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Abstract

Posttraumatic stress disorder (PTSD) is associated with impaired major domains of psychol-
ogy and behavior. Individuals with PTSD also have increased co-morbidity with several seri-
ous medical conditions, including autoimmune diseases, cardiovascular disease, and
diabetes, raising the possibility that systemic pathology associated with PTSD might be iden-
tified by metabolomic analysis of blood. We sought to identify metabolites that are altered in
male combat veterans with PTSD. In this case-control study, we compared metabolomic pro-
files from age-matched male combat trauma-exposed veterans from the Irag and Afghani-
stan conflicts with PTSD (n = 52) and without PTSD (n = 51) (‘Discovery group’). An
additional group of 31 PTSD-positive and 31 PTSD-negative male combat-exposed veterans
was used for validation of these findings (‘Test group’). Plasma metabolite profiles were mea-
sured in all subjects using ultrahigh performance liquid chromatography/tandem mass spec-
trometry and gas chromatography/mass spectrometry. We identified key differences
between PTSD subjects and controls in pathways related to glycolysis and fatty acid uptake
and metabolism in the initial ‘Discovery group’, consistent with mitochondrial alterations or
dysfunction, which were also confirmed in the ‘Test group’. Other pathways related to urea
cycle and amino acid metabolism were different between PTSD subjects and controls in the
‘Discovery’ but not in the smaller ‘Test’ group. These metabolic differences were not
explained by comorbid major depression, body mass index, blood glucose, hemoglobin A1c,
smoking, or use of analgesics, antidepressants, statins, or anti-inflammatories. These data
show replicable, wide-ranging changes in the metabolic profile of combat-exposed males
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with PTSD, with a suggestion of mitochondrial alterations or dysfunction, that may contribute
to the behavioral and somatic phenotypes associated with this disease.

Introduction

Individuals with post-traumatic stress disorder (PTSD) have increased rates of several serious
medical diseases, including cardiovascular disease, diabetes, autoimmune diseases and early
mortality, suggesting widespread physical concomitants of PTSD [1]. Specific metabolic
changes (“metabolic signatures” [2]) have been reported in several central nervous system disor-
ders [3-10], childhood maltreatment [11]; exhaustion disorder [12], as well as in cardiovascular
and coronary artery disease [13, 14] and insulin resistance [15-17]. Although analysis of altered
metabolic pathways may provide new information about disease pathophysiology and may sug-
gest novel drug targets, a metabolic signature has not yet been identified in PTSD, but a recent
small study of non-combat, highly traumatized civilian subjects with PTSD (mean Clinician-
Administered PTSD Scale, CAPS, scores >80) suggests there may be metabolomic differences
in PTSD [18]. In that study of 20 PTSD and 18 control subjects, 19 metabolites were identified
as being different between groups, and included several phospholipids, fatty acid metabolites,
nucleosides, and bile acids, and whose abundance correlated with symptom severity [18].

Comorbidities of combat PTSD with cardiovascular disease, metabolic syndrome, and other
diseases [19] suggest that there are likely to be metabolic differences between subjects with com-
bat-related PTSD and controls. Therefore, we determined the plasma metabolomic profiles in
male United States veterans from the Iraq and Afghanistan conflicts of 2001-2014 (Operation
Enduring Freedom/Operation Iraqi Freedom, OEF/OIF) who endured combat-related trauma
and developed PTSD, and compared these profiles to those in veterans who also endured com-
bat-related trauma but did not develop PTSD. We also determined if these metabolites are asso-
ciated with severity of PTSD symptoms. In order to lessen the likelihood of false positive results,
which is attendant upon examining a large number of metabolites, we tested two separate
cohorts of such subjects, to see which metabolite differences were replicable.

Animal models of PTSD have suggested disrupted brain energy metabolism [20], and studies
of prolonged stress in mice have found alterations in mitochondrial pathways that were associ-
ated with hippocampal and amygdala apoptosis [21-23]. Further, studies of human blood from
the cohort used in the current study [24] and other studies of blood and postmortem brain [25,
26] have shown several differentially methylated or dysregulated genes associated with mito-
chondrial function in PTSD, of which 20% correlated significantly with the severity of PTSD
symptoms [26]. In addition, a study of childhood maltreatment [27] and major depression [28],
which may share some behavioral features with PTSD, have also demonstrated significant alter-
ations in mitochondrial function, which may be related to both increased inflammation and
increased oxidative stress. Therefore, we hypothesized that subjects with PTSD would have,
among other things, differences in metabolites that reflect mitochondrial function. Our data
identify a metabolomic profile of combat trauma-exposed veterans with PTSD that is associated
with, and may contribute to, the clinical phenotype of this disease.

Materials and methods
Subject recruitment

This study was approved by Institutional Review Boards of the University of California, San
Francisco (San Francisco, CA), Ichan School of Medicine at Mt. Sinai (New York, NY), James
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J. Peters Veterans Administration Medical Center (Bronx, NY), and the New York University
Langone School of Medicine (New York, NY). All participants gave written informed consent
to participate in the study. This study is part of a more global Department of Defense-spon-
sored systems biology approach to understanding PTSD [29].

Male combat-exposed veterans from OEF/OIF were recruited at The New York University
Langone School of Medicine and Mt. Sinai/James J. Peters VA Medical Center through flyers,
presentations, newspaper and television advertisement, internet postings, and referral from cli-
nicians. PTSD was diagnosed with structured clinical interviews. Inclusion criteria for PTSD-
positive subjects included current war-zone trauma-related PTSD of at least 3 months dura-
tion and having Clinician Administered PTSD Scale (CAPS) [30] scores >40, while control
(combat trauma-exposed PTSD-negative) veterans had no lifetime history of PTSD and had
CAPS scores <20. All subjects were between 20 and 60 years old, and had English as their pri-
mary language. Exclusion criteria included: 1) history of alcohol dependence within the past 8
months; 2) history of drug abuse or dependence within the last 12 months; 3) lifetime history
of any psychiatric disorder with psychotic features, bipolar or obsessive-compulsive disorder;
4) current exposure to recurrent trauma or a traumatic event within the past 3 months; 5)
prominent suicidal or homicidal ideation; 6) neurologic disorder or systemic illness affecting
central nervous system function; 7) clinical history of anemia or blood donation within the
past 2 months; 8) changes in the past two months of psychotropic medication, anticonvulsants,
antihypertensive medication, sympathomimetic medication, medications associated with neu-
rogenesis or systemic steroid medication; 9) diagnosis of moderate or severe traumatic brain
injury (TBI) on the Ohio State University TBI Identification Method-Short Form [31]; or 10)
classification of mild TBI with a score > 8 for current symptoms on the post-concussive symp-
tom checklist.

Subjects and samples

Combat-exposed male OEF/OIF veterans with PTSD (n = 52) or combat-exposed, male OEF/
OIF veterans without PTSD (n = 51) (“Discovery group”) were matched by age. Of the PTSD-
positive subjects, 27 were also diagnosed with concurrent Major Depressive Disorder (MDD)),
as assessed by the Structured Clinical Interview for DSM-IV (SCID) [32]. Depression symp-
tom severity was assessed with the self-rated Beck Depression Inventory-II (BDI-II) [33]. Fol-
lowing urinary toxicology screening for cannabinoids, cocaine, barbiturates, benzodiazepine,
opiates, methadone, amphetamines, and phencyclidine, blood was collected for complete
blood count, electrolytes, glucose, urea nitrogen, creatinine, glycated hemoglobin (HbAIc)
and the liver function tests as specified by a CLIA certified clinical laboratory. Subjects
reported to the laboratory at 7:30 AM having fasted overnight. Vital signs, weight, height and
waist-to-hip ratio were measured. Following a period of rest, blood was drawn at 8:00 AM.
Blood for metabolomics assays was collected into tubes containing EDTA, which were inverted
8-10 times before being placed on ice for up to 30 minutes, centrifuged at 4°C for 15 minutes
at 1100 x g, following which plasma was removed and stored in 500 pL aliquots at -80°C until
processed.

A second group of combat trauma-exposed male OEF/OIF veterans with PTSD (n = 31)
and combat trauma-exposed, male OEF/OIF veterans without PTSD (n = 31) was enrolled as a
“Test group” and followed the identical protocol as the initial Discovery group.

Sample preparation and metabolic profiling

Metabolomic profiling of all plasma samples was performed at Metabolon, Inc. (Durham,
NC), as described [34-36], with plasma from both PTSD positive and PTSD negative subjects
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being run in the same batches. Details of the analytic procedures are provided in S1 File and
metabolomic data are found in S1 Dataset.

Statistical analysis

For statistical analyses and data display purposes, values below the limits of detection were
replaced with the compound minimum (minimum value imputation). All metabolomic data
were transformed in the same manner using the Blom transformation [37]. The Blom transfor-
mation is a rank-based normalization transformation, essentially a non-parametric procedure
used to lessen deviations from the assumption of normality. As such, it does not distort the
underlying data more than any other non-parametric transformation. Statistical analyses of
Blom-transformed data were performed using SPSS (IBM, Armonk, NY) and R (http://cran.r-
project.org). All tests were 2-tailed with an alpha = 0.05. Significance values between 0.05 and
0.1 are reported as trends. Multiple comparisons were accounted for by estimating the false
discovery rate using q-values [38]. Q-values are p-values adjusted for the false discovery rate.
They indicate the percent of significant results that will result in false positives, rather than the
percent of all tests that will result in false positives; this usually results in smaller numbers of
false positives. While a higher g-value indicates diminished confidence, it does not necessarily
rule out the significance of a result. Other lines of evidence may be taken into consideration
when determining whether a result merits further scrutiny. Such evidence may include a)
inclusion in a common pathway that includes a strategically significant compound or b) resid-
ing in a similar functional biochemical family with other significant compounds. In addition,
bootstrapping based upon random sampling of the subjects was used as an additional statistical
method to validate the findings across the Discovery and Test groups. Biochemical differences
between groups were assessed by ¢-tests, analyses of covariance (ANCOVA) and correlation
analyses. Independent samples t-test for continuous variables and chi-square test for dichoto-
mous variables were used to examine participants’ baseline between-group differences.

Resulits
Demographics in the “Discovery group”

There were no significant differences in age, ethnicity between the 52 PTSD subjects and 51
controls in the “Discovery group” (Table 1). There were no significant differences in HbAlc,
cholesterol, HDL, LDL, triglycerides, waist-to-hip ratios, sodium, calcium, CO,, blood urea
nitrogen or liver function tests. PTSD-positive subjects had increased body mass index (BMI)
(p<0.05), high sensitivity C-reactive protein (p<0.05), glucose (p<0.01), insulin (p<0.01),
homeostatic model assessment-estimated insulin resistance (HOMA-IR) (p<0.02), creatinine
(p<0.01), pulse rate (p<0.01), hemoglobin (p<0.02), and hematocrit (p<0.03), compared to
the PTSD-negative subjects (Table 1). Although the PTSD-positive group had a higher average
BMI than the PTSD-negative group, their waist-to-hip ratio, which may be a better predictor
of health [39], was not significantly different. In addition to the differences in CAPS scores
that were used for inclusion/exclusion, BDI scores were significantly higher in PTSD subjects
(p<0.001), among whom 52% (29/52) (chi-square) also met criteria for MDD and 29% (15/
52) were receiving antidepressant medications (chi-square). The PTSD group took more medi-
cations than did the control group. In the Discovery group, 40.4% (21/52) of the PTSD group
and 17.6% (9/51) of the control group took some type of medication (chi-square p<0.01).
There were no significant between-group differences in the prevalence of hypertension, heart
attacks, stable angina, stroke, or diabetes, or in the number of subjects taking statins, non-ste-
roidal anti-inflammatories, analgesics or oral hypoglycemic agents.
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Table 1. Demographic and clinical characteristics of combat veterans with PTSD and controls in Discovery and Test groups.

Discovery Group Test Group
PTSD - PTSD + Statistic x? PTSD - PTSD + Statistic x?
N:51 N:52 (p) N:31 N:31 (p)
Means+ SD Means+ SD T P Meanst SD Meanst SD T P
Sociodemographic
Age (years, mean + SD) 33.69 £ 9.03 34.02 £ 8.69 0.19 0.85 30.61 £5.66 31.23£5.45 0.43 0.66
Years of education (mean + SD) 14.74 £ 2.33 13.75 £ 1.80 2.42 0.02 14.84 £ 2.34 13.90 £ 2.16 1.63 0.11
Gender All males All males All males All males
Smokers (n) 3 11 0.02* 1 0 0.17
Hispanic/ Non-Hispanic (n) 20/31 26/26 0.27 6/25 12/19 0.09
Metabolic measurements Means+ SD Means+ SD T P x? Means+ SD Means+ SD T P x?
BMI 28.24 £4.15 30.03 £5.12 1.94 0.05* 28.78 £5.74 30.00 £ 5.00 0.89 0.373
HbAlc 548 + 0.42 5.35+ 0091 0.85 0.39 5.18 +0.42 5.52 +0.87 1.95 0.05*
Cholesterol (mg/dl) 171.23 + 26.54 | 175.75+35.07 | 0.74 0.46 171.55 +29.30 | 185.58 + 36.71 | 1.66 0.10
CRP 1.65 £ 2.30 3.38 £5.64 2.01 0.05* 1.56 £ 2.54 4.09 £ 5.17 2.45 0.02*
Glucose (mg/dL) 79.94 £ 13.76 91.42 +23.57 | 3.01 | <0.01* 82.19+£9.19 88.26 £ 25.99 1.22 0.22
Insulin (microunits/mL) 12.15+10.43 19.36 +18.84 2.60 0.01* 12.79 £10.07 | 18.31+1594 | 1.63 0.11
HOMA-IR 2.64 + 3.40 4.65+4.70 2.47 0.02* 2.74 + 2.46 4.68 + 6.36 1.58 0.12
HDL (mg/dL) 48.09 £13.51 46.31 £11.11 | 0.73 0.47 52.58 £12.12 | 49.48 £14.29 | 0.92 0.36
LDL (mg/dL) 102.93 +24.28 | 104.18 £30.18 | 0.23 0.82 96.66 £26.36 | 111.25+37.60 | 1.77 0.08
Triglycerides (mg/dL) 107.74 £ 110.36 | 123.25 £ 63.41 | 0.87 0.38 113.38 + 83.92 | 124.13 +77.80 | 0.52 0.60
Waist to hip ratio 0.89 £0.12 0.91 £ 0.08 0.96 0.34 0.87 £0.19 0.86 £ 0.25 0.22 0.83
Sodium (mEq/L) 140.20 + 1.43 140.19 £+ 1.81 | 0.01 0.99 140.48 + 1.48 140.58 + 1.84 | 0.23 0.82
Calcium (mg/dL) 9.24 £ 0.43 9.26 £ 0.38 0.23 0.82 9.40 £ 0.39 9.23 £0.32 1.86 0.07
Chloride (mEq/L) 103.24 + 2.34 104.35+2.84 | 2.16 0.03* 103.10 + 2.38 103.87 + 3.38 1.04 0.30
Potassium (mEq/L) 3.93+0.35 4.16 £ 0.35 3.24 | <0.01* 4.01 £0.42 4.10 £ 0.41 0.86 0.39
Total Protein (g/dL) 6.85 + 0.44 7.26 £ 0.46 4.56 | <0.01% 7.22£0.48 7.32£0.48 0.81 0.42
Albumin (g/dL) 4.24 + 0.30 4.45 + 0.31 3.39 0.01* 4.57 £0.26 4.56 £ 0.23 0.67 0.88
Alkaline phosphatase (U/L) 61.45 £ 18.31 69.38 £18.68 | 2.17 0.03* 67.32£2296 | 69.68+20.59 | 0.42 0.67
Aspartate transaminase (U/L) 26.25+14.26 30.04 £ 16.61 1.24 0.22 30.97 £24.29 | 33.19+17.13 | 0.42 0.67
Alanine transaminase (U/L) 29.55 +17.46 36.60 £ 23.22 1.74 0.08 34.39 £ 30.31 37.13+£23.82 | 0.39 0.69
Gamma-glutamyl transferase (GGT) (U/L) | 27.17 + 25.02 35.35+24.61 | 1.66 0.09 53.32 +142.58 | 35.72+17.11 | 0.66 0.51
Blood Urea Nitrogen (mg/dL) 15.33 £3.85 14.00 £ 3.82 1.76 0.08 14.68 £2.75 15.42 £ 3.20 0.98 0.33
Creatinine (mg/dL) 1.04 £ 0.19 0.94 £0.17 2.89 | <0.01% 1.03 £ 0.16 1.04 £ 0.19 0.30 0.76
CO2 (mEq/L) 27.61 +£1.88 27.56 £2.54 0.11 0.91 27.02 £2.51 27.30 £2.53 0.44 0.66
Pulse (beats/min) 64.20 £ 10.65 72.35+£9.91 4.02 | <0.01% 65.48 +12.22 73.16 £11.15 2.58 0.01*
Hemoglobin (g/dL) 14.22 £ 1.06 14.74 £ 1.21 2.29 0.02* 14.58 £0.67 14.84 £ 1.18 1.07 0.29
Hematocrit (%) 41.98 £2.85 43.46 £ 3.33 2.42 0.02* 42.88 £2.02 43.99 +3.23 1.62 0.11
Medications Means+t SD Meanst SD T? P X2 Meanst SD Means+t SD T P x?
P (p)
Taking sedatives (n) 1 0.05* 3 4 0.51
Taking statins (n) 1 2 0.57 0 2 0.11
Taking antidepressants (n) 2 15 <0.01* 2 5 0.14
Taking anticonvulsants (n) 0 3 0.08 0 2 0.11
Taking anti-inflammatories (n) 5 4 0.70 0 1 0.27
Taking anti-diabetic medication (n) 1 1 0.99 1 1 0.89
Taking antibiotics (n) 1 1 0.99 0 0
Taking beta-blockers (n) 1 1 0.99 0 0
Taking any medication (n) 9 21 <0.01 5 10 0.10
(Continued)
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Table 1. (Continued)

Discovery Group Test Group
PTSD - PTSD + Statistic x> PTSD - PTSD + Statistic x>
N:51 N:52 (p) N:31 N:31 (p)
Means+ SD Meanst SD T Meanst SD Meanst SD T

Comorbid Diseases Means+ SD Means+ SD P x? Means+ SD Means+ SD X2
P (p)
Clinical hypertension (n) 4 9 0.08 3 6 0.52
Heart attack ¢ (n) 1 0 0.31 0 1 0.30
Stable angina (n) 1 2 0.50 0 1 0.30
Diabetes (n) 1 3 0.36 1 1 0.98
Clinical Measures Means+ SD Means+ SD T P x? Means+ SD Means+ SD T P x?
P ()

CAPS total current 290 +4.24 68.02 +16.80 | 26.85 | <0.01* 5.23 £6.20 71.77 £17.11 | 20.36 | <0.01*

CAPS total lifetime 8.65+7.83 90.87 +£15.47 | 33.93 | <0.01* 10.39 £ 9.46 92.71 +16.54 | 24.06 | <0.01*

Concurrent MDD diagnosis (n) n=0 n=27 <0.01* n=0 n=20 <0.01*

* Myocardial infarction, coronary occlusion or coronary thrombosis

*p <0.05

https://doi.org/10.1371/journal.pone.0213839.t001

Demographics in the “Test group”

In the “Test group” of 31 PTSD-negative and 31 PTSD-positive subjects, demographic and
clinical characteristics were similar to the Discovery group, except there were no statistically
significant differences in BMI, glucose, insulin, HOMA-IR, creatinine, hemoglobin, or hemat-
ocrit between the PTSD-positive and -negative groups. Like the Discovery group, the Test
group PTSD-positive subjects had increased high sensitivity C-reactive protein (p<0.02) and
pulse rate (p<0.01) (Table 1). In addition to the differences in CAPS scores that were used for
inclusion/exclusion, BDI scores were significantly higher in PTSD subjects (p<0.001) in the
test group, among whom 64.5% (chi-square) also met criteria for MDD and 16.1% were receiv-
ing antidepressant medications (chi-square), and 32.2% of the PTSD subjects and 16.1% of the
control subjects took some type of medication (chi-square p = 0.1). There were no significant
between-group differences in the prevalence of other comorbid diseases.

Metabolite differences in PTSD-positive vs PTSD-negative subjects in both
the Discovery and Test groups

The analysis of metabolites in plasma of the Discovery and Test groups included all detectable
compounds of known identity. Of 4400 metabolites and xenobiotics potentially identifiable by
our mass spectrometry platforms, 370 named compounds were identified in plasma of our ini-
tial Discovery group and 623 named compounds were identified in plasma of our validating
Test group. These differences arose because the two metabolomic analyses used slightly differ-
ent methodologies that resulted in detection and identification of some different compounds
in each analysis. Hence, only 244 compounds that were identified in both the Discovery and
Test samples were used in the analyses (Table A in S1 File, S1 Dataset, and Tables 2 and 3).
Summaries of the numbers of compounds that achieved statistical significance (p<0.05) are
shown in Tables 2 and 3.

All of the significant between-group differences reported below were also confirmed by
bootstrap analyses (Figure A in S1 File). The information from the metabolic profiling
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identified significant differences between PTSD-positive and -negative subjects in biochemical
pathways involved in glucose metabolism, energy utilization and lipid metabolism in both the
Discovery and Test groups.

Carbohydrates. Carbohydrates, amino acids and fats can be used to generate reducing
equivalents (NADH) and ATP. The main, highly significant finding of our study was that lac-
tate (Discovery group: p<1.6x10°°, q = 0.00; Test group: p = 0.003; q = 0.047) and pyruvate
(Discovery group: p = 0.017, q = 0.27; Test group: p = 0.010, q = 0.10), two products of anaero-
bic respiration in glycolysis, were significantly elevated in the PTSD-positive subjects com-
pared to the PTSD negative subjects. Among the intermediates in the TCA cycle (aerobic
respiration), citrate was decreased in PTSD subjects in the Discovery group (p = 0.017,

q = 0.27), although this finding was not replicated in the Test group (p = 0.669, q = 0.62). To
assess the relative contribution of metabolites from anaerobic and aerobic respiration in our
subjects, we defined a ratio indicative of anaerobic relative to aerobic respiration, and calcu-
lated a ratio from the relative amounts of pyruvate, lactate and citrate in each subject’s plasma
([Pyruvate + Lactate]/Citrate), and called this the “glycolytic ratio”. The glycolytic ratio was
significantly higher in veterans with PTSD than in veterans without PTSD in both the Discov-
ery (p<1x10™ q = 0.00) and Test (p = 0.005; q = 0.07) groups, suggesting increased anaerobic
and decreased aerobic respiration in these subjects, which may indicate mitochondrial (TCA
cycle) alterations or dysfunction.

Lipids. Many fatty acids were lower in PTSD-positive subjects. The long chain fatty acids
eicosenoate (20:1n9 or 11) (Discovery group: p = 0.019, q = 0.28; Test group: p = 0.014,
q=0.12) and 10-nonadecenoate (19:1n9) (Discovery group: p = 0.047, q = 0.38; Test group:

p =0.091, q = 0.27) were less abundant in PTSD than in the controls. These differences could
result from decreased breakdown of storage lipids, increased fatty acid catabolism via 8-oxida-
tion, and/or decreased uptake of dietary fat. Several long-chain essential fatty acids that must
be absorbed from the diet, including linolenate (18:3n3 or 6) (Discovery group: p = 0.039,

q = 0.38; Test group: p = 0.026, q = 0.15), dihomo-linoleate (20:2n6) (Discovery group:

p = 0.042, q = 0.38; Test group: p = 0.066, q = 0.24), and dihomo-linolenate (20:3n3 or n6)
(Discovery group: p = 0.039, q = 0.38; Test group: p = 0.001, q = 0.02), and docosahexaenoate
(DHA, 22:6n3) (Discovery group: p = 0.047, q = 0.38; Test group: p<0.001, q = 0.00) were also
decreased in PTSD versus controls. These data suggest that decreased dietary fat uptake, mito-
chondrial alterations or dysfunction, or differences in the gut microbiome may contribute to
the observed decrease in free fatty acids in PTSD.

Hypoxanthine. Levels of hypoxanthine were higher in PTSD compared to controls (Dis-
covery group: p = 0.013, q = 0.25; Test group: p = 0.016, q = 0.13). Hypoxanthine is a naturally
occurring purine derivative that is involved in ATP catabolism and the salvage pathway for
purine synthesis. However, we did not see elevated levels of xanthine and uric acid, other prod-
ucts of the purine catabolism pathway. Increased levels of hypoxanthine, a substrate for xan-
thine oxidase, may result in generating reactive oxygen species (ROS) [40].

Other metabolites. Information about metabolites that were significantly different only
in the Discovery group, but not the smaller Test group, can be found in Tables 2 and 3 and in
Supplementary Material (Table A in S1 File and S1 Dataset).

ANCOVA analyses with meta-data in the Discovery group

Hemoglobin Alc (HbAlc) reflects average blood glucose levels over the previous three
months. Because our data suggest that metabolite differences between PTSD and control sub-
jects may reflect differences in use of energy sources (glucose vs fatty acids), we evaluated sta-
tus of glucose dysregulation as a covariate. Only 2 subjects (1 PTSD, 1 control) in the
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Table 2. Biochemicals that achieved statistical significance (p<0.05) between groups of male combat veterans with and without PTSD in the Discovery group.

Discovery Group
Super Sub Pathway Biochemical Name Control PTSD PTSD/ p- Cohen’s | q- ANCOVA, covarying for:
b
Pathway Control | value® d value’ | a1 | HbALC | Glucose | Cotinine
Mean | SD | Mean | SD
Amino acid | Glutamate glutamine 1.050 | 0.145 | 0.978 | 0.133 0.010 0.592 | 0.241 | .010 | .014 .004 .012
metabolism
Histidine trans-urocanate 1.051 | 0.539 | 0.834 | 0.427 0.033 0.460 0.378 | .041 .030 .100 .018
metabolism
Phenylalanine & phenyllactate (PLA) 0.781 | 0.327 | 1.033 | 0.639 0.026 0.491 0.359 | .071 .049 126 .025
tyrosine
metabolism
Urea cycle; arginine 1.142 | 0.297 | 1.013 | 0.374 0.031 0.386 0.378 | .083 .007 .069 .046
arginine-, proline-
, metabolism
Leucine, 3-hydroxyisobutyrate | 1.094 | 0.301 | 0.987 | 0.296 0.040 0.333 0.378 | .035 .077 .038 .051
Isoleucine and
Valine
Metabolism
Glutathione 5-oxoproline 0.943 | 0.149 | 1.073 | 0.187 <0.001 | 0.759 | 0.000 |.000 | .000 .000 .001
metabolism
Carbohydrate | Glycolysis, pyruvate 1.056 | 0.736 | 1.272 | 0.649 0.017 0.302 0.274 | .050 .017 .056 .025
gluconeogenesis, | jciage 0.937 | 0.283 | 1.239 | 0.341 <0.001 | 0.963 | 0.000 | .000 | .000 .000 .000
pyruvate
metabolism
Energy Krebs cycle citrate 1.071 | 0.267 | 0.948 | 0.231 0.017 0.478 0.274 | .022 .037 .013 .024
Lipid Essential fatty acid | linolenate [alpha or 1.198 | 0.533 | 1.013 | 0.577 0.039 0.342 | 0.378 | .018 | .051 .049 .039
gamma; (18:3n3 or
6)]
dihomo-linoleate 1.196 | 0.598 | 0.979 | 0.510 0.042 0.395 0.378 | .021 .053 .053 .036
(20:2n6)
dihomo-linolenate 1.096 | 0.407 | 0.951 | 0.393 0.039 0.375 0.378 | .014 077 .035 .035
(20:3n3 or n6)
docosahexaenoate 1.117 | 0.568 | 0.938 | 0.501 0.047 0.317 0.378 | .032 .026 .046 .092
(DHA; 22:6n3)
Long chain fatty 10-nonadecenoate 1.212 | 0.525 | 1.041 | 0.631 0.047 0.275 | 0.378 | .023 | .078 .039 .029
acid (19:1n9)
eicosenoate (20:1n9 1.282 | 0.646 | 1.028 | 0.625 0.019 0.391 0.282 | .014 .033 .026 .019
or11)
Sphingolipid sphingosine- 0.947 | 0.386 | 1.122 | 0.459 0.046 0.399 0.378 | .076 .056 .029 .061
1-phosphate
Carnitine octanoylcarnitine 0.936 | 0.406 | 1.241 | 0.690 0.004 0.529 0.129 | .005 | .012 .010 .001
metabolism hexanoylcarnitine 1.003 | 0.288 | 1.174 | 0.439 0.047 | 0.456 | 0.378 | .100 | .090 071 .030
decanoylcarnitine 0.970 | 0.432 | 1.272 | 0.643 0.003 0.550 0.116 | .003 .010 .006 .001
Sterol/Steroid cortisol 0.912 | 0.398 | 1.085 | 0.339 0.012 0.485 0.251 | .010 .008 .012 .003
Nucleotide Purine hypoxanthine 0.943 | 0.384 | 1.286 | 0.687 0.013 0.628 | 0.251 | .040 | .026 .011 .052
metabolism,
(hypo)xanthine/
inosine containing
GABR 0.575 | 0.208 | 0.475 | 0.170 0.009 0.523 0.241 | .018 .004 .014 .009
GLYCOLITIC 1.977 | 1.154 | 2.787 | 1.145 <0.001 | 0.619 0.000 | .000 .000 .000 .000
RATIO

* uncorrected p values

b, q values are p values adjusted for the false discovery rate

Green boxes indicate metabolites are lower in the PTSD positive group vs PTSD negative group. Red boxes indicate metabolites are higher in the PTSD positive group vs

PTSD negative group

https://doi.org/10.1371/journal.pone.0213839.t002
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Table 3. Test group validation of biochemicals that achieved statistical significance (p<0.05) between groups of male combat veterans with and without PTSD in

the Discovery group.
Test Group
Super Sub Pathway Biochemical Name Control PTSD PTSD/ | p-value® | Cohen’s d q-
Pathway Control value®
Mean | SD | Mean| SD
Amino acid Glutamate metabolism glutamine 1.050 | 0.120 | 1.020 | 0.124 | 0.971 0.353 0.250 0.455
Histidine metabolism trans-urocanate 1.178 | 0.508 | 1.390 | 2.329 | 1.180 0.146 0.125 0.339
Phenylalanine & tyrosine metabolism phenyllactate (PLA) 1.007 | 0.485| 1.100 | 0.445 | 1.092 0.334 0.213 0.453
Urea cycle; arginine-, proline-, arginine 1.107 | 0.244 | 1.090 | 0.197 | 0.985 0.953 0.091 0.687
metabolism
Leucine, Isoleucine and Valine 3-hydroxyisobutyrate 1.021 | 0.380 | 1.130 | 0.656 | 1.107 0.777 0.204 0.652
Metabolism
Glutathione metabolism 5-oxoproline 0.916 | 0.137 | 0.927 | 0.134 | 1.013 0.689 0.074 0.624
Carbohydrate | Glycolysis, gluconeogenesis, pyruvate pyruvate 1.409 | 0.838 | 2.177 | 1.248 0.010 0.723 0.101
metabolism lactate 1.045 | 0.316 | 1.369 | 0.494 0.003 0.773 0.047
Energy Krebs cycle citrate 1.066 | 0.231 | 1.048 | 0.220 | 0.983 0.669 0.089 0.624
Lipid Essential fatty acid linolenate [alpha or gamma; 1.420 | 0.647 | 1.088 | 0.501 0.026 0.569 0.151
(18:3n3 or 6)]
dihomo-linoleate (20:2n6) 1.364 | 0.583 | 1.102 | 0.459 0.066 0.497 0.243
dihomo-linolenate (20:3n3 or n6) | 1.146 | 0.383 | 0.864 | 0.364 0.001 0.756 0.025
docosahexaenoate (DHA; 22:6n3) | 1.331 | 0.839 | 0.829 | 0.299 <0.001 0.793 0.000
Long chain fatty acid 10-nonadecenoate (19:1n9) 1.355 | 0.534 | 1.142 | 0.457 0.091 0.443 0.271
eicosenoate (20:1n9 or 11) 1.647 | 1.034 | 1.135 | 0.505 0.014 0.630 0.121
Sphingolipid sphingosine-1-phosphate 1.137 | 0.555 | 1.274 | 0.556 | 1.120 0.187 0.232 0.363
Carnitine metabolism octanoylcarnitine 1.831 | 2.794 | 1.594 | 1.439 | 0.871 0.832 0.108 0.660
hexanoylcarnitine 1.553 | 1.245 | 1.504 | 0.905 | 0.968 0.841 0.046 0.660
decanoylcarnitine 1.988 | 3.216 | 1.687 | 1.454 | 0.849 0.953 0.120 0.687
Sterol/Steroid cortisol 1.239 | 0.434 | 1.224 | 0.426 | 0.988 0.999 0.047 0.702
Nucleotide Purine metabolism, (hypo)xanthine/ hypoxanthine 1.392 | 0.784 | 1.886 | 0.857 0.016 0.597 0.131
inosine containing
GABR 0.570 | 0.127 | 0.525 | 0.148 | 0.920 ‘ 0.163 0.285 0.363
GLYCOLITIC RATIO 2.465 | 1.381 | 3.482 | 1.576 0.005 0.681 0.072

* uncorrected p values

b q values are p values adjusted for the false discovery rate

Green boxes indicate metabolites are lower in the PTSD positive group vs PTSD negative group. Red boxes indicate metabolites are higher in the PTSD positive group vs

PTSD negative group. Light green boxes in the Test group indicate metabolites are lower in the PTSD positive group vs PTSD negative group at the trend level (p<0.1)

https:/doi.org/10.1371/journal.pone.0213839.t003

Discovery group carried pre-existing diagnoses of diabetes, and HbAlc values were not differ-
ent between groups (Table 1). Using Hb1Ac as a covariate had little effect on metabolite differ-

ences between PTSD-positive and-negative groups (Table 2): 14 of 21 metabolites that were
significantly different between PTSD-positive and -negative subjects remained significant,
while the other 7 metabolites were now trends (p<0.09). Similarly, using glucose as a covariate
had little effect on differences in metabolite concentrations between PTSD-positive and-nega-
tive subjects.

BMI. Because we identified potential differences in energy metabolism between PTSD

and control subjects, we tested BMI as covariate. Although BMI was significantly greater in
PTSD-positive than in PTSD-negative subjects in the Discovery group (Table 1 and [41]),
using BMI as a covariate had little effect on differences in metabolite concentrations between
PTSD-positive and—-negative subjects (Table 2). After covarying for BMI, 17 of the 21
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metabolites that were significantly different between groups remained significantly different,
and the other 4 now trended toward significance (p<0.083).

Because high BMI may be co-morbid with PTSD in the Discovery group, and because there
were no differences in BMI between PTSD and control subjects in the Test group, we also
covaried for BMI in the Test group to see if any of the metabolites were influenced by BML
The metabolites identified as statistically significant between PTSD and control subjects
remained significant after covarying for BMI (all p<0.035).

In addition, we also covaried for waist-to-hip ratio instead of BMI, since it may be a better
predictor of health [39], and we found that none of our main findings were altered. These anal-
yses suggest that our findings are not driven by anthropometric variables.

Cotinine. To test the possible impact of tobacco use on the findings, we evaluated plasma
cotinine levels as a covariate, since cotinine is the predominant metabolite of nicotine. Using
cotinine as a covariate had little effect on metabolite differences between PTSD-positive and-
negative groups (Table 2): 17 of 21 metabolites that were significantly different between
PTSD-positive and—negative subjects remained significant, while the other 4 metabolites were
now trends (p<0.09).

Sensitivity analysis with meta-data. Many of the subjects were receiving medications
that might affect metabolic profiles. As expected, the PTSD group took more medication than
did the control group across all medications (Table 1). In the Discovery Group, 40.4% of the
PTSD group and 17.6% of the control group took some type of medication (chi-square, p
<0.01), and in the Test Group, 32.2% of the PTSD group and 16.1% of the control group sook
some type of medication (chi-square, p = 0.1).

Because the number of subjects taking each medication was too underpowered for
ANCOVA analysis, medication effects were assessed in a sensitivity analysis in which t-tests
were conducted to compare the PTSD-positive and -negative groups, with subjects taking par-
ticular medications excluded. When medications were grouped by type, the number of sub-
jects regularly taking each was: anti-inflammatories (9), anti-depressants (17), statins (3),
sedatives (7), anticonvulsants (3), antidiabetic agents (2), antibiotics (2) and beta-blockers (2)
(Table 1). The reported metabolite differences between PTSD-positive and -negative subjects
remained significant even in the subgroup of subjects not taking each type of medication (not
shown). We also performed ANOVAs in both the Discovery and Test groups, excluding sub-
jects taking any medication (Table 1). In the Discovery group, docosahexaenoate
(DHA22:6n3) lost significance (p = 0.16), dimhomolinoleate 20:2n6, 10nonadecenoate 19:1n9,
and eicosenoate 20:1 became trends (p<0.055), and the other metabolites remained signifi-
cant. In the Test group, dihomolinoleate 20:2n6 (p = 0.19) and 10nonadecenoate 19:1n9
(p = 0.20) lost significance, while the other metabolites remained significant. In the Discovery
group, we also compared metabolites from PTSD subjects taking any type of medication with
PTSD subjects not taking any medication, and found that the PTSD positive and negative sub-
jects do not show any significant difference (all p>0.3)

Among the PTSD subjects in the Discovery group, 27 were diagnosed with concurrent
MDD, while no control subject was diagnosed with MDD. Nevertheless, using MDD status as
a covariate did not affect the differences in metabolites seen between PTSD-positive and -nega-
tive subjects; furthermore, the reported metabolite differences between PTSD-positive and-
negative subjects remained significant even in the subgroup of subjects without MDD. There
were also no significant metabolite differences between PTSD subjects who did or did not also
have MDD (all p > 0.3, not shown). These analyses suggest that MDD status did not play a sig-
nificant role in explaining the between-group differences observed in PTSD-positive and
PTSD-negative groups.
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Correlations with current CAPS scores

Using the current CAPS score as a continuous variable, none of the metabolites that were iden-
tified as significantly different between groups correlated significantly with the current CAPS
score within the PTSD group.

Discussion

In addition to traditional symptoms of PTSD (re-experiencing, avoidance, hyperarousal, nega-
tive thoughts or moods associated with the traumatic event [42]), individuals with PTSD also
have a significantly increased medical burden, including higher rates of cardiovascular disease,
metabolic syndrome, diabetes, autoimmune disease, and early morality [1, 41, 43, 44], suggest-
ing that PTSD is both a behavioral and somatic disease. Certain processes have been proposed
as contributing to the risk for these somatic diseases, including accelerated biological aging
[45-56], sympathetic and glucocorticoid dysregulation [43, 57-61], metabolic changes [41, 45,
62, 63], inflammation [43, 57, 58, 64-71] and others. Some of these processes may involve
changes in energy balance and mitochondrial function [72-77] that may be revealed by
changes in metabolomic profiles.

Studies in mice [21] and humans [24-26] found dysregulation of genes affecting mitochon-
drial function in PTSD, hence we initially hypothesized that combat veterans with PTSD
would have metabolite signatures indicating impaired mitochondrial function. In our Discov-
ery group, we found significant differences between the metabolite profiles of male combat
veterans who developed PTSD and those who did not, and these profiles were largely, but not
uniformly, confirmed in our smaller Test group. The metabolite profiles are consistent with
significant differences in mitochondrial function, energy utilization, and nutrient absorption
or gut microbiota between these two groups of combat veterans. Alternatively, increases in
inflammation and oxidative stress may lead to mitochondrial alteration or dysfunction [78]. In
turn, these metabolite differences may contribute to increased inflammation, oxidative stress,
anxiety, panic, obesity, metabolic syndrome, and cardiovascular disease, which are strongly
associated with PTSD (Fig 1) [1, 19, 71, 79-81]. There are several mechanisms by which the
altered metabolites, or the dysfunctional or compensatory pathways these metabolites reflect,
may associate with PTSD.

Lactate and pyruvate

The most robust metabolic between-group difference was the elevated concentrations of pyru-
vate and lactate, indicating enhanced anaerobic glycolysis in the PTSD-positive group.
Decreased metabolites in the TCA cycle have been seen in brains of animal models of PTSD
[20]. The pathophysiologcial significance of increased lactate in PTSD is unknown, but to the
extent that lactate contributes to PTSD symptoms [82-92], several potential mechanisms are
proposed, as described below.

GPR81, a cell-surface receptor coupled to G; proteins, is activated by lactate and decreases
intracellular cAAMP [93-97]. GPR81 is highly expressed in adipocytes, suggesting a role in reg-
ulating lipolysis, and is also expressed in liver, kidney, skeletal muscle, spleen, and testis, where
it may play a role in lipid metabolism or have other functions [97]. The elevated concentra-
tions of lactate in PTSD may have synergistic anti-lipolytic effects, reducing the availability of
long chain fatty acids for energy metabolism, which may also lead to the increased adiposity
and BMI seen in these subjects. Elevated basal lactate concentrations are also associated with
the development of insulin resistance [98, 99], which has been suggested to be due to decreased
glucose utilization [100-102].
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Fig 1. An overview of the metabolic imbalances in combat veterans with PTSD. The most significant metabolic alterations in PTSD can be organized into
different biochemical pathways, including (A) glycolysis. (B) TCA cycle. (C) fatty acid oxidation, (D) branched chain amino acid pools, (E) lipid biosynthesis,
(F) essential fatty acids, (G) urea cycle and (H) purine metabolisms. Metabolites that were elevated in PTSD in comparison to combat veterans who did not
have PTSD are in red font, while metabolites that are reduced are in green font. Mitochondrial events are boxed in blue. Salient metabolic consequences that
can potentially contribute to the manifestations of PTSD are highlighted in yellow, as discussed in the text.

https://doi.org/10.1371/journal.pone.0213839.9001

GPR81 is also found in neurons of the cerebral cortex, hippocampus (pyramidal and gran-
ule cells) and cerebellum (granule cells), where it can be activated by physiological concentra-
tions (low mM) of lactate [103, 104]. In the cortex, GPR8I is found mainly on synaptic
membranes of excitatory synapses, and is predominantly expressed on postsynaptic mem-
branes. GPR81 is also enriched at the blood-brain barrier, further suggesting that lactate may
play a role in signaling in the brain. Lactate, via GPR81, may act as a volume transmitter, link-
ing neuronal activity, cerebral energy metabolism, and energy substrate availability [103, 104].
This occurs through regulating formation of cAMP and by adjusting the NADH/NAD ratio.
Thus, lactate is a mediator of metabolic information in addition to being a metabolic substrate
[105].

While the molecular mechanism is unknown, lactate can predispose to panic attacks in sus-
ceptible subjects [82-91], and patients with a panic disorder may have elevated brain lactate
responses to metabolic challenges [92]. Lactate exerts excitatory effects on neuronal activity
[106, 107]; thus, increased hippocampal firing, a direct action of lactate on the CNS, may con-
tribute to lactate-induced panic.
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Lactate also stimulates neuronal expression of genes related to synaptic plasticity (e.g. Arc,
c-Fos, and Zif268), via NMDA receptors and their downstream signaling cascade to Erk1/2 in
mouse primary neuronal cultures and in vivo [108]. Lactate can potentiate currents mediated
by NMDA receptors via increased intracellular calcium or increased intraneuronal concentra-
tions of NADH. By contrast, lactate binding to GPR81 may also directly inhibit both glutama-
tergic and GABA-ergic neuronal function by inhibiting the frequency of calcium transients,
thus reducing the frequency of neuronal firing [109]. Elevated lactate and pyruvate decrease
the cellular NADH/NAD ratio, which in turn regulates various clock genes [110], which may
contribute to the disordered sleep [111] and glucocorticoid sensitivity [112] associated with
PTSD. Our peripheral measurements of plasma lactate, however, may not completely reflect
intracerebral lactate concentrations.

Fatty acids

Fatty acids can be both pro- and anti-inflammatory [113]. Saturated free fatty acids are involved
in the inflammatory response via toll-like receptors [114]. Because we found no differences in
plasma concentrations of saturated fatty acids in PTSD versus controls, it is unlikely that the
increased inflammation, previously reported in our PTSD subjects [69, 70] is due to increased
saturated fatty acids stimulating toll-like receptors. However, there was a significant decrease in
several unsaturated fatty acids in PTSD subjects. Dietary long chain polyunsaturated fatty acids
are ligands of the nuclear peroxisome proliferator-activated receptors (PPAR). Binding to
PPAR-0, -7, and -8 suppresses expression of sterol regulatory element-binding proteins, nuclear
transcription factor NFkB, and other transcription factors that regulate expression of genes
involved in intermediary metabolism, thermoregulation, energy partitioning, growth, differen-
tiation, and inflammatory responses [115-119]. Hence, reduced concentrations of unsaturated
fatty acids could lead to enhanced inflammation and a variety of other effects in PTSD.

In addition to fatty acids being ligands for PPAR receptors, the omega-3 fatty acids are
ligands for the G-protein coupled receptor GPR120 [120, 121], and are protective and anti-
inflammatory [120, 121]. In obese mice, stimulation of GPR120 by omega-3 fatty acids inhibits
inflammatory signaling and improves insulin sensitivity [121, 122]. We found low concentra-
tions of the omega-3 unsaturated fatty acid docosahexaenoic acid (DHA) in PTSD subjects,
raising the possibility that its reduced plasma concentration may contribute to inflammation
in these PTSD subjects [69, 70]. Although not assessed directly, reduced concentrations of
DHA may also contribute to reduced insulin sensitivity seen in our subjects [41].

Studies in humans [123-127] and rodents [128-134] indicate that omega-3 fatty acid defi-
ciency may be associated with a variety of neuropsychiatric illnesses, including attention deficit
hyperactivity disorder, depression, schizophrenia, autism spectrum disorders, and anxiety.
Our data are consistent with animal studies showing that chronic social defeat stress [135] and
variable, intermittent social defeat stress [136], models of human PTSD, disrupts regulation of
lipid synthesis, including reduced levels of non-esterified fatty acids, increased levels of choles-
terol and LDL cholesterol, and reduced fatty acid oxidation. Reduced abundance of omega-3
fatty acids in the CNS may reduce neurotransmission, especially by the dopaminergic and
serotonergic systems, by affecting membrane fluidity and related receptor functions, thereby
ultimately affecting brain structure and function [131, 137]. Based on promising pilot results
[138], a clinical trial of omega-3 fatty acids has been started in patients with PTSD [139].

Hypoxanthine

Hypoxanthine, a naturally occurring purine derivative that is involved in the salvage pathway
for purine synthesis, has been shown to stimulate oxidative stress [140, 141], and elevated
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concentrations have been implicated in fear in dogs [142]. Hypoxanthine is also high in fecal
samples in a chronic variable stress rat model of depression [143]. Smoking [144] and heavy
drinking [145] are also associated with elevated levels of hypoxanthine. In our subjects, how-
ever, the increases in hypoxanthine in the PTSD group were not accounted for by smoking,
as indicated by cotinine levels. In apolipoprotein E-deficient mice and cells, hypoxanthine
also induces cholesterol accumulation and stimulates atherosclerosis through alterations in
lipid transport enzymes, independent of conversion to xanthine and uric acid [146], a known
risk for cardiovascular disease. Indeed, elevated hypoxanthine levels have been reported in
human myocardial infarction [147], a condition with higher prevalence in individuals with
PTSD.

Limitations and strengths

There are three significant limitations to our study. First, the study utilized modest sample
sizes, although this is the largest human PTSD metabolomics study published to date. Second,
this study utilized only male combat trauma-exposed subjects. Thus, our findings should not
be extrapolated uncritically to females with PTSD or to individuals of either sex with non-com-
bat-related PTSD. Third, since this was a cross-sectional study, based on single time-point for
blood and behavioral measurements, we cannot assess any causal relationship or variability in
the measures over time. Being an exploratory study, we did not correct for multiple hypothesis
testing. However, the q values (which assess the significance of the false discovery rate), the
identification of different metabolites that exist within specific pathways, and the replication of
our strongest results with a second group of subjects suggest that the metabolites identified are
indeed significantly different between groups. Finally, it is possible that other genetic and epi-
genetic risks may contribute to the metabolomic differences between PTSD positive and nega-
tive subjects.

Among the strengths of the study, first, we used well-characterized, young, combat-exposed
veterans and excluded subjects with significant traumatic brain injury or current un-con-
trolled medical illness. Due to the deep phenotyping of our subjects, we were able to account
for metabolomics effects secondary to several health (e.g. fasting blood sugar, HbA1lc, tobacco
use) medication, comorbidity, and anthropometric (e.g. BMI and waist-to-hip ratio) issues.
Although many of our subjects were receiving various medications or had concomitant con-
trolled medical illnesses, sensitivity analyses showed that medication and concomitant medical
illnesses had little effect on the metabolic profiles between groups of subjects, and analysis of
only subjects who were taking no medications gave similar results. Many of our PTSD subjects
also had MDD; however, covarying for MDD did not change the results, and more impor-
tantly, the metabolite differences remained significant even when comparing only subjects
without comorbid MDD. Nonetheless, we cannot rule out the possibility that comorbid MDD
influenced some of the observed metabolic differences. Second, we used combat trauma-
exposed veterans who did not develop PTSD as our control group, thus eliminating the contri-
bution of prior combat trauma exposure per se to our findings. However, use of this sample as
a control group may have resulted in selecting a particularly resilient control sample. Total and
subcategory scores of early trauma (ETT) showed no differences between our PTSD positive
and negative subjects, suggesting that the metabolomic differences we identified between
groups was not due to early life trauma prior to combat. However, we did not have an assess-
ment of prior adulthood traumas, which may have contributed to a different lifetime “trauma
load” between groups. Third, and most importantly, we confirmed and validated the initial
findings of our Discovery group in a wholly separate Test group, greatly limiting the Type I
errors that frequently compromise metabolomics studies [148, 149].

PLOS ONE | https://doi.org/10.1371/journal.pone.0213839 March 18,2019 14/25


https://doi.org/10.1371/journal.pone.0213839

@ PLOS | ON E Metabolomic analysis in PTSD

Conclusions

We have identified several metabolites and metabolic pathways that may distinguish male
combat-exposed PTSD-positive and -negative subjects. These metabolites and metabolic path-
ways were different from those seen in a study of male and female civilian PTSD [18], which
identified seven phospholipids (four of which were phosphatidyl ethanolamines and were ele-
vated in PTSD) two fatty acid metabolites (reduced in PTSD, and different from those identi-
fied in the current study), two nucleosides (reduced in PTSD), three bile acids and derivatives
(two reduced, one increased in PTSD), one monosaccharide (reduced in PTSD) and one anti-
oxidant (reduced in PTSD) [18], suggesting that sex and the type of trauma, and perhaps
comorbid medical illnesses (other than autoimmune disease and infection) and medications,
may influence metabolic features. Alternatively, the metabolomic methodologies used by these
two studies differed, and may not have had overlapping analyte identification, rather than nec-
essarily having found different metabolites. Even though the Discovery study was designed to
be exploratory and hypothesis-generating, many of the strongest findings were replicated in
our smaller Test group. Nevertheless, our results must be replicated in other studies with larger
and more diverse samples. Similar studies in female combat trauma-exposed veterans are criti-
cally needed, as sex may moderate metabolic function [150]. PTSD appears to share some
metabolomic features with cardiovascular disease [151], Alzheimer’s disease [7, 8, 152], diabe-
tes [17], multiple sclerosis [153], and depression [2, 4]. However, the overall metabolomic pro-
files of those diseases differ from those in our study, so it remains to be determined whether
the metabolomic changes identified in our subjects are unique or specific to PTSD. In accor-
dance with recent Research Domain Criteria (RDoC) for neuropsychiatric illnesses [154], it is
possible that the metabolomic abnormalities identified here are trans-diagnostic and may map
onto specific symptoms or disease characteristics more so than to specific DSM diagnoses
[155]. Therapies targeting some of these apparently dysregulated metabolic pathways or per-
haps targeting mitochondrial function [71, 156] may provide treatment for some pathologic
aspects of PTSD, both behavioral and somatic. The fact that the abnormalities we observed
were seen in young, somatically healthy individuals with PTSD raises the possibility that they
precede and presage later somatic illness, suggesting the possibility of early identification and
prophylactic treatment. Indeed, it is unknown whether these abnormalities are sequellae of
PTSD or, rather, are pre-existing risk factors for developing PTSD. Therapies targeting mito-
chondrial dysfunction have been used in animals and humans with Parkinson’s, Huntington’s
and Alzheimer’s diseases [157-160]. Conversely, effective PTSD treatments such as SSRI anti-
depressants [161] may have beneficial effects on these dysregulated biochemical pathways, in
addition to the observed behavioral manifestations of PTSD, as noted in an animal study
where fluoxetine pre-treatment averted some physiological sequellae of stress (energy metabo-
lism) [20]. Our findings raise the possibility that metabolomic differences, or the processes
they reflect, underlie some of the somatic illnesses seen more commonly in PTSD, and that
they may contribute to biomarker-based personalized ways of tracking and treating underlying
pathophysiology in PTSD.
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