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Marine cyanobacteria are prolific producers of structurally intriguing and
biologically important secondary metabolites, many of which are of mixed NRPS/PKS
biosynthetic origins, and have a broad range of biological activity, including ion channel
modulation, cancer cell toxicity, anti-parasitic, anti-bacterial, anti-inflammatory, brine

shrimp toxicity, and molluscicidal. Presently, there is one clinically approved drug that is

XX



an analog of the cyanobacterial natural product, dolastatin 10, while there are several agents
in clinical trial, including soblidotin and synthadotin, which are analogs of dolastatin 15
and 10, respectively. Additionally, others are currently undergoing preclinical evaluation
as anti-cancer agents, including apratoxin F, curacin A, desmethoxymajusculamide C
(DMMC) and somacystinamide. The primary research objective of the research herein was
to isolate and elucidate the structures of biologically active secondary metabolites from
tropical marine cyanobacteria. In total, fifteen novel compounds from either Oscillatoria
or Moorea were isolated and characterized. These include thirteen highly modified
peptides (veraguamides A-C and H-L, precarriebowmide, tasiamides C-E, and
lyngbyabellin N) and two alkyl amides (parguerene and mooreamide). The planar structure
elucidation of each of these metabolites involved the use of 2D NMR spectroscopy and
mass spectrometry techniques, including a mass spectrometry based dereplication
algorithm to deduce the planar structure of several of the modified peptides. Absolute
stereochemical analysis involved many techniques, such as Marfey’s analysis, semi-
synthesis, 3J coupling constant analysis, circular dichroism, **C NMR comparisions, NOE
correlations, and chiral GCMS analysis. Many of these compounds were biologically
evaluated with veraguamide A and lyngbyabellin N exhibiting cancer cell cytotoxicity
[ICs0 = 141 nM (H-460) and ICso = 40.9 (HCT-116), respectively], and mooreamide
exhibiting cannabinoid receptor binding activity (Ki = 0.47 uM). A secondary research
objective has been the structure-activity relationship (SAR) study to investigate the active
pharmacophore in the lyngbyamide family of compounds, which consist of a cyclopropyl
fatty acid (tail) and an amide head group. In total, 50 analogs were synythesized, designed to

probe the importance of several structural characteristics of the lyngbyamides. These compounds
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were tested in a wide array of biological assays, and a subset were found to possess strong activity
in the stabilization of cathepsin L-mediated proteolysis, brine shrimp toxicity, and surface tension

suppression.
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Chapter 1:

Introduction

1.1 Terrestrial Natural Products
1.1.1 Historical Uses of Natural Products

Mankind has relied on nature for many essential things such as food, shelter, clothing,
transportation, fertilizers, flavors, and fragrances for survival, but they also developed a
significant amount of knowledge on how to make medicines from living organisms.! It has even
been suggested that over 60,000 years ago, the Neanderthals may have used plants to treat
common ailments, as palaeoanthropological studies near Kurdistan, Irag revealed pollen deposits
in graves.? However, the oldest written record of the use of plants or other extracts as medicines
comes from Mesopotamia around 2600 B.C. and were written on clay tablets in cuneiform.®
They describe over 1000 plant-derived substances, such as oils from both Cedrus sp. (cedar) and
Cupressus sempevirens (cypress), Glycyrrhiza glabra (licorice), Commiphora sp. (myrrh), and
Papaver somniferum (poppy juice), which were used to treat anything from a cold to parasitic
infections, with the active ingredients from all of the aforementioned plants still used today.??

At around the same time period, other populations around the world were also learning to
harness the potential of plants and animals as pharmaceutical agents. For example, the Egyptians
writing of Elbers Papyrus (Egyptian pharmaceutical record) in 1500 B.C. consisted of over 700
drugs from mostly plants, which included agents from Aloe vera (aloe), Boswellia carteri
(frankincense), and Ricinus communis (castor).* The Chinese had the writing We Shi Er Bing
Fang (Prescriptions for fifty-two diseases, 1100 B.C.), which included 52 prescriptions.® This
was followed up with several more thorough writings, the Shennong Herbal (100 B.C.) and Tang
Herbal (659 A.D.), with the latter consisting of 850 drugs, along with information regarding their

properties, efficacy, and synergies. With many of the therapeutic effects of these 850 drugs



subsequently confirmed, such as Coptis chinensis (anti-diarrhea), Ephedra sinica (anti-asthmatic),
and Melia azedarach (anti-helmintic).5” The people of the Indian sub-continent wrote the
Charaka Samhita around 900 B.C. which contains 341 plant derived drugs,® while Hippocrates of
Cos (460-377 B.C.), a Greek, wrote Corpus Hippocraticum after collecting more than 400 natural
agents, including Atropa belladonna (anesthetic), and Ornithogalum caudatum (laxative).®
Finally, Pedanius Dioscorides (40-90 A.D.) compiled the De Materia Medica, which consists of
the dosage and efficacy of over 600 plant derived medicines and was the foundation of European
pharmacology.® Interestingly, it appears that there was a convergent evolution of these different
medicinal systems, where both the western and oriental populations were developing similar
drugs to treat related diseases, with limited communications between them, such as Hippocrates
using Veratrum album (white hellebore) and the Chinese using Veratrum nigrum (Black

hellebore) both used as emetic.°
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1.1.2 Early Investigations into Terrestrial Natural Products

Although many civilizations were using whole or parts of plants to treat a host of diseases
for thousands of years, it was not until the early 19" century before the active ingredients were
being purified and investigated. This began the field of pharmacognosy, which is defined as the
study of the physical, chemical, biochemical and biological properties of drugs with natural
origins.'* The first purification of a natural product occurred in 1803, when the alkaloid
morphine (1) was purified from poppy seedpods (Papaver somniferum) by Friedrich Sertiirner
and was subsequently commercialized in 1826 by E. Merck.!? This was followed by the isolations
of colchicine (2) from meadow saffron (Colchicum autumnale), quinine (3) from the bark of the
cinchona tree, strychnine (4) from Saint Ignatius bean (Strychnos nux vomica), and emetine (5)
from ipecacuanha, all by Pierre-Joseph Pelletier and colleagues between 1817-1821.1t
Additionally, in 1820 caffeine (6) was purified by Friedlieb Ferdinand, followed by the
purification of atropine (7) (1831) by Heinrich Friedrich Georg Mein, and cocaine (8) in 1860 by
Albert Nieman.* These alkaloids have a range of activity, including as anti-cholinergics,
analgesics, stimulants, anti-inflammatories, anti-amoebics, and toxins.

Up until 1940 plants were the primary organisms being chemically investigated, however
this all changed with the isolation of the antibiotic, penicillin (9), from a fungus by Alexander
Fleming.}* Penicillin was the first drug to effectively target infections caused by gram-positive
bacteria, such as Staphylococci and Streptococci, and its discovery revolutionized the field of
medicine, while also opening the door for investigations into numerous other micro-organisms.*
Since then, micro-organisms have been shown to produce other antibiotics, such as the
cephalosporins (10) (Acremonium), aminoglycosides (11) (Streptomyces), tetracyclines (12)
(Streptomyces), and polyketides [rifamycins (Amycolatopsis mediterranei).® Additional notable

national products includes immunosuppressive agents [e.g. rapamycins (13)], cholesterol



lowering agents [e.g. lovastatin (14)], anti-hemintic agents [e.g. ivermectin (15)], anti-diabetic

agents [e.g. acarbose (16)], and anti-cancer agents [e.g. pentostatin (17), and epirubicin (18)].26
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Figure 1.2: Terrestrial microbial metabolites

To this day, the terrestrial environment is still being investigated for bioactive
metabolites, with a renewed effort in following up on organisms used in traditional Chinese
medicine. As of 2000, this had led to at least 122 active compounds, of which 80% are being

used for the same (or related) ethnomedical purpose and are derived from only 94 plant species.*®



Some scientists believe higher order plant species (angiosperms and gymnosperms) are perfect
organisms to investigate because their uses are well documented, and thus it is unlikely to find
metabolites with acute toxicity.'®° Furthermore, with the vast diversity of plants available, their
chemical diversity should be equal or superior to that found in synthetic combinatorial chemical
libraries.’* However, other researchers estimate that the macroscopic terrestrial environment is
running out of new chemical structural diversity, and it is therefore less likely to yield new drugs,

especially from the higher plants.?%

1.1.3 Impact of Natural Products on the Pharmaceutical Industry

Natural products have had a tremendous role in the development of new drugs since the
establishment of the pharmaceutical industry, targeting a broad range of diseases. In the
beginning many of the commercialized drugs had been described as enthnomedicines for
hundreds of years, with their efficacies well documented. Many of these are hallmark drugs and
are still widely used on a regular basis, like penicillin (9) (antibiotic), morphine (1) (analgesic),
acetylsalicylic acid (19) (analgesic and anti-inflammatory), and ephedrine (20) (decongestant).
Today, natural products still have a huge impact on drug development as lead compounds
themselves, or as synthetic starting points, and this has been outlined nicely in a number of
reviews by Newman and Cragg over the past ten years,6.22-24

Before discussing the impact of natural products on drug development, one must first
define what the major categories of sources are, as there are many ways to classify the clinically
used drugs. The categories described here closely follow those previously defined by Newman
and Cragg and consist of two major sub-categories, small molecules and biologics. The small
molecule category contains drugs that are either unmodified natural products (N), derived from a
natural product (ND), completely of synthetic origin (S), or of synthetic origin but mimics the

pharmacophore of a natural product (S/NM), with natural products involved in all but those of



synthetic origin.?? The biologics contain only large peptides (>45 residues), proteins, and
vaccines, and are omitted in most of the following statistics in order to understand the impact
natural products have on small molecule drug development.

Over a thirty year period (1981-2010), 1355 new chemical entities (NCE) were approved
for use covering all diseases, countries, and sources of which 79.8% were considered small
molecules.?? Of these small molecules, only 29% were of synthetic origin, and thus natural
products had a role in producing over 70% of these NCEs.?> However, the importance of natural
products varies across diseases with natural products playing key roles treating infectious diseases
(microbial, parasitic, and viral), cancer, hypertension, and inflammation, but with no known
metabolites effective as antihistamines, diuretics, or hypnotics. During this same thirty year time
period, there were 104 small molecule NCEs developed as anti-bacterial (25% were synthetic), 28
agents as anti-fungal (90% were synthetic), 48 agents as anti-viral (43% were synthetic), 99
agents targeting cancer (20.2% were synthetic), and many more to treat a variety of other
ailments.?

Looking back even further, 206 NCEs targeting cancer have been approved since the
early 1940s, of which 175 are considered small molecules and only 25% are of synthetic
origins.? This includes seven approved anti-cancer agents in 2010, consisting of two unmodified
natural products [romidepsin (21), and polyphenon E], four derivatized natural products
[vinflunine (22), cabazitaxel (23), eribulin (24), and mifamurtide (25)], and only one truly
synthetic metabolite [miriplatin hydrate (26)]. Eribulin (Halaven), a natural product inspired
compound, is likely the most complex drug that is completely produced by total chemical
synthesis.?

Alarmingly, the number of small molecule NCEs entering the clinic have steadily
declined after averaging about 40 per year between 1981-2000, to just over 20 between 2001-

2010 (exception of 2002 and 2004). In 2010, only 20 small molecules NCEs were approved, the



second fewest in the 30 year time period; however half (10) were directly derived from a natural
product.?? This reduction in NCEs approval is thought to be a direct correlation to the shift in
focus by big pharmaceutical companies away from drug discovery programs based around natural
product leads and more in favor of combinatorial synthesis. This shift in focus occurred because
of what were believed to be insurmountable hurdles in natural product based drug discovery
research, such as the limited supply and structural complexity, as well as to the belief that because
combinatorial synthesis yielded significantly more compounds, it would yield more new drugs.?
Unfortunately this has failed miserably as almost 25 years of combinatorial synthesis has yielded
only one approved drug, sorafenib (27), which is used to treat primary kidney cancer.?? With the
failure of combinatorial synthesis and significant improvements in the technology involved in the
dereplication of natural products, there has been a significant return to natural products based
drug discovery, with specific interests in small, structurally diverse, natural product libraries for

high-throughput screening.?
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1.2 Marine Natural Products
1.2.1 Early Investigations into Marine Natural Products
The world’s oceans cover approximately 70% of Earth’s surface, and certain ecosystems
like the deep sea thermal vents and coral reef communities are estimated to have equal or higher
species diversity than exist in the tropical rain forests.?’  Furthermore, organisms living in the

marine environment have to deal with a number of unique stressors, like high salinity, low



nutrients, increased pressure, and aqueous surroundings. A large percentage of these organisms
are relatively sessile and soft-bodied, for example tunicates, sponges, cyanobacteria, and
macroalgae, thus making them extremely vulnerable to predation. However, as a result of the
intense competition and the unique stressors, many of these marine organisms have evolved the
capacity to protect themselves in the form of secondary metabolites.?®

Unlike the terrestrial environment, chemical investigation into the marine realm is still a
relatively young field. This is because of the lack of accessibility and the preconceived notion
that the oceans lacked species diversity. However, in 1942 Jacques Cousteau and Emile Gagnan
co-invented the modern self-contained underwater breathing apparatus (SCUBA), which gave
divers access to a significant portion of the marine environment that was previously
inaccessible.”® SCUBA allowed scientists to easily make collections in waters up to 120 feet
deep, which includes many interesting habitats and a large diversity of organisms.

Some of the first documented metabolites that were discovered from a marine organism
were reported in 1951 by Bergmann et al. after they discovered several unusual arabino-
nucleosides [e.g. spongouridine (28), and spongothymidine (29)] from the marine sponge
Cryptotheca crypta collected off the Florida coast.®3? Two analogs of these new metabolites,
cytarabine, and vidarabine, have been used for years to clinically treat cancer and viral infections,
respectively.®*34 This example superbly demonstrates the extraordinary potential marine
organisms possess to biosynthesize structurally intriguing and biologically active secondary
metabolites, and ignited the field of marine natural products drug discovery.

After the discovery of the arabino-nucleosides, chemical investigations into other
organisms such as tunicates, mollusks, soft coral, and macroalgae began, as these organisms grow
prolifically in shallow tropical waters and are easily collected. Over the years a multitude of
compounds have been isolated from these organisms with the identification of unique chemical

species belonging to specific families of organisms. For example, hundreds of halogenated
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terpenes and Cis-acetogenins have been characterized from red algae, in particular the genus
Laurencia.®*®  Sesquiterpenes featuring a di-aldehyde moiety [e.g. caulerpenyne®® (30) and
halimedatrial®” (31)] are hallmark metabolites from green algae,®* while biologically important
prostaglandins are found in the soft coral gorgonian Plexaura homomalla.®®

Although, investigations into sponges, tunicates, and mollusks have shown these
organisms to be extraordinarily prolific sources of secondary metabolites, there appears to be no
chemical conformity in their observed metabolome. For example, early compounds isolated from
sponges include several bromotyrosine-derived molecules [e.g. aerothionin® (32) and
homoaerothionin®® (33)], bromopyrroles [e.g. oroidin®* (34) and sceptrin* (35)], hybrid
isoprenoids [e.g. avarol*® (36) and avarone* (37)], and trichloropeptides [e.g. dysidenin®® (38)].
As for mollusks, degraded terpenoids [e.g. tavacpallescensin®® (39)], sesterterpenes [e.g.
scaladadial*’ (40)], polyketides [e.g. halichondramide*® (41)], and bromopyrroles [e.g.
tambjamine® (42)] have all been isolated. Over time it has become apparent that many, of these
compounds are likely produced by other sources such as algae, bacteria, or cyanobacteria.
Evidence of this is seen by the structural similarity of these compounds to other known
metabolites produced by these microbes. For example, the dysidinins were originally isolated
from the sponge Dysidea herbacea,*”® but subsequently a related metabolite, barbamide (43),%°
was found in a collection of the cyanobacterium Moorea producens, and the isolation of
scaladadial, a 1,4-di-aldehyde, from the nudibranch Glossodoris pallida,*” is structurally
reminiscent of numerous green algal metabolites.®® Conceptually, this overlap in secondary
metabolites is reasonable, as both tunicates and sponges acquire their food by filtering seawater;
thus, they come into contact with a multitude of different microorganisms and are also known to
live symbiotically with cyanobacteria and bacteria. Similarly, mollusks graze on a variety of
algae and other organisms, and seem to have the ability to sequester secondary metabolites from

their diet.5'%? This key observation initiated a change in the way marine natural product
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researchers selected organisms to investigate, as it is always the goal to focus attention on
organisms that are prolific producers of secondary metabolites, in order to continue to isolate new

and interesting compounds, as well as facilitate ensuing studies on biosynthesis.
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1.2.2 Modern Day Investigations into Marine Natural Products

From around the early 1980’s, investigators have commented on the structural similarities
of metabolites isolated from both invertebrates and microbes, and in some cases between
organisms that inhabit very different ecosystems such as a marine sponge and a terrestrial
beetle.>® These observations led to the hypothesis that many of the true producers of secondary
metabolites in the marine environment were microbes (bacteria, cyanobacteria, and fungi), that
either lived symbiotically or were grazed upon by invertebrates. Recognition that microbes were
responsible for producing thousands of structurally distinct metabolites, many with potent
biological properties, shifted the focus of marine natural product chemists away from large
invertebrates to study instead their microbial associants.

This ideological shift was made possible in part because of improvements in technologies
that have significantly improved the isolation and characterization of novel metabolites, some of
which are present in very small quantities. Although, some of these microbes, such as
filamentous marine cyanobacteria, are able to be collected in the field, only relatively small
guantities are generally found in any given location. Even worse, studying either symbiotic or
free-living unicellular bacteria requires laboratory cultivation, which has only been successful for
a small percentage of isolates. Thus, researchers have found it necessary to learn how to work
with significantly smaller quantities of the natural products.

Some of the critical technological advancements that have been important to this
development in natural products were actually improvements to existing instrumentation.
Examples include improving the sensitivity of mass spectrometers (MS) and nuclear magnetic
resonance (NMR) spectrometers. Today, the magnets in the NMRs have become so powerful that
in 2009, Dalisay and Molinski reported the complete structure elucidation of hemi-phorboxazole

A (44), a large cyclic macrolide, with only 16.5 ug of the natural product.>* Along with the

increase in magnet strengths, probes have been designed to both reduce the amount of solvent
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from approximately 500 pL (5 mL NMR tube) to less than 40 uL (1.7 mm NMR tube) and cooled
with liguid nitrogen to reduce electronic noise (CryoProbe and Cold Probe), which greatly
reduces the amount of sample needed.>>>" Additionally, numerous experiments have been
developed to aid in the structure elucidation process, such as heteronuclear 2 bond correlation
(H2BC)*® and HETLOC.>®

As for MS systems, they too have become more sensitive, but more important has been
the development of algorithms to analyze large datasets acquired over either single or multiple
runs. An example is the nonribosomal peptide dereplication and sequencing algorithm, which
uses both MS? and MS® fragmentation of a target peptide to compare with compounds in a
fragment library. The algorithm then identifies the location and molecular weight of the
modification using the top-scoring peptide in the Norine database.®® This works very well for
new metabolites that possess only minor structural differences from a known family of
compounds; in addition, because it is MS-based, it only requires nanogram quantities of an
impure mixture. Another useful MS program is called ‘molecular networking’, as it uses MS*
and MS? data to compare all metabolites in a sample or several samples and clusters them based
on relatedness in their fragmentation patterns.®® This allows visualization of metabolites in
extracts and quickly identifies analogs or biosynthetic precursors of a known metabolite. These
improvements in technology have allowed for quick dereplication of fractions and simplified the
task of deducing planar structures of new metabolites.

In the last 10 years, the emergence of faster and cheaper DNA sequencing protocols has
enabled the sequencing of both individual genomes and meta-genomes, thus yielding a better
overview of the biosynthetic capacity a particular microbe has to produce secondary metabolites.
In 2007, the first genome of a marine actinomycete, Salinospora tropica, was completed and
subsequently confirmed S. tropica’s exceptional biosynthetic ability. Approximately 10% of its

genome encodes for the production of secondary metabolites, with at least 17 distinct pathways.®?
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Knowledge gained from the genome has facilitated molecular cloning of salinosporamide A
(45),%% sporolide (46),* and lymphostin (47).%° Furthermore, genomic information on organisms
with compounds yet to be discovered has created a new protocol called ‘genome mining’, which
is the targeted isolation of predicted metabolites from the genome.®® Good examples are the
prochlorosins from Prochlorococcus MIT9313% and the ribosomal peptides trichamide (48) from
Trichodesmium erythraeum ISM101.8 Still, a significant portion of all bacteria have not been
cultured and many live symbiotically with invertebrates or other macroorganims, thus
complicating the process to obtain their genomic material. However, this obstacle can be
overcome by metagenomics, which is based on the relatively unbiased sequencing of the total
environmental DNA, which in this case may involve a marine organism and its associated
microflora.%® This method can also unequivocally prove the identity of the true producing
organism of a secondary metabolite that was isolated from an assortment of organisms. Good
examples of this are Jorn Piel’s work on onnamide (49) from a sponge” and Eric Schmidt’s work
on the cyanobactin (50) family of metabolites from ascidians.”

The development and improvement of chemical synthesis has also had an important role
in natural products chemistry as it aids in stereochemical analysis, provides a reliable supply of
material for biological assays, and it opens an avenue to improve the druggability of a new
metabolite.”> Commonly, fragments of natural products are synthesized in order to use as
authentic standards for LCMS or GCMS analysis to assist in determining absolute
stereochemistry of portions of a new metabolite. These fragments generally involve only a
couple of linear synthetic steps, such as making unusual hydroxy acids or short polyketide
fragments. Much more important to the pharmaceutical industry is the total synthesis of bioactive
metabolites. In this case, it is critically important that the number of linear steps is minimized,
and the overall yield is maximized, in order to provide an economical and reliable supply of the

drug for clinical evaluation.” Some of the early total synthesis involved extraordinarily complex
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natural products, and although their syntheses were often quite elegant in design, they tended to
involve a significant number of steps with extremely low overall yields.™

More recently though, there seems to be an understanding of the importance of an
intelligently designed synthesis of a bioactive metabolite has on it reaching clinical trials.”® An
example involves hemiasterlin (51), a tri-peptide that was isolated by the Andersen lab back in
1994 from the sponge Hemiasterella minor. Hemiasterlin was exquisitely potent against murine
leukemia P388 cells with an ICso of just 87 pM; however, it was only isolated in very small
quantities, and thus a total synthesis was needed to further evaluate its cytotoxic activity.”™ The
Andersen group designed a relatively short convergent synthesis that yielded hemiasterlin as well
as numerous other analogs for developing an understanding of structure activity relationships.
From the material obtained via total synthesis, further biological evaluations were conducted, and
revealed that hemiasterlin inhibits the spindle microtubule dynamics at mitosis.”® Also, the SAR
study identified key structural elements that are critical for the potent activity and yielded one
analog [HTI-286 (51)] which had increased potency along with a slightly easier synthetic
protocol.””  With a reliable source of HTI-286 from total synthesis, it progressed into clinical

development with Wyeth and eventually made it to Phase 1 clinical trials.”
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Figure 1.5: Modern marine secondary metabolites

1.2.3 Marine Derived Drugs
Although the study of marine natural products is a relatively young field, it has already
yielded eleven FDA approved drugs. These drugs treat a host of diseases such as pain [ziconotide
(53)], cancer [cytarabine (54), fludarabine phosphate (55), nelarabine (5), eribulim (24),
trabectedin (57), brentuximab vedotin (58), and hemocyanin (KLH)], viral infections [vidarabine

(59)], hypertriglyceridemia [omega-3-acid ethyl esters (60,61)], and coagulants (protamine
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sulfate) and were isolated from a diverse group of organisms including sponges, a cone snail, fish,
tunicates, and a mollusk, although many are predicted to be of microbial biosynthetic origin.”® As
of early 2012, there was one marine-derived drug in phase Ill, six in phase Il, and seven in phase
I clinical trials.”® The vast majority of these drugs are being evaluated for the treatment of cancer;
however two drugs are being evaluated against schizophrenia and for wound healing.”® Of the
fifteen drugs that are either approved or in clinical trials targeting cancer, they have eight
different molecular targets, including microtubules, 20S proteasome, protein kinase C, and DNA
binding.” The pharmaceutical success that marine natural products have obtained in such a short
period is approximately 1.7- to 3.3-fold better than the industry average, with approximately one
drug per 3,140 described marine natural products versus one drug to every 5,000-10,000

compounds screened, respectively.’®™



18

| |
Cys-Lys-Gly-Lys-Gly-Ala-Lys-Cys-Ser-Arg-Leu-Met-Tyr-Asp-C s-Cys-Thr-GIy-Ser-Cys-Arg-Ser-GIy-Lys-CTs-amide

Ziconotide (53)

H,N

@% fx SN f)
N e U Tyl

Cytarablne (54) Fludarabine phosphate (55) Nelarabine (56) Vidarabine (59)

O
A A o
= = =

Eicosapentaenoic acid (60)

A A A 0

= = = o/\
Docosahexaenoic acid (61
o_0 (61)

Trabectedin (57)

Zhow
10Ace, qwji(%@ﬁk\g( 1 d o%
) N o

Brentuximab vedotin (58
NH

07 "NH,
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1.2.4 Investigations into Marine Cyanobacteria
Cyanobacteria are amongst the oldest life forms on earth and are ubiquitously distributed
among all ecosystems. In the marine environment, cyanobacteria are known to play an important
ecological role as both a carbon source via photosynthesis and as nitrogen fixers.2’ A particular
subset, the marine filamentous cyanobacteria, have been shown to be prolific producers of natural

products, especially those containing nitrogen atoms.®* Filamentous marine cyanobacteria grow
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abundantly in shallow tropical waters around the world, and can grow attached to nearly any
surface including, algae, rocks, sand, reefs, and mangrove roots.

Over 800 compounds have been isolated from filamentous marine cyanobacteria, with the
majority coming from the genera Moorea (formerly Lyngbya),®? Oscillatoria, and Symploca.®
The predominant theme in these metabolites is the incorporation of nitrogen and that they are
produced by either the polyketide synthase (PKS), the nonribosomal peptide synthetase (NRPS),
or a mixture of the two, PKS/NRPS, biosynthetic pathways.®* The metabolites of mixed
biosynthesis belong to two different subfamilies of lipopeptides, the alkyl amides and the
modified peptides. Alkyl amides generally consist of an acetate-derived fatty acid portion that is
coupled through an amide bond to a variety of amines in linear fashion, as seen in the
malyngamides (62),%° semiplenamides (63),% curacin A (64),%” jamaicamides (65),%¢ and
kimbeamides (66).%% Common post-translational modifications observed in this class of
metabolites are C- and N- methylation, halogenation, and cyclization. 88

The NRPS/PKS derived peptides consist primarily of amino acids, however they also
incorporate at least one acetate containing residue. Neutral t-amino acids (Val, Ala, Phe, lle, Tyr,
Pro, Cys, Ser, Leu, and Gly) are predominantly incorporated; however, it is not uncommon to
find a p-form amino acid as well, which indicates that an epimerization has occured during
biosynthesis.®? Other common modifications to the peptide portion of these molecules are the
incorporation of hydroxy acids, N- and S- methylation, hydroxylation, cyclization, and
oxidation.8* As for the acetate-derived portion, one of the more common residues consist of a B-
hydroxy/amino unit ranging in carbon chain length from 4-carbons (3-amino-2-methyl-butanoic
acid moiety) to 12-carbons (3-amino-2,5-dihydroxy-dodecanoic acid moiety).*%* A unique
feature of this moiety in cyanobacteria is the oxidation of the tail to either an alkene or alkyne,
with the latter being subsequently brominated in some cases. Furthermore, this moiety is

commonly methylated, with either mono- or di-methylated at the a-position [lyngbyabellin (67),%
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and viegeuamide® (68)] and halogenated [lyngbyabellin,®? and veraguamides®*®* (69)]. The
incorporation of a number of modified amino acids and various forms of the polyketide portion
yields the large structural diversity observed within this class of metabolites.

Most of the efforts to discover new metabolites from cyanobacteria have had a primary
focus to identify metabolites with interesting biological activity. This has largely been
accomplished by the early incorporation of biological screening of semi-crude fractions in a
variety of assays, including cancer cell toxicity, anti-inflammatory, and molluscicidal. Once a
fraction exhibits some type of activity, then that sample is further fractionated following a
bioassay-guided fractionation scheme, until the pure active component has been identified. In
this regard, numerous compounds have been discovered that have potentially useful activities,
such as anti-cancer, anti-inflammation, parasitic, modulation of ion channels, receptor binding

capabilities, and many more. 8%
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Figure 1.7: Cyanobacteria natural products

1.2.5 Therapeutic Potential of Secondary Metabolites from Marine Cyanobacteria

1.2.5.1 Cancer Cell Cytotoxicity

In the U.S., cancer is the second leading cause of death behind only heart disease, and
affects over thirteen million people, with prostate and breast cancer as the two most prevalent
cancers afflicting men and women, respectively.® Between 1981 and 2010, 128 new anti-cancer
agents were approved for use worldwide, and greater than 84% of these drugs were either natural
products, natural product botanicals, natural product-derived compounds, vaccines, botanicals, or
synthetics but mimicking of a natural product.’” These drugs have only a handful of mechanism
of actions, including, as alkylating agents {attach an alkyl group to N-7 of guanine [e.g.

streptozocin® (70)]}, anti-metabolites {mimic natural building blocks of DNA [e.g. cytarabine®
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(54)]}, DNA intercalaters {reversible inclusion between DNA base pairs [e.g. doxorubicin®
(71)]}, and as anti-mitotics {disrupt normal microtubules formation [e.g. taxol*®* (72)]}.1%

Bretuximab vedotin (56) is the only cyanobacterial-derived drug with current FDA
approval, and it is used to treat both Hodgkin’s lymphoma and systemic anaplastic large cell
lymphoma.l®®  The natural product portion is derived from dolastatin 10 (73),}* a linear
lipopeptide of mixed biosynthetic origin, which has been linked to an antibody forming an
antibody drug conjugate (ADC). There are other cyanobacterial-derived drugs in the clinical
pipeline, with one in phase Il (glembatumumab vedotin), two in phase | (SGN-75 and ASG-
5ME)), and several in preclinical trials, most of which are of mixed NRPS/PKS biosynthetic
origin.™

Two common mechanisms of action (MOA) of cyanobacterial natural products are the
disruption of microtubules and actin filaments, both of which are involved in mitosis and thus
blocking cell division.®® There are several well-known microtubule inhibiting cyanobacterial
metabolites that exhibit potent cytotoxicity including curacin A (64) [ICso = 9 nM (L1210)],%
symplostatin 3 (74) [ICso = 3.9 nM (KB)],}® dolastatin 10 (73) [ICso = 0.059 nM (P388)],'*
dolastatin 15 (75) [ICso = 0.13 nM (HT)],® and largazole (76) [ICso = 7.7 nM (MDA-MB-
231)]*7. Similarly, there are numerous compounds that exhibit potent cytotoxicity by inhibiting
the formation of actin filaments, such as dolastatin 11 (77) [ICso = 47 nM (PtK1)],1%
lyngbyabellin E (78) [ICso = 400 nM (H460)],1* and hectochlorin (79) [ICso = 20 nM (CA46)]*°.
Interestingly, most of these metabolites that target microtubules and actin are of mixed
NRPS/PKS biosynthetic origin; however, there is a key structural distinction between these two
groups of compounds, as metabolites that inhibit microtubules are primarily linear lipopeptides
and those targeting actin are cyclic depsipeptides.

There are other cyanobacterial metabolites that also exhibit potent activity against a range

of cancer cell lines and have a variety of mechanisms of action, including the apratoxins
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[apratoxin A (80): ICsp = 0.52 nM (KB)], which are highly cytotoxic, modified cyclic
depsipeptides, with two polyketide sections among several amino acids.!!* They appear to
potentially have a multitude of targets including the Heat Shock Protein (HSP),!2 as well as a
secretory pathway.!** Somocystinamide A (81), a disulfide dimer of an alkyl amide, selectively
induces apoptosis in cancer cell lines that express caspase 8 [ICsp = 14 nM (CEM)].1*
Coibamide A (82), a large cyclic depsipeptide containing eleven residues with significant O- and
N- methylation, exhibits exceptional anti-proliferative activity against several cancer cell lines

[1Cs0 = 2.8 nM (MDA-MB-231)], but with an unknown biochemical target.!'®
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1.2.5.2 Other Biologically Important Activity Observed from Cyanobacterial Metabolites

Cyanobacteria secondary metabolites have also been shown to exhibit a broad range of
pharmaceutically pertinent activities, including as anti-inflammatory, anti-infective, neurotoxic,
or neuro-receptor binding agents.® Discovery of these different types of activities came about by
primarily two different isolation protocols, one of which involves thoroughly screening
cyanobacterial crude extracts in as many assays as possible to obtain a ‘hit” and then following up
on that ‘hit’ with bioassay guided fractionation to yield a pure active metabolite. The other
involves testing a pure compound in an assay based on structural similarities between the new
metabolite and that of a known drug or endogenous ligand.

In recent years, there have been a number of metabolites that have shown potent and
mechanistically intriguing anti-inflammatory activities, such as several of the malyngamides,
particularly ones in the F series. In a nitric oxide (NO) inhibition assay using a mouse RAW
macrophage cell line, malyngamides F (83) depressed Interleukin 1 and 6 (IL 1 and 6) and
enhanced Tumor Necrosis Factor o (TNFa), thus working through a MyD88-independent
pathway.*® Another family of anti-inflammatory metabolites are the honaucins, which were
isolated from a bloom-forming Leptolyngbya crossbyana off the coast of Hawaii (the big
island).!!” These metabolites are uncharacteristically low in molecular weight and are entirely of
PKS origin with the major metabolite, honaucin A (84), consisting of two fragments, (S)-3-
hydroxy-y-butyrolactone and a 4-chlorocrotenic acid. From a rather thorough structure activity
relationship (SAR) study on the honaucins, it appears that most modifications diminish the anti-
inflammatory activity except for the replacement of the allylic chlorine with more electron rich
bromine or iodine atoms, these substitutions increased the activity [iodo-honaucin A: ICso = 0.9
uM; bromo-honaucin A: ICs = 1.5 uM; honaucin A: ICso = 4.0 uM].1Y

Another emerging theme among cyanobacterial secondary metabolites is the production

of neurotoxic substances, with many appearing to target the Voltage Gated Sodium Channel
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(VGSC). Metabolites that target the VGSC are thought to have a number of potential therapeutic
effects, such as antiarrhythmic, enhancement of neurite outgrowth, treatment of cystic fibrosis,
and as epilepsy treatments.®® One such family of metabolites is the hoiamides, which are large
NRPS/PKS hybrid peptides consisting of eight residues, including a 15-carbon-long linear
polyketide and a tri-hetercyclic ring system.!® Hoiamide A (85) and B both stimulate sodium
flux (ICso = 1.7 uM and 3.9 pM, respectively) and potently suppress spontaneous calcium
oscillations (ECso = 45.6 nM and 79.8 nM, respectively) in mouse neocortical neurons.'®
Antillatoxin (86), another hybrid peptide containing four amino acid residues, including a PKS
residue that has seven methyl groups, is one of the more potent activators of the VGSC (ECso =
20.1 nM).’2°  Furthermore, it appears to interact at a distinctly different site than that of the
marine dinoflagellate toxin, brevetoxin B (87).2* On the other hand, the cyanobacterial
metabolite kalkitoxin (88), which is a linear lipopeptide featuring four secondary methyl groups
and a thazoline ring, exhibits extraordinarily low VGSC blocking activity (ECso = 1 nM).!?
Other neurotoxic metabolites include palmyrolide A (89),'2 janthielamide (90), and kimbeamides
A-C (66).8°

Another interesting pharmaceutical potential for these metabolites is as anti-infectives,
particularly against several neglected diseases such as malaria, leishmania, and Chagas disease.
These diseases are caused by the parasites Plasmodium falciparum (malaria), Leishmania donvani
(leishmania), and Trypanosma cruzi (Chagas) and infect more than 2 million people worldwide
each year.'* Through efforts of the International Cooperative Biodiversity Group (ICBG) in
Panama,'?® a handful of potential lead compounds have been identified for the treatment of these
neglected diseases. Each of these metabolites are NRPS/PKS hybrid linear lipopeptides, ranging
in size from five to seven residues and containing a high degree of post-assembly modifications.
For example, viridamide A (91) has three N- and two O- methyl groups, along with a ten carbon

PKS chain that has a terminal alkyne.!® Similarly, dragonamide E (92) is highly methylated
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(four N-methyls) but also has a C-terminal amide.'?” While viridamide A exhibits activity against
P. falciparum (ICsp = 5.8 uM), L. donvani (ICso = 1.37 uM), and T. cruzi (ICs = 1.0 uM),
dragonamide E only exhibited activity against L. donvani (ICso = 5.1 uM).12%1%" The smallest of
these anti-infective agents is gallinamide A (93), which was isolated from a collection of
Schizothrix sp. in the Portobelo Marine Park on Panama’s Caribbean coast.!?® Gallinamide A
also exhibits activity against P. falciparum (ICso =8.4 uM), however more recently it was shown
to be a potent inhibitor of the human cysteine cathepsin L protease (ICso = 5.0 nM).}?® The latter
activity gives insights into what the potential MOA for the observed toxicity toward P.
falciparum could be, as cysteine proteases are responsible for converting pro-neuropeptides to
active neuropeptides through nucleophilic attack by the cysteine thiol on the carbonyl groups in
proteins, thus catalyzing the hydrolysis of amide bonds. A functionality that is structurally
significant to gallinamide A is the a,B-unsaturated ketone, which is derived from an acetate
extended alanine residue. This functionality is prone to nucleophilic addition via a Michael’s
reaction, and thus it is possible that a similar reaction is occurring in P. falciparum, as proteases
are ubiquitously found in all life forms.!3

Finally, a class of cyanobacterial natural products that has been increasingly reported and
of growing physiological and pharmacological importance, is the alkyl amides. One rather
intriguing biological target that these alkyl amides seem to target are neuro-receptors, more
specifically, the cannabinoid receptors. There are two known subtypes of this G protein-coupled
receptor (GPCR), CB, and CB,, which are primarily localized in the central nervous (CNS) and
immune systems, respectively.’® The endocannabinoid system (ECS) is known to have a host of
important biological functions including appetite regulation,**? development,*** learning and
memory,'** pain management,**® cancer,**® and diabetes.’*” Two endogenous ligands for CB; are
anandamide [AEA (94)] and 2-arachidonoyl glycerol [2-AG (95)]; these consist of arachidonic

acid with either an ethanolamine (AEA) or glycerol (2-AG) amide linkage, respectively.®
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Structural resemblance of a number of cyanobacterial metabolites to known endocannabinoids
has revealed these prokaryotes to be a rich source of these bioactive lipids, such as serinolamide
A (96) (CB:: Ki = 16.4 uM; CB2: Ki = 5.2 uM),**® malyngamide B (97) (CB:: Ki = 3.6 uM; CBy:
Ki = 2.6 uM),**® semiplenamide A (98) (CB1: Ki = 19.5 uM),® and lyngbyamide A (99) (CB:i: Ki

= 4.7 pM). 140
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1.3 Dissertation Contents

The primary focus of the research described in following chapters is the isolation and
structure elucidation of secondary metabolites from marine cyanobacteria, with a secondary focus
on a structure activity relationship study into the alkyl amide lyngbyamide A (97). Chapter 2
describes the isolation and characterization of eight new metabolites, veraguamides A-C and H-L,
which were isolated from a collection of Oscillatoria margaritifera from Coiba National Park
(CNP) off of Panama’s west coast, as part of the Panama International Cooperative Biodiversity
Group program. The planar structure of veraguamides A and L were fully deduced by 2D NMR
spectroscopy and mass spectrometry, whereas the structures of veraguamides B, C, and H-K were
mainly determined by a combination of *H NMR and MS?MS? techniques.®® These new
compounds are analogous to the mollusk-derived kulomo’opunalide natural products, with two of
the veraguamides (C and H) containing the same terminal alkyne moiety.*** However, four
veraguamides, A (69), B, K, and L, also feature an alkynyl bromide, a functionality that has been
previously observed in only one other marine natural product, jamaicamide A (65).%
Veraguamide A showed potent cytotoxicity to the H-460 human lung cancer cell line (LDso = 141
nM).%

Chapter 3 discusses the isolation and structure elucidation of a new lipopeptide,
lyngbyabellin N, from an extract of the marine cyanobacterium, Moorea bouillonii, collected
from Palmyra Atoll in the Central Pacific Ocean. Its planar structure and absolute configuration
were elucidated by the combination of spectroscopic and chromatographic analyses as well as
chemical synthesis of fragments. In addition to structural features typical of the lyngbyabellins,
such as two thiazole rings and a chlorinated 2-methyloctanoate residue, this new compound
possesses several interesting aspects, including an unusual N,N-dimethylvaline terminus and a
leucine statine.®® Lyngbyabellin N exhibits strong cytotoxic activity against the HCT-116 colon

cancer cell line (ICs = 40. 9 + 3.3 nM).1#
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Chapter 4 describes the isolation and characterization of three new lipopeptides,
tasiamides C-E, from a collection of the tropical marine cyanobacterium Symploca sp., collected
near Kimbe Bay, Papua New Guinea. This collection has been particularly rich in secondary
metabolites, such as kimbeamides A-C (66), kimbelactone A, and tasihalide C, which were
previously characterized.® However, a renewed investigation into a relatively more polar
cytotoxic fraction yielded three new lipopeptides.®® Their planar structures were deduced by
traditional 2D NMR spectroscopy and tandem mass spectrometry, and their absolute
configurations were determined by a combination of Marfey’s and chiral GC-MS analysis. These
new metabolites are similar to several previously isolated families of metabolites, including
tasiamide, the grassystatins, and symplocin A, all of which were isolated from similar marine
filamentous cyanobacteria, 4314

Chapter 5 consists of the isolation and structure elucidation of three new marine
cyanobacterial natural products, parguerene, precarriecbowmide, and mooreamide, from two
separate collections of Moorea sp., one obtained from Puerto Rico and the other from Papua New
Guinea. The planar structures of each were deduced by 2D NMR spectroscopy and mass
spectrometry. Parguerene and mooreamide are modified alkyl amides, whereas
precarriecbowmide is a lipopeptide and represents only a minor modification compared to two
other known metabolites, carriebowmide and carriebowmide sulfone. The identification of
precarriebowmide led to an investigation into whether carriebowmide and carriebowmide sulfone
were true secondary metabolites or isolation artifacts.!*® Both parguerene and mooreamide are
structurally reminiscent of the endocannabinoids anadamide (94) and 2-arachidonoyglycerol (95),
and thus it was hypothesized that each would exhibit some cannabinoid receptor binding activity.
Unfortunately, parguerene decomposed prior to being evaluated, but mooreamide exhibited

moderate selective binding affinity towards CB; over CB; (Ki = 0.47 uM and K; > 25 uM,

respectively).
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Chapter 6 examines the structure-activity relationship (SAR) of lyngbyabmide A in a
broad range of bioassays. The lyngbyamide family of metabolites were isolated from a collection
of M. bouillonii obtained from Grenada in 1995, and were shown to exhibit both brine shrimp
toxicity and cannabinoid receptor binding activity.®® They are rather small alkyl amides
consisting of a twelve carbon fatty acid tail group which is functionalized with a trans-
cyclopropyl ring at the C4 position, and a head group portion which typically consists of a
biogenic amine deriving from isoleucine, tyrosine, or phenylalanine. In total, 49 analogs were
designed and synthesized to probe the importance of key functional groups, such as the
cyclopropyl ring, the chain length (both shorter and longer), head group polarity, and number of
amine substituents. These analogs were constructed in three different rounds of synthesis and
were evaluated for cathepsin L activation/inhibition, brine shrimp toxicity, cannabinoid receptor
binding, cancer cell cytotoxicity, nitric oxide production in RAW cells, and ion channel
modulation. Interestingly, a subset of these analogs showed strong activity toward stabilization
of cathepsin L and brine shrimp toxicity. It is well known that several commercially available
surfactants also have the potential to stabilize cathepsin L, and by analysis with a tensiometer, it
was determined that this subset of analogs were indeed surfactants.

The dissertation finishes with a conclusion and future work chapter in which | give a
brief summary about each of the research chapters herein and elaborate on some interesting
potential future directions for each project. Additionally, | discuss the key role natural products
should have on drug development in the future, with an emphasis on those deriving from a marine

source.
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Chapter 2:
Cytotoxic Veraguamides, Alkynyl Bromide-Containing Cyclic Depsipeptides from the Marine

Cyanobacterium cf Oscillatoria margaritifera

2.0.1 Abstract

A family of cancer cell cytotoxic cyclodepsipeptides, veraguamides A-C (1-3) and H-L
(4-8), were isolated from a collection of cf. Oscillatoria margaritifera obtained from the Coiba
National Park, Panama as part of the Panama International Cooperation Biodiversity Group
(ICBG) program. The planar structure of veraguamide A (1) was deduced by 2D NMR
spectroscopy and mass spectrometry whereas the structures of 2-8 were mainly determined by a
combination of *H NMR and MS?/MS? techniques. These new compounds are analogous to the
mollusk-derived kulomo’opunalide natural products, with two of the veraguamides (C and H)
containing the same terminal alkyne moiety. However, four veraguamides, A, B, K and L, also
feature an alkynyl bromide, a functionality that has only been previously observed in one other
marine natural product, jamaicamide A. Veraguamide A showed potent cytotoxicity to the H-460

human lung cancer cell line (LDso = 141 nM).

2.1 Introduction

Marine cyanobacteria are exceptionally prolific producers of structurally diverse
secondary metabolites, of which many have intriguing biological properties.!* An emerging
biosynthetic theme in cyanobacterial natural products is the frequent combination of polyketide
synthase (PKS) and non-ribosomal peptide synthetase (NRPS) derived portions, and this results
in a highly diverse suite of nitrogen-rich structural frameworks, most of which are lipid soluble.>®
A number of these cyanobacterial metabolites possess terminal alkyne functionalites in the PKS-

derived sections, including carmabin A,” georgamide,® pitipeptolide A,° yanucamides,®
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antanapeptin,!! trungapeptin A,*? hantupeptin,®* wewakpeptins,'* dragonamide,® and viridamide
A% Similar metabolites have also been obtained from several species of mollusks, namely,
Onchidium sp. and Dolabella auricularia, yielding onchidins A" and B® and a family of
kulolides,'® respectively. Due to the strong and distinctive similarity between these secondary
metabolites isolated from mollusks and those of cyanobacterial origin, it is highly likely that the
mollusks obtain these compounds from their diet of cyanobacteria.

Since 1998, the International Cooperative Biodiversity Group (ICBG) in Panama, a
program of the Fogarty International Center of the National Institutes of Health, has enabled
unique opportunities to conduct integrated natural products investigations, biodiversity
inventories and conservation, infrastructure development, and educational training.?® Moreover,
the country of Panama permits the study of marine cyanobacteria from two very different tropical
environments, the Caribbean Sea in the Western Atlantic, and the Eastern Pacific. Some of these
sites are quite pristine and of exceptional biodiversity, such as the Coiba National Park (CNP),
some 15 kilometers off the Pacific coast of Panama. The CNP was formed in 2003 as a result of
a developing recognition of its high number of indigenous and endemic plant, animal and
microbial species, and in 2005 it was named a World Heritage Site by UNESCO.%

Several filamentous tuft-forming species of marine cyanobacteria were collected from the
CNP in 2010, and their extracts evaluated in a number of biological assays. Two reduced
complexity fractions from one extract, subsequently tentatively identified as Oscillatoria
margaritifera, were found to be highly cytotoxic to H-460 human lung cancer cells in vitro (2%
survival at 3 pg/mL), and these were chosen for further investigation. As a result of a bioassay-
guided fractionation process, one major and several minor new cytotoxic lipopeptides were
isolated and structurally defined. The major compound, named veraguamide A (1) (the CNP lies
within the Panamanian state of Veraguas),?> was highly cytotoxic to H-460 cells (LDso = 141

nM); the minor compounds were all of lesser potency to this cancer cell line. As described



43

below, the structure of 1 was fully characterized, including the absolute configuration at all chiral
centers, whereas the planar structures of the minor compounds were largely determined by
integrated 'H NMR and MS?/MS? analysis. Additionally, a new iteration of a recently developed
computer algorithm was applied to the MS?/MS? data and allowed deduction of the structures of
the minor metabolites.?%%

During the final stages of this project, a parallel effort in the Luesch and Paul laboratories
in Florida found several of the same compounds (veraguamides A, B, and C) (1-3) as well as
several new derivatives from an Atlantic collection, and these form the substance of a parallel
report.? It is interesting and potentially insightful to the origin and evolution of the genetic
pathways responsible for veraguamide biosynthesis that these same distinctive metabolites have

been isolated from cyanobacteria collected from these two well-separated oceans.
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Figure 2.1: Veraguamides A-C, and K-L



44

2.2 Results and Discussion
2.2.1 Veraguamide A

The tentatively identified cyanobacterium O. margaritifera was collected by hand from
shallow waters (1-5 m deep) in the CNP, Panama, in February 2010. The ethanol-preserved
collection was repetitively extracted (CH2Cl,-MeOH, 2:1) and fractionated using normal-phase
vacuum liquid chromatography (VLC). Two fractions that eluted with 100% EtOAc and 75%
EtOAc/MeOH were cytotoxic to H-460 human lung cancer cells (both exhibiting 2% survival at 3
pg/mL). Further fractionation with reversed-phase solid-phase extraction (SPE) yielded 2.3 mg
of veraguamide A (1), a pure amorphous solid, and between 0.1 to 0.5 mg of several analogues,
veraguamides B, C, and H-L (2-8).

HRESIMS of 1 gave a [M+H]" at m/z 767.3594 as well as peaks for the [M+Na]* and
[M+K]" adducts at m/z 789.3405 and 805.3148, respectively, indicating a molecular formula of
Cs7Hs9N4OsBr and requiring 10 degrees of unsaturation. IR spectroscopy suggested a peptide with
a strong absorption band at 1763 cm?, and this was supported by observation of six ester or
amide type carbonyls by *C NMR analysis (5¢c 173.5, 172.2, 170.9, 170.7, 169.7, and 166.0).
The *H NMR spectrum also suggested a peptide with one amide (NH) proton resonating at 3y
6.28 and two N-methyl groups at 8y 3.01 and 2.95. The *C NMR spectrum also revealed the
presence of an unusually polarized alkyne functionality (3¢ 79.4 and 38.4), accounting for a
further 2 degrees of unsaturation. Thus, 8 of the 10 degrees of unsaturation were explained, and
indicated that veraguamide A must possess two rings.

Analysis of 1D and 2D NMR spectra (COSY, TOCSY, ROESY, HSQC and HMBC) led
to the identifications of four amino acids [one valine (Val), two N-methyl-valines (N-MeVal) and
one proline (Pro)], one hydroxy acid [2-hydroxy-3-methylpentanoic acid (H3mpa)] and one
extended chain polyketide. The proton chemical shifts of the H3mpa residue were very similar to

those reported for isoleucine, however, the carbon chemical shift for the a-carbon was
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significantly downfield (8¢ 76.1), consistent with a hydroxy acid. The identity of the extended
polyketide residue was deduced from a combination of COSY and HMBC correlations. A CH-
CHs constellation formed one spin system, and a deshielded methine adjacent to three sequential
methylene residues formed a second spin system. By HMBC, the two methine centers were
found to be adjacent, and thus a nearly 90° angle must exist between their proton substituents.
HMBC between the H-30 methine, as well as its attached secondary methyl group (Hs-37), and
an amide-type carbonyl at 6 170.9 completed one terminus of this residue. At the other end,
HMBC cross peaks were observed between the methylene protons H-34a/H-34b and both carbons
C-35 and C-36, whereas methylene protons H-33a and H-33b showed only correlations with C-
36. The chemical shift of the distal carbon of the alkyne was quite unusual (6¢c 38.4), but
matched quite well with that reported for the alkynyl bromide present in jamaicamide A, the only
other marine natural product reported with the this functionality.?” Thus, this last residue in
veraguamide A (1) was identified as a derivative of 8-bromo-3-hydroxy-2-methyloct-7-ynoic acid
(Br-Hmoya).

As the proline residue accounted for one additional degree of unsaturation, the tenth and
final degree of unsaturation must arise from veraguamide A (1) having an overall cyclic
constitution; this was apparent from the residue connectivities observed by HMBC and ROESY
(Table 2.1). HMBC correlations from the two N-Me groups and the NH to their respective
adjacent carbonyls and a-carbons were used to connect three of the residues in veraguamide A. A
correlation from the a-hydroxy proton of the Br-Hmoya residue (H-31) to the carbonyl of N-
MeVal-1 (C-1) served to connect these two residues. Similarly, the H3mpa and N-MeVal-2
residues were connected by a HMBC cross peak from the a-hydroxy proton of the H3mpa residue
(H-13) to the C-18 carbonyl of the N-MeVal-2 residue. Finally, a ROESY correlation was used
to make the concluding connection between the Pro and H3mpa residues. Thus, veraguamide A

was deduced to have a cyclo-[N-MeVal — Pro — H3mpa - N-MeVal — Val — Br-Hmoya] structure.
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Figure 2.2: Select 2D NMR data for veraguamide A

The absolute configuration of the four a-amino acids in veraguamide A (1) were
determined by LC-MS analysis of the acid hydrolysate appropriately derivatized with Marfey’s
reagent (D-FDAA). The six standards, L-Pro, D-Pro, L-Val, D-Val, L-N-MeVal, and D,L-N-MeVal
were also reacted with D-FDAA and compared to the derivatized hydrolysate by LC-MS. From
the retention times and co-injections it was clear that all four of the amino acids, Pro, Val and two
N-MeVal residues, were of the L configuration.

The absolute configuration of the H3mpa residue was determined by comparing the GC-
MS retention time of the methylated residue liberated by acid hydrolysis with authentic standards.
The four standards, L-allo-H3mpa, L-H3mpa, D-allo-H3mpa, and D-H3mpa, were synthesized
from L-allo-lle, L-lle, D-allo-lle, and D-lle, respectively, following literature procedures.?® The
four standards each possessed distinctly different retention times by GC-MS [44.86 (L-allo-
H3mpa), 45.06 (D-allo-H3mpa), 45.26 (D-H3mpa), and 45.63 min (L-H3mpa)]. The methylated
residue from the acid hydrolysate gave a single peak at 45.63 min, thus indicating its
configuration as L-H3mpa.

To determine the absolute configuration of the Br-Hmoya residue, compound 1 was
hydrogenated with 10% Pd/C to remove simultaneously the bromine atom and fully reduce the

terminal alkyne functionality. This hydrogenation product was then hydrolyzed with 6 N HCl in
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a microwave reactor to yield the free residues. An aliquot of the methylated hydrolysate was
treated with the S-Mosher’s acid chloride [S-(+)-a-methoxy-a-(trifluoromethyl)phenylacetyl
chloride, S-(+)-MTPA-CI) and compared to four synthetic standards, as described below. Two
core standards,2S,3S-Hmoaa and 2S,3R-Hmoaa, were synthesized using a published procedure. '3
To create the four chromatographic standards, 2S,3S-Hmoaa and 2S,3R-Hmoaa were each
separately treated with S-MTPA-CI and R-MTPA-CI, yielding four diastereomeric compounds.
These four standards were then compared to the S-MTPA-CI derivatized hydrolysate of
veraguamide A (1). Two of the standards (2S,3S-Hmoaa and 2S,3R-Hmoaa reacted with S-
MTPA-CI) are each identical to a possible configuration of the natural residue, whereas the other
two standards (2S,3S-Hmoaa and 2S,3R-Hmoaa reacted with R-MTPA-CI) are enantiomeric to
the other two possible configurations of the natural residue (2R,3R-Hmoaa and 2R,3S-Hmoaa,
respectively). A GC-MS instrument equipped with a DB5-MS column was then used to compare
the retention times of the four diastereomeric standards with the derivatized hydrolysate. The
retention time of the hydrolysate product (47.13 min) matched 2S,3R-Hmoaa that was reacted
with S-MTPA-CI, identifying that the absolute configuration of the Hmoya residue in 1 is
30S,31R. In summary, the above experiments established that veraguamide A (1) has 2S, 8S, 138,

14S, 198, 25S, 30S and 31R absolute configuration.



Table 2.1: H and *C NMR assignments for veraguamide A (1) in CDCls;

residue position  &c” o (J in Hz)? HMBC? ROESY?
NMeVal-1 1 170.7
2 650  3.94,d (10.7) 1,3,4,7 8,9b, 4,5
3 28.3 2.28,m 4 4.6
4 19.6 0.98, d (6.8) 2,3,5 3
5 19.3 0.92, d (6.6) 2,4 2,3,6
6 29.5 3.01,s 2,7 2,3,5
Pro 7 172.2
8 57.3 4.95, dd (8.5, 9,10, 11 2, 9a, 9b, 10a,
6.3) 10b
%9a 28.7 2.28, m 8,10, 11 6, 8, 9b
9b 1.79, m 7,8,10,11 8, 9a
10a 25.0 2.03, m 8,911 8, 11b, 31
10b 1.99, m 8,911 11b
1la 473 3.85,dt(9.3,7.1) 8,910 10a, 11b, 13
11b 3.61,dt(9.3,7.1) 9,10 10b, 113, 13
H3mpa 12 166.0
13 76.1 4.90, d (9.3) 12, 14, 15, 18 11a, 11b, 14, 16,
31
14 35.7 1.98, m 17 13
15a 24.9 154, m 14 15b, 16
15b 113, m 14 15a
16 20.3 1.00, d (6.8) 14, 15 14
17 10.6 0.87,t(7.3) 13, 14,15 153, 16
NMeVal-2 18 169.7
19 66.1 4.15,d (9.8) 18, 20, 22, 23, 20, 21, 22, 25
24
20 28.5 2.25;m 19 19, 23
21 20.4 1.11,d (6.3) 19, 20, 22 19
22 20.2 0.99, d (6.8) 19, 20, 21 19, 23
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Table 2.1: continued

residue position ¢ du (J in Hz)? HMBC? ROESY?
23 30.1 2.95,s 19, 24 20, 22, 28
Val 24 173.5
25 52.8 4.71,dt(6.3,8.5) 24,26,27,28, 19, 26,27, NH-1
29
26 32.1 190, m 25, 27 25
27 20.2 0.94, d (6.8) 25, 26, 28 25
28 17.5 0.88, d (6.8) 25, 26, 27 25
NH-1 6.28,d (8.5) 29 25,32, 37
Br-HMOYA 29 170.9
30 42.4 3.12, m 29, 31, 37 31, 32
31 76.4 4.85, d (10.5) 1 10a, 30, 32, 334,
33b, 34a, 34b, 37
32 29.7 1.26, m 30, 31 NH-1
33a 24.8 159, m 32, 34,35 31
33b 142, m 34,35 31
34a 19.5 2.20, m 33, 35, 36 31
34b 1.97, m 33, 35, 36 31
35 79.4
36 38.4
37 13.9 1.25;m 29, 30, 31 31, NH-1

a500 MHz for *H NMR, HMBC, and ROESY; 125 MHz for 3C NMR

2.2.2 Veraguamide B-C, and K-L
Several analogues of compound 1 were isolated from the more polar chromatographic
fraction (eluted with 75% EtOAc/MeOH) of the crude extract. Because these analogues were
obtained in quite small yield (0.1-0.5 mg), we were motivated to examine their structures using a
newly reported computer analysis of MS%MS?2 data obtained for cyclic peptides.?>% Additionally,

because *H NMR analysis of several of these analogues showed them to be similar in overall
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structure to veraguamide A (1), the position of structural modifications could be determined
based on mass shifts in characteristic fragments. With the structure of 1 rigorously determined by
a full spectrum of spectroscopic and chemical techniques, it was possible to use this parent
structure to determine the characteristic fragmentation pattern for this family of metabolites.
Thus, by both a manual comparison of MS? fragmentation pattern for each of the analogues to
that of 1, and by application of this newly developed computer algorithm for cyclic peptides, the
location and nature of the structural modifications to the veraguamide A (1) parent structure were
determined readily. In most cases, confirmatory *H NMR data were also obtained.

Compound 2 was isolated as a slightly more polar secondary metabolite in approximately
0.3 mg yield, and by HRESIMS indicated a molecular formula of CssHs7N4OgBr. This mass is 14
Da less than that of veraguamide A (1), and thus, veraguamide B (2) possesses one fewer fully
saturated carbon atom. Consistent with this observation, *H NMR analysis showed a nearly
identical spectrum as obtained for veraguamide A with only small differences observed in the
high field methyl and methylene regions. To localize this mass offset, the MS ion dataset tree for
2, containing both MS? and a series of MS® spectra, were subjected to the comparative
dereplication algorithm.%2° This algorithm compares the MS dataset to the Norine database plus
any user inputted sequences (such as veraguamide A); as expected, 1 was the top hit with the 14
Da difference located to the H3mpa residue.?® To verify this assignment, the MS? spectra for
compounds 1 and 2 were compared manually, and this also indicated that the 14 Da structural
difference was present in the H3mpa residue (Figure 2.3). Thus, the H3mpa residue in
veraguamide A (1) was replaced by a 2-hydroxy-3-methyl-butanoic acid (Hmba) residue in
veraguamide B (2). Due to the small amount of compound obtained, and the desire to explore the
biological properties of these veraguamide A analogues (discussed below), the absolute
configuration was not established for compound 2, but we speculate that it is likely identical to

that of veraguamide A (1).



51

f cdPa
Veraguamide A MS? spectrum +18
100+ 456.26
80
60 bapd
1 VbaPdc
A cdPa
407 cdP cdP cdp 438.24 abVc dPabV -28
207 28 32512 418 cdPa +18 741.26
0] cod 207.19 | 343.17 - PabV ;7,1 654.13
0122812 24623 | L 399.19 42517 | 463.20 510.39 542.20 " ) 62811 ||  687.41 734.45| 74923 80743 838.58 856.52 885.05
L B o o e B e B B e B e B T e e L A B o e e R B o B A e S S B e e T |
250 300 350 400 450 500 550 600 650 700 750 800 850 900
m/z
. cdPa
Veraguamide B MS? spectrum 18
4422
100+
80
¢ VbaPd
E aPdc
- cdPa
404 cdp cdP Ctig 42419 abVc dpPabVv 7227821
= 28 31106+ +18 -
207 cd 28315 | 32013 PabV o7 42.12
0121411 24517 | L 363.22 396.26 | 463.17 496.36 54220 °' 61406 || 655.23 709.30 | 737-21 795.17 842,59 870.69
L B I e e A e e e e B e e B B e B e e S B A A
250 300 350 400 450 500 550 600 650 700 750 800 850 900
m/z
c
113.08406

d
[0) o 100.05243
6 \
99.06481 NH 0 4 QD
o
P
Br. (o] (0]

\/ﬁ N 970276
(o}
b a
229.99424 113.08406

Structure of Veraguamide B

Figure 2.3: Sequencing by ESIMS/MS fragmentations

In a similar fashion, the structures for compounds 3, 4, 5, and 6 were also determined,

with each possessing only a single modified residue in comparison with either veraguamide A (1)

or veraguamide B (2). Veraguamides C (3) and H (4) were found to be analogues of compounds

1 and 2, respectively; however, they lacked the alkynyl bromine atom but retained the alkyne

functionality. Veraguamides | (5) and J (6) also proved to be analogues of compounds 1 and 2,

respectively; in this case they lack both the bromine atom as well as the alkynyl functionality in

the polyketide section of the molecule.

Again, due to the low yields of compounds 3-6, their

absolute configurations were not determined experimentally; it may be that they are the same as

veraguamide A (1).

Two additional veraguamides, K (7) and L (8), were isolated from the more polar and

biologically active VLC fraction; however, their structures could not be determined by the
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MS?/MS? method because the algorithm is currently designed specifically for the analysis of
cyclic peptides. Additional development of the algorithm is underway to expand its ability to
distinguish between linear and cyclic peptides using mass spectrometry data, as this is a long-
standing problem in the proteomics and peptidomics fields. Nevertheless, using 600 MHz
cryoprobe NMR it was possible to obtain a nearly complete 2D NMR data set for 8 (HSQC,
HMBC, and TOCSY). Additionally, HRESIMS of 8 gave a [M+Na]* peak at m/z 821.3673,
indicating a molecular formula of CssHesN4OgBr (9 degrees of unsaturation), differing from
veraguamide B (2) by C2HsO and one less degree of unsaturation. *C NMR shifts were deduced
by a combination of HMBC and HSQC data, and revealed the presence of six ester- or amide-
type carbonyls (6¢c 176.0, 172.5, 172.5, 171.0, 170.0, 166.7) and an alkynyl bromide (6¢ 79.7 and
38.0), accounting for 8 degrees of unsaturation. As detailed below, a proline in 8 accounted for
the ninth and final degree of unsaturation in veraguamide L, signifying that 8 is a linear
depsipeptide.

The NMR spectra of veraguamide L (8) possessed similar *H and *C NMR shifts to most
of the resonances present for veraguamide A (1). Analysis of the 1D and 2D NMR spectra led to
the assignments of four amino acids [valine (Val), two N-methyl-valines (N-MeVal) and proline
(Pro)] as well as one hydroxy acid [2-hydroxy-3-methylbutyric acid (Hmba)] and 8-bromo-3-
hydroxy-2-methyloct-7-ynoic acid (Br-Hmoya). In addition, HMBC correlations were observed
from a deshielded methylene (6w 4.15) to both a methyl carbon (6c 14.3) and a carbonyl (6¢
171.0), features not observed for compound 1. By TOCSY, this same deshielded methylene was
directly adjacent to the new methyl group, thus defining an ethyl ester at the carboxylic acid
terminus of veraguamide L (8). Subsequently, comparison of the MS? data for compounds 7 and
8 revealed that the only difference between these two compounds is in the hydroxy acid residue.

In 7, this residue is H3mpa (comparable to 1) while in 8 it is Hmba (comparable to 2). At this
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point, we are uncertain if veraguamide K (7) and L (8) are artifacts of the preservation of the

original sample in ethanol, or if they represent true natural products of the cyanobacterium.

2.2.3 Bioassay Results

Only compounds 1, 2, 3, 7, and 8 were available in sufficient quantity for evaluation in
the H-460 cytotoxicity assay. Compound 1 showed potent activity (LDso = 141 nM), while
compounds 2, 3, 7, and 8 all exhibited activity in the low micromolar range, but due to
insufficient quantities, no further evaluation of these analogues was possible. However, two
structural analogues of veraguamide A, kulomo’opunalide-1 and -2, have similar or identical
NRPS portions of the molecule but lack the alkynyl bromide in the PKS portion. These two
compounds were previously tested against P388 cells, but were reported to exhibit only moderate
cytotoxicity,’ suggesting that the alkynyl bromide may be an essential structural feature for the

potent cytotoxic activity observed for veraguamide A (1).

2.2.4 Taxonomy of Producing Organism

A taxonomic investigation of the veraguamide-producing cyanobacterium (PAC-17-FEB-10-
2) showed that the morphology agreed relatively well with the current definition of Oscillatoria
margaritifera.® O. margaritifera was described initially from brackish and marine environments
of northern Europe,® which makes it geographically and environmentally unlikely that tropical
marine PAC-17-FEB-10-2 would belong to the same taxon.’! Moreover, specimens of
Oscillatoria have overlapping morphological characters with the genus Lyngbya,* and
phylogenetic analysis is therefore essential to delineate these morphologically similar but
evolutionarily unrelated genera.®® Phylogenetic inferences of the SSU (16S) rRNA gene of PAC-
17-FEB-10-2 revealed that this strain nested within the Oscillatoria lineage with O. sancta PCC

7515 as the closest related reference strain.®! However, the Oscillatoria lineage forms two distinct
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sister clades, one temperate sensu stricto (including PCC 7515) and one tropical marine
(including PAC-17-FEB-10-2). The DNA bar-coding gap between the two clades was 4.2 (mean
p-distance: inter-clade = 2.3 %, intra-clade = 0.6 %), which may support the separation of
temperate and tropical marine Oscillatoria into two distinct genera. However, because such a
revision in the taxonomy of tropical marine Oscillatoria has not yet occurred, at the present time
the best taxonomic definition of the veraguamide-producing strain PAC-17-FEB-10-2 is cf.

Oscillatoria margaritifera.

2.3 Conclusion

A chemical investigation into a potently cytotoxic extract of Oscillatoria margaritifera
which was collected in Coiba National Park, Panama, led to the isolation of veraguamides A-C
and H-L (1). The planar structure of veraguamide A was determined by the combination of NMR
spectroscopy and mass spectrometry techniques. However the structures of veraguamides B, C
and H-L were all determined using a MS comparative dereplication algorithm, which needs only
nanogram quantities of an impure natural product. Due to limited quantities of each of the
analogs, the absolute configuration was only determined for veraguamide A, by utilizing both
Marfey’s analysis and synthetic chemistry. These new compounds are analogous to the mollusk-
derived kulomo’opunalide natural products, with two of the veraguamides (C and H) containing
the same terminal alkyne moiety. However, four veraguamides, A, B, K and L, also feature an
alkynyl bromide, a functionality that has only been previously observed in one other marine
natural product, jamaicamide A. Furthermore, veraguamide A exhibited potent cytotoxicity
against H-460, human lung cancer cells, with a LDsg of 141 nM.

Since publishing this research in back-to-back publications with Hendrik Luesch at the
University of Florida, no additional veraguamides have been isolated; however, there is one

report of a total synthesis of veraguamide A. The total synthesis was completed in 2012 by Zhang
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et al. and they suggest that the there is an error in the original stereochemical assignment of
veraguamide A as they report significant differences in the *H and **C NMR spectra between the
two natural products and the synthetic material (Figure 2.4).3* Almost half (18 of 37) of the total
carbons are shifted by at least 0.7 ppm from the original reported data, with several shifted as far
off as 4.7 ppm, involving carbons from every residue. The carbons that are furthest shifted are the
two alpha carbons on the N-MeVal’s, and thus possibly suggesting that the synthetic version may
have an issue with configuration of the tertiary amide bonds. Furthermore, the isolation and
absolute configurational analysis on veraguamide A was conducted independently by both myself
and Lilibeth Salvador of Hendrik Luesch’s laboratory and our findings were consistent with one
another. However, further investigations are needed to definitively deduce the difference

between the natural products and synthetic versions.

Figure 2.4: Differences in 3C NMR chemical shifts between the natural product and synthetic
version
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2.4 Experimental Methods
2.4.1 General Experimental Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter, UV spectra on a
Beckman Coulter DU-800 spectrophotometer, and IR spectra were obtained using a Nicolet IR-
100 FT-IR spectrophotometer using KBr plates. NMR spectra were recorded with chloroform as
internal standard (8¢ 77.0, dn 7.26) on a Varian Unity 500 MHz spectrometer (500 and 125 MHz
for 'H and *C NMR, respectively), on a Varian VNMRS (Varian NMR System) 500 MHz
spectrometer equipped with a Cold Probe (500 and 125 MHz for H and *C NMR, respectively).
Also used were a Bruker 600 MHz spectrometer equipped with a 1.7 mm MicroCryoProbe (600
and 150 MHz for *H and **C NMR, respectively) and a JOEL 500 MHz spectrometer (500 and
125 MHz for 'H and BC NMR, respectively). LR- and HRESIMS were obtained on a
ThermoFinnigan LCQ Advantage Max mass detector and Thermo Scientific LTQ Orbitrap-XL
mass spectrometer, respectively. MS?/MS? spectra were obtained on Biversa Nanomate with
nanoelectrospray ionization on a ThermoFinnigan LTQ-MS which utilized Tune Plus software
version 1.0. HPLC was carried out using a Waters 515 pump system with a Waters 996 PDA
detector. All solvents were either distilled or of HPLC quality. Acid hydrolysis was performed

using a Biotage (Initiator) microwave reactor equipped with high pressure vessels.

2.4.2 Cyanobacterial Collections and Morphological Identification
The veraguamide-producing cyanobacterium PAC-17-FEB-10-2 was collected by hand
using snorkel gear in shallow water off Isla Canales de Afuera on the Pacific coast of Panama
(7°41.617'N, 81°38.379'E). Morphological characterization was performed using an Olympus
IX51 epifluorescent microscope (1000X) equipped with an Olympus U-CMAD3 camera.
Morphological comparison and putative taxonomic identification of the cyanobacterial specimen

was performed in accordance with modern classification systems.3>%
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2.4.3 Extraction and Isolation

The cyanobacterial biomass (9.75 g, dry wt) was extracted with 2:1 CH>Cl,-MeOH to
afford 1.8 g of dried extract. A portion of the extract was fractionated by silica gel VLC using a
stepwise gradient solvent system of increasing polarity starting from 100% hexanes to 100%
MeOH (nine fractions, A-1). The two fractions eluting with 100% EtOAc (fraction G) and 75%
EtOAc in MeOH (fraction H) were separated further using RP SPE [500 mg SPE, stepwise
gradient solvent system of decreasing polarity starting with 20% CH3;CN in H,O to 100% CH.Cl,
to produce four fractions (1-4) each] to yield pure veraguamide A (1). Further fractionation by
RP HPLC using a Phenomenex 4 pum Synergi Fusion analytical column, with a gradient from
50% CH3CN/H-0 to 100% CHsCN over 30 min, yielded pure veraguamides B, C and K-L (2-8).

Veraguamide A (1): amorphous solid; [a]*’c -14.7 (¢ 0.33, CH2Cl); UV (MeCN) Jmax (log
£) 204 (4.00), 266 (2.83) nm; IR (neat) Vmax 3327, 2964, 2930, 1734, 1700, 1456, 1272, 1194,
1128 cm?; 'H NMR (500 MHz, CDCIl3) and **C NMR (500 MHz, CDCIls), see Table 1;
ESIMS/MS m/z 741.26 (CasHsiN4sO7%Br), 654.13 (CaHsoNzO78Br), 574.13 (CasHaaNzOcBr),
542.20 (CasHaoNzOs®Br), 463.20 (CaoHasN20%°Br), 456.26 (C23Ha:N306), 438.24 (CaosHaoN3Os),
343.17 (Ci7Hz:N20s), 325.12 (Ci7H2N204), 297.19 (CisH2oN20s), 228.12 (Ci2H22NOs);
HRESIMS [M+H]* m/z 767.3594 (calcd for Ca7HsiN4Os®Br 767.3594).

Veraguamide B (2): amorphous solid; [0]%p -13.1 (¢ 0.25, CH,Cl,); 'H NMR (600 MHz,
CDCls) 4 0.90 (d, J =6.7,3H),0.94 (d,J=7.3,3H),0.95(d, J=6.7,3 H),0.96 (d, J=5.8, 3
H), 1.00 (d, J = 7.6, 3 H), 1.01 (d, J = 7.3, 3 H), 1.04 (d, J = 6.7, 3 H), 1.12 (d, J = 6.7, 3 H), 1.27
(d,J=4.7,3H), 1.27 (m, 1 H), 1.45 (m, 1 H) , 1.81 (m, 2 H), 1.97-2.12 (m, 4 H), 2.14-2.39 (M, 5
H), 2.96 (s, 3 H), 3.02 (s, 3 H), 3.14 (m, 1 H), 3.62 (q, J = 7.4, 1 H), 3.81 (q, J = 7.4, 1 H), 3.95
(d,J=10.3, 1 H), 4.16 (d, J = 9.3, 1 H), 4.73 (t, J = 6.2, 1 H), 4.86 (d, J = 8.1, 2 H), 4.96 (t, J =
6.1, 1 H), 6.27 (d, J = 82, 1 H); ESIMS/MS m/z 727.21 (CasHsoN4O72°Br), 642.12

(C30H43N307BOBI’), 574.13 (Cst44N3068°Br), 542.20 (C25H40N305BOBT), 463.20 (C20H35N205BOBF),
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442.21 (C22H0N30s), 424.19 (C22H3sN30s), 329.13 (Ci6H20N205), 311.06 (C16H27N204), 283.15
(CisH27N203), 21411 (C11H20NO3); HRESIMS [M+Na]* m/z 775.3257 (calcd for
CssHs7N4Os®BrNa 775.3252).

Veraguamide C (3): amorphous solid; [a]®p -13.0 (¢ 0.17, CH:Cl,); *H NMR (600 MHz,
CDCls) 6 0.86-0.89 (m, 6 H), 0.94 (d, J = 6.4, 3 H), 0.96 (d, J = 6.6, 3 H), 1.00 (d, J = 6.4, 3 H),
1.01 (d, J=7.1,3H), 1.03 (d, J = 7.0, 3 H), 1.12 (d, J = 6.6, 3 H), 1.26 (5, 3 H), 1.81 (m, 1 H),
1.93-2.12 (m, 7 H), 2.15-2.40 (m, 4 H), 2.95 (s, 3 H), 3.02 (s, 3 H), 3.12 (m, 1 H), 3.63 (m, 1 H),
3.86 (m, 1 H), 3.95 (d, J = 10.7, 1 H), 4.15 (d, J = 10.8, 1 H), 4.71 (m, 1 H), 4.88 (m, 1 H), 4.90
(d, J =92, 1 H), 4.96 (m, "1 H), 6.27 (m, 1 H); ESIMS/MS m/z 661.35 (CssHe:N+O7), 576.23
(CaiHsoN3O7), 496.25 (CasHasN3Oe), 462.30 (CosHaoNaOs), 456.25 (CasHaoNaOg), 438.22
(C2sHaoN30s), 383.26 (CaoHesN20s) 343.17 (Ci7HzN:0s), 325.12 (CirHooN2Os), 297.19
(C16H20N203); HRESIMS [M+Na]* m/z 711.4302 (calcd for Cs7HeoN4OgNa 711.4303).

Veraguamide H (4): amorphous solid; ESIMS/MS m/z 647.33 (CssHsoN4O7), 562.21
(CaoHasN307), 496.25 (CasHasN3Oe), 462.30 (CosHaoNaOs), 442.23 (CaoHaoNzOg), 424.20
(CoH3sN30s), 365.24 (CioHzsNoOs) 329.14 (CisHaoNoOs), 311.07 (CieH2/N204), 283.18
(C15H27N203); HRESIMS [M+Na]* m/z 697.4141 (calcd for CssHssN4OsNa 697.4147).

Veraguamide 1 (5): amorphous solid; ESIMS/MS m/z 665.37 (CssHssN4O7), 580.28
(Ca1Hs:N3O7), 500.28 (CasHsoNsOe), 466.34 (CosHasNsOs), 456.25 (CasHaoNsOg), 438.22
(C23HaoN30s), 383.26 (CooH3sN204) 343.17 (Ci7H31N20s), 325.12  (Ci7H2N20s), 297.19
(C16H20N203); HRESIMS [M+Na]* m/z 715.4619 (calcd for Cs7HssN4OsNa 715.4616).

Veraguamide J (6): amorphous solid; ESIMS/MS m/z 651.35 (CssHesN4O7), 566.20
(CaoHs:N307), 500.25 (CasHsoN3Oe), 467.05 (CosHasNaOs), 442.23 (CaoHaoNzOg), 424.20
(CaoHasNsOs), 365.24 (CioHasN,Os) 329.14 (CiHaoN2Os), 311.07 (CisH2rNoOs), 283.18

(C1sH27N;03); HRESIMS [M+Na]* m/z 699.4298 (calcd for CasHeN:OsNa 699.4303).



59

Veraguamide K (7): amorphous solid; [a]?®> -21.4 (c 0.33, CH:Cl,); 'H NMR (600 MHz,
CDCls) §0.85 (d, J = 6.9, 3 H), 0.88 (d, J = 7.7, 3 H), 0.90 (t, = 6.5, 3 H), 0.91 (d, J = 6.5, 3 H),
0.99 (d, J = 6.5, 3 H), 1.00 (d, J = 6.9, 6 H), 1.04 (d, J = 6.5, 3 H), 1.16 (m, 1 H), 1.20 (d, J = 6.9,
3 H), 1.25 (t, = 7.0, 3 H), 1.47 (m, 1 H), 1.47 (m, 2 H), 1.74 (m, 1 H), 1.89 (m, 1 H), 2.13-2.30
(m, 7 H), 2.41 (m, 1 H), 2.93 (d, J = 5.5, 1 H), 3.10 (s, 3 H), 3.13 (s, 3 H), 3.68 (m, 1 H), 3.79 (t, J
= 6.5, 1 H), 3.89 (m, 1 H), 4.15 (m, 1 H), 4.17 (m, 1 H) 4.81 (m, 1 H), 4.86 (t, J = 7.0, 1 H), 4.88
(d, J=10.8, 1 H), 4.90 (m, 1 H), 6.36 (d, J = 8.6, 1 H); ESIMS/MS m/z 769.24 (Ca7HsoN4Ost°Br),
656.21 (CaiHaNsO-PBr), 559.14  (CoeHaN.O6Br), 484.22  (CosHaeN3Og), 443.10
(CaoH3sN2048Br), 438.22 (C2sHaoN30s), 371.06 (CisHssN20s), 325.11 (Ci7H20N,04), 297.20
(C16H26N203); HRESIMS [M+Na]* m/z 835.3831 (calcd for CasHesNsOs’®BrNa 835.3827).

Veraguamide L (8): amorphous solid; [a]?p -27.9 (c 0.50, CH:Cl,); *H NMR (600 MHz,
CDCls) § 0.85 (d, J = 6.7, 3 H), 0.88 (d, J = 6.7, 3 H), 0.89 (d, J = 6.6, 3 H), 0.95 (d, J = 6.6, 3
H), 0.97 (d, J = 6.5, 3 H), 0.98 (d, J = 6.2, 3 H), 1.00 (d, J = 6.9, 3 H), 1.04 (d, J = 1.04, 3 H),
1.17(d, J=7.1,3 H), 1.23 (t, J = 7.12, 3 H), 1.46 (dt, J = 7.1, 6.9, 2 H), 1.51 (m, 1 H), 1.72 (m, 1
H), 1.87 (m, 1 H), 2.00 (m, 1 H), 2.06 (m, 1 H), 2.15 (m, 1 H), 2.19 (m, 1 H), 2.20 (m, 1 H), 2.22
(M, 1 H), 2.24 (m, 1 H), 2.26 (m, 1 H), 2.39 (m, 1 H), 2.93 (d, J = 3.81, 1 H), 3.09 (s, 3 H), 3.13
(s, 3H),3.67 (dt,J=7.7,7.5 1 H),3.78 (t, J= 6.6, 1 H), 3.85 (dt, J = 7.7, 7.5, 1 H), 4.14 (m, 1
H), 4.17 (m, 1 H), 4.81 (dt, J = 6.2, 7.8, 1 H), 4.82 (d, J = 8.6, 1 H), 4.85 (d, J = 10.5, 1 H), 4.87
(d, J =10.3, 1 H), 4.90 (dd, J = 85, 6.3, 1 H), 6.37 (d, J = 8.8, 1 H); ESIMS/MS m/z 755.24
(CasHssN4Og®Br), 642.21 (CaoHarN3O-Br), 545.14 (CasHaoN2060Br), 470.21 (C2sHasN3Os),
445.11 (CaoHasN2042°Br), 424.21 (CaoHssN3Os), 357.06 (CisHssN2Os), 311.10 (CisHzrN204),
283.20 (CisH27N203); HRESIMS [M+Na]* m/z 821.3673 (calcd for CssHssN4Oo"®BrNa

821.3671).

2.4.4 Hydrogenation, Acid Hydrolysis, and Marfey’s Analysis
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Veraguamide A (1, 1 mg) was dissolved in 1 mL of EtOH and treated with a small amount of
10% Pd/C and then place under an atmosphere of H, (g) for 5 h. The reaction product was
treated with 1.5 mL of 6 N HCI in a microwave reactor at 160 °C for 5 min. An aliquot (~300 pg)
of the hydrolysate was dissolved in 300 puL of 1 M sodium bicarbonate, and then 16 pL of 1% D-
FDAA (1-fluoro-2,4-dinitrophenyl-5-D-alanine amide) was added in acetone. The solution was
maintained at 40 °C for 90 min at which time the reaction was quenched by the addition of 50 pL
of 6 N HCI. The reaction mixture was diluted with 200 uL of CH3CN and 10 pL of the solution
was analyzed by LC-ESIMS.

The Marfey’s derivatives of the hydrolysate and standards were analyzed by RP HPLC
using a Phenomenex Luna 5 pm Cig column (4.6 x 250 mm). The HPLC conditions began with
10% CH3CN/90% H20 acidified with 0.1% formic acid (FA) followed by a gradient profile to
50% CHsCN/ 50% H-0 acidified with 0.1% FA over 85 min at a flow of 0.4 mL/min, monitoring
from 200 to 600 nm. The retention times of authentic acid D-FDAA derivatives were D-Pro
(66.49), L-Pro (69.30), D-Val (78.45), D-N-Me-Val (86.61), L-Val (88.00), and L-N-Me-Val
(91.66); the hydrolysate product gave peaks with retention times of 69.49, 88.07, and 91.74 min,

according to L-Pro, L-Val and L-N-Me-Val, respectively.

2.4.5 Preparation and GCMS Analysis of 2-Hydroxy-3-methylpentanoic Acid (H3mpa)
Veraguamide A (1, 1 mg) was dissolved in 1 mL of ethanol and treated with a small
amount of 10% Pd/C and H (g). The reaction product was then treated with 1.5 mL of 6 N HCI
at 110 °C for 16 hrs. The reaction product was dried under N (g) then dissolved in 0.5 mL of
MeOH and Et,0 and treated with diazomethane. L-lle (20 mg) was dissolved in 5 mL of cold (0
°C) 0.2 N HCIOs, and then 2 mL of NaNO; (aq) was added with rapid stirring. The reaction
mixture was stored at room temperature for 1 h. The solution was boiled for 3 min, cooled to

room temperature, and then saturated with NaCl. The mixture was extracted three times with
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Et,O, and the Et,O layer was then dried under N (g) to yield the oily 2S,3S-H3mpa. An aliquot
was dissolved in 1.5 mL of MeOH and Et,O and treated with diazomethane. The product was
then dried under N2 (g). Correspondingly, 2R,3R-H3mpa, 2S,3R-H3mpa, and 2R,3S-H3mpa were
synthesized with the same procedure from D-lle, L-allo-lle, and D-allo-lle, respectively.

Each authentic stereoisomer of H3mpa was dissolved in CH,Cl, with retention times
measured by GC using a Cyclosil B column (Agilent Technologies J&W Scientific, 30 m x 0.25
mm) under the following conditions: the initial oven temperature was 35 °C, and held for 15 min,
followed by a ramp from 35 to 60 °C at a rate of 1 °C/min, and another ramp to 170 °C at a rate of
10 °C/min, and held at 170 °C for 5 min. The retention time of the H3mpa residue in acid
hydrolysate of 1 matched with 2S,3S-H3mpa (45.63 min; 2S,3R-H3mpa, 44.86 min; 2R,3S-

H3mpa, 45.06; 2R,3R-H3mpa, 45.26).

2.4.6 Preparation and GCMS Analysis of Methyl 3-Hydroxy-2-Methyloctanoate (Hmoaa)

2S,3S-Hmoaa and 2S,3R-Hmoaa were synthesized following literature conditions.’® A
sample of 5 mg of each product was dissolved in 2 mL of dry CH,Cl, and treated with 0.122
mmol of triethylamine, 16.4 mmol of DMAP and each was separately treated with 0.126 mmol of
both R-MTPA-CI and S-MTPA-CI for 17 h at room temperature. Each reaction was quenched
with 2.5 mL of 1N HCI and extracted with Et,O to produce the four diastereomeric standards. An
aliquot of the hydrolysate of veraguamide A (1, 0.3 mg) was dissolved in 1 mL of CH.ClI, and
treated with 7.32 umol of triethylamine, 0.964 mol of DMAP and 7.56 umol of S-MTPA for 18 h
at room temperature.

The four stereoisomeric standards of Hmoaa as well as the derivatized hydrolysate
product of compound 1 were dissolved in CH,Cl, and analyzed by GCMS as described below. A
DB-5MS GC column (Agilent Technologies J&W Scientific, 30 m x 0.25 mm) was used with the

following conditions: initial oven temperature was 35 °C, held for 2 min, followed by a ramp
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from 35 to 140 °C at a rate of 25 °C/min, followed by another ramp to 165 °C at a rate of 1 °C/min
and held for 15 min before it was finally ramped up to a temperature of 190 °C at 1 °C/min. The
retention time of the Hmoaa residue from the derivatized hydrolysate mixture of 1 matched that
of 2S,3R-Hmoaa which was reacted with S-MTPA-CI (47.13 min; 2S,2S-Hmoaa reacted with S-
MTPA-CI, 48.17 min; 2S,3R-Hmoaa reacted with R-MTPA-CI, 48.13 min; 2S,3S-Hmoaa reacted

with R-MTPA-CI, 47.63 min).

2.4.7 Tandem Mass Spectrometry Data Acquisition and Preprocessing

For the ion-trap data acquisition, each compound was prepared to a 1 puM solution using
50:50 MeOH:H>0 with 1% AcOH as solvent, and underwent nanoelectrospray ionization on a
Biversa Nanomate (pressure: 0.3 p.s.i., spray voltage: 1.4-1.8 kV). lon trap spectra were acquired
on a Finnigan LTQ-MS (Thermo-Electron Corporation) running Tune Plus software version 1.0.
lon tree datasets were collected using automatic mode, in which, the [M+H]* of each compound
was set as the parent ion. MS" data were collected with the following parameters: maximum
breadth, 50; maximum MS" depth, 3. At n = 2, isolation width, 4; normalized energy, 50. At n =
3, isolation width, 4; normalized energy 30. The Thermo-Finnigan files (in RAW format) were
then converted to an mzXML file format using the ReAdW (http://tools.proteomecenter.org/) and

subject to analysis using algorithms as well as manual interpretation.?-2°

2.4.8 Cytotoxicity Assay
H-460 cells were added to 96-well plates at 3.33 x 10* cells/mL of Roswell Park
Memorial Institute (RPMI) 1640 medium with fetal bovine serum (FBS) and 1%
penicillin/streptomycin. The cells, in a volume of 180 pL per well, were incubated overnight (37
°C, 5% CO,) to allow recovery before treatment with test compounds. Compounds were

dissolved in DMSO to a stock concentration of 10 mg/mL. Working solutions of the compounds


http://tools.proteomecenter.org/
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were made in RPMI 1640 medium without FBS, with a volume of 20 pL added to each well to
give a final compound concentration of either 30 pg/mL or 3 pg/mL. An equal volume of RPMI
1640 medium with FBS was added to wells designated as negative controls for each plate. Plates
were incubated for approximately 48 h before staining with MTT. Using a ThermoElectron

Multiskan Ascent plate reader, plates were read at 570 and 630 nm.

2.4.9 DNA Extraction, Amplification, and Sequencing

Algal biomass (~50 mg) was partly cleaned under an Olympus VMZ dissecting
microscope. The biomass was pretreated using TE (10 mM Tris; 0.1M EDTA,; 0.5 % SDS; 20
ug/mL1RNase)/lysozyme (1 mg/mL) at 37 °C for 30 min followed by incubation with proteinase
K (0.5 mg/mL?) at 50 °C for 1 h. Genomic DNA was extracted using the Wizard® Genomic DNA
Purification Kit (Promega) following the manufacturer’s specifications. DNA concentration and
purity was measured on a DU® 800 spectrophotometer (Beckman Coulter). The 16S rRNA genes
were PCR-amplified from isolated DNA using the modified lineage-specific primers, OT106F 5°-
GGACGGGTGAGTAACGCGTGA-3" and OTI1445R 5’-AGTAATGACTTCGGGCGTG-3.
The PCR reaction volumes were 25 pL containing 0.5 pL (~50 ng) of DNA, 2.5 pyL of 10 x
PfuUltra IV reaction buffer, 0.5 pL (25 mM) of dNTP mix, 0.5 pL of each primer (10 uM), 0.5
pL of PfuUltra IV fusion HS DNA polymerase and 20.5 pL dHO. The PCR reactions were
performed in an Eppendorf® Mastercycler® gradient as follows: initial denaturation for 2 min at
95 °C, 25 cycles of amplification, followed by 20 sec at 95 °C, 20 sec at 55 °C and 1.5 min at 72
°C, and final elongation for 3 min at 72 °C. PCR products were purified using a MinElute® PCR
Purification Kit (Qiagen) before subcloning using the Zero Blunt® TOPO® PCR Cloning Kit
(Invitrogen) following the manufacturer’s specifications. Plasmid DNA was isolated using the
QIAprep® Spin Miniprep Kit (Qiagen) and sequenced with M13 primers. The 16S rRNA gene

sequences are available in the DDBJ/EMBL/GenBank databases under acc. No. HQ900689.



64

2.4.10 Phylogenetic Inference

The 16S rRNA gene sequence of PAC-17-FEB-10-2 was aligned with evolutionary
informative cyanobacteria using the L-INS-1 algorithm in MAFFT 6.717¢ and refined using the
SSU secondary structures model for Escherichia coli J01695%" without data exclusion. The best-
fitting nucleotide substitution model optimized by maximum likelihood was selected using
corrected Akaike/Bayesian Information Criterion (AICc/BIC) in jModeltest 0.1.1.%8 The
evolutionary histories of the cyanobacterial genes were inferred using Maximum likelihood (ML)
and Bayesian inference algorithms. The ML inference was performed using GARLI 1.0*° for the
GTR+1+G model assuming a heterogeneous substitution rates and gamma substitution of variable
sites (proportion of invariable sites (pINV) = 0.494, shape parameter (o) = 0.485, number of rate
categories = 4) with 1,000 bootstrap-replicates. Bayesian inference was conducted using MrBayes
3.1 with four Metropolis-coupled MCMC chains (one cold and three heated) ran for 3,000,000
generations. The first 25% were discarded as burn-in and the following data set were sampled

with a frequency of every 100 generations. The MCMC convergence was detected by AWTY .4
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Figure 2.6.1: *H NMR (500 MHz, CDCls) spectrum of veraguamide A
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Figure 2.6.2: 3C NMR (125 MHz, CDCls) spectrum of veraguamide A
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Figure 2.6.3: COSY (500 MHz, CDCls) spectrum of veraguamide A
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Figure 2.6.5: HMBC (*H 500 MHz, CDCls) spectrum of veraguamide A

(Thousands)

Y & parts per Million : 1H

3
-
s
2
3 v
3 L %,
|
B I, T | i
e s o & = -
o p—
o 5
o e
. <
g % o © =
°® " . o
- ———
a g . s
: L w -
¥ §9 =
“ 3 8 ' =
: o : =
g
“ #
@ s w 0 20 1 o 02 04 08 on
X : parts per Million : 1H (Thousands)

Figure 2.6.6: TOCSY (500 MHz, CDClIs) spectrum of veraguamide A
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Figure 2.6.7: ROESY (500 MHz, CDCls) spectrum of veraguamide A
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Figure 2.6.8: Marfey’s analysis of the amino acids in veraguamide A on LCMS: (A)
Marfey’s derivatized hydrolysis product (ion chromatogram of 384-385 m/z); (B) L-N-
MeVal (ion chromatogram of 384-385 m/z); (C) DL-N-MeVal (ion chromatogram of
384-385 m/z); (D) Marfey’s derivatized hydrolysis product ( ion chromatogram of
367-368 m/z); (E) L-Pro (ion chromatogram of 367-368 m/z); (F) D-Pro (ion
chromatogram of 367-368 m/z); (G) Marfey’s derivatized hydrolysis product (ion
chromatogram of 368-369 m/z); (H) L-Val (ion chromatogram of 368-369 m/z); (I) D-
Val (ion chromatogram of 368-369 m/z)
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Figure 2.6.9: Analysis of the Mosher acid derivatized Hmoaa via GCMS in veraguamide A:

Tima frunl

(A) Hydrolysis product derivatized with S-MTPA-CI; (B) Mixture of 2S,3S-Hmoaa-3-(S-

MTPA) and derivatized hydrolysis product; (C) Mixture of 2S,2R-Hmoaa-3-(R-MTPA) and

derivatized hydrolysis product; (D) 2S,3S-Hmoaa-3-(S-MTPA); (E) 2S,3R-Hmoaa-3-(R-
MTPA); (F) 2S,2R-Hmoaa-3-(S-MTPA); (G) 2S,2S-Hmoaa-3-(R-MTPA)
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Figure 2.6.10: Chiral GCMS analysis of the H3mpa residue in veraguamide A:
(A) Mixture of 2S,3S-H3mpa, 2S,3R-H3mpa, 2R,3S-H3mpa and 2R,3R-H3mpa; (B)
2S,3S-H3mpa co-injected with methylated hydrolysis product; (C) 2R,3R-H3mpa co-
injected with methylated hydrolysis product; (D) 2S,3R-H3mpa co-injected with
methylated hydrolysis product; (E) 2R,3S-H3mpa co-injected with methylated
hydrolysis product
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Table 2.6.1: H and *C NMR assignments for veraguamide L in CDCls;

77

Residue position dcP du (J in Hz)? HMBC?
1 14.3 1.23,1(7.12) 2
2a 60.6 417, m 1,3
2b 414, m 1,3
N-MeVal-1 3 171.0
4 62.4 4.85, d (10.5) 3,5,6,7,9
5 27.6 2.26, m 4,7
6 205 1.04, d (6.5) 4,5
7 19.0 0.85,d (6.7) 4,6
8 32.2 3.13,s 4,9
Pro 9 172.5
10 56.4 4.90, dd (8.5, 6.3) 11,12
11a 25.4 219, m 12
11b 2.00, m 10, 11, 13
12a 28.4 1.87, m 10, 13
12b 2.15, m 10, 11, 13
13a 47.1 3.85,dt (7.7, 7.5) 10, 11,12
13b 3.67,dt(7.7,7.5) 11,12
Hmba 14 166.7
15 77.3 4.82, d (8.6) 14, 16, 17
16 30.1 2.20, m 14, 15,17, 18
17 20.0 1.00, d (6.9) 15, 16, 18
18 17.3 0.95, d (6.6) 15, 16, 17
N-MeVal-2 19 170.0
20 61.7 4.87,d (10.3) 19, 21, 23, 25
21 27.6 222, m 20, 23
22 17.8 0.97, d (6.5) 20, 21, 23
23 18.9 0.88, d (6.7) 20, 21, 22
24 30.7 3.09,s 20, 25
Val 25 172.5
26 53.6 4.81, dt (6.2, 7.8) 25, 27, 28, 29, 30
27 30.9 2.06, m 26, 28, 29
28 19.8 0.98,d (6.2) 26, 27, 29
29 175 0.89, d (6.6) 26, 27, 28
NH-1 6.37, d (8.8) 30
Brominated 30 176.0
HMOYA 31 44.5 239, q (7.3) 30, 32, 38
32 71.7 3.78,1(6.6) 30, 38
33 32.0 1.46, dt (7.1, 6.9) 31, 32,34, 35
34a 25.3 1.72, m 32, 33, 35, 36
34b 151, m 32, 33, 35, 36
35 19.8 2.24,m 33, 34, 36, 37, 38
36 79.7
37 38.0
38 11.8 1.17,d (7.1) 30, 31, 32

2600 MHz for *H NMR and HMBC; ® Interpreted from HMBC and HSQC correlations
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Figure 2.6.18: Comparison of the MS? fragmentation of veraugamide A to B - Localize
demethylation on residue d. Veraguamide B showed 14 Da loss compared to the standard
compound, veraguamide A. To localize the residue that bears the 14 Da loss, fragments that bear
the 14 Da shift are labeled in red, with the non-shifting fragments labeled in blue. By comparing
the shifted and non-shifted ions it suggests the offset mass is on residue d. All of the fragments
agreed well with this new mass annotation.

Table 2.6.2: Analysis of the algorithm results for veraguamide B

| Peptide | Modified? | Mod mass | Mod position | Score |

Veraguamide A Yes -14.1 5 25
Demethyl No 0 25
Veraguamide A

Enniatin B Yes 112.8 2 24
Enniatin B1 Yes 98.8 6 24
Enniatin B4 Yes 98.8 2 24
Destruxin C Yes 156.0 5 22
Hydroxydestruxin Yes 156.0 5 22
B

Destruxin B Yes 172.9 5 21
Destruxin E Yes 172.9 5 21
Enniatin H Yes 98.8 1 19
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Figure 2.6.19: Comparison of the MS? fragmentation of veraugamide A to C - Localize
debromination on residue b. Veraguamide C showed 78 Da loss compared to the standard
compound, veraguamide A. In a similar manner, to localize the residue bearing the 78 Da loss,
fragments that bear the 78 Da shift are labeled in red, with the non-shifting fragments labeled in
blue. Results suggested loss of 78 Da on residue b or V. Since this 78 Da loss correlated well with
the loss of Br atom, plus isotope pattern also suggest a non-brominated species. The best guess is
the loss of 78 Da comes from residue b as a result of loss of bromine. Proposed structure is
showed below.

Table 2.6.3: Analysis of the algorithm results for veraguamide C

Peptide Modified? | Mod mass | Mod position | Score
Veraguamide A Yes -78.0 2 29
Kulomo opunalide 2 Yes -14.1 5 20
Destruxin B1 Yes 95.0 4 17
Destruxin E1 Yes 95.0 4 17
Enniatin H Yes 35.0 4 16
Enniatin B1 Yes 35.0 3 14
Enniatin B4 Yes 35.0 5 14
Enniatin A Yes 6.9 2 13
Enniatin Al Yes 20.9 2 13
Enniatin C Yes 6.9 2 13
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Figure 2.6.20: Comparison of the MS? fragmentation of veraugamide C to H - Localize
demethylation on residue d. VVeraguamide H showed a 14 Da loss compared to veraguamide C.
To localize the residue bearing the 14 Da loss, fragments that bearing the 14 Da shift are labeled
in red, with the non-shifting fragments labeled in blue. Comparing shifted and non-shifted ions
suggests the offset mass is on residue d. All of the fragments agreed well with this new mass

annotation. Possible structure of analog 675 is proposed as below.

Table 2.6.4: Analysis of the algorithm results for veraguamide H

| Peptide | Modified? | Mod mass | Mod position [ Score |

Demethyl Yes -717.9 2 32
veraguamide A

Enniatin B Yes 35.1 2 29
Enniatin B1 Yes 21.0 6 29
Enniatin B4 Yes 21.0 2 29
Enniatin H Yes 21.0 1 27
Enniatin L Yes 5.0 1 27
Axinastatin 2 Yes -92.0 2 19
Axinastatin 3 Yes -106.0 2 19
Beauvericin E Yes -60.9 3 19
Destruxin B Yes 95.1 4 18
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veraguamide | showed a 4 Da adduct compared to Veraguamide C. In a similar manner, to
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localize the residue that bears the 4 Da adduct, fragments bearing the 4 Da shift are labeled in red,
with the non-shifting fragments labeled in blue. Results suggested the gain of 4 Da is on residue b
or V. The best guess is the reduction of the triple bond on residue b.

Table 2.6.5: Analysis of the algorithm results for veraguamide |

| Peptide

| Modified? | Mod mass | Mod position | Score |

Veraguamide A
Destruxin B1
Destruxin E1
Enniatin H
Enniatin |
Enniatin N
MK1688

Isariin
Kahalalide E
Phakelistatin 13

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

-74.0 2
99.0
99.1
39.0
25.0
-5.0
11.0
55.0
-143.1
-106.0

N PR Rk R o s oo

29
19
19
17
17
17
17
17
16
15
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Figure 2.6.22: Comparison of the MS? fragmentation of veraugamide H to J -
Veraguamide J showed a 4 Da adduct compared to veraguamide H. In a similar manner, to
localize the residue that bears the 4 Da adduct, fragments bearing the 4 Da shift are labeled in red,
with the non-shifting fragments labeled in blue. Results suggested the gain of 4 Da is on residue b
or V. The best guess is the reduction of the triple bond on residue b.
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Figure 2.6.23: Comparison of the MS? fragmentation of veraugamide L to K -
Veraguamide L showed a 14 Da adduct compared to veraguamide K. In a similar manner, to
localize the residue that bears the 14 Da adduct, fragments bearing the 14 Da shift are labeled in
red, with the non-shifting fragments labeled in blue. Results suggested the gain of 14 Da is on

residue d.
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Figure 2.6.24: H460 bioassay results for veraguamide A

Figure 2.6.25: Morphological description of veraguamide-producer (PAC-17/FEB/10-2) (a)
Underwater picture (b) Photomicrographs (40X) of the cyanobacterial filaments.
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Chapter 3:
Lyngbyabellin N, A Cytotoxic Secondary Metabolite from a Palmyra Atoll Collection of the

Marine Cyanobacterium Moorea bouillonii

3.0.1 Abstract

A new lipopeptide, lyngbyabellin N, was isolated from an extract of a filamentous marine
cyanobacteria collected from Palmyra Atoll in the Central Pacific Ocean. Its planar structure and
absolute configuration was elucidated by the combination of spectroscopic and chromatographic
analyses as well as chemical synthesis of fragments. In addition to structural features typical of
the lyngbyabellins, such as two thiazole rings and a chlorinated 2-methyloctanoate residue, this
new compound possesses several interesting aspects, including an unusual N,N-dimethylvaline
terminus and a leucine statine. Lyngbyabellin N exhibits strong cytotoxic activity against the

HCT-116 colon cancer cell line (ICso = 40. 9 + 3.3 nM).

3.1 Introduction

Over the last 20 years, marine cyanobacteria have emerged as exceptionally prolific
producers of biologically active secondary metabolites rivaling the metabolic richness of the
actinobacteria.'* Because they lack other more visible defense mechanisms, such as a hardened
exterior or a cryptic habitat, and have an overall macroscopic structure, it is thought that
cyanobacteria derive value from the biosynthesis of these structurally intriguing secondary
metabolites for their chemical defense.® The genus Moorea (formally Lyngbya spp) is one of the
most chemically prolific and has yielded such important metabolites as the apratoxins,®*°
antillatoxin A'' lyngbyatoxin A,*? curacin A barbamide,** the jamaicamides,’® and the
malyngamides®. In general, these structurally diverse metabolites exhibit a range of interesting

biological activities, such as anti-cancer,!” anti-feedant,’® molluscicidal,'® anti-inflammatory,?
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and neuromodulatory?*. The lyngbyabellins are another family of metabolites produced by
Moorea sp. which are NRPS/PKS derived peptides and have a recognizable architecture
composed of thiazole rings, hydroxy acid residues, and an acyl group with distinctive chlorination
at the penultimate carbon atom.?>?* Several of the lyngbyabellins are reported to exhibit moderate
to potent cytotoxicity to various cancer cell lines and to exert this activity through interference
with the actin system.?224

In the present work, a number of filamentous marine cyanobacteria were collected from
Palmyra Atoll (approximately 1000 miles SSW of Hawaii) in 2008, and their extracts were
evaluated in several biological assays. A reduced complexity fraction from an extract of Moorea
bouillonii, was found to be highly cytotoxic to H-460 human lung cancer cells in vitro [20%
survival at 3 pg/mL (fraction H)], and this was chosen for further investigation. Bioassay-guided
fractionation of this extract yielded a new peptide, lyngbyabellin N (1), and was fully structurally
defined by spectrochemical methods. Additionally, the known highly cytotoxic metabolites

apratoxins F and G were also isolated from these fractions.

3.2 Results and Discussion
3.2.1 Lyngbyabellin N (1) Collection and Isolation

A sample of M. bouillonii (PAL 8/16/08-3) was collected by SCUBA in 2008 from reefs
9-15 m deep surrounding Palmyra Atoll. The ethanol-preserved material was repetitively
extracted (CH.Cl,/MeOH 2:1) and fractionated using normal-phase VLC to yield nine fractions.
Three polar fractions (100% EtOAc, 25% EtOAc/MeOH, and 75% EtOAc/MeOH) were strongly
cytotoxic to H-460 cancer cells (20% survival at 3 pg/mL) and were thus fractionated with
reverse phase solid phase extraction (RP-SPE) followed by preparative thin layer chromatography

(prepTLC) to yield 4.3 mg of highly purified lyngbyabellin N (1) as a pale yellow oil. These
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same fractions also contained apratoxins F (7) and G (8), which are known to have potent

cytotoxicity.51°
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Figure 3.1: Lyngbyabellin N (1) along with other related metabolites
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3.2.2 Lyngbyabellin N (1) Planar Structure Determination

The HR-ESITOFMS of lyngbyabellin N (1) showed an ion cluster at m/z
905.2997/907.2977/909.2950 (calcd for CaoHseCloN4O1:1S, 905.2993) in a ratio of 100:80:20,
indicating the presence of two chlorine atoms and 13 degrees of unsaturation. The IR spectrum of
1 suggested the presence of NH and ester/amide functionalities with absorption bands at 3436 and
1742 cm?, respectively. The C NMR spectra revealed the presence of eight downfield-shifted
signals of quaternary carbon atoms (6c 173.2, 169.4, 168.9, 167.2, 165.8, 165.5, 160.2, and
159.4), along with four carbons indicative of conjugated olefins (dc 145.4, 145.0, 130.2, and
129.7). In the *H NMR spectrum, there were four downfield methyl groups (Jn 2.77, 2.72, 2.09,
and 1.91), two amide protons (Jw 9.38, and 8.81), and two sharp downfield-shifted singlet protons
at 8.46 and 8.44 ppm, which could be attributed to the presence of two 2,4,-disubstituted thiazole

rings.
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Figure 3.2: Select 2D NMR data for lyngbyabellin N
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The two thiazole ring structures were confirmed by HMBC correlations from H-12 (6w
8.44) to C-11 (dc 145.4) and C-13 (dc 165.5), and H-18 (J+ 8.46) to C-17 (dc 145.0) and C-19 (dc
167.2). The HMBC correlations from H-12 and H-18 of the two thiazole rings to carbonyl carbon
atoms C-10 (dc 159.4) and C-16 (Jc 160.2), respectively, indicated that carboxylic acid
derivatives were directly attached to the 4-position of each of the thiazole rings. In addition,
COSY correlations between H-14 (6n 6.27) and H-15a/b (6n 4.81/4.57), as well as HMBC
correlations from H-15a/b to C-13 and C-16, established that a 1,2-dihydroxyethyl moiety formed
a linkage between the two thiazole-4-carbxylate groups.

Further inspection of the *H NMR spectrum of 1 revealed a series of upfield and highly
coupled resonances reflective of an aliphatic chain. Additionally, a downfield methyl singlet at
2.09 ppm (H-8) showed HMBC correlations to a quaternary carbon atom at 92.1 ppm (C-7) as
well as to a signal of a methylene carbon atom at 48.2 ppm (C-6). The chemical shift of C-7 was
indicative of a gem-dichloro substituent, as observed in dolabellin,?® hectochlorin,?® and the
lyngbyabellins,?>?* and thus, accounted for the two chlorine atoms in the molecular formula.
This moiety was extended to include an additional six carbon atoms (C-1 to C-5 and C-9) by
integrated reasoning of COSY, TOCSY, HSQC, and HMBC data and identified this moiety as
7,7-dichloro-3-acyloxy-2-methyloctanoate (DCAMO). Additional HMBC correlations from H-3
of the DCAMO residue to a carbonyl carbon, C-10, of the first thiazole-4-carbozylate unit,
allowed connection between these atoms through an ester bond.

Sequential COSY correlations between adjacent methine H-20 (dw 5.55) and H-21 (Ju
2.24) to both doublet methyl groups H-22 and H-23, along with HMBC correlations from these
two methyls groups back to C-20 and C-2, defined the side chain of a 2-hydroxy-3-methylbutyric
acid (Hmba) residue. The HMBC correlations from H-20 to C-1 (dc 173.2) and C-19 (Jc 167.2)
supported the position of this Hmba-derived residue between C-19 and C-1, as shown in figure

3.1. From the above discussion, the sequence of residues in the macrocyclic ring was defined as
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cyclo - [DCAMO—Hmba—thiazole-1-carboxylate—glyceric acid—thiazole-2-carboxylate],
accounting for 10 of the 13 degrees of unsaturation.

Further analysis of the 2D NMR spectra led to the identification of two additional
modified amino acids, an N,N-dimethyl-valine (N,N-DiMeVal) and an acetylated leucine statine.
Key HMBC correlations between NH-27 and C-32 connected the N,N-DiMeVal and statine
residues, though no correlations were observed between the carbonyl in the statine (C-24) and
any of the residues in the macrocyclic ring. However, based on reasonable deduction and
structure similarity to known analogs, it was rational to assume the presence of an ester linkage

between C-24 and C-14 of the macrocycle to complete the planar structure.



Table 3.1: NMR spectral data for lyngbyabellin N (1) in de-DMSO
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position  dc” dn (Jin Hz)® HMBC? COsY?
1 1732
2 429  2.84,dd (9.4, 6.8) 1,3,9 3,9
3 74.5 5.13,m 2, 4a, 4b
4a 30.0 1.80, m 3,6 3
4b 1.69, m 3,6 3
5 29.0 1.24, m 4 6
6a 48.3 2.27,m 7.8 4a, 4b, 5
6b 2.20,m 7,8 4a, 4b, 5
7 92.1
8 37.0 2.09, s 6,7
9 14.6 1.16,d (7.1) 1,2,4 2
10 159.4
11 145.4
12 129.7 8.44,s 17, 19
13 165.5
14 70.2 6.27,1(6.1) 15. 24 15
15a 636  4.81,dd(11.2,5.2) 14 14
15b 4.57,dd (11.7, 6.8) 14 14
16 160.2
17 145.0
18 130.2 8.46, s 17, 19
19 167.2
20 76.2 5.55, d (8.1) 1,19, 21,22, 23 21
21 31.9 2.24,m 20, 23 20, 22, 23
22 18.4 0.80, d (6.5) 20, 21, 23 21
23 17.9 1.00, d (6.5) 20, 21, 23 21
24 168.9
25a 34.0 2.91,m 24 26
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Table 3.1: continued

position  oc” dn (Jin Hz)® HMBC? COSY?
25b 2.70, m 24,26 21
26 71.6 5.12, m 25a, 25b, 27
27 47.9 4.35, t (4.4) 26, 28, 28b, NH-1
28a 375 1.41, m 29, 31 29
28b 1.23,m 29, 31 29
29 24.4 1.55, m 28, 30, 31
30 24.0 0.90, d (6.4) 28, 29, 31 29
31 20.8 0.81,d (6.2) 28, 29, 31 29
NH-1 8.81,d (8.7) 27
32 165.8
33 71.8 3.63,(6.7) 32, 34, 35, 36 34
34 26.3 231, m 32, 33, 35, 36 33, 35, 36
35 19.5 1.07, d (6.8) 33, 34, 36 34
36 16.5 0.94, d (6.6) 33, 34, 36 34
37 415 2.72,d (4.0) 33,38
38 41.0 2.77,d (4.2) 33,37
NH-2 9.38,brs 39
39 169.4
40 20.8 191, s 39

3500 MHz for *H NMR, HMBC, and COSY. 75 MHz for *C NMR.

3.2.3 Stereochemical Analysis of Lyngbyabellin N (1)

The planar structure of lyngbyabellin N (1) is closely related to that of lyngbyabellin H

(2) except for the replacement of the polyketide portion with a N,N-DiMeVal residue. The
comparison of optical rotations and carbon chemical shifts (macrocyclic lactone portion) strongly
supported that the absolute configuration of the macrocyclic lactone in 1 and 2 were identical.

Further support of this configuration was obtained by comparison of the CD absorption curve of 1
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with that of lyngbyabellin K (3), which was isolated around the same time as 1 and was
successfully crystallized.?” Both of the CD curves were nearly identical, confirming that 1 has the

2S, 3S, 14R, 20S configuration (figure 3.3).
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Figure 3.3: (left) *C NMR comparison between lyngbyabellin N and both H and K; Figure 3.4.
(right) Comparison of CD spectrums of lyngbyabellin K and N

The absolute configuration of the leucine statine in 1 was determined by LC-MS analysis
of the acid hydrolysate appropriately derivatized with Marfey’s reagent (D-FDAA). The four
standards, 3S,4S-statine (Sta), 3R,4S-Sta, 3S,4R-Sta, and 3R,4R-Sta, were all synthesized
beginning with their corresponding amino acids (L- and D-leucine, respectively), and following
literature procedures, converted to their respective N-benzyl protected aldehydes (figure 3.3).%
Each standard was then reacted with tert-butyl 2-bromoacetate in the presence of N-BulL.i to yield
a mixture of diastereomeric protected leucine statines. However, these diastereomers were
inseparable by HPLC and were thus converted to Boc protected analogs, which were readily
purified by RP HPLC.?° Hydrolysis, followed by the derivatization with Marfey’s reagent,
yielded the four standards which each possessed a distinct retention time by LC-MS [(3R,4R)-Sta-
D-FDAA (78.2 min), (35,4R)-Sta-D-FDAA (80.9 min), (35,45)-Sta-D-FDAA (92.2 min), and
(3R,45)-Sta-D-FDAA (93.1 min)]. From the retention time of the natural product statine

derivative (93.29 min), it was clear that this residue was of the 3R, 4S configuration.



97

The absolute configuration of the N,N-dimethylvaline (DiMeVal) residue in compound 1
was determined by comparing the chiral GC-MS retention time of the methylated residue
liberated by acid hydrolysis with authentic standards. The two standards, L-N,N-DiMeVal and D-
N,N-DiMeVal, were synthesized from L- and D-Val, respectively, following literature
procedures.® The two standards each possessed distinctly different retention times by GC-MS [L-
DiMeVal (63.7 min) and (D-DiMeVal (64.2 min)]. The methylated residue from the acid
hydrolysate gave a single peak at 63.8 min, thus indicating its configuration as L, and was
confirmed by co-injection with the standards. In summary, the above experiments established that

lyngbyabellin N (1) consisted of 28, 3S, 14R, 208, 26R, 275, and 33S.

o)
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Figure 3.5: Synthetic scheme for the synthesis of the four statine residues
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3.2.4 Bioassay Results

The lyngbyabellin family of compounds are known to exhibit moderate to potent
cytotoxicity against a number of different cancer cell types through the promotion of actin
polymerization.®® Thus, after the completion of the structural analysis, compound 1 along with
lyngbyabellin K-L (3-5) were evaluated in an H-460 human lung carcinoma cell cytotoxicity
assay. Compound 1 showed strong yet variable cytotoxicity (ICsp 0.0048-1.8 UM, perhaps due to
solubility problems), while compounds 3-6 were inactive. However, in the HCT-116 colon cancer
cell line, reproducible 1Csy values were obtained for lyngbyabellin N of 40.9 £ 3.3 nM,
confirming the potent cytotoxic effect, and suggesting that the side chain of lyngbyabellin N is an
essential structural feature for this potent activity. However, this trend is not entirely consistent
within this structure class as other lyngbyabellin analogs lacking the side chain exhibit sub-
micromolar activity against HT29 and HeLa cells.?22*

It is interesting to note the increasing structural complexity in the lyngbyabellin family of
metabolites, with that of lyngbyabelling N (1) being the most complex to date. While it has the
recognizable core of the lygbyabellins, the side chain and N,N-dimethylvaline terminus resembles
that of the dolastatin 10 and coibamide A, two biologically potent families of metabolites, and in
this regard, it has a hybrid structure between these cyanobacterial natural product classes (figure
3.5). Additionally, from a biosynthetic logic perspective, these more complex lyngbyabellins are
perplexing as they possess two logical points for the initiation of molecule construction: the
polyketide chain represents one such point and the N,N-dimethylvaline a second. Thus, these
complex lyngbyabellins may indeed represent the hybridization and co-joining of two natural

product structure classes.
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3.3 Conclusion

lyngbyabellin A

A chemical investigation of anti-cancer active extracts of Moorea bouillonii collected in

Palmyra Atoll led to the isolation of lyngbyabellin N (1). The planar structure and absolute

configurations was determined by the combination of various techniques in spectroscopy,

chromatography and synthetic chemistry. Compound 1 exhibited strong yet variable cytotoxicity

(ICs0 0.0048-1.8 uM) against H-460 cells, while related compounds 3-6 were completely inactive.

We do not understand the basis for this variable level of activity, however, it most likely relates to

solubility issues in the assay buffer. However, in the HCT-116 colon cancer cell line, 1 was

shown to be potent and exhibited an 1Cs of 40.9 + 3.3 nM. This new lyngbyabellin metabolite

possesses a unique structural feature where it has two conceptual points of biosynthetic chain

initiation, which reflect unique metabolic reactions not yet characterized nor understood.
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3.4 Experimental Methods
3.4.1 General Experimental Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter, CD spectra were taken
in EtOH using a JASCO J-810 spectropolarimeter. UV spectra and IR spectra were recorded on a
Beckman Coulter DU80O spectrophotometer and a Nicolet ThermoElectron Nicolet IR100 FT-IR
spectrometer using KBr plates, respectively. NMR spectra were recorded with DMSO as internal
standards (dc 39.5, du 2.50) on a Varian 500 MHz spectrometer (500 and 125 MHz for *H and **C
NMR, respectively) and Varian 300 MHz spectrometer (300 and 75 MHz for *H and *C NMR,
respectively). HR ESIMS spectra were obtained on an Agilent 6230 ESI-TOF mass spectrometer.
HPLC was carried out using Waters 515 pumps system with a Waters 996 PDA detector. Acid
hydrolysis was performed using a Biotage (Initiator) microwave reactor equipped with high-

pressure vessels.

3.4.2 Cyanobacterial Collection and Taxonomic Identification
Lyngbyabellin N producing cyanobacterium (collection code: PAL 8/16/08-3) was
collected by SCUBA on reefs 9-15 m deep around Palmyra Atoll, USA. The environmental
samples were stored in EtOH/H,0 (1:1) at -20 °C, while the genetic materials were preserved in
RNA stabilization solution at -20 °C (RNAlater, Ambion Inc.). Morphological characterization
was performed using an Olympus IX51 epifluorescent microscope (100x) equipped with an
Olympus U-CMAD3 camera. Taxonomic identification of cyanobacterial specimens was

performed in accordance with current phycological systems. 3132

3.4.3 Isolation of Lyngbyabellin N (1)
One liter of cyanobacterial tissue (previously identified as Moorea bouillonii)® was

repetitively extracted with 2:1 CH.Cl,/MeOH to afford 4.2 g of crude extract. The extract was
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fractionated by silica gel VLC with a stepwise gradient solvent system of increasing polarity
starting from 10% EtOAc in hexanes to 100% MeOH, to produce nine fractions (A-1). The
fraction eluting with 75% EtOAc in MeOH (fraction H) was subsequently separated using a 5 ¢
RP SPE with a stepwise gradient solvent system decreasing in polarity starting from 55% CHs;CN
in H20 to 100% CH.Cly, to produce five fractions (1-5). The fraction eluting with 70% CH3CN in
HO (fraction 3) was further separated using prepTLC, with an isocratic solvent system of 100%
EtOAC, to yield pure lyngbyabellin N (1, 5.4 mg, 0.12 %).

Lyngbyabellin N (1): pale yellow oil; [a]p?"-24.0 (¢ 1.05, MeOH); UV (MeOH) Amax 202 nm
(log & 4.36), 235 (log & 3.99); CD (MeOH) Amax (Ag), 212 nm (-0.64), 224 (-1.60), 237 (-0.27),
248 (-1.36), 268 (+0.03); IR (KBr) ymax 3436, 2961, 2933, 1742, 1677, 1467, 1372, 1321, 1233,
1166, 1097, 1037cm™; H, °C and 2D NMR data, see Table 2; HRESIMS m/z [M+H]* 905.2997

(calcd for CaoHs9Cl2N4011S2 905.2993, A +0.4 mmu).

3.4.4 Ozonolysis, and Acid Hydrolysis of Lyngbyabellin N (1)
A portion (1 mg) of 1 was dissolved in 1 mL of CH2Cl, at — 78 °C and O3 was bubbled
through the sample for 10 min. The pale blue solution was dried under N2 (g). The products were

re-suspended in 500 pL of 6 N HCI and reacted at 160 °C for 5 min in a microwave reactor.

3.4.5 Modified Marfey’s Analysis of the Statine Unit
An aliquot (~500 pg) of the acid hydrolysate was dried under N, (g), and dissolve in 1
mL of 1 M sodium bicarbonate, and 12 uL of 1% D-FDAA (1-fluoro-2,4-dinitrophenyl-5-D-
alanine amide) was added in acetone. The solution was maintained at 40 °C for 90 min, at which
time the reaction was quenched by the addition of CHsCN, and 10 pL of the solution was
analyzed by LC-ESIMS. The Marfey’s derivatives of the hydrolysate and standards were

analyzed by RP HPLC using Phenomenex Luna 5 g Cig column (4.6 x 250 mm). The HPLC
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conditions began with 10% CH3;CN/H.O acidified with 0.1% formic acid (FA) followed by a
gradient profile to 50% CH3CN/H;O acidified with 0.1% FA over 85 min at a flow of 0.4
mL/min, monitoring from 200 to 600 nm. The retention times of the authentic acid D-FDAA
derivatives were (3R,4R)-Sta-D-FDAA (78.2 min), (3S,4R)-Sta-D-FDAA (80.9 min), (3S,4S)-Sta-
D-FDAA (92.2 min), and (3R,4S)-Sta-D-FDAA (93.1 min); the hydrolysate product gave a peak
with retention time of 93.3 min, indicating an absolute configuration of 3R,4S.

Correspondingly, (3S,4S)-statine, (3S,4R)-statine, (3R,4R)-statine and (3R,4S)-statine
were synthesized from L-leucine (1 g) and D-leucine (1 g), respectively, following Reetz et al.
and to yield the benzyl protected aldehyde.?® An aliquot (3.38 mmol) of the benzyl protected
aldehydes dissolved in 15 mL were then added to a solution of with 3.72 mmol tert-butyl acetate
and freshly prepared lithium disoproplyamine (5.06 mmol). The reaction was warmed to — 40 °C
for 1 h and then quenched with 85 mL NaHCOs; (aq), filtered and the aqueous layer was separated
and washed 2x with 20 mL of Et,O. The organic layer was then washed with brine and dried with
NaSO. and filtered to vyield diastereomeric tert-butyl 4-(dibenzylamino)-3-hydroxy-6-
methylheptanoate. The mixture of diasteromers were inseparable, thus the method outlined by
Andrés et al. was used, where the benzyl protected amine was converted to the Boc protection
allowing for purification of a small amount of each of the diastereomers.? Each of the
diastereomers were identified by the comparison of *H NMR each of the pure standards to the
known compounds in the above paper. An aliquot (2 mg) of each protected statins were treated
with 1 mL of 6 N HCI and heated to 160 °C for 5 min in a microwave reactor. Each of the
hydrolysate products were dried down by N (g) and then reacted with the Marfey’s reagent as

mentioned above, to yield the four Marfey’s derived statine standards.

3.4.6 Preparation and GCMS Analysis of 2-Hydroxy-3-methylbutyric Acid (Hmba)
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An aliquot (~500 pg) of the hydrolysate was treated with excessive CHzN; for 30 min at
room temperature, and dried under N (g). Correspondingly, L-Hmba and D-Hmba were
synthesized as described above. The products were dissolved in DCM and injected over chiral-
phase GC-MS using a Chiralsil-Val column (Agilent Technologies J&W Scinetific, 30 m x 0.25
mm) under the following conditions: the initial oven temperature was 32 °C, held for 15 min,
followed by a ramp from 32 °C to 60 °C at a rate of 10 °C/min, followed by another ramp to 200
°C, at a rate of 15 °C/min and held at 200 °C for 5 min. The retention time of products resulting
from the acid hydrolysate of 1 matched the synthetic 25-Hmba standard (9.7 min; 2R-Hmba, 10.2

min).

3.4.7 Preparation and GCMS Analysis of N,N-Dimethylvaline

The methylated hydrolysate product of 1 was analyzed by Chiral GC-MS using a
Cyclosil B column (Agilent Technologies J&W Scientific, 30 m x 0.25 mm) under the following
conditions: the initial oven temperature was 34 °C and was held for 68 min, followed by a ramp
from 34 °C to 100 °C at a rate of 30 °C/min and held at 100 °C for 5 min. Synthetic standards of
2S-N,N-dimehtylvaline and 2R-N,N-dimehtylvaline were first methylated by dissolving 10 mg of
each starting material into 433 pL of H;O, followed by the addition of 27 uL of formaldehyde
and 10.4 mg of 10% Pd/C. The system was then treated with H, (g) for 16 h. After 16 h the
reactions were brought to a boil and then concentrated via rotorvap. Each of the synthetic
standards were then treated with CH2N- for 5 min and then dried down under N (g), re-suspended
in CH.Cl,, then analyzed with chiral GC-MS. The retention time of products resulting from the
acid hydrolysate of 1 matched to that of the authentic 2S-N,N-dimethylvaline standard (63.7 min;

2R-N,N-dimethylvaline, 64.2 min).

3.4.8 Cytotoxicity Assay



104

H-460 cells were added to 96-well plates at 3.33 x 10* cells/mL of Roswell Park
Memorial Institute (RPMI) 1640 medium with 10% fetal bovine serum (FBS) and 1%
Penicillin/Streptomycin. The cells, in a volume of 180 puL per well, were incubated overnight
(37°C, 5% CO,) to allow recovery before treatment with test compounds. Compounds were
dissolved in DMSO to a stock concentration of 10 mg/mL. Working solutions of the compounds
were made in RPMI 1640 medium without FBS, with a volume of 20 pL added to each well to
give a final compound concentration of either 30 or 3 pg/mL. An equal volume of RPMI 1640
medium without FBS was added to wells designated as negative controls for each plate. Plates
were incubated for approximately 48 h before staining with MTT. Using a ThermoElectron
Multiskan Ascent plate reader, plates were read at 570 and 630 nm. Concentration response

graphs were generated using GraphPad Prism (GraphPad Software Inc., San Diego, CA).
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Figure 3.6.9: Analysis of the leucine statine residue via LCMS: (A) Natural product hydrolysis
product derivatized with D-FDAA (Marfey’s Reagent); (B) 3S,4R-leucine statine standard; (C)
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Chapter 4:

Lipopeptides from the Tropical Marine Cyanobacterium Symploca sp.

4.0.1 Abstract

A collection of the tropical marine cyanobacterium Symploca sp., collected near Kimbe Bay,
Papua New Guinea, previously yielded several new metabolites including kimbeamides A-C,
kimbelactone A and tasihalide C. Investigations into a more polar cytotoxic fraction yielded three
new lipopeptides, tasiamides C-E (1-3). The planar structures were deduced by 2D NMR
spectroscopy and tandem mass spectrometry, and their absolute configurations were determined by
a combination of Marfey’s and chiral-phase GC-MS analysis. These new metabolites are similar to
several previously isolated compounds, including tasiamide (4), grassystatins (5-6), and symplocin

A, all of which were isolated from similar marine filamentous cyanobacteria.

4.1 Introduction

Recent sequencing efforts of marine cyanobacterial genomes have revealed their exceptional
capacity to produce a large diversity of intriguing secondary metabolites, representing a range of
distinct and unrelated biosynthetic pathways.!? This has also been observed from chemical
investigations of such cyanobacterial species as Moorea bouillonii and Moorea producens,
formerly known as Lyngbya bouillonii and Lyngbya majuscula, respectively.® Both of these latter
organisms are known to produce a plethora of metabolites, including the lyngbyabellins,*’
apratoxins,®!! laingolide,*? lyngbyaloside,**1* apramide A’ and palau’imide®® from M. bouillonii
and lyngbyatoxin A,'" the jamaicamides,*® carmabin,® various malyngamides,?® and barbamide?
from M. producens. These examples of highly productive strains and improved genomic insights

into cyanobacterial biosynthetic capacity demonstrates the utility of rigorously examining
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collections of cyanobacteria for novel natural products, even when a given strain has already been
extensively investigated.

In the present investigation into a filamentous tuft-forming cyanobacterium from Kimbe Bay,
Papua New Guinea, which already yielded kimbeamides A-C, kimbealactone A, and tasihalide
C,%22 another chromatography fraction exhibited strong cytotoxicity against several cancer cell
lines and was thus chosen for further evaluation. A subsequent NMR-guided fractionation process
yielded three new lipopeptides, tasiamides C-E (1-3), two (C, D) of which were evaluated for
cytotoxicity and found to be inactive. Both the planar and absolute configurations of these
metabolites were determined, and have led to some intriguing insights into the biosynthetic

capability of this particular collection.
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4.2 Results and Discussion
4.2.1 Tasiamides C-E Collection and Isolation

Orange tufts of a tropical marine Symploca sp. were collected in approximately 20 m of
water near Kimbe Bay, Papua New Guinea, in July 2007. The preserved collection was repetitively
extracted (2:1 CH:Cl>—MeOH) and fractionated using normal-phase vacuum liquid
chromatography (VLC). Previously, a middle polarity fraction (60% hexanes/40% EtOAc) of this
extract yielded several biologically active metabolites, including kimbeamides A-C, kimbelactone
A and tasihalide C.222 Additionally, a relatively polar fraction eluting with 25% MeOH/EtOAc
exhibited cytotoxic activity against H-460 human lung cancer cells (81% toxicity at 3 pg/mL).
Further chromatography of this fraction using normal-phase solid phase extraction (SPE) and
reversed-phase HPLC yielded 1.9 mg of tasiamide C (1), 2.5 mg of tasiamide D (2), and 0.7 mg of

tasiamide E (3).

4.2.2 Tasiamide C Absolute Structure Determination

HR-ESITOFMS of 1 yielded an [M+Na]* at m/z 839.4541, giving a molecular formula
Ca1HsaNgO11 (calced for Ca1HesNsNaO11, 839.4525, 1.9 ppm), with 13 degrees of unsaturation. The
IR spectrum featured absorptions indicative of the presence of NH or OH protons and the presence
of amide or ester carbonyls (3371 and 1737 cm™?, respectively). Further evidence of ester or amide
carbonyls were present as eight downfield signals in the 33C NMR spectrum (5. 167.8, 169.2, 169.9,
170.8, 172.1, 172.5, 173.7, and 175.7). Additionally, the presence of a mono-substituted phenyl
group was evident from four downfield carbon signals, two of which were composed of two
carbons each as indicated by their relative peak height (6; 126.4, 128.0 x 2, 129.2 x 2, and 136.4).
Further analysis of the *H NMR spectrum revealed the presence of three singlet methyls at shifts
indicative of an O-methyl (6n 3.67) and two N-methyl groups (6x 2.93 and 3.03), along with two

broad downfield signals suggestive of NH protons (d+ 6.69 and 6.78).
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Analysis of the 2D NMR data (COSY, TOCSY, ROESY, HSQC, and HMBC) enabled the
assignment of seven COSY spin systems consisting of five amino and two hydroxy acid residues
[proline methyl ester (Pro-Me ester), N-MePhe, Ala, lle, N-MeGlIn, and two 2-hydroxy-3-
methylbutyric acids (Hmba)], accounting for all 13 degrees of unsaturation, and thereby signifying
an overall linear arrangement (Figure 4.1). HMBC correlations from the NH and N-Me groups to
the carbonyl of the neighboring residues allowed for the assignment of connections between N-
MePhe and Ala (C-16 to C-17), N-MeGIn and Hmba-1 (C-31 to C-32), Ala and lle (NH-1 to C-20),
and lle and N-MeGlIn (N-H-2 to C-26), leading to three partial structures, O-MePro, N-MePhe —
Ala — lle — N-MeGIn — Hmba-1, and Hmba-2. Key ROESY correlations revealed further
connections between these fragments, one between H-5a/b (6 3.34/3.15) and H-8 (& 5.52)
connecting Pro-Me ester to N-MePhe and the other between H-34 (5 2.15) and H-38 (3 4.09),
making the final connection between the two Hmba residues. Thus, tasiamide C was deduced to
have an overall linear structure consisting of Pro-Me ester— N-MePhe — Ala — lle — N-MeGIn —
Hmba-1 — Hmba-2. This planar constitution was supported by tandem mass spectroscopy analysis

(Figure 4.3).

The absolute configuration of several of the amino acids (Pro, N-MePhe, Ala, and N-
MeGlIn) were determined by Marfey’s analysis. Authentic D and L standards for Pro, N-MePhe, and
Ala were each derivatized with D-(1-fluoro-2,4-dinitrophenyl-5-D-alanine amide) (D-FDAA).
Unfortunately, authentic D-N-MeGlu was unavailable; therefore, chromatographic standards were
prepared by derivatizing L-N-MeGlu with both b and L-FDAA (upon acidic hydrolysis, amides N-
MeGIn becomes N-MeGlu). Compound 1 was hydrolyzed and derivatized with D-FDAA and
analyzed by LC-MS in comparison with the retention times of authentic standards. From this
analysis it was clear that three of the four amino acids (Pro, Ala, and N-MeGIn) were of the L

configuration, while the N-MePhe residue was of the D configuration.
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The absolute configuration of the lle residue was determined by chiral-phase GC-MS
comparison of N-Boc, O-Me derivatized authentic standards against the similarly derivatized lle
residue released by acid hydrolysis of 1. The four protected standards of L-lle, L-allo-1le, D-lle,
and D-allo-lle, were prepared by first synthesizing the N-Boc protected amino acids, followed by
methy| esterification of the carboxylic acid using diazomethane. From retention time comparison

and co-injection experiments it was clear that the lle residue was of the D-allo configuration.

The absolute configuration of the final two Hmba stereocenters in 1 presented a challenge.
Comparison of authentic standards of S- and R-Hmba with the methylated hydrolysate revealed
that the natural product contained both S- and R-Hmba residue. A similar situation has been
previously reported in closely related metabolites of this compound family.?* Following mild base
treatment (1:1, 0.5 N NaOH (agq)—MeOH), only the terminal Hmba residue was released; this
residue was subsequently methyl esterified using diazomethane,? and by retention time comparison
and co-injections with authentic standards, was identified as of the S configuration. The
penultimate Hmba must therefore be of the R configuration. In summary, the above experiments
established that tasiamide C (1) possessed a 2S, 8R, 18S, 21R, 22S, 27S, 33R, and 38S absolute

configuration.



Table 4.1: H and **C NMR assignments for tasiamide C (1) in CDCl;
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residue position  &c°© dn (Jin Hz)? HMBCP COSY?
Pro-Me ester 1 172.1
2 59.5  4.37,dd (7.5, 7.5) 1,3 3a, 3b
3a 28.7 2.16, m 1,2,4 2,3Db, 4a
3b 1.86, m 1,2,4,5 2,3a,4b
4a 25.2 1.92, m 5 3a, 4b, 5a, 5b
4b 1.75, m 3,5 3D, 4a, 5a, 5b
5a 47.1 3.34 3 4a, 4b, 5b
5b 3.15, m 3,4 4a, 4b, 5a
6 52.3 3.67,s 1
N-MePhe 7 167.8
8 559  5.52,dd (9.8, 6.1) 7,9, 16 9a, 9b
9a 34.7 3.14, m 7,8, 19, 11, 8, 9b
15
9b 3.87,dd (14.3, 8,10, 11, 15 8, 9a
9.7)
10 136.4
11/15 129.2 7.10, m 9,10,12,14 12, 14
12/14 128.0 7.15,m 10, 11, 13,15 11, 13,15
13 126.4 7.11, m 12, 14 12, 14
16 30.5 293, s 8, 17
Ala 17 172.5
18 451  4.67,dq(7.4,7.3) 17,1920 19
19 17.4 0.76,d (7.1) 17,18 18
NH-1 6.69, d (8.6) 20 18
lle 20 169.9
21 58.0 4.14,dd(8.2,7.3) 20,22,23,25 22
22 36.1 191, m 21,23, 24,25 21,25
23a 24.7 1.30, m 25 23h, 24
23b 1.02, m 21,22, 24 23a, 24



Table 4.1: continued

residue position  &c°® dn (Jin Hz)2 HMBC" COSYP
24 11.1 0.78,t(7.4) 22,23 23a, 23b
25 15.4 0.74,d (6.8) 21,22,23 22
NH-2 6.78,d (7.5) 26 21
N-MeGlu 26 169.2
27 56.7 4.93,dd (8.0,7.0) 26,28, 29, 32 28a, 28b
28a 24.5 2.35,m 26, 27, 29, 30 27, 28b
28b 1.86, m 26, 27, 29, 30 27, 28a, 29a
29a 32.7 2.26, m 27,28, 30 28D, 29b
29b 2.10, m 30 29a
30 173.7
NH.a 6.62, bs
NH:zb 6.46, bs
31 31.2 3.03,s 27,32
Hmba-1 32 170.8
33 76.5 4.85,d (7.9) 32, 34, 35, 36, 34
37
34 30.0 2.15,m 33, 35, 36 33, 35, 36
35 18.3 0.99, d (6.7) 33, 34, 36 34
36 18.2 0.93,d (7.0) 33, 34,35 34
Hmba-2 37 175.7
38 74.6 4.09,d (3.7) 37,39 39
39 31.7 2.07, m 38, 40, 41 38, 40, 41
40 18.9 0.97,d (6.9) 39,41 39
41 16.2 0.83,d (6.9) 39, 40 39

3600 MHz for *H NMR; ®500 MHz for HMBC and COSY; 125 MHz for *C NMR
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Figure 4.2: Select 2D NMR data for tasiamides C-E

4.2.3 Tasiamide D Absolute Structure Determination

HR-ESITOFMS of 2 yielded an [M+Na]* at m/z 825.4371 for a molecular formula of
CuoHs2NgO11 (caled for CaoHe2NgNaO11, 825.4369, 0.2 ppm). The IR, *H and *C NMR spectra
were similar to those of 1; however, the molecular formula indicated a reduction of 14 amu (e.g. a
CH: unit) relative to tasiamide C. Inspection of the 'H NMR spectrum revealed the presence of
only two singlet methyl groups (e.g. one N-methyl at 64 3.02 and one O-methyl at 64 3.58) and
three NH protons (6n 6.77, 6.89, and 6.98). From the 2D NMR data, it was clear that the only
modification between 1 and 2 was the loss of the N-methyl on the Phe residue, thus yielding a
planar constitution of Pro-Me ester— Phe — Ala — Ile — N-MeGIn — Hmba-1 — Hmba-2 for tasiamide

D (2). This assembly was corroborated by tandem mass spectrometry analysis (Figure 4.3).

The absolute configurations of the residues in compound 2 were determined in an identical
fashion as described above for compound 1. Analysis of the retention times of the Marfey’s
derivatized hydrolysate and authentic standards by LC-MS revealed that three of the four amino

acids (Pro, Ala, and N-MeGlIn) were of the L configuration and that the Phe residue was of the D
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configuration. Chiral-phase GC-MS analysis of the lle residue, N-Boc and O-methylated as with 1,
showed by retention time comparison and co-injections that this residue was of the L configuration.
Chiral-phase GC-MS analysis of the methylated hydrolysate of 2 exhibited peaks matching both S-
and R-Hmba. Analysis of the methylated mild base hydrolysate confirmed that, as with 1, the
terminal Hmba was of S configuration, and so the penultimate Hmba was of R configuration;

establishing the absolute configuration of tasiamide D (2) as 2S, 8R, 17S, 20S, 218, 26S, 32R, and

M+H]* M+H]*
- [ys+HI* 817.3 (1) 830.5 (3)
Y4+ 4753 (1) 803.5 (2 .
362.2(1) 461.3(2) @ Iys*+HI* [3;‘1:1]
lystH]" 3482(2) == <, HoN
2913(1) ! ' ' '
277.2 (2) 1 ' ! , o
[b4+H]* - ' \ I e} , !
688.4 (1) R ' ' : : H . ; H
o142(2) 4 N;TH\ ' ' N ! OH
< ; | ] . | | '
R | . : : H, - o]
e} , ' N0 : o
N™-0: ! il : : by +HI*
' i [bg*H] O > - 370.3
O L 3442 (1) [oo*HI"  [bg+H]*
L [ba*HI"  343.2(2) 540.3 483.3
O\ b HI* 456.3 1) O\
527.4 (1) 4562 (2)
527.2 (2)

1R =Me [M+H]*
= [by+H]* 3442 (1)

H
HoN. O 20321
o)
M NY o OH
o I 0

Figure 4.3: Select low resolution MS fragmentation cleavages for tasiamides C-E



Table 4.2: 'H and **C NMR assignments for tasiamide D (2) in CDCl,

residue position  &c® dn (Jin Hz)? HMBC? COSY®
Pro-Me ester 1 172.2
2 59.1 4.13, m 1,3 3
3 29.0 1.78, m 2,4 3, 4a, 4b, 5a, 5b
4a 24.6 1.35,m 5 3,4b, 5b
4b 1.07, m 3,5 3,4b, 5b
5a 469  3.47,dd (8.7,5.1) 4,5 3,4b, 5b
5b 2.68, m 5 4a, 4b, 5a
6 52.2 3.58, s 1
Phe 7 170.4
8 52.5 4.76, q (7.6) 7,9 9, NH-1
9 39.0 2.94, m 7,8, 10, 11, 8
15
10 136.2
11/15 129.1 7.09, m 9,10, 12, 13, 12,14
14
12/14 128.5 7.17, m 10, 11, 13,15 11, 12,15
13 127.0 7.13, m 11,12, 14,15 12, 14
NH-1 6.98, d (6.8) 17 8
Ala 17° 171.8
18 48.8  4.43,dq (8.0, 6.8) 17,19 19, NH-2
19 18.1 1.26,d (7.2) 17,18 18
NH-2 6.89,d (7.7) 20 18
lle 20 170.7
21 59.4 412, m 20, 22, 25 22, NH-3
22 35.9 1.97, m 21,23,24,25 21, 23a, 23b, 25
23a 24.7 1.35,m 22, 24,25 22,23b, 24
23b 1.07, m 22, 24,25 22,23a, 24
24 11.5 0.82,1(6.8) 22,23 23a, 23b
25 15.7 0.82,d (6.3) 21,22, 23 22



Table 4.2: continued

residue position  &c® dn (J in Hz)? HMBC? COSY?
NH-3 6.77,d (6.7) 26 21
N-MeGIn 26 170.4
27 57.1 5.08,dd(7.6,6.7) 26, 28,29 28a, 28b
28a 24.0 248, m 26, 27, 29, 30 28b, 29a
28b 1.81, m 26, 27, 29, 30 28a, 29b
29a 33.0 2.32,m 27,28, 30 28a, 29b
29b 2.25,m 27,28, 30 28b, 29a
30 174.6
NH.a 5.98, bs
NH2zb 5.62, bs
31 31.1 3.02,s 27, 32
Hmba-1 32 171.2
33 76.7 4.85,d (7.5) 32, 34, 35, 36, 34
37
34 29.9 214, m 33,35, 36 33,35, 36
35 18.7 0.93,d (7.0) 33,34, 36 34
36 18.1 0.99,d (6.1) 33,34, 35 34
Hmba-2 37 175.8
38 75.1 411, m 37, 39, 40, 41 39
39 32.1 2.07, m 38, 40, 41 38, 40, 41
40 18.4 0.97,d (6.2) 38, 39,41 39
41 16.1 0.82,d (6.3) 38, 39, 40 39
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a500 MHz for 'H NMR, HMBC, and COSY; 75 MHz for 3C NMR; °Carbon 16 was
intentionally skipped in order to be consistent with the numbering displayed in figure 4.1

4.2.4 Tasiamide E Absolute Structure Determination

HR-ESITOFMS of 3 yielded an [M+Na]" at m/z 852.4842 in agreement with a molecular

formula of Cs2He7N7O10 (calcd for Cs2Hes7N7NaO1o, 852.4842, 0 ppm), requiring 13 degrees of
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unsaturation. The IR, *H and 3C NMR spectra again featured similarities to 1 and 2; however, the
molecular weight was 13 and 27 amu greater than 1 and 2, respectively, and thus could not be
readily attributed to a single modification. Closer inspection of the *H NMR spectrum revealed the
presence of three singlet methyls (61 2.98, 2.99, and 3.72), similar to 1 and three amide protons (dn
6.78, 6.82, and 7.01), as seen in 2; suggesting that one of the hydroxy acids was replaced by an
amino acid. Further evidence of this was seen by comparison of the *C NMR spectra of 1 and 3;
in tasiamide C there were two a-carbons with shifts indicative of hydroxy acids at 8¢ 74.6 and 76.4

whereas there was only one such peak in tasiamide E at 6¢c 71.1.

Further analysis of 1D and 2D NMR data (*H, *C, COSY, TOCSY, ROESY, HSQC,
HMBC, and H2BC) confirmed the presence of seven residues, six amino acids, and one hydroxy
acid [Pro-Me ester, N-MePhe, Gly, lle, N-MeGIn, Leu, and 2-hydroxy-4-methylpentaoic acid
(H4mpa)]. In a similar fashion to 1, each of the connections between residues in 3 were revealed
by key HMBC and ROESY correlations. HMBC correlations from both N-methyl groups to the
carbonyls on the neighboring residues allowed for the assignment of connections between N-
MePhe to Gly (C-16 to C-17) and N-MeGIn to Leu (C-30 to C-31). Correspondingly, HMBC
correlations from amide protons to adjacent carbonyls allowed for the assignment of connections
between lle and N-MeGIn (NH-2 to C-25), and Leu and H4mpa (N-H-3 to C-37), leading to three
partial structures, Pro-Me ester, N-MePhe — Gly, and lle — N-MeGIn — Leu — H4mpa. Two ROESY
correlations provided the final connections between these fragments, one between H-5a/b (8
3.36/3.31) and H-8 (& 5.55), connecting Pro-Me ester and N-MePhe, and the other between H-18a/b
(04.05/3.81) and H-21 (6 1.82), making the final connection between Gly and Ile. Thus, tasiamide
E was deduced to have a planar linear structure consisting of Pro-Me ester — N-MePhe — Gly — lle
— N-MeGIn — Leu — H4mpa and this was supported by tandem mass spectrometry analysis (Figure

2).
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The absolute configurations of the residues in 3 were determined as described above for
compounds 1 and 2 using appropriate authentic standards. Analysis of the Marfey’s derivatized
hydrolysate with the retention times of authentic standards on LC-MS revealed that three of the
four amino acids (Pro, Leu, and N-MeGIn) were of the L configuration while the N-MePhe residue
was of the D configuration. As for the chiral GC-MS analysis of the lle residue, retention time
comparison and co-injections confirmed that it was also of the L configuration. The absolute
configuration of the H4mpa residue was determined using chiral-phase GC-MS, both comparing
retention time and co-injections with authentic standards, thus confirming its S configuration, and

establishing the absolute configuration of tasiamide E (3) as 2S, 8R, 20S, 218, 26S, 32S, and 38S.



Table 4.3: H and **C NMR assignments for tasiamide E (3) in CDCl;
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residue position  dc® dn (Jin Hz)? HMBCP COSY®
Pro-Me ester 1 172.5
2 58.9  4.39,dd (8.1,5.2) 1,34 3a, 3b
3a 28.8 212, m 2 2,3b, 4b
3b 1.86, m 2,4 2, 3a, 4a
4a 25.0 1.93, m 2,3,5 3b, 4b, 5b
4b 1.80, m 2,3 3a, 4a, 5a
5a 46.8 3.36, m 4 4b, 5b
5b 331, m 4 4a, 5a
6 52.3 3.72,s 1
N-MePhe 7 167.8
8 56.2 5.55,t(7.4) 7,9,16 9a, 9b
9a 35.1 3.27,dd (13.6, 7,8,10,11 8,9b
8.2)
9 2.82, dd (13.6, 7,8, 10, 11, 8, 9%a
6.9) 16
10 136.8
11/15 129.4 7.22,m 9,10, 12 12,14
12/14 128.4 7.26, m 11, 13, 15 11, 13, 15
16 29.7 2.98,s 8,9, 17
Gly 17 167.5
18a 41.2 4.05, dd (17.7, 17 18b, NH-1
4.6)
18b 3.81,dd (17.7, 17 18a, NH-1
3.3)
NH-1 6.78, d (4.36) 18a, 18b
lle 19 171.5
20 576  4.29,dd (8.8, 6.3) 19,21, 22 21, NH-2
21 37.2 1.82, m 20, 23, 24 20, 22b, 24
22a 24.7 143, m 23,24 22b
22b 111, m 23,24 21, 22a, 23



Table 4.3: continued

residue position  &c°© dn (J in Hz)? HMBC? COSY?
23 11.3 0.87,t(7.7) 21, 22 22b
24 15.6 0.88,d(7.2) 21, 22 21
NH-2 6.82,d (9.4) 25 20
N-MeGIn 25 169.7
26 56.2 5.06, t(7.4) 25, 27, 30 27a, 27b
27a 234 231, m 28 26, 27h, 28a
27b 1.99, m 27 26, 27a, 28a
28a 31.9 224, m 27,29 27b, 28b
28b 218, m 29 27a, 28a
29 174.0
NHza 5.61, bs
NH:b 5.25, bs
30 31.0 2.99,s 26, 31
Leu 31 174.4
32 56.9 4.95, q (7.9) 33 33, NH-3
33 41.2 1.60, m 32, 34 32
34 24.8 1.60, m 33, 35, 36 35, 36
35 21.4 0.92,d (6.4) 34 34
36 22.7 0.95,d (6.4) 34 34
NH-3 7.01,d (9.3) 37
H4mpa 37 175.2
38 711 4.09,dd (9.1, 4.5) 37,39 39
39 43.1 1.54, m 38,40 38, 40
40 24.6 1.87, m 38, 41, 42 39, 41, 42
41 22.3 0.96, d (6.6) 40 40
42 23.0 0.96, d (6.6) 40 40

2500 MHz for 'H NMR and COSY:; ® 600 MHz for HMBC; ¢ 125 MHz for 3C NMR
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4.2.5 Structural Similarities of Tasiamides C-E to Known Metabolites

Tasiamides C-E (1-3) are of close structural relation to several families of known
metabolites, the grassystatins, tasiamides, and symplocin A. In this regard, 1-3 are structurally
most similar to tasiamide (4), with 3 varying only in the terminal residue, while compounds 1 and
2 possess other relatively simple modifications. In 2008, Li and co-workers revised the original
configuration of the N-MeGIn residue in 4 from L to D based on the comparison of analytical data
(**C NMR and specific rotation) of the natural product with four stereoisomers obtained from a
total synthesis (containing both L and D stereoisomers of N-MeGIn and Leu; Table 2).2° However,
the original assignments for all of the residues in 4 are consistent with that of 3, and a comparison
of 13C shifts revealed no significant differences between 3 and 4, along with the four additional
synthetic stereoisomers (A-D, Table 2).26 Furthermore, the opposite specific rotation signs for
tasiamide C and D suggests a structural variance between these two metabolites (3, [a]*°p -22.2; 4,
[a]?*o +15.0). Therefore, a more detalied analysis of the 3C NMR data for tasiamide and the four
synthetic analogs was conducted using DP4 probability calculations, and revealed that the carbon
data alone is insufficient to deduce the correct configuration in tasiamide (4).2” The probability of
the original experimental data matching each analog was calculated as: 1.3% for analog A (4),
56.0% for analog B, 3.0% for analog C, and 39.7% for analog D. Because analogs B and D have
the same sign and magnitude of specific optical rotation, and are indistinguishable by DP4
calculations, it would be impossible to conclusively assign the configuration of 4 solely based on
this data. This also suggests that the misassignment in tasiamide (4) may involve residues other
than just the N-MeGiIn, and thus, a broader investigation into the configuration of 4 is necessary to
clarify its correct absolute configuration.

It is interesting to note that there appears to be considerable biosynthetic flexibility in this
family of metabolites. Insights are thus provided by comparing the amino- or hydroxy-acid

residues in each member of this family (Table 2). The first three residues (A, B, and C) starting
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from the carboxy terminus of these molecules are rather well conserved, with each analog
containing an Pro-Me ester followed by the incorporation of D-Phe, which is N-methylated in all
but one analog, and then the incorporation of an Ala, Aba, or Gly as the third residue. Residue E,
H, and J are also conserved residues (statine, Hmba, and an N,N-dimethylated amino acid,
respectively) but they occur only in a subset of the natural products. Residue F and | are slightly
less conserved, with three different polar amino acids (N-MeGlIn, Asn, and Ser) incorporating into
residue F and four different hydroxy acids (Hmpa, H4mpa, Hpa, and H3mpa) in residue I. Also
observed are variations in the absolute configurations of these residues. For example, residue D
and J in eight of nine metabolites incorporate an L residue, while a single metabolite has a D-allo
residue at this position. At residue F all of the amino acids were originally deduced as L; however,
in tasiamide and tasiamide B these residues were reassigned as D based on total synthesis. Although
non-ribosomal peptide synthetase (NRPS)-derived peptides can show variations in the incorporated
amino acid, it is difficult to imagine a single biosynthetic pathway that would be capable of
producing the all of these metabolites, especially those of varying absolute configurations, which

usually requires an epimerase.?®

4.2.6 Bioassay Results

Both the grassystatins and symplocin A were reported to possess exceptional inhibitory
activity toward cathepsin E (grassystatin A: ICso = 886 pM, symplocin A: ICso = 300 pM);?42°
however, this activity is likely due to the presence of a statine residue, which is absent in the
tasiamides. Additionally, tasiamide and tasiamide B both showed moderate cytotoxicity against
KB cells, with ICso values of 0.48 and 0.8 puM, respectively.?3 Due to limited isolated quantities
of tasiamide E (3), only tasiamide C (1) and D (2) were evaluated for their cytotoxicity against the
HCT-116 colon cancer cell line and were found to be inactive (tasiamide C, ICso > 25 UM; tasiamide

D, ICs0 = 25 HM).
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4.3 Conclusion

The new metabolites, tasiamides C-E (1-3), were isolated from a Kimbe Bay, Papua New
Guinea collection of the tropical marine cyanobacterium Symploca sp. These metabolites add to
the growing family of structurally homologous natural products [tasiamide (4), grassystatins (5-6)
and symplocin A] that have all been isolated from similar tuft-forming cyanobacteria. This
particular Symploca sp. is a prolific producer of secondary metabolites as several structurally
diverse natural products were isolated from this collection including kimbeamide A-C,

kimbelactone, tasihalide C, and the three tasiamides reported herein.?2-23

4.4 Experimental Methods
4.4.1 General Experimental Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter, UV spectra on a Beckman
Coulter DU-800 spectrophotometer, and IR spectra on a Nicolet IR-100 FT-IR spectrophotometer
using KBr plates. NMR spectra were recorded with chloroform as an internal standard (6¢ 77.0, dn
7.26 for CHCIs) on a Varian Unity 500 MHz spectrometer (500 and 125 MHz for *H and **C NMR,
respectively), a Varian Unity 300 MHz spectrometer (300 and 75 MHz for H and **C NMR,
respectively), a Varian VNMRS (Varian NMR System) 500 MHz spectrometer equipped with a
cold probe (500 and 125 MHz for *H and **C NMR), and Bruker 600 MHz spectrometer equipped
with a 1.7 mm MicroCyroProbe (600 and 150 MHz for *H and *C NMR). LR- and HR-ESIMS
data were obtained on ThermoFinnigan LCQ Advantage Max and Thermo Scientific LTQ
Orbitrap-XL mass spectrometers, respectively. Tandem mass spectroscopy experiments were run
with a Biversa Nanomate (Advion Biosystems) electrospray source for a Finnigan LTQ-FTICR-
MS instrument (Thermo-Electron Corporation) running Tune Plus software version 1.0. HPLC was
carried out using a Waters 515 pump system with a Waters 996 PDA detector. GC-MS was

conducted with a Thermo Electron Corp. DSQ/TRACE-GC-Ultra GCMS system. All solvents were
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either distilled or of HPLC quality. Acid hydrolysis was performed using a Biotage (Initiator)

microwave reactor equipped with high pressure vessels.

4.4.2 Extraction and Isolation
The cyanobacterial biomass (101.7 g dry wt) was extracted with 2:1 CH,Cl,—MeOH to

afford 1.8 g of dried extract. A portion of the extract was fractionated by silica gel VLC using a
stepwise gradient solvent system of increasing polarity starting from 100% hexanes to 100% MeOH
(nine fractions, A-I). The fraction eluting with 25% MeOH/75% EtOAc (fraction H) was separated
further using RP HPLC [4 Synergi Hydro, isocratic 65% MeCN/35% H,O] to yield pure tasiamide
C (1, 1.9 mg), tasiamide D (2, 2.5 mg) and tasiamide E (3, 0.7 mg).

Tasiamide C (1): White amorphous solid; [a]**r-36.6 (¢ 1.17, CHCls); UV (MeOH) Amax (log
€) 211.0 (3.84); IR (neat) vmax 3371, 2965, 2933, 2877, 1737, 1644, 1521, 1453, 1263, 1201, 1178,
1098, 1031 cm™; *H NMR (600 MHz, CDClIs) and **C NMR (125 MHz, CDCls), see Table 4.1;
HRESIMS [M+Na]* m/z 839.4541 (calcd for Cs1HssNeO1:Na, 839.4525).

Tasiamide D (2): White amorphous solid; [a]?°5-84.7 (¢ 1.67, CHCI3); UV (MeOH) /imax (log
g) 220.0 (3.86) nm; IR (neat) Vmax 3318, 2965, 2931, 1739, 1648, 1526, 1453, 1203, 1033 cm; H
NMR (600 MHz, CDCls) and *C NMR (125 MHz, CDCls), see Table 4.2; HRESIMS [M+Na]*
m/z 825.4371 (calcd for CaHs2NsO11Na, 825.4369).

Tasiamide E (3): White amorphous solid; [a]*°c-22.2 (¢ 0.533, CHCI3); UV (MeOH) Amax (log
€) 207.0 (4.10) nm; IR (neat) Vimax 3329, 2926, 2958, 1743, 1645, 1521, 1454, 1281, 1177 cm'; 'H
NMR (600 MHz, CDCls) and 3C NMR (125 MHz, CDCls), see Table 4.3; HRESIMS [M+Na]*

m/z 852.4842 (calcd for C42H67N7010Na, 852.4842).

4.4.3 Acid Hydrolysis and Marfey’s Analysis of Tasiamides C-E
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Tasiamides C-E (1-3, 0.2 mg) were separately treated with 400 uL of 6 N HCI in a
microwave reactor at 160 °C for 5 min. An aliquot of the reaction product was dissolved in 500
pL of 1 mg/mL solution of D-FDAA (1-fluoro-2,4-dinitrophenyl-5-D-alanine amide) in acetone
followed by the addition of 20 uL 1 N NaHCOs. The solution was maintained at 40 °C for 1 h at
which time the reaction was quenched by the addition of 40 pL of 1 N HCI. The reaction mixture
was then dried down under N (g), re-suspended in 200 pL of 50% H,0/50% CHsCN and 10 pL of

the solution was analyzed by LC-ESIMS.

The Marfey’s derivatives of the hydrolysate and standards reacted with D-FDAA (Ala, Phe,
N-MePhe, Pro, and Leu) were analyzed by RP HPLC using a Phenomenex Luna 5 pm Cis column
(4.6 x 250 mm). The HPLC conditions began with 10% CH3;CN/90% H,O acidified with 0.1%
formic acid (aq) (FA) followed by a gradient profile to 50% CHsCN/50% H,O acidified with 0.1%
FA (aq) over 85 min at a flow of 0.4 mL/min, monitoring from 200 to 600 nm. Because authentic
D-NMeGIlu was not available, L-NMeGlu standard was derivatized with both the L-FDAA and D-
FDAA. The NMeGlu residue was analyzed by RP HPLC using a Kinetex 5u C18 100A column
(4.6 x 100 mm). The HPLC condition began with 5% MeOH/95% H,0 acidified with 0.1% FA
(aq) followed by a gradient profile to 45% MeOH/55% H.0 acidified with 0.1% FA (aq) over 125
min at a flow of 0.4 mL/min, monitoring from 200 to 600 nm. The retention times of the derivatives
of the authentic amino acids when analyzing for 1 were D-Ala (64.8 min), L-Ala (71.1 min), D-Pro
(66.6 min), L-Pro (69.4 min), D-NMePhe (78.4 min), L-NMePhe (79.7 min), L-NMeGIlu reacted
with L-FDAA (93.3 min), and L-NMeGlu reacted with D-FDAA (91.9 min); the derivatives of the
hydrolysate product of 1 gave peaks with retention times of 71.5, 69.8, 78.3, and 91.8 min,
according to L-Ala, L-Pro, D-NMePhe, and L-NMeGlu,. The retention times of the derivatives of
the authentic amino acids when analyzing for 2 were D-Ala (59.3 min), L-Ala (63.6 min), D-Pro
(60.4 min), L-Pro (62.6 min), D-Phe (78.7 min), L-Phe (83.8 min), L-NMeGIu reacted with L-FDAA

(93.3 min) and L-NMeGlu reacted with D-FDAA (91.9 min); the derivatives of the hydrolysate
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product of 2 gave peaks with retention times of 64.0, 62.6, 83.8 and 91.7 min, according to L-Ala,
L-Pro, D-Phe, and L-Glu. The retention times of the derivatives of the authentic amino acids when
analyzing for 3 were D-Leu (68.4 min), L-Leu (85.8 min), D-Pro (60.4 min), L-Pro (62.6 min), D-
NMePhe (78.6 min), L-NMePhe (79.2 min), L-NMeGlu reacted with L-FDAA (107.6 min), and L-
NMeGlu reacted with D-FDAA (103.9 min); the derivatives of the hydrolysate product of 3 gave
peaks with retention times of 85.7, 62.2, 78.2, and 104.5 min, according to L-Leu, L-Pro, D-

NMePhe, and L-NMeGlu.

4.4.4 Preparation and GCMS Analysis of Isoleucine (lle) in Tasiamides C-E

An aliquot (~0.1 mg) of the above hydrolysate product was dissolved in 100 pL H,O and
then treated with 0.263 mg (0.429 umol) of NaHCO; followed by 0.936 mg (0.429 umol) of di-
tert-butyl dicarbonate. After 16 h at room temperature, the reaction mixture was quenched by 500
pL of 5% KHSO4, back extracted 3 x 1 mL of EtOAc and the combined organic layers were dried
over MgSOa. The reaction product was then treated with freshly prepared diazomethane in diethyl
ether. Each of the four Ile standards were prepared in a similar fashion.

The derivatized hydrolysate product and standards were analyzed by chiral-phase GC-MS
using a Chirasil-Val (Agilent Technologies J&W Scientific, 30 m X 0.25 mm) under the following
conditions: the initial oven temperature was 40 °C, kept for 2 min, followed by a ramp from 40 to
75 °C at a rate of 10 °C/min, kept for 5 min, followed by another ramp to 110 °C, at a rate of
0.5°C/min, followed by a final ramp to 200 °C, at a rate of 25 °C/min, kept for 2 min. The retention
times for the four authentic standards when analyzing 1 were D-allo-lle (49.6 min), L-allo-lle
(49.9), D-lle (51.5 min), and L-lle (51.7 min); the derivatized hydrolysis product of 1 yielded a peak
at 49.6 min, according to D-allo-1le. The retention times for the four authentic standards when

analyzing 2 and 3 were D-allo-1le (47.7 min), L-allo-1le (48.2), D-lle (50.1 min), and L-lle (50.5
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min); the derivatized hydrolysis products of 2 and 3 each yielded a peak at 50.6 min, according to

L-lle.

4.4.5 Base Hydrolysis of Hmba Units in Tasiamides C and D

Tasiamide C (1) and D (2) (0.150 mg) was treated with 150 pL of 1:1 0.5 N NaOH (aq)—
MeOH (1:1) solution at room temperature for 72 h.2* The reaction mixture was neutralized by the
addition of 40 pL of 1 N HCI (aq), back extracted with 3 x 1 mL of EtOAc and the combined
organic layers were dried over MgSO.. The product was then treated with freshly prepared
diazomethane in diethyl ether for 5 min at rt. The derivatized acid hydrolysate was analyzed by
chiral-phase GC-MS using a Cyclosil B column (Agilent Technologies J&W Scientific, 30 m X
0.25 mm) under the following conditions: the initial oven temp was 35 °C, kept for 15 min, followed
by a ramp to 60 °C, at a rate of 1.5 °C, followed by ramp to 170 °C, at a rate of 5 °C/min, kept for
5 min. The retention times for the authentic standards were R-Hmba (34.9 min) and S-Hmba (35.8
min); the derivatized hydrolysis product for 1 and 2 each exhibited a single peak at 35.8 and 35.9

min, respectively, according to S-Hmba.

4.4.6 GCMS Analysis of H4mpa in Tasiamide E

The derivatized hydrolysate product used in the Ile analysis from 3 was also used in the
H4mpa analysis. Authentic standards were synthesized following a previously published method.3!
The derivatized hydrolysis product and authentic standards were analyzed by chiral-phase GC-MS
using a Cyclosil B column under the following conditions: the initial oven temp was 40 °C, kept
for 15 min, followed by a ramp to 90 °C, at a rate of 1.5 °C/min, followed by a ramp to 200 °C, at
a rate of 10 °C/min, kept for 5 min. The retention times for the authentic standards were R-H4mpa
(43.2 min) and S-H4mpa (43.8 min); the derivatized hydrolysis product yielded a peak at 43.7 min,

consistent with S-H4mpa.
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4.4.7 H-460 Cytotoxicity Assay

H-460 cells were added to 96-well plates at 3.33 x 10* cells/mL of Roswell Park Memorial
Institute (RPMI) 1640 medium with 10% fetal bovine serum (FBS) and 1%
Penicillin/Streptomycin. The cells, in a volume of 180 puL per well, were incubated overnight
(37°C, 5% COy) to allow recovery before treatment with test compounds. Compounds were
dissolved in DMSO to a stock concentration of 10 mg/mL. Working solutions of the compounds
were made in RPMI 1640 medium without FBS, with a volume of 20 uL. added to each well to give
a final compound concentration of either 30 or 3 pg/mL. An equal volume of RPMI 1640 medium
without FBS was added to wells designated as negative controls for each plate. Plates were
incubated for approximately 48 h before staining with MTT. Using a ThermoElectron Multiskan

Ascent plate reader, plates were read at 570 and 630 nm.

4.4.8 HCT-116 Cytotoxicity Assay

Cytotoxicity was measured in HCT-116 cells using a hemocytometer. These cells
were grown in culture medium [5 mL; RPMI-1640 containing FBS (15 %), penicillin—
streptomycin (1 %) and glutamine (1 %)] at 37 °C and CO (5 %) at a starting cell density
of 5 X 10* cells per T25 flask. On day 3, cells were exposed to different concentrations of
the metabolite. Flasks were incubated for 120 h (5 d) in a CO2 (5 %) incubator at 37 °C,
and the cells were harvested with trypsin, washed once with HBSS, and then re-suspended

in HBSS and counted using a hemocytometer.
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Figure 4.6.1: 'H NMR (600 MHz, CDClI3) spectrum of tasiamide C
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1707H1G3_Throughspace/2

T T T T T T T T T T T T T
4.5 4.0 3.5
2 (ppm)

Figure 4.6.19: ROESY (600 MHz, CDCIls) spectrum of tasiamide E

1707H1G3/2 .
R
1.’{.
s BT sf-'
"4.“ ;“‘-'- = * i
svrie P
- {.
- e
L ¥
* . LA ’
- .

#

4.0 3.5 0.5
2 (ppm)

Figure 4.6.20: HSQC (*H 600 MHz, CDCls) spectrum of tasiamide E

rio

r20

r30

40

50

60

r70

80

90

r 100

r11o

120

130

f1 (ppm)

1 (ppm)



1707H1G3_3rdattemptatHMBC/6
03142013
E
-
4
- . 4
] -
- ks
SRy PR .
-
f
*‘ . ’ .
T T T T T T T T T T T T T T
7.5 7.0 6.5 6.0 55 5.0 3.5 3.0 25 2.0 1.5 1.0

4.5 4.0
2 (ppm)

Figure 4.6.21: HMBC (*H 600 MHz, CDCls3) spectrum of tasiamide E
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derivatized hydrolysis product (ion chromatogram of 431.5-432.5 m/z); (B) L-NMePhe; (C) D-
NMePhe; (D) Marfey’s derivatized hydrolysis product (ion chromatogram of 367.5-368.5 m/z);
(E) L-Pro; (F) D-Pro; (G) Marfey’s derivatized hydrolysis product (ion chromatogram of 341.5-

342.5); (H) L-Ala; (1) D-Ala; (J) Marfey’derivatized hydrolysis product (ion chromatogram of
413.5-414.5 m/z); (K) D-NMeGlu; (L) L-NMeGlu
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Figure 4.6.24: Chiral GCMS analysis of isoleucine in tasiamide C (A) Derivatized hydrolysis
product; (B) Derivatized hydrolysis product co-injected with D-lle; (C) Derivatized hydrolysis
product co-injected with D-allo-1le; (D) Derivatized hydrolysis product co-injected with L-lle; (E)
Derivatized hydrolysis product co-injected with L-allo-lle
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Figure 4.6.25: Chiral GCMS analysis of the terminal Hmba in tasiamide C (A) Derivatized
hydrolysis product; (B) Derivatized hydrolysis product co-injected with R-Hmba; (C) Derivatized

hydrolysis product co-injected with S-Hmba
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Figure 4.6.26: Marfey’s analysis of the amino acids in tasiamide D on LCMS: (A) Marfey’s

derivatized hydrolysis product (ion chromatogram of 417-419 m/z); (B) D-Phe; (C) L-Phe; (D)
Marfey’s derivatized hydrolysis product (ion chromatogram of 367.5-368.5 m/z); (E) D-Pro; (F)
L-Pro; (G) Marfey’s derivatized hydrolysis product (ion chromatogram of 339.5-340.5); (H) D-
Ala; (1) L-Ala; (J) Marfey’derivatized hydrolysis product (ion chromatogram of 413.5-414.5 m/z);
(K) b-Glu; (L) L-Glu
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Figure 4.6.27: Chiral GCMS analysis of isoleucine in tasiamide D (A) Derivatized hydrolysis
product; (B) Derivatized hydrolysis product co-injected with L-lle; (C) Derivatized hydrolysis
product co-injected with L-allo-1le; (D) Derivatized hydrolysis product co-injected with D-lle; (E)
Derivatized hydrolysis product co-injected with D-allo-lle
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Figure 4.6.28: Chiral GCMS analysis of the terminal Hmba in tasiamide D (A) Derivatized
hydrolysis product; (B) Derivatized hydrolysis product co-injected with R-Hmba; (C) Derivatized
hydrolysis product co-injected with S-Hmba
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Figure 4.6.29: Marfey’s analysis of the amino acids in tasiamide E on LCMS: (A) Marfey’s
derivatized hydrolysis product (ion chromatogram of 367.5-368.5 m/z); (B) D-Pro; (C) L-Pro; (D)
Marfey’s derivatized hydrolysis product (ion chromatogram of 381.5-382.5 m/z); (E) D-Leu; (F)

L-Leu; (G) Marfey’s derivatized hydrolysis product (ion chromatogram of 431.5-432.5); (H) D-
NMePhe; (1) L-NMePhe; (J) Marfey’derivatized hydrolysis product (ion chromatogram of 413.5-
414.5 m/z); (K) b-NMeGlu; (L) L-NMeGlu
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Figure 4.6.30: Chiral GCMS analysis of isoleucine in tasiamide E (A) Derivatized hydrolysis
product; (B) Derivatized hydrolysis product co-injected with L-lle; (C) Derivatized hydrolysis
product co-injected with L-allo-lle; (D) Derivatized hydrolysis product co-injected with D-lle; (E)

Derivatized hydrolysis product co-injected with D-allo-lle
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Figure 4.6.31: Chiral GCMS analysis of isoleucine in tasiamide E (A) Derivatized hydrolysis
product; (B) Derivatized hydrolysis product co-injected with R-H4mpa; (C) Derivatized
hydrolysis product co-injected with S-H4mpa
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Chapter 5:
Parguerene, Precarriebowmide, and Mooreamide: New Lipopeptides from the Marine

Cyanobacterium Moorea sp.

5.0.1 Abstract

Three new marine cyanobacterial natural products, parguerene (1), precarriebowmide (2),
and mooreamide (3), were isolated from two separate collections of Moorea sp., one from Puerto
Rico and the other from Papua New Guinea. The planar structures of each were deduced by 2D
NMR spectroscopy and mass spectrometry. Parguerene and mooreamide are modified alkyl
amides, whereas precarriecbowmide is a lipopeptide and represents a minor modification
compared to two known metabolites, carriecbowmide (5) and carriebowmide sulfone (6). The
identification of precarriecbowmide led to an investigation into whether carriebowmide and
carriebowmide sulfone were true secondary metabolites or isolation artifacts. Both parguerene
and mooreamide are structurally reminiscent of the endocannabinoids anadamide, and 2-
arachidonoyglycerol and thus it was hypothesized that each would exhibit some cannabinoid
receptor binding activity. Unfortunately, parguerene decomposed prior to being evaluated but
mooreamide exhibit moderate selective binding affinity towards CB; over CB; (K; = 0.47 uM and

Ki > 25 uM, respectively).

5.1 Introduction

Tropical marine cyanobacteria are exceptionally prolific producers of structurally diverse
secondary metabolites, many of which have intriguing biological properties.}* The cyanobaterial
genus Moorea, formally known as Lyngbya,® is one of the most prolific producers of these
secondary metabolites which include the jamaicamides,® malyngamides’ and apratoxins.® These

compounds represent a number of different structure classes (alkaloid, polyketide, peptide, or
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mixed NRPS/PKS metabolites) and have a number of different biological properties (anticancer,
antimicrobial, neurotoxic, and anti-inflammatory). Such diversity within a single genus makes
this an ideal organism for continued study for structurally unique and biologically active
secondary metabolites.

In the current effort, several filamentous tuft-forming species of marine cyanobacteria
were collected from two different locations, one off the south coast of Puerto Rico in March 2011
and the other off the east coast of Papua New Guinea in May 2005. Their extracts and reduced
complexity chromatography fractions were evaluated in a number of biological assays, with two
such fractions, one from a collection of Moorea producens and another from a collection of
Moorea bouillonii, were found to be either cytotoxic to H-460 human lung cancer cells in vitro
(41% survival at 30 pg/mL for the M. producens collection) or selective against brain and
pancreatic cell lines, and were thus chosen for further investigation. As a result of a NMR-
guided fractionation process, three new secondary metabolites were isolated and structurally
defined; two are linear alkyl amides and the other a lipopeptide, along with the isolation of
previously identified apratoxins A-C and E. The planar structure, double bond geometry, and one
of two stereocenters was determined for parguerene (1); unfortunately, it decomposed before the
second stereocenter could be defined. The lipopeptide, precarriebowmide (2), and mooreamide
(3) were more stable metabolites and were thus fully characterized including the absolute

configurations of all stereogenic centers and double bond geometry.
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Figure 5.1: Structures of the new metabolites parguerene, mooreamide, and precarriebowmide,
along with structurally related metabolites

5.2 Results and Discussion
5.2.1 Collection and Isolation

The cyanobacterium M. producens was collected by hand from shallow water (1 m)
where it was found growing on mangrove roots near La Parguera, Puerto Rico, in March 2011.
The cyanobacterium was identified by 16S rRNA analysis, where it shares a 100% maximum
identity with what is annotated as Lyngbya majuscula 3L (Accession # EU315909.1)(currently M.
producens). The isopropanol-preserved collection was repetitively extracted (CH,Cl.—MeOH,
2:1) and fractionated using normal-phase vacuum liquid chromatography (VLC). Further
fractionation using reversed-phase HPLC yielded 4.5 mg of parguerene (1), a pale yellow oil, and

2.1 mg of precarriebowmide (2), an amorphous solid.

The cyanobacterium M. bouillonii was collected by SCUBA in 10-30 feet of water where

it was growing tangled within the coral Stylophora pistillata off Pigeon Island, Papua New
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Guinea, in May 2005. Previously, a middle polarity fraction from this extract exhibited potent
molluscicidal activity and yielded the polyglycosylated macrolide, cyanolide A.° A relatively
more polar fraction eluting with 25% MeOH/EtOAc exhibited potent toxicity against brain and
pancreatic cancer cell lines and was thus chosen for further fractionation. Using a combination of
reverse-phase solid phase extraction (SPE), along with both normal and reverse-phase HPLC,
yielded 0.7 mg of mooreamide A (3), a pale yellow oil, along with the previously identified

apratoxins A-C, and E.

5.2.2 Structure Elucidation of Parguerene

HR-ESIMS of 1 gave a [M+H]" at m/z 398.3056, indicating a molecular formula of
CasH39NO; and requiring eight degrees of unsaturation. IR spectroscopy suggested the presence
of an amide or ester bond and an NH or OH functionality with strong absorption bands at 1646
cmt and 3283 cm®. The *C NMR spectrum also suggested the presence of a mono-substituted
phenyl ring (&¢ 141.1, 128.3 x 2, 128.4 x 2, and 125.8), three olefins (d¢ 120.0, 130.0, 130.3,
130.5, 135.3, and 137.4) and one amide or ester carbonyl (3¢ 170.3). The H NMR spectrum
corroborated this with protons resonating at 6y 7.28, 7.19, and 7.18 for the mono-substituted
phenyl ring and four olefinic protons at oy 6.29, 5.54, 5.49, and 5.10 plus two deshielded olefinic
methyl groups at 84 1.87 and 1.61.

Analysis of the 2D NMR spectra of 1 (COSY, HSQC, and HMBC) led to the
identification of four partial structures (a-d)(Figure 5.2). The first (a) was comprised of one
hydroxy group (6n 2.93) and one amide NH proton (3 5.82) along with a methylene (Jw
3.56/3.70), a methine (61 4.12) and a methyl group (6n 1.21). Assembly of these atoms by 2D
NMR vyielded a fragment that resembled alanine but with the carboxy group reduced to a primary
alcohol. The second fragment (b) consisted of an a,B-unsaturated ketone in which the olefin was

a-substituted with a methyl group and possessed a methylene group at the f-position. This was
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followed by a second carbon-carbon double bond that was substituted at the distal location with
one more vinyl methyl group. The third partial structure (c) contained three consecutive
methylene groups adjacent to a methine bearing a methyl and a fourth methylene group; the latter
was downfield shifted due to an adjacent di-substituted olefin. An even further downfield shifted
methylene was at the distal side of this olefinic bond. The final fragment (d) contained the final
four degrees of unsaturation present as a mono-substituted phenyl ring.

Assembly of partial structures a-d was accomplished by HMBC (Figure 5.2). Partial
structures a and b were linked by correlations from the NH proton of a as well as the a-methyl
protons and B-olefinic proton of b to the amide carbonyl.  Partial structures b and c were
connected through HMBC correlations from the bis-allylic methylene and distal olefinic proton of
b as well as the allylic methylene of ¢ to the quaternary olefinic carbon; this connection was
reinforced by an HMBC correlation from the vinyl methyl protons to the nearby methylene
carbon atom. Converging HMBC correlations from the C-14 allylic-benzylic methylene of ¢ and
the C-16 aromatic proton of d to the quaternary C-15 carbon served to connect these last two
partial structures, thus completing the planar structure of parguerene (1).

The configurations of the three olefins were determined by a mixture of *C NMR
analysis and by 3J coupling. The olefin between C-12 and C-13 exhibited a coupling constant of
15.5 Hz, indicative of E configuration. The other two olefins (C-2/C-3 and C-5/C-6) were each
tri-substituted; thus, the distinctive carbon shifts of the two vinyl methyl groups were used to
infer their geometry.® Both olefinic methyl groups showed upfield-shifted carbon resonances (C-
23, dn 12.7; C-22, dn 16.8), and thus their corresponding olefins were deduced to be of E
configuration.

The absolute configuration of the reduced alanine residue in 1 was determined by LC-MS
analysis of the oxidized acid hydrolysate appropriately derivatized with Marfey’s reagent (D-

FDAA). The two standards, L- and D-Ala, were also reacted with D-FDAA and compared to the
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derivatized hydrolysate by LC-MS. From the retention times it was clear that the alanine residue
produced from compound 1 was of the L-configuration. Unfortunately, once purified, parguerene
(1) proved to be unstable and decomposed shortly after acquiring NMR spectra. As a result, the
absolute configuration of C-10 was not determined, and thus either a total synthesis or re-
collection of the producing organism are required to determine the full absolute configuration of
1.

Parguerene is structurally reminiscent of stipiamide (4), a natural product isolated from
the Gram-negative soil bacterium Myxococcus stipitatus.!! Stipiamide and other related
compounds exhibit a broad range of biological activities including reversal of multidrug
resistance (MDR) in cancer cells,** anti-HIV,* antifungal and antibacterial®®>. From several
structure-activity relationship studies, it was shown that reducing the number of conjugated
double bonds in stipiamide significantly reduced its overall toxicity [EDso 0.01 nM to 14 pM
against adriamycin resistant breast cancer cells (MDR-7adrR)] while the MDR reversing activity
was maintained.'**® Although parguerene decomposed prior to being evaluated for biological
properties, based on these previous studies and comparison of its structure with that of stipiamide,
we hypothesize that it would have less cellular toxicity than stipiamide but perhaps retain its
MDR reversing properties. Thus, for a variety of reasons, including confirmation of structure and
clarification of the one unresolved stereocenter, re-isolation or production of parguerene via total

synthesis is needed.



Table 5.1: *H and **C NMR assignments for parguerene in CDCls
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Position dcP dn (J in Hz)? HMBC? COSY?
1 170.3
2 130.3
3 135.3 6.29,t (7.3) 1,4,5,23 4,23
4 273 2.85,1(7.2) 1,3,5,6 3,5,23
5 120.0 5.10, t (7.0) 3,4,7,22 4,7,22
6 137.4
7 39.8 1.95, t (7.4) 8,9,22,6 4,5,8
8 253 1.40,m 7,9,10 7,9a, 9b
9a 36.2 1.29,m 7,10, 11, 21 8, 9b, 10
9b 1.09, m 7,10, 11, 21 8, %a, 10
10 33.0 1.47,m 8,9,11,21  9a, 9b, 11a, 11b,
21
11a 39.9 2.02, dt (14.0, 6.3) 9,10, 12, 21 10, 11b, 12
11b 1.86, dt (14.0, 6.9) 9,10, 12, 21 10, 11a, 12
12 139.5 5.49, dt (15.5, 6.3) 10,11, 13, 14 11a, 11b
13 130.0 5.54, dt (15.5, 6.5) 14,15, 16, 17 14
14 39.1 3.34,d (6.5) 13, 15, 16 11a, 11b, 13
15 141.1
16/20 128.3 7.28,m 15, 17
17/19 128.4 7.18, m 16, 18
18 125.8 7.19, m 17
21 19.5 0.88, d (6.8) 9,10, 11 10
22 16.1 161, 5,6,7 5,7
23 12.8 1.87,s 3 3,4
P’ 48.1 412, m 2,3 22°,2b’, 3, NH
2a° 67.7 3.70, dd (10.9, 3.2) 1,3 1”,2b’, OH
2b’ 3.56, dd (10.9, 6.5) 1,3 1, 22>, OH
3’ 17.1 121, m 1,2 I’
OH 2.93, s 2a°,2b°
NH 5.82, d (5.5) 1’

3500 MHz for *H NMR, HMBC, and COSY. 75 MHz for *C NMR.
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Figure 5.2: Four partial structures and select 2D NMR data for parguerene

5.2.3 Structure Eluidation of Precarriebowmide

HR-ESIMS of compound 2 gave a [M+Na]* at m/z 887.4706, indicating a molecular
formula of CssHesNsOsS and requiring 16 degrees of unsaturation (inactive in H-460 cancer cell
assay with an ICso > 10 uM). IR spectroscopy suggested that 2 was peptidic in nature with a
strong absorption band at 1646 cm™, and was supported by the observation of seven amide or
ester type carbonyls by *C NMR analysis (5c 175.5, 174.1, 174.0, 172.9, 172.0, 170.6, and
170.0). The *H NMR spectrum also suggested a peptide with four amide (NH) protons resonating
at 8 7.23, 7.38, 8.60, 8.92, and two N-methyl groups at &y 2.62 and 3.09. The **C and *H NMR
spectrum indicated the presence of two mono-substituted benzene rings with six peaks, two of
which were composed of four carbons each, as indicated by relative peak height (6¢ 138.1, 137.5,
130.6 x 4, 129.9 x 4, 128.4, and 128.3) and numerous protons resonating between oy 7.20 and
7.40.

Analyis of 1D and 2D NMR spectra (COSY, TOCSY, ROESY, HSQC, and HMBC) led
to the identification of five amino acids [alanine (Ala), phenylalanine (Phe), methonine (Met), N-

methyl-phenylalanine (N-MePhe), and N-methyl-leucine (N-MeLeu)], one hydroxy acid [2-
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hydroxy-3-methylbutanic acid (Hmba)], and one extended chain polyketide [3-amino-2-
methylhexanoic acid (Amha)]. These residues accounted for 15 of the 16 degrees of unsaturation,
indicating that the final degree of unsaturation must arise from 2 having an overall cyclic
constitution. This conclusion was also apparent from the residue connectivities observed by
HMBC and ROESY, along with the comparison to a known compound, carriebowmide (4), as
described below.

ROESY correlations from NH protons to adjacent residue o-protons were used to
sequentially connect the Ala, Amha, and Hmba residues. HMBC correlations from the N-methyl
of the N-MePhe residue (C-45) to the carbonyl of the Hmba residue (C-46) extended this
sequence to Ala — Amha — Hmba — N-MePhe. Another fragment was constructed by an HMBC
cross-peak between the N-methyl of the N-MeLeu residue (C-19) and the carbonyl of Phe (C-20).
A third fragment was comprised of a Met residue that showed no long-range correlations to any
of the other residues. These partial structures were deployed in a search for related compounds in
MarinLit©, which revealed that compound 2 was very similar to the known cyanobacterial
metabolite, carriecbowmide (5).2* A comparison of their **C NMR spectra revealed that the planar
structures were identical except for the oxidation state of the sulfur atom in the Met residue.
Thus, precarriebowmide was deduced to have a cyclo-[Amha — Ala — N-MeLeu — Phe — Met — N-
MePhe — Hmba] structure (Figure 5.3).Y7

The absolute configuration of the L-Ala and L-Met residues in precarriebowmide (2) were
determined by LC-MS analysis of the acid hydrolysate appropriately derivatized with Marfey’s
reagent (D-FDAA). As both 2 and 5 had the same L configured Ala and Met or Met(SO2)
residues, and the same relative configurations as indicated by their nearly superimposable *C
NMR spectra, it was deduced that the two compounds should have the same absolute
configurations in the remaining residues [L-Phe, D-N-MePhe, L-N-MeLeu, (2S,3R)-Amha, and R-

Hmba].
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The similarities between compound 2, 5 and carriebowmide sulfone (6), suggested that 2
might be the actual natural product with the others perhaps representing artifacts as a result of
exposure to atmospheric oxygen. Precarriecbowmide was extracted and purified from the
collected cyanobacterial mass within a few days of collection and preservation, thus potentially
preventing 2 from oxidizing to carriebowmide. Close inspection of the original LC-MS
chromatogram of the semi-crude fraction containing 2 revealed a trace amount of carriebowmide
(5); however, the major metabolites were compounds 1 and 2. Upon purification of 2, there was
no indication of carriebowmide; however, after two weeks in CD;0D the sample was found to be
comprised of a mixture of precarriebowmide, carriebowmide and carriebowmide sulfone, in an
approximate 60:40:<1 ratio, respectively. These observations taken together with the facile
oxidation of the sulfide in methionine, it is conceivable that 2 represents the true natural
metabolite and that 5 and 6 are artifacts of the isolation process. Moreover, this conclusion is
consistent with the finding that the sulfoxide in carriebowmide (5) is racemic, and in fact,

represents a mixture of two diastereomeric compounds.



Table 5.2: *H and **C NMR assignments for precarriebowmide (2) in CD;0D
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residue position dcP dn (J in Hz)? HMBC? COSY
Amha 1 175.5
2 43.2 2.65, m 1,34 3,4
3 9.1 0.90, d (6.9) 1,2,4 2
4 52.0 4.28, m 2,3,5 2, 5a, 5b
5a 35.0 1.52, m 4,6,7 4
5b 1.50, m 4,6,7 4
6a 20.6 143, m 57 7
6b 1.37, m 57 7
7 13.8 0.97, d (7.4) 5,6 6a, 6b
8-NH 7.38
Ala 9 174.1
10 48.8 450, m 9,11, 13 11
11 16.4 1.16, d (6.8) 9,10 10
12-NH 8.92, d (9.0) 13
N-MeLeu 13 170.6
14 59.8 4.69, m 13,15, 19 15a, 15b
15a 37.8 1.74, m 14,16, 17, 12- 14,16
NH
15b -0.23, td (10.9, 3.5) 14, 12-NH 14,16
16 25.7 144, m 15, 17 15a, 15b, 16, 17
17 218 0.78, d (6.5) 15, 16, 18 16
18 23.9 0.73,d (6.5) 17 16
19 29.7 2.62,s 14,20
Phe 20 174.0
21 52.8 4.77,dd (9.9, 6.0) 22 22a, 22b
22a 38.8 3.09,m 20,21,24 21
22b 3.03,m 20,21, 24 21
23 137.5
24/28 230.6 7.21,d (7.5) 22,23, 25, 26



Table 5.2: continued
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residue position  &c” on (J in Hz)? HMBC? COSY?
25/27 129.9 7.28,d (7.5) 24, 26
26 128.3 7.24,t(7.5) 24, 25
29-NH 7.23,m 30
Met 30 172.9
31 52.0 455 m 30, 32 333, 33b
32a 30.1 219, m 34 333, 33b
32b 131, m 31, 33 333, 33b
33a 335 1.88, m 34 31, 32a, 32b
33b 1.67, m 32 31, 32a, 32b, 34
34 15.2 2.05,s 32,33 33b
35-NH 8.60, d (8.8)
N-MePhe 36 170.0
37 62.2 462, m 36, 38, 45 38a, 38b, 45
38a 37.7 3.41, dd (13.5, 36, 37, 39 37
9.9)
38b 2.95, dd (13.5, 36, 37, 39 37
5.6)
39 138.1
40/44  130.6 7.25,d (7.5) 39, 41, 42
41/43  129.9 7.37,1(7.5) 40, 42
42 128.4 7.27,t(7.5) 40, 41
45 30.1 3.09, s 37, 46 37
Hmba 46 172.0
47 76.1 5.16, d (2.81) 48, 49, 50 48
48 30.6 1.70, m 47, 48, 50 47,50
49 19.7 1.18, d (6.8) 47, 48, 50 48, 50
50 16.9 0.88, d (6.8) 47,48, 49 48, 49

3500 MHz for *H NMR, HMBC, and COSY;; °75 MHz for 3C NMR
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Figure 5.3: Select 2D NMR data for precarriebowminde (2)

5.2.4 Structure Elucidation of Mooreamide (3)

HR-ESIFTMS of 3 yielded an [M+H]* peak at m/z 390.3006, indicating a molecular
formula of C4H3sNO3 and requiring 6 degrees of unsaturation (calcd for C24HsNO3; 390.3003).
IR spectroscopy suggested the presence of a carbonyl along with NH and/or OH functionality
with strong absorption bands at 1657 and 3399 cm™. The *C NMR spectrum suggested that the
carbonyl was present as an amide or ester functionality with an observed shift at 167.2 ppm, and
also indicted the presence of five olefins (6c 145.9, 139.1, 136.0, 132.5, 130.9, 129.2, 126.6,
124.8, 122.0, and 114.2), accounting for all six degrees of unsaturation. The *H NMR spectrum
supported the presence of both an NH and OH functionality with corresponding protons
resonating at oy 6.25 and 2.50, respectively, and a number of olefins with ten protons resonating
between dn 4.90 and 6.30 along with one deshielded vinyl methyl at o1 1.71.

Analysis of 2D NMR data for 3 (COSY, HSQC, HMBC, and NOESY) led to the
identificaiton three partial structures (a-c), each consisting of separate spin systems (Figure 5.4).
The first (a) was comprised of two hydroxy groups (8w 2.50 x 2), one amide proton (3w 6.25), two
methylenes (8n 3.85 x 2) and a methine (8n 4.00). From H-'H COSY correlations it was clear

that this fragment was an amino glycerol moiety and this was further supported by the symmetry
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seen in both the H and *C data. By peak integration, one signal represented both hydroxy
groups and another for both methylenes. The second spin system (b) consisted of 11 substituted
carbons in a linear fashion in which an a,B-unsaturated ketone was followed by two methylenes
in the B and y positions. Adjacent to the distal methylene was a disubstituted carbon-carbon
double bond followed by four consecutive methylenes. The third and final fragment (c) consisted
of the remaining 10 carbons, including a conjugated diene which was substituted with a methyl
group. This was followed by three consecutive methylene groups and a terminal carbon-carbon
double bond.

The three partial structures were assembled by two key HMBC correlations. Partial
structures a and b were linked by a correlation from the NH proton of a to the a,B-unsaturated
ketone in b (NH to C-1). A second key HMBC correlation was between the vinyl methyl in ¢ and
the distal methylene in b (H-21 to C-10), thus completing the planar structure of mooreamide A
(3) as seen in figure 5.4.

The configurational assignment of the four internal olefins were determined by a
combination of NOE correlations, 3J coupling, and *C NMR analysis. The configuration of the
tri-substituted olefin between C-14/C-15 was determined using a key NOE correlation between
H-21 (6n 1.72) and the olefinic proton on C-14 (6n 6.22), establishing the configuration of the
double bond as E. The configuration of the olefins between C-2/C-3 and C-16/C-17 were
determined using 3J coupling analysis. The measured coupling constant between C-2/C-3 was
11.7 Hz which is indicative of Z configuration, whereas the coupling constant between C-16/C-17
of 15.1 Hz was indicative of E conformation.?® The configuration of the final olefin between C-
6/C-7 was more challenging to determine as both the vinyl protons and adjacent methylenes were
overlapped, thus preventing the use of either *J coupling constant analysis or NOE correlations.

Thus, the distinctive carbon shifts of the two allylic methylenes (C-5 and C-8), adjacent to the
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olefin, were used to infer its geometry.'®> 2 Both methylene groups showed downfield-shifted
carbon resonances (C-5, d¢c 32.0; C-8, 6c 31.1), thus indicative of E configuration.

Due to the isolation of highly cytotoxic apratoxins from the same fraction that yielded
mooreamide A (3), and the limited quantity of 3 available, we were unable to evaluate it for
cytotoxic activity.?»?2 However, based on structure homology between 3 and two
endocannabinoid ligands, anandamide (7) and 2-arachidonoylglycerol (8), it was evaluated
against both neuroreceptors, CB: and CB,. Compound 3 exhibited moderate affinity for CB; with
a Kjvalue of 0.47 uM, whereas it showed no affinity for CB. at concentrations up to 25 uM, and
thus appears to be strongly selective towards CB; (>10-fold). Mooreamide (3) exhibits the
strongest affinity for CB; thus far from this class of marine metabolites.?

H
Ho NN
Y L

HO -

— COSY 7~ HMBC »~ "« ROESY

Figure 5.4: Three partial structures and select 2D NMR data for mooreamide (3)



Table 5.3: H and **C NMR assignments for mooreamide (3) in CDCl;
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Position  oc® dn (3 in Hz)? HMBCP CosY?
1 167.2
2 122.0 5.74,d (11.7) 1,4 3,4
3 1459  6.03,dt(115,7.7) 1,4,5 2,4
4 286  2.70,dt (7.5, 6.4) 1,2,3,5 2,3,5
5 32.0 2.12,m 3,4 4,6,7
6 129.2 5.43,m 4,5,7,8 5,8
7 130.9 5.43,m 5,6,8 5,8
8 31.1 2.12 6,7,11 4,6,7
9 29.5 1.25,m 8,11
10 28.8 1.31,m 8,11
11 39.8 2.05,m 8,12,13,21
12 136.0
13 124.8 5.78, d (11.0) 11,14, 15,21 14
14 1266  6.22,dd (15.1, 11.0) 12,13, 16 13,15
15 1325 557, dt(15.1, 7.0) 13, 16, 17 15, 16
16 32.9 2.07,m 14, 15, 17 15, 18
17 28.7 1.39,m 15, 16, 18
18 33.7 2.04,m 17, 19, 20 17,19
19 139.1  5.82,dt(10.3,6.5) 17, 18, 20 18, 20
20a 1142 4.99, d (17.0) 18 19
20b 4.93,d (10.3) 18 19
21 16.5 172, 11,13
R 521  4.00,dt(7.2,4.1) 2 NH
/3 63.9 3.85, m iR OH
NH 6.25, m 1 ik
OH 2.50, bs 2’

a500 MHz for *H NMR, and COSY: ®600 MHz for HMBC: €125 MHz for 3C NMR.
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5.2.5 Biosynthetic Origin

Although precarriebowmide, parguerene, and mooreamide are ostensibly of mixed
biosynthetic origin, they clearly represent two very different structural classes, cyclic lipopeptide
versus modified linear alkyl amide.?® Furthermore, each metabolite has undergone modifications
to the core structure, such as the incorporation of a hydroxy acid residue and N-methylation
events (N-MePhe and N-MeLeu) in precarriebowmide versus integrated aromatic and aliphatic
moieties as well as a presumed reductive offloading of alanine and serine in parguerene and
mooreamide, respectively.?® The location of the methyl groups on the alkyl chain of parguerene
(1) suggests the possibility of their arising from one of two different biosynthetic pathways, both
of which likely begin with phenyl acetic acid. In one scenario, the phenyl acetic acid is
condensed with a sesquiterpene moiety whereas in the second phenyl acetic acid is the starter unit
for six iterative polyketide synthase (PKS) additions of acetate. In the latter case, C-methylation
must occur on the C-2 position of every other acetate unit. Differentiation between these two
intriguing alternatives may be possible through genome sequencing of DNA preserved at the time
of collection.

As for mooreamide (3), the C1-C20 chain is likely assembled by a polyketide synthatase
(PKS), where four of the five olefins (C2/C3, C6/C7, C12/C13, and C14/C15) occur between the
incorporation of predicted acetate units, and thus the modules responsible for each would be
lacking the enoylreductase domain.?” However, the terminal olefin (C19/C20) must be formed in
a different manner as it involves both carbons of a single acetate unit. The mechanism for
formation of this functionality may be similar to that responsible for forming the terminus of the
jamaicamides which involve a fatty acid type desaturase.?®?° Other known mechanisms to form
terminal olefins, such as the olefin synthase (OLS) in the curacin A pathway, introduce terminal
olefins at the carboxyl terminus, and thus are likely not involved in the biosynthesis of

mooreamide (3).30:3
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5.3 Conclusion

The new metabolites, parguerene (1), precarriebowmide (2), and mooreamide A (3), were
each isolated from a collections of Moorea sp. that were found growing in the tropical marine
environment. These two collections have been extraordinarily fruitful as numerous structurally
intriguing metabolites have previously been isolated, such as apratoxins A-C and E, several
lyngbyabellins® and cyanolide A.!! Both parguerene and mooreamide A are structurally distinct
from each of these other compound classes as they are alkyl amides, and consist of a modified
fatty acid tail and an amide linkage. The planar structure of all three of these metabolites were
determined by NMR and other spectroscopic techniques, while the absolute configurations of all
but one stereocenter were determined by carbon chemical shift comparison, and Marfey’s
analysis. The structures of parguerene and mooreamide add to a growing family of alkyl amide
metabolites from cyanobacteria, most of which possess interesting biological activities. In this

case, mooreamide A (3) was shown to be a selective agonist to the CB; receptor.

5.4 Experimental Methods
5.4.1 General Experimental Procedures

Optical rotations were measured on a JASCO P-2000 polarimeter, UV spectra on a
Beckman Coulter DU-800 spectrophotometer, and IR spectra were obtained using a Nicolet IR-
100 FT-IR spectrophotometer using KBr plates. NMR spectra were recorded with solvent peaks
as internal standards (8¢ 77.0, 6n 7.26 for CHCIs, and 8¢ 49.0, 84 3.31 for CH3OH) on a Varian
Unity 500 MHz spectrometer (500 and 125 MHz for *H and 3C NMR, respectively) and Varian
Unity 300 MHz spectrometer (300 and 75 MHz for *H and *C NMR, respectively). LR- and HR-
ESIMS were obtained on ThermoFinnigan LCQ Advantage Max and Thermo Scientific LTQ

Orbitrap-XL mass spectrometers, respectively. All solvents were either distilled or of HPLC
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quality. Acid hydrolysis was performed using a Biotage (Initiator) microwave reactor equipped

with high pressure vessels.

5.4.2 Morphological Identification
Morphological characterization were performed using an Olympus 1X51 epifluorescent
microscope (1000X) equipped with an Olympus U-CMAD3 camera. Morphological comparison
and putative taxonomic identification of the cyanobacterial specimen was performed in

accordance with modern classification systems.32

5.4.3 Collection, Extraction, and Isolation

The Moorea producens cyanobacterial biomass (10.4 g, dry wt) was extracted with 2:1
CH,CIl,—MeOH to afford 3.9 g of dried extract. A portion of the extract was fractionated by
silica gel VLC using a stepwise gradient solvent system of increasing polarity starting from 100%
hexanes to 100% EtOAc to 100% MeOH (nine fractions). The fraction eluting with 100% EtOAc
was separated further using RP HPLC [4u Synergi Fusion, 65% CH3;CN/H,O over 50 min to
produce six fractions (1-6)] to yield pure parguerene (1, 4.5 mg) and precarriecbowmide (2, 2.1
mg).

The second cyanobacterium, PNG 5/19/05-8, was collected by SCUBA in 10-30 feet of
water off of Pigeon Island on the northeast coast of New Britain Island, Papua New Guinea and
was previously identified as Moorea bouillonii by 16S RNA sequencing.’® The biomass (37.9 g,
dry wt) was extracted with 2:1 CH.Cl,—MeOH to afford 1.2 g of dried extract and was
subsequently fractionated by silica gel VLC using a stepwise gradient solvent system of
increasing polarity starting from 100% hexanes to 100% MeOH (nine fractions, A-l). The
fraction eluting with 75% EtOAc/MeOH (fraction H) was separated further by a 1 g RP SPE

using a stepwise gradient solvent system of decreasing polarity starting from 50% MeOH/H0O to



186

100% CHCl,. Fractions 3 and 4, which eluted with 70% MeOH/H.O and 80% MeOH/H-0,
respectively, were combined and further purified using RP HPLC [4 Synergi Fusion, 60%
CH3CN/H,0 for 30 min, followed by 70% CHsCN/H,0 for 15 min and then 100% CH3CN for 20
min at 3 mL/min to produce six fractions (1-6)]. The final step in the purification employed NP
HPLC [5u Luna, holding 90% hexanes/EtOAc for 5 min and then changing to 100% EtOAc over
15 min at 3 mL/min to produce another eight fractions (A-H)] yielding 0.7 mg of pure
mooreamide A (1) .

Parguerene (1): pale yellow oil; [a]?®5 +17.3 (¢ 0.22, MeOH); UV (MeOH) Amax (log €) 202
(4.50), 206 (2.66) nm; IR (neat) Vimax 3283, 3050, 2958, 1646, 1541, 1449, 1239, 1185, 1134, 746;
IH NMR (500 MHz, CDCls) and *C NMR (75 MHz, CDCls), see Table 1; HRESIMS [M+H]*
m/z 398.3056 (calcd for C26HaoNO3, 398.3054).

Precarriebowmide (2): amorphous solid; [0]%p -52.6 (¢ 0.15, MeOH); UV (MeOH) Amax
(log €) 201 (4.67), 256.0 (2.91) nm; IR (neat) Vmax 3061, 3030, 2958, 1646, 1541, 1239, 1134,
746; *H NMR (500 MHz, CDCI;) and **C NMR (75 MHz, CDCls), see Table 2; HRESIMS
[M+Na]* m/z 887.4706 (calcd for CssHesNsOsS, 887.4712).

Mooreamide (3): pale yellow oild; UV (MeOH) Amax (log €) 230 (4.12) nm; IR (neat) Vmax
3399, 2924, 2853, 1657, 1543, 1441, 1383, 1265, 1197, 1076, 738 cm?; *H NMR (500 MHz,
CDCls) and *C NMR (125 MHz, CDCls), see Table 3; HRESIMS [M+H]* m/z 390.3006 (calcd

for C24H40N03 390.3003).

5.4.4 Oxidation, Acid Hydrolysis, and Marfey’s Analysis of Parguerene
Parguerene (1, 0.5 mg) was dissolved in 200 uL of acetone and cooled to 0 °C, then
treated with 10 pL of 0.25 M Jones reagent (CrOs, H.SO.). After 20 min the reaction was
guenched with 200 L of isopropyl alcohol and the reaction mixture was extracted with EtOAc

5x to yield the desired product. The reaction product was then treated with 300 pL of 6 N HCI in
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a microwave reactor at 160 °C for 5 min. The reaction product was dissolved in 300 uL of 1 M
sodium bicarbonate, and then 56 pL of 0.5% D-FDAA (1-fluoro-2,4-dinitrophenyl-5-D-alanine
amide) was added in acetone. The solution was maintained at 40 °C for 80 min at which time the
reaction was quenched by the addition of 300 uL of 1 N HCI. The reaction mixture was diluted
with 300 pL of CHsCN and 10 pL of the solution was analyzed by LC-ESIMS.

The Marfey’s derivatives of the hydrolysate and standards were analyzed by RP HPLC
using a Phenomenex Luna 5 pm Cig column (4.6 x 250 mm). The HPLC conditions began with
10% CH3CN/90% H,O + 0.1% formic acid (FA) followed by a gradient profile to 50% CH3CN/
50% H,0 +0.1% FA over 85 min at a flow of 0.4 mL/min, monitoring from 200 to 600 nm. The
retention times of the D-FDAA derivatives of the authentic amino acids were D-Ala (50.62 min),
and L-Ala (56.44 min); the derivative of the hydrolysate product gave a peak with a retention time

of 56.68 min, corresponding to L-Ala.

5.4.5 Acid Hydrolysis and Marfey’s Analysis of Precariecbowmide

Precarriebowmide (2, 0.3 mg) was treated with 300 pL of 6 N HCI in a microwave
reactor at 160 °C for 5 min. The reaction product was dissolved in 200 pL of 1 M sodium
bicarbonate, and then 32 pL of 0.5% D-FDAA was added in acetone. The solution was
maintained at 40 °C for 70 min at which time the reaction was quenched by the addition of 100
ML of 2 N HCI. The reaction mixture was diluted with 200 uL of CHsCN and 10 pL of the
solution was analyzed by LC-ESIMS.

The Marfey’s derivatives of the hydrolysate and standards were analyzed by RP HPLC
using a Phenomenex Luna 5 pm Cig column (4.6 x 250 mm). The HPLC conditions were
identical to the method described above. The retention times of the D-FDAA derivatives of the

authentic amino acids were D-Ala (50.17), L-Ala (56.33), D-Met (62.35) and L-Met (70.49); the
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hydrolysate product gave peaks with retention times of 56.51 and 70.56 min, according to L-Ala

and L-Met, respectively.

5.4.6 Polymerase Chain Reaction (PCR) and Cloning for PRM-25/Mar/11-2

Genomic DNA was extracted using the Wizard Genomic DNA Purification Kit (Promega
Inc.) following the manufacturer’s specifications. DNA concentration and purity were measured
on a DU 800 spectrophotometer (Beckman Coulter). The 16S rRNA genes were PCR-amplified
from isolated DNA using the cyanobacterial specific primers 27F5’-
AGAGTTTGATCCTGGCTCAG-3’ and 809R 5’-GCTTCGGCACGGCTCGGGTCGATA-3".
The PCR reaction contained 1.0 pL (~100 ng) of DNA, 2.5 uL of 10 x PfuUltra IV reaction
buffer, 1.0 uL (10 mM) of dNTP mix, 1.0 yL of each primer (10 puM), 1.0 pL of PfuUltra IV
fusion HS DNA polymerase and 17.5 pL H>O for a total volume of 25 pL. The PCR reactions
were performed in an Eppendorf Mastercycler gradient as follows: initial denaturation for 4 min
at 95°C, amplification by 30 cycles of 30 sec at 95°C, 30 sec at 50°C and 1 min at 72°C, and final
elongation for 7 min at 72°C. PCR products were purified using a MinElute PCR Purification Kit
(Qiagen) before subcloning with the Zero Blunt TOPO PCR Cloning Kit (Invitrogen) following
the manufacturer’s specifications. Plasmid DNA was isolated using the QIAprep Spin Miniprep
Kit (Qiagen) and sequenced with M13 primers. The 16S rRNA gene sequence is available in the

DDBJ/EMBL/GenBank databases under acc. No. KC790370.

5.4.7 Phylogentic Inferences for PRM-25/Mar/11-2
All gene sequences were analyzed using Geneious Pro v.5.5.4.3 The 16S rRNA gene
sequences were aligned using the L-INS-1 algorithm in MAFFT v6.814b.%® Best-fitting nucleotide
substitution models optimized by maximum likelihood were selected using corrected

Akaike/Bayesian Information Criterion (AIC/BIC) in jModelTest v0.1.1.*® The evolutionary
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histories of the cyanobacterial genes were inferred using Maximum Likelihood (ML) and
Bayesian inference algorithms. The Maximum Likelihood (ML) inference was performed using
PhyML?*" in Geneious Pro v5.5.4. The analysis was run using the GTR+I1+G model (selected by
AIC and BIC criteria) assuming heterogeneous substitution rates and gamma substitution of
variable sites (proportion of invariable sites (pINV) = 0.000, shape parameter (o) = 0.16, number
of rate categories = 4). Bootstrap resampling was performed on 1,000 replicates. Bayesian
analysis was conducted using MrBayes® in Geneious Pro v5.5.4 with four Metropolis-coupled
MCMC chains (one cold and three heated) ran for 3,000,000 generations. The first 25% were

discarded as burn-in and data set was sampled with a frequency of every 200 generations.

5.4.8 H-460 Cytotoxicity Assay

H-460 cells were added to 96-well plates at 3.33 x 10* cells/mL of Roswell Park
Memorial Institute (RPMI) 1640 medium with 10% fetal bovine serum (FBS) and 1%
penicillin/streptomycin. The cells, in a volume of 180 uL per well, were incubated overnight (37
°C, 5% CO,) to allow recovery before treatment with test compounds. Compounds were
dissolved in DMSO to a stock concentration of 10 mg/mL. Working solutions of the compounds
were made in RPMI 1640 medium without FBS, with a volume of 20 pL added to each well to
give a final compound concentration of either 30 ug/mL or 3 pg/mL. An equal volume of RPMI
1640 medium without FBS was added to wells designated as negative controls for each plate.
Plates were incubated for approximately 48 h before staining with MTT. Using a

ThermoElectron Multiskan Ascent plate reader, plates were read at 570 and 630 nm.
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Figure 5.6.3: COSY (500 MHz, CDCIs) spectrum of parguerene
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Figure 5.6.4: gHSQC (*H 500 MHz, CDCls) spectrum of parguerene
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Figure 5.6.9: gHSQC (*H 500 MHz, CD3;0D) spectrum of precarriebowmide
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Figure 5.6.10: HMBC (*H 500 MHz, CDsOD) spectrum of precarriebowmide
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Figure 5.6.19: Marfey’s analysis of parguerene on LCMS: (A) Marfey’s derivatized
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hydrolysis product (ion chromatogram of 339-340 m/z); (B) L-Ala (ion chromatogram of
339-340 m/z); (C) p-Ala (ion chromatogram of 339-340 m/z)
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Figure 5.6.20: Marfey’s analysis of the amino acids in precarriecbowmide on LCMS:

(A)

Marfey’s derivatized hydrolysis product (ion chromatogram of 399-341 m/z); (B) o-Met

(ion chromatogram of 399-401 m/z); (C) .-Met (ion chromatogram of 399-401 m/z); (D)

Marfey’s derivatized hydrolysis product (ion chromatogram of 339-341 m/z); (E) o-Ala
(ion chromatogram of 339-341 m/z); (F) .-Ala (ion chromatogram of 339-341 m/z)



Figure 5.6.1: 3C A-table for carriebowmide to precarriecbowmide (CDsOD)

Position Carriebowmide Precarriebowmide Delta-Delta
1 175.6 175.5 -0.1
2 43.2 43.2 0.0
3 9.3 9.1 -0.2
4 51.9 52.0 0.1
5 34.9 35.0 0.1
6 20.6 20.6 0.0
7 13.8 13.8 0.0
8-NH
9 174.1 174.1 0.0
10 49.0
11 16.5 16.4 -0.1
12-NH
13 170.7 170.6 -0.1
14 59.9 59.8 -0.1
15 37.9 37.8 -0.1
16 25.8 25.7 -0.1
17 21.9 21.8 -0.1
18 23.8 23.9 0.1
19-N-Me 29.7 29.7 0.0
20 173.9 174.0 0.1
21 52.7 52.8 0.1
22 38.7 38.8 0.1
23 137.3 137.5 0.2
24/28 130.5 130.6 0.1
25/27 129.9 129.9 0.0
26 128.3 128.3 0.0
29-NH
Skipped Methionine
36 170.1 170.0 -0.1
37 62.2 62.2 0.0
38 37.3 37.7 0.4
39 138.3 138.1 0.2
40/44 130.6 130.6 0.0
41/43 130.0 129.9 -0.1
42 128.3 128.4 0.1
45-N-Me 30.0 30.1 0.1
46 172.1 172.0 -0.1
47 76.0 76.1 0.1
48 30.7 30.6 -0.1
49 19.8 19.7 -0.1
50 16.9 16.9 0.0
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Chapter 6:

Structure-Activity Relationships of the Lyngbyamide Class of Marine Natural Product

6.0.1 Abstract

Alkyl amides are a growing class of marine natural products that have both physiological
and pharmacological importance. In recent years, several alkyl amides have been isolated from
marine cyanobacteria and exhibit a broad range of biological activities, including ion channel
modulation, brine shrimp toxicity and cannabinoid receptor binding ability. These interesting
biological activities, coupled with the relative synthetic tractability of these alkyl amides, led to the
design of a structure-activity relationship study into the lyngbyamides. In total, 50 analogs were
synthesized, designed to probe the importance of several structural characteristics of the
lyngbyamides. These compounds were tested in a wide array of biological assays, and a subset was
found to possess strong activity in the stabilization of cathepsin L-mediated proteolysis, brine

shrimp toxicity, and reduction in surface tension.

6.1 Introduction

Marine filamentous cyanobacteria are prolific producers of interesting secondary
metabolites, many of which possess intriguing biological activities.!* One growing subset of
cyanobacterial natural products is the alkyl amides, which includes the serinolamides (1),°
hermitamides (2),® malyngamides (3),” semiplenamides (4),2 mooreamide (5), parguerene (6),° the
kimbeamides (7),%° curacin A (8),** kalkitoxin (9),%? the jamaicamides (10),*® and the lyngbyamides
(11-14).4%° The majority of these metabolites are produced by only one genus, Moorea (formerly
Lyngbya),'® and are reported to exhibit a broad range of biological activities, such as brine fish
toxicity, gold fish toxicity, cannabinoid receptor binding, ion channel modulation, and moderate

cancer cell cytotoxicity.'” However, this subset of natural products is rather understudied, as most
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of the above mentioned metabolites have not been exhaustedly evaluated for their biological
potential due to limited sample quantities, and thus requiring either recollection or the completion
of total syntheses to provide the material needed for continued biological analysis.

One particularly interesting family of alkyl amides is the lyngbyamides, which consist of
a twelve carbon fatty acid tail group, functionalized with a trans-cyclopropy! ring, and coupled to
non-polar biogenic amines through an amide bond linkage. Lyngbyamide A (11) (also known as
grenadamide) was originally isolated in 1998 by Sitachitta and Gerwick from a Grenada collection
of Moorea, and was found to exhibit both moderate brine shrimp toxicity (LDso = 5 pg/mL) and
cannabinoid receptor binding activity (Ki=4.7 uM).!* Three additional natural analogs, along with
lyngbic acid, were isolated by Nannini and Gerwick in 2002 from a Madagascar collection of
Moorea, which also exhibits similar brine shrimp toxicity; however these analogs were not
evaluated in the cannabinoid receptor binding assay.’® Further semi-synthetic investigations into
this family using the isolated lyngbic acid to make a pyrrolidine derivative of lyngbyamide A (15),
resulted in a semi-synthetic derivative with 10-fold increased brine shrimp toxicity (LDso = 0.3
ug/mL).® This increase in potency was hypothesized to be attributed to the size of the pyrrolidine
ring in relation to the tryptamine and tyramine functionalities, however further studies were needed
to probe the validity of this hypothesis.*®

In the present investigation into structure-activity relationships of the lyngbyamide A class
of metabolite, a number of synthetic analogs were designed and synthesized in order to obtain a
better understanding of the key structural features responsible for the observed brine shrimp toxicity
and cannabinoid receptor binding activity. Additionally, the first round of analogs was also
evaluated in a variety of biological assays, such as for cytotoxicity to H-460 human lung cancer
cells, as ion channel modulators, as anti-inflammatory agents, and for the activation/inhibition of
the cathepsin L protease enzyme, in order to obtain a broader understanding of their pharmaceutical

potential. Through this project, we obtained a better understanding of both key structural features
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responsible for the brine shrimp toxicity as well as shed light on the potential natural functions of

tertiary amide secondary metabolites.
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Figure 6.1: Alkyl amides from marine cyanobacteria

6.2 Results and Discussion
6.2.1 Synthetic Approach to Synthesizing Lyngbyamide Analogs

Inspired by the combination of interesting biological activity and the synthetic tractability
of the lyngbyamide family of compounds, we designed a synthesis that could easily be modified to
allow us to obtain a large number of analogs. Synthetically, lyngbyamide A has one obvious point

of connection, the amide bond, which splits the molecule into two portions, the head and tail groups.
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In many of the cyanobacterial alkyl amide natural products, the tail groups vary in carbon chain
length from 12 to 20, and are often times functionalized with cyclopropane rings, O- and C-methyl
groups, and various degrees of unsaturation. As for the head groups, there are several different
types naturally observed, primarily deriving from either biogenic amines or amino glycerol. Thus,
the first round of synthetic analogs were designed to probe the effect that the fatty acid chain length
(12 and 16), fatty acid functionality (saturated, C4 trans-unsaturation, and C4 trans-
cyclopropanation), and size/polarity of the head group amines (phenethylamine, dopamine,
pyrrolidine, amino glycerol, and N,N-dimethyl amine) had on a number of biological assays,
including brine shrimp toxicity, H-460 human lung cell carcinoma cytotoxicity, nitric oxide
production in rat macrophages, ion channel modulation, cathepsin L activation/inhibition, bone
regeneration, and in a number of neuro-receptor binding assays (serotonin, cannabinoid, and
dopamine)(figure 6.2).

The synthetic approach to these analogs was split into three different target groups based
on the functionality of their tail group (figure 6.3). The synthesis of the saturated fatty amide
involved only one step, which was the coupling between the fatty acids [lauric acid (16) and
palmitic acid (17)] and the five different amines [amino glycerol (a), phenethylamine (b),
pyrrolidine (c), N,N-dimethylamine (d), and dopamine (e)] by coupling reagents N,N-
diisopropylcarbodiimide (DIPC) and hydroxybenzotriazole (HOBt).2® This produced the desired

compounds 18a-e and 19a-e in yields ranging from 50-85%.



212

N OH H
N J
/ N\
'Head group' modifications 'Tail group' modifications
NH, o
©/\/ HO)J\/\/\/\/\/\
O
HO NH; J\/\/\/\/\/\/\/\
o o
HO Q

CNH o
NH
Ho/j/ 2 o

HO
“NH o)

I
HO Z
H Y H

Figure 6.2: Round 1 analogs of lyngbyamide A

The second target group involved analogs with C4-unsaturation, and began with an olefin
coupling reaction between ethyl pentenoate (20) and either nonene (21) or tridecene (22), using the
Grubbs 2" generation catalyst.*® The carboxyl groups in the resulting ethyl esters, 23 and 24, were
then deprotected using mild base conditions, and subsequently linked to each of the amines using
the same coupling reagents mentioned above, producing analogs 27a-d and 28a-d.?°

The final target group included the analogs with the C4-trans-cyclopropyl ring, and began
with the unsaturated ethyl esters 23 and 24. The trans-cyclopropyl rings were installed by using a
modified Simmons-Smith reaction, involving diethylzinc and dilodomethane in 1,2-dichloroethane
(DCE).2! In order to get the reaction to go to completion, both of the reagents were added at three
different time points during the reaction (0, 24, and 48 h), resulting in a yield greater than 95% for

compounds 29 and 30. Although the Simmons-Smith reaction of trans-alkenes strongly favors the
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formation of trans-cyclopropyl rings, there is no enantiomeric control; therefore, the resulting
product is a mixture of enantiomers, which were not separated from one another. The carboxyl
groups were then deprotected and coupled to the amines as described above to afford analogs 33a-

d and 33a-d.

Saturated Fatty Amide

1) DIPC, HOBt 0
)M/\ DMF, rt, 24 h
> )W
HO n R,NH RoN n
16(n=1) 50-85% 18(n=1)a.e
17(n=5) 19(n=5)a-¢
C4 Unsaturated Fatty Amide
0 2nd Gen. Grubbs 0
/\OJ\/\/ + NS _DCM.rt,6h o /\OJ\/\/\/\/\M/\
n 45-55% 23(n=1) n
20 21(n=1) a(nes
22(n=5) (n=5)
90-95% 6:1 EtOH/Hzo
KOH, rt, 2 h
w OV 24 i
= DMF, rt, 24 h
-
R2N . HO)J\/\/\/\/\W
27(n=1)aq RaNH 25(n=1)
28(n=5),.4 50-85% 26(n=5)
C4 Cyclopropyl Fatty Amide
(0] Et22n, CH2|2, (6]
/\O)WM/\ DCE, 60°C, 60 h) 5
n _OEO “, n
23(n=1) 90-95% H H
24(n=5) 29(n=1)
30(n=5)
6:1 EtOH/H,0
90-95% | koH, 1t, 2 h
o DIPC, HOBt 0
DMF, rt, 24 h
R2N “, n HO 2 n
H H RoNH H H
33(n=1)g-e 50-85% 31(n=1)
34(n=5),.¢ 32(n=5)

Figure 6.3: General synthetic scheme
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6.2.2 Biological Evaluation of the First Round of Analogs

From the above synthesis, twenty-six analogs and ten intermediates were prepared and
evaluated in range of bioassays, including for brine shrimp toxicity, H-460 human lung cell
carcinoma cytotoxicity, nitric oxide production, ion channel modulation, cathepsin L protease
activation or inhibition, cancer cell selectivity, and for neuro-receptor binding activity
(cannabinoid, serotonin, and dopamine receptors). As expected, many of the analogs exhibited
moderate to potent toxicity against brine shrimp (Artemia salina), and some showed cannabinoid
receptor binding activity. Excitingly though, many of the analogs also exhibited strong activation
of the cathepsin L protease enzyme. None of the analogs showed cytotoxicity against the H-460
cell line, cancer cell selectivity against numerous cell lines on a disc diffusion assay, nitric oxide
production, ion channel modulation, or neuro-receptor binding activity against the serotonin or
dopamine receptors.

Delving a little deeper into the observed activation of cathepsin L, and the brine shrimp
toxicity revealed a potential key structural functionality that is important for these activities, the
presence of tertiary amides. All of the tertiary amides and only a couple of the secondary amides
possessed activity in both of these assays (figure 6.4), with most 100% lethal to brine shrimp at 3
pug/mL. Furthermore, there appears to be no major differences between each of the tail group
functionalities (saturated, C4-unsaturated, and C4-cyclopropyl ring); however, longer carbon
chained tail groups may be slightly more active, but a larger sample size is needed in order to

confirm this observation.
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Figure 6.5: Round 2a (right) and 2b (left) of lyngbyamide analogs

6.2.3 The Synthesis and Activity of Rounds 2A and 2B

Two additional rounds (2A and 2B) of analogs were designed based on the observed
activity in the first round of compounds (figure 6.5). Where round 2A included saturated tail groups
ranging in chain length from eight to twenty carbons, linked to either the N,N-dimethylamine or
pyrrolidine head groups, round 2B involved coupling palmitic acid (C16) with amines varying in
bulkiness, including ammonia, N-methylamine, N,N-dimethylamine, azetidine, pyrrolidine,
hexamethyleneimine, and heptamethyleneimine. Each of these new analogs was synthesized using
the coupling reagents HOBt and DIPC, as described above.'® Furthermore, each new round of
analogs was designed to probe separate questions pertaining to key functionalities, with hopes of

improving and better understanding the observed activity.
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Preliminary screening of each of these new analogs alongside the twelve tertiary amides
from the first round showed that many of these compounds exhibit both brine shrimp toxicity and
cathepsin L activation. Quantification of this observed activity by dose responses was easily
obtained for the brine shrimp toxicity (table 6.1); however, when trying to obtain ECs, values for
the cathepsin L assay, a number of complications arouse with the biggest being the day-to-day
irreproducibility of the dose response curves. Either solubility issues or variations in the timing of
the assay likely caused this problem. Trying to eliminate the latter issue, the assay protocol was
modified to ensure that the mixture of the substrate, enzyme, and analog occurred at the same time
consistently using a kinetic assay setup. Upon starting the assay, the production of product [7-
amino-4-methylcoumarin (AMC)] was monitored by fluorescence readings every minute for 150
min. Analyzing the initial velocity from the resulting progress curves revealed that there were no
statistical differences between the analogs and the enzyme blank, and thus it is unlikely that these
compounds are actually activating cathepsin L over its native initial velocity rate (figure 6.6).
However, the progress curve of several of the analogs was similar to those reported for common
biological surfactants acting on other enzymes,?! thus suggesting that these analogs might be having
a stabilizing effect on the enzyme by somehow keeping the enzyme active and in solution for longer
periods of time. Quantification of this activity was accomplished by comparing the formation of
AMC by the analogs to that of the enzyme blank at the 120 min time point (before the assay
becomes substrate limited). This verified that several of the synthetic analogs do have significant
capabilities to stabilize the cathepsin L enzyme, some even generating a fourfold increase in

product (table 6.1) over the enzyme system in buffer alone (figure 6.7).
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The similarity between the progress curves of the synthetic analogs and Tween20 (a non-
ionic surfactant) in the cathepsin L assay, hinted at the possibility that these analogs may be
surfactants, thus capable of lowering the surface tension (or interfacial tension) between a liquid
and a solid or a liquid and air. There are three types of surfactants; ionic, non-ionic, and
zwitterionic, and each consist of both hydrophobic (tail) and hydrophilic (head) portions.?® At a
particular concentration, surfactants will aggregate in water and absorb at the interfaces between
air and water, where the compounds align to form micelles and this is called the critical micelle
concentration (CMC).?* In order to determine if these analogs were indeed surfactants, surface
tension reading were acquired at numerous concentrations (2.5, 5, 7.5, 10, 12.5, 15, 20, 30, 50, 70,
100, and 140 uM) in water, using a Kruss K11 tensiometer equipped with a platinum plate. Plotting
the surface tension readings against concentration yields a graph looking similar to figure 6.8,
where it is linearly dependent both at concentrations above the CMC and for a small range of
concentrations below the CMC. The concentration value at the point where these two linear lines
intersect one another is the CMC for a pure surfactant..?* CMC values were obtained for each of

the tertiary amides along with 33b, and these data are summarized in table 6.1.

Surface Tension Readings for Compound 37d
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Figure 6.8: Surface tension readings for compound 37d and determination of CMC
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6.2.4 Analysis of the Cathepsin L Stabilization, Brine Shrimp Toxicity, and CMC Data
Analysis of the brine shrimp LDso, cathepsin L stabilization, and CMC data for each of the
tertiary amides showed similar trends in activity with correlations to specific structural features.
Analogs with 14 carbon fatty acid chains had the highest activity and activity decreased
corresponding to either increasing or decreasing chain length of the tail groups (C8 < C10 < C12 <
C14 > 16). However, analogs with either 18 or 20 carbon chain length tail groups had significant
solubility issues in all of the assay solvents (DMSO, buffered pH 5.5 water, and artificial seawater);
therefore, the data for these analogs were variable and suspect. Another important structural feature
for potent activity was the presence of tertiary amide head groups between the size of the N,N-
dimethylamine and the pyrrolidine group. Tertiary head groups of larger size
(hexamethyleneimine, and heptmethyleneimine) were completely inactive in both assays.
Statistical analysis comparing each of these different biological and biophysical data sets
to one another showed that there were significant correlations between them. A rank linear
regression analysis showed there to be a correlation between the brine shrimp toxicity and CMC
data sets (p = 0.021) as well as between brine shrimp toxicity and cathepsin L stabilization (p =
0.009). Furthermore, a multiple linear regression model showed an adjusted R? of 0.773
demonstrating that 77.3% of the variability in cathepsin L stabilization can be explained by the
regression analysis. The ANOVA table p-value <0.0001 shows that at least one independent
variable is significant in the model. Examining the model parameters reveals that structures with a
carbon chain length between 14 and 16 have the greatest effect on cathepsin L stabilization activity.
That is to say that structures with carbon chain lengths of 14-16 have greater cathepsin L
stabilization compared to those structures with carbon chain lengths of 8-12. Critical micelle
concentration was also a significant variable (p = 0.049); however, it appears clear that structural
class is a more important variable in determining cathepsin L stabilization. While an adjusted R? of

the model of 0.773 explains a great deal of the variability, 22.7% of the variability in cathepsin L
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stabilization is not explained by this model and other variables that we have not tested may be
involved. While our goal was to identify which of the independent variables analyzed are
significantly correlated with cathepsin L stabilization, repeating the model with only the significant

variables would be necessary to obtain the most appropriate regression equation.
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Figure 6.9: Comparison of cathepsin L dose response (blue) and surface tension readings
(orange) over the same logarithmic concentration scale for compound 37d



Table 6.1: Biological data for the lyngbyamide A (11) analogs
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Compound Chain ) Cathepsin L Brir]e_Shrimp CMC
length (n=) stabilization®*  Toxicity (uM) (pM)

Round 1
o 1(16) NA NA NT
HOJ\AM/\WH\ 5 (17) NA NA NT
Ho_ 1 (18a) NA NA NT
HOJ\HJ\/\/\/\/\M/n\ 5 (19a) NA NA NT
o 1 (18b) NA NA NT
@\ﬁ”k/\/\/\/\w/n\ 5 (19b) NA NA NT
o 1 (18c) 138007 0931+£0092 276
@NW 5 (19¢) 171+013 0.766+0.003 50-80
° 1 (18d) 138007 164+0031 349
\TMWW 5 (19d) 206+0.11 00923+0.009 50-80
HO 5 1 (18¢) NA NA NT
HOJQ\AHJK/\/\/\»M 5 (19€) NA NA NT
5 1(23) NA NA NT
A 5(24) NA NA NT
o 1(25) NA NA NT
HO)K/\/W\M;\ 5 (26) NA NA NT
Ho_ o 1 (27a) NA NA NT
HOV\LHJK/\/\/\/\W 5 (28a) NA NA NT
o 1 (27b) NA >10 NT
@”WW 5 (28b) NA NA NT
o 1(27¢) 097006  832+049  61.3
QJ\/\/\/VW 5 (28¢) 159+0.09 0.682+0009 41.3
o 1 (27d) 112+£008  1042£023 50-80
\TW%\ 5(28d)  3.06+009  1.11+0099 348
o 1(31) NA NA NT
HOW 5 (32) NA > 11 NT



Table 6.1: continued
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Compound jength (n=) _ stabilization® _Texieity (u¥) _ (uM)
HOL o 1(33a) NA NA NT
HO\J\NW 5 (34a) NA NA NT
H H Y H i
@\/\ o) 1 (33b) NA >1 NF
HJ\/?M/ 5 (34b) NA NA NT
o 1(33¢) 140+015 155+0086  40.3
@'W 5 (34c) 204+014  1.00+055 325
o 1(33d)  1.44+010  2.88+023  50-80
\TW 5(34d)  3.00+018  1.03+0039 349
Round 2A
1 (35¢) 1.23 +0.06 NA NF
3 (36¢) 1114007 5214035  >140
w 7 (37¢) 263+017 04510022 13.9
@ : 13 (38c)® NT NA NT
15 (39¢)" NT NA NT
1(35d)  1.08+0.06 NA NF
3(36d)  122+007  17.9+083  >140
a 7(37d) 4422018  0.710+0.025 217
\TW 13 (38d)° NT NA NT
15 (39d)° NT NA NT
Round 2B
(0]
BN S S (40) NA NA NT
(@]
\”WW (41) NA NA NT
O
I (@) 3.12 158+058  >70
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Table 6.1: continued

Chain Cathepsin L Brine Shrimp CMC

Compound length (n=) stabilization®* Toxicity (uM)  (uM)
0

O (43) NA NA >140
0

(44) NA NA >140

2 Fold change over enzyme blank, ® Solubility issues in the assay solution
NA: Not active (Cathepsin L: 25 pM; brine shrimp: 30 uM); NT: not tested; NF: test but no
reduction in surface tension at 140 uM
6.2.5 Significance of this Study
The surfactant industry is a multi-billion dollar global industry,? as they are incorporated
into a number of daily household items, such as toothpaste, wax, washing detergents, and ink, and
have important commercial utility with such uses as in herbicides, for the prevention of corrosion,
detecting leaks, alkali polymers, oil dispersants, enzyme stabilization, and many others.?6?” There
are three different types of surfactants (ionic, non-ionic, and zwitterionic); however, each consists
of a hydrophilic (head group) and hydrophobic (tail group) portion. All surfactants form micelles
at a particular concentration (CMC), and thus reduce the surface tension at air-liquid, liquid-liquid,
or liquid-solid interfaces. Once they have reached their CMC, there is very little to reduction in
surface tension even with significant increases in the surfactant concentration. The majority of the
commercially available non-ionic surfactants are long hydrocarbons with either polyethers or
polyols.Z Although there have been two reports of simple tertiary amides, like the ones discovered
and developed in this study, that are able to reduce the surface tension of aqueous mixtures, they
do not mention their potential as surfactants.?%°
One of the best known recent uses of a surfactant was during the cleanup efforts of the

British Petroleum (BP) oil spill in the Gulf of Mexico between April 2", 2010 and July 15", 2010.
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During this time period over 210 million gallons of oil spewed into the Gulf, and in an effort to
clean up the oil 1.84 million gallons of surfactants were used to disperse the 0il.** The primary
surfactant used was Corexit 9500A®, which is a mixture of surfactants, including Tween85,
Tween80, Span80, di-(propylene glycol) butyl ether, kerosene, and 2-butoxyethanol, all of which
are non-ionic polyether and polyols. Although, Corexet 9500A® did disperse the oil,*! it is
estimated that it actually made the oil 52 times more toxic.>> Thus, there is a real need for the
development of new surfactants with more environment friendly toxicity profiles.

This structure-activity relationship investigation into lyngbyamide A (11) revealed that,
although these analogs do exhibit some interesting biologically activities, they are not just non-
specifically active in a broad range of assays. They exhibit toxicity against brine shrimp and
stabilization of cathepsin L; it is conceivable that both of these activities could be due to the
surfactant properties of these tertiary amides. This can be clearly seen in figure 6.9 where the
reduction in surface tension inversely correlates with the increase in cathepsin L stabilization; at
the CMC it reaches the maximum cathepsin L stabilization effect. Several reports have shown the
ability of common biologically important surfactants to stabilize cathepsin L or other enzymes by
either preventing degradation or preventing the enzyme from sticking to walls of the assay plate.
% In comparing two of the best synthetic analogs from this study with some of the most common
biochemically important surfactants, these simple tertiary amides have the lowest CMC values and
have significantly smaller molecular weights, thus requiring less material to elicit comparable
responses (table 6.2).%

Furthermore, there are numerous reports of the toxic effects of surfactants on aquatic
organisms, as surfactants are thought to have both acute and chronic toxicity on both fish and
shrimp.®*° The acute toxicity is due to the surfactants interfering with the permeability of the gills

and therefore suffocating the organism to death; however, the chronic toxicity is more likely caused



226

by the ability of surfactants to degrade their protective mucus layer, thus making it much more

susceptible to contracting infections.*°

Table 6.2: Comparing the CMC and MW of commercially
available biologically important surfactants and two analogs

Compound CMC (pM) MW (g/mol)  Type

37d 21.7 255.5 Non-ionic
37c 13.9 281.5 Non-ionic
Tween20 60 ~1228 Non-ionic
Triton X-100 450 ~650 Non-ionic
SDS 8,500 288.5 lonic
CHAPS 7500 615 Zwitterionic
BRI 35 90 1200 Non-ionic
NP-40 150 ~650 Non-ionic

6.3 Conclusion

The structure-activity relationship investigation into lyngbyamide A (11) led to the
production of 50 structural analogs including 10 synthetic intermediates, which were evaluated in
a variety of different assays including H-460 cytotoxicity, brine shrimp toxicity, cathepsin L
activation/inhibition, nitric oxide production in RAW cells, cancer cell selectivity, ion channel
modulation and in several neuro-receptor binding assays (serotonin, dopamine, and cannabinoid).
Overall, these alkyl amides were not that biologically active in these assays; however, a subset was
active in both the brine shrimp toxicity and cathepsin L activation assays. The key structural
functionalities that give optimal activity are the tertiary amide head group that is no larger than a
pyrrolidine ring, and a fatty acid chain that is 14 carbons in length. The activity profiles of several
analogs in the cathepsin L assay were remarkably similar to that of the biological important
surfactant, tween20, thus indicating that these new synthetic analogs may be working in a similar

fashion. Evaluation of the surface tension of aqueous mixtures of each of the tertiary amides
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revealed that these compounds are indeed surfactants, thus explaining the mechanism behind both
the brine shrimp toxicity and cathepsin L stabilization. These analogs have already shown utility
in the ability to stabilize enzymes, however further investigations are needed in order to examine
other potential uses as the surfactant industry is growing rapidly every year. Additionally, they
should be evaluated for their potentially useful arthropod and insect killing activities, as these could

be commercially and societally useful applications as well.

6.4 Experimental Methods
6.4.1 General Experimental Procedures

All reagents were commercially obtained (Aldrich, Alfa Aesar, or TCI America) at highest
commercial quality and used without further purification. Air- and moisture-sensitive liquids and
solutions were transferred via syringe. All non-aqueous reactions were carried out under anhydrous
conditions using flame-dried glassware with an argon atmosphere.  Yields refer to
chromatographically and spectroscopically (*H and *C NMR) homogeneous materials, unless
otherwise stated. Sigma silica gel (60, particle size 0.015-0.040 mm) was used for flash
chromatography. IR spectra were recorded on a Nicolet ThermoElectron IR100 FT-IR spectrometer
using KBr plates. NMR spectra were recorded with CHCI;, DMSO, and MeOH as internal
standards (dc 77.0/6n 7.26, dc 39.5/0n 2.50, and dc 49.0/0n 3.31, respectively) on a Varian 500 MHz
spectrometer (500 and 125 MHz for 'H and *C NMR, respectively) and Varian 400 MHz
spectrometer (400 and 100 MHz for 'H and *C NMR, respectively). HR ESIMS spectra were
obtained on an Agilent 6230 ESI-TOF mass spectrometer. HPLC was carried out using Waters 515

pumps system with a Waters 996 PDA detector.

6.4.2 Amide bond formation
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To a solution of the fatty acid (0.75 mmol) in N,N-dimethylformamide [DMF (2.5 mL)] at
room temperature (rt) was added N,N-diisopropylcarbodiimide [DIPC (129.0 pL, 0.82 mmol, 1.1
eq)] and hydroxybenzotrizole [HOBt (38% wet, 178.0 mg, 0.82 mmol, 1.1 eq)].1® After stirring for
5 min, the amines were added (0.90 mmol, 1.2 eq) and the reaction was left stirring for 24 hours
(h). The reaction was quenched with MeOH (1 mL) and H>O (10 mL). The aqueous was then back
extracted 3x with DCM. The combined organic layers were washed once with brine, dried over
MgSO4 and concentrated under reduced pressure. Flash chromatography (up to 30% EtOAc in

hexanes) of the crude mixtures gave amides with yields between 55%-85%.

6.4.3 Olefin Metathesis
A flamed-dry pear shaped flask was charged with 10 mL of freshly distilled DCM, both
ethyl pentenoate (1.11 mL, 7.14 mmol) and terminal alkene (either nonene or tridecene, 10.72
mmol, 1.5 eq) were added, followed by the Grubbs second generation catalyst (113 mg, 0.18 mmol,
2.5%).%° The reaction was left stirring at rt for 5 h and then dried down under vacuum. Flash
chromatography (up to 20% DCM in hexanes) of the crude mixture gave the pure unsaturated fatty

ester with yields between 45%-55%.

6.4.4 Base Hydrolysis
To a solution of KOH (1.06 g, 18.9 mmol) in 6:1 EtOH-H,O (5 mL) at rt was added the
fatty esters (1.88 mmol).?> The mixture was left vigorously stirring for 2 h, then acidified with
H,SO4 (2 M) and extracted 3x with diethyl ether. The combined organic layer was washed once
with brine, dried over MgSQ, and concentrated under reduced pressure. By *H NMR the resulting

mixture was considered pure enough for the next reaction.

6.4.4 Cyclopropanation
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To a solution of the unsaturated fatty ester (1.17 mmol) in 1,2-dichloroethane (5 mL) at rt
was added diiodomethane (233.6 pL, 2.90 mmol, 2.5 eq). The mixture was then cooled to 0°C for
the drop wise addition of diethylzinc (1 M in hexanes, 2.01 mL, 2.90 mmol, 2.5 eq).? The solution
was stirred at rt for 60 h, however at 24 and 48 h equivalent amounts of diiodomethane and
diethylzinc were added to the reaction mixture. The reaction was quenched with NH4Cl (10 mL)
and subsequently back-extracted 3x with DCM. The combined organic layers were washed once
with brine, dried over MgSO4 and concentrated under reduced pressure. The crude mixture was
cleaned up using a 5 g normal-phase solid phase extraction, eluting with 30% DCM in hexanes

with yields between 90%-95%.

6.4.6 Analytical Data for Synthetic Analogs
Compound 18a: white solid; IR (KBr) ymax 3298, 2921, 2851, 1640, 1549, 1060, 974 cm™; *H NMR
(500 MHz, MeOD) &: 3.90 (quin, 1H, J = 5.6), 3.58 (d, 4H, J = 5.6), 2.20 (t, 2H, J = 7.6), 1.59 (m,
2H), 1.34-1.24 (m, 16H), 0.88 (t, 3H, J = 7.1); *C NMR (125 MHz, MeOD) ¢: 176.5, 62.0, 54.3,
37.2, 33.1, 30.7, 30.7, 30.6, 30.5, 30.5, 30.3, 27.0, 23.7, 14.4; HRESIMS m/z [M+H]* 274.2382
(calcd. for CisH32NO3 274.2382, A 0.13 mmu).
Compound 18b: white solid; IR (KBr) ymax 3312, 2921, 2851, 1639, 1545, 1055, 1033, 1009, 669
cm?; 'H NMR (500 MHz, CDCls) 6: 7.30 (t, 2H, J = 7.4), 7.23 (d, 1H, J = 7.2), 7.18 (d, 2H, J =
7.5), 5.69, (s, 1H), 3.50 (g, 2H, J = 6.6), 2.81 (t, 2H, J = 7.0), 2.11 (t, 2H, J = 7.8), 1.58 (m, 2H),
1.36-1.26 (m, 16H), 0.88 (t, 3H, 6.6); 3C NMR (125 MHz, CDCls) §: 173.1, 138.9, 128.7, 128.5,
126.4, 40.4, 36.7, 35.6, 31.8, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 25.7, 22.6, 14.0; HRESIMS m/z
[M+H]* 304.2642 (calcd. for C2H3sNO 304.2640, A 0.42 mmu).
Compound 18c: colorless oil; IR (KBr) ymax 2923, 2864, 1641, 1425, 1342, 1055, 1033, 1011 cm
114 NMR (500 MHz, CDCls) &: 3.46 (t, 2H, J = 6.8), 3.41 (t, 2H, J = 6.8), 2.25 (t, 2H, J = 7.9),

1.95, (quin, 2H, J = 6.9), 1.85 (quin, 2H, J = 6.9), 1.64 (m, 2H), 1.36-1.26 (m, 16H), 0.88 (t, 3H,
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6.4); ¥C NMR (125 MHz, CDCls) 6: 171.7, 46.5, 45.4, 34.7, 31.8, 29.5, 29.5, 29.4, 29.4, 29.3,
29.2,26.0,24.8, 24.3, 22.5, 14.0; HRESIMS m/z [M+H]* 254.2482 (calcd. for C16H3NO 253.2484
A 0.58 mmu).

Compound 18d: colorless oil; IR (KBr) ymax 2920, 2848, 1644, 1509, 1396, 1139, 1008 cm*; H
NMR (400 MHz, CDCls) &: 3.01 (s, 3H), 2.94 (s, 3H), 2.30 (t, 2H, J = 7.8), 1.62 (quin, 2H, J = 7.5),
1.36-1.26 (m, 16H), 0.88 (t, 3H, 6.7): 3C NMR (100 MHz, CDCls) §: 173.1, 37.1, 35.1, 33.3, 31.8,
29.5, 29.5, 29.4, 29.4, 29.3, 29.2, 25.0, 22.5, 14.0; HRESIMS m/z [M+H]* 228.2326 (calcd. for
C14H30NO 228.2327, A 0.52 mmu).

Compound 18e: pale yellow solid; IR (KBr) ymax 3306, 2921, 2851, 1640, 1555, 1056 cm™; 'H
NMR (500 MHz, MeOD) &: 6.65 (d, 1H, J = 7.6), 6.62 (d, 1H, J = 1.5), 6.49 (dd, 1H, J = 7.6, 1.5),
3.30 (M, 2H), 2.60 (t, 2H, J = 7.2), 2.11 (t, 2H, J = 7.6), 1.54 (m, 2H), 1.36-1.26 (m, 16H), 0.87 (t,
3H, 6.8); **C NMR (125 MHz, MeQOD) ¢: 176.2, 146.2, 144.7, 132.0, 121.0, 116.8, 116.3, 42.2,
37.2, 36.0, 33.1, 30.8, 30.7, 30.6, 30.5, 30.4, 30.3, 27.1, 23.7, 14.5; HRESIMS m/z [M+H]*
336.2531 (calcd for CooH3NO3 336.2539, A 2.4 mmu).

Compound 19a: white solid; IR (KBr) ymax 3298, 2919, 2850, 1640, 1546, 1057 cm™; *H NMR
(500 MHz, MeOD) &: 3.90 (quin, 1H, J = 5.5), 3.58 (d, 4H, J = 5.5), 2.20 (t, 2H, J = 7.4), 1.59 (m,
2H), 1.34-1.24 (m, 16H), 0.88 (t, 3H, J = 6.2); 3C NMR (125 MHz, MeOD) J: 176.5, 62.0 x 2,
54.3, 37.2, 33.1, 30.8 (3 overlapping species), 30.8, 30.8, 30.7, 30.6, 30.5, 30.5, 30.3, 27.0, 23.7,
14.4; HRESIMS m/z [M+H]* 330.3006 (calcd. for C1oHsNOs 330.3008, A 0.51 mmu).
Compound 19b: white solid; IR (KBr) ymax 3316, 2921, 2850, 1639, 1055, 1033, 1012 cm; *H
NMR (500 MHz, CDCls) &: 7.30 (t, 2H, J = 7.4), 7.23 (d, 1H, J = 7.6), 7.19 (d, 2H, J = 7.6), 5.58,
(s, 1H), 3.51 (q, 2H, J = 6.4), 2.81 (t, 2H, J = 7.1), 2.11 (t, 2H, J = 7.8), 1.58 (m, 2H), 1.36-1.26 (m,
24H), 0.88 (t, 3H, 6.7); °C NMR (125 MHz, CDCls) 6: 173.2, 138.9, 128.7, 128.5, 126.4, 40.5,
36.8, 35.7, 31.9, 29.6 (8 overlapping species), 29.6, 29.3, 29.3, 29.2, 25.7, 22.6, 14.1; HRESIMS

m/z [M+H]" 360.3268 (calcd. for CasHsNO 360.3266, A 0.53 mmu).
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Compound 19c: colorless oil; IR (KBr) ymax 2921, 2851, 1639, 1425, 1342, 1055, 1033, 1009, 670
cm; H NMR (500 MHz, CDCls) §: 3.46 (t, 2H, J = 6.9), 3.41 (t, 2H, J = 6.9), 2.25 (t, 2H, J = 7.9),
1.95, (quin, 2H, J = 6.6), 1.85 (quin, 2H, J = 6.6), 1.64 (m, 2H), 1.36-1.26 (m, 24H), 0.88 (t, 3H,
7.0); ¥C NMR (125 MHz, CDCls) 6: 171.8, 46.5, 45.5, 34.8, 31.9, 29.6 (5 overlapping species),
29.6, 29.5, 29.5, 29.4, 29.3, 26.1, 24.9, 24.4, 22.6, 14.1; HRESIMS m/z [M+H]* 310.3114 (calcd.
for CoH4NO 310.3110, A 1.33 mmu).

Compound 19d: colorless oil; IR (KBr) ymax 2918, 2849, 1633, 1394, 1055, 1008 cm?; *H NMR
(500 MHz, CDCls) é: 3.00 (s, 3H), 2.94 (s, 3H), 2.30 (t, 2H, J = 7.6), 1.62 (m, 2H), 1.36-1.26 (m,
24H), 0.88 (t, 3H, 6.8); 3C NMR (125 MHz, CDCls) J: 173.2, 37.2, 35.3, 33.4, 31.9, 29.6 (6
overlapping species), 29.5, 29.5, 29.4, 29.3, 25.1, 22.6, 14.1; HRESIMS m/z [M+H]* 284.2959
(calcd. for CigH3sNO 284.2953, A 2.10 mmu).

Compound 19e: pale yellow solid; IR (KBr) ymax 3307, 2920, 1639, 1554, 1055, 1033, 1011 cm™;
IH NMR (500 MHz, MeOD) §: 6.67 (d, 1H, J = 8.1), 6.64 (d, 1H, J = 1.8), 6.51 (dd, 1H, J = 8.1,
1.8), 3.32 (m, 2H), 2.62 (t, 2H, J = 7.6), 2.14 (t, 2H, J = 7.2), 1.57 (m, 2H), 1.36-1.26 (m, 24H),
0.90 (t, 3H, 6.5); *C NMR (125 MHz, MeQD) ¢: 176.2, 146.2, 144.7, 132.0, 121.0, 116.8, 116.3,
42.2, 37.2, 36.0, 33.1, 30.8 (5 overlapping species), 30.7, 30.6, 30.5, 30.4, 30.3, 27.1, 23.8, 14.5;
HRESIMS m/z [M+H]* 392.3168 (calcd for C24H4NO3 392.3165, A 0.84 mmu).

Compound 23: colorless oil; IR (KBr) ymax 2926, 2856, 1739, 1462, 1373, 1345, 1248, 1163, 1121,
1039 cm; *H NMR (500 MHz, CDCls) &: 5.40 (m, 1H), 5.36 (m, 1H), 4.08 (g, 2H, J = 6.9), 2.28
(m, 4H), 1.92 (g, 2H, J = 7.0), 1.35-1.20 (m, 13H), 0.84 (t, 3H, 7.1); 3C NMR (125 MHz, CDCls)
0: 173.0, 131.7, 127.8, 60.0, 34.3, 32.4, 31.8, 29.3, 29.1, 29.0, 27.9, 22.6, 14.1, 14.0; HRESIMS
m/z [M-H] 227.2011 (calcd. for C14H270,227.1006, A 2.2 mmu).

Compound 24: colorless oil; IR (KBr) ymax 2925, 2854, 1740, 1638, 1423, 1372, 1248, 1170, 1040,
968cm™; *H NMR (500 MHz, CDCls) 6: 5.44 (m, 1H), 5.40 (m, 1H), 4.12 (g, 2H, J = 7.4), 2.32 (m,

4H), 1.96 (g, 2H, J = 7.0), 1.35-1.20 (m, 21H), 0.88 (t, 3H, 7.0); *C NMR (125 MHz, CDCls) &
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173.1,131.7,127.9,60.1, 34.4, 32.5, 31.9, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 27.9, 22.6, 14.2,
14.0; HRESIMS m/z [M-H] 283.2635 (calcd. for C1gH350,283.2631, A 1.1 mmu).

Compound 25: colorless oil; IR (KBr) ymax 2926, 2856, 1742, 1712, 1439, 1286, 1210, 1166 cm™;
IH NMR (500 MHz, CDCls) &: 5.46 (m, 1H), 5.41 (m, 1H), 2.40 (t, 2H, J = 7.5), 2.31 (m, 2H), 1.96
(q, 2H, J = 7.0), 1.35-1.20 (m, 10H), 0.88 (t, 3H, J = 6.0); 3C NMR (125 MHz, CDCl3) § 179.6,
132.2,127.4, 34.2, 32.5, 31.8, 29.4, 29.2, 29.1, 27.6, 22.7, 14.1; HRESIMS m/z [M-H]  197.1548
(calcd. for C12H230,197.1547, A 0.5 mmu).

Compound 26: colorless oil; IR (KBr) ymax 2917, 2850, 1707, 1468, 1265, 1214, 964cm™; *H NMR
(500 MHz, MeOD-CDCls) 6: 5.44 (m, 2H), 2.26 (m, 2H), 1.96 (q, 2H, J = 7.0), 1.35-1.20 (m, 18H),
0.89 (t, 3H, J = 7.0); 3C NMR (125 MHz, CDCls) 6: 178.0, 132.0, 127.6, 34.1, 32.5, 31.9, 29.6,
29.6, 29.5, 29.4, 29.3, 29.1, 27.6, 22.7, 18.1, 14.1; HRESIMS m/z [M-H] 253.2176 (calcd. for
C16H3102253.2173, A 1.2 mmu).

Compound 27a: white solid; IR (KBr) ymax 3263, 2922, 2851, 1629, 1447,1072,972 cm;*H NMR
(500 MHz, CDCls) ¢: 5.47 (m, 1H), 5.41 (m, 1H), 3.91 (quin, 1H, J = 5.3), 3.62 (m, 4H), 3.32 (bs,
2H), 2.28 (m, 4H), 1.98 (q, 2H, J = 6.7), 1.37-1.23 (m, 10H), 0.88 (t, 3H, 6.4); 3C NMR (125 MHz,
CDCls) o: 173.7, 130.8, 127.3, 60.0, 52.0, 35.3, 31.6, 31.0, 28.6, 28.3, 28.2, 27.9, 21.7, 12.6;
HRESIMS m/z [M+H]* 272.2219 (calcd. for C1sHsNOs 272.2226, A 2.44 mmu).

Compound 27b: white solid; IR (KBr) ymax 3301, 2923, 2853, 1639, 1549, 1454, 966 cm?; H
NMR (500 MHz, CDCls) &: 7.31 (t, 2H, J = 7.7), 7.24 (d, 1H, J = 7.2), 7.19 (d, 2H, J = 7.5), 5.58
(s, 1H), 5.41 (m, 1H), 5.37 (m, 1H), 3.51 (q, 2H, J = 6.6), 2.81 (t, 2H, J = 7.0), 2.28 (q, 2 H, J =
6.4), 2.18 (t, 2H, J = 7.1), 1.94 (q, 2H, J = 6.7), 1.34-1.22 (m, 10H), 0.88 (t, 3H, 6.8); 3C NMR
(125 MHz, CDCls) ¢: 172.5, 138.9, 131.9, 128.7, 128.6, 128.1, 126.4, 40.5, 36.6, 35.7, 32.5, 31.8,
29.4,29.1,29.1, 28.6, 22.6, 14.1; HRESIMS m/z [M+H]* 302.2487 (calcd. for C2oH32NO 302.2484,

A 0.92 mmu).
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Compound 27c: colorless oil; IR (KBr) ymax 2955, 2924, 2855, 1640, 1436 cm™; *H NMR (500
MHz, CDCls) &: 5.45 (m, 2H), 3.46 (t, 2H, J = 6.7), 3.40 (t, 2H, J = 6.7), 2.34 (m, 4H), 1.95 (m,
2H), 1.85 (m, 2H), 1.37-1.20 (m, 10H), 0.88 (t, 3H, J = 6.1); 3C NMR (125 MHz, CDCls) 6: 171.2,
131.4, 128.8, 46.6, 45.6, 34.9, 32.5, 31.6, 29.5, 29.2, 29.2, 28.0, 26.1, 24.4, 22.7, 14.1; HRESIMS
m/z [M+H]* 252.2333 (calcd. for C1H3oNO 252.2327, A 2.32 mmu).

Compound 27d: colorless oil; IR (KBr) ymax 2926, 2855, 1649, 1464, 1397, 1266, 1144, 970 cm
L 1H NMR (500 MHz, de-DMSO) &: 5.39 (m, 2H), 2.92 (s, 3H), 2.78 (s, 3H), 2.48 (m, 2H), 2.28
(m, 2H), 2.14 (m, 2H), 1.91 (m, 2H), 1.32-1.17 (m, 10H), 0.83 (t, 3H, 6.7); 3C NMR (125 MHz,
ds-DMSO) ¢6: 171.3, 130.4, 129.3, 36.7, 34.8, 32.5, 31.9, 31.3, 29.0, 28.6, 28.5, 27.7, 22.1, 14.0;
HRESIMS m/z [M+H]* 226.2173 (calcd. for C14H2sNO 226.2171, A 0.85 mmu).

Compound 28a: white solid; IR (KBr) ymax 3291, 2921, 2850, 1640, 1465, 1074, 970 cm*;*H NMR
(500 MHz, CDCls) &: 5.47 (m, 1H), 5.41 (m, 1H), 3.91 (m, 1H), 3.63 (m, 4H), 3.33 (bs, 2H), 2.29
(m, 4H), 1.98 (g, 2H, J = 7.1), 1.37-1.23 (m, 18H), 0.88 (t, 3H, 7.5); 3C NMR (125 MHz, CDCl5)
0. 173.8, 131.0, 127.3, 60.2, 52.1, 35.5, 31.7, 31.2, 28.9, 28.9, 28.9, 28.7, 28.7, 28.6, 28.4, 28.0,
21.9,12.9; HRESIMS m/z [M+H]* 328.2856 (calcd. for C19H3sNO3 328.2852, A 1.17 mmu).
Compound 28b: white solid; IR (KBr) ymax 3301, 2920, 2851, 1638, 1549, 1454 cm*; IH NMR
(500 MHz, CDCl3) 6: 7.30 (t, 2H, J = 7.4), 7.23 (d, 1H, J = 7.4), 7.18 (d, 2H, J = 7.4), 5.65 (s, 1H),
5.41 (m, 1H), 5.36 (m, 1H), 3.50 (g, 2H, J = 6.6), 2.80 (t, 2H, J = 6.90), 2.28 (g, 2 H, J = 6.7), 2.18
(t, 2H,J =7.2), 1.94 (q, 2H, J = 7.1), 1.34-1.22 (m, 18H), 0.88 (t, 3H, 7.0); 3C NMR (125 MHz,
CDCls) 0: 172.5, 138.9, 131.9, 128.7, 128.5, 128.1, 126.4, 40.4, 36.6, 35.7, 32.5, 31.9, 29.6, 29.6,
29.6, 29.5, 29.4, 29.3, 29.1, 285, 22.6, 14.1; HRESIMS m/z [M+H]* 358.3118 (calcd. for
C24H4oNO 358.3110, A 2.34 mmu).

Compound 28c: colorless oil; IR (KBr) ymax 2956, 2923, 2853, 1641, 1434 cm*; 'H NMR (500
MHz, CDCls) 6: 5.45 (m, 2H), 3.46 (t, 2H, J = 6.6), 3.41 (t, 2H, J = 6.6), 2.32 (m, 4H), 1.94 (m,

2H), 1.86 (m, 2H), 1.38-1.20 (m, 18H), 0.88 (t, 3H, 6.5); *C NMR (125 MHz, CDCls) J: 171.2,
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131.4, 128.7, 46.6, 45.6, 34.9, 32.5, 31.9, 29.7, 29.6, 29.6, 29.5, 29.5, 29.3, 29.1, 28.0, 26.1, 24.4,
22.7,14.1; HRESIMS m/z [M+H]* 308.2958 (calcd. for CaoHssNO 308.2953, A 1.56 mmu).
Compound 28d: colorless oil; IR (KBr) ymax 2924, 2853, 1650, 1463, 1397, 1142, 969 cm; H
NMR (400 MHz, CDCls) &: 5.45 (m, 2H), 3.00 (s, 3H), 2.94 (s, 3H), 2.34 (m, 4H), 1.97 (m, 2H),
1.37-1.22 (m, 18H), 0.88 (t, 3H, 6.7); *C NMR (100 MHz, CDCls3) J: 172.6, 131.4, 128.6, 37.2,
35.3, 33.4, 32.4, 31.8, 29.6, 29.5, 29.5, 29.4, 29.4, 29, 2, 29.1, 28.1, 22.6, 14.0; HRESIMS m/z
[M+Na]* 304.2628 (calcd. for C1gHssNONa 304.2616, A 0.44 mmu).

Compound 29: colorless oil; IR (KBr) ymax 3062, 2925, 2855, 1739, 1461, 1373, 1250, 1172 cm;
IH NMR (500 MHz, CDCls) 6: 4.1 (q, 2H, J = 7.2), 2.34 (t, 2H, J = 7.5), 1.53 (m, 2H), 1.47 (m,
2H), 1.38-1.03 (m, 13H), 0.86 (t, 3H, J = 7.1), 0.40 (m, 1H), 0.17 (M, 1H); *C NMR (125 MHz,
CDCls) 0 173.7, 60.1, 34.5, 34.1, 31.9, 29.7, 29.6, 29.4, 29.3, 22.6, 18.8, 18.1, 14.2, 14.1, 11.7;
HRESIMS m/z [M-H] 241.2166 (calcd. for CisHs0,241.2162, A 1.7 mmu).

Compound 30: colorless oil; IR (KBr) ymax 2925, 2854, 1739, 1462, 1373, 1249, 1177 cm*; H
NMR (500 MHz, CDCls) &: 4.1 (g, 2H, J = 7.1), 2.36 (t, 2H, J = 7.5), 1.55 (m, 2H), 1.48 (m, 2H),
1.38-1.03 (m, 21H), 0.87 (t, 3H, J = 7.0), 0.42 (m, 1H), 0.19 (m, 1H); *C NMR (125 MHz, CDCls)
0173.7,60.1, 34.5, 34.1, 31.9, 29.7-29.6 (6 overlapping species), 29.5, 29.4, 22.7, 18.8, 18.1, 14.2,
14.1, 11.8; HRESIMS m/z [M-H] 297.2789 (calcd. for C15H370,2297.2788, A 0.3 mmu).
Compound 31: white solid; IR (KBr) ymax 2925, 2855, 1742, 1712, 1439, 1286, 1210, 1166 cm*;
IH NMR (500 MHz, CDCls) 6: 9.80 (bs, 1H), 2.43 (t, 2H, J = 7.6), 1.54 (m, 2H), 1.40-1.20 (m,
19H), 1.14 (m, 1H), 0.88 (t, 3H, J = 6.7); 3C NMR (125 MHz, CDCls) 6: 180.2, 34.3, 34.1, 31.9,
29.6, 29.5, 29.4, 29.3, 22.7, 18.9, 18.0, 14.0, 11.7; HRESIMS m/z [M-H] 211.1706 (calcd. for
C12H2502211.1704, A 0.9 mmu).

Compound 32: white solid; IR (KBr) ymax 2925, 2854, 1709, 1639, 1459, 1285 cm*; *H NMR (500
MHz, CDCls) 6: 2.40 (t, 2H, J = 7.3), 1.51 (m, 2H), 1.40-1.20 (m, 19H), 1.11 (m, 1H), 0.86 (t, 3H,

J=6.9); 3C NMR (125 MHz, CDCls) §: 180.5, 34.3, 34.1, 32.0, 29.7 (3 overlapping species), 29.7,
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29.6, 29.5, 29.4, 29.4, 22.7, 18.9, 18.1, 14.1, 11.8; HRESIMS m/z [M-H] 267.2334 (calcd. for
C17H3302 267.2330, A 1.5 mmu).

Compound 33a: white solid; IR (KBr) ymax 3299, 2920, 2852, 1641, 1546, 1462, 1056, 974, 692
cm®; 'H NMR (400 MHz, CDCls) 6: 3.91 (quin, 1H, J =5.5), 3.65 (m, 4H), 3.34 (m, 2H), 2.30 (t,
2H, J = 7.7), 1.53 (m, 2H), 1.40-1.23 (m, 10H), 1.20 (m, 2H), 0.89 (t, 3H, J = 7.0), 0.45 (m, 1H),
0.22 (m, 1H); °C NMR (100 MHz, CDCls) 6:174.4, 60.3, 52.1, 35.7, 33.5, 31.2, 29.9, 28.9, 28.8,
28.6,21.9,18.1,17.5,13.0, 10.9; HRESIMS m/z [M+H]* 286.2384 (calcd. for C21H34NO 286.2382,
A 0.69 mmu).

Compound 33b: white solid; IR (KBr) ymax 3309, 2921, 2853, 1639, 1546, 1459, 698 cm™; 'H
NMR (400 MHz, CDCls) §: 7.31 (t, 2H, J = 7.2), 7.24 (d, 1H, J = 7.4), 7.19 (d, 2H, J = 7.4), 3.52
(g, 2H, J=6.6), 2.82 (t, 2H, J = 6.6), 2.19 (t, 2H, J = 7.5), 1.50 (dg, 2H, J = 7.5, 3.1), 1.38-1.21 (m,
10H), 1.15 (m, 2H), 0.88 (t, 3H, J = 7.1), 0.39 (m, 1H), 0.17 (m, 1H); 3C NMR (100 MHz, CDCl)
0:173.0, 138.9, 128.7, 128.6, 126.5, 40.5, 36.9, 35.7, 34.1, 31.9, 30.3, 29.6, 29.5, 29.3, 22.7, 18.9,
18.2,14.1, 11.7; HRESIMS m/z [M+H]* 316.2647 (calcd. for C,1H3NO 316.2640, A 2.22 mmu).

Compound 33c: colorless oil; IR (KBr) ymax 2956, 2923, 2853, 1641, 1434 cm™; *H NMR (500
MHz, CDCls) 6: 3.45 (t, 2H, J = 7.2), 3.42 (t, 2H, J = 6.6), 2.33 (dd, 4H, J = 8.1, 6.9), 1.94 (m, 2H),
1.84 (m, 2H), 1.54 (g, 2H, J = 6.9), 1.40-1.15 (m, 11H), 1.12 (m, 1H), 0.88 (t, 3H, J = 6.9), 0.44
(m, 1H), 0.18 (m, 1H); 3C NMR (125 MHz, CDCls) §: 171.7, 46.6, 45.6, 34.8, 34.1, 31.9, 29.7,
29.6, 29.4, 29.4, 22.7, 18.9, 184, 14.1, 11.8; HRESIMS m/z [M+H]" 266.2488 (calcd. for
Ci7H3NO 266.2484, A 1.51 mmu).

Compound 33d: colorless oil; IR (KBr) ymax 2922, 2852, 1646, 1458, 1396, 1265, 1148 cm*; H
NMR (500 MHz, CDCls) &: 3.00 (bs, 3H), 2.94 (bs, 3H), 2.38 (t, 2H, J = 7.6), 1.52 (m, 2H), 1.39-
1.17 (m, 11H), 1.12 (m, 1H), 0.88 (t, 3H, J = 6.6), 0.43 (m, 1H), 0.18 (M, 1H); *C NMR (125 MHz,
CDCls) 6: 173.1, 37.3, 35.4, 34.1, 33.4, 31.9, 29.9, 29.6, 29.4, 29.4, 22.7, 18.9, 18.4, 14.1, 11.8;

HRESIMS m/z [M+H]" 240.2325 (calcd. for C1sH3NO 240.2327, A 0.94 mmu).
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Compound 34a: white solid; IR (KBr) ymax 3297, 2919, 2850, 1640, 1546, 1074, 974 cm*;*H NMR
(400 MHz, CDCl3) 6: 3.91 (quin, 1H, J = 5.3), 3.63 (m, 4H), 3.33 (m, 2H), 2.30 (t, 2H, J = 7.6),
1.53 (M, 2H), 1.43-1.24 (m, 18H), 1.20 (m, 2H), 0.88 (t, 3H, J = 7.1), 0.44 (m, 1H), 0.21 (m, 1H);
13C NMR (100 MHz, CDCls) 6: 174.3, 60.1, 52.1, 35.6, 33.4, 31.1, 29.8, 28.9-28.9 (5 overlapping
species), 28.7, 28.5, 21.8, 17.9, 17.4, 12.8, 10.8; HRESIMS m/z [M+H]" 342.3012 (calcd. for
C20HaoNO3 342.3008, A 1.09 mmu).

Compound 34b: white solid; IR (KBr) ymax 3309, 2919, 2850, 1637, 1546, 1458, 697 cm™; 'H
NMR (400 MHz, CDCls) 6: 7.31 (t, 2H, J = 7.3), 7.24 (d, 1H, J = 7.3), 7.19 (d, 2H, J = 7.4), 3.52
(q, 2H, J = 6.8), 2.82 (t, 2H, J = 7.0), 2.19 (t, 2H, J = 7.5), 1.50 (dq, 2H, J = 6.7, 2.7), 1.38-1.21 (m,
18H), 1.14 (m, 2H), 0.88 (t, 3H, J = 7.2), 0.39 (m, 1H), 0.17 (M, 1H); *C NMR (100 MHz, CDCls)
0. 173.0, 138.9, 128.7, 128.6, 126.5, 40.5, 36.9, 35.7, 34.1, 31.9, 30.3, 29.7-29.6 (5 overlapping
species), 29.5, 29.3, 22.7, 18.9, 18.2, 14.1, 11.7; HRESIMS m/z [M+H]*" 372.3276 (calcd. for
CasHa2NO 372.3266, A 2.71 mmu).

Compound 34c: colorless oil; IR (KBr) ymax 2923, 2853, 1641, 1434 cm; *H NMR (500 MHz,
CDCls) 6: 3.45 (t, 2H, J = 6.9), 3.43 (t, 2H, J = 6.9), 2.33 (dd, 4H, J = 8.9, 7.4), 1.94 (m, 2H), 1.84
(m, 2H), 1.54 (g, 2H, J = 7.9), 1.40-1.16 (m, 19H), 1.12 (m, 1H), 0.88 (t, 3H, J = 6.8), 0.44 (m,
1H), 0.19 (m, 1H); 3C NMR (125 MHz, CDCls) &: 171.8, 46.7, 45.5, 34.8, 34.1, 31.9, 29.7, 29.7,
29.7, 29.7, 29.7, 29.6, 29.5, 29.3, 22.7, 18.9, 18.4, 14.1, 11.8; HRESIMS m/z [M+H]* 322.3116
(calcd. for C21HaoNO 322.3110, A 1.82 mmu).

Compound 34d: colorless oil; IR (KBr) ymax 2923, 2853, 1651, 1461, 1396, 1267, 1146 cm™*; 'H
NMR (500 MHz, CDCls) §: 3.01 (s, 3H), 2.93 (s, 3H), 2.38 (t, 2H, J = 7.7), 1.52 (m, 2H), 1.39-
1.17 (m, 19H), 1.13 (m, 1H), 0.86 (t, 3H, J = 7.2), 0.43 (m, 1H), 0.18 (m, 1H); *C NMR (125 MHz,
CDCls) 0: 173.1, 37.3, 35.3, 34.1, 33.3, 31.9, 29.9, 29.7, 29.7, 29.7, 29.6, 29.6, 29.5, 29.3, 22.7,
18.9, 18.4, 14.1, 11.8; HRESIMS m/z [M+H]* 296.2958 (calcd. for C1sHssNO 296.2953, A 1.43

mmu).
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Compound 35c: colorless oil; IR (KBr) ymax 2927, 2852, 1642, 1434 cm™; *H NMR (400 MHz,
CDCls) 5: 3.42 (t, 2H, J = 6.7), 3.38 (t, 2H, J = 6.7), 2.22 (dd, 2H, J = 8.6, 7.6), 1.91 (m, 2H), 1.81
(m, 2H), 1.60 (m, 2H), 1.33-1.19 (M, 20H), 0.84 (t, 3H, J = 7.1); *C NMR (100 MHz, CDCls) §:
171.7, 46.5, 45.3, 34.7, 31.6, 29.3, 28.9, 26.0, 24.8, 24.2, 22.4, 13.9; HRESIMS m/z [M+H]*
198.1859 (calcd. for C12H24NO 198.1856, A 0.31 mmu).

Compound 35d: colorless oil; IR (KBr) ymax 2927, 2853, 1645cm™; *H NMR (400 MHz, CDCls)
§:3.01 (s, 3H), 2.94 (s, 3H), 2.31 (dd, 2H, J = 9.1, 7.8), 1.63 (m, 2H), 1.35-1.21 (m, 8H), 0.88 (t,
3H, J =7.1); 3C NMR (100 MHz, CDCls) ¢: 173.2, 37.2, 35.2, 33.3, 31.6, 29.3, 29.0, 25.1, 22.5,
13.9; HRESIMS m/z [M+H]* 172.1703 (calcd. for C10H22NO 172.1701, A 0.76 mmu).
Compound 36c: colorless oil; IR (KBr) ymax 2926, 2856, 1645, 1434 cm; *H NMR (400 MHz,
CDCls) 6: 3.46 (t, 2H, J = 6.7), 3.42 (t, 2H, J = 6.7), 2.25 (dd, 2H, J = 8.6, 7.5), 1.95 (m, 2H), 1.85
(m, 2H), 1.64 (m, 2H), 1.39-1.21 (m, 20H), 0.88 (t, 3H, J = 6.1); *C NMR (100 MHz, CDCls) &:
171.9, 46.6, 45.5, 34.8, 31.8, 29.4, 29.4, 29.4, 29.2, 26.0, 24.9, 24.3, 22.6, 14.0; HRESIMS m/z
[M+H]* 226.2173 (calcd. for C14HzsNO 226.2171, A 0.71 mmu).

Compound 36d: colorless oil; IR (KBr) ymax 2926, 2855, 1651, 1465, 1400, 1150 cm™*; *H NMR
(400 MHz, CDCls) &: 3.01 (s, 3H), 2.94 (s, 3H), 2.31 (dd, 2H, J = 8.9, 7.4), 1.62 (m, 2H), 1.35-1.21
(m, 12H), 0.88 (t, 3H, J = 6.7); *C NMR (100 MHz, CDCls) 6: 173.3, 37.2, 35.3, 33.4, 31.8, 29.4,
29.4,29.4,29.2,25.1, 22.6, 14.0; HRESIMS m/z [M+H]* 200.2016 (calcd. for C12H26NO 200.2014,
A 0.75 mmu).

Compound 37c: colorless oil; IR (KBr) ymax 2924, 2854, 1645, 1431 cm™; *H NMR (400 MHz,
CDCls) 6: 3.46 (t, 2H, J = 6.7), 3.41 (t, 2H, J = 6.7), 2.25 (t, 2H, J = 7.7), 1.95 (m, 2H), 1.85 (m,
2H), 1.64 (m, 2H), 1.35-1.21 (m, 20H), 0.88 (t, 3H, J = 6.0); 13C NMR (100 MHz, CDCls) 6: 171.9,
46.6, 45.5, 34.8, 31.8, 29.6-29.5 (4 overlapping species), 29.4, 29.4, 29.4, 29.3, 26.0, 24.9, 24.3,

22.6, 14.0; HRESIMS m/z [M+H]* 282.2800 (calcd. for C1sH3sNO 282.2797, A 0.93 mmu).
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Compound 37d: colorless oil; IR (KBr) ymax 2923, 2853, 1649 cm™; *H NMR (400 MHz, CDCls)
5:3.01 (s, 3H), 2.94 (s, 3H), 2.30 (dd, 2H, J = 8.9, 7.4), 1.62 (m, 2H), 1.35-1.21 (m, 20H), 0.88 (t,
3H,J=6.2); C NMR (100 MHz, CDCls) 6: 173.3, 37.3, 35.3, 33.4, 31.9, 29.6-29.5 (4 overlapping
species), 29.5, 29.5, 29.4, 29.3, 25.2, 22.6, 14.1; HRESIMS m/z [M+H]* 256.2645 (calcd. for
C16H34NO 256.2640, A 1.92 mmu).

Compound 38c: white solid; IR (KBr) ymax 2918, 2850, 1637, 1467 cm™; *H NMR (500 MHz,
CDCls) 5: 3.43 (t, 2H, J = 6.7), 3.38 (t, 2H, J = 6.7), 2.22 (dd, 2H, J = 8.9, 7.4), 1.91 (m, 2H), 1.82
(m, 2H), 1.61 (m, 2H), 1.39-1.21 (m, 32H), 0.85 (t, 3H, J = 7.2); *C NMR (125 MHz, CDCls) §:
171.8, 46.5, 45.5, 34.8, 31.9, 29.7-29.6 (7 overlapping species), 29.6, 29.6, 29.6, 29.5, 29.5, 29.4,
29.3, 24.9, 22.6, 14.0; HRESIMS m/z [M+H]* 338.3430 (calcd. for CHNO 338.3422, A 1.95
mmu).

Compound 38d: white solid; IR (KBr) ymax 2918, 2849, 1643 cm™; *H NMR (500 MHz, CDCls) 6:
2.97 (s, 3H), 2.91 (s, 3H), 2.27 (dd, 2H, J = 8.9, 7.8), 1.60 (m, 2H), 1.35-1.21 (m, 8H), 0.85 (t, 3H,
J =7.3); *¥*C NMR (125 MHz, CDCls) ¢: 173.2, 37.2, 35.3, 33.4, 31.2, 29.7-29.6 (7 overlapping
species), 29.6, 29.5, 29.5, 29.4, 29.3, 25.1, 22.6, 14.0; HRESIMS m/z [M+H]* 312.3272 (calcd. for
C20H42NO 312.3272, A 0.00 mmu).

Compound 39c: white solid; IR (KBr) ymax 2918, 2850, 1643, 1467 cm™; 'H NMR (400 MHz,
CDCls) §: 3.46 (t, 2H, J = 7.0), 3.41 (t, 2H, J = 7.1), 2.25 (dd, 2H, J = 8.8, 8.0), 1.94 (m, 2H), 1.85
(m, 2H), 1.64 (m, 2H), 1.39-1.21 (m, 32H), 0.88 (t, 3H, J = 7.5); 3C NMR (100 MHz, CDCls) &:
171.9, 46.6, 45.5, 34.8, 31.9, 29.7-29.6 (10 overlapping species), 29.5, 29.5, 29.4, 29.3, 26.1, 24.9,
24.4,22.7, 14.1; HRESIMS m/z [M+H]* 366.3740 (calcd. for C24H4sNO 366.3736, A 1.12 mmu).

Compound 39d: white solid; IR (KBr) ymax 2919, 2850, 1643 cm™; 'H NMR (500 MHz, CDCls) ¢:
3.00 (s, 3H), 2.94 (s, 3H), 2.30 (dd, 2H, J = 8.7, 7.5), 1.62 (m, 2H), 1.35-1.21 (m, 32H), 0.85 (t,

3H, J = 6.4); ®C NMR (125 MHz, CDCls) &: 173.3, 37.3, 35.3, 33.4, 31.9, 29.7-29.6 (10
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overlapping species), 29.5, 29.5, 29.5, 29.4, 25.2, 22.7, 14.1; HRESIMS m/z [M+H]* 340.3584
(calcd. for C22HasNO 340.3579, A 1.27 mmu).

Compound 41: white solid; IR (KBr) ymax 3300, 2918, 2849, 1635, 1562, 1463, 1266, 1161, 1019
cm; *H NMR (500 MHz, CDCls) §: 2.74 (s, 3H), 2.43 (bs, 1H), 2.12 (t, 2H, J = 7.4), 1.57 (m, 2H),
1.39-1.21 (m, 32H), 0.86 (t, 3H, J = 6.5); *C NMR (125 MHz, CDCl;) 6: 174.3, 36.5, 31.8, 29.6-
29.5 (6 overlapping species), 29.5, 29.4, 29.3, 29.3, 29.2, 25.7, 22.6, 14.0; HRESIMS m/z [M+H]*
270.2780 (calcd. for C17H3sNO 270.2797, A 6.2 mmu).

Compound 42: colorless oil; IR (KBr) ymax 2918, 2850, 1645, 1466, 1303, 1240 cm?; *H NMR
(500 MHz, DMSO-CDCls) ¢: 4.01 (t, 2H, J = 7.3), 3.80 (t, 2H, J = 7.3), 2.13 (quin, 2H, J =7.9),
1.90 (t, 2H, J = 7.9), 1.41 (m, 2H), 1.20-1.05 (m, 24H), 0.76 (t, 3H, J = 7.0); *C NMR (125 MHz,
DMSO-CDCIs) 0: 171.1, 48.3, 45.9, 30.1, 29.2, 27.8-27.7 (x overlapping species), 27.7, 27.6, 27.5,
27.5, 23.0, 20.8, 13.2, 12.5; HRESIMS m/z [M+H]* 296.2964 (calcd. for C19H3sNO 296.2953, A
3.4 mmu).

Compound 43: white solid; IR (KBr) ymx 2925, 2854, 1644, 1460, 1374, 1266, 1196, 1167 cm;
'H NMR (500 MHz, CDCls) d: 3.47 (t, 2H, J = 6.2), 3.38 (t, 2H, J = 6.2), 2.26 (dd, 2H, J = 8.5,
8.0), 1.66 (m, 4H), 1.59 (m, 2H), 1.52 (m, 4H), 1.35-1.21 (m, 24H), 0.83 (t, 3H, J = 7.0); *C NMR
(125 MHz, CDCls) ¢: 172.8, 47.8, 45.8, 33.2, 31.8, 29.6-29.5 (8 overlapping species), 29.5, 29.4,
29.4, 29.3, 29.1, 27.5, 27.0, 26.7, 25.3, 22.6, 14.0; HRESIMS m/z [M+H]" 338.3437 (calcd. for
C22HaaNO 338.3423, A 4.2 mmu).

Compound 44: white solid; IR (KBr) ymax 2925, 2854, 1643, 1463, 1422, 1360, 1203 cm™; 'H NMR
(500 MHz, CDCls) §: 3.43 (t, 2H, J = 6.4), 3.37 (t, 2H, J = 5.9), 2.28 (dd, 2H, J = 8.5, 7.6), 1.69 (m,
4H), 1.62 (m, 2H), 1.57 (m, 2H), 1.49 (m, 4H), 1.35-1.21 (m, 24H), 0.85 (t, 3H, J = 7.3); *C NMR
(125 MHz, CDCls) 6: 172.9, 49.1, 47.2, 33.5, 31.9, 29.7-29.6 (9 overlapping species), 29.6, 29.4,
29.3, 27.5, 27.0, 26.1, 25.6, 25.4, 25.1, 22.6, 14.0; HRESIMS m/z [M+H]* 352.3591 (calcd. for

C23H46NO 352.3579, A 3.30 mmu).
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6.4.7 Brine Shrimp Toxicity Assay
Brine shrimp (Artemia salina) were added to 120-well 5 mL plate with about 15-40 shrimp
in 2.5 mL of artificial seawater. Compounds were dissolved in DMSO to a stock concentration of
10 uM, with the working serial dilutions also in DMSO, with a volume of 7.5 pL added to each
well. Plates were kept at room temperature for 24 h before the dead shrimp were counted by a
dissecting microscope. Then all shrimp were killed with acetone, and re-counted to obtain an

accurate total shrimp count.

6.4.8 Cathepsin L Assay

Z-Phe-Arg-AMC substrate and E-64-c were purchased from Bachem Americas. Human
recombinant cathepsin L was purchased from R&D Systems. Assays were carried out using 30 uM
Z-Phe-Arg-AMC and 3.0 ng/mL human recombinant cathepsin L. Assay buffer consisted of 50
mM sodium acetate, 100 mM NaCl, 1.0 mM EDTA and 4 mM dithiotreitol, pH 5.5. The enzymatic
reaction (25°C) was monitored on a SpectraMax Gemini or SpectraMax microplate reader
(PerkinElmer Life Sciences) and the fluorescent signal was measured at the excitation and emission
wavelengths of 365 and 450 nm, respectively.

Kinetic characterization of the interaction between the stabilizers and cathepsin L was
performed by continuous monitoring of substrate hydrolysis in the presence of the stabilizer. Each
analog was tested at 25 uM with simultaneous mixing of enzyme, substrate and stabilizer. The total
product formation at the 2 h time point in the presence of the stabilizer was compared to that of just
the enzyme and substrate in order to determine fold increases in enzyme activity. This analysis
was performed in technical triplicate with ANOVA significance analysis done on GraphPad (vs.

5.0, Prism).
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6.4.9 Critical Micelle Concentration Analysis

Stock solution of each compound was prepared in DMSO at several different
concentrations (140, 100, 70, 50, 30, 20, 15, 12.5, 10, 7.5, 5, and 2.5 mM), with 20 puL of each stock
solution added to 20 mL of MilliQ water. This solution was transferred to disposable aluminum
sample vessels (Kruss, part # SV13), where the surface tension was calculated 3 times on a Kruss
K11 tensiometer equipped with a platinum plate. In between dilution series the samples vessels and
the platinum plate were rinsed with MilliQ water. After the analysis of all of the dilutions of one
analog the platinum plate was rinsed with acetone, ethanol, and MilliQ water. Determination of
the critical micelle concentration (CMC) for each compound was performed using the best fit line

function in Excel (vs. 2013).

6.4.10 Statistical Analysis

To examine possible correlation between CMC, surface tension, brine shrimp toxicity, and
structural class on cathepsin activation, | employed multiple linear regression using ordinal ranked
data in XLSTAT. Cathepsin activity, brine shrimp toxicity, critical micelle concentration, and
surface tension values were ranked from highest to lowest for a total of 17 rankings. Compounds
were categorized into two groups: those with carbon chain lengths of 8-12 carbons and those with
carbon chain lengths of 14-16 carbons. Cathepsin activation was selected as the dependent variable
and brine shrimp toxicity, CMC, and surface tension were selected as quantitative independent
variables. Carbon chain lengths were set as independent qualitative variables (C-8-12 and C-14-
16). The confidence interval was set at 95% and best model was selected with the criterion of

adjusted R2.
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Figure 6.6.1: 'H NMR (500 MHz, MeOD) spectrum of compound 18a
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Figure 6.6.2: *C NMR (125 MHz, MeOD) spectrum of compound 18a
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Figure 6.6.3: 'H NMR (500 MHz, CDClIs3) spectrum of compound 18b
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Figure 6.6.4: C NMR (125 MHz, CDCls) spectrum of compound 18b
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Figure 6.6.5: 'H NMR (500 MHz, CDClIs3) spectrum of compound 18¢c
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Figure 6.6.6: °C NMR (125 MHz, CDCls) spectrum of compound 18¢c
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Figure 6.6.7: 'H NMR (500 MHz, CDCls3) spectrum of compound 18d
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Figure 6.6.8: *°C NMR (100 MHz, CDCls) spectrum of compound 18d
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Figure 6.6.9: 'H NMR (500 MHz, MeOD) spectrum of compound 18e
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Figure 6.6.10: *C NMR (125 MHz, MeOD) spectrum of compound 18e
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Figure 6.6.11: *H NMR (500 MHz, MeOD) spectrum of compound 19a
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Figure 6.6.12: 3C NMR (125 MHz, MeOD) spectrum of compound 19a

248



EM2-91_1H_CDCI3_500MHz
STANDARD PROTON PARAMETERS [ 1000

900

0O
J‘K/\/\/\/\/\/\/\ L 800
NH
700
[ 600
[ 500

400

I 300

200

r 100

B L

7.5 7.0 6.5 6.0 5.5 5.0 4.5

4.0 3.5
f1 (ppm)

Figure 6.6.13: 'H NMR (500 MHz, CDCl3) spectrum of compound 19b
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Figure 6.6.14: 3C NMR (125 MHz, CDCls) spectrum of compound 19b
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Figure 6.6.15: *H NMR (500 MHz, CDClI3) spectrum of compound 19¢
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Figure 6.6.16: *C NMR (125 MHz, CDCls3) spectrum of compound 19¢c
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Figure 6.6.17: 'H NMR (500 MHz, CDClI3) spectrum of compound 19d
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Figure 6.6.18: *C NMR (125 MHz, CDCls) spectrum of compound 19d
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Figure 6.6.19: 'H NMR (500 MHz, MeOD) spectrum of compound 19e
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Figure 6.6.20: *C NMR (125 MHz, MeOD) spectrum of compound 19e
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Figure 6.6.21: *H NMR (500 MHz, CDClIs) spectrum of compound 23
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Figure 6.6.22: C NMR (125 MHz, CDCls) spectrum of compound 23
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Figure 6.6.23: 'H NMR (500 MHz, CDClIs) spectrum of compound 24
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Figure 6.6.24: 3C NMR (125 MHz, CDCls) spectrum of compound 24
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Figure 6.6.25: 'H NMR (500 MHz, CDClI3) spectrum of compound 25
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Figure 6.6.26: °C NMR (125 MHz, CDCls) spectrum of compound 25
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Figure 6.6.27: 'H NMR (500 MHz, CDClI3) spectrum of compound 26
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Figure 6.6.28: °C NMR (125 MHz, CDCls) spectrum of compound 26
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Figure 6.6.29: 'H NMR (500 MHz, CDClI3) spectrum of compound 27a
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Figure 6.6.30: *°C NMR (125 MHz, CDCls) spectrum of compound 27a
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Figure 6.6.31: 'H NMR (500 MHz, CDClI3) spectrum of compound 27b
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Figure 6.6.32: *°C NMR (125 MHz, CDCls) spectrum of compound 27b
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Figure 6.6.33: 'H NMR (500 MHz, CDCls) spectrum of compound 27¢
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Figure 6.6.34: 3C NMR (125 MHz, CDCls) spectrum of compound 27¢
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Figure 6.6.35: 'H NMR (500 MHz, ds-DMSO) spectrum of compound 27d
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Figure 6.6.36: *C NMR (125 MHz, ds-DMSO) spectrum of compound 27d
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Figure 6.6.37: 'H NMR (500 MHz, CDClI3) spectrum of compound 28a
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Figure 6.6.38: *°C NMR (125 MHz, CDCls) spectrum of compound 28a
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Figure 6.6.39: 'H NMR (500 MHz, CDClI3) spectrum of compound 28b

EM2-136_13C_CDCI3_500MHz 100
STANDARD CARBON PARAMETERS

r90

©\/\ P

NHWAMM s
L7
)
Fso
Hao

r30

r20

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

Figure 6.6.40: °C NMR (125 MHz, CDCls) spectrum of compound 28b
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Figure 6.6.41: 'H NMR (500 MHz, CDCls) spectrum of compound 28c
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Figure 6.6.42: *C NMR (125 MHz, CDCls3) spectrum of compound 28¢c
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Figure 6.6.43: 'TH NMR (400 MHz, CDClI3) spectrum of compound 28d
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Figure 6.6.44: 3C NMR (100 MHz, CDCls) spectrum of compound 28d
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Figure 6.6.45: 'H NMR (500 MHz, CDClI3) spectrum of compound 29
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Figure 6.6.46: °C NMR (125 MHz, CDCls) spectrum of compound 29
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Figure 6.6.47: 'H NMR (500 MHz, CDClI3) spectrum of compound 30
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Figure 6.6.48: °C NMR (125 MHz, CDCls) spectrum of compound 30
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Figure 6.6.49: 'H NMR (500 MHz, CDCls) spectrum of compound 31
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Figure 6.6.50: *C NMR (125 MHz, CDCls) spectrum of compound 31
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Figure 6.6.51: *H NMR (500 MHz, CDClI3) spectrum of compound 32
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Figure 6.6.52: °C NMR (125 MHz, CDCls) spectrum of compound 32
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Figure 6.6.53: 'H NMR (400 MHz, CDClI3) spectrum of compound 33a
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Figure 6.6.54: 3C NMR (100 MHz, CDCls) spectrum of compound 33a
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Figure 6.6.55: 'H NMR (400 MHz, CDClI3) spectrum of compound 33b
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Figure 6.6.56: *C NMR (100 MHz, CDCls) spectrum of compound 33b
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Figure 6.6.57: 'H NMR (500 MHz, CDClI3) spectrum of compound 33¢c
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Figure 6.6.58: °C NMR (125 MHz, CDCls) spectrum of compound 33c
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Figure 6.6.59: 'H NMR (500 MHz, CDClI3) spectrum of compound 33d
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Figure 6.6.60: *C NMR (125 MHz, CDCls) spectrum of compound 33d
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Figure 6.6.61: 'H NMR (400 MHz, CDClI3) spectrum of compound 34a
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Figure 6.6.62: 3C NMR (100 MHz, CDCls) spectrum of compound 34a
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Figure 6.6.63: 'H NMR (400 MHz, CDClI3) spectrum of compound 34b
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Figure 6.6.64: 3C NMR (100 MHz, CDCls) spectrum of compound 34b
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Figure 6.6.65: 'H NMR (500 MHz, CDClI3) spectrum of compound 34c

EM2-149_13C_CDCI3_500MHz_HPLC_1102014
STANDARD CARBON PARAMETERS

T T T T T T T T T T T T T T T T T
170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

Figure 6.6.66: °C NMR (125 MHz, CDCls) spectrum of compound 34c
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Figure 6.6.67: 'H NMR (500 MHz, CDClI3) spectrum of compound 34d
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Figure 6.6.68: *C NMR (125 MHz, CDCls) spectrum of compound 34d
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Figure 6.6.69: 'H NMR (400 MHz, CDClI3) spectrum of compound 35¢
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Figure 6.6.70: °C NMR (100 MHz, CDCls) spectrum of compound 35¢
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Figure 6.6.71: 'H NMR (400 MHz, CDClI3) spectrum of compound 35d

EM3-20pure_13C_CDCI3_hg400MHz

13C OBSERVE
. . . . . . . . . . . . . . . . . .
180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

f1 (ppm)

Figure 6.6.72: 3C NMR (100 MHz, CDCls) spectrum of compound 35d
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Figure 6.6.73: 'H NMR (400 MHz, CDClI3) spectrum of compound 36¢
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Figure 6.6.74: 3C NMR (100 MHz, CDCls) spectrum of compound 36¢
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Figure 6.6.75: 'H NMR (400 MHz, CDClI3) spectrum of compound 36d
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Figure 6.6.76: 3C NMR (100 MHz, CDCls) spectrum of compound 36d
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Figure 6.6.77: 'H NMR (400 MHz, CDClI3) spectrum of compound 37¢
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Figure 6.6.78: 3C NMR (100 MHz, CDCls) spectrum of compound 37¢
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Figure 6.6.79: 'H NMR (400 MHz, CDClI3) spectrum of compound 37d
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Figure 6.6.80: *C NMR (100 MHz, CDCls) spectrum of compound 37d
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Figure 6.6.81: *H NMR (500 MHz, CDClI3) spectrum of compound 38c
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Figure 6.6.82: 3C NMR (125 MHz, CDCls) spectrum of compound 38c
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Figure 6.6.83: 'H NMR (500 MHz, CDClI3) spectrum of compound 38d
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Figure 6.6.84: 3C NMR (125 MHz, CDCls) spectrum of compound 38d
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Figure 6.6.85: 'H NMR (400 MHz, CDClI3) spectrum of compound 39¢
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Figure 6.6.86: °C NMR (100 MHz, CDCls) spectrum of compound 39¢c
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Figure 6.6.87: 'H NMR (500 MHz, CDClI3) spectrum of compound 39d
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Figure 6.6.88: 3C NMR (125 MHz, CDCls) spectrum of compound 39d



EM3-47pure_1H_CDCI3_MeOH_500MHz_10212013
STANDARD PROTON PARAMETERS

o]

N NG GNP

NH

L e e s e e s e e e i e e e L B e e e M B S S
34 33 32 31 3.0 29 28 27 26 25 24 23 22 21 20 f1.9 18 17 1.6 1.5 1.4 13 1.2 1.1 1.0 09 08 07 06 05 04 03
1 (ppm)

Figure 6.6.89: 'H NMR (500 MHz, CDClI3) spectrum of compound 41
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Figure 6.6.90: °C NMR (125 MHz, CDCls) spectrum of compound 41
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Figure 6.6.91: *H NMR (500 MHz, CDClIs) spectrum of compound 42
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Figure 6.6.92: C NMR (125 MHz, CDCls) spectrum of compound 42
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Figure 6.6.93: 'H NMR (500 MHz, CDClIs) spectrum of compound 43
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Figure 6.6.94: C NMR (125 MHz, CDCls) spectrum of compound 43
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Figure 6.6.95: 'H NMR (500 MHz, CDClIs) spectrum of compound 44
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Figure 6.6.96: °C NMR (125 MHz, CDCls) spectrum of compound 44
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Chapter 7:

Conclusion & Future Work

7.1 Summary of the Research Presented in the Dissertation and Future Work

The major objective of the research present herein was to isolate novel, biologically active,
secondary metabolites from marine cyanobacteria, with a focus on metabolites exhibiting cancer
cell cytotoxicity, in hopes of discovering a new lead drug for the treatment of cancer. Chapter 2
through 5 addressed this major objective with the isolation and structure elucidation of 15 new
cyanobacterial metabolites (figure 6.1), of which 8 were biologically evaluated with 2 compounds
possessing potent cytotoxicity against HCT-116 (human colon cancer) and H-460 (human lung
cancer), and one compound with cannabinoid receptor binding activity. A secondary objective
involved a structure-activity relationship (SAR) investigation into lyngbyamide A, an alkyl amide,
with the objective of both improving the efficacy of the previously reported brine shrimp toxicity
and cannabinoid binding activity. At the same time, | desired to obtain a better understanding of
the key functionalities responsible for this activity. A brief summary of each research chapter and
future work for each project is described below.

Chapter 2 addressed this primary objective by describing the isolation and characterization
of eight new metabolites, veraguamides A-C and H-L (1-8), which were isolated from a collection
of Oscillatoria margaritifera from Coiba National Park (CNP) off of Panama’s west coast, as part
of the Panama International Cooperative Biodiversity Group program.! The planar structure of
veraguamides A and L were fully deduced by 2D NMR spectroscopy and mass spectrometry,
whereas the structures of veraguamides B, C, and H-K were mainly determined by a combination
of IH NMR and MS?/MS? techniques. These new compounds are analogous to the mollusk-derived
kulomo’opunalide natural products, with two of the veraguamides (C and H) containing the same

terminal alkyne moiety.2 However, four veraguamides, A, B, K, and L, also featured an alkynyl
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bromide, a functionality that has been previously observed in only one other marine natural product,
jamaicamide A.® Veraguamide A showed potent cytotoxicity to the H-460 human lung cancer cell

line (LDso = 141 nM).#
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Figure 7.1: Cyanobacterial natural products that were discussed in the previous research chapters
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Future directions for this research should include a total synthesis in order to obtain more
material for biological evaluation as all of the natural product was used in the course of these
studies. A synthetic route would also allow for the design of a structure-activity relationship study
in order to probe the importance of key functional groups. From the natural analogs, it appears that
the alkynyl bromide, and the overall cyclic constitution, are both vitally important for the potent
activity; however, not much else can be learned from these co-metabolites. A total synthesis of
veraguamide A would also help confirm the absolute stereochemical assignments, as the only
published total synthesis raised questions because the *H and *C NMR chemical shifts between the
natural product and synthetic material had significant differences, almost too drastic to be solely a
stereochemical issue.> However, as another laboratory concurrently isolated several of the
veraguamides from a Guam collection of cyanobacteria, and they independently confirmed the
structural and stereochemical assignments, we feel confident of our original assignments.®
Nevertheless, further synthetic investigations are needed to confirm this, and provide material for
further biological evaluations.

Chapter 3 discusses the isolation and structure elucidation of a new lipopeptide,
lyngbyabellin N (9), from an extract of the marine cyanobacterium Moorea bouillonii collected
from Palmyra Atoll in the Central Pacific Ocean. The semi-crude fraction containing lyngbyabellin
N showed strong cytotoxic activity in the H-460 assay; however, purification proved difficult as its
peak shape on several chromatographic supports was extremely broad and unpredictable, even with
the addition of a small percentage of acid. Ultimately, purification of lyngbyabellin N was
accomplished using preparatory TLC as there was acceptable baseline resolution between
neighboring bands. The planar structure of lyngbyabellin N was determined using 1D and 2D
NMR techniques, which revealed an intriguing structural feature, an N,N-dimethylvaline residue,
likely the cause of odd chromatographic characteristics. Two other interesting functionalities that

lyngbyabellin N has include the presence of two thiazole rings and dichlorination on the polyketide
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portion. Lyngbyabellin N exhibits strong cytotoxic activity against the HCT-116 colon cancer cell
line (ICs0 = 40. 9 + 3.3 nM).’

Future directions for this research would also include either a total synthesis or semi-
synthesis in order to obtain more material for biological evaluation as there is no remaining natural
product. Lyngbyabellin N exhibits potent cytotoxicity and is one of the most active compounds in
this rather large family of metabolites.21° This could potentially be caused by its hybrid nature,
where it has the traditional lyngbyabellin highly modified cyclic NRPS/PKS portion which
typically has anti-actin activity, but also has a tail group that consists of a protected leucine statine
and the unique N,N-dimethylvaline terminus; these latter functionalities are structural features
typical of antitubulin agents.®!* This might mean that lyngbyabellin N has two biological
mechanisms of action, namely interaction with both microtubules and actin, which may have a
synergistic effect; however, further investigations are needed to confirm this hypothesis. Since no
more natural product remains, either a total synthesis or a much simpler semi-synthesis is needed
to provide the material. Several other lyngbyabellin analogs are produced in larger quantities, thus
it could be envisioned that one of these could be transformed into lyngbyabellin N by linking a
synthetically-derived tail group which matches that of lyngbyabellin N.8 This would reduce the
number of overall synthetic steps and could be a renewable source of material for future biological
evaluation.

Chapter 4 described the isolation and characterization of three new lipopeptides,
tasiamides C-E (10-12), from a collection of the tropical marine cyanobacterium Symploca sp.,
collected near Kimbe Bay, Papua New Guinea. This collection has been particularly rich in
secondary metabolites, such as kimbeamides A-C, kimbelactone A, and tasihalide C, which were
previously characterized.>*®* However, renewed investigations into a relatively polar and cytotoxic
fraction of this extract yielded the three new lipopeptides. Their planar structures were deduced by

traditional 2D NMR spectroscopy and tandem mass spectrometry, and their absolute configurations
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were determined by a combination of Marfey’s and chiral-phase GC-MS analysis. These new
metabolites are similar to several previously isolated families of metabolites, including tasiamide,
the grassystatins, and symplocin A, all of which were isolated from similar filamentous marine
cyanobacteria.’*®  Although both the grassystatins and symplocin A exhibit potent protease
inhibition, tasiamide C and D were found to be inactive (ICso > 20 uM) against several cancer cell
lines, suggesting that the statine residue present in the grassystatins and symplocin, but absent in
the tasiamides, is important for the observed activity.'’

Although the research described in chapter 4 did not directly involve the isolation of
tasiamide, future directions for this project should involve deducing its correct absolute
stereochemistry, as the isolation of tasiamide C-E put it in further doubt. Tasiamide was originally
isolated by Williams et al. in 2002, with the same described absolute configuration as the new
tasiamide E, however, they had opposite specific rotation signs.** A subsequent total synthesis
suggested that the misassignment in tasiamide involved just the configuration of the N-MeGIn
residue, but their supporting evidence was solely NMR data (*H and **C) and specific rotation.*® |
performed DP4 calculations on the **C NMR data comparing the four synthetic analogs to that of
the natural product (tasiamide), and this analysis revealed that the carbon data alone is insufficient
to deduce the correct configuration.’® The DP4 calculations also suggested that the misassignment
in tasiamide may involve other residues, and thus, a broader investigation into the configuration of
tasiamide is necessary to clarify its correct absolute configuration.

Chapter 5 discussed the isolation and structure elucidation of three new marine
cyanobacterial natural products, precarriebowmide (13), parguerene (14), and mooreamide (15),
from two separate collections of Moorea sp., one obtained from Puerto Rico and the other from
Papua New Guinea. The planar structures of each were deduced by 2D NMR spectroscopy and
mass spectrometry.  Parguerene and mooreamide are modified alkyl amides, whereas

precarriebowmide is a lipopeptide and represents only a minor modification compared to two other
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known metabolites, carriecbowmide and carriebowmide sulfone.®  The identification of
precarriebowmide led to an investigation into whether carriebowmide and carriebowmide sulfone
were true secondary metabolites or isolation artifacts. Both parguerene and mooreamide are
structurally reminiscent of the endocannabinoids, anadamide and 2-arachidonoyglycerol, and thus
it was hypothesized that each would exhibit some cannabinoid receptor binding activity.
Unfortunately, parguerene decomposed prior to being evaluated but mooreamide did exhibit
moderate selective binding affinity towards CB: over CB: (Ki = 0.47 pM and K; > 25 uM,
respectively).?

Future directions for this research would be a total synthesis of parguerene in order to
determine the absolute configuration of the isolated secondary methyl group (C-10) and to evaluate
it for its biological potential, most importantly as a cannabinoid binding receptor ligand and for
MDR reversing activity against Adriamycin resistant breast cancer cells (MDR-7adrR).2?22
Parguerene is structurally similar to the natural product stipiamide, which was isolated from the
Gram-negative soil bacterium, Myxococcus stipitatus.??  From several structure-activity
relationship studies, it was shown that reducing the number of conjugated double bonds in
stipiamide significantly reduced its overall toxicity while the MDR reversing activity was
maintained; because parguerene has fewer conjugated double bonds, it would likely have similar
activity.?® Thus, a total synthesis is needed to assign the C-10 methyl group and for biological
evaluation studies.

Chapter 6 addressed the secondary objective of this thesis with an examination into the
structure-activity relationship (SAR) of lyngbyabmide A in a broad range of bioassays.
Lyngbyamide A was isolated from a collection of M. bouillonii obtained from Grenada in 1995,
and was shown to exhibit both brine shrimp toxicity and cannabinoid receptor binding activity.?
Subsequently, three additional analogs were isolated from a Madagascar collection of M. bouillonii,

and also shown to be toxic against brine shrimp.? During this latter study, Nannini and Gerwick
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semi-synthesized a pyrrolidine derivative, which exhibited a 10-fold increase in brine shrimp
potency, and thus suggested the potential to further improve the activity with other simple
modifications.®® The lyngbyamides are rather small alkyl amides consisting of a twelve carbon
fatty acid tail group, which is functionalized with a trans-cyclopropyl ring at the C4 position, and
a head group portion, which typically consists of a biogenic amine deriving from isoleucine,
tyrosine, or phenylalanine. The synthetic tractability, coupled with their biological potential, made
these targets for an interesting SAR study. In total, 50 analogs were designed and synthesized to
probe the importance of key functional groups, such as the cyclopropyl ring, the chain length (both
shorter and longer), head group polarity, and number of amine substituents. These analogs were
constructed in three different rounds of synthesis and were evaluated for cathepsin L
activation/inhibition, brine shrimp toxicity, cannabinoid receptor binding, cancer cell cytotoxicity,
nitric oxide production in RAW cells, and ion channel modulation. Interestingly, a subset of these
analogs showed strong activity toward the stabilization of cathepsin L and brine shrimp toxicity.
The profile of some of the most active cathepsin L stabilizers resembled the reported activity of
several commercially available surfactants, suggesting that these synthetic analogs may be
surfactants. Using a tensiometer, it was shown that many of the tertiary amides have the ability to
reduce the surface tension of an aqueous mixture and form micelles at concentrations as low as 13
uM, which is lower than most commercially available surfactants.?

There are numerous directions that this project could foreseeably go in the future, such as
continued biological evaluations targeting assays that are susceptible to surfactants, investigations
into the exact type of surfactant these analogs are, and even looking into the ecological role similar
natural products may have in their producing organism. Since the surfactant industry is a multi-
billion dollar industry, there are many different types of surfactants and each has utility in various
applications.?” In order to potentially commercialize on their surfactant properties, it will be

important to determine how these analogs fit into the current surfactant classifications, first by
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determining what types of micelles they form. This will also likely aid in determining the overall
utility that these tertiary amides might possess. However, from the work in chapter 6 it appears
clear that these analogs have the ability to stabilize the cathepsin L enzyme and potentially other
important enzymes, at lower concentrations than any of the common biochemically important

surfactants (i.e. tween 20, SDS, triton X-100, BRIJ 35, and NP-40).2

7.2 Expected Future Direction of Marine Natural Products Chemistry

Natural products have had a huge impact on the pharmaceutical industry since its inception,
with many of the hallmark drugs coming from a natural source.?® However, in the 1980’s the
pharmaceutical industry began to shift away from natural products to synthetic combinatorial
libraries in the search of new drugs. The idea behind this shift was that combinatorial libraries
could be significantly larger (> 100,000 compounds), and thus a greater chance for a ‘hit’; because
these compounds are synthetically derived and there is no supply issue, they had a more obvious
development path.2 However, this has not translated into more drugs, and has overall been
perceived as a failure, as it has produced only one drug (sorafenib) after many years of study.?

Fundamentally, there are issues in the druggability for many of the combinatorial library
metabolites as they are derived from simple, high yielding synthetic reactions. Compared to natural
products, combinatorial compounds have significantly less chiral centers (0 vs. 4), have higher
molecular weights (389 vs. 362), increased rotatable bonds (6 vs. 3), fewer fused rings systems (1
vs. 2.5), increased degree of unsaturation (12 vs. 8), fewer Lipinski-type donors (1 vs. 2), higher
in-ring Lipinski acceptors (2 vs. 1), and are less lipophilic with increased SlogP values (4.2 vs.
2.7)(all median values).*® Overall, combinatorial libraries are simpler molecules, and incorporate
a significant number of heteroaromatic rings to avoid chiral centers and are much more flexible
than natural products, and thus incur higher detrimental entropic consequences.®* In medicinal

chemistry it is common knowledge that “the removal of chiral centers, introducing additional
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flexibility into the molecule and degreasing its size generally leads to a less specific and weaker
activity”’; 3 however, that is exactly what happened when the pharmaceutical industry transitioned
its focus away from natural products to synthetic combinatorial libraries.

Although the focus of the pharmaceutical industry has shifted away from natural products,
natural product derived or inspired metabolites still have had a huge impact on the number of new
chemical entities (NCE) approved for use worldwide. Between 1981 and 2010 only 29% of all
NCEs were of truly synthetic origin, whereas 71% were either natural products, derived from a
natural product, or synthetic but mimicking a natural product.?® Natural products cannot, and
should not be replaced by synthetic combinatorial libraries, as natural products provide structural
diversity and complexity that is currently unattainable by combinatorial synthesis. The producing
organisms of these natural products have evolved over thousands of years to enantiomerically
biosynthesize complex metabolites that have co-evolved with receptors to develop high receptor—
ligand specificity.>® Furthermore, only a small percentage of all organisms have even been
chemically investigated, and an even smaller percentage of marine invertebrates and especially
microbes, thus highlighting the exceptional potential natural products still have in producing new
drug leads.?

Several obstacles impede the development of natural products into drugs, with the biggest
being the supply issue. Currently, it is possible to isolate and elucidate a structure on sub-milligram
quantities of material, and thus it is feasible to work on minor components of an extract.>*3*
However, this significantly reduces the breath of biological evaluation and begs the question, what
good is a compound with no reported biological activity? The goal of natural product chemists
whose focus is on human health impacts should not only be to isolate structurally diverse
metabolites but also ones that possess interesting biological activity. We not only need to find
structurally diverse metabolites, but also enough material to biologically evaluate these compounds

in a broad range of assays to reveal novel biological targets. Over the past decade multiple different
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technological platforms have been developed to improve identification of both structurally diverse
and biologically active compounds, including mass spectrometry techniques,®%* genomic
techniques,®*® and biological screening methohdologies;*® however, neither of the isolation
techniques (MS and genomic) incorporate biological screening protocols until the very end of the
process.

The improvement in MS and genomic techniques have led to a significant increase in
knowledge about the exceptional biosynthetic capabilities of natural product-producing
organisms,*® has provided access to ‘silent” pathways,*® and has led to the targeted isolation of
structurally novel, secondary metabolites.** However, the lack of incorporation of biological assays
until the end of a project makes it impractical for drug development by pharmaceutical companies.
An ideal protocol would incorporate high-throughput, high-content bioassay screening along with
an isolation technique that enriches for structurally novel metabolites. For example, using
chromatography to reduce the complexity of the sample and analyzing these fractions on a LCMS
that has splitter prior to the MS, where one portion goes to the MS and another to a 96-well plate
for bioassay, would yield both MS data along with bioactivity data on almost pure compounds in a
high-throughput fashion.*? Another emphasis could be focused on building a library of secondary
metabolites, which focuses on the structural diversity of the metabolites, rather than on the number
of compounds.?® This will likely lead to more ‘hits’ than any combinatorial library, which can be
subsequently followed up by a structure-activity relationship to refine the activity.

Although investigations into the marine realm is still a relatively young field, it has already
led to 12 approved drugs, with the potential for many more. It has even been shown that marine
natural products are likely our best source of new drugs, with approximately 1.7- to 3.3-fold more
approved drugs per tested compounds over the industry average, which will only likely increase

further with improvements in technology.*® Overall, I strongly believe that the future of marine
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natural products is extremely bright, with huge pharmaceutical potential, and thus worthy of our

continued investment.
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