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Abstract 

 

Damaged or redundant peroxisomes and their luminal cargoes are removed by pexophagy, a 

selective autophagy pathway. In yeasts, pexophagy depends mostly on the pexophagy 

receptors, such as Atg30 for Pichia pastoris and Atg36 for Saccharomyces cerevisiae, the 

autophagy scaffold proteins, Atg11 and Atg17, and the core autophagy machinery. In P. 

pastoris, the cargo receptors for peroxisomal matrix proteins containing peroxisomal 

targeting signals (PTSs) include the PTS1 receptor, Pex5, and the PTS2 receptor/co-receptor, 

Pex7/Pex20. These shuttling receptors are predominantly cytosolic and only partially 

peroxisomal. It remains unresolved as to whether, when and how the cytosolic pools of 

peroxisomal receptors/co-receptors, as well as the peroxisomal matrix proteins, are degraded 

under pexophagy conditions. These cytosolic pools exist both in normal cells and in mutant 

cells impaired in peroxisome biogenesis. We report here that Pex5 and Pex7, but not Pex20, 

are degraded by an Atg30-independent, selective autophagy pathway. To enter this selective 

autophagy pathway, Pex7 required its major PTS2 cargo, thiolase. Similarly, the degradation 

of Pex5 was inhibited in cells missing abundant PTS1 cargoes, such as alcohol oxidases and 

peroxisomal hydratase-dehydrogenase-epimerase (Fox2). Furthermore, in cells deficient in 

PTS receptors, the cytosolic pools of peroxisomal matrix proteins, such as thiolase and Fox2, 

were also removed by Atg30-independent, selective autophagy, under pexophagy conditions. 

In summary, the cytosolic pools of PTS receptors and their cargoes are degraded via a 

pexophagy-independent, selective autophagy pathway under pexophagy conditions. These 

autophagy pathways likely protect cells from futile enzymatic reactions that could potentially 
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cause the accumulation of toxic cytosolic products. 

 

Introduction 

 

The two major functions of the single-membrane bounded peroxisomes are to scavenge 

reactive oxygen species and to catalyze fatty acid beta-oxidation [1]. In addition to their roles 

in a variety of secondary metabolic processes, peroxisomes play critical roles in pathogen 

defense and the immune response [2].  

 

From fungi to plants and mammals, the peroxisomal lumen contains many matrix proteins, 

which are encoded by nuclear genes, synthesized by ribosomes in the cytosol, and imported 

into the peroxisome lumen. The majority of peroxisomal matrix proteins are targeted to the 

peroxisomal matrix by virtue of peroxisomal targeting signals (PTSs). Most such proteins 

contain, at their C-terminal end, a PTS1 signal, which is recognized by the receptor, Pex5 [3]. 

A minority of peroxisomal matrix proteins harbor an N-terminal PTS2 signal, which is 

captured by the receptor, Pex7, and its co-receptor, Pex18/21 in Saccharomyces cerevisiae or 

Pex20 in Pichia pastoris and other yeast species [4-8]. The import of PTS1 cargo/receptor 

complexes is through a minimal peroxisomal translocon comprised of Pex5 and Pex14 [9, 

10].  

 

In sharp contrast with mitochondria and chloroplasts, the peroxisomal receptors shuttle 

between the cytosol and peroxisomal lumen [7, 11, 12]. After cargo import and release into 
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the peroxisome lumen, Pex5 and Pex20 are subject to mono- ubiquitination, which enables 

receptor recycling back to the cytosol - a process that is dependent on the ubiquitin- 

conjugating enzyme, Pex4, the peroxisomal RING subcomplex (comprised of Pex2, Pex10 

and Pex12), and the AAA ATPases, Pex1 and Pex6 [13-15]. The shuttling of Pex7 depends on 

Pex5 and Pex20 and is probably dependent on ubiquitination [16]. The entry of peroxisomal 

cargo, along with their receptors, is fully blocked in the absence of Pex14, one of the three 

components of the docking complex at the peroxisome membrane. Because P. pastoris Pex5 

and Pex20 accumulate in the peroxisome matrix in the absence of the RING subcomplex, it 

has been suggested that their export from the peroxisomes is a necessary step in the 

peroxisomal matrix protein import cycle [17].  

 

In P. pastoris, peroxisome proliferation is induced by switching the carbon source in the cell 

growth medium from glucose to either methanol or oleate [18, 19]. However, peroxisomes 

become redundant or superfluous in yeast cells when they are shifted from peroxisome 

proliferation conditions to peroxisome repression conditions, in the presence of glucose 

accompanied by nitrogen depletion. As a consequence, they are degraded by pexophagy, a 

selective autophagy pathway. During peroxisome proliferation, peroxisomes are already 

tagged by Atg30, via its interactions with the peroxisomal membrane proteins (PMPs), Pex3, 

Pex14, and Atg37 [20, 21]. S. cerevisiae Atg36, a functional homolog of Atg30, tags 

peroxisomes for degradation through interaction with Pex3 [22].  

 

When peroxisomes become redundant or damaged, the pexophagy receptors are activated by 
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multiple phosphorylation events, inducing the recruitment of the scaffold protein, Atg11, and 

the ubiquitin-like protein, Atg8, leading the formation of a double-membrane structure 

(pexophagosome, by analogy to the autophagosome formed during non-selective autophagy) 

around the peroxisome targeted for degradation [18]. Like autophagosome formation, this 

pexophagosome generation requires the core autophagy machinery. The outer membrane of 

the pexophagosome fuses with the vacuole, delivering the pexophagic body into the vacuole 

lumen for degradation and recycling of the constituent macromolecules. Atg30 and Atg36 

homologs have not been yet identified in higher eukaryotic cells. However, in mammals, 

NBR1 acts as a pexophagy receptor [23, 24]. Unlike in yeasts, ubiquitination is necessary for 

pexophagy in mammals. During starvation, the E3 ligase, PEX2, ubiquitinates PEX5 on the 

peroxisome surface, which serves as a signal to recruit NBR1 for peroxisome degradation 

[25].  

 

In yeasts, the PTS receptors are predominantly cytosolic and only partially peroxisomal. 

According to cell fractionation experiments, about 95% Pex5, 70-90% Pex7, and 70% Pex20 

is localized in the cytosol in P. pastoris [4, 26, 27]. Similar results were observed in other 

yeast species and human cells [28, 29]. It is expected that the peroxisomal pools of Pex5, 

Pex7, and Pex20 are degraded with the organelles via the Atg30-dependent pexophagy 

pathway. However, it remains elusive as to whether, when and how the cytosolic pools of 

peroxisomal receptors/co-receptors are degraded under pexophagy conditions. Moreover, 

there are likely newly-synthesized peroxisomal matrix proteins that have not been imported 

into the peroxisome lumen when cells encounter pexophagy conditions, or in mutants 
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(including human patients) impaired in peroxisome biogenesis. The fate of these 

non-essential peroxisomal proteins is also unknown under pexophagy conditions. However, 

these proteins, if left in the cytosol, might participate in futile enzymatic reactions and/or 

generate toxic products that may be harmful to the cells.  

 

In this manuscript, we show that Pex5 and Pex7 are degraded in a manner that is independent 

of Atg30 under starvation conditions. However, the degradation of Pex5 and Pex7 is blocked 

in cells deficient in either autophagy or vacuolar proteases, suggesting the involvement of the 

core autophagy machinery and vacuolar proteolysis. Evidence for the selective degradation of 

these PTS receptors was gleaned from the finding that the degradation of Pex5 and Pex7 was 

disabled in the absence of their respective major cargoes under pexophagy conditions, 

whereas a cytosolic protein, 3-phosphoglycerate kinase (PGK1), was still degraded under 

these conditions. However, the degradation of these PTS cargoes was not dependent on their 

cognate receptors. Other PTS proteins mislocalized to the cytosol were also cleared by an 

Atg30-independent, selective autophagy. Our results suggest that non-essential, obsolete or 

mistargeted cytosolic pools of peroxisomal proteins are degraded by a novel, 

Atg30-independent, selective autophagy pathway under starvation conditions. 

 

Results 

 

PTS receptors/co-receptors are degraded independent of Atg30 under nitrogen 

starvation conditions 



7 
 

 

The PTS receptors shuttle between the cytosol and the peroxisome lumen. As previously 

shown by cell fractionation experiments, only around 5% Pex5, 10-30% Pex7, and 30% 

Pex20 is localized to peroxisomes in P. pastoris, indicating that PTS receptors are 

predominantly cytosolic under peroxisome proliferation conditions [4, 26, 30]. Redundant or 

superfluous peroxisomes are recognized by Atg30, the pexophagy receptor, and subjected to 

degradation via selectively autophagy when yeast cells are shifted from peroxisome 

proliferation to pexophagy conditions [20]. It is expected that PTS receptors associated with 

peroxisomes are degraded together with the whole organelles.  

 

In order to investigate the fate of the cytosolic pools of PTS receptors under pexophagy 

conditions, the protein levels of PTS receptors were analyzed. Wild-type cells (WT, PPY12) 

were grown in oleate medium to mid-log phase, then transferred to glucose medium without 

nitrogen (SD-N) to activate pexophagy. We used thiolase (Pot1), a PTS2-containing 

peroxisomal matrix protein to follow pexophagy [20]. In agreement with our previous results, 

Pot1 was degraded in WT cells under starvation conditions (Figure 1A), but not in cells 

lacking Atg30 (Figure 1B). In sharp contrast, in replicate samples Pex5 was degraded in both 

WT and Δatg30 cells, although the degradation rate of Pex5 was slightly slower in Δatg30 

cells in comparison with the WT cells (Figure 1A-C). Pex5 would likely not be degraded in 

Δatg30 cells if the cytosolic Pex5 was associated with peroxisomes under pexophagy 

conditions. The relative fast clearance of Pex5 in Δatg30 cells suggests the existence of a new 

degradation pathway for Pex5 that is independent of the well-known pexophagy pathway.  
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The expression levels of Pex7 and Pex20 were also monitored by expressing HA-Pex7 or 

Pex20-HA from their endogenous promoters, respectively, in the WT and Δatg30 strains. Our 

earlier studies showed that the addition of HA tags to Pex7 and Pex20 did not affect their 

functions [27, 31]. Similar to Pex5, in replicate experiments the degradation of Pex7 and 

Pex20 was also independent of Atg30 under pexophagy conditions (Figure 1). Therefore, all 

three PTS receptors/co-receptors are degraded under starvation conditions, but they do not 

follow the known pexophagy pathway.  

 

The PTS receptors, but not the co-receptor, are degraded by selective autophagy under 

starvation conditions  

 

In P. pastoris, when the recycling of Pex5 and Pex20 is blocked, they can be 

poly-ubiquitinated and degraded by the alternative RADAR (receptor accumulation and 

degradation in the absence of recycling) pathway under peroxisome proliferation conditions 

[27], so we wondered if the RADAR pathway accounted for the degradation of these 

receptors. The poly-ubiquitination sites of P. pastoris Pex5 and Pex20 are located at positions 

K22 and K19, respectively [32, 33]. The protein levels of Pex5(K22R) or Pex20(K19R), with 

mutations of the ubiquitin acceptors sites on Pex5 and Pex20, respectively, were analyzed in 

the Δatg30 strain. As shown by the Western blots, a simultaneous block of the RADAR and 

pexophagy pathways did not significantly affect the degradation of Pex5(K22R) or 

Pex20(K19R) under starvation conditions (Figure 2A-D). To further explore whether the 
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degradation of peroxisomal receptors/co-receptor follows the proteasome-dependent pathway, 

ubiquitin (Ub) mutated at position K48 to arginine, Ub(K48R), was overexpressed to inhibit 

proteasomal degradation in Δatg30 cells. Cells overexpressing Ub(K48R) did not stabilize the 

level of Pex5 compared to that in WT cells at three separate time points (6, 12, and 24 h) 

following shift of the cells to pexophagy conditions (Figure 2A, C). Similarly, the protein 

level of Pex20-HA was not stabilized by overexpressing Ub(K48R) in Δatg30 cells (Figure 

2B, D). Therefore, the degradation of Pex5 and Pex20 is also independent of the RADAR and 

UPS pathways.  

 

In order to investigate whether the degradation of peroxisomal receptors follow any 

vacuole-dependent pathways, we checked the protein levels of Pex5, Pex7, and Pex20 in a 

strain lacking two vacuolar proteases, Prb1 and Pep4 (SMD1163). Interestingly, we found 

that the degradation of Pex5 and Pex7 was fully blocked in the SMD1163 strain compared to 

WT cells (Figure 2E-H). To further explore whether the degradation of Pex5 and Pex7 is 

autophagy dependent, their protein levels were checked in strains lacking components of the 

core autophagy machinery, Atg1 or Atg8. In comparison with the WT cells, stabilization of 

Pex5 and Pex7 was observed in Δatg1 and Δatg8 cells, indicating that Pex5 and Pex7 are 

indeed degraded by autophagy (Figure 2E-H). Atg11 and Atg17 function as scaffold proteins 

in autophagy machinery. The degradation of thiolase was blocked in Δatg11 or Δatg17, as 

expected, while the degradation of Pex5 was partially blocked in Δatg11 or Δatg17 cells. 

However, the degradation of Pex5 was fully blocked when both Atg11 and Atg17 were absent 

(Figure 2E, G). Similarly, Pex7 was partially blocked in cells lacking Atg11 or Atg17, while 
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fully stabilized in cells lacking both Atg11 and Atg17 (Figure 2F, H).  

 

The CVT, mitophagy, pexophagy and nucleophagy pathways occur via selective autophagy 

and are dependent on Atg11. To further explore the involvement of Atg11 in the degradation 

of Pex5 and Pex7, we shifted cells from oleate to glucose medium (SD) to induce pexophagy, 

without nitrogen starvation, which activates autophagy. Pex5 and Pex7 were degraded in WT 

cells, but fully stabilized in cells lacking Atg11 or Atg17 (Figure S1). Together, these data 

suggested that Atg11 and Atg17 are required for the selective degradation of Pex5 and Pex7.  

 

However, unlike Pex5 and Pex7, the level of Pex20 was not stabilized in Δatg1, Δatg8, and  

SMD1163 cells, suggesting that the degradation of Pex20 is independent of 

autophagy-related pathways (Figure S2A). We analyzed the turnover rate of Pex20 by 

treatment with cycloheximide, a protein synthesis inhibitor, in starvation medium. The half 

life of Pex20 was around 4 hours since its protein level is decreased by 50% at this time point 

after cycloheximide treatment (Figure S2B, C). Moreover, the transcription level of PEX20 

under starvation conditions was analyzed by RT-PCR and was repressed in starvation 

medium (Figure S2D).  

 

The degradation of Pex5 and Pex7 is independent of each other 

 

Our previous results showed that the recycling of Pex7, and consequently its degradation 

under peroxisome-proliferation conditions, is dependent on the shuttling pathway of Pex5 and 
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Pex20 [31]. Therefore, we tried to dissect whether the degradation of Pex5 and Pex7 

depended on each other and/or Pex20. In the absence of Pex7 and/or Pex20, Pex5 was still 

degraded upon starvation (Figure 3A, C). Pex2, a PMP, was used as a marker for pexophagy 

since thiolase was mislocalized in the cytosol in cells missing either the PTS2 receptor or 

co-receptor. Likewise, Pex7 was still degraded in Δpex5, Δpex20, and Δpex5 Δpex20 cells 

(Figure 3B, D). Therefore, although both Pex5 and Pex7 are degraded under pexophagy 

conditions, their degradation does not depend on each other, or on Pex20.   

 

Pex7, but not cytosolic PGK1, degradation is blocked in cells lacking Pot1 

 

In P. pastoris, thiolase is a major PTS2 protein. To dissect whether cargo binding to Pex7 

modulates Pex7 degradation upon starvation conditions, we analyzed the fate of Pex7 in the 

absence of thiolase. To our surprise, the Pex7 was stabilized in cells deficient in Pot1, 

indicating that Pex7 needs to form a complex with thiolase and that they might be degraded 

together (Figure 4A, B). This dependence of Pex7 degradation on cargo binding was shown 

independently by using the Pex7(A248R) mutant, which is unable to bind thiolase [4]. Upon 

starvation, Pex2 and thiolase were degraded in Δpex7 cells expressing Pex7(A248R), while 

the degradation of Pex7(A248R) was blocked, as expected (Figure 4A, B). In order to 

investigate whether the Pot1-dependent degradation of Pex7 is specific and selective, we 

analyzed the fate of 3-phosphoglycerate kinase (PGK1), a cytosolic protein used as a control 

of nonselective autophagy [34]. Under starvation conditions, PGK1-GFP was slowly 

degraded by non-selective autophagy in WT cells, as demonstrated by its stabilization in 
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SMD1163 cells (Figure S3). However, in sharp contrast to Pex7, the degradation of 

PGK1-GFP was not affected in cells deficient in Pot1. These results suggest that the 

degradation of Pex7 under starvation conditions requires it to bind its cargo and importantly, 

its degradation is through a selective mechanism and not via bulk autophagy.  

 

Selective degradation of mislocalized Pot1 

 

To further characterize whether the cytosolic pool of thiolase is degraded under starvation 

conditions, we used a strain lacking Pex7, in which thiolase was mistargeted to the cytosol. 

To investigate whether mislocalized thiolase was degraded by autophagy under starvation 

conditions, the fate of thiolase, which was fused to GFP (Pot1-GFP), was monitored using 

fluorescence microscopy. In oleate medium, Pot1-GFP was imported into peroxisomes in the 

WT cells, but was mislocalized to the cytosol in Δpex7 cells (Figure 4C, Figure S4A). Upon 

transfer to SD-N medium, GFP appeared in the vacuole in Δpex7 cells, a hallmark of 

autophagy (Figure 4C) and a significant fraction of the Pot1-GFP was degraded, as judged by 

the release of free GFP in the vacuole (Figure 4D, E). In Δpex7 Δatg1 and in Δpex7 Δatg11 

Δatg17 cells, but not in Δpex7 Δatg30 or Δpex7 Δatg11 cells, by contrast, the GFP 

fluorescence remained cytosolic and outside the vacuole after cells were starved for 24 hours 

(Figure 4C, S4A). However, we found that the GFP fluorescence was still largely cytosolic in 

Δpex7 Δatg11 cells, but not in Δpex7 and Δpex7 Δatg30 cells starved for 6 hours, indicating 

the requirement of Atg11 in the degradation of cytosolic Pot1. Moreover, upon transfer to 

starvation medium, the degradation of Pot1-GFP was monitored by immunoblotting. The 
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appearance of free GFP and a decrease in the Pot1-GFP levels were detected in Δpex7, Δpex7 

Δatg30 cells, but in contrast, no free GFP appeared and the protein levels of Pot1-GFP were 

stabilized in Δpex7 Δatg1 and in Δpex7 Δatg11 Δatg17 cells (Figure 4D, E, S4B, C). 

Interestingly, the appearance of free GFP in Δpex7 Δatg11 and Δpex7 Δatg17 cells was slower 

in comparison with that in Δpex7 and Δpex7 Δatg30 cells, suggesting the involvement of 

Atg11 in the degradation of the cytosolic pool of thiolase (Figure 4D, E, S4B, C).  

 

If cytosolic Pot1 is degraded by autophagy, it should be found in autophagosomes. To 

confirm this point, we explored the fate of Pot1-GFP in Δpex7 Δprb1 Δpep4 mutants, in 

which autophagosomes should be stabilized in the vacuole due to the lack of vacuolar 

proteases, Prb1 and Pep4. We found Pot1-GFP-labeled punctate structures in the vacuole of 

Δpex7 Δprb1 Δpep4 cells after starvation for 3 hours (Figure S5). More and larger Pot1-GFP 

labeled punctate structures were observed in the vacuole with longer starvation times. These 

results indicate that in the absence of Pex7, cytosolic thiolase is degraded in the vacuole by 

an autophagy-related pathway under starvation conditions, while Pex7 depends on thiolase to 

enter this Atg30-independent degradation pathway. This asymmetrical dependence of the 

degradation of cytosolic Pex7 on thiolase, but not vice versa, is a strong indication of 

selectivity. 

 

Block in degradation of Pex5 when it cannot bind abundant PTS1 cargoes 

 

Unlike the existence of only one major PTS2 protein (thiolase), there are dozens of PTS1 
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proteins in P. pastoris. To investigate whether any specific PTS1 proteins bound to cytosolic 

Pex5 to be degraded together under starvation conditions, we performed Co-IP experiments 

using tandem HA-tagged Pex5, followed by mass spectrometry. In order to arrest the 

autophagic degradation, we transformed Pex5-HA into Δypt7 cells, in which the fusion 

between the autophagosomes and vacuole is blocked [35]. We found that around 40 proteins, 

including Pex14, Aox1, Aox2, and Fox2, could be pulled down with Pex5 (Table S1). The 

AOX1 and AOX2 genes encode alcohol oxidases, which are non-canonical PTS1 proteins 

bound to the N-terminal part of Pex5 [36]. AOX1 and AOX2 are essential for the metabolism 

of methanol, and they are expressed at very low levels in oleate medium. Fox2 is a canonical, 

PTS1-containing, hydratase-dehydrogenase-epimerase protein that is involved in the 

peroxisomal fatty acid beta-oxidation pathway [37].  

 

Because the PTS2 cargo protein, Pot1, is essential for the degradation of Pex7 under 

starvation conditions, we asked whether Aox1, Aox2, and Fox2 are also important 

components of the Pex5 degradation pathway. Although the degradation of Pex5 was not 

blocked in Δaox1 Δaox2 or Δfox2 cells, its degradation was severely blocked in the Δaox1 

Δaox2 Δfox2 triple mutant (Figure 5). To further confirm these results, we replaced in WT and 

Δaox1 Δaox2 cells, the endogenous Pex5 with Pex5(N460K), a mutant that cannot bind to 

canonical PTS1 proteins [33]. While non-canonical PTS1 proteins could still bind to 

Pex5(N460K) in the Δpex5::Pex5(N460K) strain, almost no PTS1 proteins bound to 

Pex5(N460K) in the Δaox1 Δaox2 Δpex5::Pex5(N460K) strain. Interestingly, the degradation 

of Pex5(N460K) was only severely slowed down in Δaox1 Δaox2 Δpex5::Pex5(N460K), but 
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not in the Δpex5::Pex5(N460K) strain (Figure 5), suggesting Pex5 also depends on its cargoes 

to enter the degradation pathway.  

 

In order to investigate whether the cargo-dependent degradation of Pex5 is specific and 

selective, we analyzed the fate of PGK1 in the Δaox1 Δaox2 Δfox2 triple mutant. In sharp 

contrast to Pex5, the degradation of PGK1-GFP was not affected in cells deficient in Aox1, 

Aox2, and Fox2 (Figure S3). Once again, the requirement of the cargoes only for Pex5, but 

not PGK1, degradation during pexophagy conditions is evidence of a selective pathway to 

degrade the cytosolic pool of PTS receptor/cargo complexes. 

 

Selective degradation of cytosolic PTS1 proteins  

 

To elucidate whether the formation of PTS1/Pex5 complex is a prerequisite for the 

degradation of cytosolic localized Pex5 and their cargoes, we investigated the fate of PTS1 

cargoes in the absence of Pex5. In Δpex5 cells, both canonical and non-canonical PTS1 

proteins remained cytosolic, as expected. As shown by fluorescence microscopy, GFP-labeled 

Fox2 was targeted to peroxisomes in WT cells, but mislocalized to the cytosol in Δpex5 cells 

(Figure 6A, S6A). Upon starvation, peroxisomal GFP-Fox2 was degraded in the vacuole in 

WT cells, while the cytosolic, mislocalized GFP-Fox2 was targeted to the vacuole in Δpex5 

cells for degradation as well. When Atg1 or both Atg11 and Atg17, but not Atg30, was 

missing in Δpex5 cells, GFP-Fox2 remained in the cytosol upon starvation (Figure 6A, S6). 

Moreover, when only Atg11 was missing in Δpex5 cells, GFP-Fox2 remained in the cytosol 
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for up to 6 hours of starvation, indicating the degradation of cytosolic GFP-Fox2 occurred via 

selective autophagy. As shown by fluorescence microscopy and GFP-cleavage assays, we 

found that another canonical PTS1 cargo, PMP20 (peroxiredoxin), was degraded in the 

vacuole of Δpex5 and Δpex5 Δatg30 cells, but it remained cytosolic in Δpex5 Δatg1 and in 

Δpex5 Δatg11 Δatg17 cells upon starvation (Figure 6B-D, S7). PMP20 remained in the 

cytosol in Δpex5 Δatg11 cells, for up to 6 hours of starvation, but was degraded more slowly 

than in Δpex5 cells. PMP20 was degraded in the vacuole when Δpex5 Δatg11 cells were 

continuously starved for 24 hours (Figure 6B).  

 

The fate of cytosolic GFP-Fox2 in the Δpex5 Δprb1 Δpep4 mutant was explored to investigate 

whether any autophagosome-like structures formed under starvation conditions. GFP-Fox2 

labeled punctate structures were observed in the vacuole of Δpex5 Δprb1 Δpep4 starved for 3 

hours (Figure S5). More and larger GFP-Fox2-labeled punctate structures were observed in 

the vacuole with longer starvation times. These data show that the PTS1 cargoes analyzed, 

when rendered cytosolic (as is the case in peroxisome biogenesis mutants and human 

peroxisome biogenesis disorders), are also degraded by Atg30-independent, selective 

autophagy. 

 

Cue5 and Vid24 are not involved in the turnover of cytosolic peroxisomal proteins 

 

Aggrephagy and the vacuole import and degradation (Vid) pathways are two known 

autophagy-related pathways involved in the degradation of cytosolic proteins [38, 39]. In S. 
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cerevisiae, ubiquitinated protein aggregates are degraded by Cue5-mediated aggrephagy 

pathway [38]. In order to investigate whether cytosolic peroxisomal receptors and proteins 

are degraded by the aggrephagy pathway, we deleted the CUE5 gene in P. pastoris. However, 

neither the degradation of Pex5 and Pex7 in Δcue5 cells, nor the degradation of cytosolic 

Pot1 in Δpex7 Δcue5 cells, respectively, was affected, suggesting that the aggrephagy 

pathway is irrelevant to the degradation of PTS receptors and cytosolic PTS2 proteins (Figure 

7). The cytosolic PMP20 was degraded slightly slower only at the 6 h time point of starvation 

in Δpex5 Δcue5 cells compared to Δpex5 cells by the GFP cleavage assay, but this delay was 

not obvious under microscopy analysis (Figure S7A), suggesting that the aggrephagy 

pathway plays a minor role, if at all, in the degradation of cytosolic PMP20.  

 

S. cerevisiae Vid24 is an essential protein of the Vid pathway that is involved in the 

degradation of the key gluconeogenic enzyme, fructose fructose-1,6-bisphosphatase, when 

cells are shifted from medium containing poor carbon sources to fresh glucose [39]. However, 

the degradation of Pex5 and Pex7 was not affected in the absence of Vid24 in P. pastoris 

(Figure 7A, B). Therefore, our data indicate that cytosolic peroxisomal proteins are degraded 

by means of a novel selective autophagy pathway instead of by the aggrephagy or Vid 

pathways.  

 

Discussion 

 

Previous studies have shown that like many other organelles, peroxisomes, along with their 
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matrix and membrane constituents, are turned over by pexophagy when they are either 

redundant or dysfunctional, and that this process is important for peroxisome homeostasis [18, 

20].  

 

Independent of pexophagy, at the peroxisomal membrane, there exists a quality control 

pathway that prevents a logjam when PTS receptor/co-receptor recycling from the 

peroxisome membrane back to the cytosol is impaired, via the activation of the RADAR  

pathway, which involves poly-ubiquitination of these receptors/co-receptors and their 

subsequent degradation by the ubiquitin-proteasome system (UPS) [15, 27, 40, 41]. 

 

However, since the PTS receptors and co-receptors that shuttle cytosolic, PTS-containing 

cargo to and from the peroxisomes are predominantly cytosolic [4, 26, 27], we addressed the 

fate of this cytosolic pool of PTS receptors/co-receptors during pexophagy. Additionally, in 

many human PBDs, in which peroxisomal matrix protein import is compromised, most of the 

proteins destined for the peroxisome matrix would remain in the cytosol, where they might 

produce toxic byproducts and/or engage in futile metabolic reactions that would be 

detrimental to the cells [42]. Aging cells, or those subjected to oxidative stress, have also been 

shown to exhibit reduced peroxisomal matrix protein import, which would enhance the 

cytosolic pool of these cargoes [43, 44]. We also addressed the fate of these cytosolic 

peroxisomal matrix proteins.  

 

Data presented in this study show that the cytosolic pools of Pex5, Pex7, and Pex20 are also 
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degraded under pexophagy conditions, not by pexophagy because they were not dependent 

on Atg30 (Figure 1). Although these proteins are polyubiquitinated [15, 27, 40, 41], the 

degradation of their cytosolic pools is not affected by perturbations in the UPS pathway, for 

example by overexpression of Ub(K48R) or by expression of mutants that prevent 

polyubiquitination of these proteins (Figure 2). Instead, Pex5 and Pex7 are turned over, 

independent of each other, by a new Atg30-independent, autophagy pathway (Figure 2, 3). 

Several independent lines of evidence support this view. First, the degradation of Pex5, Pex7, 

and Pex20 is independent of Atg30 (Figure 1). Second, the degradation of Pex5 and Pex7 

requires Atg11 (Figure 2E, F, S1), whose requirement in other selective autophagy pathways 

suggests that selective autophagy may be involved in the degradation of cytosolic Pex5 and 

Pex7. This point is reinforced by the requirement of Atg17 for Pex5 and Pex7 degradation 

(Figure 2E, F). Finally, the dependence of Pex5 and Pex7 degradation on their respective 

PTS1 and PTS2 cargoes is strong evidence that these receptors are degraded selectively 

(Figure 4, 5). In contrast to Pex5 and Pex7, the level of Pex20 was not stabilized in Δatg1 

cells, suggesting that the degradation of Pex20 is independent of autophagy (Figure S2). 

 

Our studies also show that peroxisomal matrix proteins that mislocalize to the cytosol are 

degraded by Atg30-independent and Atg11-dependent selective autophagy (Figure 4C-E, 6, 

S4, S6, S7), but their turnover does not need require their cognate PTS receptors, suggesting 

that the PTS receptors hitch a ride via their cargoes, as they are destroyed.  

 

Selective degradation of cytosolic pools of peroxisomal receptors 
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In addressing what proteins are necessary for the Atg30-independent degradation of cytosolic 

Pex5 and Pex7 under pexophagy conditions, we found that they require both the core and 

selective autophagy machineries (Figure 2). Under peroxisome proliferation conditions, the 

import of peroxisomal matrix proteins by PTS receptors is reasonably efficient. Although 

there are only low levels of peroxisomal matrix proteins in the cytosol, which are probably 

newly-synthesized or damaged cargoes, the respective PTS cargoes are essential for the 

degradation of cytosolic Pex5 and Pex7 (Figure 4, 5). The degradation of Pex7 is blocked if it 

cannot bind to thiolase, a PTS2 protein, or if no thiolase exists in the cytosol (Figure 4A), 

suggesting that Pex7 is degraded together with its cargo. This cargo-dependent degradation of 

cytosolic PTS receptors is also true for Pex5 since it is stabilized in the absence of its major 

PTS1cargoes Aox1, Aox2, and Fox2, or when it cannot bind to the majority of PTS1 cargoes 

due to mutations in its cargo-binding domain (Figure 5).  

 

Clearance of mislocalized cytosolic PTS cargoes 

Somewhat surprising was the finding that while PTS receptor degradation is cargo-dependent, 

the converse was not true, in that neither the cytosolic pools of thiolase nor Fox2 and PMP20 

required their cognate PTS receptors for their turnover (Figure 4C, 6). We therefore asked 

whether these PTS cargoes might be degraded by an alternative pathway. There are at least 

two known autophagy-related pathways implicated in the vacuolar degradation of cytosolic 

proteins – the aggrephagy and Vid pathways[38, 39]. However, neither the degradation of 

PMP20 nor thiolase was blocked in Δpex5 Δcue5 or Δpex7 Δcue5 cells (Figure 7E, F).  
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In the absence of functional human PEX7, as seen in the case of human patients with 

rhizomelic chondrodysplasia punctata, or as we show in the absence of yeast Pex7, its cargo, 

thiolase, is mislocalized to the cytosol [45]. The cytosolic thiolase is degraded in cells 

deficient in either Pex7 (Figure 4C) or Atg30 (Figure S4A), but is partially stable in Δpex7 

Δatg11 and fully stabilized in Δpex7 Δatg1 cells (Figure 4C, S4A). The Atg1 requirement 

suggests the involvement of autophagy, while the Atg11 dependence is reminiscent of other 

selective autophagy pathways. Therefore, an Atg11-dependent, but Atg30-independent, 

selective autophagy pathway is involved in the degradation of cytosolic thiolase.  

 

Similarly, PTS1 proteins are mislocalized to the cytosol in the absence of Pex5, or in 

Zellweger syndrome patients expressing a non-functional PEX5 [46]. The degradation of 

mislocalized cytosolic PTS1 proteins, Fox2 and PMP20, also partially depends on an 

Atg11-dependent, selective autophagy pathway (Figure 6, S6, S7A). It is likely that a 

selective autophagy receptor, similar to the soluble Cvt receptor Atg19, targets the cytosolic 

PTS1 proteins for degradation.  

 

In summary, our data indicate the existence of two selective autophagy pathways related to 

peroxisomes. The first one is the Atg30-dependent, canonical pexophagy pathway, and the 

second one is an Atg30-independent and Atg11-dependent, non-canonical pathway that 

remove the cytosolic pool of peroxisome-related proteins that is described here. Under 

pexophagy conditions, these pathways act together to maintain the homeostasis of proteins 

that either reside in peroxisomes or are destined for peroxisomes. 
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Materials and Methods 

Yeast strains and culture conditions 

 

P. pastoris strains used in this study represent genomic integrations and are listed in Table S2. 

Growth media components were as follows: YPD medium (2% glucose, 2% Bactopeptone, 

and 1% yeast extract), nitrogen starvation medium (0.67% yeast nitrogen base without 

ammonium sulfate and amino acids, 2.0% glucose), YNM medium (0.67% yeast nitrogen 

base without amino acids, 0.05 % yeast extract, 0.5% [v/v] methanol), YNO medium (0.67% 

yeast nitrogen base without amino acids, 0.05 % yeast extract, 0.2 % oleic acid, 0.02 % 

Tween 80), supplemented with the appropriate Complete Supplement Mixture (CSM) of 

amino acids. Yeast cells were grown in YPD overnight at 30 °C, then diluted in YPD and 

grown to the early-mid exponential phase. Cells were washed in sterile distilled water, 

inoculated in oleate medium at an OD of 0.3-0.6 and grown for approximately 16 h at 30°C. 

Then, cells were washed twice with sterile distilled water and inoculated into glucose 

medium with nitrogen (SD) or glucose medium without nitrogen (SD-N) medium to induce 

peoxphagy.  

 

Plasmid construction 

 

A DNA fragment encoding GFP fused to the C-terminal end of PpPot1 was amplified using 

pJCF701 (lab stock) as template and cloned in pMY69 or pMY72 at ClaI/AflII sites, creating 
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pCLM362 and pCLM340, respectively. A DNA fragment containing the promoter of PGK1 

and its CDS was amplified from PPY12 genomic DNA and cloned in pWD3 at XmaI/SphI 

sites, creating pCLM301. A linear DNA fragment containing the Nourseothricin 

expression cassette was amplified from pAG32 and cloned in pCLM301 at the SmaI site, 

creating pCLM571. 

 

To generate FOX2 and ATG11 knock-out constructs, the 3′ and 5' flanking regions of 

the genes were amplified from PPY12 genomic DNA, respectively, and fused together by 

overlap PCR with a BamHI site in between. The 3'-UTR-BamHI-5'-UTR fragments were 

transferred to pMYZeo at the EcoRI/SalI by In-Fusion HD Cloning. Similarly, to generate 

PEX20 and ATG1 knock out constructs, 3'-UTR-BamHI-5'-UTR fragment of PEX20 and 

3'-UTR-SalI-5'-UTR fragment of ATG1 were amplified by overlap PCR using PPY12 

genomic DNA as template and cloned in pMYZeo at the KpnI/HindIII and EcoRI/SphI by 

In-Fusion HD Cloning, respectively. To generate the PEX5 knock-out construct, the 5'-UTR 

and 3'-UTR regions of PEX5 were amplified from PPY12 genomic DNA and transferred to 

the pAG25 vector at the HindIII/BamHI and SacI/SpeI sites, respectively. Similarly, to 

generate PEX7 knock-out construct, the 5'-UTR and 3'-UTR regions of the PEX7 gene were 

transferred to the pAG25 vector at the HindIII/BamHI and XmaI/SphI sites, respectively. The 

FOX2, PEX5, PEX7, PEX20, and ATG1 knock-out constructs were linearized and integrated 

into the corresponding gene loci in P. pastoris genome. To generate the Δpex5 Δatg30 and 

Δpex7 Δatg30 double mutants, a linear DNA fragment containing the Zeocin 

expression cassette flanked by the 5' and 3' regions of the ATG30 gene was amplified from 



24 
 

the Δatg30 strain and introduced into the Δpex5 or Δpex7 mutant to replace the endogenous 

ATG30 gene.  

 

All plasmids used in this study are listed in Table S3. 

 

Pexophagy assay 

 

In P. pastoris, peroxisome proliferation was induced by incubation of cells (starting OD600 of 

0.2) in oleate medium for overnight and transferred to SD or SD-N medium at an OD600 of 

0.5 or 2, respectively, to induce pexophagy. Equal volumes of samples were taken at 

indicated time points. Samples were precipitated with trichloroacetic acid (12.5%) and 

subjected to SDS-polyacrylamide gel electrophoresis (PAGE) followed by immunoblot 

analysis with the indicated antibodies.  

 

Co-immunoprecipitation assay 

 

To induce peroxisome proliferation, Δypt7 cells expressing Pex5-HA from its endogenous 

promoter were pre-cultured in YPD medium overnight and then shifted to oleate medium for 

around 16 hours. Subsequently, cells were transferred to SD-N medium to induce pexophagy. 

250 OD600 of cells was harvested and resuspended in 4 mL of Zymolyase solution after cells 

were starved for 1 hour. The following co-immunoprecipitation was performed as described 

previously [47]. Sigma-Aldrich EZview Red Anti-HA was used to pull down Pex5-HA. The 



25 
 

eluate was separated by SDS-PAGE and used for mass spectroscopy analysis at the core 

facility, UC San Diego.  

 

Immunoblotting 

 

For analysis of protein levels, equal amounts of samples were removed and trichloroacetic 

acid (TCA) precipitated. Samples were subject to SDS-PAGE and followed by Western 

blotting with anti-GFP (mouse; 1:2,000; Roche), anti-GFP (mouse; 1:2,000; Utibody, for 

detection GFP-Fox2 only), anti-HA (rat; 1:2,000; Roche), anti-Pex2 (rat; 1:5,000; Subramani 

Laboratory), anti-Pex5 (rabbit; 1:10,000; Subramani Laboratory), anti-Pex14 (rabbit; 

1:10,000; Subramani Laboratory), anti-thiolase (rabbit; 1:5,000; Subramani Laboratory). 

Image Studio Ver5.2 software was used to examine if the blots were oversaturated. 

 

Fluorescence microscopy 

Pexophagy induced yeast cells were analyzed by fluorescence microscopy. Images were 

taken using a Zeiss Axio Imager Z2 fluorescence microscope coupled to a cooled CCD 

monochrome camera (AxioCam HRm, Zeiss) and analyzed using ZEN pro software.  
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Figure legends 

 

Figure 1. Atg30-independent degradation of PTS receptors. (A, B) Pex5, Pex7, and Pex20 

were degraded in both (A) WT and (B) Δatg30 cells. Peroxisome proliferation were induced 

by growing cells in oleate medium, followed by adaptation in glucose medium without 

nitrogen (SD-N) for the indicated times. Crude cell lysates were extracted by TCA 
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precipitation, resolved by SDS-PAGE, and detected with anti-Pot1, anti-Pex5, and anti-HA 

(for Pex7 and Pex20, respectively). (C) Quantification of the degradation of Pex5, Pex7, and 

Pex20 (from A and B) using ImageJ and expressed as the percentage of the total signal at 0 h. 

The results represent the mean and standard deviation (SD) of triplicate biological repeats. 

 

Figure 2. Pex5 and Pex7 are removed by selective autophagy. (A, B) Peroxisomes were 

induced by growing Δatg30 cells expressing Pex5(K22R), Pex5(K22R) and Ub(K48R), 

Pex20(K19R), or Pex20(K19R) and Ub(K48R) in oleate medium. Subsequently, cells were 

starved for pexophagy experiments. Samples were taken at the indicated time points under 

starvation conditions and analyzed by immunoblots. (C, D) The degradation of Pex5 (from A) 

and Pex20 (from B) from triplicate biological repeats was quantified in ImageJ and expressed 

as the percentage of total signal at time 0 h. (E, F) Oleate-grown WT, SMD1163, Δatg1, 

Δatg8, Δatg11, Δatg17, Δatg11 Δatg17 cells or strains expressing HA-Pex7 were adapted to 

glucose medium without nitrogen (SD-N). Samples were collected at the indicated time 

points under starvation conditions for immunoblotting analysis. (G, H) The degradation of 

Pex5 (from E) and Pex7 (from F) from triplicate biological repeats was quantified using 

ImageJ and expressed as the percent of total signal at 0 h. 

 

Figure 3. The absence of Pex5 or Pex7 under pexophagy conditions is irrelevant for the 

turnover of other PTS receptors. (A) Upon starvation, Pex5 was degraded in Δpex7, Δpex20, 

and Δpex7 Δpex20 cells. (B) Pex7 was degraded in Δpex5, Δpex20, and Δpex5 Δpex20 cells 

under pexophagy conditions. Pex2, a PMP, was used as a positive control for the degradation 
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of peroxisomes. The protein levels of Pex2, Pex5, and HA-Pex7 were analyzed by 

immunoblotting with anti-Pex2, anti-Pex5, and anti-HA (for Pex7). (C, D) The degradation of 

Pex5 (from A) and Pex7 (from B) from triplicate biological repeats was quantified using 

ImageJ and expressed as the percent of total signal at 0 h.  

 

Figure 4. Degradation of Pex7 depends on Pot1, which is selectively degraded when 

mislocalized. (A) Peroxisomes were induced by growing Δpot1 expressing HA-Pex7 and 

Δpex7 expressing HA-Pex7(A248R) in oleate medium. Subsequently, cells were transferred 

to starvation medium for pexophagy experiments. Samples were taken at the indicated time 

intervals under starvation condtions and analyzed by immunoblotting with anti-HA, anti-Pot1, 

and anti-Pex2 antibodies. (B) The degradation of Pex7 (from A) from triplicate biological 

repeats was quantified in ImageJ and expressed as the percentage of total signal at time 0 h. 

(C) Fluorescence analysis of WT, Δpex7, Δpex7 Δatg11, and Δpex7 Δatg11 Δatg17 strains 

expressing Pot1-GFP under starvation conditions in the presence of the vacuolar stain, 

FM4-64. The differential interference contrast (DIC) and GFP images are shown. (D) Strains 

shown in (C) were used for GFP cleavage assays. Samples were analyzed by immunoblotting 

with anti-GFP. (E) The full-length Pot1-GFP and the GFP cleaved from it under starvation 

conditions (from D) were quantified using tripliciate biological repeats and ImageJ and 

expressed as the ratio between cleaved GFP and total GFP signals at each time point. *, 

non-specific band. 

  

Figure 5. Pex5 is degraded together with its cargoes. (A) Peroxisomes were induced by 
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growing WT, SMD1163, Δaox1 Δaox2, Δfox2, Δaox1 Δaox2 Δfox2 or Δpex5 and Δaox1 

Δaox2 Δpex5, each expressing the Pex5(N460K) mutant in oleate medium. Subsequently, 

cells were transferred to starvation medium for pexophagy experiments. Samples were taken 

at the indicated time points under starvation conditions and analyzed by immunoblotting with 

anti-Pex5 and anti-Pot1. (B) The degradation of Pex5 (from A) from triplicate biological 

repeats was quantified using ImageJ and expressed as the percent of the total signal at 0 h. 

 

Figure 6. Cytosolic Fox2 and PMP20 are degraded by selective autophagy. (A, B) 

Oleate-grown Δpex5, Δpex5 Δatg11, and Δpex5 Δatg11 Δatg17 expressing GFP-Fox2 (A) or 

GFP-PMP20 (B) from their endogenous promoters were transferred to starvation medium for 

pexophagy experiments in the presence of the vacuolar stain, FM4-64. Fluorescence pictures 

were taken at 0, 6, and 24 hours after starvation. (C) WT, Δpex5, Δpex5 Δatg11, and Δpex5 

Δatg11 Δatg17 expressing GFP-PMP20 were used for GFP cleavage assays. Samples were 

analyzed by immunoblotting with anti-GFP. A slightly longer exposure time for the Δpex5 

Δatg11::GFP-PMP20 blot to see the free GFP band. (D) The full-length GFP-PMP20 and free 

GFP under starvation conditions (from C) were quantified using tripliciate biological repeats 

and ImageJ and expressed as the ratio between cleaved GFP and total GFP signals at each 

time point. *, non-specific band. 

 

Figure 7. Aggrephagy and Vid pathways were not involved in removing Pex5, Pex7, and 

cytosolic peroxisomal cargoes. (A, B) oleate-grown Δcue5 and Δvid24 (A) or Δcue5 and 

Δvid24 cells expressing HA-Pex7 (B) from its native promoter were shifted to starvation 
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medium for pexophagy experiments. (C, D) The degradation of Pex5 and Pex7 (from A and 

B) was quantified in ImageJ and expressed as the percentage of the total signal at time 0 h. 

The results represent the mean and standard deviation (SD) of triplicate biological repeats. (E, 

F) Oleate-grown Δpex5 Δcue5 cells expressing GFP-Pex20 (E) and Δpex7 Δcue5 cells 

expressing Pot1-GFP (F) were transferred to stavation medium for GFP cleavage assays. 

Samples were taken at the indicated time points under starvation condtions and analyzed by 

immunoblotting with anti-GFP.  

 

Tables 

Table S1. Proteins identified to interact with Pex5 in Δypt7 cells under pexophagy conditions 

by IP-MS. 

Table S2. Strains used in this study.  

Table S3. Plasmids used in this study. 
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