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Systems/Circuits

Enhanced Spatial Resolution During Locomotion and
Heightened Attention in Mouse Primary Visual Cortex

Patrick J. Mineault,1 Elaine Tring,1 Joshua T. Trachtenberg,1 and X Dario L. Ringach1,2

1Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, and 2Department of Psychology,
University of California, Los Angeles, California 90095

We do not fully understand how behavioral state modulates the processing and transmission of sensory signals. Here, we studied the
cortical representation of the retinal image in mice that spontaneously switched between a state of rest and a constricted pupil, and one
of active locomotion and a dilated pupil, indicative of heightened attention. We measured the selectivity of neurons in primary visual
cortex for orientation and spatial frequency, as well as their response gain, in these two behavioral states. Consistent with prior studies,
we found that preferred orientation and spatial frequency remained invariant across states, whereas response gain increased during
locomotion relative to rest. Surprisingly, relative gain, defined as the ratio between the gain during locomotion and the gain during rest,
was not uniform across the population. Cells tuned to high spatial frequencies showed larger relative gain compared with those tuned to
lower spatial frequencies. The preferential enhancement of high-spatial-frequency information was also reflected in our ability to decode
the stimulus from population activity. Finally, we show that changes in gain originate from shifts in the operating point of neurons along
a spiking nonlinearity as a function of behavioral state. Differences in the relative gain experienced by neurons with high and low spatial
frequencies are due to corresponding differences in how these cells shift their operating points between behavioral states.

Key words: alertness; locomotion; neuronal gain; operating point; spatial acuity; visual cortex

Introduction
Efficient sensory representations must adapt continually to be-
havioral demands, allocating limited resources to the processing
of relevant sensory stimuli (Lennie, 2003; Harris and Thiele,
2011; Lee and Dan, 2012). Even in the awake state, levels of at-
tention and alertness fluctuate over time (Reimer et al., 2014). In

mice, one can observe spontaneous transitions between states of
rest, in which the mouse is still and the pupil is constricted, and
one in which the mouse is actively moving and the pupil is di-
lated. In humans, fluctuations of pupil size correlate with changes
in attention and cognitive load (Beatty, 1982). Moreover,
changes in pupil size are correlated with activity in the locus
ceruleus (Murphy et al., 2014), the sole source of norepinephrine
to the cortex and one of key modulators of behavioral state (Sara,
2009). These links suggest that the mouse may provide a simple
model to study how cortical processing is modulated by fluctu-
ating levels of attention. Indeed, a number of recent studies have
explored this possibility (Poulet and Petersen, 2008; Goard and
Dan, 2009; Bereshpolova et al., 2011; Harris and Thiele, 2011;
Bennett et al., 2013; Polack et al., 2013; Arroyo et al., 2014; Reimer
et al., 2014; Zhuang et al., 2014).

Here, we continue this line of research by testing whether a
salient phenomenon observed in human visual attention studies
has a counterpart in the mouse visual system. A feature of spatial
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Significance Statement

How behavioral state modulates the processing and transmission of sensory signals remains poorly understood. Here, we show
that the mean firing rate and neuronal gain increase during locomotion as a result in a shift of the operating point of neurons. We
define relative gain as the ratio between the gain of neurons during locomotion and rest. Interestingly, relative gain is higher in
cells with preferences for higher spatial frequencies than those with low-spatial-frequency selectivity. This means that, during a
state of locomotion and heightened attention, the population activity in primary visual cortex can support better spatial acuity, a
phenomenon that parallels the improved spatial resolution observed in human subjects during the allocation of spatial attention.
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attention in humans is that it increases spatial resolution, as mea-
sured by the improvement of performance in acuity, texture seg-
mentation, and visual search tasks at the attended location
(Carrasco et al., 2002; Carrasco and Yeshurun, 2009). Spatial
attention, triggered by cueing, is also known to improve acuity in
nonhuman primates (Golla et al., 2004). It has been suggested,
based on the outcomes of various psychophysical studies (Car-
rasco and Barbot, 2014), that the neural mechanism responsible
for the improvement in spatial resolution is a preferential in-
crease in the gain of neurons with high preferred spatial frequen-
cies (Anton-Erxleben and Carrasco, 2013). Interestingly, in mice,
prior work has shown that visually evoked responses increase
during locomotion relative to rest, with tuning curves being
modulated multiplicatively (Niell and Stryker, 2010). However, it
is unknown whether changes in gain are uniform across the entire
cortical population or if they depend on their tuning properties.
Here, we set out to replicate the observation that gain increases
during locomotion and to determine whether these changes
depend on the preferred spatial frequency of the neurons in a
way that would support enhanced spatial resolution during
locomotion.

There is increasing evidence that, in addition to a simple mod-
ulation of neuronal gain, primary visual cortex (V1) participates
in a more complex processing of multimodal signals. These in-
clude the combination of visual and running speeds within single
cells (Saleem et al., 2013), increases in spatial summation of visual
neurons during locomotion compared with rest (Ayaz et al.,
2013), the detection of a mismatch between predicted and actual
visual input as a function of locomotion (Keller et al., 2012), and
the presence of reward timing signals (Shuler and Bear, 2006).
Here, we focus on how the cortical representation of spatial fre-
quency varies between rest and locomotion by adopting experi-
mental methods that kept these other factors constant in our
measurements. Our goal was to determine whether changes in
behavioral state affect the low-level representation of the retinal
image in V1.

Materials and Methods
Animals
All procedures were approved by University of California–Los Angeles’s
Office of Animal Research Oversight (the Institutional Animal Care and
Use Committee) and were in accord with guidelines set by the National
Institutes of Health. A total of 30 C57BL/6J mice (Jackson Laboratory),
both male (10) and female (20) at postnatal day 35 (P35)–P56 of age were
used in this study. Mice were housed in groups of two to three in a
reversed light cycle. Animals were naive subjects with no prior history of
participation in research studies. A total of 129 different fields were im-
aged and data were obtained data for 7018 cells, for a median of 47 cells
per field (range: 6 –162).

Surgery
Carprofen and buprenorphine analgesia were administered preopera-
tively. Mice were then anesthetized with isoflurane (4 –5% induction;
1.5–2% surgery). Core body temperature was maintained at 37.5°C using
a feedback heating system. Eyes were coated with a thin layer of ophthal-
mic ointment to prevent desiccation. Anesthetized mice were mounted
in a stereotaxic apparatus. Blunt ear bars were placed in the external
auditory meatus to immobilize the head. A portion of the scalp overlying
the two hemispheres of the cortex (�8 mm by 6 mm) was removed to
expose the underlying skull. After the skull was exposed, it was dried and
covered by a thin layer of Vetbond. After the Vetbond dried (�15 min),
it provided a stable and solid surface on which to affix an aluminum
bracket with dental acrylic. The bracket was affixed to the skull and the
margins sealed with Vetbond and dental acrylic to prevent infections.

Virus injection
A 3-mm-diameter region of skull overlying the occipital cortex was re-
moved. Care was taken to leave the dura intact. GCaMP6-fast (UPenn
Vector Core: AAV1.Syn.GCaMP6f.WPRE.SV40; #AV-1-PV2822) was
expressed in cortical neurons using adeno-associated virus (AAV). AAV-
GCaMP6-fast (titer: �4 � 10 13 genomes/ml) was loaded into a glass
micropipette and slowly inserted into the V1 using a micromanipulator.
Two injection sites were made near the center of V1 separated �200 �m
apart. For each site, AAV-GCaMP6-fast was pressure injected using a
Picospritzer III (Parker) (4 puffs at 15–20 pounds per square inch with a
duration of 10 ms, each puff separated by 4 s) starting at a depth of 350
�m below the pial surface and making injections every 10 �m moving
up, with the last injection made at 100 �m below the pial surface. The
total volume injected across all depths was �0.5 �l. The injections were
made automatically by a computer program in control of the microma-
nipulator and the Picospritzer.

A sterile, 3-mm-diameter cover glass was then placed directly on
the dura and sealed at its edges with VetBond. When dry, the edges of the
cover glass were further sealed with dental acrylic. At the end of the
surgery, all exposed skull and wound margins were sealed with VetBond
and dental acrylic. Mice were then removed from the stereotaxic appa-
ratus, given a subcutaneous bolus of warm sterile saline, and allowed to
recover on the heating pad. When fully alert, they were placed back in
their home cages.

Imaging
Once expression of GCaMP6f was observed in V1, typically between 11
and 15 d after the injection, imaging sessions took place. Imaging was
performed using a resonant, two-photon microscope (Neurolabware)
controlled by Scanbox acquisition software. The light source was a Co-
herent Chameleon Ultra II laser running at 920 nm. The objective was an
�16 water-immersion lens (Nikon, 0.8 numerical aperture, 3 mm work-
ing distance). The microscope frame rate was 15.6 Hz (512 lines with a
resonant mirror at 8 kHz). Eye movements and pupil size were recorded
via a Genie M1280 camera (Teledyne Dalsa) fitted with a 740 nm long-
pass filter that looked at the eye indirectly through the reflection of an
infrared-reflecting glass (see Fig. 1A). Eye velocity was computed as
changes of the pupil center in the image per frame of the microscope.
Images were captured at an average depth of 210 �m (90% of imaging
fields within the range 80 –320 �m). During imaging, a substantial
amount of light exits the brain through the pupil. Therefore, no addi-
tional illumination was required to image the pupil. Mice were free to
walk on a platform that was mounted on a rotary, optical encoder (US
Digital) connected to an Arduino Mega 2560 board, which provided
direct access to movement information. Both locomotion and eye move-
ment data were synchronized to the microscope frames.

Visual stimulation
Hartley stimuli (Ringach et al., 1997; Malone and Ringach, 2008) were
generated in real time by a processing sketch using OpenGL shaders (see
http://processing.org). The stimulus was updated 4 times/s on a BenQ
XL2720Z screen refreshed at 60 Hz. The screen measured 60 cm by 34 cm
and was viewed at a 20 cm distance, thereby subtending 112 � 80 degrees
of visual angle. The maximum spatial frequency was 0.15 cycles/°, which
corresponds to 12 cycles along the vertical extent of the display. The
Hartley set consisted of the following gratings:

Hkx,ky
� �cas�2�

kx x � kyy

M � (1)

where cas�x� � cos�x� � sin�x� and the wavenumbers kx and ky repre-
sent the number of cycles along the horizontal and vertical axes, respec-
tively, and these indices ran between �12 and 12, excluding the origin
�kx, ky� � �0, 0�. Therefore, the total number of different images in the
Hartley set was ��2 � 12 � 1�2 � 1� � 2 � 1248. The responses to
the four spatial phases that are present at each combination of orienta-
tion and spatial frequency were averaged, leading to 312 locations in the
orientation and spatial frequency domain. Each combination was pre-
sented, on average, 15.4 times during a 20-minute-long stimulus re-
freshed at 4 Hz. This stimulus update rate was selected in an attempt to
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collect data as fast as possible while still evoking reliable responses from
cells.

A transistor-transistor logic pulse was generated by an Arduino board
at each stimulus update transition. The pulse was sampled by the micro-
scope and time stamped with the frame and line number being scanned at
that time. The time stamps provided a way to align the visual stimulation
and imaging data in time.

The screen was calibrated using a Photo-Research PR-650 spectro-
radiometer and the result used to generate the appropriate gamma cor-
rections for the red, green, and blue components via an nVidia Quadro
K4000 graphics card. The contrast of the stimulus was 99%. The center of
the monitor was positioned with the center of the receptive field popu-
lation for the eye contralateral to the cortical hemisphere under consid-
eration. The location of the receptive fields were estimated by an
automated process in which localized, flickering checkerboard patches
appeared at randomized locations within the screen. This experiment
was run at the beginning of each imaging session to ensure the centering
of receptive fields on the screen.

Data processing
Motion stabilization. Calcium images were aligned to correct for motion
artifacts in a two-step process. First, images were aligned rigidly in a
recursive fashion to correct for slow drifts in the imaging plane. Pairs of
neighboring images in time were aligned by finding the peak of their
cross-correlation and then pairs of averages of such pairs were aligned
and so on. In the second step, images were aligned nonrigidly to a refer-
ence mean image to correct for fast in-plane movements, which are fre-
quently observed during grooming. The Lucas–Kanade algorithm was
applied iteratively (Greenberg and Kerr, 2009) to match a reference mean
image nonrigidly, refining the estimate of this reference mean image after
each alignment iteration.

Segmentation. After motion stabilization, a MATLAB (The Math-
Works) graphical user interface tool developed in our laboratory was
used to define regions of interest corresponding to putative cell bodies
manually. Correlation and kurtosis images were used to identify cell
candidates (Smith and Häusser, 2010). The correlation image, corre-
sponding to the average correlation of a pixel and its eight neighbors
across time, highlighted regions of space that covary in time. The kurtosis
image highlights regions in space with signals composed of large, infre-
quent deviations: putative spikes. These images were computed after
subtracting linear trends (Pnevmatikakis et al., 2014).

These images were used to identify approximately circular regions
of space of an appropriate radius visually with high correlation and
high kurtosis. Clicking a seed pixel at the center of such a candidate
patch allowed the definition of a region of interest by flood filling an
image corresponding to the correlation of the highlighted pixel and
every other pixel in the image field (Ozden et al., 2008). The interface
then allowed the user to grow or shrink the region of interest dynam-
ically to a desired size.

Signal extraction and spike inference. After segmentation, signals were
extracted by computing the mean of the calcium fluorescence within
each region of interest. Non-negative deconvolution (Vogelstein et al.,
2010; Pnevmatikakis et al., 2014) was used to estimate spikes from cal-
cium traces. The inverse, constrained form of the non-negative decon-
volution problem was solved (Pnevmatikakis et al., 2014) using the CVX
package (Boyd and Vandenberghe, 2004). To mitigate the effect of drift-
ing background fluorescence, the offset was modeled as slowly moving in
time with a 10-knot cubic spline. The noise of the measured calcium
signals was estimated as the median absolute deviation of the first-order
derivative divided by a factor of .6745�2 � .954 (Johnstone and Silver-
man, 1997).

The constrained deconvolution method of Pnevmatikakis et al. (2014)
requires the specification of the impulse response of the calcium indica-
tor. An exponential impulse response function was assumed and its decay
time estimated using reference data consisting of simultaneous loose-seal
cell-attached recordings and calcium imaging of GCaMP6f in visual neu-
rons (Chen et al., 2013). This dataset was resampled at a sampling rate of
15.5 Hz, non-negative deconvolution was run for a grid of values of decay
times, the R 2 of the estimated calcium signal and the ground-truth cell

spike trains across the 11 cells of the dataset were calculated, and the
parameter set with the largest mean R 2 was selected. This yielded a decay
time 	1/ 2 � 135 ms, for a validated mean R 2 of 0.42 (cf. supplemental
Table 3 in Chen et al., 2013). Our analyses and the resulting interpreta-
tion assume that there is an approximately linear relationship between
the inferred spike rate and the actual spike rates from the neurons, as
partly justified by existing data (see Fig. 3E in Chen et al., 2013).

Generic linear model
The response of a neuron to a stimulus was assumed to be given by the
following linear model:

y�t� � �
x,
y,	 s�
x, 
y, t � 	�w�
x, 
y�v�	� � ar�t� � b � ��t�

(2)

where �(t) is independent, identically distributed Gaussian noise,
s�
x, 
y, t� is the stimulus presented at time t, w�
x, 
y� is the Fourier
kernel, v�	� is the temporal kernel, b is the offset during rest, a is the
change in offset during locomotion, y(t) is the measured response, and
r(t) is an indicator variable taking the value 1 when the instantaneous
velocity of the animal is at least 1 cm/s and zero otherwise. The parameter
a in the equation allows for shifts in the baseline as a function of state.

This model was fit through alternating least-squares (Ahrens et al.,
2008) and the norm of the temporal kernel was constrained to 1. A
smoothness penalty was used for the spatial kernel (Wu et al., 2006) and
its strength was determined by fivefold cross-validation.

The quality of fit of this generic linear model was compared with a
baseline model as follows:

y�t� � ar�t� � b � ��t� (3)

A fit was considered significant whenever the cross-validated sum-of-
squared error SSEL of the generic linear model was such that:

rL � �1 � SSEL/SSEB � 0.15 (4)

where SSEB corresponds to the sum-of-squared error of the baseline
model and rL is analogous to a correlation (Pearson’s r) value. A total of
3803/7018 (54.2%) neurons were significantly tuned according to this
criterion.

Parametric linear model
To estimate the preferred spatial frequency and orientation, as well as
their respective bandwidth, a parametric linear model was fit as
follows:

y�t� � �
x,
y,	 s�
x, 
y, t � 	� w�
x, 
y � r, , �r, A� v�	� � ar�t� � b

� ��t� w�
x, 
y � r, , �r, A� � exp�A cos(arctan�
y/
x� � �

� �log�1 � �
x
2

� 
y
2� � log�1 � r��2/2/�r

2) (5)

where the Fourier kernel is a separable function in orientation and
spatial frequency. The orientation tuning is a von Mises function and
the spatial frequency tuning is a log-Gaussian function. The par-
ameter r � �
x

2 � 
y
2 represents the optimal spatial frequency and

 � arctan�
y/
x� the optimal orientation. The parameter A controls
the sharpness of tuning in the orientation domain and �r controls the
sharpness of tuning in spatial frequency. This model was fit through
alternating nonlinear least-squares using the solution to the generic lin-
ear model as a seed for the temporal kernel and an initial grid search to
find optimal values for r, , �r, A. A total of 3476/7018 (49.5%) neurons
were considered significant (r � 0.15).

Separable linear models
In some analyses, the gain of the linear model was quantified as a function
of state by fitting the linear model as follows:

y�t� � �
x,
y,	 �cr�t� � d� s�
x, 
y, t � 	�w�
x, 
y�v�	� � ar�t�

� b � ��t� (6)
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where cr(t) � d correspond to the state-dependent gain. The gain during
locomotion is then given by c � d and the gain during rest is d. The
relative gain change from rest to locomotion, from the model parame-
ters, is given by 1 � c/d. The relative gain is analogous to the concept of
an attentional field (Reynolds and Heeger, 2009). The model was fit
through alternating least-squares and declared significant if it attai-
ned a cross-validated r-value of 0.15 attained by 3861/7018 (55.0%) of
neurons.

Inseparable linear models
In one instance (see Fig. 2 D, E), spatial and temporal kernels were al-
lowed to depend on whether the animal was in locomotion or rest.
Therefore, the generic and parametric linear models of the previous sec-
tions were fit contingent on whether the animal was undergoing locomo-
tion (criterion: instantaneous velocity of 1 cm/s). The factor ar(t) was
ignored in this case. Fits were declared significant if the model could
achieve a cross-validated correlation value of at least 0.15 in both the rest
and locomotion conditions in 2605/7018 (37.1%) neurons.

Bayesian decoder
Poisson independent decoder. To examine how locomotion influences the
representation of stimuli, the framework of Jazayeri and Movshon
(2006) was followed. A brief overview of the framework is provided here.
The goal is to decode the stimulus by estimating the probability that a
population response was generated by a given stimulus j out of a finite
range of possibilities, p( 	 j). It was assumed that the i-th of N neurons
has a tuning curve fi() and that, on a given trial, ni spikes were observed
from this neuron. Assuming that each neuron follows independent Pois-
son statistics and that each stimulus is equally likely, it follows from
Bayes’ theorem that:

p� �  j � ni�
	 i

fi�0�
ni exp�� fi�j��

ni!
(7)

Taking the log and removing the normalization constant, which is inde-
pendent of , the following is found:

L� j� � �i ni log� fi�j�� � fi�j�

� �i ni log� fi�j�� � b�j� (8)

From this, the properly normalized distribution is recovered as follows:

p� �  j � ni� �
exp�L�j���k exp�L�k��

(9)

The log-likelihood L(j) can be computed straightforwardly as the sum of
the log of tuning curves weighted by the number of spikes measured from
each neuron, with an offset to compensate for biases in the population
representation. It is possible to construct a two-layer neural network
carrying equivalent information to L(j) (Jazayeri and Movshon, 2006)
and a point estimate corresponding to the maximum likelihood estimate
of the stimulus can be obtained by a recurrent network (Deneve et al.,
1999).

Homogeneous gain increase. The effect that a homogenous gain in-
crease has on population decoding will now be discussed. The SD of a
Poisson neuron is proportional to the square root of its mean; signal-to-
noise ratio thus increases when the rate of a neuron increases. Intuitively,
therefore, if a population of Poisson-like neurons increases their gain by
a common factor in response to a change of state, then decoding should
be facilitated.

Under the Poisson-independent decoder, a homogeneous gain of �
has the effect of multiplying the log-likelihood (Eq. 8) by a factor �. It
follows from Equation 9 that, under an increase in gain, probabilities
therefore become more extreme: p( 	 j) values that were most likely
before the gain increase become still more likely after gain increase and
values that were less likely become still less likely. Therefore, an increase
in gain across the board decreases the uncertainty of the decoder and,
because the decoder is unbiased, this implies that decoding error de-
creases when gain increases.

Nuisance factor
Now suppose, more generally, that neurons are modulated by a nuisance
factor � not relevant to decoding the parameter of interest; for example,
locomotion, contrast, etc. Then, tuning curves become a function of both
the parameter of interest and the nuisance factor:

fi�, �� (10)

Assuming that the nuisance factor modulates tuning curves in an arbi-
trary fashion, then a different decoder must be used for every value of the
nuisance parameter; equivalently, one decoder of the form in Equation 8,
can be used, with synaptic weights modulated dynamically by the nui-
sance parameter. In either case, downstream decoding becomes more
complicated. However, if modulation is multiplicative, that is, tuning
curves are separable, then:

fi�, �� � gi� �hi��� (11)

In this case L(j) has a very simple form:

L� j� � �i ni log� fi�j, ��� � b�j, ��

� �i ni log�gi�j�� � ni log�hi�j�� � b�j, ��

� �i ni log�gi�j�� � b�j, �� � k (12)

where k is independent of �. Equation 12 shows that, when the nuisance
parameter modulates tuning curves multiplicatively, the stimulus can be
decoded in exactly the same way as before except that the offset b�0, ��
now changes with �.

Empirical decoder
Graf et al. (2011) showed that the theoretical decoder of the previous
section can underperform when the population has correlated noise or
does not follow Poisson statistics exactly. Equation 12 can be relaxed to
compensate for these deviations from the theoretical model. Factors cor-
responding to log tuning curves are replaced with empirically derived
weights as follows:

L� j� � �i ni Wij � bj��� (13)

Absorbing the offset into a design matrix x, this linear model for the
likelihood can be rewritten into the canonical form:

L��� � � � xTW (14)

As highlighted previously, this non-normalized log-likelihood can be
transformed to a normalized likelihood by the softmax transformation:

� � softmax��� (15)

Finally, under this model, � is the probability distribution of the
categorical stimulus variable y and it follows that it has a multinomial
distribution:

y 
 Multinomial��� (16)

Therefore, this this empirical decoder can be interpreted as a special
instance of multinomial regression, itself a special case of generalized
linear models (McCullagh and Nelder, 1989).

Decoder variants, fitting, and validation
To measure how locomotion modulates decoding accuracy, both theo-
retical and empirical decoders were fit to the data.

In the case of the theoretical decoder, the number of spikes in a three-
frame window centered on the mean temporal latency of all cells within an
experiment were counted. The tuning curves smoothed by a Gaussian kernel
were then computed to derive model weights. The size of the smoothing
kernel was determined by minimizing the fivefold cross-validation decoding
error. This decoding error was derived by selecting maximum likelihood
(ML) estimates under the model and computing their root mean squared
error (RMSE) relative to the actual stimuli in Fourier space.

For the empirical decoder, model weights were estimated by maxi-
mum a posteriori estimation through convex optimization in the frame-
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work of generalized linear models (McCullagh and Nelder, 1989). Rather
than directly counting spikes, the model was allowed to have a continu-
ous temporal window, which was learned from the data using alternating
optimization. A smoothness penalty on the log-tuning curves with
strength determined by fivefold cross-validation was used. As with the
theoretical decoder, the RMSE was computed for the maximum likeli-
hood estimates. In addition, the RMSE for a Bayesian point estimate,
which uses the whole estimated probability distribution, and not simply
its maximum, was computed to minimize the expected RMSE.

Decoding was more accurate during locomotion for theoretical, em-
pirical ML, and empirical Bayesian decoders; in absolute terms, the em-
pirical Bayesian decoder outperformed the empirical ML, which
outperformed the theoretical decoder. In Figure 5, the results of the more
familiar empirical ML decoder are shown.

To verify that the improved stimulus representation could be used
advantageously by a simple decoder in which behavioral state only mod-
ifies the prior, separate decoders were also fit for the rest and locomotion
states using the same criteria as previous analyses. At prediction time, the
prediction of the decoder relevant to the current state was used. Figure 5
shows that the decoding accuracy was very similar between these more
complex, dual decoders and the single “efference copy” decoder, as mea-
sured by the empirical ML error. Similar results were obtained for the
theoretical and empirical Bayesian decoders (data not shown).

Decoding accuracy as a function of spatial frequency
The same empirical decoders described in the previous section were used
to examine the dependence of the decoding accuracy on spatial frequency
and state (see Fig. 5). The ability of the model to predict the probability of
the orientation of the stimulus given the absolute spatial frequency and
spike trains was assessed as follows:

p� � 
, ni� (17)

However, the model actually defines:

p�
x, 
y � ni� (18)

The probability distribution (Eq. 17) was approximated by considering a
small range of spatial frequencies around the target spatial frequency:

p� � arctan�
y, 
x� � 
, ni�

�
p�
x, 
y � ni� I���
x

2
� 
y

2 � 
�� ��
�
x,
y

p�
x, 
y � ni� I���
x

2
� 
y

2 � 
�� �� (19)

where � corresponds to the range of spatial frequencies around the one
considered, which was set to 0.0125 cycles/°. Both ML and Bayesian
variants of this model were considered; Bayesian variants performed
better, but otherwise, the main quantitative effects (see Fig. 5) were sim-
ilar in both variants. The Bayesian variant was used for the data shown in
Figure 5.

Motion onset analysis
To measure the temporal relationship between motion onset, decoding
accuracy, and firing rate, transitions between locomotion and rest were
estimated as follows. An onset period was defined as one in which move-
ment was slower than 0.7 cm/s in 75% of time periods in the preceding 5 s
and faster than 1 cm/s in the 75% of time periods in the 5 s following.
Onset times were defined as the centers of onset periods, discarding onset
times separated by �15 s. Computed mean firing rate and RMSE around
the time of locomotion onset were then computed. Offset times were
defined similarly.

Derivation of the gain of an exponential nonlinearity with a
normal input
Assume we have an exponential nonlinearity of the form r 	 A exp(�x),
where the input is normally distributed x 
 N��, �� (see Fig. 4B). Then,
the slope of the best linear fit between the input and output was com-
puted as: g � �E�r x � E�rE�x�/�2. The terms in this equation can be
calculated as follows:

E�r x � E�A exp��x�x � Aexp��� � �2�2/2��� � ��2�

(20)

r� � E�r � E�A exp��x� � Aexp��� � �2�2/2� (21)

E� x � � (22)

After substituting in the expression for the gain, the following is
obtained:

g � �A exp��� � �2�2/2� (23)

By using Equation 21, the expression can be seen to be equal to g � �r�.
In other words, the gain is proportional to the mean rate.

Results
To determine whether the representation of the image in V1
changes between locomotion and rest, we placed mice on a freely
rotating platform and measured changes in the fluorescence of
V1 pyramidal neurons expressing GCaMP6f (Chen et al., 2013)
using two-photon laser scanning excitation (Fig. 1A). Mice were
presented with a 20-min-long sequence of high-contrast, sinusoi-

Figure 1. Experimental setup. A, Activity of cells in V1 was imaged while a mouse, on a freely
rotating platform, observed a continuous visual stimulus. The head was horizontal. B, Sample of
a visual stimulus sequence. The stimulus consisted of a pseudorandom sequence of gratings
drawn from a Hartley basis set presented at a rate of 4 frames/s. C, Segment of a data record
depicting platform speed, eye position, pupil size, the inferred spikes of four sample cells, and
the mean spike rate of the population. Gray bars in this and subsequent figures indicate periods
of locomotion defined by a threshold on the speed signal.

6386 • J. Neurosci., June 15, 2016 • 36(24):6382– 6392 Mineault et al. • Enhanced Spatial Resolution During Heightened Locomotion and Attention



dal gratings that had random orientations and spatial frequencies
(Hartley basis functions) refreshed at a rate of 4 Hz (Ringach et
al., 1997; Malone and Ringach, 2008; Fig. 1B). During these ses-
sions, mice spontaneously switched between periods of rest and
locomotion (Fig. 1C). Such transitions were marked by corre-
lated changes in platform velocity, the rate of horizontal eye sac-
cades, pupil size, and mean population firing rate (Fig. 1C; Niell
and Stryker, 2010; Polack et al., 2013; Erisken et al., 2014).

A continuous visual stimulation with constant mean lumi-
nance and contrast was selected to prevent external visual events
from inducing changes in cortical state (Tan et al., 2014) while
allowing us to map the tuning of cells. The relatively fast rate and
unpredictability of the stimulus sequence helped keep sensory
mismatch between the visual and motor signals at a constant
level, likely alleviating its influence on V1 activity (Keller et al.,
2012). Moreover, the stimulus sequence consisted of flashed grat-
ings and contained no net motion, thereby minimizing the con-
tribution of visual speed to the activity of neurons (Saleem et al.,
2013).

From the responses of neurons to the Hartley sequence, we
estimated the tuning of each cell in the joint spatial-frequency
and orientation domain and their temporal responses via linear
regression (Fig. 2A; Materials and Methods, Eq. 2). Many neu-

rons were responsive to the stimulus sequence (defined as a cross-
validated r � 0.15 in 3803/7018 or 54.2% of the cells). To capture
the preferences of neurons for orientation and spatial frequency,
we fit a parametric model consisting of separable von Mises tun-
ing for orientation and log-Gaussian spatial frequency tuning
(Materials and Methods, Eq. 5). Although most neurons were
tuned to low spatial frequencies, a large range of preferences was
observed, as noted by the distribution of their preferred param-
eters in the Fourier plane (Fig. 2B,C). A few neurons preferred
spatial frequencies close to or beyond the largest tested (0.15
cycles/°; Fig. 2C, bottom).

To examine the effect of behavioral state on the tuning prop-
erties of individual neurons, we estimated receptive fields for
periods of locomotion (defined by a platform speed �1 cm/s)
and rest (speed �1 cm/s) separately. Temporal kernels were con-
strained to have unit norm in both locomotion and resting states.
Therefore, any changes in gain were represented by changes in the
amplitude of the Fourier kernels.

Consistent with prior studies, we found that locomotion led to
increases in gain (Fig. 2D; Niell and Stryker, 2010; Bennett et al.,
2013; Polack et al., 2013). We define the ratio between the gain
during locomotion and the gain during rest as the “relative gain.”
Preferred orientation and spatial frequency were largely pre-

Figure 2. Effect of behavioral state on the tuning of V1 neurons in the orientation and spatial-frequency (Fourier) plane. A, Tuning of four sample cells in the Fourier domain (origin is at the center)
and their corresponding temporal kernels (bottom). These estimates were obtained by fitting a linear model to the data (Materials and Methods, Eq. 2). All temporal kernels are shown starting at
t 	 0. Spatial frequency along the horizontal meridian is represented by 
x and the spatial frequency along the vertical meridian by 
y. All Fourier kernels share the same pseudocolor scale. Positive
values (red hues) represent stimuli with orientation and spatial frequency that led to increases in the response of the cell; negative values (blue hues) represent stimuli that suppressed the response
of the cell; neutral stimuli are represented by a green hue. B, Distribution of peak kernel positions in the Fourier domain across the population. The distribution is symmetric because the Fourier kernel
is symmetric. C, Top, Distribution of preferred orientations, . Bottom, Distribution of preferred spatial frequencies, 
 � �
x

2 � 
y
2. The symmetry of preferred orientations is a consequence

of the symmetry of the Fourier kernels as well. Only well fit neurons (cross-validated r � 0.15, n 	 3476; see Materials and Methods for details) are considered in this analysis. D, Tuning of four
sample cells in the Fourier domain during rest (top) and locomotion (bottom). Temporal responses are shown in the middle (blue: rest, red: locomotion). This was obtained by fitting a model that
allowed changes in gain between locomotion and rest (Materials and Methods, Eq. 6). E, Preferred spatial frequency and orientation are largely preserved across states. F, Response gain increases
substantially during locomotion. G, There is a small but significant increase in baseline firing rate of 0.12 � 0.01 SDs of the response during locomotion ( p � 0.001, bootstrap test).
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served between locomotion and resting
states (Fig. 2E). To investigate the behav-
ior of the relative gain in more detail, we
fit a model with a single tuning curve, but
allowed for variations in baseline firing
rate and gain across locomotion and rest
states (see Materials and Methods, Eq. 6).
We found that the relative gain across the
population was 2.7 � 0.1 (Fig. 2F, geo-
metric mean, p � 0.001, bootstrap test).
There was a small but significant increase
in baseline firing rate of 0.12 � 0.01 SDs of
the response (Fig. 2G, p � 0.001, boot-
strap test).

Next, we investigated whether the rel-
ative gain was dependent on the preferred
stimulus parameters of the neurons. In-
deed, we found that relative gain was larg-
est for cells preferring high spatial
frequencies (Fig. 3A). The relative gain for
neurons preferring high spatial frequen-
cies (
 � 0.075 cycles/°, n 	 784) was
3.1 � 0.15 (mean � 95% confidence in-
terval), which was higher than for cells
preferring medium (0.025 � 
 � 0.075
cycles/°, 2.7 � 0.1, n 	 654) and low spa-
tial frequencies (0 � 
 � 0.025 cycles/°,
2.45 � 0.08, n 	 388). In other words,
neurons with high preferred spatial fre-
quencies experienced relative gains �26%
larger than cells tuned to the low spatial
frequencies. A scatter plot of the same
data captures the variability in the popu-
lation (Fig. 3B). Even though this may ap-
pear to be a modest difference at first
sight, we show below that this phenom-
enon has a marked effect on the ability
of the entire population to encode high spatial-frequency
information.

Although preferred spatial frequency was the major factor
related to relative gain increase, we also observed a weaker mod-
ulation of relative gain with respect to preferred orientation (Fig.
3C). Curiously, the data hinted at larger relative gains at oblique
orientations. To investigate whether there was a relationship be-
tween this trend and eye movements during the experiments, we
computed the distribution of eye velocities, which showed a clear
bias toward the horizontal (Fig. 3D), consistent with prior studies
(Bennett et al., 2013). If an increase in horizontal retinal motion
led to higher responses during locomotion, we would expect rel-
ative gain to be maximal in cells tuned to vertical orientations.
However, there was no obvious peak at that location (Fig. 3C). Its
absence suggests that eye movements and the resulting retinal slip
are not a major contributor to increases in relative gain. In addi-
tion, we verified there are no major changes in eye torsion be-
tween rest and locomotion (Movies 1 and 2). An alternative
explanation for this peculiar trend is offered below.

An important observation, which led us to propose a possible
mechanism for the observed changes in gain, was the existence of
an approximately linear relationship between gain and mean fir-
ing rates of neurons (Fig. 4A). This relationship arises if one
postulates an exponential, spiking nonlinearity r � Aexp��x�,
linking the response of the cell r to a generator potential x (Fig.
4B; Granit, 1955; Nykamp and Ringach, 2002; Ringach and Ma-

lone, 2007). If we assume the generator potential is normally
distributed with mean � and SD �, then the mean spike rate is
given by:

r� � E�A exp��x� � x 
 N��, �� � Aexp��� � �2�2/2�

Moreover, it can be shown that the gain, which corresponds to
the linear regression coefficient between the response and the
generator potential, is simply g � �r� (see derivation in Ma-
terials and Methods). In other words, the gain is proportional
to the mean response, consistent with the experimental obser-
vation (Fig. 4A).

If changes in gain reflect changes in the operating point of the
cells between locomotion and rest (Bennett et al., 2013; Polack et
al., 2013), then this simple model predicts that the relative gain
across two states must be equal to the relative change in mean
response, gloc/grest � r�loc/r�rest. Where g�loc,rest represents the gain
during locomotion and rest, respectively, and we use a similar
notation for the mean spike rates, r��loc,rest. Remarkably, this rela-
tionship holds reasonably well in our data (r 	 0.62, p � 10�10;
Fig. 4C).

In addition, if shifts in the operating points along a spiking
nonlinearity explain changes in gain, it is possible that the
difference in relative gain shown by neurons with high and low
spatial frequency preferences is due to their operating points
shifting in different ways. First, we find that cells with high
spatial frequency preference have lower spiking rates than cells

Figure 3. Relative gain depends on preferred spatial frequency and orientation. A, Relative gain increases with preferred spatial
frequency. The population was split into three groups preferring low (0 � 
 � 0.025 cycles/°), medium (0.025 � 

� 0.075 cycles/°), and high (
 � 0.075 cycles/°) spatial frequencies. Mean relative gain (error bars are bootstrapped 95%

confidence intervals) is shown for each group. There is an evident dependence of relative gain on the preferred spatial frequency of
neurons. B, Relative gain is correlated with preferred spatial frequency. This is the same data as in A replotted without binning to
convey the degree of variability. Red line is best linear fit. C, Dependence of relative gain with orientation. There is a moderate
tendency for relative gain to be larger at oblique orientations. D, Distribution of eye velocity during the experiments (color code is
in a log scale). Although most of the time the eyes are still, when they move, they tend to do so along the horizontal axis. The
frequency of such movements is higher during locomotion (Fig. 1C).
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with low spatial frequency preference during both rest and
locomotion (Fig. 4D). Second, increases in absolute firing
rates between rest and locomotion experienced by these two
groups are statistically indistinguishable, �r� low � �r�high

� �r� (rank-sum test, p � 0.32; Fig. 4D).
A graphic summary of these relationships helps to explain

how the differential changes in gain between rest and locomotion
may arise from the different operating points of the neurons (Fig.
4E). In the figure, r��low,high

�rest,loc represent the mean rates of the two cell
groups during rest and locomotion, and �r� is the increase in
firing rate in the two groups between rest and locomotion. Then,
according to the model:

glow
loc

glow
rest �

r� low
loc

r� low
rest �

r� low
rest � �r�

r� low
rest � 1 �

�r�

r� low
rest

and a similar relationship holds for the group of cells with high
spatial frequency preference:

ghigh
loc

ghigh
rest � 1 �

�r�

r�high
rest

However, the data show that the operating points during rest
differ, such that r�rest

low � r�rest
high, implying that:

glow
loc

glow
rest � 1 �

�r�

r� low
rest � 1 �

�r�

r�high
rest �

ghigh
loc

ghigh
rest

In other words, the relative gain for cells with low spatial fre-
quency preference is smaller than the group with high spatial
frequency preference.

Armed with these observations, we return to the puzzling de-
pendence of relative gain changes with orientation (Fig. 3B). If
our proposed explanation is correct, then we should expect to see
a matching dependence of the operating point with orientation
preference as well. Indeed, we see a tendency for cells with pre-
ferred orientations around vertical and horizontal to show larger
firing rates during rest than cells tuned to the oblique orientations
(Fig. 4F). Such trends can cause cells tuned for vertical and hor-
izontal to experience smaller increases in gain than cells tuned to
the oblique orientations, which is what is observed in the data
(Fig. 3B). Altogether, these analyses indicate that the change in
gain experienced by a neuron is tightly linked to the shift in its
operating point between behavioral states, which, in turn, de-
pends on its preferred spatial frequency and orientation.

Is the change in gain during locomotion sufficient to have an
effect on the representation of visual information in V1? As gain (and
consequently the signal-to-noise ratio of individual cells) increases
during locomotion, the ability of an ideal observer to predict the
stimuli that triggered a population response is expected to improve
as well (see Materials and Methods). Moreover, if changes in state
only modify the gain of individual cells while leaving their tuning
invariant, the stimulus can be decoded in a manner where the
behavioral state (rest or locomotion) only modifies the prior
probability of stimuli (see Materials and Methods).

To verify this prediction using the collected data, we trained a
Bayesian decoder to estimate the visual input from population activity
(Graf et al., 2011; Fig. 5A). The decoder computed a spike-weighted
sum of decoding fields to yield an estimate of the probability that the
population response was generated by a given stimulus. The result-
ing distribution led to an estimate of a stimulus in the Fourier do-
main, from which we assessed the decoding error (Fig. 5B).

Population activity represented stimuli much more accurately
during locomotion than during rest. The decoding error was
strongly reduced during periods of locomotion relative to rest
(Fig. 5C). Decoding error decreased rapidly after the onset of
locomotion and increased more gradually before a transition to
rest, indicating that the modulation was strongly locked to
changes in mean spike rate and behavioral state (Fig. 5D). Impor-
tantly, using two separate decoders during locomotion and rest
did not improve prediction errors (Fig. 5E). This indicates that
the population can be appropriately modeled by a fixed set of
kernels that change solely in gain and that the change approxi-
mately behavioral state is adequately captured by changes in the
prior distribution (see Materials and Methods).

Finally, we determined whether the preferential enhancement
found for cells tuned to high spatial frequencies could support
enhanced spatial resolution in the V1 population. We repeated
the decoding analysis, focusing on orientation decoding as a

Movie 1. Example of the measurement of pupil size and torsional
eye movements during locomotion. The red bar represents normalized,
instantaneous running speed. Torsion is measured as the angle formed
by the line joining the center of the pupil and a selected two-
dimensional feature of the iris and the horizontal axis in the image
plane. While the pupil dilates during locomotion, torsion remains ap-
proximately constant.

Movie 2. Another example of changes in pupil size and torsion dur-
ing locomotion. The information is presented in the same format as in
Movie 1.

Mineault et al. • Enhanced Spatial Resolution During Heightened Locomotion and Attention J. Neurosci., June 15, 2016 • 36(24):6382– 6392 • 6389











function of behavioral state and spatial
frequency. Across all spatial frequencies,
orientation was decoded more accurately
during locomotion (Fig. 5F). However,
the improvement relative to rest, using
chance performance as the baseline, was
more pronounced at high spatial frequen-
cies (Fig. 5G).

Discussion
Previous research has shown that evoked
firing rates increase and the detectability
of weak stimuli improve during loco-
motion compared with rest (Niell and
Stryker, 2010; Bennett et al., 2013; Polack
et al., 2013). Our analyses indicate that in-
dividual cells modulate their gain in a way
consistent with a shift in their operating
point along an exponential nonlinearity.
This explains the approximately linear re-
lationship between gain and mean re-
sponse rate (Fig. 4). An exponential
nonlinearity was chosen because it is ame-
nable to mathematical treatment and fa-
cilitates the explanation of how shifts in
operating point modulate gain. Other
accelerating nonlinearities, such as half-
squaring, can also generate an approxi-
mate linear relationship between gain and
mean rate over an adequate range of in-
puts. To study these issues in more detail,
it would be important to measure the de-
pendence between the operating point
and preferred stimulus parameters, as well
as the shape of spiking nonlinearities,
using intracellular recording techniques
(Bennett et al., 2013; Polack et al., 2013;
Tan et al., 2014).

The cortical circuit involved in modu-
lating the operating point remains to be
explored. Growing evidence indicates
that, during periods of locomotion, VIP
interneurons (cells expressing the vasoac-
tive intestinal polypeptide) increase their
firing rates and inhibit SOM interneurons
(somatostatin-expressing inhibitory neu-
rons; Fu et al., 2014). SOM-expressing
cells have been implicated as the source of
surround suppression in pyramidal neu-
rons (PYR; Adesnik et al., 2012). The dis-
inhibition resulting from the activation of
the VIP ¡ SOM¡PYR circuit would ex-
plain the increase in spatial summation
(Ayaz et al., 2013), the shift of operating points toward more
depolarized states during locomotion compared with rest (Ben-
nett et al., 2013; Polack et al., 2013), and the resulting increase in
gain during locomotion.

Expanding on previous findings, we found that relative
gain is not uniform across the population, but depends on the
tuning preferences of the neurons (Fig. 3). The most salient
effect is that neurons with a preference for high spatial fre-
quencies have relative gains 25% larger than those tuned for
small spatial frequencies. A decoding analysis showed that,

during locomotion, there is an enhanced visual representation
that supports better discriminability of high-contrast stimuli,
in particular stimuli at high spatial frequencies (Fig. 5).

Although arbitrary state-dependent changes in tuning could
make the neural code ambiguous and difficult to read, a simple
downstream decoder can read out cortical signals efficiently
when only gain is modulated and receptive field tuning curves
are approximately invariant. In this way, increased resour-
ces (neuronal action potentials and their corresponding
metabolic cost) can be deployed during moments of high be-

Figure 4. Changes in the operating point of neurons may explain differential gain changes. A, Scatter plot of the mean rate and
gain of cells during periods of rest and locomotion. The dashed line represents the best linear fit. B, An exponential spiking
nonlinearity with a Gaussian input has the property that the mean response is proportional to the gain, consistent with the data in
A. Here, r� represents the mean spike rate and (�, �) represent the mean and SD of the generator potential. The blue filled dots
represent a small subset of data of the joint distribution of the generator potential and the mean spike rate as related by the
nonlinearity. The red line represents the best linear fit to these points. The slope of this line is the gain. C, As predicted by this simple
rectification model, relative changes in gain are closely related to relative changes in mean spike rate. D, Cells with low- and
high-spatial-frequency preferences have different operating points during rest and locomotion. The relative ordering of these
rates, along with the approximate identity relationship shown in C, explain how differential gain increases may occur. E, Graphic
summary of the relationship in D depicting the relative positioning of operating points of cells with low- and high-spatial-
frequency preferences along the spiking nonlinearity. F, There is a trend of mean rate with orientation that complements the
dependence of relative gain with orientation (Fig. 3B), consistent with the proposed explanation based on the shifts of the
operating points.
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havioral demand such as locomotion, improving the represen-
tation of relevant stimuli (Lennie, 2003). Therefore, the
neuronal code is shaped adaptively to increase spatial resolu-
tion in V1 without increasing the complexity or burden of
decoding in downstream areas.

The preferential enhancement of high-spatial-frequency
information lends additional support to the idea that changes
in V1 during periods of increased alertness and locomotion in
rodents resemble the changes that occur in nonhuman pri-

mates during the allocation of spatial
attention (Harris and Thiele, 2011).
Specifically, the allocation of spatial at-
tention in human subjects leads to in-
creased spatial resolution, an effect that
has been hypothesized to be driven by a
selective increase in response gain at
high spatial frequencies (Anton-
Erxleben and Carrasco, 2013). We
found that such an effect is evident in
mouse V1, where differential gain mod-
ulation enhances the representation of
high spatial frequencies during increased
levels of alertness and locomotion. The
evolutionary advantage of such enhance-
ment is unclear. During locomotion, one
expects the retinal image to become
blurred by motion (Barlow and Ol-
shausen, 2004). This might be particularly
problematic in species that are unable to
stabilize the retinal image by ocular track-
ing of external targets, such as mice. Per-
haps the preferential enhancement of high
spatial frequencies evolved as a way to
counteract such loss of information dur-
ing self-motion relative to a stationary
environment.

Our findings indicate that the depen-
dence of relative gain on the preferred
tuning parameters of neurons is linked to
corresponding differences in how their
operating points shift across states. Dur-
ing rest, cells with a preference for high
spatial frequency have smaller mean re-
sponses and gains than cells with a prefer-
ence for low spatial frequency (Fig. 4).
How this relationship arises remains
unknown and we can only speculate at
this point. One possibility is that the
spatial distribution of the geniculate in-
puts required to generate a band-pass
filter with a high-spatial-frequency
preference involves the pooling of ON
and OFF center cells to generate the ON
and OFF subregions of simple cells. In
contrast, cells with low-pass-spatial fre-
quency profiles may be dominated by a
fewer number of inputs from geniculate
cells with the same center sign. One
could conjecture that cells with bal-
anced ON/OFF inputs and high-spatial-
frequency selectivity are in a higher
conductance resting state (and lower
gain) than their counterparts with low-

spatial-frequency selectivity. Therefore, the difference in the
operating points may be a consequence of the number of syn-
aptic inputs required to make up the corresponding receptive
fields.
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