with two Xeon E5-2698v2 2.3 GHz processors,

each having 16 cores (2 threads per core for a total of 32 threads per CPU and 64 threads

total in the server), and 72 GB of memory. On the same server, we also implement the

GPU-based solver using the Nvidia Tesla K40c GPU which has 2880 CUDA cores and 12 GB
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of memory. Test problems from the G-set benchmark [5] are used for testing as well as some

custom made problems to show very large cases. The problems’ edge counts are used to

represent their size as the size of each problem is typically dominated by the number of

edges. However, we remark that this is not always the case for every graph. That is, some

graphs may have a very large number of edges but only a few nodes, or vice versa, which

may make it easier or harder for a certain algorithm to compute. As such, some graphs

with higher numbers of edges may take less time to compute. Furthermore, graphs with

large numbers of edges may have more regular connections which will lead to more load

balance and thus, quicker computation times. However, the general trend in computation

time is that a larger number of edges will take more computation time.

7.5.1 Accuracy study

To test the accuracy of the method presented in this paper, we compare the max-

cut value our method generates with that of the best known solution in the G-set benchmark.

In addition to the G-set benchmark comparison, we generated several custom graphs and

compared the solution quality of our GPU-based method against IBM’s CPLEX mathe-

matical programming solver [43], a state-of-the-art linear programming solver employed to

solve combinatorial optimization problems. CPLEX solutions were implemented using a

server with a 2.1 GHz Xeon Broadwell processor with 36 threads (18 cores with 2 threads

per core) and 128 GB of memory.

For the results in Table 7.1 and Table 7.2, cut values were obtained by running

the GPU solver 10 times per graph and taking the average solution quality. Each time the
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Table 7.1: Accuracy comparison of the GPU max-cut value against the best known cut
values for the G-set benchmark.

Graph Best known cut GPU cut (%accuracy)

G13 580 522(90.0%)
G34 1372 1191(86.8%)
G19 903 844(93.5%)
G21 931 880(94.6%)
G20 941 880(93.6%)
G18 988 938(94.9%)
G51 3846 3754(97.6%)
G53 3846 3756(97.7%)
G54 3846 3756(97.7%)
G50 5880 5803(98.7%)
G47 6656 6619(99.4%)
G40 2387 2267(95.0%)
G39 2395 2269(94.7%)
G42 2469 2325(94.2%)
G41 2398 2284(95.2%)
G9 2048 2004(97.9%)
G31 3288 3227(98.2%)

Table 7.2: Accuracy comparison of the GPU max-cut value against the cut values obtained
by CPLEX.

# edges CPLEX cut GPU cut (%accuracy)

9999 9473 8884 (93.78%)
14999 13357 12776(95.65%)
24998 20206 19981(98.88%)
49995 35248 36228(100.29%)
39998 33605 32914(97.94%)
59997 46371 46510(100.29%)
99995 70566 72009(102.04%)
199990 128448 131930(102.71%)
249995 176556 179391(101.60%)
374993 248505 255078(102.64%)
626988 392912 400540(101.94%)
1249975 741709 751050(101.25%)

solver was run we used 1000 annealing steps which is the same number used to generate

the performance data in the following performance study section. Additionally, the number

of random flips for each solution is set to 200 which decays linearly each sweep by a factor

of 0.01. The cut values generated by CPLEX were obtained by running the CPLEX solver
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for each graph case. The solver time for CPLEX was capped at two days with most cases

using all of the allocated time. We also note that we don’t compare the solution time to our

solver since the CPLEX solution time is on the order of days while the GPU Ising solver’s

solution time is on the order of seconds. The accuracy% is defined as the ratio of the cut

values of the GPU Ising solver over the best known cut(Table 7.1) or the CPLEX solver

cut(Table 7.2), i.e., the closer to 100% the better the accuracy%. If accuracy% is larger

than 100%, then GPU Ising solver obtained a better result than the competing solver.

From the tables, we can see that the GPU consistently performs well with almost

all results above 90%. Furthermore, in Table 7.2 our GPU-based solver is able to consistently

beat CPLEX for larger cases which become too large for CPLEX to solve in a reasonable

amount of time. We also note that in practice, the best result could be picked from a

number of GPU simulations and some simulation parameters could be tuned to achieve

better results, e.g., annealing schedule and initial flip probability. However, we present

average results of a parameter configuration we found to be consistent across many graphs.

In Fig. 7.5 the region of convergence is shown for the GPU Ising solver and was

obtained by running the solver several times for a particular problem. The red line shows

the lowest observed accuracy while the green line shows the highest observed accuracy.

One example run is also included to show the overall behavior of the convergence. Unlike

classic simulated annealing, the solver does not converge to a single state but rather it

continues to have minor variations in energy as the solver progresses. This is because of the

utilization of the GPU scheduler as the random update pattern which means there will be
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Figure 7.5: Convergence region of the GPU-based annealing for the Ising model on the
G-set G47 problem.

some oscillations between solution states, even when the number of random flips is small or

zero.

7.5.2 Performance study

Next, we look at the GPU Ising solver’s performance. The speed of the GPU Ising

solver is judged by measuring how long it takes to perform a number of update sweeps on

various sized models. We run both the proposed GPU Ising solver and the sequential CPU

implementation of the algorithm for 1000 sweeps (which is the same number of sweeps used
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Figure 7.6: Speedup results of the GPU against the CPU for the G-set benchmark problems.

to generate the accuracy results above) and compare the computation time. Because the

GPU performs best when its resources are fully utilized, and because it is not optimized for

small workloads, we expect to see performance gain over the cpu to improve as the problem

size increases. We also should not expect a large speed-up over a CPU version for smaller

problems.

In Table 7.3, the time (in seconds) to complete 1000 simulation sweeps is shown

for the CPU and GPU for various G-set problems of increasing edge counts. In this table,

column torus indicates whether the graph is a torus or not. Columns tCPU (s) and tGPU (s)

are the run times for CPU and GPU based solutions respectively. Column speedup is

the speedup of GPU solution over CPU solution defined as speedup = tCPU (s)/tGPU (s).

Furthermore, we include several very large custom made and randomly generated non-torus

graphs in the table to show the scalability of the proposed method against the CPU-based

solution. It should be noted that accuracy results are not included for the custom graphs

as there is no data for best known or optimal maximized cut values. Additionally, Fig. 7.7

graphically shows the speed results in seconds for increasing problem sizes and Fig. 7.6

shows a bar graph of the results in log scale (the large custom graphs are omitted from the

figures). For all simulations, small and large, the GPU outperformed the CPU competition.
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Table 7.3: Performance results comparing GPU performance against CPU performance for
the G-set benchmark (G prefix) problems and large custom problems (C prefix).

graph # vertices # edges torus tCPU (s) tGPU (s) speedup

G13 800 1600 yes 0.17 0.11 1.5
G34 2000 4000 yes 0.29 0.11 2.6
G19 800 4661 no 0.39 0.17 2.3
G21 800 4667 no 0.39 0.17 2.3
G20 800 4672 no 0.39 0.15 2.6
G18 800 4694 no 0.39 0.16 2.5
G51 1000 5909 no 0.41 0.18 2.3
G53 1000 5914 no 0.41 0.19 2.1
G54 1000 5916 no 0.41 0.20 2.0
G50 3000 6000 yes 0.49 0.15 3.2
G47 1000 9990 no 0.64 0.15 4.3
G70 10000 9999 no 5.34 0.34 15.7
G57 7000 10000 yes 1.44 0.15 9.3
G40 2000 11766 no 0.81 0.24 3.4
G39 2000 11778 no 0.76 0.20 3.7
G42 2000 11779 no 0.76 0.26 2.9
G41 2000 11785 no 0.76 0.25 3.1
G55 5000 12498 no 2.26 0.21 10.8
G62 7000 14000 yes 2.73 0.16 17.5
G65 8000 16000 yes 3.27 0.16 21.0
G61 7000 17148 no 4.36 0.21 20.9
G66 9000 18000 yes 4.19 0.16 27.0
G9 800 19176 no 1.27 0.17 7.6
G31 2000 19990 no 1.16 0.16 7.4
G67 10000 20000 yes 5.06 0.16 32.5
G77 14000 28000 yes 9.64 0.16 61.8
G59 5000 29570 no 4.07 0.34 11.9
G81 20000 40000 yes 19.89 0.16 125.6
G64 7000 41459 no 7.97 0.39 20.6
C1 10000 100E3 no 26.63 0.18 147.9
C2 10000 250E3 no 59.81 0.38 157.39
C3 10000 500E3 no 121.5 0.61 199.5
C4 10000 750E3 no 179.87 0.91 197.65
C5 10000 1E6 no 234.86 1.18 198.69
C6 100E3 5E6 no 1.56E4 7.11 2200.81
C7 100E3 7E6 no 2.05E4 9.99 2254.74
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For the very large custom graphs, the scalability of the GPU can really be seen as the CPU

struggles to handle such large problems while the GPU is able to finish them quite quickly

and even achieve over 2000X speedup for the largest problems.

The CPU based Ising solution time grew approximately quadratically with the

problem size which is expected and is similar to the observations of the reported quantum

adiabatic computing on the exact cover problem [31]. We can also see that the GPU solver

time seems to remain quite constant until it starts working on the very large random graphs.

This seemingly constant computation time trend can be explained by the GPU architecture.

The GPU achieves its performance by utilizing a vast number of computational resources

which enables high throughput computations. Because of this, we do not expect the com-

putation time to rise dramatically with a rise in problem size so long as the computational

resources of the GPU are sufficient to handle the problem size. In contrast, the CPU’s

computation time will be impacted regardless of the problem size.

For the most part, as the problem size increased, so did the GPU speedup. How-

ever, we note that there were some graphs which the CPU performed quite well and the

speedup that the GPU achieved was much smaller than on other graphs. This is primarily

seen in the smaller graphs where the large amount of compute resources cannot be fully

utilized on the GPU. It is important to note that the GPU performance is achievable due to

the large amount of compute resources that can be utilized in parallel. However, if the size

of the graph is much larger than the amount of compute resources, then we would expect

the performance to degrade but also to still be better than the CPU. Additionally, for very

small graphs that don’t occupy the GPU resources, we should expect the performance gain
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Figure 7.7: Graphic of the performance in seconds of the GPU and CPU for increasingly
large graphs.

compared to a CPU based version to be much smaller after further inspection we identi-

fied that the solvers had interesting performance depending on the graph structure which

prompted further investigation.

We immediately noticed that the performance of both the GPU and CPU was

dependent on whether or not the graph was a 2D torus structure. As seen in Fig. 7.8, the

speedup (GPU solver time over CPU solver time) is separated by the graph type, green for a

torus and red for a non-torus. By examining this figure, we see that the speedup of the torus

structure, which is highly regular, steadily increases as the problem size increases. However,
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Figure 7.8: The performance results for the GPU against the CPU, separated by the graph
type, torus and non-torus.

the non-torus structure, while still showing speedup, is less consistent but generally shows

an increase in speedup as the problem size increases.

We further investigate the individual performance of the CPU and GPU by plot-

ting their speed results individually and also separating these results by graph type in

Fig. 7.9 and Fig. 7.10 respectively. From these graphs we can make a few observations.For

both the CPU and GPU versions, we firstly notice that the speed trends when solving the

torus structures is highly consistent with the increasing problem sizes while the non-torus

structures have erratic behavior. This can be easily explained by the irregularity of the
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graph structure. Each node will have different numbers of edges in the non-torus structure.

Coincidentally, on the CPU, the torus structures take longer to solve than the non-torus

structures due to the fact that the torus graphs in the g-set benchmark happen to have many

more nodes than the non-torus structures(see 7.3 for node numbers). More interesting, we

see that the GPU performance on the torus structures is highly efficient with almost no

noticeable change in computation time between the graph with 6000 edges and the graph

with over 40000 edges. This can be explained by the regularity of the graph structures.

This regularity will lead to load balance amongst the GPU threads during computation

which allows the GPU performance to really shine. We should expect this nearly constant

compute complexity so long as the GPU has sufficient compute resources for the problem

size. Any growth in computation time then, could be attributed to host to device memory

transfers. However, as soon as the resources become insufficient, certain spin updates will

need to be serialized, thus, decreasing performance.

We can also make the observation that the torus graphs are graphs that are similar

to nearest neighbor models. That is, they result in highly load balanced workloads. In this

way, we can also see that the cost of handling generally connected graph is present in these

results by looking at the computation time of non-torus graphs compared to the torus

graphs. However, we remark that this cost is still much better than if we had to pre-process

the graph by solving a graph embedding problem which would also increase our node counts

and finally require post-processing to extract the actual answer from the embedded graph.
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Figure 7.9: CPU performance comparing torus and non-torus graphs.
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Figure 7.10: GPU performance comparing torus and non-torus graphs.
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7.6 Summary

In this chapter we the Ising spin model based computing to solve the max-cut

combinatorial optimization problem is presented, which is widely used method for VLSI

design automation, on the general purpose GPU (GPGPU). The presented new algorithm

is based on the observation that Ising computing by the simulated annealing process is

very amenable to fine-grain GPU based parallel computing. GPU-based Ising computing

provides clear advantage as a general solver over existing hardware-based Ising computing

methods that utilize integrated circuits and FPGAs. We further illustrate how the natural

randomness of GPU thread scheduling can be exploited during the annealing process to

improve GPU resource utilization. We also showed that GPU-based computing can handle

any general Ising graph with arbitrary connections, which was shown to be difficult for

FPGA and other hardware based implementation methods. Numerical results show that the

proposed GPU Ising max-cut solver can deliver over 2000X speedup over the CPU version

of the algorithms over some large examples, which renders this method very appealing for

solving many practical VLSI design automation problems.
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Chapter 8

GPU-based Ising Computing for

Balanced Min-cut Bi-partitioning

In this chapter the GPU-based Ising solver is further expanded to handle the bal-

anced min-cut bi-partitioning problem. Unlike the max-cut solver, the balanced min-cut

problem has a global balancing constraint that adds another layer of complexity to its solu-

tion. Primarily, this constraint couples each spin glass to every other spin glass causing the

graph problem to generate a fully connected graph to solve resulting in exponential scaling

of problem complexity. This chapter shows an efficient method for solving this problem and

also shows that the newly proposed method achieves results that are competitive to the

state-of-the-art graph partitioner METIS [49].
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8.1 Ising model for balanced min-cut partitioning

In previous works, the Ising model has been used to solve the max-cut problem [27,

35,89,90], but as pointed out in [56], many other NP-complete and NP-hard problems can

be mapped to this model as well. The choice to use max-cut in these other works stemmed

from the fact that it is trivial to map to the Ising model, making it ideal as a proof of

concept problem. However, very little work has been done to map and solve other, more

practical problems.

For this reason, this article will show that the balance min-cut graph partitioning

problem (min-cut) can be successfully mapped to the Ising model and solved with solution

quality rivaling that of state of the art partitioners such as the METIS solver [49]. This

problem is highly practical as partitioning is a key algorithm in a wide variety of applications

such as VLSI Physical Design.

To formulate the Hamiltonian for the min-cut problem, we must first define min-

cut. Given a graph G(V,E), with edge set E and vertex set V , partition G into two subsets

(V1, V2) such that the edges between V1 and V2 are minimized and that |V1| = |V2|. In

other words, we want to assign each vertex in the graph to one of two sets such that we

minimize the connections between the two sets while also keeping the size of each set equal.

Unfortunately, this problem has been shown to be NP-hard [32].

To facilitate the formulation of the Hamiltonian and subsequent mapping to the

Ising model, we need to modify certain constraints so that we can put the problem in a

form that is amenable to unconstrained binary optimization. To do this, we will define

our Hamiltonian to be the summation of two separate Hamiltonian functions, HA and HB.
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Minimizing the energy of this Hamiltonian will be equivalent to solving the min-cut problem.

Furthermore, we will relax the constraint that |V1| = |V2| and allow some minor imbalance

between each set (which we will now call partitions). Lastly, we will define the spins in our

Ising model to be the indication of which partition a spin glass belongs in, i.e., if σi = 1

then σi ∈ V1 and if σi = −1, then sigmai ∈ V2.

Hcut = Hcut,A +Hcut,B (8.1)

The first Hamiltonian Hcut,A is a penalty function that adds energy to our system

in (8.1) when the partition sizes are not equal and is defined as:

Hcut,A = A((
∑

i

σi)
2) (8.2)

Recall that σi ∈ −1, 1, then we can see from (8.2) that it will equal zero (be

minimized) when there are an equal number of negative and positive spins. Otherwise,

this Hamiltonian will evaluate to a positive number and add energy to the system. The

constant A is a parameter that can be tuned to affect the weight of the penalty incurred

from imbalance.

The Hamiltonian Hcut,B is responsible for partitioning the spin glasses such that

the edges between the partitions are minimized and is defined as:

Hcut,B = B(
∑

〈i,j〉

1− σiσj
2

) (8.3)

In (8.3) we can see that when σi = σj the energy is minimal and the effect is

opposite when this is not the case. Effectively, this means that each vertex will produce

the least amount of energy when it is placed in the same partition that the majority of its
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neighbors occupy. The parameter B can be tuned to increase or decrease the penalty of

this Hamiltonian.

In general, when choosing the value of A and B, the following rule, as outlined

in [56], can be applied:

A

B
≥

min(2∆, N)

8
(8.4)

In this equation, ∆ is the maximum degree of the graph G and N is the number

of spins used to encode the problem, which for our implementation is just the number of

vertices in G.

By minimizing the energy of (8.1), we can obtain a balanced partitioning of a

graph problem while also achieving minimized cuts between the partitions. Unlike the

traditional Ising model, this Hamiltonian contains two sub-Hamiltonians. Furthermore, we

also must note that the Hamiltonian in (8.2) requires that each spin-glass have knowledge of

every spin glass in the model. This effectively produces a fully connected graph and vastly

increases the complexity of the problem, which will be addressed in the following sections.

8.2 GPU-based Ising solver for balanced min-cut problem

8.2.1 Standard implementation

To first validate the GPU implementation of the Ising model solver for the min-cut

problem, we construct a parallel algorithm from the one shown in Algorithm 2 but with the

modified Hamiltonians for the min-cut problem.

As mentioned before, spin glass updates can be performed in parallel during a

sweep. However, the restriction on this is that the updates must be performed indepen-
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dently. Furthermore, the updates of spins must happen asynchronously to avoid bi-phasic

oscillation. Fortunately, this can be accomplished in the GPU simply by allowing race con-

ditions on read operations. Effectively, this just means that when a spin calculates its own

local energy, it will use the current energy of its neighbors which may, or may not, have

already minimized their own local energy. To facilitate this, the following algorithm for the

GPU implementation has been used:

Algorithm 4 Standard implementation for GPU Ising model annealing for balanced min-

cut problem

input: (M , Pf ,S)

initialize ALL σi in S

for sweep-id in {1, 2, . . . , M do

for all σi ∈ S in parallel do

σi ← argmin(Hcut,A(σi) +Hcut,B(σi))

flip σi with probability Pf

end for

reduce Pf

end for

In this algorithm the spins for each glass are initialized and M update sweeps are

performed. During each sweep, every spin glass, in parallel, chooses the value of σi that

minimizes the Hamiltonian in (8.1). In effect, this means each spin will read the spin values

of all of its connected neighbors (to evaluate (8.3)) as well as the spin values of all spins in

the entire graph (to evaluate (8.2)). After a spin glass finishes its update, it will randomly
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flip with a probability determined by Pf . Once every spin has updated and decided to flip

or not, the flip probability Pf is reduced according to a cooling schedule. This process is

then repeated.

The flip probability Pf is initially determined by the number of nodes that should

be randomly flipped, which we will call Nrf . That is, if there are 500 nodes, and the Nrf is

100, then Pf will initially be calculated to be 0.20. When deciding to flip or not, each spin

generates a uniformly distributed random number between 0.00 and 1.00. If this number is

higher than Pf then the spin will not flip, however, if it is equal or lower, then it will.

Practically, each spin is handled by a single thread in the GPU. If the number of

spin glasses exceeds the number of threads available, then threads will be assigned multiple

spin glasses to update. For the random number generation, the CUDA cuRAND library

is used which allows for efficient random number generation in parallel. We also note,

as mentioned previously, that each spin update should not be correlated. For this reason,

updates are done asynchronously. In effect, this means that a spin glass will check the status

of its neighbor spins during an update but it will not be guaranteed that its neighbors have

not already finished their own update operation.

8.2.2 Globally Decoupled Ising implementation

While Algorithm 4 does successfully calculate a balanced min-cut partition, as we

will show in the results section, it is also heavily constrained by the direct computation of

Hcut,A as shown in (8.2). This means that for each spin glass in the model, it must traverse

the entire model to assess the status of every spin glass and determine the balancing penalty.

This is obviously a heavy computational step and will drastically limit the performance of
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the algorithm as the problem size increases. This is actually is one of major challenges for

Ising based computing as many constraints will lead to dense or complete Ising graphs.

One of the major contributions of this work is to find a way to mitigate this

challenging problem. To mitigate this problem, we have to find a better way to deal with

the balance constraints instead of using the standard Ising model. In this way, we still

keep the spin updates local (each spin glass no longer has to traverse the entire model),

which is critical to maintaining the efficiency and scalability for the GPU-based computing,

while making the global connections decoupled. Therefore, we propose to use a Globally

Decoupled Ising (GDI) solver.

Algorithm 5 Globally Decoupled Ising (GDI) implementation for GPU Ising model an-

nealing for balanced min-cut problem

input: (M , Pf ,S)

initialize ALL σi in S

G =
∑

i

σi

for sweep-id in {1, 2, . . . , M do

for all σi ∈ S in parallel do

σi ← argmin(Hcut,B(σi) +A(G+ σi)
2)

G = atomicAdd(G+ σi)

flip σi with probability Pf

end for

reduce Pf

end for

136



Specifically, in Algorithm 5, we pre-compute the global balance before starting

the first update sweep and store this value in a global variable G. Then, as each thread

performs its update during a sweep, it uses this value to determine the balancing penalty

it’s spin glass may incur. After deciding which partition will minimize the spin glass local

energy, the thread updates the G value so that all other spins glasses have knowledge of

the new balance. It should be noted that because this is happening in parallel, the balance

that some threads see may not be the actual balance when that thread updates the spin

glass it is responsible for. Furthermore, an atomic addition is used to update G which will

incur some computational penalty (but at much less cost than the method in Algorithm 4).

This atomic operation ensures the validity and integrity of the G value at the end of each

sweep as it eliminates “data race” between threads updating this value.

8.2.3 Further discussion and comparison

The primary difference in the two algorithms is the modification to the calculation

of the balancing Hamiltonian. The major effect is that we no longer require each node to

traverse the entire graph at each update step to calculate the global balance. Rather, the

global balance is pre-computed and then individually read, while modified (through atomic

operations) by one node at a time.

With respect to implementation, we notice that the standard version requires a

higher random flip probability than the enhanced version to achieve good cut results. The

reason for this is that the enhanced version naturally introduces more noise, or randomness,

to the update scheme while the standard version is more constrained by the global update.

That is, it is less willing to violate the global constraint as each node has nearly perfect
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knowledge of the state of the global balance. For this reason, during implementation, we

typically need a 5X increase to the value of Pf when using the standard implementation.

8.3 Experimental results and discussions

In this section, we present the experimental results showing the quality of our

parallel GPU-based Simulated Quantum Annealing solver for the balanced min-cut problem.

The CPU-based solution is done using a Linux server with 2 Xeon processors, each having

8 cores (2 threads per core) and a total of 32 threads, and 72 GB of memory. On the same

server, we also implement the GPU-based solver using the Nvidia Tesla K40c GPU which

has 2880 CUDA cores and 12 GB of memory. Test problems from the G-set benchmark [5]

are used for testing.

8.3.1 Solution time study

We firstly investigate the performance of the standard Ising solver and the glob-

ally decoupled method developed in the paper, followed by discussion of its performance

compared to the state of the art partitioning software.

The direct Ising solver implementation of the min-cut partitioning problem leads

to a complete graph requiring a global update for each spin glass in the model. In other

words, when each node updates during an annealing sweep, it must visit every other node in

the graph. To address this, we proposed the balance constraint efficient annealing algorithm

in 5. In the GDI version, we mitigate the issue of global update by utilizing a global variable

to store the balance of the graph partition which is updated using atomic operations by each
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Table 8.1: Summary of results for the standard (std.) and Globally decoupled (GDI) Ising
solver compared with the METIS results. Graphs with less than 1000 nodes are omitted
Graph-ID # nodes # edges Density tMetis tIsing,GDI tIsing,std. cutMetis cutIsing,GDI cutIsing,std balMetis balIsing,GDI balIsing,std.

G70 10000 9999 2.0E-4 1.6E-2 0.34929 31.88844 487 507 555 5 0 0
G81 20000 40000 2.0001E-4 1.6E-2 0.15046 22.40281 210 240 242 5 0 0
G77 14000 28000 2.8573E-4 1.2E-2 0.15686 15.67784 220 212 232 3 0 0
G67 10000 20000 4.0004E-4 0.08 0.15579 11.20150 216 216 244 1 0 0
G72 10000 20000 4.0004E-4 0.08 0.15707 11.23208 216 212 230 1 0 0
G66 9000 18000 4.4449E-4 8.0E-3 0.15810 10.08537 196 220 242 2 0 0
G65 8000 16000 5.0006E-4 8.0E-3 0.15766 9.01416 178 168 178 3 0 0
G62 7000 14000 5.7151E-4 8.0E-3 0.15730 7.87871 144 146 148 1 0 0
G60 7000 17148 7.0002E-4 2.8E-2 0.21494 9.31080 3330 3115 3321 2 0 0
G57 5000 10000 8.0016E-4 4.0E-3 0.15679 5.64559 140 110 252 0 0 0
G55 5000 12498 1.0001E-3 0.02 0.21558 6.45212 2463 2308 2391 0 0 0
G48 3000 6000 1.33378E-3 4.0E-3 0.15601 3.45138 120 124 194 1 0 0
G49 3000 6000 1.33378E-3 4.0E-3 0.15632 3.45322 74 60 136 0 0 0
G50 3000 6000 1.33378E-3 0 0.15617 3.45544 58 50 92 1 0 0
G64 7000 41459 1.6924E-3 3.2E-2 0.38691 5.89811 9946 9787 9967 2 2 0
G32 2000 4000 2.001E-3 0 0.12023 2.30673 50 40 54 1 0 0
G33 2000 4000 2.001E-3 0 0.12019 2.30543 54 50 78 1 0 0
G34 2000 4000 2.001E-3 0 0.12044 2.31117 112 86 150 1 0 0
G58 5000 29570 2.366E-3 2.4E-2 0.34457 3.98248 7226 6921 7302 1 0 0
G36 2000 11766 5.8859E-3 8.0E-3 0.23601 1.63955 2896 2722 2898 0 0 0
G35 2000 11778 5.8919E-3 1.2E-2 0.20426 1.77944 2942 2771 2841 1 0 0
G38 2000 11779 5.8924E-3 1.2E-2 0.26296 1.63863 2866 2688 2801 1 0 0
G37 2000 11785 5.8954E-3 1.2E-2 0.24608 1.63948 2921 2781 2834 1 0 0
G22 2000 19990 0.01 1.2E-2 0.15961 0.87029 6925 6739 6803 0 0 0
G23 2000 19990 0.01 1.6E-2 0.15989 0.86660 6946 6702 6743 0 0 0
G24 2000 19990 0.01 1.6E-2 0.16047 0.96611 7022 6719 6809 1 0 0
G28 2000 19990 0.01 1.2E-2 0.16016 0.86641 6961 6753 6781 0 0 0
G30 2000 19990 0.01 1.6E-2 0.16170 0.86767 6978 6702 6774 1 0 0
G31 2000 19990 0.01 1.2E-2 0.16086 1.00123 6957 6683 6798 1 0 0
G51 1000 5909 1.183E-2 4.0E-3 0.18105 0.92766 1513 1383 1458 0 0 0
G53 1000 5914 1.184E-2 4.0E-3 0.19386 0.92421 1498 1366 1368 0 0 0
G52 1000 5916 1.1844E-2 4.0E-3 0.19584 0.92683 1446 1394 1399 0 0 0
G54 1000 5916 1.1844E-2 4.0E-3 0.20007 0.92612 1465 1356 1430 0 0 0
G43 1000 9990 0.02 8.0E-3 0.15092 0.51411 3542 3350 3382 0 0 0
G44 1000 9990 0.02 8.0E-3 0.15365 0.51538 3565 3361 3402 0 0 0
G45 1000 9990 0.02 8.0E-3 0.15322 0.51169 3522 3347 3397 0 0 0
G46 1000 9990 0.02 4.0E-3 0.15210 0.51384 3573 3353 3386 0 0 0
G47 1000 9990 0.02 8.0E-3 0.15191 0.51398 3520 3350 3396 0 0 0

node. This means each node only needs to perform a single read and atomic add operation

on this variable.

In Fig 8.1, the graph problems solved are sorted from lowest to highest density

where density is calculated as density = (2 × #edges)/(#nodes × (#nodes − 1)) . The

nature of the G-set graphs used are such that low density graphs have many more nodes

and edges than the high density graphs. For this reason, the graph can be looked at

as being sorted from large complexity to smallest complexity. As we can see, the direct

implementation quickly increases in computation time as the problem become more and
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Figure 8.1: Performance gains of the GDI solver min-cut algorithm.
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Figure 8.2: Performance comparison of the GDI GPU Ising solver and METIS.

more complex. Comparatively, the GDI version appears constant in these results as the

computations times are not comparable.

We further show the performance results of the GDI solver algorithm and the

performance of METIS, widely considered the gold standard for partitioning software.

We can see from Fig. 8.2 that, while METIS is still able to beat the proposed

solver in terms of speed, the proposed Ising solver is quite close and comparable in time

with all solutions taking less than a second, even for the larger graphs.
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Figure 8.3: Solution quality of the proposed GPU-based Ising solvers.

8.3.2 Solution quality study

To study the solution quality of the proposed method, wee first show that the

solution quality of the direct implementation of the GPU-based Ising solver and the GDI

solver are similar.

As seen from Fig. 8.3 the solution quality of the GDI method not only achieves

similar solution results, it also consistently achieves cut values marginally lower than the

standard implementation.

To measure the solution quality produced by the proposed method, we compare

balanced min-cut partitioning results of the proposed method with the results produced

by METIS. We omit the solution quality results of the direct implementation as they are
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Figure 8.4: Cut quality results for the G-set benchmark problems.

similar to the GDI method proposed. For fairest comparison, we ensured both METIS and

the GPU-based Ising solver used a highly constrained balance criteria. For each graph, we

run both solvers 10 times and use the best solution quality found. The quality is measured

by comparing the cut values of the solvers. Cut values are defined as the number of edges

that connect one partition to the other.

As seen from Fig. 8.4, the proposed Ising solver GPU method achieves the same

or better quality results for almost every graph tested. Of the 51 graphs, the Ising solver

method achieved worse quality in only 5 graphs and produced the exact same quality in

1 graph. Even then, the Ising solver results were very close to METIS. We note that the

all of the graphs where Ising solver achieved worse quality were very sparse graphs, i.e.,
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their graph density was very low, which suggests that utilization of the Ising model can be

difficult for these types of graphs.

While the balancing constraint on METIS was set to be as restrictive as possible,

22 of the the 51 graphs tested had imbalanced partitions. In contrast, the proposed GDI

solver achieved perfect balance for all but one graph tested. We also remark that the

balances achieved by METIS were still quite good with the worst imbalance being only 5

nodes.

These results, as summarized in Table 8.1, show that the proposed method is able

to achieve better solution quality than the state of the art METIS solver, both in terms

of balanced partitions and minimized cut values. Furthermore, even for large and dense

graphs, the proposed solver finished in a time comparable to METIS.

8.4 Summary

This chapter presented a GPU-based Ising spin glass model solver applied to the

balanced min-cut graph partitioning problem. The work presented the annealing solution

method for solving Unconstrained Quadratic Binary Optimization problems while addition-

ally showing the method for mapping the min-cut problem to this model. A standard GPU

implementation is presented in addition to a Globally Decoupled Ising annealing algorithm

which mitigates the costly global updates during each annealing sweep. Numerical results

show that both the standard and enhanced annealing algorithms achieve high quality, and

nearly perfectly balanced, partitioning results that compete with and exceed the partition-

ing quality achieved by the state of the art partitioning solver, METIS. Furthermore, the
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proposed GDI method can produce results much faster than the standard method, resulting

in computation times comparable to the METIS solver. Experimental results show that the

proposed Ising-based min-cut partitioning method outperforms the state of art partition-

ing tool, METIS, on G-set graph benchmark in terms of partitioning quality with similar

CPU/GPU times.
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Chapter 9

Conclusion

The continued scaling of process technology and advances in hardware and archi-

tecture have created a need for more advanced simulation techniques. Where previously

certain assumptions about simulating physical effects, such as Electromigration induced

aging, causes negligible errors or over estimations, current advanced technology requires

the tightest margins. This dissertation focuses on the presentation of new simulations tech-

niques that take advantage of the newest physical models and acceleration techniques.

9.1 Summary of Contributions

9.1.1 Reliability

To address the overly conservative nature of the classical EM sign-off methodology,

this dissertation presents a method for solving advanced physics-based EM models. Specif-

ically, a numerical method, the Finite Difference Method, was used to solve the dynamic

stress evolution PDE. This was the first general multi-branch EM simulator that considered
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both void nucleation and growth phases while also incorporating void saturation volume.

Furthermore, a model reduction technique was utilized to accelerate the numerical solution,

resulting in a simulation method, FastEM, with a 90X performance gain making the solver

more practical for use in real world scenarios. Furthermore, FastEM is the only accelerated

numerical solution for EM that can consider both temperature and current density tran-

sients in multi-branch interconnects. The resulting work enables less conservative long-term

reliability assessment leading to less guardbanding and design iterations due to reliability

sign-off failure while also being efficient enough for practical use.

9.1.2 Hardware security

Hardware security is an increasingly important topic as more attack surfaces are

developed every year requiring more research and development to find and mitigate these

avenues of attack. Furthermore, due to the proliferation of electronic components across

the globe, illicit markets have become more common and also require design houses to

develop novel techniques to help mitigate IP theft and counterfeiting. Using the simulation

techniques and advanced EM models, this work address both of these areas. Firstly, a

novel reliability-based hardware Trojan was developed that utilizes the EM aging effect

and advanced failure modes. The EM-based project requires actual IC usage and aging

to become effective making it particularly difficult to detect using functional testing and

can be implemented as either a Trojan trigger or payload. Next, the EM-aging effect was

used to create an on-chip aging timer. Unlike previous EM-aging timers, this mother uses

a self-calibration technique and also relies on the RC delay degradation due to EM-failure

rather than voltage drop. This enables a highly area efficient aging sensor, that has a wide
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range of age sensing in a single sensor, and does not require multiple sensors or wires in

each sensor.

9.1.3 Ising computing

This dissertation explores the Ising spin glass model as a solution methodology

for hard combinatorial optimization problems using the general purpose GPU (GPGPU).

The Ising model is a mathematical model of ferromagnetism in statistical mechanics. Ising

computing finds a minimum energy state for the Ising model which essentially corresponds

to the expected optimal solution of the original problem. Many combinatorial optimization

problems can be mapped into the Ising model. In this manuscript, parallel GPGPU based

solutions are developed to solve max-cut as well as the balanced min-cut graph partitioning

solvers. The max-cut solver achieved a large performance gain over the non-GPU annealing

algorithm while also beating CPLEX in terms of accuracy. Unlike previous methods that

solve the Ising model, the presented model can work directly on a general graph problem

while avoiding the use of complicated graph embedding, which is another NP-hard problem.

The min-cut problem presented a unique challenge as it involves a global constraint that

results in a fully connected graph when a problem is mapped to the Ising model. To address

this, the work develops a Globally Decoupled Ising (GDI) solver which mitigates this issue

be pre-calculating global balance and keeping a running total of balances. The resulting

algorithm is faster than the CPU-based method and achieves accuracy on par with the

state-of-the-art METIS graph partitioning software.
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