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Identification and dynamic quantification
of regulatory elements using total RNA

Sascha H. Duttke, Max W. Chang, Sven Heinz, and Christopher Benner
Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA

The spatial and temporal regulation of transcription initiation is pivotal for controlling gene expression. Here, we introduce

capped-small RNA-seq (csRNA-seq), which uses total RNA as starting material to detect transcription start sites (TSSs) of

both stable and unstable RNAs at single-nucleotide resolution. csRNA-seq is highly sensitive to acute changes in transcrip-

tion and identifies an order of magnitude more regulated transcripts than does RNA-seq. Interrogating tissues from species

across the eukaryotic kingdoms identified unstable transcripts resembling enhancer RNAs, pri-miRNAs, antisense tran-

scripts, and promoter upstream transcripts in multicellular animals, plants, and fungi spanning 1.6 billion years of evolution.

Integration of epigenomic data from these organisms revealed that histone H3 trimethylation (H3K4me3) was largely con-

fined to TSSs of stable transcripts, whereas H3K27ac marked nucleosomes downstream from all active TSSs, suggesting an

ancient role for posttranslational histone modifications in transcription. Our findings show that total RNA is sufficient to

identify transcribed regulatory elements and capture the dynamics of initiated stable and unstable transcripts at single-

nucleotide resolution in eukaryotes.

[Supplemental material is available for this article.]

Transcription decodes the regulatory signals inscribed in the ge-
nome to initiate gene expression in response to cellular or external
cues. At its heart lies the transcription start site (TSS), where RNA
polymerase II starts gene transcription. Transcriptional regulators
bind to specific DNA sequences near the TSS to remodel chromatin
and recruit the molecular complexes necessary to start tran-
scription. Annotation of genes and regulatory elements and the
analysis of the underlying molecular mechanisms regulating tran-
scription therefore depend on the identification of TSSs and the
measurement of their activity genome-wide.

The advent of nascent RNA sequencingmethodologies has re-
vealed a plethora of unstable transcripts. Such transcripts arise
from divergent transcription of promoter regions (Core et al.
2008; Preker et al. 2008; Seila et al. 2008;Neil et al. 2009), antisense
transcription (Berretta and Morillon 2009), and, particularly in
mammals, transcription initiation from enhancers (De Santa
et al. 2010; Kim et al. 2010). Although the biological function of
these transient RNAs is debated, enhancer RNAs (eRNAs) reveal ac-
tive enhancers (Wang et al. 2011), and eRNA expression levels
correlate with nearby gene expression (Hah et al. 2013; Cheng
et al. 2015; Azofeifa et al. 2018; Mikhaylichenko et al. 2018).
Enhancers are critical modulators of gene activity and integrate
spatiotemporal cues to coordinate cell-type–specific gene expres-
sion. Compared to promoters, enhancers are enriched for cell lin-
eage-determining transcription factor binding sites. Mapping
active enhancers is therefore key to deciphering regulatory net-
works and cell-type–specific gene expression. To avoid confusion
in this study, we will refer to enhancers as “distal regulatory ele-
ments” as theywere defined by transcription and active chromatin
marks, rather than physiological functionality. Other unstable
RNAs include diverse precursor RNAs, such as pri-miRNAs that
avoid detection owing to being rapidly processed into theirmature

forms such asmiRNAs (Lee et al. 2002). Furthermore, the process of
transcription rather than the RNA itself has been shown to impact
genome conformation (Heinz et al. 2018), DNA topology (Teves
and Henikoff 2014), and chromatin states (Santos-Rosa et al.
2002). It is therefore critical to assay active promoter and distal reg-
ulatory elements in a quantitative and sensitive manner when in-
vestigating biological phenomena, gene regulation, or regulatory
networks.

RNA stability presents a continuum spanning RNA half-lives
of less than a minute to several hours, which impacts their detec-
tion (Wada and Becskei 2017). Unstable RNAs and their initiation
sites are difficult to identifywithmethods that capture steady-state
RNA levels such as conventional RNA-seq or 5′ 7-methylguanosine
cap (5′ cap)–enriched RNA sequencingmethods such as 5′RNA-seq
or CAGE (Shiraki et al. 2003). In contrast,methods that capture na-
scent RNA detect transcripts and their TSSs independent of their
stability. These methods include using nuclear or chromatin
run-on reactionswithmodified nucleotides to isolate nascent tran-
scripts (GRO-seq [Core et al. 2008], PRO-seq [Kwak et al. 2013],
ChRO-seq [Chu et al. 2018]), sequencing RNA polymerase-associ-
ated RNAs (NET-seq; Churchman and Weissman 2011), in vivo
labeling RNA and enrichment of newly synthesized RNA (Salic
and Mitchison 2008; Duffy et al. 2015; Schwalb et al. 2016), or
depletion of cellular components to deter the degradation of
unstable RNAs (Preker et al. 2008; Davidson et al. 2019). These
methods faithfullymap transcribed regulatory elements and reveal
the transcriptome at an unprecedented scale. However, the re-
quirement of nuclei isolation, pulse labeling during cell culture,
or genetic manipulations prevents their application to tissues, fro-
zen samples, or nonmodel organisms. Furthermore, as the se-
quencing reads from these assays largely align to gene body
regions, they are useful for defining regulatory elements, transcrip-
tion units, or rates but lack the positional resolution to precisely lo-
cate TSSs (Danko et al. 2015; Azofeifa and Dowell 2017). Assays
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that combine 5′ cap enrichment (Maruyama and Sugano 1994)
with run-on sequencing such as 5′GRO-seq/GRO-cap (Kruesi et al.
2013; Lam et al. 2013) concentrate reads at the TSS of regulatory el-
ements and enable (semi-)quantitative assessment of transcription
initiation rates at single-base resolution. This enables the identifica-
tion of TSS of both stable (protein-coding and noncoding RNAs)
and unstable transcripts (eRNAs, divergent transcripts) at unpre-
ceded scale and reveals active regulatory elements genome-wide
(Core et al. 2014). However, although 5′GRO-seq is feasible in pri-
mary tissues (Hetzel et al. 2016), it is laborious and difficult to scale
up. It is further unclear how far the actual representation of cell
types is maintained during isolation procedures as, for example,
the sensitivity of distinct mammalian cells types to the detergents
or osmotic imbalance varies more than 10-fold.

It was previously shown that sequencing newly initiated RNA
polymerase II transcripts can accurately define stable and unstable
TSSs (Preker et al. 2008; Seila et al. 2008; Affymetrix/Cold Spring
Harbor Laboratory ENCODE Transcriptome Project 2009; Lister
et al. 2009; Nechaev et al. 2010; Gu et al. 2012; Scruggs et al.
2015). These transcripts can be enriched by selecting small RNAs
with 5′ cap and 3′ OH that are shorter than those native to the
steady-state RNA polymerase II transcriptome. Inspired by estab-
lished small RNA-seq methods including Start-seq (Nechaev
et al. 2010) and CapSeq (Gu et al. 2012), we have developed a pro-
tocol we termed capped-small RNA-seq (csRNA-seq) that captures
these short TSS-associated transcripts from total RNA (Fig. 1A,B;
Supplemental Fig. S1A,B). Using total RNA as input to reliably
determine the TSS of promoters and distal regulatory elements at
single-nucleotide resolution enables accurate annotation of genes
and regulatory elements and the study of dynamic gene regulation
and regulatory networks in any fresh or frozen eukaryotic sample
or tissue from which total RNA can be extracted.

Results

csRNA-seq accurately captures initiated stable and unstable

RNAs from total RNA

Sequencing capped, small RNAs from total RNA as startingmateri-
al enables the study of a wide variety of samples. However, degra-
dation products of highly abundant RNAs and short noncapped
RNAs can give rise to false-positive TSS signals, especially when
RNA is extracted from banked tissues or samples collected in the
field. To relax the requirement of quality RNA and computational-
ly identify and exclude false-positive TSS calls, total small RNA
input libraries that include uncapped RNAs are also profiled.
csRNA-seq determines TSS clusters by the relative enrichment of
capped small RNAs over the total input (Fig. 1C; Supplemental
Fig. S1C–E). By using this approach, we were able to define TSSs
from csRNA-seq libraries generated from highly fragmented RNA
with RINs as low as two. In addition to controlling for degrada-
tion-induced artifacts, input libraries represent a resource for dis-
covery as they capture all small uncapped RNAs, including
microRNAs, Piwi-interacting RNAs (piRNAs), small interfering
RNAs (siRNAs), and other small, processed RNAs present (Supple-
mental Fig. S1B,F). Ribosomal RNA–depleted RNA-seq or genome
annotations can be integrated to further limit false-positive TSS
clusters found in highly expressed exons (Supplemental Fig. S1E)
and to assign stable and unstable transcript status to TSS clusters
(Fig. 1D). This assignment of RNA stability facilitates distinguish-
ing gene promoters from distal regulatory elements such as en-
hancers. Of note, csRNA-seq and matched RNA-seq data can also

be used to generate accurate de novo genome annotations. To fa-
cilitate simple and accurate TSS cluster discovery and annotation
from csRNA-seq and control data, we developed a software analysis
framework that has been integrated into the HOMER software
suite (Heinz et al. 2010).

To evaluate the sensitivity and reproducibility of csRNA-seq,
we generated duplicate csRNA-seq and small RNA input libraries
using 10 µg of total RNA from separate cultures of human K562
myelogenous leukemia cells (Supplemental Fig. S2A,B). csRNA-
seq data are highly consistent and quantitatively reproducible
across independent replicate experiments (r=0.91) (Supplemental
Fig. S2A). Sequencing csRNA-seq libraries to a depth of approxi-
mately 15 million reads efficiently covered regulatory features in
the human genome (Supplemental Fig. S2C) and identified
54,000 candidate TSS clusters. Comparing these csRNA-defined
TSS clusters with existing annotations and other data generated
in K562 cells revealed a global overlapwith known features of tran-
scription initiation (Supplemental Fig. S3A). Ninety-four percent
of the TSSs mapped to promoter or enhancer regions as defined
by ChromHMM (Fig. 2A; Supplemental Fig. S2D; Ernst and Kellis
2012), and >92% of TSS clusters overlapped DNase-hypersensitive
regions (Thurman et al. 2012). csRNA-seq accurately identified the
TSSs of known genes and transient RNAs (Fig. 2B), including pre-
miRNAs (Supplemental Fig. S1F) as well as distal regulatory
elements such as putative eRNAs in super-enhancers (Fig. 2C) at
single-nucleotide resolution (Fig. 2D). The ability of csRNA-seq
to identify TSS was dependent on the expression level of tran-
scripts from each locus. With expression levels greater than 4
FPKM, TSSs for >90% of genes were identified, in some cases pro-
viding novel TSS annotation (Supplemental Fig. S2E,F).

Initiated transcript profiles generated by csRNA-seq bear a re-
semblance to nascent initiation profiles generated by GRO-cap in
K562 cells (Core et al. 2014). TSS cluster locations and preferred nu-
cleotide frequencies relative to the TSSs were highly concordant
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Figure 1. Overview of capped small RNA-seq. (A) Schematic of short ini-
tiated RNAs that are captured by csRNA-seq and (B) a graphical depiction
of the method starting from total RNA. (C ) Transcription start site (TSS)
clusters are determined through the enrichment of small capped RNAs
over the total small RNA input using HOMER. The schematic shows the
typical distribution of csRNA-seq and input at various genomic features.
(D) Integration of genome annotations or total RNA-seq enables the as-
signment of TSSs to stable and unstable transcripts.
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between themethods (Fig. 2B; Supplemental Figs. S2D, S3B). Tran-
script initiation levels among csRNA-seq andGRO-capwere overall
correlated (r=0.61) (Fig. 2E) with 78%of the identified TSS clusters
shared among csRNA-seq and GRO-cap. The primary TSSs from
both methods started from YR dinucleotides (Supplemental Fig.
S3C) with a strong preference for A at the +1 site and the canonical
Initiator motif (Smale and Baltimore 1989; Vo Ngoc et al. 2017).
Method-specific TSSs were preferentially found at distal regulatory
elements (Supplemental Fig. S2D, S3D) and had lower levels of na-
scent transcription, open chromatin, H3K27ac, and RNA polymer-
ase II recruitment relative to TSSs identified by both methods
(Supplemental Fig. S3E). Clusters specific to csRNA-seq were
more frequently found at small nuclear RNA genes (i.e., snRNA)
and correspondingly enriched for a PSE motif (Wirth et al.
1987). GRO-cap–specific clusters were enriched for the motif of
the bZIP transcription factor DNA damage inducible transcript 3
(DDIT3, also known as CHOP) (Supplemental Fig. S3F). Most of
these observations suggest that the differences in TSSs called by ei-

ther method might be more reflective of laboratory-specific differ-
ences (subclone or cell culture conditions) than the technical
differences between the methods. Together these data show that
csRNA-seq captures the TSSs of active promoters and distal regula-
tory elements with high fidelity and accuracy, bearing a high de-
gree of similarity to profiles derived from nascent transcription
initiation techniques.

csRNA-seq captures TSSs of rapidly degraded transcripts

The transcriptome encodes an abundance of short-lived tran-
scripts that are rapidly degraded by the DIS3 exoribonuclease com-
ponent of the exosome (Szczepińska et al. 2015; Davidson et al.
2019). Sensitive identification of these transcripts and their TSSs
usually requires live cells to isolate nuclear RNA or nuclear run-
on products (Core et al. 2008, 2014; Nechaev et al. 2010; Lam
et al. 2013). To test whether these transcripts can be readily detect-
ed from only total RNA, we performed csRNA-seq in HCT116 cells,
for which RNA-seq data for both DIS3 exoribonuclease degrada-
tion (Davidson et al. 2019) and nascent transcription (PRO-seq)
(Rao et al. 2017) are available for comparison. TSSs were called
and stability of the associated transcripts was inferred by integrat-
ing csRNA-seq and total RNA-seq data. This analysis indicated that
only 40% of the 69,000 total TSSs identified initiated stable tran-
scripts in HCT116 cells. As exemplified by the ERRFI1 locus (Fig.
3A) and summarized genome-wide for all TSSs (Fig. 3B), both
transient and stable transcript TSSs are accurately captured by
csRNA-seq. Stable transcripts displayed evidence for RNA-seq reads
downstream from the TSSs in control and exosome-depleted
samples, whereas unstable transcripts only became detectable by
RNA-seq under exosome-depleted conditions. The initiation sites
of stable and unstable RNAs exhibit considerable overlap with re-
spect to chromatin architecture and epigenetic modifications
(Supplemental Fig. S4; Core et al. 2014), with histone 3 lysine 4 tri-
methylation (H3K4me3) being a major indicator of transcript
stability (Santos-Rosa et al. 2002; Heintzman et al. 2007; Duttke
et al. 2015). In linewith these previous findings, histonemodifica-
tions associated with activation (H3K27ac/H3K4me3) accumulat-
ed directly downstream from the TSSs in a manner dependent
on the direction of transcription and stability of the transcribed
RNA (Fig. 3B; Supplemental Fig. S4). These results substantiate
that analysis of total RNA by csRNA-seq combined with RNA-seq
can be used to profile stable and unstable transcripts and identify
their cognate TSSs.

csRNA-seq identifies cell-type–specific gene regulatory elements

and their underlying transcription factor networks

Cell identity is informed by distal regulatory elements that in con-
cert with promoters drive cell-type–specific gene expression (Mas-
ton et al. 2006; The ENCODE Project Consortium 2012). To
better understandgene regulation inhealthanddisease, it is critical
to accurately define active promoters and distal regulatory ele-
ments to decode the underlying transcription factors motifs and
other features that ultimately drive gene expression. ChIP-seq for
histone modifications associated with gene activation (e.g.,
H3K27ac) or open chromatin profiling (DNase-seq or ATAC-seq)
(Buenrostro et al. 2013) are the most commonly used methods to
globally profile regulatory regions. Alternatively, active regulatory
elements can be directly determined by transcription (De Santa
et al. 2010; Kim et al. 2010; Wang et al. 2011). To assess the utility
of csRNA-seq to decode the “transcriptional regulome,”wedefined
promoter-proximal and distal TSSs across three distinct human cell
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Figure 2. csRNA-seq accurately captures stable and unstable sites of
transcription initiation sites from total RNA. (A) Chromatin states of
csRNA-seq TSS clusters in human K562 cells as determined by
ChromHMM. (B) Comparison of csRNA-seq TSS with other genome-
wide assays at the PIM1 locus. (C) Example of an unstable TSS cluster
from a gene-distal regulatory element at single-nucleotide resolution.
(D) Comparison of read depths at TSS clusters determined by csRNA-seq
and GRO-cap (Core et al. 2014) in K562 cells.
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lines: K562 myelogenous leukemia cells, HCT116 colon cancer
cells, andH9 embryonic stemcells. A comparisonof approximately
130,000 total nonredundant TSS clusters revealed common and
unique usage patterns across different cell types. Consistent with
previous findings (Heinz et al. 2010; The ENCODE Project Consor-
tium 2012), the greatest cell-type–specific variation in activity oc-
curred at distal regulatory elements. At these sites, TSS usage
measured by csRNA-seq closely matched patterns of common
and cell-type–specific H3K27ac enrichment and DNase hypersen-
sitivity (Fig. 4A).

We next performedDNAmotif analysis usingHOMER (Heinz
et al. 2010) to probe transcription factor motifs enrichment near
TSS [−150,+50] for each cell type. Motifs recognized by ubiquitous
transcription factors typically present at gene promoters (i.e., SP1,
NFY)were strongly enriched at TSSs common to all three cell types.
In contrast, motifs corresponding to lineage-specific transcription
factors were selectively enriched near TSSs specifically transcribed
in the appropriate cell types: GATA motifs were found in myelog-
enous leukemia K562 cells (Shimizu et al. 2008); SOX2, RFX, and
OCT4 (POU5F1):SOX2 composite motifs were confined to H9 em-
bryonic stem cells (Poletti et al. 2015); AP1 binding sites were com-
mon to epithelial colon cancer cell line HCT116 and K562 cells;
and the CTCF motif was enriched in HCT116 cells (Fig. 4B).
These results accentuate that csRNA-seq can accurately define ac-
tive regulatory elements and characterize the associated DNA se-
quence motifs across different cell types.

To probe the fidelity of csRNA-seq in decoding the regulome,
we next performed DNA motif enrichment analysis in DNase-seq
and H3H27ac ChIP-seq peak regions, which yielded a similar set
of motifs and successfully identified the appropriate lineage-spe-
cific motifs for each cell type (Fig. 4B). Motif enrichment was gen-
erally weaker for H3K27ac owing to the lower spatial resolution of
the assay (∼1 kb vs. ∼200 bp for csRNA/DNase) (Fig. 4C); however,
the overall motif enrichment pattern closely followed the results
from csRNA-seq TSSs. The similarity is underscored by the fact
that H3K27ac and csRNA-seq signals are correlated and identify
similar regions of the genome (Supplemental Fig. S5A), consistent
with histone acetylation being closely associated with transcrip-
tion (Stasevich et al. 2014). DNase-seq peaks exhibited several mo-

tifs distinct from those enriched in
csRNA-seq and H3K27ac, including the
repressor REST, the architectural factor
CTCF, and several C2H2-type zinc finger
transcription factors. It is important to
note that not every open chromatin re-
gion is actively transcribed (Supplemen-
tal Fig. S5B; Natarajan et al. 2012),
suggesting csRNA-seq could be used in
combination with DNase-seq to effec-
tively annotate inactive but accessible
regulatory elements to identify transcrip-
tion factors associated with repression or
other molecular functions. Direct defini-
tion of transcriptional activity at base res-
olution further enables analyzing DNA
motifs in a distance-specific and direc-
tionalmanner relative to the TSSs, reveal-
ing positional motif preferences relative
to transcription initiation (Fig. 4C). In
summary, direct identification of active
regulatory elements from csRNA-seq
TSSs reveals cell-type–specific gene ex-

pression and cis-regulatory elements with high accuracy and facil-
itates downstream analysis such as investigating the architecture
underlying transcription initiation or identification of enriched
transcription factors motifs.

csRNA-seq sensitively quantifies changes in transcription

initiation

To assess the ability of csRNA-seq to quantitatively evaluate chang-
es in gene expression, we profiled murine bone marrow–derived
macrophages (BMDMs) activated by the TLR4 agonist Kdo2-lipid
A (KLA) (Fig. 5A; Raetz et al. 2006). csRNA-seq faithfully captured
changes in transcription initiation at activated response genes
and their distal regulatory elements after 1 h of stimulation with
KLA (Fig. 5B). Compared with RNA-seq from the same samples
that identified 279 induced and 69 down-regulated genes (Link
et al. 2018), csRNA-seq captured 11,781 up- and 8454 down-regu-
lated TSS clusters (greater than twofold, FDR <5%) (Fig. 5C,D;
Supplemental Fig. S5C). A vast majority of regulated csRNA-seq
TSSs were associated with unstable transcripts (88%) located at
promoter-distal regulatory elements (71%). Although the function
of many of these transcripts is speculative (Wu and Sharp 2013;
Marchese et al. 2017), eRNA transcription is highly predictive of
transcription factor activity and transcriptional networks (Wang
et al. 2011; Hah et al. 2013; Cheng et al. 2015; Azofeifa et al.
2018). De novomotif analysis of induced TSSswithHOMER recov-
ered strong enrichment for motifs bound by transcription factors
AP-1 andNF-κB (Fig. 5E), whichmediate the primary KLA response
(Fujioka et al. 2004).

To assess if quantitative changes in transcription initiation at
putative enhancer regions are predictive of regulation of nearby
genes, we compared KLA-induced changes in csRNA-seq,
H3K27ac, and ATAC-seq at distal regulatory elements with those
of the nearest expressed gene as quantified by GRO-seq (Link
et al. 2018). This analysis shows that csRNA-seq has the highest
predictive power for linking activation of distal regulatory
elements to proximal genes (Pearson’s r=0.48), followed by
H3K27ac ChIP-seq (Pearson’s r=0.38) and ATAC-seq signal
(Pearson’s r=0.19). Additionally, csRNA-seq displayed a fourfold

BA

Figure 3. csRNA-seq captures the initiation of transient transcripts rapidly degraded by the exosome.
(A) Comparison of csRNA-seq with nuclear RNA-seq fromwild-type and exosome-depleted HCT116 cells
at the ERRFI1 locus (Chr 1: 8,008,489–8,051,491). (B) Global comparison of csRNA-seq with data from
the nascent RNA-seq method PRO-seq, as well as wild-type and exosome-depleted nuclear RNA-seq and
chromatin profiling (DNase, H3K27ac, H3K4me3) in HCT116 cells.
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higher dynamic range than ATAC-seq or H3K27ac ChIP-seq (Fig.
5F). These differences are exemplified by the putative enhancers
upstream of the Acod1 locus (Fig. 5B). Consistent with previous
findings (Kaikkonen et al. 2013), many of these putative enhanc-
ers already exhibit open chromatin, low levels of transcription,
and H3K27ac in untreated cells. Upon stimulation, strong induc-
tion of transcription initiation at these sites is only sometimes as-
sociatedwith further increases in chromatin accessibility. Changes
in csRNA-seq and H3K27ac are more closely correlated, with

changes in H3K27ac most prominent just downstream from regu-
lated TSSs (Supplemental Fig. S5E). Together, these findings estab-
lish csRNA-seq as a highly sensitivemethod to quantify changes in
transcription initiation at both promoters and distal regulatory el-
ements from total RNA to study gene regulatory networks.

csRNA-seq captures stable and unstable initiated transcription

across eukaryotic specimens and tissues

By capturing stable and unstable transcripts from total RNA,
csRNA-seq overcomes limitations of methods that require nuclei
isolation or other manipulations that are difficult in nonmodel or-
ganisms or tissues. This advance enables the characterization of
the initiating transcriptome in any fresh or frozen eukaryotic sam-
ple or tissue for which total RNA can be extracted. To illustrate this,
we profiled the starlet anemone Nematostella vectensis (metazoa),
the fungus Neurospora crassa, rice plant leaves (Oryza sativa), and
the protist Capsaspora owczarzaki (Sebé-Pedrós et al. 2016). These
species were selected to broadly cover the evolutionary tree of
life as well as to show the feasibility of csRNA-seq in samples
were morphological constraints and/or secondary metabolites
hinder fixation or nuclei isolation. Captured TSSs predominantly
mapped to DNase-sensitive nucleosome-free regions bordered by
H3K27-acetylated nucleosomes in each species (Fig. 6A–D;
Supplemental Fig. S6A). Across the species, TSSs were enriched at
annotated promoters and underrepresented within gene bodies
(Fig. 6E; Supplemental Fig. S6B). The nucleotide frequency pre-
ferences near TSS showed a strong preference for the Initiator
motif and prominent TATA signature in plants and metazoa
(Supplemental Fig. S6C). These data showhow csRNA-seq captures
initiating transcripts across diverse eukaryotic samples and tissues
and thereby open up new avenues and organisms to study.

Ancient roles for H3K27ac and H3K4me3 in eukaryotes

The regulatory innovations leading to the evolution of more de-
rived body plans are largely speculative. Multicellular life evolved
several times independently (e.g., Grosberg and Strathmann
2007), and it is currently an open question to what extent the
diverse unicellular protists, fungi, plants, or early-branching ani-
mals share regulatory principles and architecture with bilaterians
such as humans or Drosophila. Taking advantage of csRNA-seq
and total RNA-seq profiling, we annotated TSS transcript stability
and found significant variation in the prevalence of RNA stability
and promoter types across species (Fig. 6F). Apart from the protist
Capsaspora, a sizeable fraction of TSSs from each species initiated
unstable transcripts, usually from gene-distal regulatory elements.
For example, in the cnidarian Nematostella, unstable transcripts
frequently originate from distal regions previously defined as en-
hancers (Schwaiger et al. 2014), suggesting these transcripts are
eRNAs (Fig. 6A,G; Supplemental Fig. S6C). Similarly, unstable pro-
moter-distal TSSs found in Neurospora and rice resemble bilaterian
eRNAs, andmany cluster in regions with highly transcribed genes,
analogous to mammalian super-enhancers (Fig. 6B,C;Whyte et al.
2013). Similar to the situation in mammalian cells (Fig. 3B;
Supplemental Fig. S4) and previous findings in Drosophila
(Kharchenko et al. 2011; Duttke et al. 2015), H3K4me3-containing
nucleosomes were uncommon at distal regulatory elements and
largely confined to the start sites of stable RNAs throughout the an-
alyzed eukaryotes (Fig. 6H,I). Given that these species span over
1.6 billion years of evolution (Parfrey et al. 2011), these data pro-
vide evidence that transcription initiation in distal regulatory ele-
ments likely evolved before the emergence of the Bilateria, and

A

B

C

Figure 4. csRNA-seq identifies active promoters and distal regulatory el-
ements and their underlying transcription factor networks in a cell-type–
specific manner. (A) Grouping of common and cell-type–specific csRNA-
seq TSSs with DNase-seq and H3K27ac ChIP-seq across three different hu-
man cell lines (±1.5 kb to the TSS). (B) Known DNA motifs enriched in the
distal regulatory elements of human K562, HCT116, and H9 embryonic
stem cells identified using HOMER. Motif enrichment was calculated for
sites located within (−150,+50) relative to TSSs for csRNA-seq or from
(−100,+100) or (−500,+500) relative peak centers for DNase-seq and
H3K27ac ChIP-seq, respectively. (C) TSSs identified by csRNA-seq provide
a single-nucleotide anchor that facilitates accurate spatial analysis of DNA
motifs compared with peaks as defined by DNase-seq or H3K27ac
ChIP-seq.
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that the role of histone modifications H3K27ac and H3K4me3
with respect to transcription and transcript stability manifested
early during eukaryotic evolution.

Discussion

Here we introduce csRNA-seq to quantitatively capture initiated
transcripts and define their TSSs directly from total RNA. The tran-
scription initiation patterns at gene promoters and distal regulato-
ry elements discovered by this approach are similar to the results of
nascent RNAprofilingmethods (e.g., GRO-cap/5′GRO-seq) (Kruesi
et al. 2013; Lam et al. 2013). TSSs defined by csRNA-seq are also
highly correlated with Start-seq data, which uses nuclear RNA
(Nechaev et al. 2010; Scruggs et al. 2015). Although isolating nu-
clear RNA removes degraded RNAs, noninitiated small RNAs

(e.g., miRNA), and other abundant cyto-
plasmic RNA species, it had a minor
impact on TSS identification and
quantification (r=0.77) (Supplemental
Fig. S5D,F).

csRNA-seq identifies changes in
activity at regulatory elements with high-
er dynamic range and better correlation
with neighboring gene transcription
changes than assays such as ATAC-seq
or H3K27ac ChIP-seq. Furthermore, un-
like these assays, csRNA-seq determines
TSSs (akin to peaks) with single-nucleo-
tide resolution. This precision boosts
the sensitivity ofmotif finding approach-
es for identifying motifs for key lineage-
determining and signal response tran-
scription factors and enables accurate ge-
nome annotation. The fact that it uses
total RNA as starting material makes
csRNA-seq broadly applicable across
eukaryotes. For example, csRNA-seq en-
ables the characterization of transcripts
in species in which physiological con-
straints such as cell walls and secondary
metabolites or biosafety (e.g., crops,
pathogenic fungi, or virus-infected tis-
sues) hinder nuclei isolation for nascent
RNA sequencing methods. Its focus on
sequencing 5′ ends of initiated tran-
scripts efficiently concentrates sequenc-
ing power to active promoters and
enhancers, enabling the profiling of pro-
moter and enhancer regulation in com-
plex genomes such as humans with as
few as 15 million single-end reads (Sup-
plemental Fig. S2C).

At the same time, the 5′ bias of
csRNA-seq reads make it unsuitable for
tracking RNA polymerase II elongation
or termination. Because transcripts cap-
tured by csRNA-seq are inherently short,
the method does not allow the unique
mapping of transposon-derived RNAs or
other transcripts derived from highly re-
petitive regions. Likewise, csRNA-seq

will be less effective for studies looking to quantify allele-specific
expression. Another practical limitation of the assay is the require-
ment for a relatively large amount of starting material (∼10 µg of
total RNA or approximately 5–10 million cells). Although we
have generated libraries from <1 µg total RNA, sufficient starting
material improves data quality and reproducibility.

csRNA-seq biochemically enriches for short RNAs with a 3′

hydroxyl group and a 5′-capped oligophosphodiester that protects
them from dephosphorylation and exonuclease digest. However,
the current selection of enzymes used in the csRNA-seq protocol
do not distinguish alternative 5′ cap structures or other phospho-
diester modifications such as adenylation. The requirement for
such 5′ modifications may limit the use of csRNA-seq in some pro-
tists that lack canonical 5′ capping machinery (Shuman 2001).
Depending on the RNA quality, input libraries are thus required
to limit a possible bias fromdegraded fragments of abundant stable

C

D

A
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E

F

Figure 5. csRNA-seq captured changes in the transcriptome with high fidelity. (A) Bone marrow–
derived macrophages were isolated from C57Bl6 mice and stimulated with KLA (TLR4 agonist) for 1
h. (B) Comparison of transcriptional and epigenetic profiling methods at the mouse Acod1 locus in un-
treated (Ctrl) and activated (KLA) conditions after stimulation for 1 h with KLA. (C) Differentially ex-
pressed features in response to 1-h KLA as captured by RNA-seq and (D) csRNA-seq (348 vs. 20235
features at greater than twofold difference and <5% FDR). (E) DNA motifs enriched in KLA-induced reg-
ulatory regions compared with random, reduced, or unaltered regions (−150,+50 relative to TSSs).
(F) Comparison of ATAC-seq, H3K27ac, and csRNA in capturing alterations is distal regulatory elements
relative to changes in nearby gene transcription upon 1-h KLA stimulation. Scatter plots show the log2
ratio of changes in activity upon KLA stimulation in distal regulatory elements relative to the change in
gene expression of the nearest expressed gene as captured by GRO-seq.
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RNAs (Supplemental Fig. S6D). The ability to use total RNA as in-
put allows researchers to source samples from around the world
with minimal biosafety risk and at moderate costs. Exploiting
this feature, we investigated stable and unstable RNAs across five
eukaryotes that together spanmore than 1.6 billion years of evolu-
tion. This analysis revealed common themes among TSSs through-
out evolution. We observed strong fluctuations in nucleotide
frequencies near TSSs and a preference to initiate transcription
from YR(+1) dinucleotides common to all five eukaryotic species
(Supplemental Fig. S6C). Differences in TATA box usage between
species and evidence for an expanded Initiatormotif inCapsaspora
suggest that core promoter sequence elements and their usage
have diverged throughout evolution. The chromatin architecture
at TSSs, with a nucleosome-depleted region centered on the prox-
imal promoter flanked by nucleosomes with active histone modi-
fications (e.g., H3K27ac), is similar between the eukaryotic species
assayed (Supplemental Fig. S6A). The levels of H3K27ac found
upstream of the TSSs are indicative of the levels of bidirectional
transcription in each organism. Across evolutionarily distant eu-

karyotes, promoter-distal regions with unstable transcripts shared
common features with mammalian enhancers, whereas unstable
transcripts near promoters resembled promoter upstream tran-
scripts (PROMPTs) (Preker et al. 2008). Clear evidence of (promot-
er-distal) enhancer transcription was observed in cnidarians,
suggesting the mechanisms giving rise to eRNAs evolved before
the split of the Bilateria, although similar loci with unstable TSSs
identified inNeurospora and rice hint that eRNAsmayhave evolved
much earlier. Asmore complexmetazoan body plans emerged, the
relative percentage and diversity of unstable transcripts increased.
It is tempting to speculate that this increase in TSS diversitymay be
owing to a potentially higher demand for regulatory diversity as
more and more cell types emerged.

Throughout the eukaryotic kingdoms, H3K27ac is associated
with all active TSSs, whereas H3K4me3 is largely confined to the
promoters of stable transcripts. Acetylation and methylation are
prevalent and dynamic posttranslational modifications of tran-
scription factors and RNA polymerases common to all three do-
mains of life (Gu and Roeder 1997; Yu et al. 2008; Schröder et al.
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B C D

Figure 6. csRNA-seq accurately profiles TSSs across eukaryotes. Capturing stable and unstable transcripts across eukaryotes by csRNA-seq reveals a grad-
ual increase in unstable transcripts as more complex body plans evolved and conserved roles for the histone modifications H3K4me3 and H3K27ac.
Example loci from diverse eukaryotes from across the kingdoms (A) Nematostella (metazoa), (B) Neurospora (fugi), (C) rice (plants), and (D) Capsaspora
(protist). (E) Comparison of where TSSs defined by csRNA-seq are relative to genome annotations. (F) Species dendrogram with approximate divergence
time and diagram of the percentage of stable versus unstable and unidirectional versus bidirectional transcripts. (G) csRNA-seq reads centered on the
Nematostella enhancer regions defined by Schwaiger et al. (2014). (H) Scatterplot of H3K4me3 versus H3K27ac levels for stable and unstable transcripts
from human K562 cells. (I) Boxplot with the log2 ratio of H3K27ac/H3K4me3 for the TSSs of stable and unstable transcripts.
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2013). Given the ancestral role of these posttranscriptional modi-
fications in modulating transcription initiation and their con-
served relationship with transcript stability observed in this
study, these histonemodifications (and other epigeneticmodifica-
tions) may have first evolved as a byproduct of transcription regu-
lation. Supporting this notion, histone modifications occur in the
direction of transcription, and H3K4me3 is specifically associated
with productive elongation and maturation of stable RNA prod-
ucts (Sims et al. 2007), whereas H3K27ac precedes this step
(Kaikkonen et al. 2013).

In summary, csRNA-seq is a simple, versatile, and highly sen-
sitive method to profile transcription initiation and regulation
fromRNA alone. By yielding single-nucleotide resolution TSS loca-
tion data, csRNA-seq represents an alternative to H3K27ac ChIP-
seq or methods that profile open chromatin to identify active
regulatory elements and could empower the annotation of
GWAS risk variants with regulatory functions in different tissues.

Methods

Capped small RNA-seq

A comprehensive description of the method and analysis software
can be found in the Supplemental Methods as well as at http://
homer.ucsd.edu/homer/ngs/csRNAseq/. Small RNAs of ∼20–60
nt were size-selected from 2–15 µg of total RNA by denaturing
gel electrophoresis (Supplemental Fig. S7). A 10% input sample
was taken aside and the remainder enriched for 5′-capped RNAs
with 3′-OH.Monophosphorylated RNAs were selectively degraded
by Terminator 5′-phosphate-dependent exonuclease (Lucigen).
Subsequent 5′ dephosporylation byCIP (NEB) followed by decapp-
ing with RppH (NEB) augments Cap-specific 5′ adapter ligation by
T4 RNA ligase 1 (NEB). The 3′ adapter was ligated using truncated
T4 RNA ligase 2 (NEB) without prior 3′ repair to select against de-
graded RNA fragments. Following cDNA synthesis, libraries were
amplified for 11–14 cycles and sequenced SE75 on the Illumina
NextSeq 500.

Sequencing reads were trimmed for 3′ adapter sequences
(AGATCGGAAGAGCACACGTCT) using HOMER (“homerTools
trim”) and aligned using HISAT2 (Kim et al. 2015) with default
parameters. For mapping stats and statistics, please see Supple-
mental Table S1. TSS clusters were defined using HOMER’s
findcsRNATSS.pl tool that automates the following analysis steps
to produce an annotated list of likely TSSs: (1) Peaks of strand-spe-
cific csRNA-seq reads found within 150 bp with a minimum read-
depth of seven reads per 107 aligned reads and greater than twofold
reads per base pair than the surrounding 10 kb were considered for
further analysis. This step eliminates loci with minimal numbers
of supporting reads or regions with high levels of diffuse signal.
(2) Short RNA input libraries (and/or total RNA-seq) were integrat-
ed and the appropriate enrichment thresholds for csRNA-seq reads
over input or total RNA-seq libraries calculated. The optimal
threshold is defined as the ratio that generates the largest differ-
ence in cumulative distributions of putative TSS regions in anno-
tated TSS regions (i.e., true positives) relative to putative TSSs
identified in downstream exons (i.e., likely false positives). This
semisupervised threshold detection approach is most needed
when RNA quality is low. By using this approach, we were able
to successfully call TSSs from libraries generated from RNA with
RIN numbers as low as two.

To estimate the likely stability of transcripts initiating from
each TSS, total RNA-seq reads (sense strand) are quantified from
[−100,+500] relative to the TSS. “Stable TSSs” were defined as TSS
clusters containing at least two per 107 RNA-seq reads within

this region. Bidirectional or divergent transcription for a given
TSS cluster was calculated by quantifying csRNA-seq signal on
the opposite strand [−500,+100] relative to the TSS. Regions with
at least two csRNA-seq reads per 107 were called as “bidirectional”
TSSs. TSS clusters were further annotated based on their overlaps
with annotated gene regions (i.e., exons, introns, etc.), and the
closest annotated gene promoters were also identified to assess
their distal annotation (promoter-distal TSSs defined as >500 bp
from annotated gene TSSs). TSSs from alternative transcription ini-
tiation methods were analyzed using the same pipeline as de-
scribed for csRNA-seq to ensure a fair comparison among assay
types. Modifications were made to adapter trimming as needed
per data set to remove the correct 3′ adapter, and for assays that
use paired end sequencing, only the read encoding the 5′ initiation
site was used in downstream analysis.

Total RNA-seq

Strand-specific total RNA-seq libraries from ribosomal RNA–de-
pleted RNA were prepared using the TruSeq kit stranded total
RNA library kit (Illumina) and sequenced PE100 on Illumina
HiSeq 2500.

RNA isolation and samples

N. vectensis (planula stage) was kindly provided by Drs. James
Gahan and Fabian Rentzsch (University of Bergen) and shipped
on dry ice but arrived defrosted. N. crassa was provided by Dr.
Jason Stajich (University of California [UC], Riverside) and grown
in Vogels media under constant light and gentle agitation (Wang
et al. 2015). Rice was grown in the SALK greenhouse with 12-h
light and leaves from adult plants provided by Dr. Joanne Chory
(Salk Institute for Biological Studies). All samples were flash frozen
in liquid N2, pulverized with amortar and pestle, and RNA extract-
ed using TRIzol LS as described by the manufacturer. C. owczarzaki
RNA (Sebé-Pedrós et al. 2016) was gifted by Dr. Iñaki Ruiz-Trillo
(Institut de Biologia Evolutiva; CSIC-Universitat Pompeu Fabra).
Human H9 cell RNA was provided by Yuanyuan Li and Mark
H. Tuszynski (UC SanDiego). H9 cells were grown as previously de-
scribed (Lu et al. 2017) and RNA isolated using a Qiagen RNA kit.
K562 cells from Dr. Xiang-Dong Fu (UC San Diego) were grown
in RPMI 1640+L-Glutamine with heat inactivated 10% FBS
(Biowest S1620, lot 61N16) and 1×Pen/Strep (Gibco 15140-163)
and 1×L-Glutamine (Gibco 25030-164) in T75 flasks at 37°C
with 5% CO2. HCT116 CMV-osTIR1 RAD21-mAC cells were ob-
tained from Masato T. Kanemaki (Natsume et al. 2016) and cul-
tured in McCoy’s 5A medium supplemented with 10% FBS. Cells
were washed twice in 1× cold PBS (Gibco 10010023) and RNA iso-
lated using TRIzol LS. Murine BMDMs were isolated, cultured, and
RNA extracted as previously described (Link et al. 2018).

Integrated NGS data analysis

General NGS analysis was performed using HOMER (Heinz
et al. 2010) unless stated otherwise. A complete list of used and
generated data are listed in Supplemental Table S2. ChIP-seq,
DNase-seq, and ATAC-seq data were aligned using HISAT2 (Kim
et al. 2015) with default parameters to the appropriate genome
(human: GRCh38/hg38; mouse: GRCm38/mm10; Nematostella:
ASM20922v1; Neurospora: NC12; rice: IRGSP-1.0, Capsaspora:
C_owczarzaki_V2). Gene and promoter annotations were based
on the accompanying Ensembl GTF file.

Peaks were called using HOMER’s findPeaks.pl in either “his-
tone” (histone modifications, default parameters) or “factor”
(DNase/ATAC-seq, parameters “-fragLength 50 -size 75 -minDist
75 -F 2 -L 1”) mode to identify broad or focal peaks, respectively,
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using ChIP input experiments as a control for both types of anal-
ysis. Identification of overlapping or specific peaks/TSS, as well
as overlaps between TSS and genome annotations or
ChromHMM annotations, were calculated using HOMER’s
mergePeaks command. Overlapping TSS clusters were defined by
TSS clusters located within 150 bp on the same strand.
Differentially regulated TSS/peaks were calculated by first merging
features from each condition (or assay) into the union of nonre-
dundant features usingmergePeaks. Then raw read counts associat-
ed with each feature across all experiments was quantified with
annotatePeaks.pl and significantly differentially enriched TSS/
peaks (greater than twofold, <5% FDR) determined by DESeq2
(Love et al. 2014). Normalized histograms, heatmaps, and read
count totals at TSS clusters or ChIP-seq peaks were calculated using
HOMER’s annotatePeaks.pl and reported relative to a total of 107

uniquely aligned reads per experiment. Gene metaplots were
created using HOMER’s makeMetaGeneProfile.pl. Strand-specific
transcriptomics data were reported relative to the 5′ end of se-
quencing reads, whereas ChIP-seq and DNase-seq were reported
+75 and +35 nt relative to the 5′ end of the sequencing reads
approximating the nucleosome dyad or middle of the DNase frag-
ment, respectively.Quantification of histonemodifications associ-
ated with each TSS was performed from 0 to +600 to capture the
signal located just downstream from the TSS. When reporting
log2 ratios between read counts a pseudocount of one read per
107 aligned readswas added to both the numerator and denomina-
tor to avoid divide by zero errors and buffer low intensity signal.
Plotting was performed using Excel and R (R Core Team
2018). DNA nucleotide frequencies relative to TSS were generated
using HOMER’s annotatePeaks.pl.

Known motif enrichment and de novo motif discovery were
performed using HOMER’s findMotifsGenome.pl using default pa-
rameters. When analyzing csRNA-seq TSS, motifs were searched
from −150 to +50 relative to the primary TSS of a TSS cluster.
DNase/ATAC-seq peaks and H3K27ac peaks were analyzed from
−100 to +100 and −500 to +500 relative to the center of the peaks,
respectively, reflecting the locations where most TF motifs are lo-
cated relative to each feature. Motif enrichment heatmaps were
generated by combining known motif enrichments across experi-
ments and then clustering the logP enrichment values by correla-
tion coefficient (Cluster 3.0) (de Hoon et al. 2004) and visualizing
the resulting heatmap using Java TreeView (Saldanha 2004).

Data access

All sequencing data generated in this study have been submitted to
the NCBI Gene ExpressionOmnibus (GEO; https://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE135498. The updated
HOMER software is available at http://homer.ucsd.edu/ and as
Supplemental Code.

Acknowledgments

This work would not have been possible without the generous
donation of N. vectensis by Drs. James Gahan and Fabian
Rentzsch (University of Bergen), N. crassa by Dr. Jason Stajich
(University of California, Riverside), rice tissue by Dr. Joanne
Chory (Salk Institute for Biological Studies), C. owczarzaki RNA
by Dr. Iñaki Ruiz-Trillo (Institut de Biologia Evolutiva; CSIC-
Universitat Pompeu Fabra), K562 cells by Dr. Xiang-Dong Fu, H9
RNA fromYuanyuan Li andMarkH. Tuszynski, and RNA frommu-
rine C57 BMDMs by Christopher K. Glass (all University of
California, San Diego). We thank Jia Fei, Gregory Fonseca,
Michael Lam, Joanna Kelly, Fabian Rentzsch, and members of

the Svenner laboratory for critical reading of the manuscript.
This work was partially supported by National Institutes of
Health grants U19AI106754 and U19AI135972.

Author contributions: S.H.D., S.H., andC.B. designed the study.
S.H.D. performed all of the experiments. S.H.D., M.W.C., and C.B.
performed the data analysis. S.H.D. andC.B.wrote themanuscript.
All authors edited and approved the final manuscript.

References

Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome
Project. 2009. Post-transcriptional processing generates a diversity of
5′-modified long and short RNAs. Nature 457: 1028–1032. doi:10
.1038/nature07759

Azofeifa JG, Dowell RD. 2017. A generative model for the behavior of RNA
polymerase. Bioinformatics 33: 227–234. doi:10.1093/bioinformatics/
btw599

Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. 2018.
Enhancer RNA profiling predicts transcription factor activity. Genome
Res 28: 334–344. doi:10.1101/gr.225755.117

Berretta J, Morillon A. 2009. Pervasive transcription constitutes a new level
of eukaryotic genome regulation. EMBO Rep 10: 973–982. doi:10.1038/
embor.2009.181

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013.
Transposition of native chromatin for fast and sensitive epigenomic
profiling of open chromatin, DNA-binding proteins and nucleosome
position. Nat Methods 10: 1213–1218. doi:10.1038/nmeth.2688

Cheng J-H, Pan DZ-C, Tsai ZT-Y, Tsai H-K. 2015. Genome-wide analysis of
enhancer RNA in gene regulation across 12 mouse tissues. Sci Rep 5:
12648. doi:10.1038/srep12648

Chu T, Rice EJ, Booth GT, Salamanca HH, Wang Z, Core LJ, Longo SL,
Corona RJ, Chin LS, Lis JT, et al. 2018. Chromatin run-on and sequenc-
ing maps the transcriptional regulatory landscape of glioblastoma mul-
tiforme. Nat Genet 50: 1553–1564. doi:10.1038/s41588-018-0244-3

Churchman LS, Weissman JS. 2011. Nascent transcript sequencing visual-
izes transcription at nucleotide resolution. Nature 469: 368–373.
doi:10.1038/nature09652

Core LJ, Waterfall JJ, Lis JT. 2008. Nascent RNA sequencing reveals wide-
spread pausing and divergent initiation at human promoters. Science
322: 1845–1848. doi:10.1126/science.1162228

Core LJ,Martins AL, DankoCG,Waters CT, Siepel A, Lis JT. 2014. Analysis of
nascent RNA identifies a unified architecture of initiation regions at
mammalian promoters and enhancers. Nat Genet 46: 1311–1320.
doi:10.1038/ng.3142

Danko CG, Hyland SL, Core LJ, Martins AL, Waters CT, Lee HW, Cheung
VG, Kraus WL, Lis JT, Siepel A. 2015. Identification of active transcrip-
tional regulatory elements from GRO-seq data. Nat Methods 12: 433–
438. doi:10.1038/nmeth.3329

Davidson L, Francis L, Cordiner RA, Eaton JD, Estell C, Macias S, Cáceres JF,
West S. 2019. Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the
immediate impact of exoribonucleolysis on nuclear RNA metabolism
and transcriptional control. Cell Rep 26: 2779–2791.e5. doi:10.1016/j
.celrep.2019.02.012

de Hoon MJL, Imoto S, Nolan J, Miyano S. 2004. Open source clustering
software. Bioinformatics 20: 1453–1454. doi:10.1093/bioinformatics/
bth078

De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, Muller H,
Ragoussis J, Wei C-L, Natoli G. 2010. A large fraction of extragenic
RNA Pol II transcription sites overlap enhancers. PLoS Biol 8:
e1000384. doi:10.1371/journal.pbio.1000384

Duffy EE, Rutenberg-Schoenberg M, Stark CD, Kitchen RR, Gerstein MB,
Simon MD. 2015. Tracking distinct RNA populations using efficient
and reversible covalent chemistry. Mol Cell 59: 858–866. doi:10.1016/
j.molcel.2015.07.023

Duttke SHC, Lacadie SA, Ibrahim MM, Glass CK, Corcoran DL, Benner
C, Heinz S, Kadonaga JT, Ohler U. 2015. Human promoters are intrinsi-
cally directional. Mol Cell 57: 674–684. doi:10.1016/j.molcel.2014.12
.029

The ENCODE Project Consortium. 2012. An integrated encyclopedia of
DNA elements in the human genome. Nature 489: 57–74. doi:10
.1038/nature11247

Ernst J, Kellis M. 2012. ChromHMM: automating chromatin-state discovery
and characterization. Nat Methods 9: 215–216. doi:10.1038/nmeth
.1906

Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB,
Abbruzzese JL, Chiao PJ. 2004. NF-κB and AP-1 connection: mechanism
of NF-κB-dependent regulation of AP-1 activity.Mol Cell Biol 24: 7806–
7819. doi:10.1128/MCB.24.17.7806-7819.2004

Duttke et al.

1844 Genome Research
www.genome.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://homer.ucsd.edu/
http://homer.ucsd.edu/
http://homer.ucsd.edu/
http://homer.ucsd.edu/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253492.119/-/DC1


Grosberg RK, Strathmann RR. 2007. The evolution of multicellularity: a mi-
nor major transition? Annu Rev Ecol Evol Syst 38: 621–654. doi:10.1146/
annurev.ecolsys.36.102403.114735

Gu W, Roeder RG. 1997. Activation of p53 sequence-specific DNA binding
by acetylation of the p53 C-terminal domain. Cell 90: 595–606. doi:10
.1016/S0092-8674(00)80521-8

GuW, Lee H-C, Chaves D, Youngman EM, Pazour GJ, Conte D Jr, Mello CC.
2012. CapSeq and CIP-TAP identify Pol II start sites and reveal capped
small RNAs as C. elegans piRNA precursors. Cell 151: 1488–1500.
doi:10.1016/j.cell.2012.11.023

Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. 2013. Enhancer tran-
scripts mark active estrogen receptor binding sites. Genome Res 23:
1210–1223. doi:10.1101/gr.152306.112

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera
LO, Van Calcar S, Qu C, Ching KA, et al. 2007. Distinct and predictive
chromatin signatures of transcriptional promoters and enhancers in
the human genome. Nat Genet 39: 311–318. doi:10.1038/ng1966

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre
C, Singh H, Glass CK. 2010. Simple combinations of lineage-determin-
ing transcription factors prime cis-regulatory elements required formac-
rophage and B cell identities. Mol Cell 38: 576–589. doi:10.1016/j
.molcel.2010.05.004

Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N,
Rialdi A, White KM, Albrecht RA, Pache L, et al. 2018. Transcription
elongation can affect genome 3D structure. Cell 174: 1522–1536.e22.
doi:10.1016/j.cell.2018.07.047

Hetzel J, Duttke SH, Benner C, Chory J. 2016. Nascent RNA sequencing re-
veals distinct features in plant transcription. Proc Natl Acad Sci 113:
12316–12321. doi:10.1073/pnas.1603217113

Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD,
Chun HB, Tough DF, Prinjha RK, Benner C, et al. 2013. Remodeling of
the enhancer landscape duringmacrophage activation is coupled to en-
hancer transcription. Mol Cell 51: 310–325. doi:10.1016/j.molcel.2013
.07.010

Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst
J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, et al. 2011. Comprehensive
analysis of the chromatin landscape in Drosophila melanogaster. Nature
471: 480–485. doi:10.1038/nature09725

Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA,
Laptewicz M, Barbara-Haley K, Kuersten S, et al. 2010. Widespread tran-
scription at neuronal activity-regulated enhancers. Nature 465: 182–
187. doi:10.1038/nature09033

KimD, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low
memory requirements. Nat Methods 12: 357–360. doi:10.1038/nmeth
.3317

Kruesi WS, Core LJ, Waters CT, Lis JT, Meyer BJ. 2013. Condensin controls
recruitment of RNA polymerase II to achieve nematode X-chromosome
dosage compensation. eLife 2: e00808. doi:10.7554/eLife.00808

Kwak H, Fuda NJ, Core LJ, Lis JT. 2013. Precise maps of RNA polymerase re-
veal how promoters direct initiation and pausing. Science 339: 950–953.
doi:10.1126/science.1229386

LamMTY, ChoH, LeschHP,Gosselin D, Heinz S, Tanaka-Oishi Y, Benner C,
Kaikkonen MU, Kim AS, Kosaka M, et al. 2013. Rev-Erbs repress macro-
phage gene expression by inhibiting enhancer-directed transcription.
Nature 498: 511–515. doi:10.1038/nature12209

Lee Y, Jeon K, Lee J-T, Kim S, KimVN. 2002.MicroRNAmaturation: stepwise
processing and subcellular localization. EMBO J 21: 4663–4670. doi:10
.1093/emboj/cdf476

Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe
Y, Skola D, Romanoski CE, Tao J, et al. 2018. Analysis of genetically
diverse macrophages reveals local and domain-wide mechanisms that
control transcription factor binding and function. Cell 173: 1796–
1809. e17. doi:10.1016/j.cell.2018.04.018

Lister R, PelizzolaM,DowenRH,Hawkins RD,HonG, Tonti-Filippini J, Nery
JR, Lee L, Ye Z, Ngo Q-M, et al. 2009. Human DNA methylomes at base
resolution show widespread epigenomic differences. Nature 462: 315–
322. doi:10.1038/nature08514

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550.
doi:10.1186/s13059-014-0550-8

Lu P, Ceto S, Wang Y, Graham L, Wu D, Kumamaru H, Staufenberg E,
Tuszynski MH. 2017. Prolonged human neural stem cell maturation
supports recovery in injured rodent CNS. J Clin Invest 127: 3287–
3299. doi:10.1172/JCI92955

Marchese FP, Raimondi I, Huarte M. 2017. The multidimensional mecha-
nisms of long noncoding RNA function. Genome Biol 18: 206. doi:10
.1186/s13059-017-1348-2

Maruyama K, Sugano S. 1994. Oligo-capping: a simple method to replace
the cap structure of eukaryotic mRNAs with oligoribonucleotides.
Gene 138: 171–174. doi:10.1016/0378-1119(94)90802-8

MastonGA, Evans SK, GreenMR. 2006. Transcriptional regulatory elements
in the human genome. Annu Rev Genomics Hum Genet 7: 29–59. doi:10
.1146/annurev.genom.7.080505.115623

Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR,
Furlong EEM. 2018. The degree of enhancer or promoter activity is re-
flected by the levels and directionality of eRNA transcription. Genes
Dev 32: 42–57. doi:10.1101/gad.308619.117

Natarajan A, Yardimci GG, Sheffield NC, Crawford GE, Ohler U. 2012.
Predicting cell-type–specific gene expression from regions of open chro-
matin. Genome Res 22: 1711–1722. doi:10.1101/gr.135129.111

Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. 2016. Rapid protein deple-
tion in human cells by auxin-inducible degron tagging with short ho-
mology donors.Cell Rep 15: 210–218. doi:10.1016/j.celrep.2016.03.001

Nechaev S, Fargo DC, dos Santos G, Liu L, Gao Y, Adelman K. 2010. Global
analysis of short RNAs reveals widespread promoter-proximal stalling
and arrest of Pol II in Drosophila. Science 327: 335–338. doi:10.1126/sci
ence.1181421

Neil H, Malabat C, d’Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A.
2009. Widespread bidirectional promoters are the major source of cryp-
tic transcripts in yeast. Nature 457: 1038–1042. doi:10.1038/
nature07747

Parfrey LW, Lahr DJG, Knoll AH, Katz LA. 2011. Estimating the timing of
early eukaryotic diversification with multigene molecular clocks. Proc
Natl Acad Sci 108: 13624–13629. doi:10.1073/pnas.1110633108

Poletti V, Delli Carri A, Malagoli Tagliazucchi G, Faedo A, Petiti L, Mazza
EMC, Peano C, De Bellis G, Bicciato S, Miccio A, et al. 2015. Genome-
wide definition of promoter and enhancer usage during neural induc-
tion of human embryonic stem cells. PLoS One 10: e0126590. doi:10
.1371/journal.pone.0126590

Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS,
Mapendano CK, Schierup MH, Jensen TH. 2008. RNA exosome deple-
tion reveals transcription upstream of active human promoters.
Science 322: 1851–1854. doi:10.1126/science.1164096

R Core Team. 2018. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

Raetz CRH,Garrett TA,Michael ReynoldsC, ShawWA,Moore JD, SmithDC,
Ribeiro AA, Murphy RC, Ulevitch RJ, Fearns C, et al. 2006. Kdo2-Lipid A
of Escherichia coli, a defined endotoxin that activates macrophages via
TLR-4. J Lipid Res 47: 1097–1111. doi:10.1194/jlr.M600027-JLR200

Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon
K-R, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, et al. 2017.
Cohesin loss eliminates all loop domains. Cell 171: 305–320.e24.
doi:10.1016/j.cell.2017.09.026

Saldanha AJ. 2004. Java Treeview: extensible visualization of microarray
data. Bioinformatics 20: 3246–3248. doi:10.1093/bioinformatics/
bth349

Salic A, Mitchison TJ. 2008. A chemical method for fast and sensitive detec-
tion of DNA synthesis in vivo. Proc Natl Acad Sci 105: 2415–2420. doi:10
.1073/pnas.0712168105

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre
NCT, Schreiber SL, Mellor J, Kouzarides T. 2002. Active genes are tri-
methylated at K4 of histone H3. Nature 419: 407–411. doi:10.1038/
nature01080

Schröder S, Herker E, Itzen F, HeD, Thomas S, Gilchrist DA, Kaehlcke K, Cho
S, Pollard KS, Capra JA, et al. 2013. Acetylation of RNA polymerase II reg-
ulates growth-factor-induced gene transcription in mammalian cells.
Mol Cell 52: 314–324. doi:10.1016/j.molcel.2013.10.009

Schwaiger M, Schönauer A, Rendeiro AF, Pribitzer C, Schauer A, Gilles AF,
Schinko JB, Renfer E, Fredman D, Technau U. 2014. Evolutionary con-
servation of the eumetazoan gene regulatory landscape. Genome Res
24: 639–650. doi:10.1101/gr.162529.113

Schwalb B, Michel M, Zacher B, Frühauf K, Demel C, Tresch A, Gagneur J,
Cramer P. 2016. TT-seq maps the human transient transcriptome.
Science 352: 1225–1228. doi:10.1126/science.aad9841

Scruggs BS, Gilchrist DA, Nechaev S, Muse GW, Burkholder A, Fargo DC,
Adelman K. 2015. Bidirectional transcription arises from two distinct
hubs of transcription factor binding and active chromatin. Mol Cell
58: 1101–1112. doi:10.1016/j.molcel.2015.04.006

Sebé-Pedrós A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ, Sabidó E, Gómez-
Skarmeta JL, Di Croce L, Ruiz-Trillo I. 2016. The dynamic regulatory ge-
nome of Capsaspora and the origin of animal multicellularity. Cell 165:
1224–1237. doi:10.1016/j.cell.2016.03.034

Seila AC, Mauro Calabrese J, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young
RA, Sharp PA. 2008. Divergent transcription from active promoters.
Science 322: 1849–1851.doi:10.1126/science.1162253

Shimizu R, Engel JD, Yamamoto M. 2008. GATA1-related leukaemias. Nat
Rev Cancer 8: 279–287. doi:10.1038/nrc2348

Shiraki T, Kondo S, Katayama S, Waki K, Kasukawa T, Kawaji H, Kodzius R,
Watahiki A, Nakamura M, Arakawa T, et al. 2003. Cap analysis gene ex-
pression for high-throughput analysis of transcriptional starting point

csRNAseq captures regulatory elements from RNA

Genome Research 1845
www.genome.org

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/


and identification of promoter usage. Proc Natl Acad Sci 100: 15776–
15781. doi:10.1073/pnas.2136655100

Shuman S. 2001. Structure, mechanism, and evolution of the mRNA cap-
ping apparatus. Prog Nucleic Acid Res Mol Biol 66: 1–40.

Sims RJ 3rd, Millhouse S, Chen C-F, Lewis BA, Erdjument-Bromage H,
Tempst P, Manley JL, Reinberg D. 2007. Recognition of trimethylated
histone H3 lysine 4 facilitates the recruitment of transcription postini-
tiation factors and pre-mRNA splicing. Mol Cell 28: 665–676. doi:10
.1016/j.molcel.2007.11.010

Smale ST, Baltimore D. 1989. The “initiator” as a transcription control ele-
ment. Cell 57: 103–113. doi:10.1016/0092-8674(89)90176-1

Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata-
Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG, et al. 2014.
Regulation of RNA polymerase II activation by histone acetylation in
single living cells. Nature 516: 272–275. doi:10.1038/nature13714
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