
UCLA
UCLA Electronic Theses and Dissertations

Title
Approximation and Search Optimization on Massive Data Bases and Data Streams

Permalink
https://escholarship.org/uc/item/4pv2n0vs

Author
ZENG, KAI

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4pv2n0vs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Approximation and Search Optimization on Massive
Data Bases and Data Streams

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Kai Zeng

2014

c© Copyright by

Kai Zeng

2014

The dissertation of Kai Zeng is approved.

Junghoo Cho

Tyson Condie

Yingnian Wu

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2014

ii

To my parents and my wife . . .

for their unconditional love

iii

TABLE OF CONTENTS

1 Introduction . 1

1.1 Search Challenges . 1

1.2 Analytics Challenges . 5

1.3 Overview and Contributions . 7

1.3.1 K*SQL and XSeq: Expressive and Efficient CEP Languages . 7

1.3.2 Trinity.RDF: Web Scale Graph Engine 7

1.3.3 EARL and ABM: Bootstrap-Based Approximation Techniques

for Interactive Data Analytics 8

I SEARCH OPTIMIZATION 12

2 Background: Nested Words and Visibly Pushdown Automata 13

2.1 Nested Words . 13

2.2 Visibly Pushdown Automata . 15

2.3 Difference between Nested Words and VPAs 17

3 KSQL: Unifying Languages and Query Execution for Relational and XML

Sequences . 18

3.1 K*SQL By Examples . 20

3.1.1 Nested Kstars . 23

3.1.2 Linear-Hierarchical Data . 26

3.2 Expressive Power . 32

iv

3.2.1 K*SQL vs. XPath . 32

3.2.2 K*SQL vs. Other Sequence Languages 33

3.2.3 Monadic Second Order Logic 35

3.3 Optimization . 36

3.3.1 Compile-time Optimization 36

3.3.2 Optimization for Nested Constructs 38

3.4 Experiments . 40

3.4.1 XML queries in K*SQL . 41

3.4.2 Query Execution Time . 42

3.4.3 Number of Backtracks . 43

3.5 Related Work . 43

3.6 Summary of K*SQL . 44

3.7 K*SQL Syntax and Expressive Power 45

3.7.1 K*SQL Syntax . 45

3.7.2 K*SQL for Other Domains 46

3.7.3 Proof of Theorem 1 (Algorithm) 47

3.7.4 XPath for Sequence Queries 52

3.7.5 From VPE to K*SQL . 53

3.7.6 Aggregates and Complexity 57

4 XSeq: High-Performance Complex Event Processing over Hierarchical

Data . 58

4.1 XSeq Query Language . 63

v

4.2 Advanced Queries from Complex Event Processing 72

4.2.1 Stock Analysis . 72

4.2.2 Social Networks . 74

4.2.3 Inventory Management . 75

4.2.4 Directory Search . 76

4.2.5 Genetics . 77

4.2.6 Protein, RNA and DNA Databases 78

4.2.7 Temporal Queries . 79

4.2.8 Software Trace Analysis . 81

4.3 XSeq Optimization . 82

4.3.1 Efficient Query Plans via VPA 83

4.3.2 Static VPA Optimization . 88

4.3.3 Run-time VPA Optimization 90

4.4 Formal Semantics of XSeq . 91

4.5 Expressiveness and Complexity . 96

4.5.1 CXSeq . 97

4.5.2 Regularity of CXSeq and Complexity 101

4.5.3 Query Evaluation Complexity 101

4.6 Experiments . 102

4.6.1 Effectiveness of Different Optimizations 103

4.6.2 Sequence Queries vs. XPath Engines 105

4.6.3 Conventional Queries vs. XPath Engines 107

4.6.4 Throughput for Different Types of Queries 109

vi

4.7 Previous Work . 111

4.8 Summary of XSeq . 113

4.9 Core XSeq Proof of Regularity . 113

4.9.1 Core XSeq with Variable Concatenation 114

4.9.2 Core XSeq Basic . 119

5 Trinity.RDF: A Distributed Graph Engine for Web Scale Graphs 124

5.1 Join vs. Graph Exploration . 128

5.1.1 RDF and SPARQL . 128

5.1.2 Using Join Operations . 129

5.1.3 Using Graph Explorations 130

5.2 System Architecture . 132

5.3 Data Modeling . 134

5.3.1 Modeling Graphs . 134

5.3.2 Graph Partitioning . 135

5.3.3 Indexing Predicates . 137

5.3.4 Basic Graph Operators . 138

5.4 Query Processing . 139

5.4.1 Overview . 139

5.4.2 Single Triple Pattern Matching 140

5.4.3 Multiple Pattern Matching by Exploration 143

5.4.4 Final Join after Exploration 145

5.4.5 Exploration Plan Optimization 146

vii

5.4.6 Cost Estimation . 151

5.5 Experiments . 153

5.6 Related Work . 163

5.7 Summary of Trinity.RDF . 165

II APPROXIMATION OPTIMIZATION 166

6 EARL: Early Accurate Results for Advanced Analytics on MapReduce 167

6.1 Architecture . 170

6.1.1 Extending MapReduce . 171

6.2 Estimating Accuracy . 175

6.2.1 Accuracy Estimation Stage 176

6.2.2 Sample Size and Number of Bootstraps 177

6.2.3 Sampling . 179

6.2.4 Fault Tolerance . 183

6.3 Optimizations . 184

6.3.1 Inter-Iteration Optimization 184

6.3.2 Intra-Iteration Optimization 187

6.4 Current Implementation . 188

6.5 Experiments . 191

6.5.1 A Strong Case for EARL . 191

6.5.2 Approximate Median Computation 192

6.5.3 EARL and Advanced Mining Algorithms 193

viii

6.5.4 Sample Size and Number of Bootstraps 193

6.5.5 Pre-map and Post-map Sampling 194

6.5.6 Update Overhead . 195

6.6 Related Work . 196

6.7 Summary of EARL . 198

7 The Analytical Bootstrap: a New Method for Fast Error Estimation in

Approximate Query Processing . 200

7.1 Problem Statement . 203

7.1.1 An Example of Bootstrap . 205

7.1.2 Scope of Our Approach . 207

7.2 Background . 209

7.2.1 Semirings and Relational Operators 209

7.2.2 Semiring Random Variables 212

7.3 Semantics & Query Evaluation . 213

7.3.1 Formal Semantics . 214

7.3.2 Intensional Query Evaluation 215

7.4 Extensional Query Evaluation . 219

7.4.1 The Multinomial Representation 219

7.4.2 Queries without Aggregates 220

7.4.3 Queries with Aggregates . 226

7.4.4 Correctness and Complexity 228

7.5 Efficient Approximation . 228

ix

7.6 Extensions of ABM . 231

7.7 Experiments . 232

7.7.1 Experiment Setup . 232

7.7.2 Error Quantification Accuracy 233

7.7.3 Error Quantification Performance 238

7.7.4 Using Stratified Samples . 240

7.8 The ABS System . 241

7.9 Related Work . 242

7.10 Summary of ABM . 244

7.11 Correctness of Intensional & Extensional Evaluation 245

7.11.1 Background . 245

7.11.2 Semantics & Query Evaluation 246

7.11.3 Extensional Query Evaluation 247

7.12 Constructing Distributions for General Queries without Aggregates . . 250

8 Conclusion and Future Work . 251

References . 253

x

LIST OF FIGURES

2.1 Tiny examples of nested words in different domains: XML and ge-

nomics. 15

3.1 A double-bottom or W-shape stock pattern. 29

3.2 Sample XML document for ancestry information. 29

3.3 KMP versus VPSearch for pattern matching against visibly pushdown

words. 40

3.4 (a) XML queries in K*SQL vs. native XML engines. (b) W-shape

pattern in K*SQL: optimized vs. straightforward implementation. (c)

Contribution of different parts of the K*SQL optimization on the over-

all performance. 42

3.5 Formal syntax for K*SQL. The starting rule for K*SQL is 〈sequence query spec〉,

which extends the 〈simple table〉 construct of SQL:2003. 46

3.6 Syntax of Core XPath 1.0 combined with 2.0. 48

4.1 A query in XPath 2.0/XQuery for a sequence of ‘falling price’ in Nas-

daq’s XML. 60

4.2 XSeq Syntax (QName, Variable, BoolExpr, Constant, and Arithmetic-

Expr are defined in the text). 64

4.3 (a) The β-meander motif and (b) the falling wedge pattern 78

4.4 VPAs for (a) /son@Bdate and (b) /daughter son. 85

4.5 Visual correspondence of VPA states and XSeq axes. 86

4.6 //book/year/text() . 90

xi

4.7 CXSeq Syntax . 97

4.8 Contribution of different optimization techniques. 104

4.9 XSeq vs. XPath/XQuery engines: (a) ‘V’-pattern query over Nasdaq

stocks, (b) Sequence queries over Nasdaq stocks, (c) Regular XPath

queries over XMark data, and (d) conventional XPath queries from

XMark. 106

4.10 Effect of different types of XSeq queries on total execution time (a)

and memory usage (b). 110

4.11 The effect of different types of queries on (a) Total query execution

time, (b) Throughput in terms of tuple processing, and (c) Throughput

in terms of datasize. 110

4.12 CXSeqA . 114

4.13 CXSeqB . 119

5.1 An example RDF graph . 131

5.2 Distributed query processing framework 134

5.3 An example of model (5.1) . 135

5.4 An example of model (5.2) . 137

5.5 The query graph of Example 31 . 140

5.6 Distribution of the RDF graph in Figure 5.1 142

5.7 Expansion and combination examples 147

5.8 Data scalability . 161

5.9 Machine scalability . 161

6.1 A simplified EARL architecture . 171

xii

6.2 (a) Effect of B on cv, (b) Effect of n on cv 177

6.3 Work saved using our intra iteration optimization vs. sample size . . . 188

6.4 An example of how a user job would work with the EARL framework 189

6.5 (a) Computation of average using EARL and stock Hadoop, (b) Com-

putation of median using EARL and stock Hadoop, (c) Computation

of K-Means using EARL, (d) Empirical sample size and number of

bootstraps estimates vs. a theoretical prediction 192

6.6 (a) Processing times of pre-map and post-map sampling, and (b) Pro-

cessing time with the update procedure 195

7.1 (a) An example of a database sample D with one relation R (named

stock), and (b) a resample instance of Rr 205

7.2 The possible multiset worlds of Dr 206

7.3 (a) The result of q(D1) and q(D2), (b) all possible answers of q, and

(c) their marginal probabilities . 207

7.4 (a) Query plan of Example 32, (b) initial annotation of Rr, (c-d) inten-

sional evaluation steps, and (f) truth table of πq(ta) = 1 218

7.5 Comparing the distributions given by ABM and bootstrap on (a) Quan-

tiles & existence probabilities, (b) KS distance and (c) User-defined

quality measures; (d) Comparing user-defined quality measures given

by ABMand bootstrap to ground truth 234

7.6 (a) ABM vs. bootstrap on user-defined quality measures for Skewed

TPC-H; effect of varying (b) number of bootstrap trails, and (c) sam-

pling rate; comparing time performance of ABM & various techniques

(d) under 10% sampling rate, (e) under different sampling rates 239

xiii

7.7 ABM vs. bootstrap under stratified sampling 240

7.8 ABS Architecture . 241

xiv

LIST OF TABLES

5.1 Base tables and bound variables. 130

5.2 Individual matching result of q1 . 143

5.3 Individual matching result of q2 . 144

5.4 Matching result of q2 after matching q1 144

5.5 Results after incorporating q2 and q3 145

5.6 Statistics of datasets used in experiments 154

5.7 Statistics of queries used in experiments 154

5.8 Query run-time in milliseconds on the LUBM-160 dataset (21 million

triples) . 154

5.9 Query run-time in milliseconds on the DBPSB dataset (15 million triples)155

5.10 Query run-times in milliseconds for the LUBM-10240 dataset (1.36

billion triples) . 157

5.11 Query run-times in seconds for the LUBM-100000 dataset (9.96 bil-

lion triples) . 158

5.12 Query run-times in milliseconds for BTC-10 dataset (3.17 billion triples)

. 159

5.13 The space overhead of MapReduce-RDF-3X compared with the orig-

inal datasets . 160

5.14 The result sizes of LUBM queries 161

6.1 Symbols used . 172

xv

7.1 Classes of SQL queries supported by different techniques, and their

coverage of TPC-H and Conviva queries 210

7.2 Summary of Notations . 214

xvi

ACKNOWLEDGMENTS

Let me start by acknowledging the collaborators with whom I shared in this research:

their names and the subjects of their contributions are listed in the Publication page

that follows this. But moving past those wonderful papers, I would like to revisit the

memories of my life as a graduate student at UCLA. These few lines are an attempt to

reflect the support and love I received from so many over the years.

I thank my parents for their unconditional love. Starting from my undergraduate

study, I have been living away from them for so many years. I am deeply grateful to

my parents, whose selfless love is always with me no matter the distance.

I would like to express my deepest gratitude to my advisor, Professor Carlo Zan-

iolo, for the guidance, mentorship and trust he provided to me, all the way through the

first day I met him when I was an undergraduate, to the completion of this degree. His

insightful mind, optimism, patience and caring have made these five years memorable

and rewarding.

I would also like to give my earnest appreciations to my committee, Professor John

Cho, Professor Tyson Condie, and Professor Yingnian Wu, for their precious time and

suggestions not only on my research, but also on my career and life.

My special thanks go to my beloved wife, Han, who has been a real source of love

and support since the day we first met at Beijing. Her love has made every day in my

life — no matter how tough it is — full of happiness and excitement.

Special acknowledgement must go to Haixun Wang and Barzan Mozafari, who

after my adviser, have the greatest role in mentoring me about research. I really appre-

ciate their generous help on developing my background and skills.

I am also grateful to my friends and fellow students. This list includes but not lim-

ited to Shi Gao, Nikolay Laptev, Alexander Shkapsky, Mohan Yang, Hamid Mousavi,

xvii

Jiacheng Yang, Jiaqi Gu, Hsuan Qiu, Massimo Mazzeo, Bin Shao, Weiguang Si,

Xufeng Kou, Yuting Wang, Yang Yang, Yanbin Fan, Jinchao Li, Yuan Tian, Hao Wu,

Jinwen Wang, Murong Lang, Tingyi Liu, Lingyan Ruan, Wenjia Huang, Tiansheng

Yao, and Dan Xie.

xviii

VITA

2008-2009 RSDE Intern, Microsoft, Beijing, China.

2009 Bachelor of Engineering in Software Engineering, Zhejiang Uni-

versity, Hangzhou, China.

2010–2011 Teaching Assistant, Computer Science Department, UCLA. Taught

sections of ‘CS 111: Operating Systems Principles’ and ‘CS 33:

Introduction to Computer Organization’.

2011 Research Intern, Microsoft Research Asia, Beijing, China.

2013 Research Intern, IBM Almaden Research, California, USA.

2009–2014 Research Assistant, Computer Science Department, UCLA.

xix

PUBLICATIONS

Kai Zeng, Shi Gao, Barzan Mozafari and Carlo Zaniolo. The Analytical Bootstrap: a

New Method for Fast Error Estimation in Approximation Query Processing. In Pro-

ceedings of the ACM SIGMOD Conference, Snowbird, Utah, June 22-27, 2014.

Kai Zeng, Shi Gao, Jiaqi Gu, Barzan Mozafari and Carlo Zaniolo. ABS: the Analytical

Bootstrap System for Fast Error Estimation in Approximate Query Processing. Demo.

In Proceedings of the ACM SIGMOD Conference, Snowbird, Utah, June 22-27, 2014.

Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. Graph Queries in a Next Genera-

tion Datalog System. Demo. In Proceedings of the 39th International Conference on

Very Large Data Bases (VLDB), Rival del Garda, Trendo, August 26-30, 2013.

Barzan Mozafari, Kai Zeng, Loris D’Antoni, and Carlo Zaniolo. High-Performance

Complex Event Processing over Hierarchical Data. In ACM Transactions on Database

Systems (TODS), 38(4):21, 2013.

Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A Dis-

tributed Graph Engine for Web Scale RDF Data. In Proceedings of the 39th Inter-

national Conference on Very Large Data Bases (VLDB), Rival del Garda, Trendo,

August 26-30, 2013.

xx

Kai Zeng, Mohan Yang, Barzan Mozafari, and Carlo Zaniolo. Complex Pattern

Matching in Complex Structures: the XSeq Approach. Demo. In Proceedings of

the 29th International Conference on Data Engineering (ICDE), Brisbane, Australia,

April 8-11, 2013.

Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Very Fast Estimation for Result and

Accuracy of Big Data Analytics: the EARL System. Demo. In Proceedings of the 29th

International Conference on Data Engineering (ICDE), Brisbane, Australia, April 8-

11, 2013.

Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early Accurate Results for Advanced

Analytics on MapReduce. In Proceedings of the 38th International Conference on

Very Large Data Bases (VLDB), Istanbul, Turkey, August 27-31, 2012.

Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. High-Performance Complex Event

Processing over XML Streams. In Proceedings of the ACM SIGMOD Conference,

Scottsdale, Arizona, USA, May 20-24, 2012.

Barzan Mozafari, Kai Zeng and Carlo Zaniolo “From Regular Expressions to Nested

Words: Unifying Languages and Query Execution for Relational and XML Sequences”,

In Proceedings of the 36th International Conference on Very Large Data Bases (VLDB),

Singapore, September 13-17, 2010.

Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. K*SQL: A Unifying Engine for Se-

quence Patterns and XML. Demo. In Proceedings of the ACM SIGMOD Conference,

Indianapolis, Indiana USA, June 6-11, 2010.

xxi

ABSTRACT OF THE DISSERTATION

Approximation and Search Optimization on Massive
Data Bases and Data Streams

by

Kai Zeng
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Carlo Zaniolo, Chair

A fast response is critical in many data-intensive applications, including knowledge

discovery analytics on big data, and queries searching for complex patterns in se-

quences, data streams and graphs. Moreover, the volume of data and the complexity

of the analytical tasks they must support are now growing at such a torrid rate that

the vigorous progress in performance and scalability of computer systems cannot keep

up with it. This situation calls for (i) effective optimization techniques to reduce the

cost of complex pattern queries, and (ii) approximation techniques to produce results

of predictable accuracy using a small subset of the data. In this dissertation we (i)

introduce new query languages and optimization techniques for pattern matching in

sequences, data streams and graphs, and (ii) formulate a general approximation model

for analytics queries. Thus, in this dissertation we have made the following contribu-

tions:

(i) We have designed and demonstrated optimized implementation techniques for K*SQL

and XSeq, which provide a unified framework for complex pattern searching on rela-

tional and XML DBs, respectively. In particular, we introduced efficient execution

exploiting recent advances in automata theory known as Nested Words.

xxii

(ii) We have designed and demonstrated efficient scalable graph search engine based

on novel distributed memory-based system architecture, and exploit graph exploration

operations for implementing an efficient graph search algorithm.

(iii) We have introduced support for bootstrap methods in MapReduce. Bootstrap is a

very useful estimation technique for sampling-based approximation. Thus we designed

the EARL of Hadoop system, that facilitates and optimizes the use bootstrap methods

on parallel MapReduce systems.

(iv) We have then invented and demonstrated an analytical model for bootstrap, whereby

the Monte-Carlo evaluation of the standard method is replaced by a probabilistic query.

Thus, we provided a semiring-based extension of relational algebra and related query

optimization techniques to support fast execution of the resulting probabilistic query.

We finally developed an Analytical Bootstrap System (ABS) for parallel and dis-

tributed computing platforms. ABS is applicable to most relational database queries

and delivers very accurate estimates at speeds that outperforms the traditional boot-

strap method by orders of magnitude.

xxiii

CHAPTER 1

Introduction

The last decade has seen a soaring number of data-intensive applications. This increase

can be attributed to many contributing factors, including (1) the wide adoption of com-

puter systems across science, business, education and health-care, (2) the widespread

usage of smart devices and sensor networks, and (3) the unprecedented influence of

World Wide Web in almost every aspect of daily life. A fast response is critical in

these data-intensive applications. However, the volume of data they must process, and

the complexity of analytical tasks the applications must support have undergone an

exponential growth, which even the vigorous progress in performance and scalability

of computer systems cannot keep up with. This renders many traditional data manage-

ment techniques irrelevant, and poses new challenges to data science research. These

new challenges and the rich body of important applications behind them motivate many

of the problems discussed in this dissertation. In this dissertation, we classify the gen-

eral data analytical tasks into two classes: search and analytics. Next we categorize

some of these challenges in each of these classes, and propose our solutions to tackle

these challenges.

1.1 Search Challenges

We see a fast growth in the number and importance of data-intensive applications that

need to extract useful knowledge from their massive data. Among the many different

1

kinds of knowledge, “pattern” is one of the most succinct, popular and human-readable

form. Formally, in this dissertation a “pattern” is a set or sequence of data values which

satisfy certain conditions that are of special interest to the users.

Searching for patterns from massive volume of streaming and stored data plays a

vital role in many application areas. High-frequency trading1, stock market and auc-

tion monitoring [SZZ04], publish-subscribe systems [DGH06], logistics and inventory

management [Ba07a], click stream analysis [Sa01], commercial search engines and

social network analysis are only a few examples of such application areas. In finan-

cial services, the insurance companies and the banks monitor the transaction flows

to signify patterns of potential fraud behaviors. Recommendation systems might be

interested in the sequences of users’ web browsing history, which can bring insights

into more precise recommendation and targeted advertising. High-frequency trading

systems requires real-time detection of a sequence of stock tickers that represent a

new market trend. Logistics management systems track and monitor sequences of

RFID readings to spot anomalies in the supply chains. Modern commercial search en-

gines, e.g., Google and Bing, rely on pattern queries on knowledge graphs consisting

of billions of edges (facts) to retrieve more structured high quality answers in order

to augment search results. Social medias, suck as facebook2, search patterns in huge

social graphs to find potential friends for users, or to deliver more targeted ads.

The massive volume and increasing complexity of streaming and stored data pose

difficult technical challenges to these pattern searching applications, which become

even more severe in the presence of real-time constraints. We briefly summarize the

three main challenges: complexity, efficiency and scalability.

Complexity. Complex Event Processing (CEP) applications represent an important

class of applications that need to search patterns in streaming data or stored sequence

1http://en.wikipedia.org/wiki/High-frequency trading
2https://www.facebook.com/

2

data. Many real-world sequence queries used in CEP applications involve nested hier-

archical structures. Furthermore, much data exchanged over the Internet is embedded

in XML or JSON, where the data itself have a hierarchical structure (when XML ele-

ments or JSON objects are enclosed in one another) besides their sequential structures

(e.g. there is a global order of the tags in a JSON or XML file based on the order that

they appear in the document). Such hierarchical structures need to be described by a

new model Nested Words, and expressed using Kleene-* constructs.

Despite of the importance and pervasiveness of hierarchical structures, current lan-

guages lack the expressive power for such structures. The power and flexibility of

Kleene-* constructs for expressing relatively complex patterns of events have long

been recognized in CEP applications. Research work of extending query languages for

relational data with Kleene-* constructs can be dated back to [SZZ01, Sa01], and lead

to the recent SQL-MR proposal for their including into the SQL standards [ZWC07].

However, these hierarchical structures in complex real-world queries are not express-

ible in current languages. Such limitation is worsened for complex real-world data,

e.g., when the data is embedded in XML or JSON. XPath and XQuery, which are

the most widely used languages for XML data, lack explicit constructs for expressing

Kleene-* and sequence patterns. This limitation highly hinders their usability in CEP

applications.

Efficiency. CEP applications usually process high-speed streaming data. For instance,

the New York Stock Exchange captures 1 TB of trade information during each single

trading session; modern cars have close to 100 sensors that constantly monitor items

such as fuel level and tire pressure. Such high speed requires that CEP applications

have the ability to find the asked patterns in almost real time. However, existing sys-

tems lack of efficient implementation for supporting complex patterns. Nested Kleene-

* structures need to be modeled by Nested Words and Visibly Pushdown Automata,

3

which go well beyond Finite State Automata, which are the common underlying au-

tomata model of many CEP applications. Furthermore, several Kleene-* extensions of

XPath have been previously proposed in the literature [Cat06, CM07b, CM07a]. But

the efficient implementation of these extensions remain an open problem.

What’s more, queries with Kleene-* constructs involve a high degree of non-

determinism. Running non-deterministic automata has always been an efficiency bot-

tleneck. The difficulty lies in the exponential number of runs in the automata that

need to be traced and followed. Providing effective techniques for handling non-

determinism represents another main challenge.

Scalability. Even when processing stored data, when the data volume grows to web

scale, answering pattern matching queries at interactive speed is still really challeng-

ing. Web scale graphs such as modern knowledge bases and social networks contains

hundreds of millions of entities and billions of edges, which makes traditional data

management technique irrelevant. Actually, despite of tremendous efforts devoted to

building high performance graph pattern matching systems, scalability remains the

biggest hurdle. The data volume has gone far beyond the capacity of a single machine,

and thus has to be stored in a distributed environment. However, a graph pattern query

usually comprises a large number of joins, where these joins need to access data in

a random manner that has little locality. This incurs undesirably high network cost

during matching. Furthermore, graph data is usually highly asymmetric. For exam-

ple, in DBpedia [ABK07], over 90% nodes have less than 5 neighbors, while some

top nodes have more than 100,000 neighbors. This asymmetry makes it really hard to

balance work load, and hinders the query response time as it significantly slows down

the stragglers.

4

1.2 Analytics Challenges

Data-driven activities in business, science and engineering are rapidly growing in terms

of both significance and the size of the data they use. The need for timely and cost-

effective analytics over such ‘Big Data’ which is common in all these application do-

mains, poses great challenges to modern data management systems. The state-of-

the-art massive data management systems include parallel databases and MapReduce

systems. Parallel databases, such as Teradata [ter] and GAMMA projects [DGG86],

use an architecture based on a cluster of shared nothing computers connected by

a high-speed interconnect, where each database table is distributed across a cluster

of nodes using various partitioning methods. MapReduce systems [had] distributes

data uniformly across the nodes in the cluster, and utilize a special two-phase com-

putation model to evenly distribute the work loads across all the nodes. However,

even with modern hardware, analytics queries (e.g., OLAP-like queries) over massive

datasets can still take hours, even days, rendering interactive data exploration imprac-

tical [AMP13], and can be entirely unsatisfactory to a user. In general, overloaded

systems and high delays are incompatible with a good user experience; moreover ap-

proximate answers that are accurate enough and generated quickly are often of much

greater value to users than tardy exact results.

This situation has brought even more attention to the already-active area of Ap-

proximate Query Processing (AQP), and in particular to sampling approaches as a crit-

ical and general technique for coping with the ever-growing size of big data. The first

line of research work was that of Hellerstein et al. [HHW97a], where early results for

simple aggregates were returned. Since then, sampling techniques have been widely

used in databases [AGP99b, BCD03, CDN07, HHW97a, JAP07, OBE09], stream pro-

cessors [BDM04, MZ10], and even Map-Reduce systems [AMP13, LZZ12]. For most

applications on large datasets, performing careful sampling and computing early re-

5

sults from such samples provide a fast and effective way to obtain approximate results

within the prescribed level of accuracy.

Of course, the approximate query answers so obtained are of very limited utility

unless they are accompanied by some accuracy guarantees. For instance, in estimat-

ing income from a small sample of the population, a statistician seeks assurance that

the answer so derived falls within a given margin of the correct answer computed on

the whole population, with high confidence, say within ±1% of the correct answer

with probability ≥ 95%. This enables the user to decide whether the current approx-

imation is “good enough” for his/her purpose. Thus, assessing the quality (i.e., error

estimation) of approximate answers is a fundamental aspect of AQP.

Previous error estimation technique [AMP13, CCM00, CDN07, HHW97a, HSS09,

JAP07, JJ09, PBJ11a, WOT10] uses asymptotic theory to analytically derive closed-

form error estimates for common aggregate functions in a database, such as SUM, AVG,

etc. Although computationally appealing, analytic error quantification is restricted to

a very limited set of queries. Thus, for every new type of query, a new closed-form

formula must be derived. This derivation is a manual process that is ad-hoc and often

impractical for complex queries [PJ05a].

This lack of an automatic and general way to access the quality of approximate

answers greatly hinders the utilities of AQP. After many years of database research,

AQP is still limited to simple aggregate queries [AMP13, CCM00, CDN07, HHW97a,

HSS09, JAP07, JJ09, PBJ11a, WOT10]. In addition, although the need for approxi-

mation techniques obviously grow with the size of the data sets, general methods and

techniques for handling complex tasks are still lacking in both MapReduce systems

and parallel databases even though these claim ‘big data’ as their forte.

6

1.3 Overview and Contributions

In this dissertation, we set out to tackle the challenges mentioned above. Next, we list

and elaborate on the main contributions made in this dissertation.

1.3.1 K*SQL and XSeq: Expressive and Efficient CEP Languages

We carefully design a natural and minimal Kleene-* extension of SQL and XPath

called K*SQL and XSeq, respectively, which can easily model both sequential struc-

tures and well-nested hierarchical structures. We exploit Nested Words [Alu07] and

Visibly Pushdown Automata (VPA) [AM04, AM06] as the underlying automata model

for K*SQL and XSeq, which enables K*SQL and XSeq highly amenable to optimiza-

tion. (We provide a brief introduction of nested words and VPA in Chapter 2.) Using

nested words and VPA has several key benefits: (1) It allows for expressing complex

queries that are common in CEP applications. (2) It allows for efficient stream process-

ing algorithms. This gives us languages with expressiveness, versatility, ease-of-use

and efficiency.

Furthermore, we introduce extensive optimization techniques, including both compile-

time optimizations and run-time optimization, for K*SQL and XSeq. In particular, we

develop generalizations of Knuth-Morris-Pratt algorithm [KJP77] for nested words

and visibly pushdown words, which extend the pattern search optimization algorithms

to non-deterministic mode.

1.3.2 Trinity.RDF: Web Scale Graph Engine

Trinity.RDF is a general graph engine that can manage and search web-scale graphs,

including RDF data for which we demonstrate several example applications. Specif-

ically, we propose to store the graph data in its native graph format in a distributed

7

in-memory key-value store. This approach satisfies the scalability requirement, and

also supports fast random accesses on the data, which is the characteristic data ac-

cess pattern of graph pattern matching. Therefore, modeling the data as an in-memory

graph enables in-memory graph exploration — a new graph pattern matching paradigm

other than the traditional join approach. Graph exploration exploits the dependency

information in the graph pattern to eagerly prune the size of the intermediary results.

This pruning is of particular importance in distributed environment, due to its ability

of reducing the amount of intermediate data needed to shuffle across network, and in

turn boosting the query performance and system scalability. We demonstrate the ef-

fectiveness of our technique through extensive experimental study, and show that even

without sophisticated graph partitioning scheme, Trinity.RDF can achieve several or-

ders of magnitude speed-up on web scale graph data compared to the state-of-the-art

systems.

1.3.3 EARL and ABM: Bootstrap-Based Approximation Techniques for Inter-

active Data Analytics

To tackle the limitations of previous error estimation technique, and develop AQP

systems that support efficient approximation with error estimation for general data

analytics tasks, we propose bootstrap [ET93] — a more general method for error es-

timation. Bootstrap is essentially a Monte-Carlo procedure, which for a given initial

sample, (i) repeatedly forms simulated datasets by resampling tuples i.i.d. (identi-

cally and independently) from the given sample, (ii) recomputes the query on each

of the simulated datasets, and (iii) assesses the quality of answer on the basis of

the empirical distribution of the query answers so produced. The wide applicability

and automaticity of bootstrap is confirmed both in theory [BF81, VW00] and prac-

tice [KTA13, LZZ12, PJ05a]. Unfortunately, bootstrap tends to suffer from its high

8

computational overhead, since hundreds, or even thousands of bootstrap trials are typ-

ically needed to obtain reliable estimates [KTA13, PJ05a]. Therefore, we study two

approaches to remove the computational hindrance of bootstrap: (1) optimizing the

Monte-Carlo simulation process of bootstrap using delta computation, which is de-

veloped in our EARL system; (2) bypassing the Monte-Carlo simulation process of

bootstrap, which is developed in our Analytical Bootstrap Method.

EARL. We introduce a novel incremental computation model into traditional batch-

processing big data platforms such as Hadoop, and develop Early Accurate Result

Library (EARL). EARL optimizes the work-flow computation on massive datasets by

(1) starting computing the users’ analytics tasks on a small sample of the original

dataset, (2) constantly evaluating the quality of the approximate answers using boot-

strap method, (3) gradually enlarging the samples if the accuracy of the approximate

answers is not enough, and (4) stopping and returning the approximate results as early

as possible once the desired approximation quality is met. This incremental computa-

tion model achieves the desired accuracy while minimizing the time and the resources

required for the users’s analytics tasks.

We also proposes both intra- and inter- iteration optimization techniques to mini-

mize the repeated computation introduced by bootstrap and incremental computation.

We further propose two sampling methods: pre- and post- sampling methods that al-

lows the users to express their application-specific logics.

Analytical Bootstrap. Many real-life AQP applications can be expressed in SQL.

Since SQL queries can be expressed using well-structured relational algebra, we in-

troduce a new technique, called Analytical Bootstrap Method (ABM), which is both

computationally efficient and automatically applicable to a large class of SQL queries,

and thus combines the benefits of analytical approach and bootstrap approach for error

estimation.

9

ABM models the bootstrap process through a probabilistic relational model. In

specific, ABM annotates the sampled database with random variables to mimic the

resampling process of bootstrap but without doing the actual resampling, and extends

relational operators to manipulate these random variables. The query results produced

by ABM will encode the correct distribution of all possible answers that would be

produced if we actually performed bootstrap on the database. In particular, using a

single-round query evaluation, ABM accurately estimates the empirical distribution of

the query answers that would be produced by hundreds or thousands of bootstrap trials

on the sampled database.

We evaluate ABM through extensive experiments on both synthetic and real-life

data and queries. Our results show that ABM is an accurate prediction of the simulation-

based bootstrap, while it is 3–4 orders of magnitude faster than the state-of-the-art

parallel implementations of bootstrap [KTS12].

In summary, in this dissertation we have made the following contributions:

(i) We have designed and demonstrated optimized implementation techniques for K*SQL

and XSeq, which provide a unified framework for complex pattern searching on rela-

tional and XML DBs, respectively. In particular, we introduced efficient execution

exploiting recent advances in automata theory known as Nested Words.

(ii) We have designed and demonstrated efficient scalable graph search engine based

on novel distributed memory-based system architecture, and exploit graph exploration

operations for implementing an efficient graph search algorithm.

(iii) We have introduced support for bootstrap methods in MapReduce. Bootstrap is a

very useful estimation technique for sampling-based approximation. Thus we designed

the EARL of Hadoop system, that facilitates and optimizes the use bootstrap methods

on parallel MapReduce systems.

(iv) We have then invented and demonstrated an analytical model for bootstrap, whereby

10

the Monte-Carlo evaluation of the standard method is replaced by a probabilistic query.

Thus, we provided a semiring-based extension of relational algebra and related query

optimization techniques to support fast execution of the resulting probabilistic query.

We finally developed an Analytical Bootstrap System (ABS) for parallel and dis-

tributed computing platforms. ABS is applicable to most relational database queries

and delivers very accurate estimates at speeds that outperforms the traditional boot-

strap method by orders of magnitude.

11

Part I

SEARCH OPTIMIZATION

12

CHAPTER 2

Background: Nested Words and Visibly Pushdown

Automata

2.1 Nested Words

The nested words model [Alu07] is a recently proposed notion from the field of au-

tomata [AM04, AM06] that can model data having both sequential and hierarchical

structures. Common examples include XML, procedural programming traces or even

genomic data [AM04].

Informally1, in a nested word there is a sequential ordering among all the elements,

while there is a secondary, hierarchical structure which is formed by nested edges be-

tween some of the elements, i.e., the edges do not cross. In this sense, nested words

generalize both words and ordered trees, and allow both word and tree operations. In

a nested word, the elements (a.k.a. positions) are divided into three disjoint sets: (i)

call elements, where there is an outgoing hierarchical edge, (ii) return elements, where

there is an incoming hierarchical edge, and (iii) internal elements that lack any hier-

archical edges. A nested word is allowed to have pending edges, that are incoming

edges without any call positions or outgoing edges without return positions. A nested

word without pending edges is called well-matched. This terminology is owed to the

software verification literature [AM06], where a program consists of several nested

1The formal definitions can be found in [Alu07].

13

function calls and returns, while other instructions (internal positions) form the se-

quential execution. However, nested words can be also used in several other domains.

In Figure 2.1, n1 is a nested word that represents a portion of an XML document that

is not well-matched (it is still a valid nested word, as none of the edges cross). In

Figure 2.1, white circles are internal positions, while blue and black circles represent

calls and returns, respectively.

Another appealing application area for nested words is genomics. RNA sequences

are not simply long strands of nucleotides. Rather, intra-strand base pairing leads to

structures such as the one depicted in Figure 2.1. The covalent chemical bonds between

subsequent nucleotides in each strand can be seen as the primary structure, while the

hydrogen bonds between the bases (G&C, A&U) form a secondary structure [Aa90].

Since these bonds do not cross, each RNA sequence can be modeled as a nested word,

e.g. n2 in Figure 2.1.

Decision properties. Traditionally, dual structures such as XML have been mod-

eled as ordered trees, and thus, have been queried using tree automata. Various classes

of automata over nested words have been defined that have higher expressiveness and

succinctness compared to word and tree automata [AM06]; however, their decision

complexity and closure properties are analogous to the corresponding word and tree

special cases. For example, regular languages of nested words are closed under union,

intersection, complementation, concatenation, and Kleene-* [AM06]; deterministic

nested word automata are as expressive as their non-deterministic counterparts; and

membership, emptiness, language inclusion and equivalence are all decidable [Alu07].

14

Figure 2.1: Tiny examples of nested words in different domains: XML and genomics.

2.2 Visibly Pushdown Automata

Similar to their closely related nested words model, visibly pushdown words also

model a sequence of letters (i.e., a “normal” word) together with hierarchical edges

connecting certain positions along the word. The edges are properly nested (i.e., edges

do not cross), but some edges can be pending. Visibly pushdown words have found

applications in many areas, ranging from program analysis to XML, and even repre-

sentations of genomic data [AM06].

Visibly Pushdown Automata (VPA) are a natural generalization of finite state au-

tomata to visibly pushdown words. Visibly pushdown languages (VPLs) consist of lan-

guages accepted by VPAs. While VPLs enjoy higher expressiveness and succinctness

compared to word and tree automata, their decision complexity and closure properties

are analogous to the corresponding word and tree special cases. For example, VPLs

are closed under union, intersection, complementation, concatenation, and Kleene-

* [AM04]; deterministic VPAs are as expressive as their non-deterministic counter-

parts; and membership, emptiness, language inclusion and equivalence are all decid-

able [AM04, AM06]. Next, we briefly recall the formal definition of a VPA. Readers

are referred to the seminal paper [AM04] for more details.

Let Σ be the finite input alphabet, and let Σ = Σc∪Σr∪Σi be a partition of Σ. The

intuition behind the partition is: Σc is the finite set of call (push) symbols, Σr is the

15

finite set of return (pop) symbols, and Σi is the finite set of internal symbols. Visibly

pushdown automata are formally defined as follows:

Definition 1. A visibly pushdown automaton (VPA)M over S is a tuple (Q,Q0,Γ, δ, F)

where Q is a finite set of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final

states, Γ is a finite stack alphabet with a special symbol ⊥ (representing the bottom-

of-stack), and δ = δc ∪ δr ∪ δi is the transition relation, where δc ⊆ Q × Σc × Q ×

(Γ\{⊥}), δr ⊆ Q× Σr × Γ×Q, and δi ⊆ Q× Σi ×Q.

If (q, c, q′, γ) ∈ δc, where c ∈ Σc and γ 6= ⊥, there is a push-transition from q on

input c where on reading c, γ is pushed onto the stack and the control changes from

state q to q′; we denote such a transition by q
c/+γ−−−→ q′. Similarly, if (q, r, γ, q′) ∈ δr,

there is a pop-transition from q on input r where γ is read from the top of the stack and

popped (if the top of the stack is⊥, then it is read but not popped), and the control state

changes from q to q′; we denote such a transition q
r/−γ−−−→ q′. If (q, i, q′) ∈ δi, there is

an internal-transition from q on input i where on reading i, the state changes from q

to q′; we denote such a transition by q i−→ q′. Note that there are no stack operations

on internal transitions. We write St for the set of stacks {w⊥|w ∈ (Γ\{⊥})∗}. A

configuration is a pair (q, σ) of q ∈ Q and σ ∈ St. The transition function of a VPA

can be used to define how the configuration of the machine changes in a single step:

we say (q, σ)
a−→ (q′, σ′) if one of the following conditions holds:

1. If a ∈ Σc then there exists γ ∈ Γ such that q
a/+γ−−−→ q′ and σ′ = γ · σ

2. If a ∈ Σr, then there exists γ ∈ Γ such that q
a/−γ−−−→ q′ and either σ = γ · σ′, or

γ = ⊥ and σ = σ′ = ⊥

3. If a ∈ Σi, then γ ∈ γ′ and σ = σ′.

A (q0, w0)-run on a word u = a1 · · · an is a sequence of configurations (q0, w0)
a1−→

(q1, w1) · · · an−→ (qn, wn), and is denoted by (q0, w0)
u−→ (qn, wn). A word u is accepted

16

by M if there is a run (q0, w0)
u−→ (qn, wn) with q0 ∈ Q0, w0 = ⊥, and qn ∈ QF . The

language L(M) is the set of words accepted by M . The language L ⊆ Σ∗ is a visibly

pushdown language (VPL) if there exists a VPA M with L = L(M).

2.3 Difference between Nested Words and VPAs

The input to a Nested Word Automaton (NWA) must come as a word with a parsed

nested structure, i.e., upon seeing a call position we know its corresponding return

position and vice versa. However, in many situations the input is given as word and the

nested structure yet needs to be parsed/inferred. For instance, given a streaming XML,

we do not know the return positions of the calls, at least during the first scan of the data.

Thus, to handle such situations, Alur and Madhusudan [AM04] have proposed Visibly

Pushdown Languages (VPL) where a stack is used to store the pending call and return

symbols. VPLs are a subclass of context-free languages that are accepted by Visibly

Pushdown Automata (VPA). Here again, the alphabet is split into three disjoint sets of

Σc,Σr and Σi and upon reading a call symbol (a ∈ Σc), the VPA has to push on the

stack, and upon reading a ∈ Σr it has to pop the stack. For a ∈ Σi, the VPA cannot

use the stack.

17

CHAPTER 3

KSQL: Unifying Languages and Query Execution for

Relational and XML Sequences

There is much interest in extending relational query languages with Kleene-* (Kstar)

constructs for matching complex patterns of events in data streams and stored se-

quences. The power and flexibility of Kstar constructs for SQL, which were intro-

duced in [SZZ01, Sa01], have recently attracted the attention of DBMS vendors and

DSMS start-up companies, leading to the recent SQL-MR proposal for their inclu-

sion into the SQL standards [ZWC07]. This is hardly surprising, given Kstar’s proven

effectiveness in application areas as diverse as stock market and auction monitoring

[SZZ04], publish-subscribe systems [DGH06], RFID-based inventory management

[Ba07a], click stream analysis [Sa01], and electronic health systems [HH05, La10]. In

financial services, for instance, a brokerage customer may be interested in a sequence

of stock trading events that represent a new market trend. In RFID-based tracking

and monitoring, applications may want to track valid paths of shipments and detect

anomalies in the supply chains.

In this chapter we show that, in spite of the many success stories mentioned above,

we have only begun to explore the variety of new applications made possible by

the Kstar constructs. We introduce a new language and system, called K*SQL, that

reaches well beyond existing proposals to provide:

1. A unifying framework. Many query languages have been proposed, each de-

18

signed for a different domain. K*SQL is powerful enough to express and support

efficiently both set and sequence queries on both relational and XML data, residing

in the database or flowing in as a data stream. The many domain-specific languages

previously proposed for various combinations of the above retain their validity and de-

sirability in their own application realm, but because of its superior query optimization

technology and expressiveness, K*SQL can be used to support and extend them—

e.g., XPath 2.0 can be efficiently implemented by a simple translation into equivalent

K*SQL queries. Thus, even when programmers prefer to continue to write their XML

queries in XPath, they will still benefit from the performance improvement brought by

K*SQL as a query execution backend.

Furthermore, K*SQL provides a natural query language for nested words—a re-

cently proposed model from the field of formal verification[AM06], which generalizes

both words and tree structures. To the best of our knowledge, this is the first database

query language proposed for this very powerful and useful data model.

2. More complex patterns. In addition to supporting new data models, the power

of K*SQL allows it to match more powerful patterns on standard relational sequences

and streams. These are critical in advanced applications, such as stock analysis, RFID

processing and trajectory mining. For instance, many real-world sequence queries

that involve nested Kstar patterns are not expressible in current languages, such as

the proposed SQL-MR standards [ZWC07]. Also, when data is embedded in XML,

which is a common practice with data exchange over the internet, K*SQL can express

sequence queries that are not expressible in XPath 1.0 or 2.0.

We achieve these goals through the following contributions:

1. We study the formal properties of sequence extensions for SQL by incremen-

tally extending our query language to support pattern matching over (i) bounded regu-

lar expressions, (ii) regular expressions, and finally (iii) regular expressions over nested

19

words. This methodology allows us to characterize the expressiveness of K*SQL, and

compare it to other existing languages (Section 3.2).

2. Based on our study of expressiveness, we carefully design a natural extension

of SQL that provides versatility and ease-of-use, while minimizing syntactic additions

(Section 3.1).

3. We develop extensive optimization techniques for K*SQL, including general-

izations of the KMP [KJP77] algorithm to the case of nested words and visibly push-

down words (Section 3.3).

4. We implement and validate our optimization techniques on well-known bench-

marks and real-world data (Section 3.4).

5. We provide compilation algorithms and tools for automatic translation of sev-

eral (e.g., XPath, SASE+ [GAD08]) languages into K*SQL, thus allowing for both

(i) code-base migrations and (ii) the use of the proposed optimizations also as a back-

end query execution engine when users prefer those languages as an interface (Sec-

tion 3.2.1, Section 3.7.3).

This chapter is organized as follows. We briefly introduce the basic syntax of

K*SQL through examples in Section 3.1, followed by a summary of our complexity

results in Section 3.2. We highlight our main algorithms for implementation and opti-

mization of K*SQL in Section 3.3 which are empirically validated in Section 3.4. We

review the related work and conclude in Sections 3.5 and 3.6, respectively.

3.1 K*SQL By Examples

K*SQL extends the syntax of a previous SQL-based sequence language (SQL-TS [SZZ01])

with a few but powerful constructs.1. Thus, we first use a simple example that could

1For the formal syntax and semantics of K*SQL see Section 3.7.1.

20

also be expressed in most of existing languages, before considering examples involving

our extensions. Similar to [ZWC07], our pattern extensions are meant to be effective

on both DB tables and data streams. So, as our first example, let us consider a DB

table containing recent Nasdaq stock transactions (we discuss data streams later):

Example 1. A table with Nasdaq transactions.

CREATE TABLE NasdaqTable (seller Varchar(20), buyer Varchar(20),

stockName Varchar(8), shares Integer, price Integer,

datetime Timestamp)

Here, price is the price per share. As an example, consider the following well-

known query from stock market analysis:

Example 2 (Double-bottom or ‘W’ pattern). Find those stocks whose price has formed

a W-shape. That is, the price has been going down to a local minimum, then rising up

to a local maximum and then again, decreasing to another local minimum, and finally,

followed by another rise. The starting price should be at least 50. (See Fig. 3.1).

SELECT S.stockName, D.avg(price) AS runningAvg,

avg(D.price) AS finalAvg, last(D.price) AS finalPrice

FROM NasdaqTable

PARTITION BY stockName

ORDER BY datetime

AS PATTERN (S A* B+ C+ D+)

WHERE S.price >= 50 AND S.price > first(A).price

AND A.price < prev(A).price

AND B.price > prev(B).price

AND C.price < prev(C).price

AND D.price > prev(D).price AND maximal(D)

The above is a typical K*SQL query. The semantics are based on ‘immediately

21

follows’ relationship between ordered tuples. Thus, the syntax is very similar to SQL,

except that we have sequential semantics:

• The PARTITION BY clause splits the tuples according to their stockName

value, as if they were separate streams.

• The ORDER BY clause defines how the tuples in each partition should be or-

dered, e.g., in the above example we order the transactions in their chronological

order. Similar to SQL, the DESC keyword can be added for descending order.

• The AS PATTERN clause defines the sequential pattern that we are searching

for. In Example 2, S, A, B, C and D refer to consecutive tuples. Variable S is sin-

gleton and matches with exactly one tuple, while the other variables are group

variables (or Kstar variables): ∗ allows for arbitrary repetition, while + requires

a repetition of at least 1. These variable names can be used in the WHERE predi-

cates to express the relationship between these tuples.

K*SQL supports both running aggregates (e.g. D.avg(price)) as well as final

(a.k.a. blocking) aggregates (e.g., avg(D.price)). K*SQL also supports the four typ-

ical sequence modifiers, namely first, last, prev and next which can be applied

to group variables. In K*SQL, maximal(D) denotes that we will remain in the D+

state until this fails–i.e., until the price is no longer increasing. In the absence of the

maximal predicate, the default behavior is to return all the matches, namely any num-

ber of successive occurrences satisfying the predicates.

As mentioned, Example 2 could be expressed in most of the previously proposed

languages as well, modulo minor variations in keywords and syntax. K*SQL uses the

same constructs for both stored tables and data streams; however, the ORDER BY clause

will be omitted in continuous queries on data streams where the order follows from the

22

very declaration of the stream, such as that in Example 3. For instance, in our system,

an input stream of Nasdaq transactions can be defined as follows:

Example 3. A stream of Nasdaq transactions.

CREATE STREAM Nasdaq (seller Varchar(20), buyer Varchar(20),

stockName Varchar(8), shares Integer,

price Integer, datetime Timestamp)

ORDER BY datetime SOURCE ’port4446’;

In this example SOURCE ′port4446′ declares the port at which the input data is

arriving; ORDER BY datetime declares that tuples in our stream are ordered according

to their timestamp datetime. In the absence of such declaration, the data stream is

assumed ordered by its arrival order. But in either case, continuous queries assume and

maintain this order, and thus our K*SQL queries over data streams do not contain any

explicit ORDER BY clause–which will therefore be omitted in the rest of this chapter.

Our next order of business is to allow nested Kstars in the definition of patterns.

Although it requires only a minor syntactic extension, nested Kstars significantly im-

prove the usability and expressiveness of our language.

3.1.1 Nested Kstars

The ‘W-shape’ pattern of Example 2 consists of two ‘V-shape’ patterns. However there

are many more complex queries that involve nested Kstars. For instance, consider the

following example from stock analysis, known as uptrend falling wedge pattern2.

Example 4 (Wedge pattern). Find those stocks whose price fluctuates as a series of

‘V-shape’ patterns, where in each ‘V’ the range of the fluctuation becomes smaller,

and eventually, the price rises up to higher than its starting point.

2http://www.chartpatterns.com/wedges.htm

23

http://www.chartpatterns.com/wedges.htm

Since each ‘V’ sub-pattern is itself two Kstars, say X+Y+, we need to somehow

express the arbitrary number of repetition of this sub-pattern with a nested Kstar, say

(X+Y+)∗. Next questions are then how to clearly express the complex conditions on

such patterns, and how to run them efficiently? The following K*SQL query is the

answer to this query.

SELECT first(first(Z).X).stockName,

first(first(Z).X).price AS startPrice,

E.price AS finalPrice

FROM Nasdaq

PARTITION BY stockName

ORDER BY datetime %Optional for streams

AS PATTERN ((Z: X+ Y+)+ E)

WHERE Z.X.price < prev(Z.X).price

AND Z.Y.price > prev(Z.Y).price

AND max(Z.price)-min(Z.price) <

max(prev(Z).price)-min(prev(Z).price)

AND first(first(Z).X).price < E.price

Here, K*SQL goes beyond SASE+ [GAD08], SQL-TS and SQL-MR by support-

ing nested Kstars. Next, we briefly explain the new features introduced in the query

above.

Aliases. As shown in this Example, K*SQL allows the use of aliases for subpatterns:

(Z : X+Y+) defines Z as an alias for the sequence X+Y+, one for each ‘V’-phase in the

example considered. Now, (Z : X+Y+)+ denotes one or more occurrences of Z. We

have thus moved from patterns consisting of linear sequences to patterns consisting of

sequences of sequences. K*SQL allows for any depth of nested Kstars, e.g. here the

depth is 2. Perhaps two main reasons why previous languages did not support nested

Kstars were (i) they would lead to ambiguity in the aggregates and, (ii) they require

24

much more complex optimizations. Use of aliases in K*SQL overcomes the former

obstacle, as described next.

Aggregates on nested Kstars. K*SQL assumes that each instance of Z has virtual

attributes whose values are derived from the instances of X+ and Y+ occurring in this

instance of Z, e.g. min(Z.price) is the minimum price among the X’s and Y’s of the

current repetition of Z. We could also calculate the running and final averages of the

falling prices in the current Z by Z.avg(X.price) and avg(Z.X.price), respectively.

Also, max(prev(Z).price) refers to the maximum price in the previous repetition of

Z.

Similarly, the running aggregate first is available on Z, with unchanged seman-

tics, i.e. Z.first(Y.price) denotes the sequence of the rising prices of the first Z,

while first(first(Z).X).price returns the price of the first tuple of X in the first Z.

Therefore, the K*SQL syntax for nested Kstars is powerful and unambiguous, and

only requires the user to assign a new alias variable to each compound Kstar 3, i.e.

a Kstar expression consisting of more than one variable. In fact, even though partial

optimizations for nested Kstars were proposed in [KMS08], they did not allow aggre-

gates on such constructs due to the ambiguity that such combinations would cause.

Thus, K*SQL syntax achieves the unambiguity while allowing aggregates on nested

Kstars, mainly through the aliases and the simple semantics introduced above. Effi-

ciency concerns are addressed in Sections 3.3 and 3.4.

So far we have only considered relational data, but in practice, many data streams

are embedded in XML tags, as XML allows for generality, and usability of data ex-

change over the Internet. For instance, stock/financial transactions are often encoded

and published as XML streams. Thus, a next natural question is ‘whether and how a

sequence language can query such data’? And if possible at all, ‘what types of XML
3No alias is required for simple Kstars, since B+ is viewed as equivalent to (B: +), where is

the anonymous variable, as in Datalog.

25

data and queries can be expressed in our language’? Next, we answer these questions

for K*SQL.

3.1.2 Linear-Hierarchical Data

Consider the following DTD for an XML schema:

< !DOCTYPE company [

< !ELEMENT company (name, (transaction)*) >

< !ELEMENT transaction (price, buyer, date) >

< !ELEMENT name (#PCDATA) >

< !ELEMENT price (#PCDATA) >

< !ELEMENT buyer (#IDREF) >

< !ELEMENT date (#PCDATA) >] >

Throughout this chapter, we use SAX-3 [Za06] representation of XML4, a slightly

modified version of the famous SAX API. Thus, every XML is processed as a stream

of SAX events represented by triplets (type, token, value). The order in which these

triplets appear in the sequence reflect their pre-order traversal position in the document.

By having a unique tag name for the root element (‘company’ in this example), we can

easily extend the same format even to represent a stream of several XML documents

with the same schema5. The following is the beginning portion of an XML document,

within a stream that consists of the XML documents for several Nasdaq companies:

(type, token, value)

...

106: (’open’, ’company’, -),

107: (’open’, ’name’, -),

108: (’text’, ’IBM’, -),

109: (’close’, ’name’, -),

110: (’open’, ’transaction’, -),

4Any relational format for pre-order traversal of the stored/streaming XML file(s) is acceptable.
5If the document tokens are out-of-order, a fourth column can be used for documentId.

26

...

Here, the numbers represent the relative position of each tag within the stream

of company XMLs. Assume that the stock transactions under each company appear

according to their date attribute. Thus, a transaction occurred earlier has an open tag

with a smaller position number. We begin by searching the same ‘W’-shape pattern as

in Example 2, but this time from XML data.

Example 5. The K*SQL query below, returns all the W-shape stocks in a given Nasdaq

XML document stream (See Figure 3.1).

SELECT C.token as CompanyName,

first(Z.first(X.G.token)) as price1,

first(Z.last(X.G.token)) as price2,

first(Z.last(Y.K.token)) as price3,

last (Z.last(X.G.token)) as price4,

last (Z.last(Y.K.token)) as price5,

FROM NasdaqStream

AS PATTERN (A B C D (Z: (X: E F G H Iˆ6 J)*

(Y: E F K H Iˆ6 J)*

)ˆ2 L

)

WHERE A = open(’company’)

AND B = open(’name’)

AND D = close(’name’)

AND E = open(’transaction’)

AND F = open(’price’)

AND H = close(’price’)

AND J = close(’transaction’)

AND X.G.price <= prev(X.G).price

AND Y.K.price >= prev(Y.K).price

AND L = close(’company’)

27

Syntactic shorthands. Note that for XML documents, the tuples are processed ac-

cording to their appearance order, and hence the ORDER BY clause for XML queries

is omitted 6. Here, open() and close() are merely convenient shorthands to rec-

ognize open or close tags, e.g. B = open(′name′) could be replaced by a condi-

tion that B.type =′ open′ AND B.token =′ name′. Here, we also used the nota-

tion I∧6 as a shorthand for the repetition, i.e. IIIIII; likewise (Z : . . .)∧2 stands

for (Z : . . .)(Z : . . .). Also observe that, due to their similar definitions, variables

E, F, G, H, I and J, are used under both X and Y, and thus we can use the path nota-

tion X.E or Y.E to refer to one or the other. When their path notation is missing, the

parser disambiguates them by duplicating their predicates for each subpattern that they

appear in.

Query explanation. In the query above, the first part of the pattern, namely ABCD,

parses the 〈company〉〈name〉somename〈/name〉 header. Next, we use Z to alias the

definition for a ‘V’-shaped pattern and use Z∧2 to capture a ‘W’. In each ‘V’, the

falling and rising phases are defined by X∗ and Y∗, respectively. To recognize each

occurrence of X , we use four variables, EFGH, recognizing 〈transaction〉 〈price〉

somePrice〈/price〉, which are followed by I∧6, where I’s act as wildcards to skip

the next six tags, namely 〈buyer〉Name〈/buyer〉 〈date〉somedate〈/date〉, and so on.

Here, J and L refer to the corresponding close tags for transaction and company. The

rest is obvious (consider the W-shape pattern in Figure 3.1).

Limitations of other languages. This example illustrates the power of nested

Kstars (with aliasing) in K*SQL. Kaghazian et al. [KMS08] also allow nested Kstars

but they do not support aggregates on such expressions. However, the hierarchical

aliasing in K*SQL allows us to select subsequent occurrences of X and then compare

the G prices within and so on. On the other hand, expressing queries such as Example 2

6The order of appearance of the tags in the XML, is referred to as the total ‘document order’ in
XPath 2.0 and XQuery.

28

Figure 3.1: A double-bottom or W-shape stock pattern.

in XPath is often difficult7 if not impossible8 (e.g., for an extension of XPath with Kstar

see [Cat06]).

The next question is whether these constructs (i.e., nested Kstars plus aliasing and

aggregates) are also capable of querying XML data with recursive schemas?, as a

recursive nature can represent a serious challenge for a relational sequence language.

<familyroot id="31602">

<son name="John">

<son name="Brian">

</son>

<son name="Bob">

<son name="Paul">

</son>

</son>

<daughter name="Alice">

</daughter>

</son>

</familyroot>

Figure 3.2: Sample XML document for ancestry information.

7 The ‘W’-shape query is expressible in XPath but is hard to write, read and optimize (see Sec-
tion 3.7.4).

8For examples, see Section 3.7.4.

29

XML with recursive schema. Consider the tiny ancestry XML in Figure 3.2, in

which, for example, a son can contain other sons to an arbitrary depth. Now consider

the following example.

Example 6. For an ancestry XML (e.g., the one in Figure 3.2), return the names of all

those sons whose father is named ‘John’.

Such queries are very easy to write in XPath, here:

//son[name = ”John”]/son/@name

Current Kstar languages cannot express such queries simply because they can-

not determine (i) how many intermediate 〈son〉’s they should skip before reaching

all the sons of John, and (ii) they cannot detect that, e.g., Paul is Bob’s son and not

Brian’s, say, e.g., by considering their depth in the XML. To overcome these limita-

tions for recursive structures, K*SQL supports a simple but powerful aggregate, called

isElement. The following K*SQL query is equivalent to the XPath expression above:

SELECT Y.value as sonNames

FROM AncestryRelation

AS PATTERN (A X N* B Y N* C N* D)

WHERE A = open(’son’)

AND X.type = ’attribute’ AND X.token = ’name’

AND X.value = ’John’ AND isElement(N)

AND B = open(’son’)

AND Y.type = ’attribute’ AND Y.token = ’name’

AND C = close(’son’) AND D = close(’son’)

In K*SQL, isElement() is a built-in function that is internally implemented using

a stack which evaluates to true on every tuple, until a violation of well-nestedness

occurs, at which point, it evaluates to false. For the example above, when a new tuple

30

is assigned to state N∗, it is added to the stack if its token is an open tag. But if the new

tuple’s token is a close tag, we check if the top of the stack is its corresponding open

tag. If yes, we pop it, and otherwise there is a stack violation, and the tuple will be

passed to the next state, e.g. B. For tokens that are neither open nor close tags, we do

not touch the stack but remain in N∗ depending on the query mode, e.g., in maximal

mode, we stay in N∗ until a stack violation occurs, but in all-match mode, we consider

all the options non-deterministically. In Section 3.7.2, we explain how, in K*SQL,

isElement() is implemented in a generic form (i.e., not limited to XML or its specific

SAX representation).

Query explanation. Here, each time a 〈son〉 tag is found (element A), the X el-

ement checks its name attribute, the N∗ elements skip the well-nested elements to ig-

nore the intermediate children of the current node. Since the default setting is non-

deterministic, at some point, the automaton will follow the B element instead of N, and

if it is another 〈son〉 tag, the automaton will proceed with the rest of the pattern. Once

all possible traces of this automaton are explored (either success or failure), the first

element (i.e., A) will be moved forward until the next 〈son〉 is found, and the same

process is repeated.

Nested structures other than XML. The capabilities of K*SQL, in querying data

with both sequential and hierarchical structures, is not limited and specific to XML. In

fact, K*SQL provides for pattern matching over nested words as well as over words.

Nested words were originally proposed for static program analysis [Alu07, AM06],

but can model other dual linear-hierarchical structures as well. XML represents only

one example of such data. Procedural programming traces and genomic data are other

examples. A brief background on these notions can be found in Chapter 2. Interest-

ingly, in Section 3.2.3, we prove that K*SQL can query any data that can be modeled

using nested words (or visibly pushdown words [AM04], a closely related notion). The

31

examples in this chapter were chosen from the XML domain due to the importance of

XML and its familiarity to the database community, and also its long history of rich

languages in the field. However, we emphasize that our constructs are not specific to

XML or its particular SAX representation. A brief explanation on the application of

K*SQL for other domains such as program traces and RNA sequences are provided in

Section 3.7.2.

Many interesting questions arise at this point: Can K*SQL express all XPath

queries? What is the true expressive power that our built-in isElement construct

brings to K*SQL? How does K*SQL compare with other existing sequence languages?

What is the query evaluation complexity in K*SQL? What if we allow aggregates?

How can we optimize K*SQL queries and ensure efficiency? The next two sections

address these questions.

3.2 Expressive Power

In this section, we briefly present our main results on the expressiveness of K*SQL,

and compare it to other existing models and languages. The proofs are in Appen-

dices 3.7.3 and 3.7.5.

3.2.1 K*SQL vs. XPath

Core XPath 2.0 [CM07a] represents a fragment of XPath that is complete for First Or-

der (FO) logic over trees [CM07b]. In Section 3.7.3, we prove the following theorem:

Theorem 1. For every Core XPath 2.0 query, there is an equivalent K*SQL query.

Moreover, we show later (Theorem 5) that K*SQL is as expressive as VPLs which

are equivalent to monadic second order (MSO) logic over nested words [Pit05]. Thus,

32

K*SQL is strictly more expressive than Core XPath 2.0, which is in turn strictly more

expressive than Core XPath 1.0 [CM07b]. Section 3.7.4 further elaborates on the lim-

ited expressivity of XPath for sequence queries. In Section 3.7.3, we provide a simple

constructive proof 9, that shows we can algorithmically construct an equivalent K*SQL

query for any given Core XPath expression.

3.2.2 K*SQL vs. Other Sequence Languages

In this section, we study the expressiveness of K*SQL and compare it with other se-

quence languages. We first disallow aggregates in these query languages, to differ-

entiate between the real power of the language core itself from that brought about by

aggregates. In Section 3.7.6, we briefly address the effect of allowing aggregates on

the complexity and expressiveness.

While a full query language can return additional information about the matches,

in order to simplify the presentation, here we only consider the decision version of

these query languages, i.e. the select clause returns a ‘TRUE’ answer when a match

is found. Thus, the language membership for a given query is the decision of whether

the input sequence satisfies the pattern described by the PATTERN construct and the

WHERE conditions. For a query language L, and for a given alphabet Σ, we useD(L)

to denote the class of all the decision problems that can be encoded/expressed as a

query written in L running on a sequence of input symbols from Σ.

A hierarchy of constructs. Here, we start from a restricted version of K*SQL,

then incrementally add back its main constructs, leading to the following hierarchy

of languages: K*SQL1: when we don’t allow any of isElement, nested Kstars, or

query composition; K*SQL2: when we allow nested Kstars but no isElement or

9While we could also derive Theorem 1 from Theorem 5, we inductively prove the former in Sec-
tion 3.7.3, since it gives us a linear-time algorithm for intuitive translation of XPath queries.

33

query composition; and finally K*SQL3: where both nested Kstars and isElement

are allowed but no query composition 10. This hierarchy has enabled us to (i) analyze

the effect of these critical constructs on the usability of the language, (ii) decide on

what extensions are needed for expressiveness and which ones are only syntactic sugar

or help the optimizer, and finally, (iii) compare with other existing languages while

providing insights on a unified approach to querying both words and nested words.

Lemma 2 (K*SQL1). Let A ⊆ Σ∗. The following statements are equivalent:

1. A ∈ D(K*SQL1).

2. A ∈ D(SQL-MR [ZWC07] without query composition).

3. A ∈ D(SASE+ [GAD08] restricted to its ‘strict contiguity’ and ‘partition contigu-

ity’ modes, and without query composition).

4. A ∈ D(Cayuga [Da07]).

K*SQL1 can be formulated using a ‘bounded’ NFA (i.e., contains no loops) where

the transitions between the states are labeled with regular formulas. Moreover, SQL-

TS [SZZ01] becomes a strict subset ofD(K*SQL1), due to the lack of non-determinism

in SQL-TS. The SASE+ language runs in different modes for the matching condition:

strict contiguity, partition contiguity, skip till next match, and skip till any match. The

latter two modes increase the expressiveness of SASE+. Using these modes, SASE+

(under query composition) is equivalent to NFAb [GAD08] which is in turn equivalent

to class of regular languages (when the predicates are regular[GAD08]). This, and the

following lemma lead us to Theorem 4.

Lemma 3 (K*SQL2). Let A ⊆ Σ∗. The following statements are equivalent:

1. A is recognizable using a regular expression (RE).

10Query composition does not add to the expressiveness of K*SQL.

34

2. A ∈ D(K*SQL2).

Theorem 4. D(K*SQL2) is equal to D(SASE+ with query composition).

From SASE+ to K*SQL2. The translation of SASE+ queries into K*SQL2 is

simple. The PATTERN and WHERE clauses of SASE+ are analogous to K*SQL2. How-

ever, SASE+ supports skip till next match and skip till any match in its query modes,

whereby irrelevant tuples in the middle of a match are skipped. To emulate these modes

in K*SQL2, we use wildcards and nested Kstars as follows: every SASE+ pattern X∗

is replaced with (A : B X C)∗ in K*SQL, where B and C are wildcards, thus allowing

arbitrary tuples between consecutive X’s.

In summary, in the absence of aggregates, and once we allow query compositions,

from the previous languages, SQL-MR [ZWC07] (using all match mode), SASE+ [GAD08]

(using its ‘skip till any match’ mode) become equivalent to K*SQL2. Also, Cayuga

under query composition is contained in K*SQL2. This containment is strict, if the

class of DSPACE[log n] problems are strictly contained in NSPACE[log n]. This is

due to Theorem 4 and complexity results from [Da08], showing that Cayuga is a sub-

set of DSPACE[log n] and can express some complete problems in this class.

3.2.3 Monadic Second Order Logic

While the unified support and optimization of sequence and XML queries represent a

significant result, that is ready for commercial deployment, even higher level of ex-

pressive power and more exciting applications can be envisioned with the approach

proposed in this chapter. In fact, the expressive power of K*SQL can be formally

characterized in terms of a recently proposed model, called Visibly Pushdown Lan-

guages (VPL), and thus, K*SQL can query other hierarchical structures besides XML,

35

such as procedural traces and genomic data (e.g., see Section 3.7.2).

Similar to regular languages, VPLs can be recognized by two equivalent represen-

tations: Visibly Pushdown Automata (VPA) and Visibly Pushdown Effects (VPEs)[Pit05].

Also, VPLs are equivalent to languages definable in Monadic Second Order logic with

a matching relation µ, a.k.a. MSOµ [AM04]. For background on VPL and VPE, and

the proof of the following theorem see Section 3.7.5.

Theorem 5 (K*SQL3). K*SQL3 can express all Visibly Pushdown Expressions, and

therefore can recognize all Visibly Pushdown languages and nested words.

3.3 Optimization

Here we briefly cover some of the core ideas that we have developed for the optimiza-

tion of K*SQL.

3.3.1 Compile-time Optimization

At the compile time, we perform two important steps: query rewriting, and pre-

calculating several offline matrices which are used by the optimization engine at run-

time.

3.3.1.1 Query Re-writing

The compiler translates the K*SQL query into a special VPA (Visibly Pushdown Au-

tomata) where the transitions are made based on the predicates of the WHERE clause, and

the states correspond to the pattern variables. The K*SQL parser categorizes the pred-

icates into three types: Context Free (CF), Running Context Sensitive (RCS), and

Final Context Sentitive (FCS). In summary, running predicates (i.e., CF and RCS)

36

are preconditions which are assigned to the states, and are evaluated upon examining

each tuple for that state, while final predicates (i.e., FCS) are postconditions which are

assigned to the outgoing edges, and are examined only upon leaving a state. CF predi-

cates are those predicates whose latest results can be cached in our in-memory history

structure (part of the run-time system). For instance, the results of predicates that in-

volve aggregates, are considered context sensitive (they depend on the assignment of

more than one tuple), and thus, are not cached.

In a naive implementation, an impossible match with a Kstar may not be detected

until the end of the input window, i.e. when the post-conditions are finally checked. To

avoid this, we re-write the FCS predicates into an equivalent form, by splitting them

into a running part (weaker version) and a final one (the stronger condition). This way,

the running part serves as a precondition and prunes many unpromising attempts earlier

on, even before the end of the input is reached. For example, max(B.price) = 18 is

equivalent to B.max(price) ≤ 18 AND max(B.price) = 18 while the first conjunct

in the latter form, is RCS and hence, can be checked as a precondition. Analogous

rewritings are possible for min and count and even for more complex postconditions

involving a combination of these aggregates. Another important case of such query

re-writing applies to our nested constructs. For instance, isElement(B) is split into

two separate checks: (i) the stack for B must be empty in the end, and (ii) the stack

for B must stay valid at all times. Thus, while isElement is by its nature a context

sensitive postcondition, it is translated into FCS and RCS parts. The compile-time

optimizer adds all these weaker preconditions to the WHERE clause, in order to optimize

the execution.

37

3.3.1.2 Off-line Optimization Matrices

K*SQL infers an implication graph [SZZ04] from the WHERE clause to capture the

implications between different parts of the pattern. In order to optimize the pattern

search, several offline tables are pre-calculated which will later guide the pattern search

at run-time. We briefly mention the more important ones (Pj refers to the j’th element

of a given pattern P):

•Jump[j]: How far should the pattern be shifted to the right, if a mismatch occurs

on Pj .

•Next[j]: The earliest position in the pattern that we need to check for a match,

once we shift the pattern by Jump[j].

•NETB (Not Even Try Before): A table to infer and remember the earliest po-

sition before which we should not attempt any matches. This is mainly used for

isElement where the distance between an open and its close tag is used to skip many

unpromising tuples, as soon as a mismatch occurs.

NETB can be simply calculated by recording the matching close tag for each

open tag, and the calculation for the first two are similar to [SZZ04, KMS08] (with

some corrections).

3.3.2 Optimization for Nested Constructs

The main construct of K*SQL for querying hierarchical structures, is the isElement.

The K*SQL system applies several compile-time optimizations for this construct. For

run-time optimizations of the nested constructs, we have developed another algorithm,

called VPSearch which generalizes the Knuth-Morris-Pratt algorithm [KJP77] to the

case of pattern matching over visibly push-down words.

Assume that we are searching for pattern P =〈a〉b〈a〉〈c〉b〈/c〉〈/a〉〈/a〉. Failing to recog-

38

nize the hierarchical structure, any word search algorithm will consider Σ̂ = {a, 〈a〉, 〈/a〉, b,〈b〉,〈/b〉, c,〈c〉, 〈/c〉}

as the alphabet. For instance, KMP [KJP77] or OPS [SZZ04] will start scanning the

input from left to right, until a mismatch occurs, as shown in the example of Fig-

ure 3.3, where the first failure is when P4 mismatches with T4 (step I). Using their

prefix functions, KMP/OPS shift the pattern by 2 positions, and since Next[4] = 2,

their next comparison will be between T4 and P2 (step II). After the second failure,

since Next[2] = 1, those algorithms compare T4 with P1 (step III), and only after the

third failure, they finally move the input pointer to T5.

However, by exploiting the hierarchical structure, we could avoid most of these

unnecessary checks. In fact, by analyzing the pattern P , we knew a priori the distance

of each open tag from its close tag. For instance, for P1, this distance is 7 (since

it matches with P8) while for the second 〈a〉 this distance is 4. Thus, after the first

mismatch in step I , we could immediately infer that T3 is an open tag that closes after

1 tuple, and thus can never match with either of P1 or P3. This would allow us to skip

the next two checks (steps II, III) and immediately resume the search from T7. Note

that KMP/OPS were not able to skip those checks, since they only look at the equality

of the symbols but not at the hierarchical edges.

The observation made above is the main idea behind the VPSearch algorithm where

we use a 2-dimensional prefix array instead of the KMP’s 1-D prefix. In summary,

when the implication graph for a given query is complete, the VPSearch achieves the

same linear-time optimality for nested words as KMP does for words. The memory

complexity is O(d) where d is the maximum depth of the given XML.

39

i 1 2 3 4 5 6 7 8 9 10 11

T 〈a〉 b 〈a〉 〈/a〉 · · · ·

P 〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉

(I) ↑

〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉

(II) ↑

〈a〉 b 〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉

(III) ↑

T : 〈a〉 b
1︷ ︸︸ ︷

〈a〉 〈/a〉 · · ·

P : 〈a〉 b
4︷ ︸︸ ︷

〈a〉 〈c〉 b 〈/c〉 〈/a〉 〈/a〉︸ ︷︷ ︸
7

Figure 3.3: KMP versus VPSearch for pattern matching against visibly pushdown

words.

3.4 Experiments

The goal of our experiments is to study the amenability of K*SQL queries to efficient

execution. Thus, we compare the efficiency of XML queries written in K*SQL to those

run on the state-of-the-art XPath/XQuery engines. We also study the effectiveness of

our optimization on the execution time, as well as the contribution of each of our

optimization techniques to the overall performance.

We have implemented the parser, optimizer and the run-time query execution en-

gine for K*SQL, all in Java. For data I/O and storage, we use the Stream Mill [Ba07a]

API which is an extensible DSMS, providing access methods for both stored and

streaming data.

Experiments were conducted on a 1.6GHz Intel Quad-Core Xeon E5310 Processor

running Ubuntu 6.06, with 4GB of RAM. For complex sequence queries we used real-

world datasets including world crude oil prices11, a year of historical data for the S&P

500 stocks12 (125K records), and more than 7.6M NASDAQ records13 since 1970.
11Official energy statistics of the US government, www.eia.doe.gov
12http://biz.swcp.com/stocks/
13http://infochimps.org/dataset/stocks_yahoo_NASDAQ

40

www.eia.doe.gov
http://biz.swcp.com/stocks/
http://infochimps.org/dataset/stocks_yahoo_NASDAQ

For XML, we used well-known benchmarks: Protein Sequence Database14 (600MB,

avg depth 5), Shakespeare plays15 (8MB, avg depth 6) and XMark [Sa02]. Due to lack

of space and the similarity of the results, for each experiment we only report the results

on one dataset.

3.4.1 XML queries in K*SQL

We used the XMark benchmark to compare the execution time of their queries on

native XML processors, versus the same queries that were run in K*SQL (using our

XPath translation algorithm, Section 3.7.3). We compared against two of the fastest

academic and industrial engines, MonetDB/XQuery [Ba06] and Zorba [Ba09], re-

spectively. Since these two engines are written in C/C++, we transformed our java

bytecodes into binary executables using Excelsior JET 7.0. (Natively coded C/C++

algorithms are typically much faster than JET generated binaries).

Out of the 20 XMark XQuery queries, Q1, Q2, Q5, Q13, Q14, Q15 were eas-

ily expressible in XPath. In Figure 3.4(a), we report the total execution time for these

queries, on an XMark dataset of size 57MB. We have also run several sequence queries

on Nasdaq transactions (embedded in XML tags). For instance, in Figure 3.4(a), S1 is

the ‘V’-shape query (similar to Example 5) that we ran for 20KB of data (the XPath

engines could not easily handle larger data, since the XPath query for finding ‘V’ pat-

terns involves several nested joins). In summary, despite the maturity of the research on

XPath optimization, K*SQL achieves a very competitive performance on conventional

queries, while for sequence queries involving Kstars (such as S1), K*SQL queries are

consistently faster than their XPath counterparts, by several orders of magnitude.

14http://www.cs.washington.edu/research/xmldatasets
15http://www.cafeconleche.org/examples/shakespeare

41

http://www.cs.washington.edu/research/xmldatasets
http://www.cafeconleche.org/examples/shakespeare

(a)

(b) (c)

Figure 3.4: (a) XML queries in K*SQL vs. native XML engines. (b) W-shape pat-

tern in K*SQL: optimized vs. straightforward implementation. (c) Contribution of

different parts of the K*SQL optimization on the overall performance.

3.4.2 Query Execution Time

Sequence queries written in K*SQL enjoy a high level of efficiency through the pro-

posed optimization techniques. Depending on the query and input, our optimization

can improve the execution time of a K*SQL query by several folds. Due to lack of

space, here we only report the results for double-bottom (W-shape) query over the

NASDAQ dataset, shown in Figure 3.4(b). The optimized query runs from 1.5x to 6x

times faster, and the gap becomes larger as the number of input tuples increases.

42

3.4.3 Number of Backtracks

We further evaluated each part of our optimization techniques, in isolation, to gain

better insight on their effect on the execution of K*SQL queries. In Figure 3.4(c),

we report the number of backtracks during the execution of the ‘V’-shape query (i.e.,

A+B+), over Nasdaq transactions, embedded in XML format. Here, we only focus

on two main parts of K*SQL optimization for XML queries, namely VPSearch and

caching—whereby a compact bitmap retains the result of predicate evaluations on the

recent tuples. For this query, on average, caching (which itself uses the implication

graph) reduced the number of unnecessary backtracks by 55% (compared to the naive

implementation). The contribution of VPSearch to the overall performance of this

query is limited (i.e., 16%) due to the low depth (i.e., 3) of the XML structure for Nas-

daq transactions which only allows for a few tags to be skipped after each mismatch.

However, VPSearch combined with the cache structure reduce the backtracks by 70%.

3.5 Related Work

The original SQL-TS language [Sa01, SZZ01, SZZ04], led to the recently proposed

extension of SQL standards called SQL Match-Recognize (SQL-MR) [ZWC07] which

features K*SQL1 kind of constructs. Simple optimizations of nested Kstars were ad-

dressed in [KMS08]. The use of these languages in temporal queries was discussed in

[Zan09a, JS08], and further applications were demonstrated in the recent implementa-

tion of SQL-MR in [Da09].

Another major area that benefits from our proposal is Complex Event Process-

ing (CEP), where pattern matching is a means for discovering complex events. The

SASE language [WDR06], was designed for CEP over data streams, and was recently

extended in SASE+ [GAD08] which provides a special syntax for allowing (i.e., skip-

43

ping) irrelevant tuples in between those that match a given pattern (see Section 3.2.2).

Another CEP system is Cayuga [Da07] that comes with a SQL-like language (called

CEL) for expressing queries over event streams. CEL has a FOLD operator, that skips

an a-priori unknown number of tuples. However, expressing a pattern with more than

one Kstar element requires writing nested queries that are inherently hard to optimize.

The patterns expressible in CEL are a subset of those expressible in SQL-MR. The

CEDR language [Ba07b] also has sequencing operators, but does not support Kstars.

A recent system is the Microsoft CEP server[Aa09] which is based on the LINQ lan-

guage (an extension to .NET, as a built-in query language).

Query automata have been recently proposed [MV09] for the evaluation of MSO

formulas on nested words.

3.6 Summary of K*SQL

In this chapter, we proposed powerful generalizations for the Kleene-closure con-

structs that have recently been the focus of much research and commercial interest.

Our extensions support more complex pattern queries both on linear sequences and

on XML data—in fact the queries supported by XPath are a subset of those supported

by our K*SQL language. The chapter also introduced powerful query optimization

techniques whereby K*SQL can be implemented very efficiently on both relational

sequences and hierarchical data such as XML. Having a unified execution engine that

efficiently supports different data models and their query languages represents an ex-

citing development for both data bases and data stream management systems. There

is also potential for further benefits, given that K*SQL can express Visibly Pushdown

Expressions—a powerful generalization of regular expressions that has been success-

fully applied to software analysis and genomic data. The competitive performance,

compared to mature XML technology, achieved by by K*SQL is remarkable consider-

44

ing that the latter is still in its infancy and provides greater expressive power than Core

XPath 2.0.

3.7 K*SQL Syntax and Expressive Power

3.7.1 K*SQL Syntax

The K*SQL syntax extends the 〈simple table〉 construct of the SQL:2003 standard.

The BNF grammar is provided in Figure 3.5. The definition of several non-terminal

symbols, such as 〈identifier〉 and 〈derived column〉, have been omitted from Fig-

ure 3.5, since they are identical to those in the ANSI/ISO standard16 for SQL:2003.

The syntax for the additional method invocations that K*SQL supports as built-in

functions are as follows. Both open() and close() methods accept an expression of

type string as argument and return a string value. The isElement() function accepts

a 〈column reference〉 as argument and return a boolean value.

Note that throughout the chapter, for clarity purpose, we have used:

〈pattern element base〉 = open/close(〈expression〉)

as a shorthand for:

〈pattern element base〉 · XmlColName = open/close(〈expression〉).

Similarly, we have used

isElement(〈pattern element base〉)

as a shorthand for:

isElement(〈pattern element base〉 · XmlColName).

16ISO/ANSI Foundation (SQL/Foundation), http://www.iso.org.

45

http://www.iso.org

〈simple table〉 ← 〈sequence query spec〉|〈query specification〉

|〈table value constructor〉|〈explicit table〉

〈sequence query spec〉 ← SELECT 〈seq select list〉

〈from clause〉

PARTITION BY 〈column reference〉

〈order by clause〉

〈pattern clause〉

〈where clause〉

〈seq select list〉 ← 〈derived column〉[, 〈derived column〉...]

〈pattern clause〉 ← AS PATTERN ′(′ 〈pattern〉 ′)′

〈pattern〉 ← (〈atomic pattern〉|〈compound pattern〉)[〈pattern〉]

〈atomic pattern〉 ← 〈pattern element〉[〈pattern repetition〉]

〈compound pattern〉 ← (〈pattern element〉 : 〈pattern list〉)[〈pattern repetition〉]

〈pattern element〉 ← 〈identifier〉

〈pattern repetition〉 ← +| ∗ |〈unsigned integer〉

|{〈unsigned integer〉 : 〈unsigned integer〉}

|{ : 〈unsigned integer〉}|{〈unsigned integer〉 : }

〈pattern list〉 ← 〈pattern〉[〈pattern list〉]

〈column reference〉 ← 〈pattern base〉 ′.′ 〈column name〉

〈pattern base〉 ← 〈pattern element〉|〈pattern base〉 ′.′ 〈pattern element〉

| (PREV |NEXT |FIRST |LAST) ′(′ 〈pattern base〉 ′)′

Figure 3.5: Formal syntax for K*SQL. The starting rule for K*SQL is

〈sequence query spec〉, which extends the 〈simple table〉 construct of SQL:2003.

3.7.2 K*SQL for Other Domains

As briefly mentioned in Section 3.1.2, the power of K*SQL in querying linear-hierarchical

data is not limited to XML, and its isElement construct is not dependant on a partic-

ular SAX representation. To see the latter, note that isElement(B) is used as a short-

hand for isElement(B.myXmlTag) where we could replace myXmlTag with any other

46

column name under which the original xml tags are stored (same applies to open() and

close()). Also, these constructs are not XML-specific: in general, for any domain that

can be represented by nested words, the user only needs to redefine the open() and

close() functions, which are, internally invoked by isElement(), and thus, we do

not need to re-implement isElement for every new domain. For instance, in running

static analysis over programming traces, the open() function detects a function call,

while the close() detects it’s corresponding return statement(s). Similarly, in RNA

sequences (genomics), intra-strand base pairing occurs between guanine (G) and cyto-

sine (C) pair which can be modeled as corresponding open and close symbols, and so

can adenine (A) and uracil (U) pair (see [Aa90, AM04] for more on the representation

of RNAs as nested words.).

3.7.3 Proof of Theorem 1 (Algorithm)

Here, we provide a simple constructive proof for Theorem 1, that shows we can al-

gorithmically construct an equivalent K*SQL query for any given XPath expression.

Our algorithm starts by rewriting the leftmost axis-step into a K*SQL query. Then,

at each step, iteratively, the pattern clause of the existing K*SQL query is updated,

depending on the type of the current axis specifier. The predicates on the current level

of XML nodes are moved to the WHERE clause of K*SQL, while nested expression

patterns are independently translated into K*SQL, which then will be intersected with

the answer set of the current K*SQL query.

To focus on the navigational fragment of XPath, in the following, we use the syn-

tax of core XPath 1.0 [CM07b] combined with XPath 2.0 [CM07a]. This syntax is

presented in Figure 3.6. To further simplify the discussion, we also omit the ‘refer-

ence’ and ‘for loop’ of XPath 2.0, as they can be trivially emulated in K*SQL using

variables and conjunctions, respectively.

47

Axis := self | child | parent

| descendant | ancestor

| following | preceding

| following sibling | preceding sibling

NameTest := QName | *

Step := Axis::NameTest | Axis::NameTest[NodeExpr]

PathExpr := Step

| PathExpr/Step

| PathExpr union PathExpr

| PathExpr intersect PathExpr

| PathExpr except PathExpr

NodeExpr := PathExpr | not NodeExpr

| NodeExpr and NodeExpr

| NodeExpr or NodeExpr

Figure 3.6: Syntax of Core XPath 1.0 combined with 2.0.

In core XPath, the start production is PathExpr. We inductively translate a

PathExpr into an equivalent K*SQL query. Whenever the production rule is ‘union’,

‘intersect’, or ‘except’ we rewrite the expression into separate paths, and then induc-

tively, translate each path expression independently; in the end we use respectively use

union operator |, K*SQL intersection, and negation of the predicates to combine the

sub-queries. Therefore, we only need to concentrate on the PathExpr/Step pro-

duction. As our induction hypothesis we assume that we know how to translate the

first k− 1 steps of the given expression from the left, into an equivalent K*SQL query,

as follows:

SELECT Xi1 , · · · , Xik

FROM XmlStream

ORDER BY tokenId

AS PATTERN ((X1 : A1 · · · E∗j · · · (X2 : A2 · · · B2)ˆt2 · · · B1)ˆt1

· · · E∗j′ · · · (X3 : A3 · · · B3)ˆt3)

48

WHERE where clause

After translating each step, the pattern clause consists of a list of well-nested elements,

i.e. (Xi : Ai · · ·Bi) or E∗j where Ai and Bi are corresponding open/close tags and Ej

is a well-nested element. The ti’s denote the occurrence of their element, i.e. whether

they are a star element (ti = ∗,+) or a simple singleton (ti = 1). The select clause

outputs a subset of Xi’s, such that the selected tuples are precisely the XML tags that

correspond to the XPath expression upto the current Step. For the base case of k = 1,

the select and where clauses are empty and the pattern clause consists of a simple (E∗0).

Now, assuming that we have an K*SQL query in the format above that is equivalent

to the first (leftmost) k − 1 steps of the given PathExpr, we show how to construct

a new K*SQL query that is equivalent to the first k > 0 steps. Depending on the

Axis of the k’th step, we have the following cases for Axis::NameTest (node

filter [NodeExpr] is addressed separately):

self: If the NameTest is a QName, for every Xi in the current select clause, we

add the following predicate to the where clause: Ai = open(QName). When the

NameTest is ‘*’ we do not need to change the where clause.

child: For every Xi in the current select clause, we replace it with all of its ‘imme-

diate children’ in the current pattern definition, as follows: an immediate child of Xi is

defined as either an Ejtj or an (Xj : Aj · · ·Bj)
tj that appears between Ai and Bi with-

out being enclosed in any sub-patterns of Xi. For the immediate children of Xi that

are of form Xj , we just add Xj to the select clause, while for the immediate children

of form Ej
tj , we first replace them with the new17 pattern Ej1

∗(Xj : AjEj2
∗Bj)

tjEj3
∗,

and then we add the new Xj to the select clause. Trivially, in the where clause we de-

clare all the new E,A and B variables as isElement, open and close, respectively.

17In this proof, whenever we add new variables to the pattern clause we assure that the new variable
names are different from the existing names.

49

In the end, we remove the original Xi and also duplicate Xj’s from the select clause.

The where clause is also updated to reflect the NameTest requirement, similar to the

‘self’ axis above.

parent: For every Xi in the current select clause, we replace it with its ‘imme-

diate parent’ in the current pattern definition, as follows: an immediate parent of Xi

is defined as the first upper level (Xj : Aj · · ·Bj) that encloses Xi. If such Xj does

not exist for a given Xi (i.e., when Xi is the root element) we eliminate Xi from the

select clause without adding any new variables. Otherwise, we replaceXi withXj and

update the where clause appropriately to reflect the NameTest requirement for Aj .

Duplicate X variables are removed from the select clause to avoid identical outputs.

descendant (ancestor): For everyXi in the current select clause, we replace it with

its ‘descendants’ (‘ancestors’), as follows: a descendant (ancestor) of Xi is defined as

either an Ej
tj or an (Xj : Aj · · ·Bj)

tj (for ancestor, it can be only of form (Xj :

Aj · · ·Bj)
tj) that is enclosed between Ai and Bi (for ancestor, Xj should be enclosing

Xi definition). For the descendants of Xi that are of form Xj , we just add Xj to the

select clause, while for the descendants of form Ej
tj , we first replace them with the

new pattern Ej1
∗(Xj : AjEj2

∗Bj)
tjEj3

∗, and then we add the new Xj to the select

clause. (For ancestors, we simply replace Xi with all its ancestor Xj’s.) Trivially, in

the where clause we declare all the new E,A and B variables as isElement, open

and close, respectively. In the end, we remove the original Xi and also duplicate the

Xj’s from the select clause. The where clause is also updated to reflect the NameTest

requirement for Aj .

following sibling (preceding sibling): For every Xi in the current select clause,

we replace it with its ‘next’ (‘previous’), as follows: next (previous) of Xi is defined

as the variable that immediately follows (precedes) the definition of Xi in the pattern

clause, and has the same immediate parent as Xi. If such a variable does not exist,

50

we simply remove Xi from the select clause. If the next (previous) is of form Xj ,

we just add Xj to the select clause, while for variables of form Ej
tj , we first replace

them with the new pattern (Xj : AjEj1
∗Bj)Ej2

tj (for previous, we replace Ejtj with

Ej2
tj(Xj : AjEj1

∗Bj)), and then we add the new Xj to the select clause. Trivially, in

the where clause we declare all the new E,A and B variables as isElement, open

and close, respectively. In the end, we remove the original Xi and also duplicate Xj’s

from the select clause. The where clause is also updated to reflect the NameTest

requirement for Aj .

following (preceding): For everyXi in the current select clause, we replace it with

its ‘rights’ (‘lefts’), as follows: right (left) of Xi is defined as any variable that follows

(precedes) the definition of Xi in the pattern clause. If no such variable exists, we

simply remove Xi from the select clause. If the right (left) is of form Xj , we just add

Xj to the select clause, while for variables of form Ej
tj , we first replace them with

the new pattern Ej1
tj(Xj : AjEj2

∗Bj)Ej3
tj , and then we add the new Xj to the select

clause. Trivially, in the where clause we declare all the new E,A and B variables as

isElement, open and close, respectively. In the end, we remove the original Xi and

also duplicate Xj’s from the select clause. The where clause is also updated to reflect

the NameTest requirement for Aj .

Adding node filters. In navigational XPath [CM07b], node expressions are used

as node filters, with an existential semantic, i.e. R[N] is the subset of nodes satisfying

path expression R from which node expression N evaluates to at least one node. Thus,

for translating a path expression R[N], we apply the process above to translate R

first, then by appending N to R we have another path expression that can be similarly

translated into a separate query in K*SQL, which then will be added as a conjunct.

When the node expression contains ‘not’ we first negate the pattern (through its where

clause) and then add it a conjunct; Similarly, for node expressions with ‘or’/‘and’, we

51

use disjunctive/conjunctive sub-queries, accordingly.

For instance, for translating R[N1 or N2] we will have:

SELECT select clause for R

· · ·

WHERE where clause AND (

EXISTS (K*SQL query for R/N1)

OR EXISTS (K*SQL query for R/N2))

3.7.4 XPath for Sequence Queries

XPath is strictly subsumed by K*SQL. Core XPath 2.0 represents a fragment of

XPath that is complete for First Order (FO) logic for trees [CM07b]. From Theorem 5

we know that K*SQL is as expressive as VPLs which are equivalent to monadic second

order (MSO) logic over nested words [Pit05]. Thus, K*SQL is strictly more expressive

than Core XPath 2.0.

Optimization of sequence queries in XPath/XQuery. While there are MSO

queries over XML that cannot be expressed in Core XPath 2.0 (e.g., modulo count-

ing [Pot94] such as returning every 4’th tag), and FO queries that cannot be expressed

in Core XPath 1.0 (see [CM07b] for an example), in practice, the main deficiency of

XQuery and XPath in expressing sequence queries lies in the inevitable complexity

of such queries, which compromises their optimization and readability. For instance,

consider the following simple sequence query over XML:

Example 7. For the following stock data xml, find the decreasing sequences of con-

secutive close prices, with length at least 1.

<Stocks>

<Stock close="0.98"/>

<Stock close="0.95"/>

52

....

</Stocks>

Below is a possible way of writing this query, which clearly exemplifies the limited

room for optimizations of such complex queries in XPath/XQuery18:

<results>{

for $t1 in doc("mydoc.xml")//Stock

return <result><head>{$t1/@close}{

for $t4 in $t1/following-sibling::Stock

let $x:=(for $x in $t1/following-sibling::Stock

where $x<<$t4 return $x)

where $t4/@close<=$t1/@close

and (every $t2 in $x satisfies

$t2/@close<=$t1/@close and

$t2/@close>=$t4/@close)

and (every $t2 in $x, $t3 in for $x in

$t2/following-sibling::Stock

where $x<<$t4 return $x

satisfies $t2/@close>=$t3/@close

and $t3/@close>=$t4/@close)

return <tail>{$t4/@close}</tail>

}</head></result>}</results>

This situation becomes significantly worse if we want to search for several Kstar

patterns. However, such queries can be easily represented as a regular expression in

K*SQL (see Example 5).

3.7.5 From VPE to K*SQL

Background on Visibly Pushdown Expressions. The class of visibly pushdown lan-
18None of the available XQuery engines were able to execute this query on any XML document larger

than a few kilobytes.

53

guages (VPL) has been proposed [AM04] as embeddings of context-free languages

that is rich enough to model data with hierarchical relations (such as XML, software

analysis, and RNA) and yet is tractable and robust like the class of regular languages.

Visibly pushdown automata (VPA) recognize VPLs, where the input symbol deter-

mines when the stack should be pushed or popped.

Pitcher [Pit05] generalized the notion of regular expressions for representing VPLs,

called Visibly Pushdown Expressions (VPE). VPEs represent another equivalent no-

tion for VPLs: every VPL can be expressed as a VPE, and every VPE can be translated

into a monadic second order logic (MSO) over a nested relation, and there exists a VPA

that accepts the same language that that VPE expresses. Below is the formal definition

of a VPE:

The symbol patterns used in a VPE are defined as follows (where Σc, Σr and Σi

are the set of call, return and internal symbols, respectively):

p :: = a (symbols, a ∈ Σc ∪ Σr ∪ Σi)

| p+ p (union)

| ¬p (complement)

| ∼c (wildcard for Σc)

| ∼r (wildcard for Σr)

| ∼i (wildcard for Σi)

In the following, we use the abbreviation p1&p2 to denote ¬(¬p1 + ¬p2). Also, Pc
refers to all symbol patterns of the form ∼c &p, and so on. Thus, a well-matched VPE

54

(denoted as T) is defined as:

T :: = φ (empty set)

| () (empty sequence)

| p (symbol pattern where, p ∈ Pi)

| p1[T]p2 (element, p1 ∈ Pc, p2 ∈ Pr)

| T.T (concatenation)

| T + T (union)

| T&T (intersection)

| A (VPE variable)

| T∗ (repetition)

And finally, below is the grammar for VPEs:

S :: = T (Well-nested VPE)

| p (symbol pattern)

| S.S (concatenation)

| S ⊕ S (overlapped concatenation)

| S + S (union)

| S&S (intersection)

| S∗ (repetition)

Here, the⊕ operator insists that the last symbol of the first string is the same as the

first symbol of the second string, e.g. a⊕ a.b = a.b, but a⊕ (b+ c) denotes an empty

language. Next, we show how our K*SQL3 language can encode any arbitrary VPE.

3.7.5.1 Proof of Theorem 5

Proof. We prove this by induction, with the base case being the expression of the

symbol patterns.

55

Expressing symbol patterns (SP). An arbitrary symbol a in K*SQL3 is a simple

pattern A with a predicate A = a. The union of two SPs A and B can be written as

A|B in the pattern clause with the disjunction of their predicates in the where clause.

The complement of p is derived by negating the predicates of the K*SQL3 query for p.

Wildcards for calls, returns and internal symbols can be encoded using simple checks,

e.g. A = c1 OR · · · OR A = ck for all ci ∈ Σc and so on.

Expressing well-matched VPEs. Empty sets and sequences are trivial. SPs p ∈ Pi are

derived by encoding p inductively, and then adding a conjunctive predicate to enforce

that all the symbols are internal. For p1[T]p2, once we recursively encode p1, T and

p2, we append their patterns and conjunct their predicates. Note that according to our

induction assumption, p1 and p2 are guaranteed to be made of open and close tags, i.e.

using predicates. Concatenation is encoded by first renaming all the variables such that

the two K*SQL3 queries do not share any variables. Then, we append the pattern parts

of the queries and conjunct their predicates. Intersection, VPE variables and repetition

(a.k.a. Kstar) are directly supported by K*SQL3.

Expressing arbitrary VPEs. T and p can be encoded by our induction assumption.

Concatenation, union, intersection and repetition are encoded similarly to their well-

matched counterparts. Note that K*SQL3 does not require the pattern to be well-

nested, e.g. a check for an open tag does not have to be accompanied by a correspond-

ing check for its close tag. The overlapped concatenation, S1 ⊕ S2, will be encoded as

follows. We rename all the variables of the K*SQL3 patterns for S1 and S2, to assure

that they do not share any variable names. Assume that the first variable of S2 is v2

and the last variable of S1 is v1. We conjunct the predicates of the K*SQL3 queries

for S1 and S2, and append their patterns. We then add the following predicate to the

resulting K*SQL3 query as a conjunctive term: last(v1) = first(v2).

56

3.7.6 Aggregates and Complexity

Similar to other practical query languages, K*SQL also allows certain aggregates to

appear in the predicates. For instance, SASE+ allows any associative aggregation

operation with an identity element and an NC1 iterated multiplication algorithm. Once

we allow the same set of aggregates in K*SQL and all of the languages discussed in

Section 3.2.2, we will achieve similar complexity results.

For instance, the ordered graph reachability problem (called oREACH) can be

expressed in a simple SASE+ query (using its ‘skip till any match’ mode) without

using any aggregates [Da08]. Thus, according to Theorem 4, K*SQL2 can also ex-

press oREACH which is NSPACE[log n]-complete. However, even after allowing the

aforementioned class of aggregates in K*SQL2, the new language will be still con-

tained in NSPACE[log n], since similarly to SASE+, the formulas can be simulated in

NC1, where for the aggregates we perform a partial-prefix computation. Similarly for

K*SQL3, after allowing such aggregates, the new language will be still contained in

NSPACE[log n].

Thus, in summary, both K*SQL2 and K*SQL3, once enhanced with predicates

that have aggregate functions discussed above, can express a subset of NSPACE[log

n] including some problems that are complete for NSPACE[log n].

57

CHAPTER 4

XSeq: High-Performance Complex Event Processing

over Hierarchical Data

XPath is an important query language on its own merits and also because it serves as

the kernel of other languages used in a wide range of applications, including XQuery,

several graph languages [SS09], and OXPath for web information extraction [FGG11].

Much work has also focused on the efficient support for XPath in the diverse com-

putational environments required by these applications. In particular, finite state au-

tomata (FSA) have proven to be very effective at supporting XPath queries over XML

streams [Koc09], and are also apt at providing superior scalability through the right

mix of determinism versus non-determinism. In fact, numerous XML engines have

been successfully built for efficient and continuous processing of XML streams [CDZ06,

PC03, OKB03, Ba03, JFB05, Fa03, DAF03]. All these systems support full or frag-

ments of XPath or XQuery, and thus, naturally inherit the pros and cons of these lan-

guages. The simplicity of XPath and the generality of XQuery have made them very

successful and effective for general-purpose applications. However, these languages

lack explicit constructs for expressing Kleene-* and sequential patterns—a vital re-

quirement in many CEP applications1. As a result, while the existing engines remain

1There are several definitions of CEP applications [BGH09, Luc01, WDR06], but they commonly
involve three requirements: (i) complex predicates (filtering, correlation), (ii) temporal/order/sequential
patterns, and (iii) transforming the event(s) into more complex structures. In this paper we mainly focus
on (i) and (ii) while achieving (iii) represents a direction for future research, e.g. by embedding our
language (called XSeq) inside XSLT.

58

very effective in general-purpose applications over XML streams, their usability for

CEP applications (that involve complex patterns) becomes highly limited as none of

these engines provide any explicit sequencing/Kleene-* constructs over XML.

To better illustrate the difficulty of expressing sequence queries in existing XML

engines (that mostly support fragments of XPath/ XQuery), in Fig. 4.1 we have ex-

pressed a common query from stock analysis in XPath 2.0, where the user is interested

in a sequence of stocks with falling prices2. As shown in this example, due to the

lack of explicit constructs for sequencing and Kleene-* patterns, the query in XPath/

XQuery is very hard to write and understand for humans and is also difficult to op-

timize. We will return to this query in Section 4.2, and show that it can be easily

expressed using simple sequential constructs (see Example 16 and Query 9). In fact,

it is not a surprise that the general-purpose XML engines perform two orders of mag-

nitude slower on these complex sequential queries than the same queries expressed

and executed in XSeq (the language and system presented in this chapter), whereby

explicit constructs for Kleene-* patterns and effective VPA-based optimizations allow

for high-performance execution of CEP queries.

These limitations of XPath are not new, as several extensions of XPath have been

previously proposed in the literature [Cat06, CM07b, CM07a]. However, the efficient

implementation of even these extensions (often referred to as Regular XPath) remained

an open research challenge, which the papers proposing said extensions did not tackle

(neither for stored data nor for data streams). In fact, the following was declared to be

an important open problem since 2006 [Cat06]: “Efficient algorithms for computing

the transitive closure of XPath path expressions”.

Fortunately, significant advances have been recently made in automata theory with

the introduction of Visibly Pushdown Automata [AM04, AM06]. VPAs strike a bal-

2In fact, in practice, stock queries tend to be much more complex, e.g. in a wedge pattern (www.
investopedia.com), the user seeks an arbitrary number of falling and rising phases of a stock.

59

www.investopedia.com
www.investopedia.com

<result>{

for $t1 in doc("auction.xml")//Stock[@stock_symbol=‘DAGM’]

return <head>{$t1/@close}{

for $t4 in $t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $t4/@close<=$t1/@close

and (every $t2 in

for $x in

$t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4

return $x satisfies $t2/@close<=$t1/@close

and $t2/@close>=$t4/@close)

and (every $t2 in

for $x in

$t1/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4 return $x,

$t3 in for $x in

$t2/following-sibling::Stock[@stock_symbol=‘DAGM’]

where $x<<$t4

return $x satisfies $t2/@close>=$t3/@close

and $t3/@close>=$t4/@close)

return <bottom> {$t4/@close} </bottom>

} </head>

}</result>

Figure 4.1: A query in XPath 2.0/XQuery for a sequence of ‘falling price’ in Nasdaq’s

XML.

ance between expressiveness and tractability: unlike pushdown automata (PDA), VPAs

have all the appealing properties of FSA (a.k.a. word automata). For instance, VPAs

enjoy higher expressiveness (than word automata) and more succinctness (than tree

automata), while their decision complexity and closure properties are analogous to

60

word automata, e.g., VPAs are closed under union, intersection, complementation,

concatenation, and Kleene-*; their deterministic versions are as expressive as their

non-deterministic counterparts; and membership, emptiness, language inclusion and

equivalence are all decidable [AM04, AM06]. However unlike word automata, VPAs

can model and query any well-nested data, such as XML, JSON files, RNA sequences,

and software traces [AM06]. What these seemingly diverse set of formats have in

common is their dual-structures: (i) they all have a sequential structures (e.g. there is

a global order of the tags in a JSON or XML file based on the order that they appear

in the document), (ii) they also have a hierarchical structure (when XML elements or

JSON objects are enclosed in one another), but (iii) this hierarchical structure is well-

nested, e.g. the open tags in the XML documents match with their corresponding close

tags. Data with these properties can be formally modeled as Nested Words or Visibly

Pushdown Words [AM04, AM06]. (We have included a brief background on nested

words and VPAs in Chapter 2.) Throughout this chapter we refer to such formats as

‘XML-like’ data, but for the most part we focus on XML3.

Although these new types of automata can bring major benefits in terms of expres-

sive power, to the best of our knowledge, their optimization and efficient implementa-

tion in the context of XPath-based query languages have not been explored before. Fur-

thermore, the recently proposed query language K*SQL (See Chapter 3) used VPAs

to achieve good performance and expressivity levels needed to query both relational

and XML streams. However, while very natural for relational data, K*SQL is quite

procedural and verbose for XML, whereby the equivalents of simple XPath queries

are long and complex K*SQL statements. Hence, in this chapter, we introduce the

XSeq language which succinctly achieves new levels of expressive power supported

by a very efficient implementation technology. XSeq extends XPath with powerful
3Using XSeq to query other XML-like data (e.g. JSON, RNA, software traces) is straightforward

and only involves introducing domain-specific interfaces on top of XSeq, e.g. see [ZYM13] for a few
examples of such interfaces.

61

constructs that support (i) the specification of and search for complex sequential pat-

terns over XML-like structures, and (ii) efficient implementation using the Kleene-*

optimization technology and streaming Visibly Pushdown Automata (VPA).

Being able to compile complex pattern queries into equivalent VPAs has sev-

eral key benefits. First, it allows for expressing complex queries that are common

in CEP applications. Second, it allows for efficient stream processing algorithms.

Finally, the closeness of VPAs under union operation creates the same opportuni-

ties for CEP systems (through combining their corresponding VPAs) that the close-

ness of NFAs (non-deterministic finite automata) created for publish-subscribe sys-

tems [DAF03, VMT07, LZ12], where simultaneous processing of massive number of

queries becomes possible through merging the corresponding automata of the individ-

ual queries.

Contributions. In summary, we make the following contributions:

1. The design of XSeq, a powerful and user-friendly query language for CEP over

XML streams or stored sequences.

2. An efficient implementation for XSeq based on VPA-based query plans, and

several compile-time and run-time optimizations.

3. Formal results on the expressiveness of XSeq, and the complexity of its query

evaluation and query containment.

4. An extensive empirical evaluation of XSeq system, using several well-known

benchmarks, datasets and engines.

5. Our XSeq engine can also be seen as the first optimization and implementation

for several of the previously proposed languages that are subsumed in XSeq but

62

were never implemented (e.g. Regular XPath [Cat06], Regular XPath(W) [CS08]

and Regular XPath≈ [CM07b]).

Organization. We present the main constructs of our language in Section 4.1 using

simple examples. The generality and versatility of XSeq for expressing CEP queries

are illustrated in Section 4.2 where several well-known queries are discussed. Our

query execution and optimization techniques are presented in Section 4.3. In order

to study the expressiveness and complexity of our language, we first provide formal

semantics for XSeq in Section 4.4, which is followed by our formal results in Sec-

tion 4.5, including the translation of XSeq queries into VPAs, their MSO-completeness

and their query evaluation and query containment complexities. Our XSeq engine is

empirically evaluated in Section 4.6, which is followed by an overview of the related

work in Section 4.7. Finally, we conclude in Section 4.8.

4.1 XSeq Query Language

In this section, we briefly introduce the query language supported by our CEP system,

called XSeq. The simplified syntax of XSeq is given in Fig. 4.2 which suffices for

the sake of this presentation. Below we explain the semantics of XSeq via simple

examples. We defer the formal semantics to Section 4.4.

63

XSeqQuery ← [′return′ Output ′from′] Pattern

[′where′ Condition] [′partition by′ Pattern]

Output ← Operand [′,′ Output]

Pattern ← [′doc()′] PathExpr

PathExpr ← Step | PathExprDefinition

| PathExpr PathExpr | ′(′ PathExpr ′)′ ′∗′

| PathExpr ′union′ PathExpr

| PathExpr ′intersect′ PathExpr

PathExprDefinition ← ′(′ V ariable ′ :′ PathExpr ′)′

Step ← Axis NameTest Predicate *

Axis ← AxisSpecifier ′ ::′ | AbbreviatedAxisSpecifier

AxisSpecifier ← ′self ′ | ′child′ | ′parent′ | ′descendant′

| ′ancestor′ | ′attribute′ | ′following sibling′

| ′preceding sibling′| ′first child′

| ′immediate following sibling′

AbbreviatedAxisSepcifier ← ′ ·′ | ′/′ | ′//′ | ′@′ | ′\′ | ′/\′

NameTest ← QName | ′ ∗′ | V ariable | KindTest

KindTest ← ′node()′ | ′text()′

Predicate ← ′[′ (Pattern | Condition) ′]′

Condition ← BoolExpr

Operand ← Constant | Aggregate ′(′ ArithmeticExpr ′)′

| Alias PlainStep * (AttributeStep | TextStep)

PlainStep ← Axis QName

AttributeStep ← (′attribute′ ′ ::′ | ′@′) QName

TextStep ← (′child′ ′ ::′ | ′/′) ′text()′

Aggregate ← ′max′ | ′min′ | ′count′ | ′sum′ | ′avg′

Alias ← SequenceAlias | PlainAlias

SequenceAlias ← (′prev′ | ′first′ | ′last′) ′(′ V ariable ′)′

PlainAlias ← V ariable

Figure 4.2: XSeq Syntax (QName, Variable, BoolExpr, Constant, and ArithmeticExpr

are defined in the text).

64

Inherited Constructs from Core XPath. The navigational fragments of XPath 1.0

and 2.0 are called, respectively, Core XPath 1.0 [CM07b] and Core XPath 2.0 [CM07a].

The semantics of these common constructs are similar to XPath (e.g., axes, attributes).

Other syntactic constructs of XPath (e.g., the following axis) can be easily expressed

in terms of these main constructs (see [CM07a]). In XSeq there are two new axes to ex-

press the immediately following 4 notion, namely first child and immediate following

sibling, which are described later on. Some of the axes in XSeq have shorthands:

Axis Shorthand

self .
child /

descendant //

attribute @

following sibling λ (empty string, i.e. default axis)

first child /\

immediate following sibling \

Conditions. In XSeq, a Condition can be any predicate which is a boolean com-

bination of atomic formulas. An atomic formula is a binary operator applied to two

operands. A binary operator is one of =, 6=, <, >, ≤, ≥. An operand is any algebraic

combination (using +, -, etc.) and aggregates of string or numerical constants, and the

attributes or text contents of variable nodes.

Example 8 (A family tree.). Our XML document is a family tree where every node

has several attributes: Cname (for name), Bdate (for birthdate), Bplace (for the city of

birth) and each node can contain an arbitrary number of sub-entities Son and Daugh-

ter. Under each node, the siblings are ordered by their Bdate.

In the following, we use this schema as our running example.
4XSeq does not have analogous operators for immediately preceding since backward axes of XPath

are rarely used in practice.

65

Example 9. Find the birthday of Mary’s sons.

Query 1. //daughter[@Cname=‘Mary’] /son /@Bdate

Kleene-* and parentheses. Similar to Regular XPath [Cat06] and its dialects [CM07b,

CS08], XSeq supports path expressions such as /a(/b/c)∗/d, where a Kleene-* ex-

pression A∗ is defined as the infinite union · ∪ A ∪ (A/A) ∪ (A/A/A) ∪ · · ·

Example 10. Find those sons born in ‘New York’, who had a chain of male descen-

dants in which all the intermediary sons were born in ‘Los Angeles’ and the last one

was again born in ‘New York’. For all such chains, return the name of the last son.5

Query 2. // son[@Bplace=‘NY’] (/son[@Bplace=‘LA’])* /son[@Bplace=‘NY’] /@Cname

The parentheses in ()∗ can be omitted when there is no ambiguity. Also, note the

difference between the semantics of (/son)∗ and //son: the latter only requires a son

in the last step rather than the entire path.

Syntactic Alternatives. In XSeq, the node selection conditions can be alternatively

moved to an optional where clause, in favor of readability. When a condition is moved

to the where clause, its step should be replaced with a variable (variables in XSeq start

with $). Also, similarly to XPath 2.0 and XQuery, the query output in XSeq can be

moved to an optional return clause. Query 3 below is an alternative way of writing

Query 2 in XSeq. Here, tag($X) returns the tag name of variable $X .

Query 3. return $B@Cname

from //son[@Bplace=‘NY’] (/$A)* /$B[@Bplace=‘NY’]

where tag($A)=‘son’ and $A@Bplace=‘LA’ and tag($B)=‘son’

For clarity, in this chapter we mainly use this alternative syntax.

5This is an example of a well-known class of XML queries which has been proven [Cat06] as not
expressible in Core XPath 1.0.

66

Order Semantics, Aggregates. XSeq is a sequence query language. Therefore, unlike

XPath where the input and output are a set (or binary relation), in XSeq the XML

stream is viewed as a pre-order traversal of the XML tree. Thus, both the input and the

output of an XSeq query are a sequence. The XML nodes are ordered according to6

their relative position in the XML document.

As a result, besides the traditional aggregates (e.g., sum, max), XSeq also supports

sequential aggregates (SeqAggr in Fig. 4.2) which are only applied to variables under

a Kleene-* For instance, the path expression /son(/$X)∗, last($X) @name returns the

name of the last X in the (/$X)∗ sequence. Similarly, first($X) returns the first node

of the (/$X)∗ and prev($X) returns the node before the current node of the sequence.

Finally, $X @Bdate > prev($X) @Bdate ensures that the nodes that match (/$X)∗ are

in increasing order of their birth date.

Siblings. Since XSeq is designed for complex sequential queries, its default axis (i.e.

when no explicit axis is given) is the ‘following sibling’. The omission of the ‘follow-

ing sibling’ allows for concise expression of complex horizontal patterns.

Example 11. Find all the younger brothers of ‘Mary’.

Query 4. return $S@Cname

from //$D[@Cname=‘Mary’] $S

where tag($D)=‘daughter’ and tag($S)=‘son’

Here, since no other axes appear between D and S, they are treated as siblings.

Immediately Following. This is the construct that gives XSeq a clear advantage over

all the previous extensions of XPath in terms of expressiveness, succinctness and op-

timizability. We believe that one of the main shortcomings of the previous XML lan-

guages for CEP applications is their lack of explicit constructs for expressing the notion

6When a WINDOW is defined over the XML stream, the input nodes can be re-ordered. For sim-
plicity of the discussion, we do not discuss re-ordering.

67

of ‘immediately following’ (see Section 4.2). Thus, to overcome this, XSeq provides

two explicit axes, \ and /\, for immediately following semantics. For example, Y\X

will return the immediately next sibling of node Y, while Y/\X will return the very first

child of node Y. Similarly to other constructs, these operators return an empty set if no

such node can be found, e.g., when we are at the last sibling or a node with no children.

Example 12. Find the first two elder siblings of ‘Mary’.

Query 5. return $X@Cname, $Y@Cname

from //daughter[@Cname=‘Mary’] \$X \$Y

Example 13. Find the second child of ‘Mary’.

Query 6. return $Y@Cname

from //daughter[@Cname=‘Mary’] /\$X \$Y

Partition By. Inspired by relational Data Stream Management Systems (DSMS),

XSeq supports a partitioning operator that is very essential for many CEP applica-

tions. Nodes can be partitioned by their key, so that different groups can be processed

in parallel as the XML stream arrives. Although this construct does not add to the

expressiveness, it provides a more concise syntax for complex queries and better op-

portunities for optimization. However, XSeq only allows partitioning by an attribute

field and requires that except this attribute, the rest of the path expression in the parti-

tioning clause be a prefix of the path expression in the from clause. This constraint is

important for ensuring efficiency and also for avoiding queries with ill semantics.

Example 14. For each city, find the oldest male born there.

By knowing the cities that are present in our XML, we could write several queries,

one for each city e.g., min(//son[@Bplace =′ LA′] @Bdate). However, in streaming

applications such information is generally not provided a priori. Moreover, instead of

68

running several queries over the same stream, an explicit partition by clause allows

for simultaneous handling of different key values and is much easier to optimize. For

instance:

Query 7. return $X @Bplace, min($X @Bdate)

from //$X

where tag($X) = ‘son’

partition by //son @Bplace

Path Complementation. XSeq does not provide explicit constructs for path com-

plementation (e.g., except in XPath 2.0). This restriction does not reduce XSeq’s

expressivity, as it has been shown that path complementation can be expressed using

Kleene-* and path intersection [CL09]. The reason behind this restriction in XSeq is

that, by forcing the programmer to simulate the negation with other constructs, the

resulting query is often more amenable to optimization. For instance, the query of

Example 10 could be expressed in XPath 2.0 using their except operator as:

//son[@Bplace=‘NY’]//son[@Bplace=‘NY’]@Cname

except

//son[@Bplace=‘NY’]//son[@Bplace != ‘LA’]//son[@Bplace=‘NY’]@Cname

However, as shown in Query 2, this query can be expressed in XSeq without using the

negation.

Path Variables. In Query 3, we showed how variables in XSeq could replace the

NameTest of a Step. Such variables are called step variables. In practice, and in fact

in all the real world examples of Section 4.2, we hardly need any feature beyond these

step variables. However, for more expressive power7, XSeq also supports the so-called

path variables that can replace path expressions, as shown in the PathExprDefinition

rule of Fig. 4.2.
7This particular feature of XSeq is interesting from a theoretical point of view, as it makes the

language Monadic Second Order (MSO)-complete, thus, subsuming previous extensions of XPath.

69

Example 15. Find daughter followed by a sequence of siblings with alternating gen-

ders, namely daughter, son, daughter, son, and so on.

Query 8. return first($Z) $X @Cname

from // ($Z: $X $Y $Z)

where tag($X) = ‘daughter’ and tag($Y) = ‘son’

This query defines the path variable $Z as $X $Y $Z which means $Z is re-

cursively defined as $X $Y followed by itself. In this particular example, ($Z :

$X $Y $Z) is equivalent to ($Z : $X $Y)∗, but in general not all recessive path

variables can be replaced with Kleene-*8. Also, note that path variables do not have to

be recursive, e.g. $Z in ($Z : $X $Y)∗ is a valid path variable too.

The same step variable can appear multiple times in the from clause. However,

for path variables we differentiate between their definition and their reference. XSeq

requires that path variables be defined only once in the from clause. For instance,

return first($Z) $X @Cname

from // ($Z: $X $Y $Z) $Z

where tag($X) = ‘daughter’ and tag($Y) = ‘son’

is a valid query, but the following query is not allowed:

return first($Z) $X @Cname

from // ($Z: $X $Y $Z) ($Z: $X)

where tag($X) = ‘daughter’ and tag($Y) = ‘son’

as it redefines the path variable $Z.

Moreover, there is also a restriction on how path variables can be referenced in the

from clause 9. Before explaining this restriction, we first need to define the concepts

of yield and nend for a path variable.
8Recursive path variables are a more powerful form of recursion than than Kleene-*. See Section 4.5.
9Later in Section 4.5.1, we define the restriction rule more formally

70

Definition 2. For a path variable $X defined as ($X : P), where P is a path ex-

pression, we define the nend($X) as all the path variables in P which do not ap-

pear at the end of a production for P . We also recursively define yield($X) =⋃
$Y ∈P yield($Y) ∪ {$Y } where $Y iterates over all the path variables appearing

in P .

For instance, for ($X : $X $Y $X)($Y : /son/$Z) as the from clause, nend($X) =

{$X, $Y } and yield($X) = {$X, $Y, $Z}. Now, we are ready to formally define the

restriction on referencing path variables: Path variables in XSeq can appear multiple

times in the from clause, as long as the following rule is not violated:

Rule 1. For every path variable defined as ($X : P), $X 6∈ yield($Y) for ∀$Y ∈

nend($X).

Intuitively, this rule disallows circular definitions of path variables. The reason

behind this restriction is that allowing arbitrary references to a path variable can make

the language non-regular, and hence not amenable to efficient implementation10.

Other Constructs in XSeq. union and intersect have the same semantics as in

XPath. If the user desires an XML output, he can embed the XSeq query in an XQuery

or XSLT expression. Formatting the output is out of the scope of this chapter and

makes an interesting future direction of research. Instead, in this chapter, we only

focus on the query expression and its efficient execution for CEP applications.

In the next section, we will use these basic constructs to express more advanced

queries from a wide range of CEP applications.

10For example, allowing ($X : a $X $Y)($Y : b) would represent the pattern anbn which is not
MSO expressible.

71

4.2 Advanced Queries from Complex Event Processing

In this section we present more complex examples from several domains and show that

XSeq can easily express such queries.

4.2.1 Stock Analysis

Consider an XML stream of stock quotes as defined below. Let us start with the fol-

lowing example.

<! DOCTYPE stocks [

<! ELEMENT stocks (transaction*)>

<! ATTLIST transaction company CDATA #REQUIRED>

<! ATTLIST transaction price CDATA #REQUIRED>

<! ATTLIST transaction buyer IDREF #REQUIRED>

<! ATTLIST transaction date CDATA #REQUIRED>]>

Example 16 (Falling pattern). Find those stocks whose prices are decreasing.

Query 9 (Falling Pattern in XSeq).

return last($X)@price

from /stocks /$Z (\$X)*

where tag($Z) = ‘transaction’ and tag($X) = ‘transaction’

and $X@price < prev($X)@price

partition by /stocks /transaction@company

This is in fact the same query as the one we had expressed in XPath 2.0 in Fig. 4.1.

Comparing the convoluted query of Fig. 4.1 with Query 9 clearly illustrates the impor-

tance of having explicit constructs for sequential and Kleene-* constructs in enabling

CEP applications. This clarity and succinctness at the language level provide more

72

opportunities for optimization which eventually translate to more efficiency, as shown

in Sections 4.3 and sec:experiments, respectively. Next, let us consider the ‘V’-shape

pattern which is a well-known query in stock analysis.

Example 17 (‘V’-shape pattern). Find those stocks whose prices have formed a ‘V’-

shape. That is, the price has been going down to a local minimum, then rising up to a

local maximum which was higher than the starting price.

The ‘V’-shape query only exemplifies many important queries from stock analy-

sis 11 that are provably impossible to express in Core XPath 1.0 and Regular XPath,

simply both of these languages lack the notion of ‘immediately following sibling’ in

their constructs. XPath 2.0, however, can express these queries through the use of its

for and quantified variables: using these constructs, XPath 2.0 can ‘simulate’ the con-

cept of ‘immediately following sibling’ in XPath 2.0 by double negation, i.e. ensuring

that ‘for each pair of nodes, there is nothing in between’. But this approach leads to

very convoluted XPath expressions which are extremely hard to write/understand and

almost impossible to optimize (See Fig. 4.1 and Section 4.6).

On the other hand, XSeq can express this queries with its simple constructs that

can be easily translated and optimized as VPA:

Query 10 (‘V’-pattern in XSeq).

return last($Y)@price

from /stocks /$Z (\$X)* (\$Y)*

where tag($Z) = ‘transaction’

and tag($X) = ‘transaction’ and tag($Y) = ‘transaction’

and $X@price < prev($X)@price

and $Y@price > prev($Y)@price

partition by /stocks /transaction@company

11http://www.chartpattern.com/

73

http://www.chartpattern.com/

A more interesting pattern would be the falling wedge pattern, which shows the

power of sequence aggregates in XSeq language.

Example 18 (Falling wedge pattern). Find those stocks whose price fluctuates as a

series of ‘V’-shape patterns, where in each ‘V’ the range of the fluctuation becomes

smaller. Fig. 4.3(b) shows a falling wedge pattern.

Query 11 (Falling wedge pattern in XSeq).

return $R @price, last($Y) @price

from /stocks /$R ((\$S)* \$X (\$T)* \$Y)*

where tag($R) = ‘transaction’ and tag($S) = ‘transaction’

and tag($X) = ‘transaction’ and tag($T) = ‘transaction’

and tag($Y) = ‘transaction’

and $R @price > first($S) @price

and prev($S) @price > $S @price

and last($S) @price > $X @price

and $X@price < first($T) @price

and prev($T) @price < $T @price

and last($T) @price < $Y @price

and prev($X) @price < $X @price

and prev($Y) @price > $Y @price

partition by /stocks /transaction @company

4.2.2 Social Networks

Twitter provides an API12 to automatically receive the stream of new tweets in sev-

eral formats, including XML. Assume the tweets are ordered according to their date

timestamp:

<! DOCTYPE twitter [

<! ELEMENT twitter ((tweet)*)>

12http://dev.twitter.com/

74

http://dev.twitter.com/

<! ELEMENT tweet (message)>

<! ELEMENT message (#PCDATA)>

<! ATTLIST tweet tweetid CDATA #REQUIRED>

<! ATTLIST tweet userid CDATA #REQUIRED>

<! ATTLIST tweet date CDATA #REQUIRED>]>

Example 19 (Detecting active users). In a stream of tweets, report users who have

been active over a month. A user is active if he posts at least a tweet every two days.

This query, if not impossible, would be very difficult to express in XPath 2.0 or

Regular XPath. The main reason is that, again due to their lack of ‘immediate follow-

ing’, they cannot easily express the concept of “adjacen” tweets.

Query 12 (Detecting active users in XSeq).

return first($T) @userid

from /twitter /$Z (\$T)*

where tag($Z) = ‘tweet’ and tag($T) = ‘tweet’

and $T@date-prev($T)@date < 2

and last($T)@date-first($T)@date > 30

partition by /twitter /tweet @userid

4.2.3 Inventory Management

RFID has become a popular technology to track inventory as it arrives and leaves

retail stores. Below is a sample schema of events, where events are ordered by their

timestamp:

<! DOCTYPE events [

<! ELEMENT events (event*)>

<! ELEMENT event (message)>

<! ELEMENT message (#PCDATA)>

<! ATTLIST event ts CDATA #REQUIRED>

75

<! ATTLIST event itemid CDATA #REQUIRED>

<! ATTLIST event eventtype CDATA #REQUIRED>]>

Example 20 (Detecting Item Theft). Detect when an item is removed from the shelf

and then removed from the store without being paid for at a register.

Query 13 (Detecting item theft in XSeq).

return $T@itemid

from /events /$T \$W* \$X

where tag($T) = ‘event’ and tag($W) = ‘event’ and tag($X) = ‘transaction’

and $T@eventtype = ‘removed from shelf’

and $X@eventtype = ‘removed from store’

and $W@eventtype != ‘paid at register’

partition by /events/event@itemid

4.2.4 Directory Search

Consider the following first-order binary relation which is familiar from temporal

logic [CM07b]:

φ(x, y) = descendant(x, y) ∧ q(y)∧

∀z(descendant(x, z) ∧ descendant(z, y)→ p(z))

For instance, for a directory structure that is represented as XML, by defining q

and p predicates as q(y): ‘y is a file’ and p(z): ‘z is a non-hidden folder’, the φ relation

becomes equivalent to the following query:

Example 21. Retrieve all reachable files from the current folder by repeatedly select-

ing non-hidden subfolders.

According to the results from [CM07b], such queries are not expressible in XPath

1.0. This query, however, is expressible in XPath 2.0 but not very efficiently. E.g.,

//file except //folder[@hidden=‘true’]//file

76

Such queries can be expressed much more elegantly in XSeq (and also in Regular

XPath):

Query 14 (φ query in XSeq).

(/folder[@hidden = ‘false’])* /file

4.2.5 Genetics

Haemophilia is one of the most common recessive X-chromosome disorders. In ge-

netic testing and counseling, if the fetus has inherited the gene from an affected grand-

parent the risk to the fetus is 50% [AFR00]. Therefore, the inheritance risk for a

person can be estimated by tracing the history of haemophilia among its even-distance

ancestors, i.e. its grandparents, its grand-parents’ grand-parents, and so on.

Example 22. Given an ancestry XML which contains the history of haemophilia in the

family, identify all family members who are at even-distance from an affected member,

and hence, at risk.

This query cannot be easily expressed without Kleene-* [CL09], but is expressible

in XSeq:

Query 15 (Descendants of even-distance from a node).

return $Z @Cname

from //$X[@haemophilia = ‘true’] (/$Y /$Z)*

Queries 14 and 15 are not expressible in XPath 1.0, are expressible in XPath 2.0

but not efficiently, and are easily expressible in Regular XPath and XSeq.

77

4.2.6 Protein, RNA and DNA Databases

The world-wide community of life scientists has access to a large number of public

bioinformatics databases and tools. As more and more of the resources offer program-

matic web-service interface, XML becomes a widely-used standard data exchange for-

mat for basic bioinformatics data. Many public bioinformatics databases provide data

in XML format.

Proteins, RNA and DNA are sequences of linear structures, but they are usually

with complex secondary or even higher-order structures which play important roles in

their functionality. Searching complex patterns in these rich-structured sequences are

of great importance in the study of genomics, pharmacy and so on. XSeq provides

a powerful declarative query language for access bioinformatics databases, which en-

ables complex pattern searching.

(a) (b)

Figure 4.3: (a) The β-meander motif and (b) the falling wedge pattern

For instance, the structural motifs are important supersecondary structures in pro-

teins, which have close relationships with the biological functions of the protein se-

quences. These motifs are of a large variety of structural patterns, usually very com-

plex, e.g., the β-meander motif is composed of two or more consecutive antiparallel

β-strands linked together, as depicted in Fig. 4.3(a)13, while each β-strand is typically
13http://en.wikipedia.org/wiki/Beta sheet

78

3 to 10 amino acid. Consider now protein data with a simplified schema as below.

Example 16 uses XSeq to detect such motifs.

<!DOCTYPE uniprot [

<!ELEMENT uniprot (protein)*>

<!ELEMENT protein (fullName, feature+)>

<!ELEMENT fullName (#PCDATA)>

<!ATTLIST feature type CDATA #REQUIRED>]>

Query 16 (Detecting β-meander motifs).

return $N/text()

from //protein[$N] /$F \$G (\$H)*

where tag($N) = ‘fullName’

and tag($F) = ‘feature’ and $F@type = ‘beta-strand’

and tag($G) = ‘feature’ and $G@type = ‘beta-strand’

and tag($H) = ‘feature’ and $H@type = ‘beta-strand’

4.2.7 Temporal Queries

Expressing temporal queries represents a long-standing research interest. A number

of language extentions and ad-hoc solutions have been proposed. Traditional tempo-

ral databases use a state-oriented representation, where tuples of a database are time-

stamped with their maximal period of validity. This state-based representation requires

temporal coalescing and/or temporal joins even for basic query operations (e.g. pro-

jection), and are thus prone to inefficient execution. Some recent research work has

proposed using XML-based event-oriented representation for transaction-time tempo-

ral database, where value updates in database history are recorded as events [AYU00,

WZZ08, Zan09b]. For example, below is the DTD of a temporal employee XML,

where each employee has a sequence of salary and dept elements time-stamped by the

79

tstart, tend attributes, representing the update events ordered by their start time in the

database’s evolution history.

<!DOCTYPE employees [

<!ELEMENT employees (employee*)>

<!ELEMENT employee (name (salary | dept)+)>

<!ATTLIST employee id CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT salary (#PCDATA)>

<!ELEMENT dept (#PCDATA)>

<!ATTLIST salary tstart CDATA #REQUIRED>

<!ATTLIST salary tend CDATA #IMPLIED>

<!ATTLIST dept tstart CDATA #REQUIRED>

<!ATTLIST dept tend CDATA #IMPLIED>]>

XSeq is a powerful event-oriented temporal language, which can easily express

basic temporal operations (e.g., temporal joins and temporal coalescing), as well as

very complex temporal sequence patterns. This can be illustrated by the following

examples.

First, let us consider the well-known RISING query which is a famous temporal

aggregate introduced by TSQL2 [Sno09].

Example 23 (RISING). What is the maximum time range during which an employee’s

salary is rising?

Query 17.

return max(last($X) @tend - first($X) @tstart)

from // $Z* (\$X)*

where tag($X) = ‘employee’

and $X/salary/text() > prev($X)/salary/text()

and $X@tstart <= prev($X)@tend

partition by //employee @id

80

Example 24. Find employees who have risen quickly without changing department.

More precisely, we want to find employees who

1. once hired (with some salary and into some department),

2. have gone through one or more salary adjustments, followed by

3. a transfer to another department,

4. for a final salary that is 40% above the initial one.

This complex pattern can be expressed succinctly by Query 18.

Query 18.

return $X

from //employee[@$X] /$A \$B \$C (\$D)* \$E

where tag($A) = ‘salary’ and tag($B) = ‘dept’

and tag($C) = ‘salary’ and tag($D) = ‘salary’

and tag($E) = ‘dept’ and tag($X) = ‘id’

and $E/text() <> $B/text()

and last($D)/text() > 1.4 * $A/text()

4.2.8 Software Trace Analysis

Modern programming languages and software frameworks offer ample support for de-

bugging and monitoring applications. For example, in the .NET framework, the Sys-

tem.Diagnostics namespace contains flexible classes which can be easily incorporated

into applications to output runtime debug/trace information as XML files. The fol-

lowing XML snippet shows a software trace of a function fibonacci that recursively

called itself but in the end threw out an exception.

<main>

...

<fibonacci @input = ‘500’>

81

<fibonacci @input = ‘499’>

...

<exception @msg = ‘overfolow’ />

</fibonacci>

</fibanacci>

...

</main>

Searching and analyzing the patterns in software traces could help debugging. For

example, we can easily identify the input to the last iteration of the function fibonacci

and the depth of the recursive calls by

Query 19.

return last($F) @input, count($F)

from //$X (/$F)* /$E

where tag($X) != ‘fibonacci’

and tag($F) = ‘fibonacci’

and tag($E) = ‘exception’

4.3 XSeq Optimization

The design and choice of operators in XSeq is heavily influenced by whether they

can be efficiently evaluated or not. Our criterion for efficiency of an XSeq operator

is whether it can be mapped to a Visibly Pushdown Automaton (VPA). The rationale

behind choosing VPA as the underlying query execution model is two-fold. First, XSeq

is mainly designed for complex patterns and patterns can be intuitively described as

transitions in an automaton: fortunately, VPAs are expressive enough to capture all

the complex patterns that can be expressed in XSeq. Secondly, VPAs retain many

attractive computational properties of finite state automata on words [AM04]. In fact,

82

by translation into VPAs, we can exploit several existing algorithms for streaming

evaluation [MV09] and optimization of VPAs [MZZ10].

In Section 4.3.1, we provide a high-level description of our algorithm for trans-

lating the most commonly used operators of XSeq (other operators are covered in

Section 4.5) into equivalent VPAs which can faithfully capture the same pattern in the

input14. Then, in Sections 4.3.2 and 4.3.3, we present several static (compile-time) and

run-time optimizations of VPAs in our XSeq implementation. In Section 4.6, we study

the effectiveness of these optimizations in practice.

4.3.1 Efficient Query Plans via VPA

In this section, we describe an inductive algorithm to translate the most commonly

used features of XSeq into efficient and equivalent VPAs. This algorithm can han-

dle all forward axes, Kleene-*, and step variables (similar fragments to those studied

in [GNT11]).

Later, in Section 4.5, we also provide a general algorithm for translating any arbi-

trary XSeq query Q (including path variables and backward axes) into a VPA (which

in general, can be larger and hence, less efficient) accepting all the input trees on which

Q returns a non-empty set of results. However, in practice, most of commonly used

queries (including all of those of Section 4.2) can be efficiently handled by the algo-

rithm presented below.

Note that although the theoretical notion of VPAs only allows for transitions based

on fixed symbols of an alphabet, for efficiency reasons, in our real implementation,

we allow the states of the VPA to store values and also to transition when a predicate

evaluates to true15.
14Informally, we say that an XSeq query and a VPA are equivalent when every portion of the input

XML that produces an output result in the former will be also accepted by the latter and vice versa.
15However, in the formal analysis of XSeq’s expressiveness in Section 4.5, we will use the theoretical

83

As described above, compiling XSeq queries into efficient query plans starts by

constructing an equivalent VPA for the given query. We construct this VPA by an

iterative bottom-up process where we start from a single-state (trivial) VPA and at

each forward Step of the XSeq query, we compose the original VPA with a new VPA

that is equivalent with the current Step. Next, we show how different forward axes can

be mapped into equivalent VPAs. Lastly, we show some of the other constructs of the

XSeq query that can be similarly handled.

In the following, whenever connecting the accepting state(s) of a VPA to the start-

ing state(s) of the previous VPA, since VPAs are closed under concatenation, the re-

sulting automaton is still a valid VPA.

Handling /: The /X axis is equivalent to a VPA with two states E and O where E is

the starting state at which we invoke the stack on open and closed tags accordingly

(see Chapter 2 for the rules regarding stack manipulation in a VPA), and transition to

the same state on all input symbols as long as the consumed input in E is well-nested.

Upon seeing the appropriate open tag (e.g., 〈X〉) we non-deterministically transition to

our accepting state O.

Handling @: In the presence of the attribute specifier, @, we add a new state A as

the new accepting state which will be transitioned to from our previous accepting state

upon seeing any attribute. We remain in state A as long as the input is another attribute,

i.e. to account for multiple attributes of the same open tag.

notion of a VPA, i.e. without any storage besides the actual states and without any predicates.

84

(a)

(b)

Figure 4.4: VPAs for (a) /son@Bdate and (b) /daughter son.

Fig. 4.4(a) demonstrates the VPA for /son@Bdate. Fig. 4.5 shows the intuitive

correspondence of this VPA with the navigation of the XML document, where:

• E matches zero or more (well-nested) subtrees in the pre-order traversal of the

XML tree,

• O matches the open tag for son, i.e. 〈son〉,

• A matches the attribute list of 〈son〉, namely O.

To see the correspondence between this VPA and the XSeq query, note that to find all

the direct sons of a daughter, we navigate through the pre-order traversal of the sub-tree

under each daughter node, then non-deterministically skip an arbitrary number of her

children (i.e., E∗) until visiting one of her children who is a son (i.e., O), and then finally

visit all the tokens that correspond to his son’s attributes, i.e. A∗. The non-determinism

assures that we eventually visit all the sons under each daughter.

Handling ()*: Kleene-* expressions in XSeq, such as (/son)∗, are handled by first

constructing a VPA for the part inside the parentheses, say V1, then adding an ε-

85

transition from the accepting state of V1 back to its starting state. Since VPAs are

closed under Kleene-*, the resulting automaton will still be a VPA.

Handling //: The // axis can also be easily defined as a Kleene-* of the / operator.

For instance, the //daughter construct is equivalent to (/X) ∗ /daughter, where X is

a wild card, i.e. matches any open tag. Fig. 4.5 shows the correspondence between the

VPA states for // and the familiar traversal of the XML document.

Figure 4.5: Visual correspondence of VPA states and XSeq axes.

Handling siblings: Let V1 be the VPA that recognizes the query up to node D. The

VPA for recognizing the sibling of D, say node S, is constructed by adding four new

states (E1, C, E2 and O) to V1, where:

• We transition from the accepting state(s) of V1 to E1. E1 invokes the stack on

open and closed tags accordingly, and transitions to itself on all input symbols

as long as the consumed input in E1 is well-nested.

• Upon seeing a close tag of D, we non-deterministically transition from E1 to C.

• We transition from C to E2 upon any input. Similar to E1, E2 invokes the stack on

open and closed tags accordingly, and transitions to itself on all input symbols

as long as the consumed input in E2 is well-nested.

86

• Upon seeing an open tag for the sibling, i.e. 〈S〉, we non-deterministically tran-

sition from E2 to state O which is marked as the accepting state of the new VPA.

Fig. 4.4(b) shows the VPA for query “/daughter son”. The intuition behind this

construction is that E1 skips all possible subtrees of the last daughter non-deterministically,

while E2 non-deterministically skips all other siblings of the current daughter until it

reaches its sibling of type son.

Handling \ : The construct \X is handled according to the last axis that has appeared

before it. Let V1 be the VPA for the XSeq query up to \X. When the previous axis is

vertical (e.g. / or //), then we only need to add one new state to the V1, say O, where

from all the accepting states of V1 we transition to state O upon seeing any open tag of

X. The new accepting state will be O.

When the axis before \X is horizontal (e.g. siblings), we add three new states to

V1, say E, C and O, where:

• We transition from the accepting state(s) of V1 to E. At E, we invoke the stack

upon open and closed tags accordingly, and transition to E on all input symbols

as long as the consumed input in E is well-nested.

• We non-deterministically transition from E to C upon seeing a close tag of the

last (horizontal) axis.

• We transition from C to O upon an open tag for X and fail otherwise. O will be

the new accepting state of the VPA.

Handling predicates. In general, arbitrary predicates cannot be handled using the

inductive construction described in this section, e.g., when a predicate refers to nodes

other than the one being processed. Thus, our construction in this section assumes that

87

the predicates only refer to attributes of the current node. (In Section 4.5 we consider

arbitrary predicates.)

In our real implementation of XSeq, we simply use a few variables (a.k.a. registers)

at each state, in order to remember the latest values of the operands in the predicate(s)

that need to be evaluated at that state. However, in our complexity analysis in Sec-

tion 4.5, we use the abstract form of a VPA, namely where a state is duplicated as

many as there are unique values for its operands.

Handling partition by. Since the pattern in the ‘partition by’ clause is the prefix of

the pattern in the ‘from’ clause, the partition by clause can be simply treated as a

new predicate on the attribute which is partitioned by. For example, when translating

Query 17 into a VPA, assume that the ‘partition by’ attribute (i.e., ID) has k different

values, i.e. v1, · · · , vk. Then, we replicate the current VPA k times, each corresponding

to a different value of the ID attribute. Once a value of ID is read, say vi, we transition

to the starting state of the VPA that corresponds to vi and thereon, we simply check

that at every state of that sub-automata the current value of the ID attribute is equal to

vi, i.e. otherwise we reject that run of the automata.

Handling other constructs Union, intersection, and, node tests can all be imple-

mented with their corresponding operations on the intermediary VPAs, as VPAs are

closed under union, intersection and complementation. The translations are thus straight-

forward (omitted here for space constraints).

4.3.2 Static VPA Optimization

Cutting the inferrable prefix. When the schema (e.g. DTD) is available, we can

always remove the longest prefix of the pattern as long as (i) the prefix has not been

referenced in the return or the where clause, and (ii) the omitted prefix can be always

inferred for the remaining suffix. For example, consider the following XSeq query, de-

88

fined over the SigmodRecord dataset16:

//issue/articles/authors/author[text()=‘Alan Turing’]

This XSeq query generates a VPA with many states, i.e. 3 states for every step. How-

ever, based on the DTD, we infer that author nodes always have the same prefix, i.e.

issue/articles/authors/. Thus, we remove the part of the VPA that corresponds

to this common prefix. Due to the sequential nature of VPAs, such simplifications can

greatly improve the efficiency by reducing a global pattern search to a more local one.

Reducing non-determinism from the transition table. Our algorithm for translating

XSeq queries produces VPAs that are typically non-deterministic. Reducing the de-

gree of non-determinism always improves the execution efficiency by avoiding many

unnecessary backtracks. In general, full determinization of a VPA is an expensive

process, which can increase the number of states from O(n) to O(2n
2
) [AM04].

However, there are special cases that the degree of non-determinism can be reduced

without incurring an exponential cost in memory. Since self-loops in the transition

table are one of the main sources of non-determinism, whenever self-loops can only

occur a fixed number of times, the XSeq’s compile-time optimizer removes such edges

from the generated VPA by duplicating their corresponding states accordingly. For

instance, consider the XSeq query //book/year/text() and its corresponding VPA

in Fig. 4.6. If we know that book nodes only contain two subelements, say title

followed by year, the optimizer will replace E1 with 3 new states (without any self-

loops) to explicitly skip the title’s open, text and closed tags. The latter expression

(E1∧3) is executed more efficiently as it will be deterministic.

Reducing non-determinism from the states. In order to skip all the intermediate

subelements, the automatically generated VPAs contain several states with incoming

and outgoing ε-transitions. In the presence of the XML schema, many of such states

16http://www.cs.washington.edu/research/xmldatasets/

89

http://www.cs.washington.edu/research/xmldatasets/

become unnecessary and can be safely removed before evaluating the VPA on the

input. We have several rules for such safe omissions. Here, we only provide one

example.

Figure 4.6: //book/year/text()

Let us once again consider the query and the VPA of Fig. 4.6 as our example. If ac-

cording to the schema, we know that the year nodes cannot contain any subelements,

the optimizer will remove E2 entirely. Also, if a node, say year, does not have any

attributes, the optimizer will remove its corresponding state, here Ay.

4.3.3 Run-time VPA Optimization

In the previous sections, we demonstrated how XSeq queries can be translated into

equivalent VPAs and presented several techniques for reducing the degree of non-

determinism in our VPAs. One of the main advantages of using VPAs as the under-

lying execution model is that we can take advantage of the rich literature on efficient

evaluation of VPAs. In particular we use the one-pass evaluation of the VPAs as de-

scribed in [MV09] and use the pattern matching optimization of VPAs as described

in [MZZ10].

In a straightforward evaluation of a VPA over a data stream, one would consider

the prefix starting from every element of the stream as a new input to the VPA. In other

words, upon acceptance or rejection of every input, the immediate next starting posi-

90

tion would be considered. However, for word automata, it is well-known that this naive

backtracking strategy can be easily avoided by applying pattern matching techniques

such as the KMP [KJP77] algorithm. Recently, a similar pattern matching technique

was developed for VPAs, known as VPSearch [MZZ10]. Similar to word automata,

VPSearch avoids many unnecessary backtracks and therefore, reduces the number of

VPA evaluations. We have implemented VPSearch and its run-time caching techniques

in our Java implementation of XSeq. Further details on streaming evaluation of VPAs

and the VPSearch algorithm can be found in [MV09] and [MZZ10], respectively. Be-

cause of the excellent VPA execution performance achieved by K*SQL [MZZ10], we

have used the same run-time engine for XSeq queries once they are compiled into a

VPA (see Section 7).

In the next two sections, we define the formal semantics of XSeq and present our

results on its expressiveness and complexity.

4.4 Formal Semantics of XSeq

While in the previous section we informally illustrated the semantics of different XSeq

operators through intuitive examples, in this section we provide the formal semantics

of XSeq which once restricted to its navigational features, will pave the way for a

rigorous analysis of the language in Section 4.5. We first define an XML tree.

Definition 3 (XML Tree). An XML tree Tr is an unranked ordered tree Tr = (V, L, ↓

,→) where V is a set of nodes, L : V → Σ is a labeling of the nodes to symbols of a

finite alphabet Σ, and R↓ and R→ are respectively the parent-child and immediately

following sibling relationships among the nodes. For leaf nodes v, we define R↓(v) =

⊥. Also, for the rightmost child v we define R→(v) = ⊥. We refer to the root node of

Tr as root(Tr).

91

Using R↓ and R→, we can similarly define Rax where ax is any of the Axes17 in

Fig. 4.2. Next, we define a query, where for simplicity, we ignore the output clause

and only consider the ‘decision’ version of the query, namely query can only return a

‘true’ if it finds a match, and otherwise returns nothing.

Definition 4 (Query). We represent an XSeq query of form “return true from doc() P

where C” as Q = (P,C) where P is a PathExpr and C is a Condition. When C is

absent, we use “true” instead, i.e. Q = (P, true).

Definition 5 (Normalized Query). A query Q = (P,C) is normalized if all Predicates

in P are patterns.

Note that we can always normalize any query Q = (P,C) by applying the follow-

ing steps:

1. For each Condition Predicate cp in P , rewrite cp into disjunctive normal form

cp1 ∨ cp2 ∨ · · · ∨ cpk. Then rewrite Q into Q′ = (P1 ∪P2 ∪ · · · , Pk, C) such that

each Pi only contains cpi. Repeat this process until all Condition Predicates in

Pi are in conjunctive form. Let the resulting query be Q0 = (P 0, C0).

2. For each conjunctive Condition Predicate pred in Step s of P 0, extract all of its

path expressions, say p1, p2, ..., pj .

3. By renaming the last Step in pi with a new Step variable vi, obtain p′i. Add a

Predicate [p′i] to Step s.

4. Remove pred from s. Express pred using {vi}, say pred′. Add pred′∧{constraints on {vi}}

to C0.
17For clarity, in this section, we use capitalized words when referring to any of the production rules

of Fig. 4.2.

92

5. If pi contains Kleene-* and the last Step can be empty (e.g. due to a Kleene-*),

rewrite pi into the union of a set of path expression, whose last Step cannot be

empty.

Thus, in the rest of this discussion, we assume all the queries are in their normalized

form.

Example 25. The normalized form of the query doc()/a[c/d > e/f]/b is as follows:

doc()/a[c/$X][e/$Y]/b

where tag($X) = ’d’ and tag($Y) = ’f’

and $X > $Y

Definition 6. For a Pattern p, we define χ(p) = {all the NameTest’s that appear in p}.

When the same NameTest appears multiple times, we keep all occurrences in χ,

e.g. by adding an index.

Example 26. For p = doc()/a/b/$X/a, we have χ(p) = {a1, b, a2, $X}.

Definition 7 (Base of a Predicate). For any Step of the form “ax :: nt [p]” where ax

is an Axis, nt is a NameTest and p is a Pattern, we define the base of [p] as β(p) = nt.

Example 27. For the PathExpr A/B[C[D]] we have β(C[D]) = B and β(D) = C.

Definition 8 (Flattening a Pattern). For a Pattern P , P̃ is the result of removing all the

Predicates from P .

Example 28. Consider p = A/B[C[D]]. Then, p̃ = A/B. Thus, χ(p) may be different

from χ(p̃).

Definition 9 (Meaning of a Pattern). Given an XML tree Tr, for any Pattern P we

define its meaning, denoted as [[p]]Tr, recursively, as follows 18 where [[p]]Tr ⊆ (N ×

(χ(P) ∪ {⊥}))∗ :
18For brevity, we assume the tree is fixed and thus, denote [[p]]Tr as [[p]].

93

• If P = doc() p, define

[[doc() p]] = {〈(root(Tr) : ⊥), (n1 : L1), · · · (nk : Lk)〉 ∈ [[p]]}

• If P = p where p is a PathExpr, define

[[p]] = {〈(n1 : L1), · · · , (nk : Lk)〉 | ni ∈ N,Li ∈ χ(p̃) ∪ {⊥}}

• If P is a single Step of form nt :: ax where nt and ax are the NameTest and

Axis, respectively, define

[[nt :: ax]] = {〈(n : ⊥), (m : nt)〉 | n,m ∈ N,L(m) = nt and (n,m) ∈ Rax}

• If P is a single Step of form nt :: ax[p] where nt, ax, and p are the NameTest,

Axis, and Pattern19 respectively, define

[[nt :: ax[p]]] = {〈(n0 : ⊥), (n : l)〉) | 〈(n0 : ⊥), (n : l)〉 ∈ [[nt :: ax]], ∃α s.t. 〈(n :

⊥), α〉 ∈ [[p]]}

• If P is a path variable v with the definition (v : p) define [[v]] = [[p]]

• If P = p1p2, define

[[p1p2]] = {〈α1, (n : l), α2〉 | ∃n, l s.t. 〈α1, (n : l)〉 ∈ [[p1]] and 〈(n : ⊥), α2〉 ∈

[[p2]]}

• If P = (p)∗, define

[[(p)∗]] = {〈(n0 : l0), α1, (n1 : l1), α2, (n2 : l2), · · · , (nk−1 : lk−1), αk, (nk :

lk)〉 | 〈(ni−1 : ⊥), αi, (ni : li)〉 ∈ [[p]] for i = 1, · · · , k} ∪ {ε}

Example 29. Consider an XML tree Tr = (V, L, ↓,→), where V = {a1, b1, b2, c1},

L = {(a1, a), (b1, b), (b2, b), (c1, c)}, R↓ = {(a1, b1), (a1, b2), (b1, c2)}, and R→ =

{(b1, b2)}. Here, even though:

[[doc()/a/b]] = {〈(root(Tr) : ⊥), (a1 : a), (b1 : b)〉, 〈(root(Tr) : ⊥), (a1 : a), (b2 :

b)〉},
19Note that since the query is normalized, here we do not need to consider Conditions as Predicate.

94

[[doc()/a/b[/c]]] contains only one sequence, i.e.,

[[doc()/a/b[/c]]] = {〈(root(Tr) : ⊥), (a1 : a), (b1 : b)〉}.

〈(root(Tr) : ⊥), (a1 : a), (b2 : b)〉 is not in [[doc()/a/b[/c]]] because there is no

sequence starting with (b2 : ⊥) in [[/c]] = {〈(b1 : ⊥)(c1 : c)〉}.

Definition 10 (Environment). An environment is any mapping eP,α,n : χ(P) → N ∪

{⊥} where P is a Pattern, α ∈ [[p]], and n ∈ N ∪ {⊥}.

Definition 11 (Valid Environment). An environment eP,α,n is valid iff one of the fol-

lowing conditions holds:

1. P is a PathExpr, P = P̃ , and for all l ∈ χ(P) we have eP,α,n(l) = n′ if there

exists n′ such that α = 〈(n : ⊥), · · · , (n′ : l), · · · 〉

2. P is a PathExpr with top-level Predicates20 p1, · · · , pk, and there exist αi ∈ [[pi]]

for 1 ≤ i ≤ k such that eP,α,n = eP̃ ,α,n
⋃
∪ki=1epi,αi,eP̃ ,n(β(pi)) where eP̃ ,α,n and

epi,αi,eP̃ ,n(β(pi)) are also valid environments.

3. P = doc() pwhere p is a PathExpr, and there exist α′ ∈ [[p]] such that ep,α′,root(Tr)

is a valid environment.

Example 30. Given the XML tree defined in Example 29, consider Pattern P =

doc()/a/$X[/c]. The environment eP,α,root(Tr) is valid if α = {〈(root(Tr) : ⊥), (a1 :

a), (b1 : $X)〉}, and eP,α,root(Tr)($X) = b1.

Definition 12 (Condition Evaluation Under A Valid Environment). We define when a

ConditionC evaluates to true under a valid environment e (which we denote as e |= C)

by defining how to replace different types of Operand with constant values. Once

all the Operands in C are replaced with their constant values, the entire Condition

20For instance, for p = A/B[C[D]][E]/T [H] the top-level Predicates are p1 = C[D] and p2 = E,
and p3 = H .

95

can be also evaluated by following the conventional rules of arithmetic and boolean

expression. There are different types of Operands:

• Constant is trivial.

• seq(X)@attr, where α = 〈(n1, l1), ..., (ni, li), ...(nm, lm)〉 and eP,α,n(X) = ni,

is replaced with attribute ‘attr’ of node nj, 1 ≤ j ≤ m where lj = X and :

– if seq=prev and for j + 1 ≤ k ≤ i− 1, we have lk 6= X;

– if seq=first, and for 1 ≤ k ≤ j − 1, we have lk 6= X;

– if seq=last, and for j + 1 ≤ k ≤ m, we have lk 6= X;

Otherwise, we replace it with the null value.

• X@text() is replaced with the text value of node nj where nj is defined as above.

• agg(X@attr), where X is in P̃ , a valid environment eP,α,n is picked and α =

〈(n1, l1), ..., (ni, li), ...(nm, lm)〉, is replaced with agg({ni|li = X, 1 ≤ i ≤ m}).

Definition 13 (Query Evaluation). We say that a query Q = (P,C) recognizes the

XML tree Tr, iff [[doc()P]] 6= ∅ and for all valid environments eP,root(Tr), eP,root(Tr) |=

C.

4.5 Expressiveness and Complexity

In Section 4.3, we provided the high-level idea of how most of XSeq queries can

be optimized and translated into equivalent VPAs. In this section, we provide our

results on the expressiveness of XSeq, and its complexity for query evaluation —two

fundamental questions for any query language.

Throughout this section, Σ is the alphabet (i.e., set of unique tokens in the XML

document), and MSO is monadic second order logic over trees.

96

The full language of XSeq is too rich for a rigorous logical analysis, and thus we

focus on its navigational features by excluding arithmetics, string manipulations and

aggregates. Thus, in Section 4.5.1, we first obtain a more concise language, called

CXSeq21.

We show that, given a CXSeq query Q, the set of input trees for which Q contains

a match (we call this the domain of Q) is an MSO definable language. Conversely, for

every MSO definable language L, there exists a CXSeq with domain L. The proof of

this statement can be found in Section 4.9.

In Section 4.5.3, we use this equivalence result to derive the complexity of query

evaluation of CXSeq queries.

4.5.1 CXSeq

In Fig. 4.7, we have provided the syntax of the query language CXSeq.

PathExpr ::= PathExpr ′ ∗′ | PathExpr ′intersect′ PathExpr | VStep

VStep ::= Step Variable∗

Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest

Axis ::= � | ↓ | ↑ | → | ←

Figure 4.7: CXSeq Syntax

A query is a tuple K = (V, v0, ρ) where V is a finite set of variables, v0 ∈ V is the

starting variable, and ρ : V × P is a set of productions where P is the set of elements

defined by the grammar in Fig. 4.7 starting with PathExpr. In the grammar a Variable

is an element of V .
21Similar approaches in analyzing XPath 1.0 and 2.0, has led to sub-languages Core XPath

1.0[CM07b] and Core XPath 2.0[CM07a].

97

The semantics of a query is given with pairs of nodes and is parameterized over

variables. The idea is that every XPath query that can be “generated” by the above

grammar should be in some sense executed. Consider the query:

(X, ↑:: aX), (X, ↑:: a)

Its semantics should be equivalent to (↑:: a)+.

Given a variable v ∈ V we define S(v) ⊆ N ×N as the set of pairs of nodes that

satisfy the query v. Informally S(v)(n, n′) iff starting in node n we can reach node n′

following the query v. Informally every variable v defines a set of pair, but the final

result of K is the set of pairs assigned to v0. We can now proceed inductively and

define the semantics as the least fix point of the following relations. Sv,π ⊆ N × N

(for each v and π) defines the pair of nodes belonging to v when starting with the

production π.

1. if π =↑:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, andR↓(x, z), then Sv,π(z, y2);

2. if π =↓:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R↓(z, x) and does not

exists z′, R→(z′, x), then Sv,π(z, y2);

3. if π =←:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R→(x, z), then

Sv,π(z, y2);

4. if π =→:: s[v1]v2, Sv1(x, y1), Sv2(x, y2), lab(x) = s, and R→(z, x), then

Sv,π(z, y2);

5. if π = � :: s[v1]v2, Sv1(x, y1), Sv2(x, y2), and lab(x) = s, then Sv,π(x, y2);

6. if π = π1 ∩ π2, Sv,π = Sv,π1 ∩ Sv,π2;

7. the other cases are analogous.

98

Finally Sv =
⋃

(v,π)∈ρ Sv,π.

This language allows us to define productions of the form

X :=↓:: aY Z

Without further restrictions this extension would be too expressive. For example the

productions

X :=↓:: aXY, Y :=↓:: b

would represent the query (a/)n(b/)n which is not MSO expressible. In order to reduce

the expressiveness we limit the use of recursion. Given a production p = (v, π) let

dv(π) be the following set of variables:

• dv(π ∩ π′) = dv(π) ∪ dv(π′);

• dv(π∗) = va(π);

• dv(d :: a[v]v1 . . . vn+1) = {v1, . . . , vn};

• dv(d :: a[v]) = {};

• dv(d :: av1 . . . vn+1) = {v1, . . . , vn};

• dv(d :: a) = {}.

Similarly we define for a production p = (v, π) the set va(π) be the following set of

variables:

• va(π ∩ π′) = dv(π) ∪ dv(π′);

• va(π∗) = va(π);

• va(d :: a[v]v1 . . . vn) = {v1, . . . , vn};

99

• va(d :: a[v]) = {v};

• va(d :: av1 . . . vn) = {v, v1, . . . , vn};

• va(d :: a) = {}.

Now given a variable v ∈ V we define the sets of variables reachable from v as yiv as

the set satisfying the following equation

yiv = {v} ∪
⋃

(v,π)∈ρ

⋃
v′∈va(π)

yiv′

We can now formalize the restriction on our grammar.

Definition 14. A query K = (V, v0, ρ) is safe iff for each (v, π) ∈ ρ, for each v′ ∈

dv(π), v 6∈ yi(v′).

For the rest of the presentation, we will only consider safe CXSeq queries.

Notice that the ↓ axis has the meaning of first child of a node instead of child. This

language also allows to define the operators axis∗ using the ∗ operator. We can also

extend the language to allow nested stars, and the same translation as before will work.

For example the production (v, ((↑: a)v′ ∗ v′′)∗) can be transformed into the following

set of productions

(v, (� :)t1); (t1, (↑: a)t2t1); (t1, (� ::)); (t2, (� :)t3v
′′); (t3, (� :)v′t3); (t3,� :)

where t1, t2, t3 are fresh names.

To better understand the semantics let’s consider the following regular XPath query:

↓:: a ↓:: b(↓:: c)∗

This will be encoded in CXSeq with the following productions:

(X, ↓:: aY Z), (Y, ↓:: b), (Z,� : WZ), (Z,� :), (W, ↓: c)

where X is the first production.

100

4.5.2 Regularity of CXSeq and Complexity

This section contains the two main results on CXSeq. Given a query K we define its

domain as DK = {w|K(w) 6= ∅}. CXSeq is equivalent to MSO in terms of domain

expressiveness and therefore the domain of every CXSeq query can be translated into

a VPA.

Theorem 6. For every CXSeq query K = (V, v0, ρ), the the domain DK of K is an

MSO definable language. Conversely for every MSO definable language L, there exists

a CXSeq query K such that L = DK .

Theorem 7. For every CXSeq query K = (V, v0, ρ), there exists an equivalent VPA

A over Σ such that L(A) = DK . A will have O(r5 · length(K)5 · 2r·length(K)) where

r = |ρ|.

The proofs of the above theorems can be found in Section 4.9.

4.5.3 Query Evaluation Complexity

Lemma 8 (Query Evaluation). Data and query complexities for CXSeq’s query eval-

uation are PTIME and EXPTIME, respectively.

Proof. By mapping CXSeq queries into VPAs, the query evaluation of the former

corresponds to the language membership decision of the latter. Using the membership

algorithm provided in [MV09], we only need space O(s4 · log s · d + s4 · n · log n)

where n is the length of the input, d is the depth of the XML document (thus, d < n),

and s is the number of the states in the VPA. PTIME data complexity comes from n

and the EXPTIME query complexity comes from s which is exponential in the query

size (see Theorem 7).

We conclude this section with a result on containment of query domains.

101

Lemma 9 (Query Domain Containment). Given two CXSeq queries K1 and K2, it

is decidable to check whether the domain of K1 is contained in the domain of K2.

Moreover, the problem is 2-EXPTIME-complete.

Proof. Once two CXSeq queries are translated into VPAs, their query domain contain-

ment problem corresponds to the language inclusion problem for their domain VPAs,

say M1 and M2. To check L(M1) ⊆ L(M2), we check if L(M1) ∩ L(M2) = ∅. Given

M1 with s1 states and M2 with s2 states, we can determinize [Tan09] and complement

the latter to get a VPA for L(M2) of size O(2s22). L(M1) ∩ L(M2) is then of size

O(s1 · 2s2
2), and emptiness check is polynomial (cubic) in the size of this automaton.

Since, s1 and s2 are themselves exponential in the size of their CXSeq queries, mem-

bership in 2-EXPTIME holds. For completeness of the 2-EXPTIME, note that CXSeq

syntactically subsumes Regular XPath(∗,∩) for which the query containment has been

shown to be 2-EXPTIME-complete [CL09].

4.6 Experiments

In this section we study the amenability of XSeq language to efficient execution. Our

implementation of the XSeq language consists of a parser, VPA generator, a compile-

time optimizer, and the VPA evaluation and optimization run-time, all coded in Java.

We first evaluate the effectiveness of our different compile-time optimization heuristics

in isolation. We then compare our XSeq system with the state-of-the-art XML engines

for (i) complex sequence queries, (ii) Regular XPath queries, and (iii) simple XPath

queries. While these systems are designed for general XML applications, we show

that XSeq is far more suited for CEP applications. In fact, XSeq achieves up to two

orders of magnitude out-performance on (i) and (ii), and competitive performance on

(iii). Finally, we study the overall performance, throughput and memory usage of our

102

system under different classes of patterns and queries.

All the experiments were conducted on a 1.6GHz Intel Quad-Core Xeon E5310

Processor running Ubuntu 6.06, with 4GB of RAM. We have used several real-world

datasets including NASDAQ stocks that contains more than 7.6M records22 since

1970, and also the Treebank dataset23 that contains English sentences from Wall Street

Journal and has with a deep recursive structure (max-depth of 36 and avg-depth of 8).

We have also used XMark [Sa02] which is well-known benchmark for XML systems

and provides both data and queries. Due to lack of space, for each experiment we only

report the results on one dataset. The results and main observations, however, were

similar across different datasets.

4.6.1 Effectiveness of Different Optimizations

In this section, we evaluate the effectiveness of the different compile-time optimiza-

tions from Section 4.3.2, by measuring their individual contribution to the overall per-

formance24. For this purpose, we executed the X2 query from XMark [Sa02] over a

wide range of input sizes (generated by XMark, from 50KB to 5MB). The results of

this experiment are reported in Fig. 4.8, where we use the following acronyms to refer

to different optimization heuristics (see Section 4.3.2):

Opt-1 Cutting the inferrable prefix

Opt-2 Reducing non-determinism from the pattern clause

Opt-3 Reducing non-determinism from the where clause

22http://infochimps.org/dataset/stocks_yahoo_NASDAQ
23http://www.cs.washington.edu/research/xmldatasets/www/repository.html
24The effectiveness of the VPA evaluation and optimization techniques have been previously vali-

dated in their respective papers [MV09, MZZ10].

103

http://infochimps.org/dataset/stocks_yahoo_NASDAQ
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

Figure 4.8: Contribution of different optimization techniques.

In this graph, we have also included the naive and combined (Opt-All) versions,

namely when, respectively, none and all of the compile-time optimizations are applied.

The first observation is that combining all the optimization techniques delivers a dra-

matic improvement in performance (1-2 orders of magnitude, over the naive one).

Cutting the inferable prefix, Opt-1, leads to fewer states in the final VPA. Like

other types of automata, fewer states can significantly reduce the overall degree of

non-determinism. The second reason behind the key role of Opt-1 in the overall per-

formance is that it reduces non-determinism from the beginning of the pattern: this is

particularly important because non-determinism in the starting states of a VPA is usu-

ally disastrous as it prevents the VPA from the early detection of unpromising traces of

the input. In contrary, reducing non-determinism in the pattern and the where clause

(Opt-2, Opt-3) has a much more local effect. In other words, the latter techniques only

remove the non-determinism from a single state or edge in the automata, while the

rest of the automata may still suffer from non-determinism. However local, Opt-2 and

Opt-3 can still improve the overall performance when combined with Opt-1. This is

because of the extra information that they learn from the DTD file.

104

4.6.2 Sequence Queries vs. XPath Engines

We compare our system against two25 of the fastest academic and industrial engines:

MonetDB/XQuery[Ba06] and Zorba [Ba09]. First, we used several sequence queries

on Nasdaq transactions (embedded in XML tags), including the ‘V’-shape pattern (de-

fined in Example 17 and Query 10). By searching for half of a ‘V’ pattern, we defined

another query to find ‘decreasing stocks’. Also, by defining two occurrences of a ‘V’

pattern, we defined what is known as the ‘W’-shape pattern 26. We refer to these

queries as S1, S2 and S3. We also defined several Regular XPath queries over the

treebank dataset, named R1, R2, R3 and R4 where,

R1: /FILE/EMPTY(/VP)*/NP,

R2: /FILE(/EMPTY)*/S,

R3: /FILE(/EMPTY)*(/S)*/VP,

R4: /FILE(/EMPTY)*/S(/VP)*/NP

Sequence queries. For expressing these queries (namely S1, S2 and S3) in XQuery,

we had to mimic the notion of ‘immediately following sibling’, i.e. by checking that

for each pair of siblings in the sequence, there are no other nodes in between. The

XQuery versions of S2 has been given in Fig. 4.1. Due to the similarity of S1 and

S3 to S2 here we omit their XQuery version (roughly speaking, S1 and S3 consist of,

respectively, two and four repetitions of S2).

Not only were sequence queries difficult to express in XPath/ XQuery but were

also extremely inefficient to run. For instance, for the queries at hand, neither of Zorba

or MonetDB could handle any input data larger than 7KB. The processing times of

these sequence queries, over an input size of 7KB, are reported in Fig. 4.9(b). Note

that the Y-axis is in log-scale: the same sequence queries written in XSeq run between

25Since the sequence queries of this experiment are not expressible in XPath, we could not use the
XSQ [PC03] engine as it does not supports XQuery.

26‘W’-pattern (a.k.a. double-bottom) is a well-known query in stock analysis.

105

1-3 orders of magnitude faster than their XPath/XQuery counterparts do on two of

the fastest XML engines. Fig. 4.9(a) shows that gap between XSeq and the other two

engines grows with the input size. This is due to the linear-time query processing of

XSeq which, in turn, is due to the linear-time algorithm for evaluation of VPAs along

with the backtracking optimizations when the VPA rejects an input [MZZ10]. Zorba

and MonetDB’s processing time for these sequence queries are at least quadratic, due

to the nested nature of the queries.

(a) (b)

(c) (d)

Figure 4.9: XSeq vs. XPath/XQuery engines: (a) ‘V’-pattern query over Nasdaq

stocks, (b) Sequence queries over Nasdaq stocks, (c) Regular XPath queries over

XMark data, and (d) conventional XPath queries from XMark.

In summary, the optimized XSeq queries run significantly (1-3 orders of magni-

106

tude) faster than their equivalent counterparts that are expressed in XQuery. This result

indicates that traditional XML languages such as XPath and XQuery (although theo-

retically expressive enough), due to their lack of explicit constructs for sequencing,

are not amenable to effective optimization of complex queries that involve repetition,

sequencing, Kleene-*, etc.

Regular XPath queries. As mentioned, despite the many benefits and applications

of Regular XPath, currently there are no implementations for this language (to our

best knowledge). One of the advantages of XSeq is that it can be also seen as the

first implementation of Regular XPath, as the latter is a subset of the former. In order

to study the performance of XSeq for Regular XPath queries (e.g., R1, · · · , R4) we

compared our system with the only other alternative, namely implementing the Kleene-

* operator as a higher-order user-defined functions (UDF) in XQuery. Since MonetDB

does not support such UDFs, we used another engine, namely Saxon [Kay08]. The

results for 464KB of treebank dataset are presented in Fig. 4.9(c) as Zorba, again, could

not handle larger input size. Thus, for Regular XPath queries, similarly to sequence

queries, XSeq proves to be 1-2 orders of magnitude faster than Zorba, and between 2-6

times faster than Saxon. Also, note that the relative advantage of Saxon over Zorba is

only due to the fact that Saxon loads the entire input file in memory and then performs

an in-memory processing of the query [Kay08]. However, this approach is not feasible

for streaming or large XML documents27.

4.6.3 Conventional Queries vs. XPath Engines

As shown in the previous section, complex sequence queries written in XSeq can be

executed dramatically faster (from 0.5 to 3 orders of magnitude) than even the fastest

27Due to lack of space, we omit the results for the case when the input size cannot fit in the memory.
Briefly, unlike XSeq, Saxon results in using the disk swap, and thus, suffers from a poor performance.

107

of XPath/ XQuery engines. In this section, we continue our comparison of XSeq

and native XPath engines by considering simpler XPath queries, i.e. queries with-

out sequencing and Kleene-*. For this purpose, we used the XMark queries which

in Fig. 4.9(d) are referred to as X1, X2, and so on28. Once again, we executed these

queries on MonetDB, Zorba (as state-of-the-art XPath/XQuery engines) and XSQ (as

state-of-the-art streaming XPath engine) as well as on our XSeq engine. In this ex-

periment, the XMark data size was 57MB. Note that both Zorba and MonetDB are

implemented in C/C++ while XSeq is coded in Java, which generally accounts for an

overhead factor of 2X in a fair comparison with C/C++ implementations. The results

are summarized in Fig. 4.9(d). The XSeq queries were consistently competitive com-

pared to all the three state-of-the-art XPath/XQuery engines. XSeq is faster than XSQ

for most of the tested queries. For some queries, e.g. X2 and X4, XSeq is even 2-4

times faster. Even compared with MonetDB and Zorba, XSeq is giving surprisingly

competitive performance, and for some queries, e.g. X4, were even faster. Given that

XSeq is coded in Java, this is an outstanding result for XSeq. For instance, once the

java factor is taken into account, the only XMark query that runs slower on the XSeq

engine is X15, while the rest of the queries will be considered about 2X faster than

both MonetDB and Zorba.

In summary, once the maturity of the research on XPath/ XQuery optimization is

taken into account, our natural extension of XPath that relies on a simple VPA-based

optimization seems very promising: XSeq achieves better or comparable performance

on simple queries, and is dramatically faster for more involved queries.

28Due to space limit and similarity of the result , here we only report 7 out of the 20 XMark queries.

108

4.6.4 Throughput for Different Types of Queries

To study the performance of different types of queries in XSeq, we selected four repre-

sentative queries with different characteristics which, based on our experiments, cov-

ered a wide range of different classes of XML queries. To facilitate the discussion,

below we label the XML patterns as ‘flat’, ‘deep’, ‘recursive’ and ‘monotone’:

Q1: flat /site/people/person[@id = ‘person0’]/name/text()

Q2: deep /site/closed auctions/closed auction/annotation/

description/parlist/listitem/parlist/listitem/text/

emph/keyword/text()

Q3: recursive (parlist/listitem)*

Q4: monotonic //closed auctions/

(\X[tag(X)=‘closed auction’ and

X@price < prev(X)@price])*

We executed all these queries on XMark’s dataset. Also, the first two queries (Q1 and

Q2) are directly from XMark benchmark (referred to as Q1 and Q15 in [Sa02]). We

refer to them as ‘flat’ and ‘deep’ queries, respectively, due to their few and many axes.

In XMark’s dataset, the parlist and listitem nodes can contain one another, which

when combined with the Kleene-*, is the reason why we have named Q3 ‘recursive’.

The Q4 query, called ‘monotonic’, searches for all sequences of consecutive closed

auctions where the price is strictly decreasing. These queries reveal interesting facts

about the nature of XSeq language and provide insight on the types of XSeq queries

that are more amenable to efficient execution under the VPA optimizations.

The query processing time is reported in Fig. 4.10(a). The first important obser-

vation is that XSeq has allowed for linear scalability in terms of processing time, re-

gardless of the query type. This has enabled our XSeq engine to steadily maintain an

impressive throughput of 200,000-700,000 tuples/sec, or equivalently, 8-31 MB/sec

even when facing an input size of 450MB. This is shown in Fig. 4.11(a) and 4.11(b)

109

in which the X-axes are drawn in log-scale. Interestingly, the throughput gradually

improves when the window size grows from 200K to 1.1M tuples. This is mainly due

to the amortized cost of VPA construction and compilation, and other run-time opti-

mizations such as backtrack matrices [MZZ10] that need to be calculated only once.

(a) (b)

Figure 4.10: Effect of different types of XSeq queries on total execution time (a) and

memory usage (b).

(a) (b)

Figure 4.11: The effect of different types of queries on (a) Total query execution time,

(b) Throughput in terms of tuple processing, and (c) Throughput in terms of datasize.

110

Among these queries, the best performance is delivered for Q3 and Q4. This is

because they consist of only two XPath steps, and therefore, once translated into VPA,

result in fewer states. Q1 comes next, as it contains more steps and thus, a longer

pattern clause. Q2 achieves the worst performance. This is again expected, because

Q2’s deep structure contains many tag names which lead to more states in the final

VPA. In summary, this experiment shows that with the help of the compile-time and

run-time optimizations, XSeq queries enjoy a linear-time processing. Moreover, the

fewer axes (i.e. steps) involved in the query, the better the performance.

4.7 Previous Work

XML Engines. Given the large amount of previous work on supporting XPath/X-

Query on stored and streaming data, we only provide a short and incomplete overview,

focusing on the streaming ones. Several XPath streaming engines have been proposed

over the years, including TwigM [CDZ06], XSQ [PC03], and SPEX [OKB03]; also

the processing of regular expressions, which are similar to the XPath queries of XSQ,

is discussed in [OKB03] and [Ba03]. XAOS [Ba03] is an XPath processor for XML

streams that also supports reverse axes (parent and ancestor), while support for pred-

icates and wildcards is discussed in [JFB05]. Finally, support for XQuery queries on

very small XML messages (<100KB) is discussed in [Fa03].

Language extensions. Extending the expressive power of XPath has been the fo-

cus of much research [Cat06, CM07b, CM07a, CS08, Mar05]. For instance, Core

XPath 2.0 [CM07a], extended Core XPath 1.0 with path intersection, complementa-

tion, and quantified variables. Conditional XPath [Mar05], extended XPath with ‘until’

operators, while the inclusion of a least fixed point operator was proposed in [Cat06].

More modest extensions, that better preserved the intuitive clarity and simplicity of

Core XPath 1.0, included Regular XPath [Cat06], Regular XPath≈ [CM07b] and Reg-

111

ular XPath(W) [CS08]. These allowed expressions such as /a(/b/c)∗/d, where a

Kleene-* expressionA∗, was defined as the infinite union ·∪A∪(A/A)∪(A/A/A)∪· · ·

Even for these more modest extensions, however, efficient implementation remained

an issue: in 2006, the following open problem was declared as a challenge for the

field [Cat06]: Efficient algorithms for computing the transitive closure of XPath path

expressions.

VPA. Visibly Pushdown Automata (VPA) have been recently proposed for check-

ing Monadic Second Order (MSO) formulas over dual-structured data such as XML [AM04,

AM06], and have led to new streaming algorithms for XML processing [MV09, Pit05].

The recently proposed query language K*SQL (See Chapter 3) used VPAs to achieve

good performance and expressivity levels needed to query both relational and XML

streams. However, while very natural for relational data, K*SQL is quite procedural

and verbose for XML, whereby the equivalents of simple XPath queries are long and

complex K*SQL statements. At the VPA implementation level, however, the same

VPA optimization techniques support both XSeq and K*SQL.

Gauwin and Niehren provided translations for a streamable fragment of forward

XPath into nested word automata [GN11]. XSeq on the other hand, is an MSO-

complete language (and hence, subsumes XPath) and therefore, our translation to

VPAs handles a much larger class of queries.

The current manuscript is an extended version of a conference paper [MZZ12],

with new material that were not published in the SIGMOD version, including new

applications (Sections 4.2.6, 4.2.8), formal semantics (Section 4.4), and proofs and

complexity results (Sections 4.5.1, 4.5.2 and Section 4.9).

112

4.8 Summary of XSeq

We have described the design and implementation of XSeq, a query language for XML

streams that adds powerful extensions to XPath while remaining very amenable to op-

timization and efficient implementation. We studied the power and efficiency of XSeq

both in theory and in practice, and proved that XSeq subsumes Regular XPath and its

dialects, and hence, provides the first implementation of these languages as well. Then,

we showed that well-known complex queries from diverse applications, can be easily

expressed in XSeq, whereas they are difficult or impossible to express in XPath and its

dialects. The design and implementation of XSeq leveraged recent advances in VPAs

and their online evaluation and optimization techniques. Inasmuch as XPath provides

the kernel of several query languages, such as XQuery, we expect that these languages

will also benefit from the extensions and implementation techniques described in this

chapter.

4.9 Core XSeq Proof of Regularity

In this section, we prove Theorems 6 and 7. We first introduce two simpler query

languages, called CXSeqA and CXSeqB. Next, we show how every CXSeq query

can be translated into an equivalent CXSeqA query, and every CXSeqA query can

be translated into an equivalent CXSeqB query. Then, we show that the domain of a

CXSeqB query can be captured by a VPA (MSO equivalent model), and for every Top

Down Tree Automata (MSO equivalent model) T, there exists a CXSeq query that has

domain equivalent to the language of T. These last two results together prove that every

MSO definable language can be expressed as the domain of some CXSeq query and

viceversa (Theorem 6). Theorem 7 is a consequence of the complexity of the query

transformations.

113

4.9.1 Core XSeq with Variable Concatenation

In Fig. 4.12 we introduce CXSeqA as a syntactic restriction of CXSeq and show that

CXSeq can be compiled to CXSeqA. In the following constructions we will use ∩

instead of ′intersect′.

PathExpr ::= PathExpr ′intersect′ PathExpr | VStep

VStep ::= Step Variable∗

Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest

Axis ::= � | ↓ | ↑ | → | ←

Figure 4.12: CXSeqA

Theorem 10. Every CXSeq query K can be transformed into an equivalent CXSeqA

query K ′.

Proof. Given a production (v, π) we define the following function st(π) that extracts

a starred path.

• st(π ∩ π′) = if st(π) 6= null then st(π) else st(π′);

• st(π∗) = π;

• else st(π) = null.

We are given a CXSeq query K = (V, v0, ρ) such that there exists at least a pro-

duction (v, π) ∈ ρ such that st(π) 6= null.

We rewrite K as follows.

1. Pick a production (v, π) such that st(π) = π′;

2. Replace π′ in π with � :: fv where fv is a fresh variable;

114

3. Add the productions (fv,� ::) and (fv, πfv);

4. Repeat from 1 until there are no more starred productions.

The algorithm terminates since at every step one star is eliminated from the pro-

ductions. The resulting query is still safe. The new query will have O(|ρ|) produc-

tions.

Next we introduce a notion of query size and show that every query of size n is

equivalent to some query of size 0. Given a query K = (V, v0, ρ), the size of K,

size(K), is defined as follows. size(K) = max(v,π)∈ρpsize(π) where

• psize(π ∩ π′) = max(psize(π), psize(π′));

• psize(d :: a[v]v1 . . . vn + 2) = n+ 1;

• psize(d :: a[v]) = 0;

• psize(d :: av1 . . . vn+2) = n+ 1;

• psize(d :: a) = 0.

Lemma 11. Every CXSeqA query K of size n can be transformed into an equivalent

CXSeqA query K ′ of size smaller or equal than 1.

Proof. We are given a CXSeqA query K = (V, v0, ρ) such that there exists at least a

production (v, π) ∈ ρ such that psize(π) > 1.

We pick a production p = (v, π) such that psize(π) > 1 we do the following. We

first remove p from ρ. Now we compute the set of productions prv(π).

• prv(π ∩ π′) = pr(π) ∪ pr(π′);

• prv(d :: a[v]v1 . . . vn+2) = {(v2 . . . vn+2,� :: v2 . . . vn+2)};

115

• prv(d :: av1 . . . vn+2) = {(v2 . . . vn+2,� :: v2 . . . vn+2)};

• else prv(π) = {}.

and the production prod(π):

• prod(π ∩ π′) = pr(π) ∩ pr(π′);

• prod(d :: a[v]v1 . . . vn+2) = d :: a[v]v1(v2 . . . vn+2);

• prod(d :: av1 . . . vn+2) = d :: a[v]v1(v2 . . . vn+2);

• else prod(π) = π.

Therefore we compute ρ = ρ ∪ pr(π) ∪ {(v, prod(π))}.

We also compute the following new set of variables nv(π).

• nv(π ∩ π′) = pr(π) ∪ pr(π′);

• nv(d :: a[v]v1 . . . vn+2) = {(v2 . . . vn + 2)};

• nv(d :: av1 . . . vn+2) = {(v2 . . . vn + 2)};

• else nv(π) = {}.

Next, we update the set V as follows: V := V ∪Pπ∪{(v, prod(π))}. The algorithm re-

peats this step until there are no more productions of size greater than 1. The algorithm

terminates since at every step, if a rule of size n is picked the number of productions

of size n is reduced by one and only rules of size smaller than n are produced.

We now need to show that every intermediate result is a safe query. This is straight-

forward from the construction.

We define the length of a query length(K) as the sum of the length of all the

productions in ρ. length(L) =
∑

(v,π)∈ρ plength(π) where

116

• plength(π ∩ π′) = plength(π) + plength(π′);

• plength(d :: a[v]v1 . . . vn+1) = n};

• plength(d :: av1 . . . vn+1) = n;

• else plength(π) = 0.

The new query will have O(|ρ| · length(K)) productions.

Lemma 12. Every CXSeqA query K can be transformed into an equivalent query

K ′ = (V ′, v′0, ρ
′) where for each production (v, π)ρ′, |dv(π)| = 0.

Proof. Using lemma 11 we reduce the query to be of size 1.

Now, we are given a CXSeqA query K = (V, v0, ρ) such that there exists at least a

production (v, π) ∈ ρ such that psize(π) = 1.

For every production p = (v, π) such that psize(π) = 1 we do the following.

We define the following set of variable pairs that need to be normalized as follows.

Given a production (v, π), let vp(π) be defined as follows:

• vp(π1 ∩ π2) = vp(π1) ∪ vp(π2)

• vp(d :: a[v]v1v2) = {(v1, v2)};

• vp(d :: av1v2) = {(v1, v2)};

• else vp(π) = {}.

We show how to eliminate a single variable pair from all the productions. The

algorithm then iterates. Let (v1, v2) be a pair in vp(π) for some (v, π) ∈ ρ.

Let X = nv(v1) and let ρ(X) =
⋃
x∈X ρ(x).

117

Create a copy of P ′ of P = ρ(X), where each variable occurrence x ∈ X that is not

a predicate is replaced by a new variable x′. The set of production P ′ is used to generate

the concatenation effect in the production p. Compute P ′′ = {(v, hv2(π))|(v, π) ∈ P ′}

using the following function h.

• hv2(π1 ∩ π2) = hv2(π1) ∩ hv2(π2)

• hv2(d :: a[v]) = d :: a[v]v2;

• hv2(d :: a) = d :: av2;

• else hv2(π) = π.

Add P ′′ to the set of productions ρ.

Now, for each production (v, π) ∈ ρ containing v1, v2 replace it with (v, gv1v2(π))

where

• gv1v2(π1 ∩ π2) = g(π1) ∩ g(π2)

• gv1v2(d :: a[v]v1v2) = d :: a[v]v′1;

• gv1v2(d :: av1v2) = d :: av′1;

• else g(π) = π.

Repeat until there are no more production of size 1.

The termination is guaranteed by the fact that whenever a pair (a, b) is eliminated,

the same pair cannot appear in the derivation of a, therefore we can always identifying

a total order in variables v1, . . . , vn , such that whenever we eliminate a pair for a

production vi the number of productions of size 1 out of vi decreases and only the

number of productions for vj , j > i can increase. The correctness of the algorithm is

guaranteed by the fact that every step preserves safety.

118

4.9.2 Core XSeq Basic

Fig. 4.13 presents the syntax of CXSeqB where queries are only allowed to have size

0. We then show that CXSeqA, and therefore CXSeq, have the same expressiveness as

CXSeqB. Finally we show that all the languages we introduced can be compiled into

equivalent VPA and are all MSO complete.

PathExpr ::= PathExpr ′intersect′ PathExpr | VStep

VStep ::= Step Variable | Step

Step ::= Axis ′ ::′ NameTest [Variable]

| Axis ′ ::′ NameTest

Axis ::= � | ↓ | ↑ | → | ←

Figure 4.13: CXSeqB

Using Lemma 11 and 12 we prove the following theorem.

Theorem 13. Every CXSeqA query K can be transformed into an equivalent CXSeqB

query K ′.

4.9.2.1 Translating CXSeqB into VPA

In the following we show that a CXSeqB query can be encoded as an equivalent visibly

pushdown automata.

Theorem 14. For every query K = (V, v0, ρ) in CXSeqB there exists an equivalent

VPA A over Σ such that a word w is accepted by A iff K(w) 6= ∅. A has O(r5 · 2r)

states where r = |ρ|.

Proof. Given a queryK = (V, v0, ρ) we construct an equivalent nondeterministic VPA

A = (Q,Q0,Γ, δ, F). The main idea of the construction is that each variable v in V

119

corresponds to a query and at every step the automaton keeps in state the informa-

tion on which queries are consistent with the neighboring nodes. Whenever the state

contains the query v0, a bit is set to 1 to remember that the starting query has been

answered.

The state of A will encode which productions in the grammar the current node

and its neighbors have been traversed with. The construction will be nondeterministic

since some query results will depend on stretches of the input that have not been read

yet. Assuming the query has been executed over the input using a set of productions,

the run of the automaton will guess which productions have been used to process each

element of the input.

We define a notion of consistency that will allow us to show the correctness of the

construction. For v ∈ V , let ρ(v) = {(v, π) | (v, π) ∈ ρ}, be the set of productions in

ρ with first element v. We introduce the function fπ : (V, (Σ ∪ { })5, that given a path

π, computes the set of queries that must answer the current nodes and its neighbors

nodes. We define f inductively as follows:

• f(� :: s[v1]v2) = (({v1, v2}, s), ({},), ({},), ({},), ({},));

• f(� :: s[v1]) = (({v1}, s), ({},), ({},), ({},), ({},));

• f(� :: s) = (({}, s), ({},), ({},), ({},), ({},));

• f(↓:: s[v1]v2) = (({},), ({v1, v2}, s), ({},), ({},), ({},));

• f(↑:: s[v1]v2) = (({},), ({},), ({v1, v2}, s), ({},), ({},));

• f(↑:: s[v1]v2) = (({},), ({},), ({},), ({v1, v2}, s), ({},));

• f(↑:: s[v1]v2) = (({},), ({},), ({},), ({},), ({v1, v2}, s));

• if f(π1) = ((C1, c1), (FC1, fc1), (P1, p1), (NS1, ns1), (PS1, ps1)),

120

and f(π2) = ((C2, c2), (FC2, fc2), (P2, p2), (NS2, ns2), (PS2, ps2)),

then f(π1∩π2) = ((C1∪C2, c1♦c2), (FC1∪FC2, fc1♦fc2), (P1∪P2, p1♦p2), (NS1∪

NS2, ns1♦ns2), (PS1 ∪ PS2, ps1♦ps2)), where if a ∈ Σ ∪ { }, then ♦(a,) =

♦(, a) = ♦(a, a) = a, and it is undefined in any other case (when undefined

the path is also inconsistent, so it should not belong to the productions);

• the omitted cases are similar.

Each state ofA is an element of the relation ((2ρ×Σ)∪{⊥})5×{0, 1}, such that be-

fore reading the node n,A is in state ((PC, a), (PFC, b), (PP, c), (PNS, d), (PPS, e), i)

iff

• for each (v, π) ∈ PC there exists a derivation of v starting in n with the produc-

tion (v, π) and the label of n is a,

• for each (v, π) ∈ PFC there exists a derivation of v starting from the first child

n′ of n with the production (v, π) and the label of n′ is b,

• for each (v, π) ∈ PP there exists a derivation of v starting from the parent n′ of

n with the production (v, π) and the label of n′ is c,

• for each (v, π) ∈ PNS there exists a derivation of v starting from the next

sibling n′ of n with the production (v, π) and the label of n′ is d,

• for each (v, π) ∈ PPS there exists a derivation of v starting from the previous

sibling n′ of n with the production (v, π) and the label of n′ is e,

• i = 1 iff a state such that (v0, π) ∈ C, for some π, has been already traversed.

Whenever a component of the state is ⊥ it means that that neighbor is not defined. For

example if the second component is ⊥ it means that the node does not have a parent.

121

We need to restrict the states to not violate the semantics of the production we

defined before (f). Given a set of productions Π, we define ν(Π) = {v | ∃(v, π) ∈ Π}.

Let T be the following set:

{((C, a), t1, t2, t3, t4) | (v, π) ∈ C ∧ fv(π) = ((C, a), t1, t2, t3, t4)}

A state ((PC ′, a′), (PFC ′, b′), (PP ′, c′), (PNS ′, d′), (PPS ′, e′), i) is consistent with

respect to ρ if the following holds:

for each ((C, a), (FC, b), (P, c), (NS, d), (PS, e)) ∈ T , ♦(a, a′),♦(b, b′),♦(c, c′),

♦(d, d′),♦(e, e′) are defined andC ⊆ ν(PC ′), FC ⊆ ν(PFC ′), P ⊆ ν(PP ′),NS ⊆

ν(PNS ′), and PS ⊆ ν(PPS ′). If one of the component is ⊥ the corresponding pair

in the tuple should be ({},).

The set of states Q ⊆ ((2ρ × Σ ∪ {⊥})5 × {0, 1} contains all the tuples consistent

with respect to ρ. The set of stack states Γ is the same as Q. The set of initial states is

Q0 = (2ρ ∪ {⊥}) × (2ρ ∪ {⊥}) × {⊥} × {⊥} × {⊥} × {0, 1} ∩ Q. The set of final

states is F = {⊥} × {⊥} × {⊥} × {⊥} × (2ρ ∪ {⊥})× {0, 1} ∩Q. where only the

previous sibling has replied to some queries (maybe the empty set if the root is not in

any). We assume that A only accepts well-matched words.

We can now give the transition function δ of A. We need to maintain the state

invariant defined before.

• for every S1, S2 such that (FC, S1, (PC, a), S2,⊥, i) ∈ Q,

(FC, S1, (PC, a), S2,⊥, i),

((PC, a), FC, P,NS, PS, i)) ∈ ((PC, a), FC, P,NS, PS, i)(〈a);

• for every S1, S2 such that (FC, S1, (PC, a), S2,⊥, 1) ∈ Q and v0 ∈ ν(PC),

(FC, S1, (PC, a), S2,⊥, i),

((PC, a), FC, P,NS, PS, 1)) ∈ ((PC, a), FC, P,NS, PS, 0)(〈a);

122

• for every S1, S2 such that (NS, S1, P, S2, C,max(i, j)) ∈ Q,

(NS, S1, P, S2, C,max(i, j)) ∈ (⊥,⊥, P ′, PS ′,⊥, i)(a〉, (C,FC, P,NS, PS, j).

This concludes the proof.

We can actually show that A does not need to have Σ as a state component, but can

instead just keep a set Σ′ ∪ { } where Σ′ contains only symbols that actually appear in

the query, and is a place holder for all the other symbols.

The automaton will have O(r5 · 2r) states where r = |ρ|.

4.9.2.2 Translating Top-down Tree Automata into CXSeqB

To show MSO completeness we translate nondeterministic Top-Down Tree Automata

(TA) into CXSeqB. A TA A over binary trees, is a tuple (Q, q0, δ) where Q is a set

of states and q0 ∈ Q is the initial states. The productions in δ are of the form:

q(b(x, y)) → q1(x), q2(y) or q(z) where z and b are respectively a leaf and an in-

ternal node. The set of tree accepted by A starting in state q (Lq) is defined inductively

as follows: 1) a(x, y) ∈ Lq if q(a(x, y))→ q1(x), q2(y) ∈ δ and x ∈ Lq1 and y ∈ Lq2 ,

2) b ∈ Lq if q(b) ∈ δ.

We consider an encoding of unranked trees into binary trees where for each node

n = a(x, y), x, n has label a, x is the first child of n and y is the next sibling of n.

Given a TA A = (Q, q0, δ) we construct an equivalent query (V, v0, ρ), where V =

Q, v0 = q0 and ρ is defined as follows. For every rule q(z) ∈ δ the production (q, z ::

�) will belong to ρ. For every rule q(b(x, y)) → q1(x), q2(y) ∈ δ the production

(q, (� :: b) ∩ (↓:: [q1]) ∩ (→:: [q2])) will belong to ρ.

Regularity of CXSeq and Complexity. Theorem 6 and Theorem 7 follow from the

transformation of Section 4.9.2.2 and Theorem 14.

123

CHAPTER 5

Trinity.RDF: A Distributed Graph Engine for Web

Scale Graphs

RDF data is becoming increasingly more available: The semantic web movement to-

wards a web 3.0 world is proliferating a huge amount of RDF data. Commercial search

engines including Google and Bing are pushing web sites to use RDFa to explicitly

express the semantics of their web contents. Large public knowledge bases, such as

DBpedia [ABK07] and Probase [WLW12] contain billions of facts in RDF format.

Web content management systems, which model data in RDF, mushroom in various

communities all around the world.

Challenges. RDF data management systems are facing two challenges: namely, sys-

tems’ scalability and generality. The challenge of scalability is particularly urgent.

Tremendous efforts have been devoted to building high performance RDF systems and

SPARQL engines [ACK01, BKH02, jen, WSK03, CDE05, AMM09, WKB08, NW10].

Still, scalability remains the biggest hurdle. Essentially, RDF data is highly connected

graph data, and SPARQL queries are like subgraph matching queries. But most ap-

proaches model RDF data as a set of triples, and use RDBMS for storing, indexing,

and query processing. These approaches do not scale as processing a query often in-

volves a large number of join operations that produce large intermediate results. Fur-

thermore, many systems, including SW-Store [AMM09], Hexastore [WKB08], and

RDF-3x [NW10] are single-machine systems. As the size of RDF data keeps soaring,

124

it is not realistic for single-machine approaches to provide good performance. Re-

cently, several distributed RDF systems, such as SHARD [RS10], YARS2 [HUH07],

Virtuoso [EM09], and [HAR11], have been introduced. However, they still model

RDF data as a set of triples. The cost incurred by excessive join operations is further

exacerbated by network communication overhead. Some distributed solutions try to

overcome this limitation by brute-force replication of data [HAR11]. However, this

approach simply fails in the face of complex SPARQL queries (e.g., queries with a

multi-hop chain), and has a considerable space overhead (usually exponential).

The second challenge lies in the generality of RDF systems. State-of-the-art sys-

tems are not able to support general purpose queries on RDF data. In fact, most of

them are optimized for SPARQL only, but a wide range of meaningful queries and

operations on RDF data cannot be expressed in SPARQL. Consider an RDF dataset

that represents an entity/relationship graph. One basic query on such a graph is reach-

ability, that is, checking whether a path exists between two given entities in the RDF

data. Many other queries (e.g., community detection) on entity/relationship data rely

on graph operations. For example, random walks on the graph can be used to calculate

the similarity between two entities. All of the above queries and operations require

some form of graph-based analytics [WHY06, NG04, LYT05, SWW12]. Unfortu-

nately, none of these can be supported in current RDF systems, and one of the reasons

is that they manage RDF data in some foreign forms (e.g., relational tables or bitmap

matrices) instead of its native graph form.

Overview of Our Approach. We introduce Trinity.RDF, a distributed in-memory

RDF system that is capable of handling web scale RDF data (billion or even trillion

triples). Unlike existing systems that use relational tables (triple stores) or bitmap

matrices to manage RDF, Trinity.RDF builds on top of a memory cloud, and mod-

els RDF data in its native graph form (i.e., representing entities as graph nodes, and

125

relationships as graph edges). We argue that such a memory-based architecture that

logically and physically models RDF in native graphs opens up a new paradigm for

RDF management. It not only leads to new optimization opportunities for SPARQL

query processing, but also supports more advanced graph analytics on RDF data.

To see this, we must first understand that most graph operations do not have local-

ity [LGH07, SWX12], and rely exclusively on random accesses. As a result, storing

RDF graphs in disk-based triple stores is not a feasible solution since random accesses

on hard disks are notoriously slow. Although sophisticated indices can be created to

speed up query processing, they introduce excessive join operations, which become a

major cost for SPARQL query processing.

Trinity.RDF models RDF data as an in-memory graph. Naturally, it supports fast

random accesses on the RDF graph. But in order to process SPARQL queries effi-

ciently, we still need to address the issues of how to reduce the number of join opera-

tions, and how to reduce the size of intermediary results. In this chapter, we develop

novel techniques that use efficient in-memory graph exploration instead of join opera-

tions for SPARQL processing. Specifically, we decompose a SPARQL query into a set

of triple patterns, and conduct a sequence of graph explorations to generate bindings

for each of the triple pattern. The exploration-based approach uses the binding infor-

mation of the explored subgraphs to prune candidate matches in a greedy manner. In

contrast, previous approaches isolate individual triple patterns, that is, they generate

bindings for them separately, and make excessive use of costly join operations to com-

bine those bindings, which inevitably results in large intermediate results. Our new

query paradigm greatly reduces the amount of intermediate results, boosts the query

performance in a distributed environment, and makes the system scale. We show in ex-

periments that even without a smart graph partitioning scheme, Trinity.RDF achieves

several orders of magnitude speed-up on web scale RDF data over state-of-the-art RDF

126

systems.

We also note that since Trinity.RDF models data as a native graph, we enable a

large range of advanced graph analytics on RDF data. For example, random walks,

regular expression queries, reachability queries, distance oracles, community searches

can be performed on web scale RDF data directly. Even large scale vertex-based an-

alytical tasks on graph platforms such as Pregel [MAB10] can be easily supported in

our system. We refer interested readers to the Trinity system [SWL13, tri] for detailed

information.

Contributions. We summarize the novelty and advantages of our work as follows.

1. We introduce a novel graph-based scheme for managing RDF data. Trinity.RDF

has the potential to support efficient graph-based queries, as well as advanced

graph analytics, on RDF.

2. We leverage graph exploration for SPARQL processing. The new query paradigm

greatly reduces the volume of intermediate results, which in turn boosts query

performance and system scalability.

3. We introduce a new cost model, novel cardinality estimation techniques, and

optimization algorithms for distributed query plan generation. These approaches

ensure excellent performance on web scale RDF data.

Outline. The rest of the chapter is organized as follows. Section 5.1 describes the

difference between join operations and graph exploration. Section 5.2 presents the

architecture of the Trinity.RDF system. Section 5.3 describes how we model RDF

data as native graphs. Section 5.4 describes SPARQL query processing techniques.

Section 5.5 shows experimental results. We conclude in Section 5.7.

127

5.1 Join vs. Graph Exploration

Joins are the major operator in SPARQL query processing. Trinity.RDF outperforms

existing systems by orders of magnitude because it replaces expensive join operations

by efficient graph exploration. In this section, we discuss the performance implications

of the two different approaches.

5.1.1 RDF and SPARQL

Before we discuss join operations vs. graph exploration, we first introduce RDF and

SPARQL query processing on RDF data. An RDF data set consists of statements in

the form of (subject, predicate, object). Each statement, also known as as a triple, is

about a fact, which can be interpreted as subject has a predicate property whose value

is object. For example, a movie knowledge base may contain the following triples

about the movie “Titanic”:

(T i t a n i c , has award , Bes t P i c tu re)

(T i t a n i c , casts , L DiCapr io) ,

(J Cameron , d i r e c t s , T i t a n i c)

(J Cameron , wins , Oscar Award)

. . .

An RDF dataset can be considered as representing a directed graph, with entities (i.e.

subjects and objects) as nodes, and relationships (i.e. predicates) as directed edges.

SPARQL is the standard query language for retrieving data stored in RDF format. The

core syntax of SPARQL is a conjunctive set of triple patterns called a basic graph

pattern. A triple pattern is similar to an RDF triple except that any component in

the triple pattern can be a variable. A basic graph pattern describes a subgraph which

a user wants to match against the RDF data. Thus, SPARQL query processing is

128

essentially a subgraph matching problem. For example, we can retrieve the cast of

an award-winning movie directed by an award-winning director using the following

query:

Example 31.

SELECT ?movie, ?actor WHERE{

?director wins ?award .

?director directs ?movie .

?movie has_award ?movie_award .

?movie casts ?actor .}

SPARQL also contains other language constructs that support disjunctive queries

and filtering.

5.1.2 Using Join Operations

Many state-of-the-art RDF systems store RDF data as a set of triples in relational ta-

bles, and therefore, they rely excessively on join operations for processing SPARQL

queries. In general, query processing consists of two phases [NW08]: The first phase is

known as the scan phase. It decomposes a SPARQL query into a set of triple patterns.

For the query in Example 1, the triple patterns are ?director wins ?award, ?director

directs ?movie, ?movie has award ?movie award, and ?movie casts ?actor. For each

triple pattern, we scan tables or indices to generate bindings. Assuming we are pro-

cessing the query against the RDF graph in Figure 5.1. The base tables that contain the

bindings are shown in Table 5.1. The second phase is the join phase. The base tables

are joined to produce the final answer to the query.

129

?director ?award

J Cameron Oscar Award

G Lucas Saturn Award

?director ?movie

P Haggis Crash

J Cameron Titanic

J Cameron Avatar

?movie ?movie award

Titanic Best Picture

Crash Best Picture

?movie ?actor

Crash D Cheadle

Titanic L Dicaprio

Avatar S Worthington

Star War VI M Hamill

Table 5.1: Base tables and bound variables.

Sophisticated techniques have been used to optimize the order of joins to improve

query performance. Still, the approach has inherent limitations: (1) It uses many costly

join operations. (2) The scan-join process produces large redundant intermediary re-

sults. From Table 5.1, we can see that most intermediary join results will be produced

in vain. After all, only Titanic directed by J Cameron matches the query. Moreover,

useless intermediary resutls may only be detected in later stages of the join process.

For example, if we choose to join ?director directs ?movie and ?movie casts ?actor

first, we will not know that the resulting rows related to Avatar and Crash are useless

until joining with ?director wins ?award and ?movie has award ?movie award. Side-

ways Information Passing (SIP) [NW09] was proposed to alleviate this problem. SIP

is a dynamic optimization technique for pipelined execution plans. It introduces filters

on subject, predicate, or object identifiers, and passes these filters to joins and scans in

other parts of the query that need to process similar identifiers.

5.1.3 Using Graph Explorations

In this chapter, we adopt a new approach that greatly improves the performance of

SPARQL query processing. The idea is to use graph exploration instead of joins.

130

Figure 5.1: An example RDF graph

The intuition can be illustrated by an example. Assume we perform the query

in Example 31 over the RDF graph in Figure 5.1 starting with the pattern: ?director

wins ?award. After exploring the neighbors of ?award connected via the wins edge,

we find that the possible binding for ?director is J Cameron and G Lucas. Then, we

explore the graph further from node J Cameron and G Lucas via edge directs, and we

generate bindings for ?director directs ?movie. In the above exploration, we prune

G Lucas because it does not have a directs edge. Also, we do not produce useless

bindings as those shown in Table 5.1, such as the binding (P Haggis, Crash). Thus,

we are able to prune unnecessary intermediate results efficiently.

The above intuition is only valid if graph exploration can be implemented more ef-

ficiently than join. This is not true for existing RDF systems. If the RDF graph is man-

aged by relational tables, triple stores, or disk-based key-value stores, then we need to

use join operations to implement graph exploration, which means graph exploration

cannot be more efficient than join: With an index, it usually requires an O(logN) op-

eration to access the triples relating to a subject/object1. In our work, we use native

graphs to model RDF data, which enables us to perform the same operation in O(1)

time. With the support of the underlying architecture, we make graph exploration ex-

tremely efficient. In fact, Trinity.RDF can explore as many as 2.3 million nodes on a

graph distributed over an 8-server cluster within one tenth of a second [SWL13]. This

1N is the total number of RDF triples

131

lays the foundation for exploration-based SPARQL query processing.

We need to point out that the order of exploration is important. Starting with the

highly selective pattern ?movie has award ?movie award, we can prune a lot of can-

didate bindings of other patterns. If we explore the graph in a different order, e.g.,

exploring ?movie cast ?actor followed by ?director directs ?movie, then we will still

generate useless intermediate results. Thus, query plans need to be carefully opti-

mized to pick the optimal exploration order, which is not trivial. We will discuss our

algorithm for optimal graph exploration plan generation in Section 5.4.

Note that graph exploration (following the links) is to certain extent similar to

index-nested-loops join. However, index-nested-loops join is costly for RDBMS or

disk-based data, because it needs a random access for each index lookup. Hence, in

previous approaches, scan-joins, which perform sequential reads on sorted data, are

preferred. Our approach further extends the random access approach in a distributed

environment and minimizes the size of intermediate join results.

5.2 System Architecture

In this section, we give an overall description of the data model and the architecture

of Trinity.RDF. We model and store RDF data as a directed graph. Each node in the

graph represents a unique entity, which may appear as a subject and/or an object in an

RDF statement. Each RDF statement corresponds to an edge in the graph. Edges are

directed, pointing from subjects to objects. Furthermore, edges are labeled with the

predicates. We will present the data structure for nodes and edges in more detail in

Section 5.3.

To ensure fast random data access in graph exploration, we store RDF graphs in

memory. A web scale RDF graph may contain billions of entities (nodes) and trillions

132

of triples. It is unlikely that a web scale RDF graph can fit in the RAM of a single

machine. Trinity.RDF is based on Trinity [SWL13], which is a distributed in-memory

key-value store. Trinity.RDF builds a graph interface on top of the key-value store. It

randomly partitions an RDF graph across a cluster of commodity machines by hashing

on the nodes. Thus, each machine holds a disjoint part of the graph. Given a SPARQL

query, we perform search in parallel on each machine. During query processing, ma-

chines may need to exchange data as a query pattern may span multiple partitions.

Figure 5.2 shows the high level architecture of Trinity.RDF. A user submits a query

to a proxy. The proxy generates a query plan and delivers the plan to all the Trinity ma-

chines, which hold the RDF data. Then, each machine executes the query plan under

the coordination of the proxy. When the bindings for all the variables are resolved, all

Trinity machines send back the bindings (answers) to the proxy where the final result

is assembled and sent back to the user. As we can see, the proxy plays an important

role in the architecture. Specifically, it performs the following tasks. First, it generates

a query plan based on available statistics and indices. Second, it keeps track of the

status of each Trinity machine in query processing by, for example, synchronizing the

execution of each query step. However, each Trinity machine not only communicates

with the proxy. They also communicate among themselves during query execution to

exchange intermediary results. All communications are handled by a message passing

mechanism built in Trinity.

Besides the proxy and the Trinity machines, we also employ a string indexing

server. We replace all literals in RDF triples by their ids. The string indexing server

implements a literal-to-id mapping that translates literals in a SPARQL query into ids,

and an id-to-literal mapping that maps ids in the output back to literals for the user.

The mapping can be either implemented by a separate Trinity in-memory key-value

store for efficiency, or by a persistent key-value store if memory space is a concern.

133

Figure 5.2: Distributed query processing framework

Usually the cost of mapping is negligible compared to that of query processing.

5.3 Data Modeling

To support graph-based operations including SPARQL queries on RDF data more ef-

fectively, we store RDF data in its native graph form. In this section, we describe how

we model and manipulate RDF data as distributed graphs.

5.3.1 Modeling Graphs

Trinity.RDF is based on Trinity, which is a key-value store in a memory cloud. We

then create a graph model on top of the key-value store. Specifically, we represent

each RDF entity as a graph node with a unique id, and store it as a key-value pair in

the Trinity memory cloud:

(node-id, 〈in-adjacency-list, out-adjacency-list〉) (5.1)

The key-value pair consists of the the node-id as the key, and the node’s adjacency

list as the value. The adjacency list is divided into two lists, one for neighbors with

incoming edges and the other for neighbors with outgoing edges. Each element in the

134

Figure 5.3: An example of model (5.1)

adjacency lists is a (predicate, node-id) pair, which records the id of the neighbor, and

the predicate on the edge.

Thus, we have created a graph model on top of the key-value store. Given any node,

we can find the node-id of any of its neighbors, and the underlying Trinity memory

cloud will retrieve the key-value pair for that node-id. This enables us to explore

the graph from any given node by accessing its adjacency lists. Figure 5.3 shows an

example of the data structure.

5.3.2 Graph Partitioning

We distribute an RDF graph across multiple machines, and this is achieved by the

underlying memory cloud, which partitions the key-value pairs in a cluster. However,

due to the characteristics of graphs, we need to look into how the graph is partitioned

in order to ensure best performance.

Two factors may have impact on network overhead when we explore a graph. The

first factor is how the graph is partitioned. In our system, sharding is supported by the

underlying key-value store, and the default sharding mechanism is hashing on node-id.

In other words, the graph is randomly partitioned. Certainly, sophisticated graph par-

titioning methods can be adopted for sharding. However, graph partitioning is beyond

135

the scope of this discussion.

The second factor is how we model graphs on top of the key-value store. The

model given by (5.1) may have potential problems for real-life large graphs. Many

real-life RDF graphs are scale-free graphs whose node degrees follow the power law

distribution. In DBpedia [ABK07], for example, over 90% nodes have less than 5

neighbors, while some top nodes have more than 100,000 neighbors. The model may

incur a large amount of network traffic when we explore the graph from a top node

x. For simplicity, let us assume none of x’s neighbors resides on the same machine

as x does. To visit x’s neighbors, we need to send the node-ids of its neighbors to

other machines. The total amount of information we need to send across the network

is exactly the entire set of node-ids in x’s adjacency list. For the DBpedia data, in the

worst case, whenever we encounter a top node in graph exploration, we need to send

800K data (each node-id is 64 bit) across the network. This is a huge cost in graph

exploration.

We take the power law distribution into consideration in modeling RDF data.

Specifically, we model a node x by the following key-value pair:

(node-id, 〈in1, · · · , ink, out1, · · · , outk〉) (5.2)

where ini and outi are keys to some other key-value pairs:

(ini, in-adjacency-listi) (outi, out-adjacency-listi) (5.3)

The essense of this model is the following: The key-value pair (ini, in-adjacency-listi)

and the nodes in in-adjacency-listi are stored on the same machine i. In other words,

we partition the adjacency lists in model (5.1) by machine.

The benefits of this design is obvious. No matter how many neighbors x has, we

will send no more than k nids (ini and outi) over the network since each machine i,

136

Figure 5.4: An example of model (5.2)

upon receiving nidi, can retrieve x’s neighbors that reside on machine i without incur-

ring any network communication. However, for nodes with few neighbors, model (5.2)

is more costly than model (5.1). In our work, we use a threshold t to decide which

model to use. If a node has more than t neighbors, we use model (5.2) to map it to

the key-value store; otherwise, we use model (5.1). Figure 5.4 gives an example with

t = 1. Furthermore, in our design, all triples are stored decentralized at its subject and

object. Thus, update has little cost as it only affects a few nodes. However, update is

out of the scope of this chapter and we omit detailed discussion here.

5.3.3 Indexing Predicates

Graph exploration relies on retrieving nodes connected by an edge of a given predicate.

We use two additional indices for this purpose.

Local Predicate Indexing. We create a local predicate index for each node x. We sort

all (predicate, node-id) pairs in x’s adjacency lists first by predicate then by node-id.

This corresponds to the SPO or OPS index in traditional RDF approaches. In addition,

we also create an aggregate index to enable us to quickly decide whether a node has a

given predicate and the number of its neighbors connected by the predicate.

137

Global Predicate Indexing. The global predicate index enables us to find all nodes

that have incoming or outgoing neighbors labeled by a given predicate. This cor-

responds to the PSO or POS index in traditional approaces. Specifically, for each

predicate, machine i stores a key-value pair

(predicate, 〈subject-listi, object-listi〉)

where subject-listi (object-listi) consists of all unique subjects (objects) with that pred-

icate on machine i.

5.3.4 Basic Graph Operators

We provide the following three graph operators with which we implement graph ex-

ploration:

1. LoadNodes(predicate, dir): Return nodes that have an incoming or outgoing

edge labeled as predicate.

2. LoadNeighborsOnMachine(node, dir, i): For a given node, return its incoming

or outgoing neighbors that reside on machine i.

3. SelectByPredicate(nid, predicate): From a given partial adjacency list speci-

fied by nid, return nodes that are labeled with the given predicate.

Here, dir is a parameter that specifies whether the predicate is an incoming or an

outgoing edge. LoadNodes() is straightforward to understand. When it is called, it

uses the global predicate index on each machine to find nodes that have at least one

incoming or outgoing edge that is labeled as predicate.

The next two operators together find specific neighbors for a given node. In spe-

cific, LoadNeighborsOnMachine() finds a node’s incoming or outgoing neighbors

138

on a given machine. But, instead of returning all the neighbors, it simply returns the

ini or outi id as given in (5.2). Then, given the ini or outi id, SelectByPredicate()

finds nodes in the adjacency list that is associated with the given predicate. Certainly,

if the node has less than t neighbors, then its adjacency list is not distributed, and the

two functions simply operate on the local adjacency list.

We now use some examples to illustrate the use of the above 3 operators on the

RDF graph shown in Figure 5.4. LoadNodes(l2, out) finds n2 on machine 1, and n3

on machine 2. LoadNeighborsOnMachine(n0, in, 1) returns the partial adjacency

list’s id in1, and SelectByPredicate(in1, l2) returns n2.

5.4 Query Processing

In this section, we present our exploration-based approach for SPARQL query pro-

cessing.

5.4.1 Overview

We represent a SPARQL query Q by a query graph G. Nodes in G denote subjects and

objects in Q, and directed edges in G denote predicates. Figure 5.5 shows the query

graph corresponding to the query in Example 31, and lists the 4 triple patterns in the

query as q1 to q4.

With G defined, the problem of SPARQL query processing can be transformed to

the problem of subgraph matching. However, as we pointed out in Section 2, existing

RDF query processing and subgraph matching algorithms rely excessively on costly

joins, which cannot scale to RDF data of billion or even trillion triples. Instead, we

use efficient graph exploration in an in-memory key-value store to support fast query

processing. The exploration is conducted as follows: We first decompose Q into an

139

• q1: (?director wins ?award)

• q2: (?director directs ?movie)

• q3: (?movie has award ?movie award)

• q4: (?movie casts ?actor)

Figure 5.5: The query graph of Example 31

ordered sequence of triple patterns: q1, · · · , qn. Then, we find matches for each qi,

and from each match, we explore the graph to find matches for qi+1. Thus, to a large

extent, graph exploration acts as joins. Furthermore, the exploration is carried out on

all distributed machines in parallel. In the final step, we gather the matchings for all

individual triple patterns to the centralized query proxy, and combine them together to

produce the final results.

5.4.2 Single Triple Pattern Matching

We start with matching a single triple pattern. For a triple pattern q, our goal is to find

all its matches R(q). Let P denote the predicate in q, V denote the variables in q, and

B(V) denote the binding of V . If V is a free variable (not bound), we also use B(V)

to denote all possible values V can take. We regard a constant as a special variable

with only one binding.

140

We use graph exploration to find matches for q. There are two ways of exploration:

from subject to object (We first try to find matches for the subject in q, and then for

each match, we find matches for the object in q. We denote this exploration as −→q) and

from object to subject (We denote this exploration as←−q). We use src and tgt to refer

to the source and target of an exploration (i.e., in −→q the src is the subject, while in←−q

the src is the object).

Algorithm 1 MatchPattern(e)

obtain src, tgt, and predicate p from e (e = −→q or e =←−q)

// On the src side:

if src is a free variable then

B(src) =
⋃
∀p∈B(P) LoadNodes(p, dir)

set Mi = ∅ for all i // initialize messages to machine i

for each s in B(src) do

for each machine i do

nidi = LoadNeighborsOnMachine(s, dir, i)

Mi = Mi ∪ (s, nidi)

batch send messages M to all machines

// On the tgt side:

for each (s, nid) in M do

for each p in B(P) do

N = SelectByPredicate(nid, p)

for each n in N ∩B(tgt) do

R = R ∪ (s, p, n)

return R

141

Algorithm 1 outlines the matching procedure using the basic operators introduced

in Section 5.3.4. If src is a constant, we only need to explore from one node. If src is

a variable, we initialize its bindings by calling LoadNodes, which searches the global

predicate index to find the matches for src. Note that if the predicate itself is a free

variable, then we have to load nodes for every predicate. After src is bound, for each

node that matches src and for each machine i, we call LoadNeighborsOnMachine()

to find the key nidi. The node’s neighbors on machine i are stored in the key-value

pair with nidi as the key. We then send nidi to machine i.

Each machine, on receiving the message, starts the matching on the tgt side. For

each eligible predicate p in B(P), we filter neighbors in the adjacency list by p by

calling SelectByPredicate(). If tgt is a free variable, any neighbor is eligible as a

binding, so we add (s, p, n) as a match for every neighbor n. If tgt is a constant,

however, only the constant node is eligible. As we treat a constant as a special variable

with only one binding, we can uniformly handle these two cases: we match a new edge

only if its target is in B(tgt).

Figure 5.6: Distribution of the RDF graph in Figure 5.1

We use an example to demonstrate how MatchPattern works. Assume the RDF

graph is distributed on two machines as shown in Figure 5.6. Suppose we want to

find matches for←−q1 where q1 is “?director wins ?award”. In this case, src is ?award.

We first call LoadNodes(wins, in) to find B(?award), which are nodes having an in-

coming wins edge. This results in Oscar Award on machine 1, and Saturn Award

142

on machine 2. Next, on the target ?director side, machine 1 gets the key of the ad-

jacency list sent by Saturn Award, and after calling SelectByPredicate(), it gets

G Lucas. Since the target ?director is a free variable, any edge labeled with win will

be matched. We add matching edge (G Lucas,wins, Saturn Award) toR. Similarly

on machine 2, we get (J Cameron, wins, Oscar Award).

As Algorithm 1 shows, given a triple q, each machine performs MatchPattern()

independently, and obtains and stores the results on the target side, that is, on machines

where the target is matched. For the example in Figure 5.6, matches for←−q1 where q1 is

“?director wins ?award” are stored on machine 1, where the targetG Lucas is located.

Table 5.2 shows the results on both machines for q1. We use Ri(q) to denote matches

for of q on machine i. Note that the constant column wins is not stored.

(a) R1(q1)

?director ?award

G Lucas Saturn Award

(b) R2(q1)

?director ?award

J Cameron Oscar Award

Table 5.2: Individual matching result of q1

5.4.3 Multiple Pattern Matching by Exploration

A query consists of multiple triple patterns. Traditional approaches match each pattern

individually and join them afterwards. A single pattern may generate a large number

of results, and this leads to large intermediary join results and costly joins. For the

example of Figure 5.6, suppose we generate the matchings for pattern q1, q2 separately.

The results are Table 5.2 for q1 and Table 5.3 for q2. We can see although P Haggis

has not won an award, we still generate (Crash, P Haggis) in R(q2).

Instead of matching single patterns independently, we treat the query as a sequence

of patterns. The matching of the current pattern is based on the matches of the previous

143

(a) R1(q2)

?movie ?director

Titanic J Cameron

Crash P Haggis

(b) R2(q2)

?movie ?director

Avatar J Cameron

Table 5.3: Individual matching result of q2

patterns, i.e., we “explore” the RDF graph from the matches of the previous patterns

to find matches for the current pattern. In other words, we eargerly prune invalid

matchings by exploration to avoid the cost of joining large sets of results later.

(a) R1(q2)

?movie ?director

Titanic J Cameron

(b) R2(q2)

?movie ?director

Avatar J Cameron

Table 5.4: Matching result of q2 after matching q1

We now use an example to illustrate the exploration and pruning process. Assume

we explore the graph in Figure 5.1 in the order of −→q1 , −→q2 , ←−q3 , −→q4 . Clearly, how the

triple patterns are ordered may have a big impact on the intermediate results size. We

discuss query plan optimization in Section 5.4.5.

There are two different cases in exploration and pruning, and they are examplified

by matching −→q2 after −→q1 , and by matching←−q3 after −→q2 , repsectively. We describe them

separately. In the first case, the source of exploration is bound. Exploring q2 after

q1 belongs to this case, as the source ?director is bound by q1. So, instead of us-

ing LoadNodes() to find all possible directors, we start the exploration from existing

bindings (J Cameron and G Lucas), so we won’t generate movies not directed by

award-winning directors. Moreover, note that in Figure 5.1, G Lucas does not have

a directs edge, so exploring from G Lucas will not produce any matching triple. It

means we can pruneG Lucas safely: There is no need to send the key to its adjacency-

144

list across the network. The results are in Table 5.4, which contains fewer tuples than

Table 5.3.

In the second case, the target of exploration is bound. Exploring q3 after q2 be-

longs to this case, as ?movie is bound to {Titanic, Avatar} by −→q2 . We only add

results in this binding set to the matching results, namely (Best P icture, Titanic).

Independently, (Best P icture, Crash) also satiesfies the pattern, but Crash is not in

the binding set, so it is pruned. Furthermore, since the previous binding of Avatar

does not match any triple in this round, it is also safely pruned from ?movie’s binding.

Finally, we incorporate the matches of q3 into the result. As shown in Table 5.5, it now

has three bound variables ?movie, ?director, and ?movie award, and contains one

row (Titanic, J Cameron, Best P icture) on machine 1 where Titanic is located.

?movie ?director ?movie award

Titanic J Cameron Best Picture

Table 5.5: Results after incorporating q2 and q3

5.4.4 Final Join after Exploration

We used two mechanisms to prune intermediate results: a binding is pruned if it cannot

reach any bound target, or it cannot be reached from any bound source. Furthermore,

once we prune the target (source), we also prune corresponding values from the source

(target). This greatly reduces the size of the intermediary results, and does not incur

much additional communication, as shown in the previous example.

However, invalid intermediary results may still remain after the pruning. This is

because the pruning of q’s intermediary results only affects the bindings of q and the

immediate neighbors of q. Bindings of other patterns are not considered because oth-

erwise we need to carry all historical bindings in exploration, which incurs big com-

145

munication cost.

After the exploration finishes, we obtain all the matches inR. SinceR is distributed

and may contain invalid results, we gather these results to a centralized proxy and

perform a final join to assemble the final answer. As we have eagerly prune most of

the invalid results in the exploration phase, our join phase is light-weight compared

with traditional RDF systems that intensively rely on joins, and we simply adopt the

left-deep join for this purpose.

5.4.5 Exploration Plan Optimization

Section 5.4.3 described the query process for an ordered sequence of triple patterns.

The order has significant impact on the query performance. We now describe a cost-

based approach for finding the optimal exploration plan.

We define an exploration plan as a graph traversal plan, and we denote it as a

sequence 〈e1, · · · , en〉, where each ei denotes a directed exploration of a predicate qi

in the query graph, that is, ei = −→qi or ei = ←−qi . The cost of the plan is Σicost(ei),

where cost(ei), the cost of matching −→qi or ←−qi , is roughly proportional to the size of

qi’s results (Section 5.4.6 will describe cost estimation in more depth). Clearly, the

size of qi’s results depends on the matching of some qj, j < i. Thus, the total cost

depends on the order of ei’s in the sequence.

Naive query plan optimization is costly. There are n! different orders for a query

graph with n edges, and for each qi, there are two directions of exploration. It is also

temping to adopt the join ordering method in the relational query optimizer. However,

there is a fundamental difference between our scenario and theirs. In the relational

optimizer, later joins depend on previous intermediary join results, while for us, later

explorations depend on previous intermediary bindings. The intermediary join results

do not depend on the order of join, while the intermediary bindings do depend on the

146

order of exploration. For example, consider two plans (1) {−→q1 , −→q2 , ←−q3 , −→q4} and (2)

{−→q2 ,
−→q3 ,
←−q1 ,
−→q4}, where the first 3 elements are q1, q2, and q3, but in different order.

For the relational optimizer (ignore the direction of each qi), the join results q1, q2,

and q3 are the same no matter how they are ordered. But in our case, plan (1) pro-

duces {Titanic} and plan (2) produces {Titanic, Crash} for B(?movie), as shown in

Table 5.5. The redundant Crash will makes −→q4 in plan (2) more costly than plan (1).

We now introduce our approach for exploration order optimization. For a query

graph, we find exploration plans for its subgraphs (starting with single nodes), and

expand/combine the plans until we derive the plan for the entire query graph. There

are two ways to grow a subgraph: expansion and combination. Figure 5.7(a) depicts

an example of expansion: we explore to a free variable or a constant and add an edge

to the subgraph. The subgraph {q1} is expanded to a larger graph {q1, q2}. Another

way to grow a subgraph is that we combine two disjoint subgraphs by exploring an

edge starting from one subgraph to the other. Figure 5.7(b) shows such an example:

we combine the subgraph with one edge q1 with the subplan of q3 by exploring ←−q2 .

This way, we construct a larger subgraph from two smaller subgraphs.

(a) Expansion

(b) Combination

Figure 5.7: Expansion and combination examples

147

Now, we introduce heuristics for exploration optimization. Let E denote a sub-

graph, R(E) denote its intermediary join results, and B(E) denote the bindings of

variables in E . Note that in our exploration, we compute B(E) only, but not R(E).

Furthermore, bindings for some variables in E may contain redundant values. We de-

fine a variable ?c as an exploration point if it satisfies B(c) = ΠcR(E). Intuitively,

node ?c is an exploration point if it does not contain any redundant value, in other

words, each of its values must appear in the intermediary join results R(E). We then

adopt the following heuristics in subgraph expansion/combination.

Heuristic 1. We expand a subgraph from its exploration point. We combine two sub-

graphs by connecting their exploration points.

The reason we want to expand/combine at the exploration point is because the

exploration points do not contain redundant values. Hence, they introduce fewer re-

dundant values for other variables in the exploration.

After the expansion/combination, we need to determine the exploration points of

the resulting graph. Heuristic 1 leads to the following property:

Property 1. We expand a subgraph or combine two subgraphs through an edge. The

two nodes on both ends of the edge are valid exploration points in the new graph.

Proof. For expansion from subgraph E , we start from an exploration point c that

satisfies B(c) = ΠcR(E) and explore a new predicate q = c ; c′. Based on

our algorithm, we have ΠcR(e) ⊆ ΠcR(E). Since q /∈ E and c′ /∈ E , we get

R(E ∪ q) = R(E) ./c R(q). Thus:

Πc′R(E ∪ q) = Πc′(R(E) ./c R(q))

= Πc′R(q) = B(c′)

148

which means c′ is an exploration point of E ∪ q. After B(c′) is obtained, the algorithm

uses it to prune B(c) so that c’s new binding satisfies B(c) = ΠcR(q). Thus:

ΠcR(E ∪ q) = Πc(R(E) ./c R(q))

= ΠcR(E) ./c ΠcR(q) = ΠcR(q) = B(c)

which means c is a valid exploration point of E ∪ q. Similarly, we can show Property 1

holds in subgraph combination.

We use dynamic programming (DP) for exploration optimization. We use (E , c) to

denote a state in DP. We start with subgraphs of size 1, that is, subgraphs of a single

edge q = u; v. The states are ({q}, u) and ({q}, v). For their cost, we consider both

explorations←−q and −→q to obtain the minimal cost of reaching the state.

After computing cost for subgraphs of size k, we perform expansion and combi-

nation to derive subgraphs of size ≥ k + 1. Specifically, assuming we are expanding

(E , c) through edge q = c; v, we reach two states:

(E ∪ {q}, v) and (E ∪ {q}, c) (5.4)

Let C denote the cost of the state before expansion, and C ′ the cost of the state after

expansion. We have:

C ′ = min{C ′, C + cost(−→q)} (5.5)

Note that: i) We may reach the expanded state in different ways, and we record the

minimal cost of reaching the state; ii) C is the cost of state of size ≤ k, which is

determined in previous iterations; iii) If q is in the other direction, i.e., q = v ; c,

then cost(−→q) above becomes cost(←−q).

For combining two states (E1, c1) and (E2, c2) where E1 ∩ E2 = ∅ through edge

q = c1 ; c2, we reach two states:

(E1 ∪ E2 ∪ q, c1) and (E1 ∪ E2 ∪ q, c2) (5.6)

149

Let C1 and C2 denote the cost of the two states before combination. We update the

cost of the combined state to be:

C ′ = min{C ′, C1 + C2 + cost(−→q)} (5.7)

We now show the complexity of the DP:

Theorem 15. For a query graph G(V,E), the DP has time complexity O(n · |V | · |E|)

where n is the number of connected subgraphs in G.

Here is a brief sketch-proof: There are n · |V | states in the DP process (each sub-

graph E can have |E| ≤ |V | nodes), and each update can take at most O(|E|) time.

Theorem 16. Any acyclic query Q with query graph G is guaranteed to have an ex-

ploration plan.

We give a brief sketch-proof. Our optimizer resembles the idea of semi-joins al-

though we do not perform join. Bernstein et al. proved [BC81] that for any relation in

an acyclic query, there exists a semi-join program that can fully reduce the relation by

evaluating each join condition only once. By mapping each node in G to a relation, and

an edge in G to a join condition, we can see that our algorithm can find an exploration

plan that evaluates each pattern exactly once.

Discussion. There are two cases we have not considered formally: i) G is cyclic, and

ii) G contains a join on predicates. For the first case, our algorithm may not be able

to find an exploration plan. However, we can break a cycle in G by duplicating some

variable in the cycle. For example, one heuristic to pick the break point is that we

break a cycle at node u if it has the smallest cost when we explore u’s adjacent edges

uv1 and uv2 from u; and in the case of many cycles, we repeatedly apply this process.

The resulting query graph G ′ is acyclic. We can apply our algorithm to search for an

approximate plan. For the second case, consider a join on predicate (?s ?p ?u), (?x

150

?p ?y). Here, we cannot explore from the first pattern from bound variables ?s or

?u because they are not connected with the second pattern. To handle this case, after

we explore an edge with a variable predicate, we iterate through all unvisited patterns

sharing the same predicate variable ?p, i.e. (?x ?p ?y), and use LoadNodes to create

an initial binding for ?x and ?y. This enable us to contine the exploration.

5.4.6 Cost Estimation

SPARQL selectivity estimation is a challenging task. Stocker et al. [SSB08] assumes

subject, predicate and object are independent and the selectivity of each triple is the

product of the three. The result is far from optimal. RDF-3X [NW08] uses two ap-

proaches: One assumes independence between triples and relies on traditional join

estimation techniques. The other mines frequent join pathes for large joins and main-

tains statistics for these pathes, which is very costly and unfeasible for web-scale RDF

data.

We propose a novel estimation method that captures the correlation between triples

but requires little extra statistics and data preprocessing. Specifically, we estimate

cost(e) where e = −→q or ←−q . In the following, we estimate cost(−→q) only, and the

estimation of cost(←−q) can be obtained in the same way. Also, we use src and tgt

to denote the source and target nodes in e. The computation cost of matching q is

estimated as the size of the results, namely |R(q)|. Since we operate in a distributed

environment, we model communication cost as well. During exploration, we send

bindings and ids of adjacency lists across network, so we measure communication

cost as the binding size of the source node of the exploration, i.e. |B(src)|. The final

cost(−→q) is a linear combination of |R(q)| and |B(src)|.

151

Now, if we know |B(src)|, we can estimate |R(q)| and |B(tgt)| as

|R(q)| = |B(src)| Cp
Cp(src)

, |B(tgt)| = |B(src)|Cp(tgt)
Cp(src)

whereCq, Cq(src), Cq(tgt) are the number of triples and connected subject/object with

predicate p, which can be obtained from a single global predicate index look-up. If the

predicate of q is unknown, we consider the average case for all possible predicates. For

the case where the source or target of q is constant, we use the local predicate index to

get a more accurate estimation.

We then derive |B(src)|. For a standalone −→q , we can derive |B(src)| from the

global predicate index. When −→q is not standalone, the binding size of src is affected

by related patterns already explored. To capture this correlation, we maintain a two-

dimensional predicate × predicate matrix2. Each cell (i, j) stores four statistics: the

number of unique nodes with predicates pi, pj as its incoming/outgoing edges (4 com-

binations). When no confusion shall arise, we simply use Cpipj to denote the correla-

tion.

As shown in Section 5.4.5, the query optimizer handles two cases: expansion and

combination. In the first case, assume we expand through a new edge p2 from variable

x which is already connected with p1. Assume the original binding size of x is Nx. We

have the new binding size N ′x as

N ′x = Nx
Cp1p2
Cp1

(5.8)

The second case is combining two edges p1 and p2 on x. Assume the original binding

sizes of x with predicate p1 and predicate p2 are Nx,1 and Nx,2 respectively. We have

the new binding size N ′x as

N ′x = Nx,1Nx,2
Cp1p2
Cp1Cp2

(5.9)

2In many RDF datasets, there is a special predicate rdf:type which characterizes the types of entities.
Since the number of entities associated with a certain type varies greatly, we treat each type as a different
predicate.

152

For more complex cases in expansion and combination during exploration, e.g.

expanding a new pattern from a subgraph, or joining two subgraphs, we simply pick

the most selective pair from all pairs of involved predicates.

5.5 Experiments

We evaluate Trinity.RDF on both real-life and synthetic datasets, and compare it against

the state-of-the-art centralized and distributed RDF systems. The results show that

Trinity.RDF is a highly scalable, highly parallel RDF engine.

Systems. We implement Trinity.RDF in C#, and deploy it on a cluster, wherein each

machine has 96 GB DDR3 RAM, two 2.67 GHz Intel Xeon E5650 CPUs, each with 6

cores and 12 threads, and one 40Gb/s InfiniBand Network adaptor. The OS is 64-bit

Windows Server 2008 R2 Enterprise with service pack 1.

We compare Trinity.RDF with centralized RDF-3X [NW10] and BitMat [ACZ10],

as well as distributed MapReduce-RDF-3X (a Hadoop-based RDF-3X solution [HAR11]).

We deploy the three systems on machines running 64 bit Linux 2.6.32 using the same

hardware configuration as used by Trinity.RDF. Just like Trinity.RDF, all of the com-

petitor systems map literals to IDs in query processing. But BitMat relies on manual

mapping. For a fair comparison, we measure the query execution time by excluding

the cost of literal/ID mapping. Since all of these three systems are disk-based, we

report both their warm-cache and cold-cache time.

Datasets. We use two real-life and one synthetic datasets. The real-life datasets are

the Billion Triple Challenge 2010 dataset (BTC-10) [btc] and DBpedia’s SPARQL

Benchmark (DBPSB) [dbp]. The synthetic dataset is the Lehigh University Benchmark

(LUBM) [GPH05]. We generated 6 datasets of different sizes using the LUBM data

generator v1.7. We summarize the statistics of the data and some exemplary queries

153

Dataset #Triples #S/O

BTC-10 3,171,793,030 279,082,615

DBPSB 15,373,833 5,514,599

LUBM-40 5,309,056 1,309,072

LUBM-160 21,347,999 5,259,588

LUBM-640 85,420,588 21,037,012

LUBM-2560 341,888,947 84,202,729

LUBM-10240 1,367,122,031 336,711,191

LUBM-100000 9,956,527,583 2,452,700,932

Table 5.6: Statistics of datasets used in experiments

BTC-10 S1 S2 S3 S4 S5 S6 S7

of joins 7 5 9 12 6 9 7

DBPSB D1 D2 D3 D4 D5 D6 D7 D8

of joins 1 1 2 3 3 4 4 5

LUBM L1 L2 L3 L4 L5 L6 L7

of joins 6 1 6 4 1 3 6

Table 5.7: Statistics of queries used in experiments

(LUBM queries are also published in [ACZ10]) in Table 5.6 and Table 5.7. All of the

queries used in our experiments can be found online3.

L1 L2 L3 L4 L5 L6 L7 Geo. mean

Trinity.RDF 281 132 110 5 4 9 630 46

RDF-3X (In Memory) 34179 88 485 7 5 18 1310 143

BitMat (In Memory) 1224 4176 49 6381 6 51 2168 376

RDF-3X (Cold Cache) 35739 653 1196 735 367 340 2089 1271

BitMat (Cold Cache) 1584 4526 286 6924 57 194 2334 866

Table 5.8: Query run-time in milliseconds on the LUBM-160 dataset (21 million

triples)

3http://research.microsoft.com/trinity/Trinity.RDF.aspx

154

D1 D2 D3 D4 D5 D6 D7 D8 Geo. mean

Trinity.RDF 7 220 5 7 8 21 13 28 15

RDF-3X (In Memory) 15 79 14 18 22 34 68 35 29

BitMat (In Memory) 335 1375 209 113 431 619 617 593 425

RDF-3X (Cold Cache) 522 493 394 498 366 524 458 658 482

BitMat (Cold Cache) 392 1605 326 279 770 890 813 872 639

Table 5.9: Query run-time in milliseconds on the DBPSB dataset (15 million triples)

Join vs. Exploration. We compare graph exploration (Trinity.RDF) with scan-join

(RDF-3X and BitMat) on DBPSB and LUBM-160 datasets. The experiment results

show that Trinity.RDF outperforms RDF-3X and BitMat; and more importantly, its

superiority does not just come from its in-memory architecture, but from the fact that

graph exploration itself is more efficient than join.

For a fair comparison, we set up Trinity.RDF on a single machine, so we have the

same computation infrastructure for all three systems. Specifically, to compare the in-

memory performance, we set up a 20 GB tmpfs (an in-memory file system supported

by Linux kernel from version 2.4), and deploy the database images of RDF-3X and

BitMat in the in-memory file system.

The first observation is that managing RDF data in graph form is space-efficient.

The database images of LUBM-160 and DBPSB in Trinity.RDF are of 1.6G and 1.9G

respectively, which are smaller or comparable to RDF-3X (2GB and 1.4GB respec-

tively), and are much more efficient than BitMat (3.6GB and 19GB respectively even

without literal/ID mapping).

The results on LUBM-160 and DBPSB are shown in Table 5.8 and 5.9. For RDF-

3X and BitMat, both in-memory and on-disk (cold-cache) performances are reported.

Trinity.RDF outperforms the on-disk performances of RDF-3X and BitMat by a large

margin for all queries: For most queries, Trinity.RDF has 1 to 2 orders of magnitude

155

performance gain; for some queries, it has 3 orders of magnitude speed-up. The results

from the in-memory performance comparison are more interesting. Here, since all

systems are memory-based, the comparison is solely about graph exploration versus

scan-join. We can see that the improvement is easily 2-5 fold, and for L4, Trinity.RDF

has 3 orders of magnitude speed-up. This also shows that, although SIP and semi-

join are proposed to overcome the shortcomings of the scan-join approach, they are

not always effective, as shown by L1, L2, L4, D1, D7, etc. Moreover, we vary the

complexity of DBPSB queries from 1 join to 5 joins, where Trinity.RDF achieves very

stable performance gain. It proves that our query algorithm can effectively find the

optimal exploration order even for complex queries with many patterns.

We also show that in-memory RDF-3X or BitMat runs slightly better than Trin-

ity.RDF on L2, L3 and D2. This is because L2, D2 have very simple structures and

few intermediate results, and Trinity has the overhead due to its C# implementation.

Performance on Large Datasets. We experiment on three datasets, LUBM-10240,

LUBM-100000 and BTC-10, to study the performance of Trinity.RDF on billion scale

datasets, and compare it against both centralized and distributed RDF systems. The

results are shown in Table 5.10, 5.11 and 5.12. As distributed systems, Trinity.RDF and

MapReduce-RDF-3X are deployed on a 5-server cluster for LUBM-10240, a 8-server

cluster for LUBM-100000 and a 5-server cluster for BTC-10. And we implement the

directed 2-hop guarantee partition for MapReduce-RDF-3X.

BitMat fails to run on BTC-10 as it generates terabytes of data for just a single

SPO index. Similar issues happen on LUBM-100000. For some datasets and queries,

BitMat and RDF-3X fail to return answers in a reasonable time (denoted as “aborted”

in our experiment results).

On LUBM-10240 and LUBM-100000, Trinity.RDF gets similar performance gain

over RDF-3X and BitMat as on LUBM-160. Even compared with MapReduce-RDF-

156

L
1

L
2

L
3

L
4

L
5

L
6

L
7

G
eo

.m
ea

n

Tr
in

ity
.R

D
F

12
64

8
60

18
87

35
5

4
9

31
21

4
45

0

R
D

F-
3X

(W
ar

m
C

ac
he

)
36

m
47

s
14

19
4

27
24

5
8

8
65

69
56

0
21

97

B
itM

at
(W

ar
m

C
ac

he
)

33
09

7
20

91
46

25
38

ab
or

te
d

40
7

10
57

ab
or

te
d

59
66

R
D

F-
3X

(C
ol

d
C

ac
he

)
39

m
2s

18
15

8
34

24
1

11
77

10
17

99
3

98
84

6
15

00
3

B
itM

at
(C

ol
d

C
ac

he
)

39
71

6
22

56
40

91
14

ab
or

te
d

49
4

21
51

ab
or

te
d

97
21

M
ap

R
ed

uc
e-

R
D

F-
3X

(W
ar

m
C

ac
he

)
17

18
8

31
64

16
93

2
14

10
72

0
88

68
97

3

M
ap

R
ed

uc
e-

R
D

F-
3X

(C
ol

d
C

ac
he

)
32

51
1

73
71

19
32

8
67

5
77

0
18

34
19

96
8

50
87

Ta
bl

e
5.

10
:Q

ue
ry

ru
n-

tim
es

in
m

ill
is

ec
on

ds
fo

rt
he

L
U

B
M

-1
02

40
da

ta
se

t(
1.

36
bi

lli
on

tr
ip

le
s)

157

L
1

L
2

L
3

L
4

L
5

L
6

L
7

G
eo

.m
ea

n

Tr
in

ity
.R

D
F

17
6

21
11

9
0.

00
5

0.
00

6
0.

01
0

12
6

1.
49

4

R
D

F-
3X

(W
ar

m
C

ac
he

)
ab

or
te

d
96

36
3

0.
01

1
0.

00
6

0.
02

1
54

8
1.

72
6

R
D

F-
3X

(C
ol

d
C

ac
he

)
ab

or
te

d
18

6
10

05
87

4
57

8
98

1
70

0
63

3.
84

2

M
ap

R
ed

uc
e-

R
D

F-
3X

(W
ar

m
C

ac
he

)
10

2
19

11
3

0.
02

2
0.

01
6

0.
22

6
51

.9
8

2.
64

5

M
ap

R
ed

uc
e-

R
D

F-
3X

(C
ol

d
C

ac
he

)
17

1
32

15
1

1.
11

3
0.

74
9

1.
42

8
89

13
.6

33

Ta
bl

e
5.

11
:Q

ue
ry

ru
n-

tim
es

in
se

co
nd

s
fo

rt
he

L
U

B
M

-1
00

00
0

da
ta

se
t(

9.
96

bi
lli

on
tr

ip
le

s)

158

S1
S2

S3
S4

S5
S6

S7
G

eo
.m

ea
n

Tr
in

ity
.R

D
F

12
10

31
21

23
33

27
21

R
D

F-
3X

(W
ar

m
C

ac
he

)
10

8
84

07
27

42
8

62
84

6
32

26
0

23
8

11
75

R
D

F-
3X

(C
ol

d
C

ac
he

)
52

65
23

88
1

41
81

9
91

14
0

10
41

30
65

14
97

81
01

M
ap

R
ed

uc
e-

R
D

F-
3X

(W
ar

m
C

ac
he

w
/o

M
ap

R
ed

uc
e)

13
2

8
48

33
60

59
24

19
31

27
32

45
3

M
ap

R
ed

uc
e-

R
D

F-
3X

(C
ol

d
C

ac
he

w
/o

M
ap

R
ed

uc
e)

26
17

66
1

13
75

5
18

71
2

80
1

43
47

79
50

38
41

M
ap

R
ed

uc
e-

R
D

F-
3X

(M
ap

R
ed

uc
e)

N
/A

N
/A

39
92

8
39

78
2

N
/A

33
69

9
33

70
3

36
64

9

Ta
bl

e
5.

12
:Q

ue
ry

ru
n-

tim
es

in
m

ill
is

ec
on

ds
fo

rB
T

C
-1

0
da

ta
se

t(
3.

17
bi

lli
on

tr
ip

le
s)

159

3X, Trinity.RDF gives surprisingly competitive performance, and for some queries,

e.g. L4-6, Trinity.RDF is even faster. These results become more remarkable if we

note that all the LUBM queries are with simple structures, and MapReduce-RDF-3X

specially partitions the data so that these queries can be answered fully in parallel

with zero network communication. In comparison, Trinity.RDF randomly partitions

the data, and has a network overhead. However, data partitioning is orthogonal to our

algorithm and can be easily applied to reduce the network overhead. This is also ev-

idenced by the results of L4-6. L4-6 only explore a small set of triples (as shown in

Table 5.14) and incur little network overhead. Thus, Trinity.RDF outperforms even

MapReduce-RDF-3X. Moreover, MapReduce-RDF-3X’s partition algorithm incurs

great space overhead. As shown in Table 5.13, MapReduce-RDF-3X indexes twice

as many as triples than RDF-3X and Trinity.RDF do.

LUBM-10240 LUBM-100000 BTC-10

#triple 2,459,450,365 20,318,973,699 6,322,986,673

Overhead 1.80X 2.04X 1.99X

Table 5.13: The space overhead of MapReduce-RDF-3X compared with the original

datasets

The BTC-10 benchmark has more complex queries, some with up to 13 patterns. In

specific, S3, S4, S6 and S7 are not parallelizable without communication in MapReduce-

RDF-3X, and additional MapReduce jobs are invoked to answer the queries. In Ta-

ble 5.12, we list separately the time of RDF-3X jobs and MapReduce jobs for MapReduce-

RDF-3X. Interestingly, Trinity.RDF shows up to 2 orders of magnitude speed-up even

over the RDF-3X jobs of MapReduce-RDF-3X. This is probably because MapReduce-

RDF-3X divides a query into multiple subqueries and each subquery produces a much

larger result set. This result again proves the performance impact of exploiting the cor-

relations between patterns in a query, which is the key idea behind graph exploration.

160

(a) LUBM group (I) (b) LUBM group (II)

Figure 5.8: Data scalability

(a) LUBM group (I) (b) LUBM group (II)

Figure 5.9: Machine scalability

L1 L2 L3 L4 L5 L6 L7

LUBM-160 397 173040 0 10 10 125 7125

LUBM-10240 2502 11016920 0 10 10 125 450721

Table 5.14: The result sizes of LUBM queries

Scalability. To evaluate the scalability of our systems, we carry out two experiments

by (1) scaling the data while fixing the number of servers, and (2) scaling the number of

servers while fixing the data. We group LUBM queries into two categories according

161

to the sizes of their results, as shown in Table 5.14: (I) Q1, Q2, Q3, Q7. The results

of these queries increase as the size of the dataset increases. Note that although Q3

produces an empty result set, it is more similar to queries in group (I) as its intermediate

result set increases when the input dataset increases. (II) Q4, Q5, Q6. These queries

are very selective, and produce results of constant size as the size of dataset increases.

Varying size of data: We test Trinity.RDF running on a 3-server cluster on 5

datasets LUBM-40 to LUBM-10240 of increasing sizes. The results are shown in

Figure 5.8 (a) and (b). Trinity.RDF utilizes selective patterns to do efficient pruning.

Therefore, Trinity.RDF achieves constant size of intermediate results and stable perfor-

mance for group (II) regardless of the increasing data size. For group (I), Trinity.RDF

scales linearly as the size of the dataset increases, which shows that the network over-

head is alleviated by the efficient pruning of intermediate results in graph exploration.

Varying number of machines: We deploy Trinity.RDF in clusters with varying

number of machines, and test its performance on dataset LUBM-10240. The results

are shown in Figure 5.9 (a) and (b). For group (I), the query time of Trinity.RDF de-

crease reciprocally w.r.t. the number of machines. which testifies that Trinity.RDF can

efficiently utilize the parallelism of a distributed system. Moreover, although more par-

titions increase the amount of intermediate data delivered across network, our storage

model effectively bounds this overhead. For group (II), due to selective query patterns,

the intermediate results are relatively small. Using more machines does not improve

the performance, but again the performance is very stable and is not impacted by the

extra network overhead.

162

5.6 Related Work

Tremendous efforts have been devoted to building high performance RDF management

systems [BKH02, WSK03, CDE05, AMM09, WKB08, NW10, NW09, ACZ10, AG05,

HUH07]. State-of-the-art approaches can be classified into two categories:

Relational Solutions. Most existing RDF systems use a relational model to manage

RDF data, i.e. they store RDF triples in relational tables, and use RDBMS index-

ing to tune query processing, which aim solely at answering SPARQL queries. SW-

Store [AMM09] exploits the fact that RDF data has a small number of predicates.

Therefore, it vertically partitions RDF data (by predicates) into a set of property ta-

bles, maps them onto a column-oriented database, and builds subject-object index on

each property table; Hexastore [WKB08] and RDF-3x [NW10] manage all triples in a

giant triple table, and build indices of all six combinations (SPO, SOP, etc.).

The relational model decides that SPARQL queries are processed as large join

queries, and most prior systems rely on SQL join optimization techniques for query

processing. RDF-3x [NW10], which is considered the fastest existing system, pro-

posed sophisticated bushy-join planning and fast merge join for query answering.

However, this approach requires scanning large fraction of indexes even for very se-

lective queries. Such redundancy overhead quickly becomes a bottleneck for billion

triple datasets and/or complex queries. Several join optimization techniques are pro-

posed. SIP (sideways information passing) is a dynamic optimization technique for

pipelined execution plans [NW09]. It introduces filters on subject, predicate, or object

identifiers, and passes these filters to other joins and scans in different parts of the oper-

ator tree that need to process similar identifiers. This introduces opportunities to avoid

some unnecessary index scans. BitMat [ACZ10] uses a matrix of bitmaps to compress

the indexes, and use lightweight semi-join operations on compressed data to reduce the

intermediate result before actually joining. However, these optimizations do not solve

163

the fundamental problem of the join approach. In comparison, our exploration-based

approach is radically different from the join approach.

Graph-based Solutions. Another direction of research investigated the possibility of

storing RDF data as graphs [HG04, AG05, BHS03]. Many argued that graph prim-

itives besides pattern matching (SPARQL queries) should be incorporated into RDF

languages, and several graph models for advanced applications on RDF data have been

proposed [HG04, AG05]. There are several non-distributed implementations, includ-

ing one that builds an in-memory graph model for RDF data using Jena, and another

that stores RDF as a graph in an object-oriented database [BHS03]. However, both of

them are single-machine solutions with limited scalability. A related research area is

subgraph matching [CYD08, ZCO09, HS08, ZQL11] but most solutions rely on com-

plex indexing techniques that are often very costly, and do not have the scalability to

process web scale RDF graphs.

Recently, several distributed RDF systems [HUH07, EM09, RS10, HAR11, HMM11]

have been proposed. YARS2 [HUH07], Virtuoso [EM09] and SHARD [RS10] hash

partition triples across multiple machines and parallelize the query processing. Their

solutions are limited to simple index loop queries and do not support advanced SPARQL

queries, because of the need to ship data around. Huang et al. [HAR11] deploy single-

node RDF systems on multiple machines, and use the MapReduce framework to syn-

chronize query execution. It partitions and aggressively replicates the data in order

to reduce network communication. However, for complex SPARQL queries, it has

high time and space overhead, because it needs additional MapReduce jobs and data

replication. Furthermore, Husain et at [HMM11] developed a batch system solely rely-

ing on MapReduce for SPARQL queries. It does not provide real-time query support.

Yang et al. [YYZ12] recently proposed a graph partition management strategy for fast

graph query processing, and demonstrate their system on answering SPARQL queries.

164

However, their work focuses on partition optimization but not on developing scalable

graph query engines. Further, the partitioning strategy is orthogonal to our solution

and Trinity.RDF can apply their algorithm on data partitioning to achieve better per-

formance.

5.7 Summary of Trinity.RDF

We proposed a scalable solution for managing RDF data as graphs in a distributed in-

memory key-value store. Our query processing and optimization techniques support

SPARQL queries without relying on join operations, and we reported performance

numbers of querying against RDF datasets of billions of triples. Besides scalability,

our approach also has the potential to support queries and analytical tasks that are far

more advanced than SPARQL queries, as RDF data is stored as graphs. In addition,

our solution only utilizes basic (distributed) key-value store functions and thus can be

ported to any in-memory key-value store.

165

Part II

APPROXIMATION OPTIMIZATION

166

CHAPTER 6

EARL: Early Accurate Results for Advanced Analytics

on MapReduce

In today’s fast-paced business environment, obtaining results quickly represents a

key desideratum for ‘Big Data Analytics’ [HLL11]. For most applications on large

datasets, performing careful sampling and computing early results from such samples

provide a fast and effective way to obtain approximate results within the prescribed

level of accuracy. Although the need for approximation techniques obviously grow

with the size of the data sets, general methods and techniques for handling complex

tasks are still lacking in both MapReduce systems and parallel databases although

these claim ‘big data’ as their forte. Therefore in this chapter, we focus on provid-

ing this much needed functionality. To achieve our goal, we explore and apply the

powerful bootstrap method [ET93] developed in statistics to estimate results and the

accuracy obtained from sampled data. We propose a method and a system that opti-

mize the work-flow computation on massive data-sets to achieve the desired accuracy

while minimizing the time and the resources required. Our approach is effective for

analytical applications of arbitrary complexity (e.g., complex data mining tasks), and is

supported by an Early Accurate Result Library (EARL) that we developed for Hadoop,

which will be released for experimentation and non-commercial usage [rel]. The early

approximation techniques presented here are also important for fault-tolerance, when

some nodes fail and error estimation is required to determine if node recovery is nec-

167

essary.

The importance of EARL follows from the fact that real-life applications often have

to deal with a tremendous amount of data. Performing analytics and delivering exact

query results on such large volumes of stored data can be a lengthy process, which can

be entirely unsatisfactory to a user. In general, overloaded systems and high delays

are incompatible with a good user experience; moreover approximate answers that are

accurate enough and generated quickly are often of much greater value to users than

tardy exact results. The first line of research work pursuing similar objectives is that of

Hellerstein et al. [HHW97b], where early results for simple aggregates are returned.

In EARL however, we seek an approach that is applicable to complex analytics and

dovetails with a MapReduce framework.

When computing some analytical function in EARL, a uniform sample, s, of stored

data is taken, and the resulting error is estimated using the sample. Using sampling al-

lows for a reduced computation and/or I/O costs. If the error is too high, then another

iteration is invoked where the sample size is expanded and the error is recomputed.

This process is repeated until the computed error is below the user-defined thresh-

old. The error for arbitrary analytical functions can be estimated via the bootstrapping

technique described in [ET93]. This technique relies on resampling methods, where

a number of samples are drawn from s. The function of interest is then computed on

each sample producing a distribution used for estimating various accuracy measures

of interest. Sampling in the bootstrapping technique is done with replacement, and

therefore an element in the resample may appear more than once.

Hadoop is a natural candidate for implementing EARL. In fact, while our early

result approximation approach is general, it benefits from the fundamental Hadoop in-

frastructure. Hadoop employs a data re-balancer which distributes HDFS [had] data

uniformly across the DataNodes in the cluster. Furthermore, in a MapReduce frame-

168

work there are a set of (key, value) pairs which map to a particular reducer. This set

of pairs can be distributed uniformly using random hashing and by choosing a subset

of the keys at random, a uniform sample can be generated quickly. These two features

make Hadoop a desirable foundation for EARL, while Hadoop’s popularity maximizes

the potential for practical applications of this new technology.

Thus, as an underlying query processing engine we chose Hadoop [had]. Hadoop,

and more generally the MapReduce framework, was originally designed as a batch-

oriented system, however it is often used in an interactive setting where a user waits for

her task to complete before proceeding with the next step in the data-analysis work-

flow. With the introduction of high-level languages such as Pig [ORS08], Sawzall

[PDG05] and Hive [TSJ09], this trend had accelerated. Due to its batch oriented com-

putation mode, traditional Hadoop provides a poor support for interactive analysis.

To overcome this limitation, Hadoop Online Prototype (HOP) [CCA09] introduces a

pipelined Hadoop variation in which a user is able to refine results interactively. In

HOP however, the user is left with the responsibility of devising and implementing the

accuracy estimation and improvement protocols. Furthermore in HOP, there is no feed-

back mechanism from the reducer back to the mapper, which is needed to effectively

control the dynamically expanding sample.

Because EARL can deliver approximate results, it is also able to provide fault-

tolerance in situations where there are node failures. Fault-tolerance is addressed in

Hadoop via data-replication and task-restarts upon node failures, however with EARL

it is possible to provide a result and an approximation guarantee despite node failures

without task restarts.

Our approach, therefore, addresses the most pressing problem with Hadoop and

with MapReduce framework in general: a high latency when processing large data-

sets. Moreover, the problem of reserving too many resources to ensure fault-tolerance

169

can also be mitigated by our approach, and is discussed in Section 6.2.4.

Contributions. The chapter makes the following three contributions:

1. A general early-approximation method is introduced to compute accurate ap-

proximate results with reliable error-bound estimation for arbitrary functions.

The method can be used for processing large data-sets on many systems includ-

ing Hadoop, Teradata, and others. An Early Accurate Result Library (EARL)

was implemented for Hadood and used for the experimental validation of the

method.

2. An improved resampling technique was introduced for error estimation; the new

technique uses delta maintenance to achieve much better performance.

3. A new sampling strategy is introduced that assures a more efficient drawing of

random samples from a distributed file system.

Organization. In section 6.1 we describe the architecture of our library as it is im-

plemented on Hadoop. Section 6.2 describes the statistical techniques used for early

result approximation. Section 6.3 presents the resampling optimizations. In Sections

6.5 and 6.6 we empirically validate our findings and discuss related works that inspired

some of our ideas. Finally, Section 6.7 draws conclusions about our work.

6.1 Architecture

This section describes the overall EARL architecture and gives a background on the

underlying system. For a list of all symbols used refer to Table 6.1. EARL consists of

(1) a sampling stage, (2) a user’s task, and (3) an accuracy estimation stage which are

presented in Figure 6.1. The sampling stage draws a uniform sample s of size n from

the original data set S of size N where n << N . In Section 6.2.3 we discuss how this

170

sampling is implemented using tuple-based and key-based sampling for MapReduce.

After the initial sample s is drawn from the original data-set, B bootstrap resamples

are taken from s. These resamples are used in the work phase (user’s task) to generate

B results, which are then used to derive a result distribution [DM01] in the accuracy

estimation phase. The sample result distribution is used for estimating the accuracy.

If the accuracy obtained is unsatisfactory, the above process is repeated by drawing

another sample ∆s which is aggregated with the previous sample s to make a larger

sample s′ for higher accuracy. The final result is returned when a desired accuracy is

reached.

Figure 6.1: A simplified EARL architecture

6.1.1 Extending MapReduce

The MapReduce (MR) model is becoming increasingly popular for tasks involving

large data processing. The programming model adopted by MapReduce was originally

171

Symbol Description

B Number of bootstraps

b A particular bootstrap sample

n Sample size

s Array containing the sample

p Percentage of the data contained in a sample

N Total data size

S Original data-set

Fi File split i

cv Coefficient of variation

f Statistic of interest

σ User desired error bound

τ Error accuracy

Xi A particular data-item i

D Total amount of data processed

Table 6.1: Symbols used

inspired by functional programming. In the MR model two main stages, map and

reduce, are defined with the following signatures:

map : (k1, v1)→ (k2, list(v2))

reduce : (k2, list(v2))→ (k3, v3)

The map function is applied on every tuple (k1, v1) and produces a list of inter-

mediate (k2, v2) pairs. The reduce function is applied to all intermediate tuples with

the same key producing (k3, v3) as output. The MapReduce model makes it simple to

parallelize EARL’s approximation technique introduced in Section 6.2.1.

Hadoop, an open source implementation of the MapReduce framework, leverages

Hadoop Distributed File System (HDFS) for distributed storage. HDFS stores file

system metadata and application data separately. HDFS stores metadata on a dedicated

172

node, termed the NameNode (other systems, such as the Google File System (GFS)

[GGL03] do likewise). The application data is stored on servers termed DataNodes.

All communication between the servers is done via TCP protocols. The file block-

partitioning, the replication, and the logical data-splitting provided by HDFS simplify

EARL’s sampling technique, as discussed in Section 6.2.3.

For implementing the underlying execution engine, we evaluated 3 alternatives, (1)

Hadoop, (2) HaLoop [BHB10] and (3) Hadoop online [CCA09]. Although HaLoop

would allow us to easily expand the sample size on each iteration, it would be slow

for non-iterative MR jobs due to the extra overhead introduced by HaLoop. With

Hadoop online, we would get the benefit of pipelining, however further modifications

would be needed to allow the mapper to adjust the current sample size. Since both

Hadoop Online and HaLoop do not exactly fit our requirements, we therefore decided

to make a relatively simple change to Hadoop that would allow dynamic input size

expansion required by out approach. Thus EARL adds a simple extension to Hadoop

to support dynamic input and efficient resampling. An interesting future direction is to

combine EARL’s extensions with those of HaLoop and HOP to make a comprehensive

data-mining platform for analyzing massive data-sets. In summary, with the goals of

seeking EARL fast and requiring the least amount of changes to the core Hadoop im-

plementation we decided to use the default version of Hadoop instead of using Hadoop

extensions such as Hadoop online or HaLoop .

To achieve dynamic input expansion we modify Hadoop in three ways: (1) to allow

the reducers to process input before mappers finish, (2) to keep mappers active until

explicitly terminated, and (3) to provide a communication layer between the mappers

and reducers for checking the termination condition. While the first goal is similar to

that of pipelining implemented in Hadoop Online Prototype (HOP) [CCA09], EARL

is different from HOP in that in EARL the mapper is actively, rather than a passively,

173

transfers the input to the reducer. In other words, the mapper actively monitors the

sample error and actively expands the current sample size. The second goal is to mini-

mize the overall execution time, thus instead of restarting a mapper every time sample

size expands, we reuse an already active mapper. Finally, each mapper monitors the

current approximation error and is terminated when the required accuracy is reached.

We also modify the reduce phase in Hadoop to support efficient incremental com-

putation of the user’s job. We extend the MapReduce framework with a finer-grained

reduce function, to implement incremental processing via four methods: (i) initialize,

(ii) update, (iii) finalize and (iv) correct. The initialize function reduces a set of data

values into a state, i.e., (k, v1), (k, v2), · · · → (k, state). A state is a representation

of a user’s function f after processing s on f . Each resample will produce a state.

Saving states instead of the original data requires much less memory as needed for fast

in-memory processing. The update function updates the state with a new input which

can be another state or a (key, value) pair. The finalize function computes the current

error and outputs the final result. The correct function takes the output of the finalize

function, and corrects the final result. When computed from a subset of the original

data, some user’s tasks need to be adjusted in order to get the right answer. For exam-

ple, consider a SUM query which sums all the input values. If we only use p of the

input data, we need to scale the result by 1/p. As the system is unaware of the internal

semantics of user’s MR task, we allow our users to specify their own correction logic

in correct with a system provided parameter p which is the percentage of the data used

in computation.

Hadoop’s limited two stage model makes it difficult to design advanced data-

mining applications for which reason high level languages such as PIG [ORS08] were

introduced. EARL does not change the logic of the user’s MapReduce programs and

achieves the early result approximation functionality with minimal modifications to

174

the user’s MR job (see Figure 6.4). Next the accuracy estimation stage is described.

6.2 Estimating Accuracy

In EARL, error estimation of an arbitrary function can be done via resampling. By

re-computing a function of interest many times, a result distribution is derived from

which both the approximate answer and the corresponding error are retrieved. EARL

uses a clever delta maintenance strategy that dramatically decreases the overhead of

computation. As a measurement of error, in our experiments, we use a coefficient

of variation (cv) which is a ratio between the standard deviation and the mean. Our

approach is independent of the error measure and is applicable to other errors (e.g.,

bias, variance). Next a traditional approach to error estimation is presented, after which

our technique is discussed.

A crucial step in statistical analysis is to use the given data to estimate the accuracy

measure, such as the bias, of a given statistic. In a traditional approach, the accuracy

measure is computed via an empirical analog of the explicit theoretical formula derived

from a postulated model [ET93]. Using variance as an illustration letX1, ..., Xn denote

the data set of n independent and identically distributed (i.i.d.) data-items from an

unknown distribution F and let fn(X1, ..., Xn) be the function of interest we want to

compute. The variance of fn is then:

var(fn) =

∫
[fn(x)−

∫
fn(y)d

n∏
i=1

F (yi)]
2d

n∏
i=1

F (xi) (6.1)

where x = (x1, ..., xn) and y = (y1, ..., yn). Given a simple fn we can obtain an

equation of var(fn) as a function of some unknown quantities and then substitute

the estimates of the unknown quantities to estimate the var(fn). In the case of the

sample mean, where fn = X̄n = n−1
∑n

i=1Xi, var(X̄n) = n−1var(X). We can

therefore estimate var(X̄n) by estimating var(X) which is usually estimated by the

175

sample variance (n− 1)−1
∑n

i=1

(
Xi − X̄n

)2. The use of Equation 6.1 to estimate the

variance is computationally feasible only for simple functions, such as the mean. Next

we discuss the bootstrap method used to estimate the variance of arbitrary functions.

Bootstrap provides an accuracy estimation for general functions, which does not

require a theoretical formula to produce the error estimate of a function. Bootstrap can

estimate the sampling distribution of almost any statistic, by simply using repeated

computation of the function of interest on different resamples [ET93]. The estimate of

the variance of the result, can then be determined from the sampling distribution, i.e.,

from the repeated computation we can get var(fn) = EF (fn − EF (fn))2.

To compute an exact bootstrap variance estimate
(

2n−1
n−1

)
resamples are required,

which for n = 15 is already equal to 77×106, therefore an approximation is necessary

to make the bootstrap technique feasible. The Monte-Carlo simulation [ET93] is the

standard approximation technique used for resampling methods including the boot-

strap that requires less than n resamples. It works by taking B resamples resulting in

variance estimate of ˆvarB = 1
B

∑B
i=1(f in − f ∗n)2 where f ∗n is the average of f in’s. The

theory suggests that B should be set to 1
2
ε−2

0 , where ε0 corresponds to the desired error

of the Monte Carlo approximation with respect to the the original bootstrap estimator.

Experiments, however, show that a much better value of B can be used in practical ap-

plications, therefore in Section 6.2.2 we develop an algorithm to empirically determine

a good value of B.

6.2.1 Accuracy Estimation Stage

The accuracy estimation stage (AES) uses the bootstrap resampling technique outlined

in the previous subsection to estimate the standard error cv of the statistic f computed

from sample s.

In many applications, the number of bootstrap samples required to estimate cv to

176

(a) (b)

Figure 6.2: (a) Effect of B on cv, (b) Effect of n on cv

within a desired accuracy τ can be substantial. τ is defined as τ = (cvi − cvi+1
) which

measures the stability of the error. Before performing the approximation, we estimate

the requiredB and n to compute f with cv ≤ σ. IfB×n ≥ N , then EARL informs the

user that an early estimation with the specified accuracy is not faster than computing f

over N and instead the computation over the entire data-set is performed. AES allows

for error estimation of general MR-Jobs (mining algorithms, complex functions etc).

For completeness, we will first discuss how B and n impact the error individually,

and then in Section 6.2.2 we present an algorithm to pick B and n that empirically

minimizes the product B×n. Figure 6.2 (left) shows how B affects cv experimentally.

Normally roughly 30 bootstraps are required to provide a confident estimate of the

error. The sample size, n, given a fixed B has a similar effect on cv as shown in Figure

6.2 (right). A larger n results in a lower error. Depending on the desired accuracy, n

can be chosen appropriately as described next.

6.2.2 Sample Size and Number of Bootstraps

To perform resampling efficiently (i.e., without processing more data than is required)

we need to minimize the sample size (n) and the number of resamples performed

177

(B). A straightforward sample size adjustment might work as follows: pick an initial

sample size s of size n which theoretically achieves the desired error σ and compute f

on s. If the resulting error σ̂ is greater than σ then the sample size is increased (e.g.,

doubled). A similar naı̈ve strategy may be applicable when estimating the minimumB.

This naı̈ve solution however may result in an overestimate of the sample size and the

number of resamples. Instead, following [CDS04] we propose a two phase algorithm

to estimate the final early approximate result satisfying the desired error bound while

empirically minimizing B × n. As shown later, our algorithm requires only a single

iteration.

Sample Size And Bootstrap Estimation (SSABE) algorithm performs the following

operations: (1) In the first phase, it estimates the minimum B and n and then (2)

in the second phase, it evaluates the function of interest, f , B times on s of size n.

To estimate the required B, the first phase an initially small n, a fraction p of N , is

picked. In practice we found that p = 0.01 gives robust results. Given a fixed n, a

sample s is picked. The function f is then computed for different candidate values of

B ({2, ..., 1
τ
}). The execution terminates when the difference |cvi − cvi−1

| < τ . The

B value so determined is used as the estimated number of bootstraps. In practice the

value of B so calculated is much smaller than the theoretically predicted 1
2
ε−2

0 .

To estimate the required sample size n, first the initial sample size 1
τ

is picked. The

initial sample is split into l smaller subsamples si each of size ni where ni = n
2l−i and

1 ≤ i ≤ l. In our experiments we found it to be sufficient to set l = 5. For each

si we compute the cv using B resamples. When computing f on si we perform delta

maintenance discussed in Section 6.3. The result will be a set of points A[si] = cv. For

these set of points, the best fitting curve is constructed. The curve fitting is done using

the standard method of least squares. The best fitted curve yields an si that satisfies

the given σ. Finally, once the estimate for B and n is complete, the second phase is

178

invoked where the actual user job is executed using s of size n and B.

The initial n is picked to be small, therefore the sample size and the number of

bootstraps estimation can be performed on a single machine prior to MR job start-up.

Thus, when performing the estimation for n andB, we run the user’s MR job in a local

mode without launching a separate JVM. Using the local-mode we avoid running the

mapper and the reducer as separate JVM tasks and instead a single JVM is used which

allows for a fast estimation of the required parameters needed to start the job.

6.2.3 Sampling

In order to provide a uniformly random subset of the original data-set, EARL performs

sampling. While sampling over memory-resident, and even disk resident, data had

been studied extensively, sampling over a distributed file system, such as HDFS, has

not been fully addressed [OR90]. Therefore, we provide two sampling techniques:

(1) pre-map sampling and (2) post-map sampling. Each of the techniques has its own

strengths and weaknesses as discussed next.

In HDFS, a file is divided into a set of blocks, each block is typically 64MB.

When running an MR job, these blocks can be further subdivided into “Input Splits”

which are used as input to the mappers. Given such an architecture, a naı̈ve sampling

solution is to pick a set of blocksBi at random, possibly splittingBi into smaller splits,

to satisfy the required sample size. This strategy however will not produce a uniformly

random sample because each of the Bi and each of the splits can contain dependencies

(e.g., consider the case where data is clustered on a particular attribute resulting in

clustered items to be placed next to each other on disk due to spatial locality). Another

naı̈ve solution is to use a reservoir smapling algorithm to select n random items from

the original data-set. This approach produces a uniformly random sample, but it suffers

from slow loading times because the entire dataset needs to be read, and possibly re-

179

read when further samples are required. We thus seek a sampling algorithm that avoids

such problems.

In a MapReduce environment, sampling can be done before or while sending the

input to the Mapper (pre-map and post-map sampling respectively). Pre-map sampling

significantly reduces the load times, however the sample produced may be an inaccu-

rate representation of the total (k, v) pairs present in the input. Post-map sampling first

reads the data and then outputs a uniformly random sample of desired size. Post-map

sampling also avoids the problem of inaccurate (k, v) counts.

Post-map sampling works by reading and parsing the data before sending the se-

lected (k, v) pairs to the reducer. Each (k, v) pair is stored by using random hashing

that generates a pre-determined set of keys, of size proportional to the required sam-

ple size. We store all (k, v) pairs on the mapper locally, and when all data had been

received, we randomly pick p (k, v) pairs that satisfy the sample size and send them

to the reducer. Because sampling is done without replacement, the (k, v) pairs already

sent are removed from the hashmap. Post-map sampling is shown in Algorithm 2.

Unlike post-map sampling, which first reads the entire dataset and then randomly

chooses the required subset to process, pre-map sampling works by sampling a por-

tion p of the initial dataset before it gets passed into the mapper. Therefore, because

sampling is done prior to data loading stage, the response time is greatly improved,

with a potential downside of a slightly less accurate result. The reason for this is be-

cause when sampling from HDFS directly, we can efficiently only do so by sampling

lines1. Each line however may contain a variable number of (k, v) pairs so that when

producing a 1% sample of the (k, v) pairs, we may produce a larger or a lesser sample.

Therefore, for f which needs correction, we would be unable to do so accurately with-

out additional information from the user. For majority of the cases however correcting

1A default file format in Hadoop is a line delimitted by a new-line character. Another format can be
specified via the RecordReader class in Hadoop.

180

Algorithm 2 Post-map sampling
hash← initialize the hash

2: timestamp← initialize the timestamp

while input ! = null do

4: key← get random key for input

value← get value for input

6: hash[key]← value

sendSample(hash(rand()%hash size)

8: while true do

if get new error average (timestamp) > required then

10: sendSample(hash(rand()%hash size))

else

12: return

the final result is not necessary, and even for cases when correction is required, the

estimate of the number of the (k, v) pairs produced by the pre-map sampling approach

is good enough in practice. Nevertheless the user has the flexibility to use post-map

sampling if an accurate correction to the final result is desired.

We assume, w.l.o.g., that the input is delimited by new-lines, as opposed to commas

or other delimiters. A set of logical splits is first generated from the original file which

will be used for sampling. For each split Fi, we maintain a bit-vector representing

the start byte locations of the lines we had already included in our sample. Therefore

until the required sample size is met, we continue picking a random Fi and a random

start location which will be used to include a line from a file. To avoid the problem

of picking a file start location which is not a beginning of a line, we use Hadoop’s

LineRecordReader to backtrack to the beginning of a line. Using pre-map sampling we

avoid sending an overly large amount of data to the mapper which improves response

181

time as seen in experiment in Section 6.5.1. In rare cases where a larger sample size

is required for an in-progress task, a new split is generated and the corresponding map

task is restarted in the TaskInProgress Hadoop class. Algorithm 3 presents the HDFS

sampling algorithm used in pre-map sampling.

Algorithm 3 HDFS sampling algorithm used in pre-map sampling
start← split.getStart()

end← start+ split.getLength()

sample← ∅

while |sample| < n do

start← pick a random start position

if start ! = beginning of a line then

skipFirstLine← true

fileIn.seek(start)

in = new LineReader(fileIn, job)

if skipFirstLine then

start += in.readLine(new Text(),

0, (int)Math.min((long)Integer.MAX VALUE,

end - start))

sample← includeLineInSample()

skipFirstLine← false

Therefore, while pre-map is fast and works well for most cases, post-map is still

very useful for applications where a correction function relies on an accurate estimate

of the total key, value pairs. Experiments highlighting the difference between the two

sampling methods are presented in experiment of Section 6.5.5.

In both the post-map and the pre-map sampling, every reducer writes its computed

error together with a time-stamp onto HDFS. These files are then read by the mappers

182

to compute the overall average error. Because both the mappers and the reducers share

the same JobID, it is straight forward to list all files generated by the reducers within

the current job. The mapper stores a time-stamp that corresponds to the last successful

read attempt of the reducer output. The mapper collects all errors, and computes the

average error. The average error, incurred by all the reducers, is used to decide if

sample size expansion is required. Lines 9-15 in Algorithm 2 demonstrate this for

pos-map sampling.

Note that in a MapReduce framework independence is assumed between (k, v)

pairs. In addition to being natural in a MapReduce environment, the independence

assumption also makes sampling applicable to algorithms relying on capturing data-

structure such as correlation analysis.

6.2.4 Fault Tolerance

Most clusters that use Hadoop and the MapReduce frameworks utilize commodity

hardware and therefore node failure are a part of every-day cluster maintenance. Node

failure is handled in the Hadoop framework with the help of data-replication and task-

restarts upon failures. Such practices however can be avoided if the user is only inter-

ested in an approximate result. Authors in [SG07] show that in the real world, over 3%

of hard-disks fail per year, which means that in a server farm with 1,000,000 storage

devices, over 83 will fail every day. Currently, the failed nodes have to be manually

replaced, and the failed tasks have to be restarted. Given a user specified approxima-

tion bound however, even when most of the nodes have been lost, a reasonable result

can still be provided. Using the ideas from AES stage the error bound of the result can

still be computed with a reasonable confidence. Using our simple framework, a system

can therefore be made more robust against node failures by delivering results with an

estimated accuracy despite node failures.

183

6.3 Optimizations

The most computationally intensive part of EARL, aside from the user’s job j, is the

re-execution of j on an increasingly larger sample sizes, during both the main job exe-

cution and during initial sample size estimation. One important observation is that this

intensive computation can reuse its results from the previous iterations. By utilizing

this incremental processing, performing large-scale computations can be dramatically

improved. We first take a more detailed look at the processing of two consecutive

bootstrap iterations and then we discuss the optimization of the bootstrapping (resam-

pling) procedure so that when recomputing f on a new resample s′ we can perform

delta maintenance using a previous resample s.

6.3.1 Inter-Iteration Optimization

Let s denote the sample of size n used in the i-th iteration, and {bi, 1 ≤ i ≤ B} denote

the B bootstrap resamples drawn from s. The user’s job j is repeated on all bi’s. In

the (i + 1)-th iteration, we enlarge sample s with another sample ∆s. s and ∆s are

combined to get a new sample s′ of size n′. B bootstrapping resamples {b′i, 1 ≤ i ≤ B}

are drawn from s′, and the user’s job j is repeated on all b′i’s. Each resample b′i can

be decomposed into two parts: (1) the set of data-items randomly sampled from s,

denoted by b′i,s, and (2) the set of data-items randomly sampled from ∆s, denoted by

b′i,∆s.

Therefore, in the (i + 1)-th iteration, instead of drawing a completely new {b′i}

from s′, we can reuse the resamples {bi} generated in the i-th iteration. The idea is

to generate b′i,s by updating bi, and to generate b′i,∆s by randomly sampling from ∆s.

This incremental technique has two benefits, in that we can save a part of: (1) the cost

of bootstrapping resampling {b′i}, and (2) the computation cost of repeating the user’s

184

job j on {b′i}.

The process of generating b′i,s from bi is not trivial, due to the following obser-

vation. Each data item in b′i is drawn from bi with probability n
n′

, and from ∆s with

probability 1 − n
n′

. We have the following equation modeling the size of b′i,s by a

binomial distribution.

P (|b′i,s| = k) =

(
n′

k

)(n
n′

)k (
1− n

n′

)n′−k
(6.2)

This means that we may need to randomly delete data-items from bi, or add data-items

randomly drawn from s to bi. We first present a naive algorithm which maintains a

resample b′i from s′ by updating the resample bi form s in three steps: (1) randomly

generate |b′i,s| according to Equation 6.2. (2) if |b′i,s| < n, then randomly delete (n −

|b′i,s|) data-items from bi; if |b′i,s| > n, then randomly sample (|b′i,s| − n) data-items

from s and combine them with bi. (3) generate (n′ − |b′i,s|) random sample from ∆s

and combine them with bi.

The above process requires us to record all the data-items of s and bi, which is a

huge amount of data that cannot reside in memory. Therefore, s and bi must be stored

on the HDFS file system. Because this data will be accessed frequently, the disk I/O

cost can be a major performance bottleneck.

Next, we present our optimization algorithm with a cache mechanism that supports

fast incremental maintenance. Our approach is based on an interesting observation

from Equation 6.2. With n′ very large and n/n′ fixed, which is usually the case in

massive MapReduce tasks, Equation 6.2 can be approximated by the Gaussian distri-

bution

N
(
n, n

(
1− n

n′

))
(6.3)

For a Gaussian distribution, by the famous 3-sigma rule, most data concentrate around

the mean value, to be specific, within 3 standard deviations of the mean. As an exam-

185

ple, for the distribution 6.3 with its standard deviation denoted by σ0 =
√
n
(
1− n

n′

)
,

over 99.7% data lie within the range (n− 3σ0, n+ 3σ0); over 99.9999% data lie within

the range (n− 5σ0, n+ 5σ0). Note that σ0 <
√
n.

Next we explain our optimized algorithm in more detail. For the i-th iteration, we

define the delta sample added to the previous sample as ∆si. For the first iteration,

we can treat the initial sample as a delta sample added to an empty set. Therefore we

can denote it by ∆s1. The size of ∆si is ni. After the i-th iteration, a bootstrapping

resample b can be partitioned into {b∆sk , k < i}, where b∆sk represents the data-items

in b drawn from ∆sk. We build a two-layer memory-disk structure of b. Instead of

simply storing b on a hard-disk, we build two pieces of information of it: (i) memory-

layer information (a sketch structure) and (ii) disk-layer information (the whole data

set). A sketch of data set of size n is c
√
n data items randomly drawn without replace-

ment from it where c is a chosen constant. Determining an appropriate c is a trade-off

between memory space and the computation time. A larger c will cost more memory

space but will introduce less randomized update latency. The sketch structure contains

{sketch(b∆sk)} and {sketch(∆sk)}.

During updating, instead of accessing s and b directly, we always access the sketches

first. Specifically, for step 2 in our algorithm, if we need to randomly delete data-items

from b∆sk , we sequentially pick the data-items from sketch(b∆sk) for deletion; if we

need to add data-items randomly drawn from ∆sk, we sequentially pick the data-items

from sketch(∆sk) for addition. For already picked data-items, we mark them as used.

At the end of each iteration, we will randomly substitute some of the unused data items

in sketch(b∆sk) with the used data items in sketch(∆sk) by following a reservoir sam-

pling approach, in order to maintain sketch(b∆sk) as a random sketch of b∆sk . If we

use up all the data-items in a sketch, we access the copy stored in HDFS, applying two

operations: (1) committing the changes on the sketch, and (2) resampling a new sketch

186

from the data.

6.3.2 Intra-Iteration Optimization

When performing a resample, at times a large portion of the new sample is identical to

the previous sample in which case effective delta maintenance can be performed. Our

main observation is shown in Equation 6.4. The equation represents the probability

that a fraction y of a resample is identical to that of another resample. Therefore, for

example if n = 29 and y = 0.3, that means that 35% of the time, resamples will

contain 30% of identical data. In other words, for roughly 1 in 3 resamples, 30% of

each resample will be identical to one-another. Because of the relatively high level

of similarity among samples, an intra iteration delta maintenance can be performed

where the part that is shared between the resamples is reused.

P (X = y) =
n!

(n− y ∗ n)!× ny∗n
(6.4)

Using Equation 6.4 we can find the optimal y, given n, that minimizes the overall

work performed by the bootstrapping stage. The overall work saved can be stated as

P (X = y)∗y. Figure 6.3 shows how the overall work saved varies with n for different

y. The optimal y for given n can be found using a simple binary search. Overall we

found that on average we save over 20% of work using our Intra Iteration Optimization

procedure when compared to the standard bootstrapping method.

While the optimization techniques presented in this section greatly increase the

performance of the standard bootstrap procedure there is still more research to be done

with regards to delta maintenance and sampling techniques. Our optimization tech-

niques are best suited for small sample sizes, which is reasonable for a distributed

system where both response time and data-movement must be minimized. Next, we

outline several challenges that we faced during the implementation of EARL.

187

Figure 6.3: Work saved using our intra iteration optimization vs. sample size

6.4 Current Implementation

We have used Hadoop version 0.20.2-dev, to implement our extension and run the ex-

periments on a small cluster of machines of size 5 containing Intel Core duo (CPU

E8400 @ 3.00GHz), 320MB of RAM and Ubuntu 11.0 32bit. Each of the parts shown

in Figure 6.1 are implemented as separate modules which can seamlessly integrate

with user’s Map-Reduce jobs. The sampler is implemented by modifying the Recor-

dReader class to implement the Pre-Map sampling and extending the map class to

implement the Post-Map sampling. The resampling and update strategies are imple-

mented by extending the Reduce class. The results generated from resamples are used

for result and accuracy estimation in the AES phase. The AES phase computes the

coefficient of variation (cv) and outputs the result to HDFS which is read by the main

Map-Reduce job where the termination condition is checked. Because the number of

required resamples and the required sample size are estimated via regression, a single

iteration is usually required. Figure 6.4 shows an example of an MR program written

using EARL’s API. As can be observed from the figure, the implementation allows for

a generic user job to take advantage of our early approximation library.

188

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) t h r ow s Except ion {

/ / I n i t i a l i z a t i o n o f l o c a l v a r i a b l e s . . .

Sampler s = new Sampler () ;

w h i l e (e r r o r > s igma) {

s . I n i t (p a t h s t r i n g) ; / / p a t h s t r i n g i s t h e i n i t i a l D a t a S e t

/ / num resamples o f r e s a m p l e s o f s i z e s a m p l e s i z e i s g e n e r a t e d .

/ / Both of t h e s e v a r i a b l e s are d e t e r m i n e d e m p i r i c a l l y .

s . Gene ra t eSample s (s a m p l e s i z e , num resamples) ;

JobConf a e s j o b = new JobConf (AES . c l a s s) ;

JobConf u s e r j o b ;

/ / For each sample we e x e c u t e u s e r j o b

f o r (i n t i = 0 ; i < num resamples ; i ++) {

u s e r j o b = new JobConf (MeanBoots t rap . c l a s s) ; / / I n i t . . .

J o b C l i e n t . r u nJ ob (u s e r j o b) ;

}

/ / AES u s e s t h e input from u s e r j o b t o compute

/ / t h e a p p r o x i m a t i o n e r r o r .

/ / I n i t o f t h e a e s j o b . . .

/ / The a e s j o b a l s o u p d a t e s t h e e r r .

J o b C l i e n t . r u nJ ob (a e s j o b) ;

/ / In c a s e s where e a r l y a p p r o x i m a t i o n i s not p o s s i b l e ,

/ / s a m p l e s i z e and num resamples w i l l be s e t t o N and 1 ,

/ / r e s p e c t i v e l y

UpdateSampleSizeAndNumResamples () ;

}

}

Figure 6.4: An example of how a user job would work with the EARL framework

189

The biggest implementation challenge with EARL was reducing the overhead of

the AES phase and of the sample generation phase. If implemented naively, (i.e., mak-

ing both the sampler and the AES phase its separate job) then the execution time would

be inferior to that of the standard Hadoop especially for small data-sets and light ag-

gregates where EARL’s early approximation framework has little impact to begin with.

We wanted to make EARL light-weight so that even for light tasks, EARL would not

add additional overhead and the execution time in the worst case would be comparable

to that of the standard Hadoop.

The potential overhead of our system is due to three factors: (1) creating a new MR

job for each iteration used for sample size expansion (2) generating a sample of the

original dataset and (3) creating numerous resamples to compute a result distribution

that will be used for error estimation. The first overhead factor is addressed with the

help of pipelining, similar to that of Hadoop Online, however in our case the mappers

also communicate with reducers to receive events that signal sample size expansion or

termination. With the help of pipelining and efficient inter task communication, we

are able to reuse Hadoop tasks while refining the sample size. The second challenge

is addressed via the added feature of the mappers to directly ask for more splits to

be assigned, in the case of pre-map sampling, when a larger sample size is required.

Alternatively a sample can be generated using post-map sampling as discussed in Sec-

tion 6.2.3. Post and pre-map sampling work flawlessly with the Hadoop infrastructure

to deliver high quality random sample of the input data. Finally the last challenge is

addressed via a resampling algorithm and its optimizations presented in Section 6.2.3.

Re-sampling is actually implemented within a reduce phase, to minimize any overhead

due to job restarts. Due to delta maintenance, introduced in Section 6.3, resampling

becomes efficient and its overhead is tremendously decreased making our approach

not only feasible but to deliver an impressive speed-up over standard Hadoop. Next

key experiments are presented which showcase the performance of EARL.

190

6.5 Experiments

This section is aimed at testing the efficiency of our approach. A set of experiments

measuring the efficiency of the accuracy estimation and sampling stages are presented

in the following sections. To measure the asymptotic behavior of our approach a syn-

thetically generated data-set is used. The synthetic dataset allows us to easily vali-

date the accuracy measure produced by EARL. More experiments with advanced data-

minng algorithms in real-world workflows is currently under way. The normalized

error used for the approximate early answer delivery is 0.05 (i.e. our results are ac-

curate to within 5% of the true answer). The experiments were executed on simple,

single phase MR tasks to give concrete evidence of applicability of EARL, and more

elaborate experiments on a wider range of mining algorithms is part of our future work.

6.5.1 A Strong Case for EARL

In this experiment, we implemented a simple MR task computing the mean, and tested

it on both standard Hadoop and EARL. Figure 6.5(a) shows the performance com-

parison between these two. It shows that when the data-set size is relatively large

(> 100GB), our solution provides an impressive performance gain (4x speed-up) over

standard Hadoop even for a simple function such as the mean. In the worst case sce-

nario, where our framework cannot provide early approximate results (< 1GB), our

platform intelligently switch back to the original work flow which runs on the entire

data-set without incurring a big overhead. It demonstrates clearly that EARL greatly

outperforms the standard Hadoop implementation even for light-weight functions. Fig-

ure 6.5(a) also shows that a standard Hadoop data loading approach is much less effi-

cient than the proposed pre-map sampling technique.

191

(a) (b)

(c) (d)

Figure 6.5: (a) Computation of average using EARL and stock Hadoop, (b) Compu-

tation of median using EARL and stock Hadoop, (c) Computation of K-Means using

EARL, (d) Empirical sample size and number of bootstraps estimates vs. a theoretical

prediction

6.5.2 Approximate Median Computation

In this experiment, we did a break-down study, to measure how much a user defined

MR task can benefit from resampling techniques and our optimization techniques. We

used the computation of a median as an example, and tested it using three different

implementations: (1) standard Hadoop, (2) original resampling algorithm, and (3) op-

timized resampling algorithm. Figure 6.5(b) shows that: (1) With a naı̈ve Monte Carlo

192

bootstrap, we can provide a reliable estimate for median with a 3-fold speed-up, com-

pared to the standard Hadoop, due to a much smaller sample size requirement. (2)

Our optimized algorithm provides another 4x speed-up over the original resampling

algorithm.

6.5.3 EARL and Advanced Mining Algorithms

EARL can be used to provide early approximation for advanced mining algorithms,

and this experiment provides a performance study when using EARL to approximate

K-Means.

It is well known that K-Means algorithm converges to a local optima and is also

sensitive to the initial centroids. For these reasons the algorithm is typically restarted

from many initial positions. There are various techniques used to speed up K-Means,

including parallelization [ZMH09]. Our approach, compliments previous techniques

by speeding up K-Means without changing the underlying algorithm.

Figure 6.5(c) shows the results of running K-Means with EARL and stock Hadoop.

Our approach leads to a speed up due to two reasons: (1) K-Means is executed over a

small sample of the original data and (2) K-Means converges more quickly for smaller

data-sets. Because of a synthetic data-set, we were also able to validate that EARL

finds centroids that are within 5% of the optimal.

6.5.4 Sample Size and Number of Bootstraps

In this experiment we measure how the theoretical sample size and the theoretical

number of bootstraps prediction compare to our empirical technique of estimating the

sample size and the number of bootstraps. We use a sample mean as the function of in-

terest. Frequently, theoretical prediction for sample size is over estimated given a low

193

error tolerance and is under-estimated for a relatively high error tolerance. Further-

more, theoretical bootstrap prediction frequently under-estimates the required number

of bootstraps. In other empirical tests we have observed cases where theoretical boot-

strap prediction is much higher than the practical requirement. This makes a clear case

for the necessity of an empirical way to determine the required sample size and the

number of bootstraps to deliver the user-desired error bound. In the case of the sample

mean, we found that for a 5% error threshold, a 1% uniform sample and 30 bootstraps

are required.

6.5.5 Pre-map and Post-map Sampling

In this experiment we determine the efficiency of pre-map and post-map sampling

as described in Section 6.2.3 when applied to computation of the mean. Recall that

pre-map sampling is done before sending any input to the mapper thus significantly

decreasing the load-times and improving response time. The down-side of pre-map

sampler is a potential decrease in accuracy of estimating the number of key, value

pairs which may be required for correcting the final output. In post-map sampling,

the sampling is done per-key, which increases the load-times but potentially improves

accuracy of estimating the number of key, value pairs. As presented in Figure 6.6(a) the

pre-map sampling is faster than post-map sampling in terms of total processing time.

Furthermore, our empirical evidence suggests that for a large sample size, pre-map

sampler is as accurate in terms of the number of key, value prediction as the post-map

sampler. Therefore, to decrease the load-times, and to produce a reasonable estimate

for functions that require result correction, the pre-map sampler should be used. The

post-map sampler should be used when load-times are of low concern and a fast as

well as accurate estimates of a function on a relatively small sample size are required.

194

(a) (b)

Figure 6.6: (a) Processing times of pre-map and post-map sampling, and (b) Processing

time with the update procedure

6.5.6 Update Overhead

This experiment measures the benefit that our incremental processing strategies (inter-

iteration and intra-iteration) achieve. Recall that in order to produce samples of larger

sizes and perform resampling efficiently, we rely on delta maintenance as described

in Section 6.3. Figure 6.6(b) shows the total processing time of computing the mean

function with and without the delta maintenance optimization. The data-size represents

the total data that the function was to process. The without optimization strategy refers

to executing the function of interest on the entire dataset and with optimization strategy

refers to execution the function on half of the data and merging the results with the

previously saved state as described in Section 6.6(b). The optimized strategy clearly

outperforms the non-optimized version. The optimized strategy introduced achieved a

speedup of close to 300% for processing a 4GB data-set as compared to the standard

method.

195

6.6 Related Work

Sampling techniques for Hadoop were studied previously in [GC12] where authors

introduce an approach of providing Hadoop job with an incrementally larger sample

size. The authors propose an Input Provider which provides the JobClient with the

initial subset of the input splits. The subset of splits used for input are chosen randomly.

More splits are provided as input until the JobTracker declares that enough data had

been processed as indicated by the required sample size. The claim that the resulting

input represents a uniformly random sample of the original input is not well validated.

Furthermore the assumption that each of the initial splits represents a random sample

of the data, which would justify the claim that the overall resulting sample is a uniform

sample of the original data, is not well justified. Finally the authors do not provide an

error estimation framework which would make it useful for the case where only a

small sample of the original data is used. Overall, however, [GC12] provides a very

nice overview of a useful sampling framework for Hadoop that is simple to understand

and use.

Random sampling over database files is closely related to random sampling over

HDFS and the authors in [OR90] provide a very nice summary of various file sampling

techniques. The technique discussed in [OR90] that closely resembles our sampling

approach is known as a 2-file technique combined with an ARHASH method. In the

method, a set of blocks, F1, are put into main memory, and the rest of the blocks, F2,

reside on disk. When seeking a random sample, a 2-stage sampling process is per-

formed where F1 or F2 is first picked randomly, and then depending on the choice, a

random sample is drawn from memory or from disk. The expected number of disk

seeks under this approach is clearly much less than if only the disk was used for

random sampling. The method described, however, is not directly applicable to our

environment and therefore must be extended to support a distributed filesystem.

196

Authors in [CDS04, DBS06] explore another efficient sampling approach, termed

block sampling. Block-sampling suffers, however, from a problem that it no longer

is a uniform sample of the data. The approximation error derived from a block-level

sampling depends on the layout of the data on disk (i.e., the way that the tuples are

arranged into blocks). When the layout is random, then the block-sample will be just

as good as a uniform tuple sample, however if there is a statistical dependence between

the values in a block (e.g., if the data is clustered on some attribute), the resulting

statistic will be inaccurate when compared to that constructed from a uniform-random

sample. In practice most data layouts fall somewhere between the clustered and the

random versions [CDS04]. Authors in [CDS04] present a solution to this problem

where the number of blocks to include in a sample, are varied to achieve a uniformly

random distribution.

Approximation techniques for data-mining were also extensively studied, however

the approximation techniques introduced are not general (e.g., specific to association

rule mining [CHS02]). The authors in [CHS02] propose a two phase sampling ap-

proach, termed FAST, where a large sample S is first taken and then a smaller sample

is derived from S. This tailored sampling technique works well, giving speedups up to

a factor of 10. Although the proposed approach is highly specialized, EARL can still

obtain comparable results.

Hellerstein et al. [CCA10] presented a framework for Online Aggregation which

is able to return early approximate results when querying aggregates on large stored

data sets [HHW97b]. This work is based on relational database systems, and is lim-

ited to simple single aggregations, which restricts it to AVG, VAR, and STDDEV. Work

in [PBJ11b] provides online support for large map-reduce jobs but is again limited to

simple aggregates. Similarly, work by [PJ05b] provides an approximation technique

using bootstrapping, however the optimization presented was only studied in the con-

197

text of simple aggregates. Later, B. Li et. al [LMD11] and Condie et al. [CCA10] built

systems on top of MapReduce to support continuous query answering. However, these

systems do not provide estimation of the accuracy of the result.

EARL can potentially plug into other massively parallel systems such as Hyracks

[BCG11]. Hyracks is a new partitioned-parallel software platform that is roughly in

the same space as the Hadoop open source platform. Hyracks is designed to run data-

intensive computations on large shared-nothing clusters of computers. Hyracks allows

users to express a computation as a DAG of data operators and connectors. A Possible

future direction would be to use EARL on Hyracks’ DAG.

EARL relies on dynamic input support in order to incrementally increase sample

size as required. While Hadoop extensions such as HaLoop [BHB10] can support

incremental data processing, this support is mainly aimed at the iterative execution

model of data-mining algorithms (e.g., K-Means). HaLoop dramatically improves

the iterative job execution efficiency by making the task scheduler loop-aware and by

adding various caching mechanisms. However, due to its batch-oriented overhead,

HaLoop, is not suitable for tasks that require dynamically expanding input.

6.7 Summary of EARL

A key part of big data analytics is the need to collect, maintain and analyze enormous

amounts of data efficiently. With such application needs, frameworks like MapRe-

duce are used for processing large data-sets using a cluster of machines. Current sys-

tems however are not able to provide accurate estimates of incremental results. In this

chapter we presented EARL, a non-parametric extension of Hadoop that delivers early

results with a reliable accuracy estimates. Our approach can be applied to improve

efficiency of fault-tolerance techniques by avoiding the restart of failed nodes if the de-

198

sired accuracy is reached. Our approach builds on resampling techniques from statis-

tics. To further improve the performance, EARL supports various optimizations to the

resampling methods which makes the framework even more attractive. The chapter

also introduced sampling techniques that are suitable for a distributed file-system. Ex-

perimental results suggest that impressive speed-ups can be achieved for a broad range

of applications. The experimental results also indicate that this is a promising method

for providing the interactive support that many users seek when working with large

data-sets.

199

CHAPTER 7

The Analytical Bootstrap: a New Method for Fast

Error Estimation in Approximate Query Processing

Data-driven activities in business, science, and engineering are rapidly growing in

terms of both data size and significance. This situation has brought even more attention

to the already-active area of Approximate Query Processing (AQP), and in particular

to sampling approaches as a critical and general technique for coping with the ever-

growing size of big data. Sampling techniques are widely used in databases [AGP99b,

BCD03, CDN07, HHW97a, JAP07, OBE09], stream processors [BDM04, MZ10], and

even Map-Reduce systems [AMP13, LZZ12].

This most commonly used technique consists in evaluating the queries on a small

random sample of the original database. Of course, the approximate query answers

obtained this way are of very limited utility unless they are accompanied by some

accuracy guarantees. For instance, in estimating income from a small sample of the

population, a statistician seeks assurance that the derived answer falls within a certain

interval of the exact answer computed on the whole population with high confidence

(e.g., within ±1% of the correct answer with probability ≥ 95%). This enables the

users to decide whether the current approximation is “good enough” for their purpose.

Thus, assessing the quality (i.e., error estimation) of approximate answers is a funda-

mental aspect of AQP.

The extensive work on error estimation in the past two decades can be categorized

200

into two main approaches. The first approach [AMP13, CCM00, CDN07, HHW97a,

HSS09, JAP07, JJ09, PBJ11a, WOT10] analytically derives closed-form error esti-

mates for common aggregate functions in a database, such as SUM, AVG, etc. Although

computationally appealing, analytic error quantification is restricted to a very limited

set of queries. Thus, for every new type of queries, a new closed-form formula must

be derived. This derivation is a manual process that is ad-hoc and often impractical for

complex queries [PJ05a].1

To address this problem, a second approach, called bootstrap, has emerged as a

more general method for routine estimation of errors [KTA13, LZZ12, PJ05a]. Boot-

strap [ET93] is essentially a Monte Carlo procedure, which for a given initial sample,

(i) repeatedly forms simulated datasets by resampling tuples i.i.d. (identically and in-

dependently) from the given sample, (ii) recomputes the query on each of the simulated

datasets, and (iii) assesses the answer quality on the basis of the empirical distribu-

tion of the produced query answers. The wide applicability and automaticity of boot-

strap is confirmed both in theory [BF81, VW00] and practice [KTA13, LZZ12, PJ05a].

Unfortunately, bootstrap tends to suffer from its high computational overhead, since

hundreds or even thousands of bootstrap trials are typically needed to obtain reliable

estimates [KTA13, PJ05a].

In this chapter, we introduce a new technique, called the Analytical Bootstrap

Method (ABM), which is both computationally efficient and automatically applicable

to a large class of SQL queries, and thus combines the benefits of these two approaches.

Thus, our main contribution is a probabilistic relational model for the bootstrap pro-

cess that allows for automatic error quantification of a large class of SQL queries

(defined in Section 7.1.2) under sampling, but without performing the actual Monte

Carlo simulation. We show that our error estimates are provably equivalent to those

1This is evidenced by the difficulties faced by previous analytic approaches in supporting approxi-
mation for queries that are more complex than simple group-by aggregate queries.

201

produced by the simulation-based bootstrap (Theorems 17 and 22).

The basic idea of ABM is to annotate each tuple of the sampled database with an

integer-valued random variable that represents the possible multiplicities with which

this tuple would appear in the simulated datasets generated by bootstrap. This small

annotated database is called a probabilistic multiset database (PMDB). This PMDB

succinctly models all possible simulated datasets that could be generated by bootstrap

trials. Then, we extend relational operators to manipulate these random variables.

Thus executing the query on the PMDB generates an annotated relation which en-

codes the distribution of all possible answers that would be produced if we actually

performed bootstrap on the sampled database. In particular, using a single-round query

evaluation, ABM accurately estimates the empirical distribution of the query answers

that would be produced by hundreds or thousands of bootstrap trials.2

We have evaluated ABM through extensive experiments on the TPC-H benchmark

and on the actual queries and datasets used by leading customers of Vertica Inc. [ver].

Our results show that ABM is an accurate prediction of the simulation-based bootstrap.

Additionally, it is 3–4 orders of magnitude faster than the state-of-the-art parallel im-

plementations of bootstrap [KTS12].

Therefore, ABM promises to be a technique of considerable practical significance:

The immediate implication of this new technique is that, the quality assessment module

of any AQP system that currently relies on bootstrap (e.g., [KTA13, LZZ12, PJ05a])

can now be replaced by a process that uses 3–4 orders of magnitude fewer resources

(resp. lower latency) if it currently uses a parallel (resp. sequential) implementa-

tion of bootstrap. We envision that by removing bootstrap’s computational overhead,

2Note that we do not claim to provide low approximation error for arbitrary queries. For instance,
random sampling is known to be futile for certain queries (e.g., joins, MIN, MAX). However, we guar-
antee the same empirical distribution that would be produced by thousands of bootstrap trials (which is
the state-of-the-art error quantification technique for AQP of complex SQL analytics), whether or not
sampling leads to low-error or unbiased answers.

202

ABM would also significantly broaden the application of AQP to areas which require

interactive and complex analytics expressible in SQL, such as root cause analysis and

A/B testing [AMP13], real-time data mining, and exploratory data analytics.

The chapter is organized as follows. Section 7.1 exemplifies bootstrap and the

query evaluation problem considered in this chapter. Section 7.2 provides the nec-

essary theoretical background. In Section 7.3, we present our probabilistic multiset

relational model. We explain our efficient query evaluation technique in Sections 7.4

and 7.5. In Section 7.6, we discuss several extensions of our technique. We report the

experimental study in Section 7.7, followed by the related work in Section 7.9. We

conclude in Section 7.10.

7.1 Problem Statement

In this section, we formally state the problem addressed by this chapter. We then

provide a small example of bootstrap in Section 7.1.1, and a high-level overview of

our approach in Section 7.1.2.

Given a database D and a query q, let q(D) denote the exact answer of evaluating

q on D. An approximate answer can be obtained by (i) extracting from D a random

sample D, (ii) evaluating a potentially modified version of q (say q) on D, and (iii)

using q(D) as an approximation of q(D). In some cases, such as AVG, q is the same

as q, but in other cases, q can be a modified query that produces better results. For

instance, when evaluating SUM on a sample of size 1
f
|D|, one will choose q = fq to

scale up the sample sum by a factor of f . The particular selection of q for a given q

is outside the scope of our discussion.3 Instead, we focus on estimating the quality of

q(D) for a given q, as described next.

3Similar to the original bootstrap [KTA13, LZZ12, PJ05a], we assume that q is given. Deriving q
for a given q has been discussed in [MZ10].

203

Let D1, · · · , DN be all possible sample instantiations of D. Then, q(D) could be

any of the {q(Di), i = 1, · · · , N} values. Therefore, to assess the quality of q(D), one

needs to (conceptually) consider all possible query answers {q(Di)}, and then compute

some user-specified measure of quality, denoted by ξ(q(D), {q(Di)}). For instance,

when approximating an AVG query, ξ could be the variance, or the 99% confidence

interval for the {q(Di)} values. However, since computing ξ(q(D), {q(Di)}) directly

is typically infeasible, a technique called bootstrap is often used to approximate this

value.

Bootstrap. Bootstrap [ET93] is a powerful technique for approximating unknown dis-

tributions. Bootstrap consists in a simple Monte Carlo procedure: it repeatedly carries

out a sub-routine, called a trial. Each trial generates a simulated database, say D̂j ,

which is the same size as D (by sampling |D| tuples i.i.d. from D with replacement),

and then computes query q on D̂j . The collection {q(D̂j)} from all the bootstrap trials

forms an empirical distribution, based on which ξ(q(D), {q(D̂j)}) is computed and

returned as an approximation of ξ(q(D), {q(Di)}). Bootstrap is effective and robust

across a wide range of practical situations [KTA13, LZZ12, PJ05a].

Problem Statement. Our goal is to devise an efficient algorithm for computing the

empirical distribution {q(D̂j)} produced by bootstrap, but without executing the actual

bootstrap trials. In particular, we are interested in the marginal distribution of each

individual result tuple, i.e., the probability of each tuple appearing in any q(D̂j).4 This

marginal distribution enables us to compute the commonly used quality measures ξ

(e.g., mean, variance, standard deviation, and quantiles as used in [KTA13, LZZ12,

PJ05a]). Next, we demonstrate this in an example.

4The set of all possible query answers, {q(D̂j)}, may have up to O(2|D|) elements. Thus, due to its
extremely large size, returning this set to the user is impractical.

204

7.1.1 An Example of Bootstrap

Bootstrapping a Database. A single bootstrap trial on a relation R produces a mul-

tiset relation, since a tuple may be drawn more than once. Thus, different trials could

result in different multiset relations. This set of multiset relations can be modeled as a

single probabilistic multiset relation, where each tuple has a random multiplicity. Let

Rr denote the probabilistic relation that results from bootstrappingR. Likewise, letDr

denote the probabilistic database obtained by bootstrapping the relations of a database

sample D. For instance, consider D in Figure 7.1(a), which has a single relation R

(named stock) containing three tuples. Figure 7.1(b) shows a possible instance R̂ of

Rr, produced by a single bootstrap trial, where tuple t2 and t3 are drawn twice and

once, respectively, while t1 is not selected. For brevity, we denote this resample as

{(t2, 2), (t3, 1)}.

stock

R = Part Type Qty

t1 p01 a 4

t2 p02 b 5

t3 p03 a 3
(a)

stock

R̂ = Part Type Qty

t2 p02 b 5

t2 p02 b 5

t3 p03 a 3
(b)

Figure 7.1: (a) An example of a database sample D with one relation R (named stock),

and (b) a resample instance of Rr

Bootstrapping this particular database sample D generates 10 possible multiset re-

lations. We refer to these as the possible multiset worlds of Dr, denoted as pmw(Dr).

Figure 7.2 shows all the ten possible instances with their probabilities of being gener-

ated.

Queries on the Resampled Database. Consider the “Important Stock Types” query

q in Example 32, which finds the stock types having a quantity > 30% of the total

205

multiset world prob.

D1 = {(t1, 1), (t2, 1), (t3, 1)} 2/9

D2 = {(t1, 2), (t2, 1)} 1/9

D3 = {(t1, 2), (t3, 1)} 1/9

D4 = {(t2, 2), (t1, 1)} 1/9

D5 = {(t2, 2), (t3, 1)} 1/9

D6 = {(t3, 2), (t1, 1)} 1/9

D7 = {(t3, 2), (t2, 1)} 1/9

D8 = {(t1, 3)} 1/27

D9 = {(t2, 3)} 1/27

D10 = {(t3, 3)} 1/27

Figure 7.2: The possible multiset worlds of Dr

quantity. To answer q on Dr, one needs to evaluate q against each world in pmw(Dr),

and add up the probabilities of all the worlds returning the same answer. For instance,

since q(D1) = q(D2) = {ta, tb} (as in Figure 7.3(a)), then Pr({ta, tb}) = 2
9

+ 1
9

=

1
3
. All possible answers from evaluating q on Dr, denoted by q(Dr), are shown in

Figure 7.3(b).

Example 32 (Important Stock Types).

SELECT distinct Type FROM stock

WHERE Qty > 0.3 * (SELECT SUM(Qty) FROM stock)

In general, when R has n tuples, q(Dr) can have up to O(2n) possible answers,

which makes it impractical to deliver the distribution on all possible answers. In-

stead, for each possible tuple in the query result (ta and tb in this case) we compute its

marginal probability of appearing in the query result, as shown in Figure 7.3(c). For

example, ta may appear in the results {ta, tb} or {ta}. Thus, the marginal probability

of ta appearing in any result is 1
3

+ 8
27

= 17
27

. We denote this marginal distribution as

qmrg(Dr).

206

Type

ta a

tb b
(a)

answer prob.

{ta, tb} 1/3

{ta} 8/27

{tb} 10/27

(b)

answer prob.

ta 17/27

tb 19/27

(c)

Figure 7.3: (a) The result of q(D1) and q(D2), (b) all possible answers of q, and (c)

their marginal probabilities

In real life, instead of our three-tuple example, we have tables with millions or

billions of tuples, where enumerating all possible worlds is impossible. Thus, boot-

strap uses Monte Carlo simulation to approximate the above process, which requires

hundreds or thousands of trials to achieve an accurate estimate for qmrg(Dr).

With qmrg(Dr), we can now measure the quality of q(D). For instance, the average

false negative rate of tuples in q(D), i.e., the average probability of missing ta or tb,

can be computed by 1
2
{(1− Pr(ta)) + (1− Pr(tb))} = 1

3
.

7.1.2 Scope of Our Approach

In this chapter, we propose a new approach, called the Analytical Bootstrap Method

(ABM), which avoids the computational overhead of bootstrap. We study the set of

conjunctive queries with aggregates, i.e., queries expressed in the following relational

algebra: σ (selection), Π (projection), ./ (join), δ (deduplication), and γ (aggregate).

γA,α(B) denotes applying aggregate α onB grouped byA. We focus on queries without

nested aggregates, i.e., B is not the output of another aggregate. To simplify presen-

tation, we first focus on aggregates SUM, COUNT, and AVG, and defer the extension

of ABM to more general aggregates to Section 7.6. Since Bootstrap only works for

“smooth” queries,5 we also restrict ourselves to such queries. In particular, any of

5A discussion of smoothness can be found in [ET93, PJ05a].

207

the following constructs can easily lead to non-smooth queries: (1) extrema aggre-

gates (MIN/MAX) and (2) equality checks on aggregate results (e.g., projection/group-

by/equi-join on aggregate results). Thus, we only discuss queries without these con-

structs.

Among the studied queries, we identify eligible queries, for which we provide an

efficient extensional evaluation. Furthermore, our query evaluation techniques enjoy a

DBPTIME complexity for a large subset of eligible queries (see Section 7.4.2).

To provide an intuitive sense of how general/restrictive these classes of queries are

in practice, in Table 7.1 we summarize the syntactic constraints imposed by different

error estimation techniques along with some statistics. Table 7.1 compares the set of

queries supported by our formal semantics, our ABM (eligible queries and those with

DBPTIME complexity), previous analytical techniques (which are strictly subsumed

by ABM), and bootstrap (which strictly subsumes ABM). We have analyzed 22 TPC-H

benchmark queries, as well as a real-life query log from Conviva Inc.[con] consisting

of 6660 queries.6 Table 7.1 reports the fraction of queries from TPC-H and the Conviva

log that is supported by different techniques, i.e., queries that satisfy the constraints

imposed by each technique.

The set of queries supported by ABM strictly subsumes those of previous analytical

approaches, and it also constitutes a majority subset of those supported by bootstrap.

For instance, ABM supports 19/22 TPC-H queries, and 98.6% of the Conviva ones,

covering most of the queries supported by bootstrap (i.e., 19/22 in TPC-H and 99.1%

in the Conviva log). Previous analytical approaches only support 9/22 of TPC-H and

36.9% of the Conviva queries. Also, note that 81.0% of the Conviva queries are sup-

ported by ABM while enjoying a guaranteed DBPTIME complexity.

6Due to proprietary reasons, we had restricted access to Conviva queries; we were only allowed to
run a customized parser on the query log to compute the breakdown of different query types. Thus, for
performance evaluations, we use Vertica and TPC-H queries.

208

Note that User Defined Aggregate Functions (UDAFs) can only be handled by

(simulation-based) bootstrap. Fortunately, UDAFs are quite rare in day-to-day data

analysis, as most users find it more convenient to write pure SQL queries. For instance,

none of the 6660 queries in the Conviva log contained a UDAF. 7

7.2 Background

In this section, we provide background on semirings and their connection with rela-

tional operators, followed by a brief overview of semiring random variables. These

concepts will be used in our probabilistic relational model and query evaluation tech-

nique.

7.2.1 Semirings and Relational Operators

Here, we provide an overview on semirings as well as how they can be used to compute

queries on a database.

A monoid is a triplet (S,+, 0), where:

• S is a set closed under +, i.e., ∀s1, s2 ∈ S, s1 + s2 ∈ S

• + is an associative binary operator, i.e., ∀s1, s2, s3 ∈ S, (s1 + s2) + s3 = s1 +

(s2 + s3)

• 0 is the identity element of +, i.e., ∀s ∈ S,s+ 0 = 0 + s = s

For example, (N,+, 0) is a monoid, where N is the set of natural numbers, and 0 and

+ are the numerical zero and addition.
7UDAFs should not be confused with User Defined Functions (UDFs) which are quite common in

practice (e.g., 42% of Conviva queries contain UDFs); UDFs operate on a single tuple and return a
single value, while UDAFs operate on multiple tuples and return a single value. UDFs are usually used
to transform or extract data from each tuple. By treating UDFs as extra columns in the table, they can
be easily supported by both analytic approach and ABM.

209

Te
ch

ni
qu

e
C

on
st

ra
in

ts
in

T
PC

H
in

C
on

vi
va

L
og

A
na

ly
tic

A
pp

ro
ac

h
Si

m
pl

e
gr

ou
p-

by
ag

gr
eg

at
e

(n
o
M
I
N

/M
A
X

)
qu

er
ie

s
[A

M
P1

3,

C
C

M
00

,
C

D
N

07
,

H
H

W
97

a,
H

SS
09

,
JA

P0
7,

JJ
09

,
PB

J1
1a

,

W
O

T
10

]

9/
22

36
.9

%

A
B

M
Se

m
an

tic
s

C
on

ju
nc

tiv
e

qu
er

ie
s

w
ith

(a
)n

o
ne

st
ed

ag
gr

eg
at

es
,

(b
)n

o
M
I
N

/M
A
X

an
d

(c
)n

o
eq

ua
lit

y
ch

ec
ks

on
ag

gr
eg

at
e

re
su

lts
19

/2
2

99
.1

%

A
B

M
E

lig
ib

le
Q

ue
ri

es
th

at
(a

)s
at

is
fy

al
lA

B
M

se
m

an
tic

s
co

ns
tr

ai
nt

s,
an

d

(b
)h

av
e

an
el

ig
ib

le
qu

er
y

pl
an

(s
ee

D
efi

ni
tio

n
24

)
19

/2
2

98
.6

%

A
B

M
E

lig
ib

le
w

ith
D

B
P-

T
IM

E
Q

ue
ry

E
va

lu
at

io
n

A
B

M
el

ig
ib

le
qu

er
ie

s
th

at
(a

)h
av

e
D

B
PT

IM
E

-e
lig

ib
le

pl
an

s

or
(b

)c
an

be
op

tim
iz

ed
by

th
e

co
nt

ai
nm

en
tj

oi
n

op
tim

iz
at

io
n

(s
ee

Se
ct

io
n

7.
4.

2)

15
/2

2
81
.0

%

B
oo

ts
tr

ap
“S

m
oo

th
”

qu
er

ie
s

19
/2

2
99
.1

%

Ta
bl

e
7.

1:
C

la
ss

es
of

SQ
L

qu
er

ie
s

su
pp

or
te

d
by

di
ff

er
en

tt
ec

hn
iq

ue
s,

an
d

th
ei

rc
ov

er
ag

e
of

T
PC

-H
an

d
C

on
vi

va
qu

er
ie

s

210

A semiring is a quintuplet (S,+, ·, 0, 1) which follows the four axioms below:

• (S,+, 0) is a monoid where + is commutative, i.e., ∀s1, s2 ∈ S, s1+s2 = s2+s1

(a.k.a. a commutative monoid)

• (S, ·, 1) is a monoid

• · is left and right distributive over +, i.e., ∀s1, s2, s3 ∈ S, s1 · (s2 + s3) =

s1 · s2 + s1 · s3 and (s2 + s3) · s1 = s2 · s1 + s3 · s1

• 0 annihilates S, i.e. ∀s ∈ S, 0 · s = s · 0 = 0

A commutative semiring is a semiring in which (S, ·, 1) is also a commutative monoid.

In this chapter, all semirings are commutative semirings. E.g., SN = (N,+, ·, 0, 1) is a

commutative semiring.

Green et al. [GKT07] showed that many different extensions of relational algebra

can be formulated by annotating database tuples with semiring elements and propa-

gating these annotations during query processing. Consider a multiset database as an

example. Tuples in a multiset relation are annotated with natural numbers N, repre-

senting their multiplicities in the database. Formally, a multiset relation R with the

tuple domain U is described by an annotation function πR : U → N, where a tuple

t ∈ R⇔ πR(t) 6= 0.

During query processing, the relational algebra is extended with the + and · op-

erators in semiring SN, which manipulate the annotated multiplicities: for projection,

we add the multiplicities of all input tuples that are projected to the same result tuple,

while for join, we multiply the multiplicities of the joined tuples. That is, inductively

we have:

• Selection σc(R). πσc(R)(t) = πR(t) · 1(c(t)), where 1(c(t)) returns 1 if c(t) is

true and 0 otherwise.

• Projection ΠA(R). πΠA(R)(t) =
∑

t′[A]=t πR(t′) where t′[A] is the projection of

t′ on A.

211

• Join R1 ./ R2. πR1./R2(t) = πR1(t1) · πR2(t2), where ti is t on Ui.

Green et al. showed that by annotating tuples with elements from SN and using

the extended relational algebra defined above, we obtain the relational algebra with

multiset semantics. However, this extension is not applicable to bootstrap, because

the multiset relation generated by bootstrap is probabilistic (shown in Section 7.1.1).

Thus, we introduce our probabilistic multiset relational model in Section 7.3 by using

semiring random variables (described next).

7.2.2 Semiring Random Variables

A random variable that takes values from the elements of a semiring S is called a

semiring random variable, denoted by S-rv. Analogous to operators + and · on semir-

ing elements, there are corresponding operators that operate on semiring random vari-

ables, called convolutions. Below we define the + convolution (denoted as⊕), and the

· convolution (denoted as �).

Definition 15 (Convolution). Let r1 and r2 be two S-rvs. The convolution ⊕ (resp.

�) is a binary operator defined on monoid (S,+, 0) (resp. (S, ·, 0)), such that r1 ⊕ r2

(resp. r1 � r2) is a S-rv, where ∀s ∈ S,

Pr(r1 ⊕ r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y)|∀x, y ∈ S, x+ y = s}

Pr(r1 � r2 = s) =
∑
{Pr(r1 = x ∧ r2 = y)|∀x, y ∈ S, x · y = s}

Similar to conventional random variables, we define the disjointness, independence

and entailment between S-rvs, but with some special treatment for 0 ∈ S.

Definition 16. Let r1 and r2 be two S-rvs.

• r1 and r2 are disjoint, if Pr(r1 6= 0 ∧ r2 6= 0) = 0.

212

• r1 and r2 are independent, if ∀s1, s2 ∈ S,

Pr(r1 = s1 ∧ r2 = s2) = Pr(r1 = s1) · Pr(r2 = s2)

• r1 entails r2, if Pr(r1 6= 0|r2 6= 0) = 1.

The marginal distribution of a S-rv r can be represented by a vector pr indexed by

S, namely ∀s ∈ S, pr[s] = Pr(r = s).

In general, using Definition 15 to compute convolutions of S-rvs can be quite in-

efficient, especially when the semiring S is large. However, we make the observation

that under certain conditions, the convolution of S-rvs can be quickly computed by

simply manipulating their probability vectors, as stated next.8

Proposition 1 (Efficient Convolution). Let r1 and r2 be two S-rvs on semiring (S,+, ·, 0, 1):

• If r1 and r2 are disjoint, then pr1⊕r2 = pr1] pr2 , where

(pr1] pr2)[s]
def
==

 pr1 [s] + pr2 [s] if s 6= 0

pr1 [0] + pr2 [0]− 1 if s = 0

• If r1 entails r2 where r2 can only take value 0 or 1, then pr1�r2 = pr1 .

7.3 Semantics & Query Evaluation

Next, we introduce our probabilistic multiset relational model, which annotates each

tuple with a SN-rv representing its nondeterministic multiplicity and extends the rela-

tional algebra to propagate these annotations during query processing. Table 7.2 lists

the notations we use.
8All the proofs can be found in Section 7.11.

213

R/D deterministic relation/database

Rr/Dr probabilistic relation/database from bootstrap

R̂/D̂ a resample instance from bootstrap

mR̂(t) multiplicity of t in R̂

U tuple domain of a relation

head(·) set of attributes in the output of a query

rels(·) set of relations occurring in a query

π,$ annotation functions for PMRs

0/1 Constant random variables with value 0/1

Table 7.2: Summary of Notations

7.3.1 Formal Semantics

Probabilistic Multiset Database Semantics. A probabilistic multiset relation (PMR)

is a multiset relation whose tuples have nondeterministic multiplicities. Formally, the

functional representation of a PMR Rr is an annotation function πR : U → {SN-rv},

where πR(t) = πt when tuple t occurs in Rr with a random multiplicity πt; otherwise,

πR(t) = 0.

Specifically, the PMR Rr resulting from bootstrapping R (of size n) is modeled

thus: for all tuples {ti|i = 1, · · · , n} in R, (π(t1), · · · , π(tn)) jointly follow a multi-

nomial distribution M(n, [1
n
, · · · , 1

n
]). We can also model a deterministic relation R

as a special PMR, where ∀t ∈ R, πR(t) = 1.

Definition 17 (PMR Semantics). The semantics of a PMR Rr annotated by πR : U →

{SN-rv} is a set of possible multiset worlds pmw(Rr), where the probability of each

world (i.e., resample instance) R̂ is

Pr(R̂) = Pr
(∧
{πR(t) = mR̂(t) | t ∈ R}

)

A probabilistic multiset database (PMDB) Dr is a database with PMRs.

214

Definition 18 (PMDB Semantics). The semantics of Dr which consists of k PMRs

(Rr
1, R

r
2, · · · , Rk) is a set of possible multiset worlds pmw(Dr) defined as:

pmw(Dr) = {(R̂1, R̂2, · · · , R̂k) | R̂i ∈ pmw(Rr
i),∀i}

The probability of each world D̂ is Pr(D̂) =
∏k

i=1 Pr(R̂i).

Query Semantics. Evaluating a query q on a PMDB Dr is equivalent to evaluating q

on every possible multiset world in pmw(Dr).

Definition 19 (Query Semantics). The semantics of evaluating a query q on a PMDB

Dr is a set of possible answers qpmw(Dr), where each possible answer’s probability

is:

∀R̂q ⊆ Uq : Pr(R̂q) =
∑
{Pr(D̂) | D̂ ∈ pmw(Dr) ∧ q(D̂) = R̂q}

Since computing qpmw(Dr) is infeasible (see Section 7.1.1), we return a marginal

summary qmrg(Dr). i.e., for each tuple t ∈ Uq, we return a probability vector p, where

p[m] is the probability of t appearing in any possible answer m times, i.e.,

p[m] =
∑
{Pr(R̂q)|R̂q ⊆ Uq, πR̂q

(t) = m}

7.3.2 Intensional Query Evaluation

A prohibitive number of worlds makes direct application of the possible worlds se-

mantics impractical. Thus, this section introduces our intensional evaluation and its

semantics, which lay the theoretical foundation of the evaluation technique we intro-

duce in Section 7.4. Intensional evaluation extends relational algebra to propagate the

annotations symbolically throughout query execution.

Extending Relational Algebra. Analogous to the multiset semantics introduced in

Section 7.2, we extend relational algebra with ⊕ and � operators from the semiring

215

(SN-rv,⊕,�,0,1) to manipulate the random multiplicities of each tuple, so that query

evaluation using these operators will produce the correct results (with respect to the

possible multiset worlds semantics). We define this extended relational algebra as

follows. (We first discuss how aggregates manipulate tuple multiplicities, postponing

discussion of how aggregates compute values later.)

Definition 20 (Intensional Evaluation). Intensional

evaluation is defined inductively on a query Plan P :

• If P = σc(P1), then πP (t) = πP1(t)� 1(c(t)).

• If P = ΠA(P1), then πP (t) =
⊕

t′[A]=t πP1(t
′).

• If P = P1 ./ P2, then πP (t) = πP1(t1)� πP2(t2), where ti = t[head(Pi)].

• If P = δ(P1), then πP (t) = 1(πP1(t)).

• If P = γA,α(B)(P1), then πP (t) = πδ(ΠA(P1))(t).

where 1(r) maps a random variable r to another random variable, i.e. if r 6= 0, then

1(r) = 1, and 1(r) = 0 otherwise. When r is deterministic, 1(r) degenerates to 0 or

1.

Aggregates. Besides manipulating π, an aggregate produces values absent from the

input relations; an extra semiring annotation (denoted as $) is thus required to define

its computation.

Next, we define the intensional evaluation of SUM. Since manipulating π is defined

in Definition 20, we focus on the manipulation of $. (COUNT is a special case of SUM

and AVG can be defined as an arithmetic function of SUM and COUNT.)

Definition 21 (Intensional Evaluation of γA,SUM(B)). The Intensional evaluation of

γA,SUM(B)(P) is defined as follows:9

9 W.l.o.g, in the following discussion, we assume dom(B) = R.

216

1. Annotate P with $: U → {SR-rv} where SR = (R,+, ·, 0, 1), i.e., $(t) =

t[B] � πP (t), where t[B] is treated as a degenerated SR-rv taking a constant

value.

2. Compute SUM(B) = $γA,SUM(B)(P)(t) =
⊕

t′[A]=t$P (t′).

Example 33. Consider the databaseD in Figure 7.1(a) and the query q in Example 32.

Figure 7.4 shows the intensional evaluation of q on Dr using the query plan shown in

Figure 7.4(a). Figure 7.4(g) shows the truth table for tuple ta. From this, we can

determine the probability of ta appearing in the result as 17
27

.

Intensional evaluation of q on Dr produces a new PMR, denoted by qi(Dr), whose

semantics is defined as follows.

Definition 22 (Intensional Semantics). The semantics of qi(Dr) is a set of possible

multiset worlds, pmw(qi(Dr)), where any assignment of the annotations of each tuple

t, namely πq(t) and $q(t), yields a possible world instance R̂q, such that:

Pr(R̂q) = Pr
(∧
{πq(t) = mR̂q

(t) ∧$q(t) |= t | t ∈ Uq}
)

Here, $q(t) |= t means that $q(t) takes the corresponding aggregate value in t.

Because of the commutative and distributive properties of semirings, qi(Dr) is in-

dependent of the plan chosen for q [GKT07]. Furthermore, this semantics is equivalent

to the possible multiset worlds semantics qpmw(Dr), as stated next.

Theorem 17. We have pmw(qi(Dr)) ≡ qpmw(Dr) for every conjunctive query q with

aggregates and every PMDB Dr, as long as the projected, group-by, and aggregated

columns are not the output of another aggregate.

Theorem 17 proves the correctness of intensional evaluation. However, intensional

evaluation is quite inefficient, since in the worst case the size of each annotation can

217

(a
)

tu
pl

e
$
S
U
M

π

t 1
4π

1
π

1

t 2
5π

2
π

2

t 3
3π

3
π

3

(b
)

$
S
U
M

π

4
π

1
⊕

5π
2
⊕

3
π

3
1

(π
1
⊕
π

2
⊕
π

3
)

(c
)

St
ep

À
in

(a
)

tu
pl

e
$
S
U
M

π

t 1
4
π

1
⊕

5π
2
⊕

3
π

3
π

1
�
1

(π
1
⊕
π

2
⊕
π

3
)

t 2
4
π

1
⊕

5π
2
⊕

3
π

3
π

2
�
1

(π
1
⊕
π

2
⊕
π

3
)

t 3
4
π

1
⊕

5π
2
⊕

3
π

3
π

3
�
1

(π
1
⊕
π

2
⊕
π

3
)

(d
)

St
ep

Á
in

(a
)

tu
pl

e
π

t 1
π
′ 1

=
1

(4
π

1
⊕

5π
2
⊕

3
π

3
<

13
.3

)
�
π

1
�
1

(π
1
⊕
π

2
⊕
π

3
)

t 2
π
′ 2

=
1

(4
π

1
⊕

5π
2
⊕

3
π

3
<

16
.7

)
�
π

2
�
1

(π
1
⊕
π

2
⊕
π

3
)

t 3
π
′ 3

=
1

(4
π

1
⊕

5
π

2
⊕

3π
3
<

10
)
�
π

3
�
1

(π
1
⊕
π

2
⊕
π

3
)

(e
)

St
ep

Â
in

(a
)

Ty
pe

π

t a
a

π
′ 1
⊕
π
′ 3

t b
b

π
′ 2

(f
)

St
ep

Ã
in

(a
)

π
1

π
2

π
3

pr
ob

.

1
1

1
2
/9

2
1

0
1
/9

2
0

1
1
/9

1
0

2
1
/9

3
0

0
1/

27

0
0

3
1/

27
(g

)

Fi
gu

re
7.

4:
(a

)
Q

ue
ry

pl
an

of
E

xa
m

pl
e

32
,(

b)
in

iti
al

an
no

ta
tio

n
of
R
r
,(

c-
d)

in
te

ns
io

na
le

va
lu

at
io

n
st

ep
s,

an
d

(f
)

tr
ut

h
ta

bl
e

of
π
q
(t
a
)

=
1

218

grow to the same order of magnitude as the database, and computing the distribution

requires enumerating all possible annotation values. Thus, our next section develops

an efficient evaluation technique.

7.4 Extensional Query Evaluation

This section presents an extensional evaluation technique that increases efficiency over

its intensional counterpart by manipulating succinct multinomial representations of the

annotations rather than the annotations themselves,

For simplicity’s sake, we limit discussion to queries with a single (re)sampled re-

lation and without any self-joins of the (re)sampled relation. (Section 7.6 discusses

extensions to general queries.) Next, we introduce our multinomial representation,

and then describe extensional evaluation for queries without and with aggregates.

7.4.1 The Multinomial Representation

This observation prompts our proposed multinomial representation of the annotations:

Observation 1. A bootstrap trial on a relation R of n tuples comprises n i.i.d. ex-

periments. The i-th experiment picks a single tuple at random, hence producing a

probabilistic relation Rr
i . Formally, each Rr

i is annotated by ρi : U → {SN-rv}, such

that ρi(t) = 1 when tuple t is selected and ρi(t) = 0 otherwise. The relation Rr result-

ing from bootstrap is the union of {Rr
i}. One can easily verify that π(t) =

⊕n
i=1 ρi(t).

Based on Observation 1, we define atoms of an annotation π(t) as the set of annota-

tions comprising π(t), which are generated from each experiment, i.e., atom(π(t)) =

{ρi(t) | i = 1, · · · , n}. The atoms hold these properties:

219

• Within an experiment i, ρi(t) and ρi(t′) are disjoint for any two tuples t, t′;

• Across different experiments i and j, ρi(·) and ρj(·) are independent;

• {ρi(t) | i = 1, · · · , n} are i.i.d. S-rvs with the same marginal probability vector

p, where p[0, 1] = [n−1
n
, 1
n
].

These properties allow us to uniquely and succinctly represent π(t) by a pair [n,p],

namely a multinomial representation, reinterpretable as the convolution sum of n i.i.d.

semiring random variables with the probability vector p. The probability distribu-

tion of π(t) can be easily reconstructed from its multinomial representation, using the

probability mass function of the Multinomial distribution M(n,p).

Moreover, when atom(π(t)) satisfies certain properties, ⊕ and � can be directly

computed on its multinomial representation, i.e.,

Proposition 2. Let π1 = [n,p1] and π2 = [n,p2].

• If atom(π1) ∩ atom(π2) = ∅, then π1 ⊕ π2 = [n,p1] p2].

• If atom(π1) ⊆ atom(π2), then π1 � 1(π2) = [n,p1].

Next, we show how our multinomial representation and its properties enable us to

devise the extensional evaluation.

7.4.2 Queries without Aggregates

This section first formally defines the set of queries eligible for efficient evaluation,

then presents our extensional evaluation.

Preliminaries. Let us denote the sampled relation as Rf . To simplify discussion, we

base it on canonical query plans, obtainable by repeating the procedure below on an

arbitrary query plan (using relational algebra’s rewriting rules [GUW09]):

1. Distinguish different occurrences of Rf by renaming them.

2. Push σ below Π and δ, e.g., σc(ΠA(R)) ≡ ΠA(σc(R)).

220

3. Eliminate duplicate δ, e.g., δ(ΠA(δ(R))) ≡ δ(ΠA(R)).

4. Pull σ and Π above ./, i.e., R1 ./ σc(R2) ≡ σc(R1 ./ R2) and R1 ./ ΠA(R2) ≡

Πhead(R1),A(R1 ./ R2).

5. If both subqueries of ./ are deduplicated, pull one δ above ./, i.e. δ(R1) ./

δ(R2) ≡ δ(R1 ./ δ(R2)).

Note that in the canonical form δ is always the last operator of a join subtree. Since

we do not consider self-joins of Rf , w.l.o.g. we use ./ δ instead of ./, e.g., q1./δ(q2)

means q1 joined with the deduplicated q2.

We also define the induced functional dependencies of query q, denoted by Γ(q) as

in [DS07]:

• Any functional dependency of rels(q) is in Γ(q).

• Rf .π → head(Rf) and head(Rf)→ Rf .π are in Γ(q), i.e., each tuple inRf has

a unique annotation.

• For every join predicate Ri.A = Rj.B, both Ri.A → Rj.B and Rj.B → Ri.A

are in Γ(q);

• For every selection Ri.A = constant, ∅ → Ri.A is in Γ(q).

Following the convention from previous work [CWW00], we recursively define the

lineage of πP (t), denoted by L(πP (t)), as

Definition 23 (Lineage). The lineage of πP (t) is defined inductively on a query plan

P :

• If P = σc(P1), then L(πP (t)) = L(πP1(t)).

• If P = ΠA(P1), then L(πP (t)) =
⋃
t′[A]=t L(πP1(t

′)).

• If P = P1 ./ δ(P2), then L(πP (t)) = L(πP1(t)).

• If P = δ(P1), then L(πP (t)) = L(πP1(t)).

• If P is a relation, L(πRf (t)) = {t}, L(πR(t)) = ∅.

221

It is easy to see that for any subplan P , the lineage L(πP (t)) for any tuple t consists

of tuples from the same base relation. We denote the relation as RLP
.

Eligible Plan. Queries can be efficiently computed by the extensional evaluation with

an eligible query plan. Given Γ(q), we define an eligible plan thus.

Definition 24 (Eligible Plan). A canonical plan P is eligible if all its operators are

eligible:

• Operators σ, δ and ./ are always eligible

• Operator ΠA(P1) is eligible, if Γ(P1) implies 〈A,RLP1
.π〉

→ head(P1).

A query’s eligibility can be efficiently checked at compile time. Next, we introduce

the extensional evaluation restricting ourselves to a strict subset of eligible queries (i.e.,

those with simple joins) before generalizing to all eligible queries.

Extensional Evaluation of Queries with Simple Joins. A join P1 ./ δ(P2) is a sim-

ple join if Rf 6∈ rels(P2). Given an eligible plan P where all joins are simple joins

and standalone deduplication is the last operator of P , one can evaluate P via the fol-

lowing extensional evaluation procedure, which directly manipulates the multinomial

representations of the annotations.

Definition 25 (Extensional Evaluation (part 1)).

Extensional evaluation is defined inductively on a query plan P . Let πP1(t) = [n,pt],

then:

• If P = σc(P1), then πP (t) = [n,pt] if c(t) is true, and [n,0] otherwise.

• If P = ΠA(P1), then πP (t) = [n,
⊎
t′[A]=t pt′].

• If P = P1 ./ δ(P2), then πP (t) = [n,pt1] where t1 = t[head(P1)].

• If P = δ(P1), then πP (t) = [1, [pt[0]n, 1− pt[0]n]].

222

To reconstruct qmrg(Dr), we compute the probability distribution of πP (t) = [n,p] by

pπP (t)[k] =
(
n
k

)
p[0]n−kp[1]k.

Intuitively, an eligible plan ensures that the tuple annotations are still disjoint after

a projection. We formalize this intuition by tracking the lineage of tuples.

Lemma 18. For any subplans P1 and P2,

1. ∀t ∈ P1, πP1(t) =
⊕

t∈L(πP1
(t)) πRf (t).

2. ∀t1, t2 ∈ P1, L(πP1(t1)) ∩ L(πP1(t2)) = ∅.

Lemma 18 ensures that the extensional evaluation correctly estimates qmrg(Dr) on

any Dr by following Proposition 2.

Extensional Evaluation of General Queries. The extensional evaluation from Defi-

nition 25 does not apply to eligible queries with general joins. E.g., P1 ./ δ(P2) may

produce different annotations: if πP2(t2) 6= 0, πP1./δ(P2)(t) = πP1(t1), and otherwise

πP1./δ(P2)(t) = 0. To resolve this, we enumerate all possible πP2 values; since for each

πP2 value, P1 ./ δ(P2) is deterministic, we can apply the extensional evaluation from

Definition 25.

To aid the enumeration, we represent π(t) as a set of triplets {(ci, πi,Li)}, where

• ci is a set of conjunctive conditions {cj(πi,j), ∀j} on annotations {πi,j,∀j},

• Li is a set of lineages {L(πi,j),∀j} ∪ {L(πi)}.

A triplet (ci, πi,Li) is interpreted as follows: if all cj(πi,j) ∈ ci are true, π(t) takes

value πi, and the lineages of {πi,j,∀j} and πi are stored in Li. The set {ci,∀i} has two

properties: (1) any ci and cj are disjoint, and (2) {ci,∀i} enumerates all possible condi-

tions on {πi,j,∀j}. Thus, the distribution of π(t) can be reconstructed by Equation 7.1,

which computes a weighted sum of πi’s distributions under all conditions. Since Li

captures the correlation between ci and πi, Equation 7.1 can easily be computed. (For

223

details, see Section 7.12.)

f(π(t)) =
∑
∀i

Pr(ci)f(πi | ci) (7.1)

At query time, we extend the extensional evaluation to manipulate ci, πi, and Li.

When combining two sets of conditions ci and cj , we also modify πi and πj follow-

ing Definition 25 and modify Li and Lj following Definition 23. Below, we show the

extended extensional evaluation. For the sake of simplicity, we only show the manipu-

lation of ci, omitting that of πi and Li. Furthermore, lineage maintenance has been well

addressed in database provenance literature (e.g.,[GA09]). We denote the set {ci,∀i}

of πq(t) by Cq(t). Here, × denotes the set Cartesian product.

Definition 26 (Extensional Evaluation (part 2)).

Extensional evaluation is defined inductively on a query plan P :

• If P = σc(P1), then CP (t) = CP1(t).

• If P = ΠA(P1), then CP (t) = ×t′[A]=tCP1(t
′).

• If P = P1 ./ δ(P2), then CP (t) = CP1(t1)×CP2(t2)×{{πP2(t2) 6= 0}, {πP2(t2) =

0}} where ti = t[head(Pi)].

• If P = δ(P1), then CP (t) = CP1(t)× {{πP1(t) 6= 0},

{πP1(t) = 0}}.

This extensional evaluation works for any eligible query q. For certain queries, one

can theoretically create a worst-case database that makes |Cq(t)| grow exponentially

in the size of the database. Next, we identify situations where |Cq(t)| = O(1), i.e.,

when DBPTIME evaluation is guaranteed.10

10 However, some queries may still be evaluated efficiently on real-life databases despite being
DBPTIME-ineligible, e.g., queries Q17, Q18, Q20, Q22, V3, and V4 in Section 7.7.

224

Definition 27 (DBPTIME-Eligible Projection).

ΠA(P1) is DBPTIME-eligible, if for every join P2 ./ δ(P3) or δ(P3) in P1, Γ(P1)

implies A→ head(P3).

If ΠA(P1) is DBPTIME-eligible, then CπA(P1)(t) = CP1(t
′) for any t′[A] = t,

giving us the following lemma:

Lemma 19. If every ΠA in an eligible plan P is DBPTIME-eligible, then |CP (t)| =

O(1).

We can optimize the extensional evaluation for eligible queries (both DBPTIME-

eligible and DBPTIME-ineligible queries) by detecting containment joins. A join

P1 ./ δ(P2) is a containment join if (1) Γ(P1 ./ δ(P2)) implies head(P1)→ head(P2)

and (2) Q = δ(Πhead(P1)(P1 ./ δ(P2))) contains δ(P1), i.e., δ(P1) ⊆ Q for any input

database. Whether a join is a containment join can be decided in polynomial time for

a large class of conjunctive queries [KV98]. A containment join ensures that joined

tuples’ annotations satisfy entailment, i.e.,

Lemma 20. For any tuple t generated by a containment join P1 ./ δ(P2), L(πP1(t1)) ⊆

L(πP2(t2)) where ti = t[head(Pi)].

Therefore, we have the following optimization:

• If P = P1 ./ δ(P2) is a containment join, then CP (t) = CP1(t1) where ti =

t[head(Pi)].

Note that the size of CP (t) is reduced by pruning the set CP2(t2) × {{πP2(t2) 6=

0}, {πP2(t2) = 0}}. Furthermore, the corresponding lineage can be dropped from

the annotation. Specifically, if every join in plan P either satisfies Definition 27 or is

a containment join, P can be evaluated in DBPTIME. The following is an example of

the extensional evaluation for general queries.

225

Example 34. Consider the query in Example 32 and its evaluation steps in Figures

7.4(c) and 7.4(d). Let πi = [3,pi] for i = 1, 2, 3, where pi[0, 1] = [2/3, 1/3].

• π1 ⊕ π2 ⊕ π3 = [3,
⊎3
i=1 pi] = [3,p] where p[0, 1] = [0, 1].

• πi � 1(π1 ⊕ π2 ⊕ π3) = [3,pi], for i = 1, 2, 3 as Step Á is a containment join.

7.4.3 Queries with Aggregates

This section extends our extensional evaluation to queries with aggregates. We first

consider aggregates in the return clause of a query, then aggregates in predicates.

Handling Aggregates in Return Clauses. Similar to Section 7.4.1, we can represent

the annotation$ of aggregate γA,α(B) in a multinomial representation, such that Propo-

sition 2 still applies to $. Taking γA,SUM(B)(P) as an example, let πp(t) = [n,p]. We

can represent the annotation $(t) as [n,p′] where p′[0] = p[0] and p′[t[B]] = p[1].

To check the eligibility of plan P of a query with aggregates, one can simply sub-

stitute every γA,α(B) in P with δ(ΠA), and check modified plan P ∗’s eligibility. P is

eligible if and only if P ∗ is eligible. Extensional evaluation of γ is very similar to Π

(as in Definition 25 and 26), and is omitted. (When maintaining the multinomial repre-

sentation [n,p] of$, p could grow to the database size. Space-efficient approximation

is introduced in Section 7.5.)

Handling Aggregates in Predicates. In operator σc, if the predicate c contains aggre-

gate γ(q) and Rf ∈ rel(q) (e.g., see step Â in Figure 7.4(a)), then c(t) is uncertain

since γ is random. Thus, we must enumerate all possible value ranges of γ. We modify

Definition 26 thus:

Definition 28 (Extensional Evaluation (part 3)).

We extend Definition 26 by modifying the rule of σ as follows:

• If P = σc(P1), then CP (t) = CP1(t)× enumc(t)

226

where enumc(t) enumerates all possible valuations of predicate c, that is, if c is de-

terministic, enumc(t) = {T} where T is the event true; otherwise, enumc(t) =

{{c(t)}, {¬c(t)}}.

Similar to Section 7.4.2, the size of Cq(t) may grow exponentially with the size

of the database due to projection and aggregation. Next, we propose an optimization

technique to prune conditions with 0 probability, greatly reducing Cq(t)’s size. Then,

we again identify cases where DBPTIME evaluation is guaranteed.

Observation 2. Consider two sets of conditions {γ < 4, γ ≥ 4} and {γ < 3, γ ≥ 3}.

A Cartesian product of these two sets produces 4 conditions. However, clearly γ ≥

4∧ γ < 3 is false. In fact, 3 and 4 partition the domain of γ into three parts: (−∞, 3),

[3, 4) and [4,∞). Now a Cartesian product of these two sets produces exactly 3 valid

conditions corresponding to the three partitions, i.e., γ ∈ (−∞, 3), γ ∈ [3, 4) and

γ ∈ [4,∞).

We can generalize this observation into the following pruning rule, reducing the

size of the Cartesian product of m condition-sets from O(2m) to O(m).

Proposition 3. Let c0 = −∞ < c1 < · · · < cm < cm+1 = ∞ and Ci = {{γ <

ci}, {γ ≥ ci}}, i = 1, · · · ,m. Then,

×mi=1Ci = {{γ ∈ (cj , cj+1]} | j = 0, · · · ,m}

Next, we identify situations with efficient condition enumeration.

Lemma 21. After substituting every γA,α(B) with δ(ΠA) in an eligible plan P , if all the

Π are DBPTIME-eligible, then |CP (t)| = O(n|P |), where n is the size of the database.

227

7.4.4 Correctness and Complexity

Let qe(Dr) be the result of extensional evaluation of query q on Dr. The next theorem

ensures that extensional evaluation gives (1) the correct qmrg(Dr) for eligible queries

on any Dr, and (2) an efficient evaluation time for DBPTIME-eligible queries.

Theorem 22. For any eligible query q and any PMDB Dr, qe(Dr) ≡ qmrg(Dr). For

any DBPTIME-eligible query q, qe(Dr) can be computed in DBPTIME.

The extensional evaluation efficiently computes the annotations in multinomial

representation. Nevertheless, reconstructing the exact distributions of aggregates from

their annotations can be computationally expensive. For example, the multinomial

representation of SUM could be of size O(n) where n is the size of the database. This

requires enumerating O(2n) possible cases to compute the distribution of SUM. How-

ever, many real-world users willingly trade accuracy for efficiency. Thus, Section 7.5

introduces a fast approximation technique for reconstructing the distribution from the

annotations.

7.5 Efficient Approximation

We now describe our solution to the problem introduced in Section 7.4.4. By ap-

proximating multinomial representations as asymptotically Gaussian distributions, we

efficiently reconstruct the required distributions from extensional evaluation outputs.

Further, we approximate the multinomial representation by maintaining a few mo-

ments (i.e., mean, variance, and covariance) instead of the probability vector itself,

which reduces the space overhead.

Given an extended multinomial representation (c, $∗,L), Theorem 23 states that

we can model {$∗} ∪ {$j ∈ c,∀j} as an asymptotically multivariate normal dis-

228

tribution. Here, we slightly abuse the notation to refer to a random variable by its

probability vector.

Theorem 23. Let $i, i = 1, · · · , k be k semiring random variables, whose multino-

mial representations are [n,pi], respectively. When n→∞, ~$ = [$1, · · · , $k] jointly

follows asymptotically a Gaussian distribution:

~$ ∼ N (n~µ, nΣ)

where ~µi = µpi
is the mean of pi, Σi,i = σ2

pi
is the variance of pi, and Σi,j = σpi,pj

is the covariance of pi,pj . Furthermore, applying any differentiable function ψ on ~$

still yields an asymptotic Gaussian distribution:

ψ(~$) ∼ N
(
ψ(n~µ), n∇ψ(n~µ)TΣ∇ψ(n~µ)

)
where ∇ψ is the gradient of ψ.

Theorem 23 follows straightforwardly the Central Limit Theorem and Cramér’s

Theorem [Fer96]. Thus we omit the proofs. This theorem provides accurate approxi-

mation whenever the size n of the fact relation is sufficiently large; this is typically the

case in large-scale real-life applications. Also, various rules of thumb [BHH05] can

be used to check the quality of approximation. Next, we explain how to compute the

distribution of AVG, and the conditional probability/distributions in Equation 7.1.

Computing AVG. AVG can be expressed as SUM/COUNT. Thus, to compute γA,AVG(B),

we rewrite it as two aggregates γA,SUM(B) and γA,COUNT(B), and evaluate them instead

of the original AVG. Let $ be the AVG, and $1, $2 be the corresponding SUM and

COUNT. We have $ = ψ($1, $2) where ψ(x, y) = x/y, for which we can directly

apply Theorem 23 to compute the distribution.

Computing Conditions. As discussed in Section 7.4.3, there are two types of condi-

tions: (1) comparing an aggregate with a constant, and (2) comparing two aggregates.

As discussed in Section 7.1.2, we focus on comparison operators {<,>,≤,≥}.

229

W.l.o.g., consider extensional evaluation output (c, $∗,L) where conditions c =

{$i < 0 | i = 1, · · · ,m} ∪ {$′i < $′′i | i = 1, · · · , n}. Let ~$, ~$′ and ~$′′ denote the

vectors [$i], [$′i] and [$′′i] respectively. We have the following corollary:

Corollary 24. Let [$∗, ~$, ~$′, ~$′′] ∼ N (nµ, nΣ). Then

[$∗, ~$, ~$′ − ~$′′] ∼ N (nAµ, nATΣA) = f

where A = [1,01(m+2n);0m1, Im,0m(2n);0n(m+1), In,−In]. Let ~l = − ~∞ and ~u =

[∞;~0]. Thus, (1) f(π | c) is the marginal distribution of $ when f is truncated by the

range [~l, ~u] and (2) Pr(c) is the cumulative probability in the range [~l, ~u].

Computing the truncated probability/distribution in Corollary 24 is well-studied in

statistics. Efficient solutions can be found in [WM10].

Moreover, Corollary 24 gives us a pruning method for further reducingthe number

of conditions we need to enumerate, as in Corollary 25, which we can use to quickly

prune conditions with extremely low probability.

Corollary 25. Let c be a set of conditions. Pr(c) is computed by the cumulative prob-

ability of N (n~µ, nΣ) in the range [~l, ~u],

Pr(c) ≤ Φ(
~ui − n~µi√
nΣi,i

)− Φ(
~li − n~µi√
nΣi,i

), ∀i

Sketching Multinomial Representations. As discussed above, our approximation

technique only requires mean, variance, and covariance to reconstruct the distribu-

tions. We can use these moments to sketch the multinomial representations without

maintaining the actual probability vector; this greatly reduces the storage overhead of

our algorithms. During extensional evaluation, we directly maintain these moments

using the following equations.

µp1]p2 = µp1 + µp2 , σ
2
p1]p2

= σ2
p1

+ σ2
p2
− 2µp1µp2

σp1]p′1,p2
= σp1,p2 + σp′1,p2

230

Note that, in the special case of simple group-by aggregates, our extensional eval-

uation becomes equivalent to previous analytical approaches. This is because in these

cases extensional evaluation using the approximate multinomial representation simply

consists of summing up the annotations of the corresponding tuples, thereby comput-

ing the basic statistics in the same way as previous analytical approaches. However, as

we show in Table 7.1, our technique can handle a much larger class of queries.

7.6 Extensions of ABM

In this section, we discuss several extensions of ABM.

General Aggregates. Many common aggregates can be written as functions of simple

aggregates. E.g., VAR and STDEV can be written as functions of 1st and 2nd mo-

ments. Other aggregates such as MEDIAN, QUANTILE can also be computed using

our annotation by a different CLT approximation [SB69].

Multiple Sampled Relations. Uniform sampling on multiple relations participating

in a join yields non-uniform and undesirably sparse results [AGP99a]. Join syn-

opses [AGP99a] are usually used to solve this problem, where the basic idea is to

pre-compute the join (including self-joins), and uniformly sample from the join re-

sults. ABM can easily support join synopses by simply treating the join synopsis as

the input sampled relation.

Using Stratified Samples. Although uniform samples are widely used in practice,

in some cases stratified samples enable better approximations (e.g., for skewed data)

where each stratum is itself a uniform sample, but with a different sampling rate than

other strata [AMP13, CDN07]. Bootstrap can also work on stratified samples, by boot-

strapping each stratum and combining the resamples from all strata as the simulated

231

dataset [ET93].

ABM can be easily extended to support stratified samples. Instead of using a single

pair [n,p] to represent each annotation, we extend the multinomial representation to

a set of pairs {[ni,pi] | i = 1, · · · , h}, one for each stratum. We can manipulate this

generalized multinomial representation following a similar procedure, as described in

Section 7.4. ABM can even handle the case where some strata are sampled while other

small strata are not. In Section 7.7.4, we study ABM’s accuracy on stratified samples.

7.7 Experiments

To evaluate the effectiveness and efficiency of ABM, we conduct experiments on both

synthetic and real-world workloads, and compare the results against both sequential

and parallel/distributed implementations of bootstrap.

We use MonetDB (v11.15.19) [mon] for implementing both bootstrap and ABM.

We do not modify the internals of the relational engine, but rather implement a middle

layer in Java to re-write the SQL queries to support our extensional evaluation. These

modified queries are then executed by the relational engine. The returned results are

fed into a post-processing module (implemented in R [r] to compute the probabili-

ties/distributions. All pre- and post-processing times are included in ABM’s execution

times.

7.7.1 Experiment Setup

Parallel/distributed experiments are performed on a cluster of 15 machines, each with

two 2.20 GHz Intel Xeon E5-2430 CPU cores and 96GB RAM. Sequential experi-

ments use only one of these machines. We report experiments on three workloads: (1)

TPC-H benchmark [tpc], (2) skewed TPC-H benchmark [RPJ13] and (3) a real-world

232

dataset and query log from the biggest customers of Vertica Inc. [ver] (referred to as

Vertica).

TPC-H. We use a 100 GB benchmark (scale factor of 100). We use 17 queries out

of the 22 TPC-H queries, namely: Q1, Q3, Q5-Q12, Q14, Q16-Q20, and Q22.11 The

other queries contain aggregates MIN/MAX, or otherwise do not satisfy our eligible

query conditions. We (re)sample the largest relation lineitem. For queries without

lineitem, we (re)sample the second largest relations, i.e., customer and partsupp.

Skewed TPC-H. We generate a 1 GB micro-benchmark (scale factor 1) using the SSB

benchmark [RPJ13] (a star schema variation of TPC-H). All the numeric columns

follow Zeta distribution with parameter s ∈ [2.1, 2.3]. We use 13 out of the above

17 TPC-H queries after modifying them according to the SSB schema; we leave out

Q11, Q16, Q20 and Q22, which are inconsistent with the SSB schema. Again, we

(re)sample the largest relation lineorder.

Vertica. The Vertica benchmark consists of 52 GB and 310 relations. We have chosen

the 6 most complex queries (denoted as V1-V6) from the query logs, which have sim-

ilar query structures as TPC-H queries Q1, Q11, Q18, Q22. Again, for each query, we

(re)sample the largest relation. All (re)sampled relations have 9.2 million tuples each,

and are 37.8 GB in total.

7.7.2 Error Quantification Accuracy

In this section, we evaluate the accuracy of our ABM. For each workload and each

query q, we conduct three sets of experiments:

1. Ground Truth (GT). Similar to [KTA13], we take an x% (x = 1, 2, 5, 10) ran-

dom sample from a single relation, leave the other relations intact, and compute q on

11As some of queries produce undesirably sparse results under sampling, we keep the query structures
but modify the very selective WHERE predicates and/or GROUP BY clauses.

233

1
0

- 5

1
0

- 4

1
0

- 3

1
0

- 2

1
0

- 1

1
0

0

1
0

1

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
4

Q
1

6
Q

1
7

Q
1
8

Q
1
9

Q
2

0
Q

2
2

V
1

V
2

V
3

V
4

V
5

V
6

Avg/Max Relative Error(%)

Q
N

5
-A

B
M

-B
S

Q
N

2
5

-A
B

M
-B

S
Q

N
5

0
-A

B
M

-B
S

Q
N

7
5

-A
B

M
-B

S
Q

N
9
5

-A
B

M
-B

S
E

P
-A

B
M

-B
S

(a
)

 1
.5 2

 2
.5 3

 3
.5 4

 4
.5 5

 5
.5 6

 6
.5

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
14

Q
16

Q
17

Q
18

Q
19

Q
22

V
1

V
2

V
3

V
4

KS-distance (%)

(b
)

1
0

- 4

1
0

- 3

1
0

- 2

1
0

- 1

1
0

0

1
0

1

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
14

Q
16

Q
17

Q
18

Q
19

Q
22

V
1

V
2

V
3

V
4

Avg/Max Relative Error(%)

M
E

A
N

-A
B

M
-B

S
S

D
-A

B
M

-B
S

C
I-

A
B

M
-B

S

(c
)

1
0

- 2

1
0

- 1

1
0

0

1
0

1

1
0

2

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
4

Q
1

6
Q

1
7

Q
1

8
Q

1
9

Q
2

2
V

1
V

2
V

3
V

4

Avg/Max Relative Error(%)

M
E

A
N

-A
B

M
-G

T
M

E
A

N
-B

S
-G

T
S

D
-A

B
M

-G
T

S
D

-B
S

-G
T

C
I-

A
B

M
-G

T
C

I-
B

S
-G

T

(d
)

Fi
gu

re
7.

5:
C

om
pa

ri
ng

th
e

di
st

ri
bu

tio
ns

gi
ve

n
by

A
B

M
an

d
bo

ot
st

ra
p

on
(a

)
Q

ua
nt

ile
s

&
ex

is
te

nc
e

pr
ob

ab
ili

tie
s,

(b
)

K
S

di
st

an
ce

an
d

(c
)U

se
r-

de
fin

ed
qu

al
ity

m
ea

su
re

s;
(d

)C
om

pa
ri

ng
us

er
-d

efi
ne

d
qu

al
ity

m
ea

su
re

s
gi

ve
n

by
A

B
M

an
d

bo
ot

st
ra

p
to

gr
ou

nd
tr

ut
h

234

them. We repeat this procedure n times to collect the empirical distribution of all the

n results.

2. Bootstrap (BS). We take an x% random sample from a single relation, we bootstrap

this sample, and compute q on each resample and the other intact relations. We repeat

the resampling process n times to collect the empirical distribution of all the n results.

3. ABM. We take an x% random sample from a single relation, and apply extensional

evaluation to compute q on the sample and the other intact relations. For comparison

purposes, we use the same random sample as bootstrap.

To compare the predicted distribution of query results given by ABM with the em-

pirical distributions given by the ground truth and bootstrap, we measure various distri-

bution statistics, including mean (MEAN), standard deviation (SD), quantiles (QN), 5%-

95% confidence interval (CI), and existence probability (EP) (the probability of each

tuple appearing in the query’s output). For ground truth and bootstrap, we compute

these statistics based on the empirical distribution of the collected results, whereas for

ABM, we compute these statistics directly on the estimated distribution of the query

results. We report the relative error of these statistics given by different methods. In

the figures, we use the notation S-A-B to denote the relative error of the statistic S

given by method A compared to the same statistic given by method B. For example, the

relative error of our mean prediction µABM to the empirical mean produced by Ground

Truth µGT is defined as follows MEAN-ABM-GT = |µABM−µGT
µGT

|. Note that some test

queries (e.g., Q20 in TPC-H, V5 and V6 in Vertica) do not return aggregate values, for

which we only report the existence probability.

When a query returns more than one column, we compute both the average and

maximum relative error of all the columns in the query. Both errors are shown in

our figures, where the histograms represent average error, and the T-shaped error bars

represent the maximum error.

235

1. Predicting the Empirical Distribution of Bootstrap. In the first set of experi-

ments, we study whether the approximate distribution produced by ABM is an accu-

rate prediction of the empirical distribution given by bootstrap. For this purpose, we

compare the two distributions in terms of: (1) EP-ABM-BS and QNk-ABM-BS for

(k = 5% to 95%) as shown in Figure 7.5(a), and (2) the Kolmogorov-Smirnov (KS)

distribution distance as shown in Figure 7.5(b).12

We perform the experiments on both TPC-H and Vertica benchmarks with different

sample rates (x = 1, 2, 5, 10) and n = 1000 bootstrap trials. Due to space limitations,

we only report the results on the smallest sample size x=1%. The results on larger

sample sizes have better accuracy, and thus are omitted. ABM provides highly accu-

rate predictions of bootstrap across all different metrics and queries: On all quantiles,

ABM’s largest average relative error is less than 2%, while most of the average rela-

tive errors are even below 0.1%. Also, the maximum relative error is always below 5%

across all quantiles. For most queries, both distributions predict the same existence

probabilities, i.e., EP-ABM-BS is 0. The average KS distance is about 5%, which is

relatively small for 1% sampling rate. In summary, these results show that ABM pro-

duces highly accurate predictions of the empirical distribution of bootstrap.

2. Predicting User-defined Quality Measures. In this set of experiments, we study

the accuracy of various user-defined quality measures predicted by ABM. We take

1% samples and conduct 1000 sampling/bootstrap trials. The comparison results be-

tween ABM and bootstrap on TPC-H and Vertica workloads are reported in Fig-

ures 7.5(c). Again, ABM provides highly accurate predictions of bootstrap: On all

statistics, ABM’s maximum relative error is less than 10%, while most of the relative

errors are even below 2%. We also report the results of comparing both ABM and

bootstrap against the ground truth in Figure 7.5(d) on TPC-H and Vertica workloads.

12http://en.wikipedia.org/wiki/Kolmogorov-Smirnov test

236

More interestingly, ABM can also serve as an accurate predication of the ground truth.

As shown, comparing to the ground truth, most of ABM’s average relative errors are

below 5%. Noticeably, ABM is very consistent with bootstrap, i.e., when bootstrap ap-

proximates the ground truth well, ABM makes very accurate predictions; when boot-

strap has a relatively large error, so does ABM. This evidences that ABM is equivalent

to bootstrap.

3. Evaluating on skewed TPC-H benchmark. To study how ABM performs when

encounters skewed data, we conduct a micro-benchmark study using the skewed TPC-

H workload. We directly run 1000 bootstrap trials on the whole dataset and compare

the user-defined quality measures predicted by ABM and bootstrap. The results are

shown in Figure 7.6(a). Over all queries and all the compared statistics, ABM’s max-

imum relative error is less than 10%, while most of the relative errors are even below

2%, which shows that the data skewness does not impact the accuracy of ABM much.

4. Varying Number of Bootstrap Trials & Sample Size. We also study the effect of

the sample size and the number of bootstrap trials on the prediction accuracy of ABM.

We compare ABM with bootstrap on both the distance measures used in Experiment 1

and the user-defined measures used in Experiment 2. Due to space limitations, we only

report some representative measures on TPC-H and take the average and maximum of

their relative errors across all queries. The other measures and the results on Vertica

workload are similar, and are thus omitted.

To study the effect of the number of bootstrap trials, we fix the sampling rate to

1%, but vary the number of bootstrap trails (n = 100 to 1000). For each n, we compute

the relative error of the statistics given by ABM against those given by bootstrap. As

shown in Figure 7.6(b), the relative error between ABM and bootstrap decreases as the

number of trials increases, which clearly shows that bootstrap suffers from accuracy

loss with a finite number of trials, whereas ABM’s analytical modeling of all possible

237

worlds overcomes this limitation. Moreover, ABM saves the user from error-prone

parameter tuning required by bootstrap.

To study the effect of sample size, we conduct the experiments using 1000 boot-

strap trials, but varying the sampling rates (x = 1, 2, 5, 10). As shown in Figure 7.6(c),

ABM performs stably for CI, SD, and KS, while for more linear statistics (i.e., mean

and quantiles) its error further decreases with higher sampling rates. Nonetheless, the

average relative error of all statistics consistently stays below 3%, even for the smallest

sample size (x = 1%).

7.7.3 Error Quantification Performance

This section demonstrates the superior speed of ABM by comparing it against both

sequential and parallel/distributed state-of-the-art bootstrap implementations, as well

as CLT-based analytical approach. We show that ABM is 5 orders of magnitude faster

than the naı̈ve bootstrap and 2-4 orders of magnitude faster than highly optimized

variants of bootstrap.

5. Comparing Time Performance. In the first experiment, we compare ABM against

three algorithms: (1) naı̈ve bootstrap, (2) On-Demand Materialization(ODM) [PJ05a],

and (3) Bag of Little Bootstrap (BLB) [KTS12]. To the best of our knowledge, ODM

is the best sequential bootstrap algorithm reported. However, it is limited to simple

group-by aggregate queries. Bag of Little Bootstrap (BLB) is a bootstrap variant op-

timized for distributed and parallel platforms. We deploy the sequential algorithms

(naı̈ve bootstrap and ODM) and ABM on a single machine, while deploying the paral-

lel/distributed algorithm (BLB) on 10 machines. We compare ABM with all the three

counterparts on TPC-H (x = 10%). All the counterpart bootstrap algorithms use 1000

trials. Figure 7.6(d) reports the running time. ABM is 5 orders of magnitude faster

than the naı̈ve bootstrap, and more than 2-4 orders of magnitude faster than ODM.

238

1
0

- 3

1
0

- 2

1
0

- 1

1
0

0

1
0

1

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
2

Q
1
4

Q
1
7

Q
1
8

Q
1
9

Avg/Max Relative Error(%)
M

E
A

N
-A

B
M

-B
S

S
D

-A
B

M
-B

S
C

I-
A

B
M

-B
S

(a
)

1
0

- 1

1
0

0

1
0

1

1
0

2

M
EA

N

SD

C
I

Q
N

25

Q
N

75

K
S

Avg/Max Relative Error(%)

#
 t

ri
al

s
=

 1
0
0

2
0
0

5
0
0

1
0
0
0

(b
)

1
0

- 2

1
0

- 1

1
0

0

1
0

1

1
0

2

M
EA

N

SD

C
I

Q
N

25

Q
N

75

K
S

Avg/Max Relative Error(%)

S
am

p
li

n
g
 R

at
e

=
 1

%
2
%

5
%

1
0
%

(c
)

1
0

- 1

1
0

0

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

Q
1

Q
3

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1
0

Q
1
1

Q
1
2

Q
1
4

Q
1
6

Q
1
7

Q
1
8

Q
1
9

Q
2
0

Q
2
2

Execution Time(S)

B
o
o
ts

tr
ap

B
L

B
-1

0
O

D
M

A
B

M
C

L
T

S
am

p
le

E
x
ac

t

(d
)

1
0

1

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

1
2

5
1
0

Execution Time(S)

S
am

p
le

 R
at

e(
%

)

B
o
o
ts

tr
ap

B
L

B
-2

B
L

B
-5

B
L

B
-1

0
B

L
B

-1
5

O
D

M
A

B
M

(e
)

Fi
gu

re
7.

6:
(a

)
A

B
M

vs
.

bo
ot

st
ra

p
on

us
er

-d
efi

ne
d

qu
al

ity
m

ea
su

re
s

fo
r

Sk
ew

ed
T

PC
-H

;
ef

fe
ct

of
va

ry
in

g
(b

)
nu

m
be

r
of

bo
ot

st
ra

p
tr

ai
ls

,a
nd

(c
)s

am
pl

in
g

ra
te

;c
om

pa
ri

ng
tim

e
pe

rf
or

m
an

ce
of

A
B

M
&

va
ri

ou
s

te
ch

ni
qu

es
(d

)u
nd

er
10

%
sa

m
pl

in
g

ra
te

,(
e)

un
de

rd
iff

er
en

ts
am

pl
in

g
ra

te
s

239

10
-
5

10
-
4

10
-
3

10
-
2

10
-
1

10
0

10
1

10
2

V1 V2 V3 V4 V5 V6

A
v

g
/M

ax
 R

el
at

iv
e

E
rr

o
r(

%
)

MEAN-ABM-BS
SD-ABM-BS

CI-ABM-BS
EP-ABM-BS

Figure 7.7: ABM vs. bootstrap under stratified sampling

Compared with BLB, ABM is 2-4 orders of magnitude faster although BLB is using

10 times more computation resources.

We also compare ABM with (1) CLT-based analytical approach (which is only

applicable to simple group-by aggregates), (2) executing the approximate query on the

sample (Sample), and (3) executing the exact query on the original DB (Exact). This

comparison clearly demonstrates that ABM achieves almost identical running time as

CLT and Sample, incurring little overhead. Since ABM is computed on 10% sample,

ABM achieves 10X speed up on almost every query compared with Exact.

6. Varying the Sample Size. Furthermore, as shown in Figure 7.6(e), the execution

time of naı̈ve bootstrap and ODM increases with the sample size. On the contrary,

our ABM does not vary much in terms of execution time as the sample size increases,

since a large portion of ABM’s time is spent on query evaluation, which can be highly

optimized by modern database engines.

7.7.4 Using Stratified Samples

We study the accuracy of ABM when applied to stratified samples using the Vertica

dataset. We apply different stratification on the 4 relations used in the experiments,

consisting of 74 and up to 360 strata. The dataset is skewed such that the smallest

stratum contains 1/100000 of the corresponding relation, while the largest stratum

contains 63%. We apply the same stratification configuration described in [AMP13].

240

Figure 7.8: ABS Architecture

In particular, we take a stratified sample sized at 1% of the original relation equally

from each stratum, while the overly small strata are not sampled. We report the relative

error of the predictions given by ABM and bootstrap in Figure 7.7. As shown, all

relative errors are below 5%, which evidences that ABM can be extended to support

stratified sampling with high accuracy.

7.8 The ABS System

We implemented the analytical bootstrap in a prototype system — Analytical Boot-

strap System (ABS). Figure 7.8 shows the high-level architecture of the ABS system,

which can be divided into two main components: (1) Query Translation Engine: trans-

parently compiling, checking and rewriting the query to support error estimation. (2)

DB Execution Engine: evaluating the query augmented with error estimation opera-

tions, and delivering the accuracy measures in user-specified metrics. The two compo-

nents are decoupled by the rewritten query plans:

Query Translation Engine Taking a SQL query, the compiler generates a query plan

241

expressed in relational algebra. Then, the compiler passes the execution plan along

with the basic settings of the input database to the eligibility checking module. Based

on the eligibility rules defined in Section 7.4, the eligibility checking module verifies

if the input query plan is suitable to perform analytical bootstrap.

If an eligible plan is found, the compiler passes the plan to the rewriter. The rewriter

takes into consideration the user-specified quality measures, and rewrites the plan into

a new query plan with annotation enhanced operations in order to support error esti-

mation, i.e., with additional annotations, and functions that propagate the annotations

according to the extensional evaluation. The rewritten query plan preserves the result

of the original query, and adds the desired error measures specified by the user.

DB Execution Engine The rewritten query plan is then submitted to the execution

engine. Through user-defined type and user-defined aggregates/functions, the exten-

sional evaluation of the ABS sytstem can be easily integrated into common database

engines as an extension module (ABS extension as shown in Figure 7.8). Specifically,

the ABS system expresses the annotations in the form of user-defined types, and the

convolution operations of the annotations as user-defined aggregates/functions. Cur-

rently, we implement the ABS system on top of Hive [hiv], an open source distributed

data warehouse that supports efficient query evaluation on massive data sets. Further-

more, since our implementation is built as an extension module of Hive, it is easy to

deploy ABS on other query engines (e.g., Shark [sha]).

7.9 Related Work

There has been a large body of research on using sampling to provide quick answers to

database queries, on database systems [AMP13, CCM00, CDN07, HHW97a, HSS09,

JAP07, JJ09, PBJ11a, WOT10], and data stream systems [BDM04, MZ10]. Approx-

242

imate aggregate processing has been the focus of many of these works, which study

randomized joins [JAP07], optimal sample construction [AMP13, CDN07], sample

reusing [WOT10], and sampling plan in a stream setting [BDM04, MZ10]. Most

of them use statistical inequalities and the central limit theorem to model the confi-

dence interval or variance of the approximate aggregate answers [AMP13, CDN07,

HHW97a, HSS09, JAP07, WOT10]. Recently, Pansare et al. [PBJ11a] develop a

very sophisticated Bayesian framework to infer the confidence bounds of approximate

aggregate answers. However, this approach is limited to simple group-by aggregate

queries and does not provide a systematic way of quantifying approximation quality.

Many other works have focused on specific types of queries. For example, Charikar

et al. [CCM00] study distinct value estimation from a sample; Joshi and Jermaine [JJ09]

propose an EM algorithm to quantify aggregate queries with subset testing.

The bootstrap has become increasingly popular in statistics during the last two

decades. Various theoretical [BF81, ET93, VW00] and experimental works [AMK14,

KTA13, LZZ12, PJ05a] have proven its effectiveness as a powerful quality assessment

tool. Recent works [LZZ12, PJ05a] have used bootstrap in a database setting, in order

to quantify the quality of approximate query answers. Nevertheless, all these works

focus on improving the Monte-Carlo process of the bootstrap. Thus, Pol et al. [PJ05a]

focus on efficiently generating bootstrap samples in a relational database setting, while

Laptev et al. [LZZ12] target MapReduce platforms and study how to overlap compu-

tation across different bootstrap trials or bootstrap samples. A diagnostic procedure

is proposed in [AMK14, KTA13] to determine when bootstrap’s error estimation is

reliable. This procedure applies bootstrap to multiple sample sizes. Since ABM is

equivalent to bootstrap, it can be seamlessly used in this diagnostic procedure, as long

as the input query is supported by ABM (e.g., no UDAFs).

Another line of related work is approximate query processing in probabilistic databases.

243

Much existing work in this area [AJK08, DS07, RS09, SDG10, WMG08] uses possi-

ble world semantics to model uncertain data and its query evaluation. Tuples in a

probabilistic database have binary uncertainty, i.e., they either exist or not with a cer-

tain probability. Specifically, [DS07, RS09] use semirings for modeling and querying

probabilistic databases, focusing on conjunctive queries with HAVING clauses. On the

contrary, we focus on the bootstrap process and model resampled data, using a possible

multiset world semantics where database tuples have uncertain multiplicities. Further-

more, bootstrap is fundamentally different from probabilistic databases, since tuples in

a resampled relation are always correlated, whereas many probabilistic databases as-

sume that tuples are independent [AJK08, DS07, RS09, SDG10], or propose new query

evaluation methods to handle particular correlations. For instance, [TDS13, TPD12]

propose Gaussian models to process continuous uncertainty data. Our work is instead

based on the bootstrap, which is naturally characterized by discrete distributions, rather

than the continuous distributions required by previous techniques.

7.10 Summary of ABM

In this chapter, we developed a probabilistic model for the statistical bootstrap process

and showed how it can be used for automatically deriving error estimates for com-

plex database queries. First, we provided a rigorous semantics and a unified analytical

model for bootstrap-based error quantification; then we developed an efficient query

evaluation technique for a general class of analytical SQL queries. Evaluation using

the new method is 2–4 orders of magnitude faster than the state-of-the-art bootstrap im-

plementations. Extensive experiments on a variety of synthetic and real-world datasets

and queries confirm the effectiveness and superior performance of our approach. We

finally developed an Analytical Bootstrap System (ABS) for parallel and distributed

computing platforms. ABS is applicable to most relational database queries and deliv-

244

ers very accurate estimates at speeds that outperforms the traditional bootstrap method

by orders of magnitude.

7.11 Correctness of Intensional & Extensional Evaluation

7.11.1 Background

Proof of Proposition 1. 1◦. Consider two S-rvs r1 and r2, where r1 and r2 are disjoint.

• For s ∈ S, s 6= 0, as Pr(r1 6= 0 ∧ r2 6= 0) = 0, then

Pr(r1 ⊕ r2 = s) =
∑
∀x,y∈S,
x+y=s

Pr(r1 = x ∧ r2 = y)

= Pr(r1 = 0 ∧ r2 = s) + Pr(r1 = s ∧ r2 = 0)

= Pr(r2 = s) + Pr(r1 = s)

• For s ∈ S, s = 0, then

Pr(r1 ⊕ r2 = 0) = 1−
∑
s 6=0

Pr(r1 ⊕ r2 = s)

= 1−
∑
s 6=0

Pr(r1 = s)−
∑
s 6=0

Pr(r2 = s)

= Pr(r1 = 0) + Pr(r2 = 0)− 1

2◦. Consider two S-rvs r1 and r2, where r1 entails r2 where r2 can only take value

0 or 1.

• For s ∈ S, s 6= 0, then

Pr(r1 � r2 = s) =
∑
∀x,y∈S,
x·y=s

Pr(r1 = x ∧ r2 = y) = Pr(r1 = s ∧ r2 = 1) = Pr(r1 = s)

• For s ∈ S, s = 0, then

Pr(r1 � r2 = 0) = 1−
∑
s 6=0

Pr(r1 � r2 = s) = 1−
∑
s 6=0

Pr(r1 = s) = Pr(r1 = 0)

245

7.11.2 Semantics & Query Evaluation

Proof of Theorem 17. Given a world W (i.e., a deterministic multiset database W).

Let pmw(qi(Dr))[W] represent the possibility given by the intensional semantics, and

qpmw(Dr)[W] represent the possible multiset worlds semantics.

Before proving the theorem, let us first note that given any query q = q2(q1),

qpmw(Dr)[W] =
∑
{Pr(D̂) | D̂ ∈ pmw(Dr), q(D̂) = W}

=
∑
{Pr(D̂) | D̂ ∈ pmw(Dr), q2(q1(D̂)) = W}

=
∑
{Pr(D̂) | D̂ ∈ pmw(Dr), q1(D̂) = W ′, q2(W ′) = W}

=
∑
{qpmw1 (Dr)[W ′] | q2(W ′) = W}

We prove inductively on the size of q. If q is a single relation, this holds trivially.

Otherwise, q is one of the following 4 cases. We only show the proof for the annotation

function π, but omitting the annotation function $ as it follows similar proofs (the

proof of aggregation γ is similar to that of projection Π).

1◦ q = σc(q1).

qpmw(Dr)[W] =
∑
{qpmw1 (Dr)[W ′] | σc(W ′) = W}

=
∑
{pmw(qi1(Dr))[W ′] | σc(W ′) = W}

=
∑
{Pr(

∧
{πq1(t′) = mW ′(t

′) | t′ ∈ Uq1}) | σc(W ′) = W}

= Pr(
∧
{πq1(t′)� 1(c(t)) = mW (t′) | t′ ∈ Uq1})

= Pr(
∧
{πq(t) = mW (t) | t ∈ Uq}) = pmw(qi(Dr))[W]

246

2◦ q = ΠA(q1).

qpmw(Dr)[W] =
∑
{qpmw1 (Dr)[W ′] | ΠA(W ′) = W}

=
∑
{pmw(qi1(Dr))[W ′] | ΠA(W ′) = W}

=
∑
{Pr(

∧
{πq1(t′) = mW ′(t

′) | t′ ∈ Uq1}) | ΠA(W ′) = W}

= Pr(
∧
{
⊕
t′[A]=t

πq1(t′) = mW (t) | t′ ∈ Uq1})

= Pr(
∧
{πq(t) = mW (t) | t ∈ Uq}) = pmw(qi(Dr))[W]

3◦ q = q1 ./ q2. We use (q1, q2) to emphasize the correlation between q1 and q2.

qpmw(Dr)[W] =
∑
{(q1, q2)pmw(Dr)[W1,W2] |W1 ./ W2 = W}

=
∑
{pmw((qi1, q

i
2)(Dr))[W1,W2] |W1 ./ W2 = W}

=
∑
{Pr(

∧
{πq1(t1) = mW1(t1) ∧ πq2(t2) = mW2(t2) | t1 ∈ Uq1 , t2 ∈ Uq2})

|W1 ./ W2 = W}

= Pr(
∧
{πq1(t1)� πq2(t2) = mW (t1, t2) | t1 ∈ Uq1 , t2 ∈ Uq2 , t1 can join with t2})

= Pr(
∧
{πq(t) = mW (t) | t ∈ Uq}) = pmw(qi(Dr))[W]

4◦ q = δ(q1).

qpmw(Dr)[W] =
∑
{qpmw1 (Dr)[W ′] | δ(W ′) = W}

=
∑
{pmw(qi1(Dr))[W ′] | δ(W ′) = W}

=
∑
{Pr(

∧
{πq1(t′) = mW ′(t

′) | t′ ∈ Uq1}) | δ(W ′) = W}

= Pr(
∧
{1(πq1(t′)) = mW (t′) | t′ ∈ Uq1})

= Pr(
∧
{πq(t) = mW (t) | t ∈ Uq}) = pmw(qi(Dr))[W]

Thus, by induction, qpmw(Dr) = pmw(qi(Dr)).

7.11.3 Extensional Query Evaluation

Proof of Proposition 2. Consider πi =
⊕n

j=1 ρ
(i)
j for i = 1, 2.

247

1◦ π1⊕π2 =
⊕n

j=1 ρ
(1)
j ⊕

⊕n
j=1 ρ

(2)
j =

⊕n
j=1 ρ

(1)
j ⊕ ρ

(2)
j . As atom(π1)∩atom(π2) =

∅ implies that ρ(1)
j and ρ(2)

j are disjoint for ∀j, and thus pρ
(1)
j ⊕ρ

(2)
j = pρ

(1)
j] pρ

(2)
j by

Proposition 1. Also note that ρ(1)
j ⊕ ρ

(2)
j are i.i.d. for ∀j. Thus, pπ1⊕π2 = [n,p1] p2].

2◦ π1 � 1(π2) =
⊕n

j=1 ρ
(1)
j � 1(

⊕n
j=1 ρ

(2)
j) =

⊕n
j=1 ρ

(1)
j ⊕ 1(ρ

(2)
j ⊕

⊕
k 6=j ρ

(2)
k).

As atom(π1) ⊂ atom(π2) implies that π1 entails π2, and thus π1 entails 1(π2). By

Proposition 1, pπ1�1(π2) = [n,p1].

Proof of Lemma 18. We prove by induction on the size of the query plan P . If P is a

single relation, the lemma holds trivially. Otherwise, assume that for subquery P1 (P2)

of P , the lemma holds.

1◦ P = σc(P1) or P = δ(P1) or P = P1 ./ δ(P2) (We do not discuss rule 1 for P =

δ(P1)). If P = σc(P1) and c(t) = false, πP (t) = 0, where the lemma hold trivially.

Otherwise, πP (t) = πP1(t) =
⊕

t∈L(πP1
(t)) πRf (t). Thus, L(πP (t)) = L(πP1(t)). The

lemma holds for P .

2◦ P = ΠA(P1). πP (t) =
⊕

t′[A]=t πP1(t
′) =

⊕
t′′∈L(πP1

(t′))|∀t′,t′[A]=t πRf (t′′). And

thus L(πP (t)) =
⋃
∀t′,t′[A]=t L(πP1(t

′)). Obviously, since for ∀t1, t2 ∈ P1, L(πP1(t1))∩

L(πP1(t2)) = ∅, we have for ∀t, t′ ∈ P , L(πP (t)) ∩ L(πP (t′)) = ∅. Therefore, the

lemma holds for P .

Proof of Lemma 19. We prove by induction on the size of plan P . Assume for sub-

query P1 (P2) of P , CP1(t) (CP2(t)) has at most 1) conditions.

1. P = σc(P1). Since CP (t) = CP1(t), then |CP (t)| = |CP1(t)| = 1. Lemma 19

holds for P .

2. P = ΠA(P1). Since ΠA is DBPTIME-eligible, thus CπA(P1)(t) = CP1(t
′).

|CP (t)| = |CP1(t
′)| = 1. Lemma 19 holds for P .

3. P = P1 ./ δ(P2). Note that CP (t) = CP1(t1) × CP2(t2) × {{πP2(t2) 6=

0}, {πP2(t2) = 0}}. But only {πP2(t2) 6= 0} may produce a valid result. Thus

248

|CP (t)| = |CP1(t1)||CP2(t2)| = 1. Lemma 19 holds for P .

4. P = δ(P1). Note that CP (t) = CP1(t) × {{πP1(t) 6= 0}, {πP1(t) = 0}}. But

only {πP1(t) 6= 0} may produce a valid result. Thus |CP (t)| = |CP1(t)| = 1.

Lemma 19 holds for P .

Proof of Lemma 20. We prove by contradiction. Assume L(πP1(t1)) 6⊆ L(πP2(t2)),

i.e. there exists such a tuple t ∈ Rf , such that t ∈ L(πP1(t1)), but t /∈ L(πP2(t2)).

Consider an Rf only containing this tuple t. Clearly, δ(P2) is empty but δ(P1) is not.

That is, δ(P1) is not contained by δ(Πhead(P1)(P1 ./ δ(P2))). We reach a contradiction.

Proof of Proposition 3. Consider any pair ci < cj . The combination of γ < ci and

γ > cj cannot hold. Proposition 3 directly follows this observation.

Proof of Lemma 21. We prove by induction on the size of plan P . Assume for sub-

queries P1 (P2) of P , CP1(t) (CP2(t)) has at most O(n|P1|) (O(n|P2|)) conditions.

1. P = σc(P1). Since CP (t) = CP1(t)× enumc(t) and enumc(t) = {c(t),¬c(t)},

then |CP (t)| = 2|CP1(t)| = 2O(n|P1|) = O(n|P |). Lemma 21 holds for P .

2. P = ΠA(P1). Since CP (t) = ×t′[A]=tCP1(t
′). Since A → A′ for any γA′,α′(B′)

appearing the predicates in q′, thus for any tuple t ∈ P , CP (t) has at most |P | dif-

ferent aggregate instance (Here we call γA |A=a as a single aggregate instance).

There are 3 different cases of predicates involving aggregates: (a) comparing an

aggregate with another aggregate, (b) comparing an aggregate with a constant,

and (c) comparing an aggregate with an attribute. For case (a) and (b), it is trivial

to see that each aggregate instance can introduce at most 2 different conditions.

For case (c), assume we compare aggregate γ with attribute C in P1. According

249

to Proposition 3, each aggregate instance can introduce at most O(|P1|) condi-

tions. As implied by the disjointness property in Lemma 18, |P1| ≤ n. Thus, we

prove that |Cq(t)| ≤ O(n|q|). Lemma 21 holds for P .

3. P = γA,α(B)(P1). The proof follows similarly to Case 2, and thus is omitted.

4. P = P1 ./ δ(P2). Since CP (t) = CP1(t1)×CP2(t2)×{{πP2(t2) 6= 0}, {πP2(t2) =

0}}, then |CP (t)| = 2|CP1(t1)||CP2(t2)| = 2O(n|P1|)·O(n|P2|) = 2O(n|P1|+|P2|) =

O(n|P |). Lemma 21 holds for P .

5. P = δ(P1). Since CP (t) = CP1(t) × {{πP1(t) 6= 0}, {πP1(t) = 0}}, then

|CP (t)| = 2|CP1(t)| = 2O(n|P1|) = O(n|P |). Lemma 21 holds for P .

Proof of Theorem 22. The conclusion about correctness directly follows Theorem 17

and the discussion in Section 7.4. The conclusion about complexity directly follows

Lemma 19 and 21. Thus, the proof is omitted.

7.12 Constructing Distributions for General Queries without Ag-

gregates

Given a pair of (c, π), we study the problem of computing Pr(c)f(π | c).

In general, c can be divided into two sets c0 and c1, where c0 is the set of conditions

which are in the form of π0,i = 0, and c1 is the set of conditions which are in the form

of π1,i 6= 0. We use c̄1 to denote the condition that at least one condition from c1 is

false. Then Pr(c) and f(π | c) can be computed by the following equations:

Pr(c) = 1− Pr(c0 ∧ c̄1), f(π | c) = f(π | c0)− f(π | c0 ∧ c̄1)

The probability (distribution) involving c̄1 can be computed by using the Inclusion-

Exclusion Principle[Fel68].

250

CHAPTER 8

Conclusion and Future Work

In this dissertation, we tackled the problem of efficient pattern searching and data

analytics on massive data bases and data streams. This is a problem of great practical

significance for modern data-intensive applications, and we made significant progress

towards the solution.

In particular, we proposed K*SQL and XSeq, which extend SQL and XSeq with

powerful Kleene-* constructs that allow for the expression of complex patterns over

both streaming and stored data. We then provided an efficient execution model and

an optimization framework that allows for high-performance execution. Defining

domain-specific generalization of K*SQL and XSeq for specialized application areas,

and scalable processing of massive number of K*SQL and XSeq patterns in publish-

subscribe systems represent interesting problems for future research.

We developed a novel scalable solution for managing and searching web-scale

graph data in distributed memory cloud. Our graph exploration and optimization tech-

niques provide a new query processing paradigm for graph pattern matching queries,

which achieves superior performance improvement compared with traditional approaches.

Besides scalability, our approach opens the potential to support both graph pattern

searching and graph analytics in a single system.

We presented the EARL system, which represents one of the first research efforts

in supporting approximation as a first-class citizen in big data platforms. Our ap-

251

proach builds on bootstrap — a novel error estimation technique — and exploits delta-

maintenance optimizations to achieve fast query response time and minimal resource

usage for general data analytics tasks.

Finally, we developed the Analytical Bootstrap Method, a novel error estimation

technique which accurately models the standard bootstrap for a general class of SQL

queries, and achieves orders of magnitude better performance than both sequential

and parallel/distributed state-of-the-art implementations of bootstrap. For the benefit

of users, the techniques of our EARL and ABM systems should be integrated into a

single system that intelligently chooses the optimal error estimation method, and this

represents an interesting problem for future research

252

REFERENCES

[Aa90] J.P. Abrashams and et. al. “Prediction of RNA secondary structure, in-
cluding pseudoknotting.” Nucleic Acids Research, 18(10):3035, 1990.

[Aa09] Mohamed H. Ali and et. al. “Microsoft CEP Server and Online Behav-
ioral Targeting.” PVLDB, 2009.

[ABK07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary G. Ives. “DBpedia: A Nucleus for a Web of Open
Data.” In ISWC/ASWC, pp. 722–735, 2007.

[ACK01] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis, Dimitris
Plexousakis, and Karsten Tolle. “The ICS-FORTH RDFSuite: Managing
Voluminous RDF Description Bases.” In SemWeb, 2001.

[ACZ10] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler.
“Matrix ”Bit” loaded: a scalable lightweight join query processor for RDF
data.” In WWW, pp. 41–50, 2010.

[AFR00] M. Alexander, J. Fawcett, and P. Runciman. Nursing practice: hospital
and home : the adult. Churchill Livingstone; 2nd edition, 2000.

[AG05] Renzo Angles and Claudio Gutiérrez. “Querying RDF Data from a Graph
Database Perspective.” In ESWC, pp. 346–360, 2005.

[AGP99a] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. “Join Synopses for Approximate Query Answering.” In SIG-
MOD, pp. 275–286, 1999.

[AGP99b] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ra-
maswamy. “The Aqua Approximate Query Answering System.” In SIG-
MOD, pp. 574–576, 1999.

[AJK08] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu.
“Fast and Simple Relational Processing of Uncertain Data.” In ICDE,
pp. 983–992, 2008.

[Alu07] Rajeev Alur. “Marrying Words and Trees.” In PODS, 2007.

[AM04] Rajeev Alur and P. Madhusudan. “Visibly pushdown languages.” In
STOC, 2004.

[AM06] Rajeev Alur and P. Madhusudan. “Adding Nesting Structure to Words.”
In Developments in Language Theory, 2006.

253

[AMK14] Sameer Agarwal, Henry Milner, Ariel Kleiner, Ameet Talwalkar, Barzan
Mozafari, Michael Jordan, Samuel Madden, and Ion Stoica. “Knowing
When You’re Wrong: Building Fast and Reliable Approximate Query
Processing Systems.” In SIGMOD, 2014.

[AMM09] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Kate Hollenbach.
“SW-Store: a vertically partitioned DBMS for Semantic Web data man-
agement.” VLDB J., 18(2):385–406, 2009.

[AMP13] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel
Madden, and Ion Stoica. “BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data.” In EuroSys, pp. 29–42,
2013.

[AYU00] Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsuke Uemura. “A
Data Model for Temporal XML Documents.” In DEXA, pp. 334–344,
2000.

[Ba03] Charles Barton and et. al. “Streaming XPath Processing with Forward
and Backward Axes.” In ICDE, 2003.

[Ba06] P. Boncz and et. al. “MonetDB/XQuery: a fast XQuery processor pow-
ered by a relational engine.” In SIGMOD, 2006.

[Ba07a] Yijian Bai and et. al. “RFID Data Processing with a Data Stream Query
Language.” In ICDE, 2007.

[Ba07b] Roger S. Barga and et. al. “Consistent Streaming Through Time: A Vision
for Event Stream Processing.” In CIDR, 2007.

[Ba09] R. Bamford and et. al. “XQuery reloaded.” VLDB, 2009.

[BC81] Philip A. Bernstein and Dah-Ming W. Chiu. “Using Semi-Joins to Solve
Relational Queries.” J. ACM, 28(1):25–40, 1981.

[BCD03] Brian Babcock, Surajit Chaudhuri, and Gautam Das. “Dynamic Sample
Selection for Approximate Query Processing.” In SIGMOD, pp. 539–550,
2003.

[BCG11] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. “Hyracks:
A Flexible and Extensible Foundation for Data-Intensive Computing.” In
ICDE, pp. 1151 –1162, 2011.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. “Load Shedding for
Aggregation Queries over Data Streams.” In ICDE, p. 350, 2004.

254

[BF81] Peter J. Bickel and David A. Freedman. “Some Asymptotic Theory for
the Bootstrap.” The Annals of Statistics, 9(6):1196–1217, 1981.

[BGH09] Lars Brenna, Johannes Gehrke, Mingsheng Hong, and Dag Johansen.
“Distributed event stream processing with non-deterministic finite au-
tomata.” In DEBS, 2009.

[BHB10] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst.
“HaLoop: Efficient Iterative Data Processing on Large Clusters.” In
VLDB, pp. 285–296, 2010.

[BHH05] George Box, J. Stuart Hunter, and William Hunter. Statistics for Experi-
menters: Design, Innovation, Discovery. Wiley-Interscience, 2005.

[BHS03] Valerie Bönström, Annika Hinze, and Heinz Schweppe. “Storing RDF as
a Graph.” In LA-WEB, pp. 27–36, 2003.

[BKH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. “Sesame: A
Generic Architecture for Storing and Querying RDF and RDF Schema.”
In ISWC, 2002.

[btc] “Billion Triple Challenge.” http://challenge.semanticweb.org/.

[Cat06] Balder ten Cate. “The expressivity of XPath with transitive closure.” In
PODS, 2006.

[CCA09] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. “MapReduce Online.” Technical Re-
port UCB/EECS-2009-136, EECS Department, University of California,
Berkeley, 2009.

[CCA10] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, John
Gerth, Justin Talbot, Khaled Elmeleegy, and Russell Sears. “Online ag-
gregation and continuous query support in MapReduce.” In SIGMOD, pp.
1115–1118. ACM, 2010.

[CCM00] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek
Narasayya. “Towards Estimation Error Guarantees for Distinct Values.”
In PODS, pp. 268–279, 2000.

[CDE05] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan
Srinivasan. “An Efficient SQL-based RDF Querying Scheme.” In VLDB,
2005.

255

[CDN07] Surajit Chaudhuri, Gautam Das, and Vivek R. Narasayya. “Optimized
stratified sampling for approximate query processing.” TODS, 32(2):9,
2007.

[CDS04] Surajit Chaudhuri, Gautam Das, and Utkarsh Srivastava. “Effective use of
block-level sampling in statistics estimation.” In SIGMOD, pp. 287–298.
ACM, 2004.

[CDZ06] Yi Chen, Susan B. Davidson, and Yifeng Zheng. “An Efficient XPath
Query Processor for XML Streams.” In ICDE, 2006.

[CHS02] Bin Chen, Peter Haas, and Peter Scheuermann. “A new two-phase sam-
pling based algorithm for discovering association rules.” In SIGKDD, pp.
462–468. ACM, 2002.

[CL09] Balder ten Cate and Carsten Lutz. “The complexity of query containment
in expressive fragments of XPath 2.0.” J. ACM, 56(6), 2009.

[CM07a] Balder ten Cate and Maarten Marx. “Axiomatizing the Logical Core of
XPath 2.0.” In ICDT, 2007.

[CM07b] Balder ten Cate and Maarten Marx. “Navigational XPath: calculus and
algebra.” SIGMOD Record, 36(2), 2007.

[con] “Conviva Inc.” http://www.conviva.com/.

[CS08] Balder ten Cate and Luc Segoufin. “XPath, transitive closure logic, and
nested tree walking automata.” In PODS, 2008.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. “Tracing the lin-
eage of view data in a warehousing environment.” TODS, 25(2):179–227,
2000.

[CYD08] Jiefeng Cheng, Jeffrey Xu Yu, Bolin Ding, Philip S. Yu, and Haixun
Wang. “Fast Graph Pattern Matching.” In ICDE, pp. 913–922, 2008.

[Da07] Alan J. Demers and et. al. “Cayuga: A General Purpose Event Monitoring
System.” In CIDR, 2007.

[Da08] Y. Diao and et. al. “SASE+: An Agile Language for Kleene Closure over
Event Streams.” Technical report, University of Massachusetts, Amherst,
2008.

[Da09] N. Dindar and et. al. “DejaVu: declarative pattern matching over live and
archived streams of events.” In SIGMOD, 2009.

256

[DAF03] Yanlei Diao, Mehmet Altinel, Michael J. Franklin, Hao Zhang, and Pe-
ter Fischer. “Path sharing and predicate evaluation for high-performance
XML filtering.” TODS, 28(4), 2003.

[dbp] “DBpedia SPARQL Benchmark (DBPSB).”
http://aksw.org/Projects/DBPSB.

[DBS06] Arnaud Doucet, Mark Briers, and Stphane Sncal. “Efficient Block Sam-
pling Strategies for Sequential Monte Carlo Methods.” Journal of Com-
putational and Graphical Statistics, 15(3):693–711, 2006.

[DGG86] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,
Krishna B. Kumar, and M. Muralikrishna. “GAMMA - A High Perfor-
mance Dataflow Database Machine.” In VLDB, pp. 228–237, 1986.

[DGH06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald,
and Walker M. White. “Towards Expressive Publish/Subscribe Systems.”
In EDBT, 2006.

[DM01] Russell Davidson and James G. MacKinnon. “Bootstrap Tests: How
Many Bootstraps?” Working Papers 1036, Queen’s University, Depart-
ment of Economics, 2001.

[DS07] Nilesh N. Dalvi and Dan Suciu. “Efficient query evaluation on probabilis-
tic databases.” VLDBJ, 16:523–544, 2007.

[EM09] Orri Erling and Ivan Mikhailov. “Virtuoso: RDF Support in a Native
RDBMS.” In Semantic Web Information Management, pp. 501–519.
Springer, 2009.

[ET93] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman
& Hall, New York, 1993.

[Fa03] Daniela Florescu and et. al. “The BEA/XQRL Streaming XQuery Pro-
cessor.” In VLDB, 2003.

[Fel68] William Feller. An Introduction to Probability Theory and Its Applica-
tions, volume 1. Wiley, January 1968.

[Fer96] Thomas S. Ferguson. A Course in Large Sample Theory. Chapman and
Hall, 1996.

[FGG11] Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart, and
Andrew Jon Sellers. “OXPath: A Language for Scalable, Memory-
efficient Data Extraction from Web Applications.” PVLDB, 4(11), 2011.

257

[GA09] Boris Glavic and Gustavo Alonso. “Perm: Processing Provenance and
Data on the Same Data Model through Query Rewriting.” In ICDE, pp.
174–185, 2009.

[GAD08] Daniel Gyllstrom, Jagrati Agrawal, Yanlei Diao, and Neil Immerman.
“On Supporting Kleene Closure over Event Streams.” In ICDE, 2008.

[GC12] Raman Grover and Michael Carey. “Extending Map-Reduce for Efficient
Predicate-Based Sampling.” In ICDE, 2012.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google
file system.” In SOSP, pp. 29–43. ACM, 2003.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. “Provenance
semirings.” In PODS, pp. 31–40, 2007.

[GN11] Olivier Gauwin and Joachim Niehren. “Streamable Fragments of Forward
XPath.” In CIAA, pp. 3–15, 2011.

[GNT11] Olivier Gauwin, Joachim Niehren, and Sophie Tison. “Queries on Xml
streams with bounded delay and concurrency.” Inf. Comput., 209(3):409–
442, March 2011.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. “LUBM: A benchmark for
OWL knowledge base systems.” Journal of Web Semantics, 3(2-3):158–
182, 2005.

[GUW09] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database
systems - the complete book (2. ed.). Pearson Education, 2009.

[had] “Apache Hadoop Project.” http://hadoop.apache.org/.

[HAR11] Jiewen Huang, Daniel J. Abadi, and Kun Ren. “Scalable SPARQL Query-
ing of Large RDF Graphs.” PVLDB, 4(11), 2011.

[HG04] Jonathan Hayes and Claudio Gutierrez. “Bipartite Graphs as Intermediate
Model for RDF.” In ISWC, 2004.

[HH05] Lilian Harada and Yuuji Hotta. “Order checking in a CPOE using event
analyzer.” In CIKM, 2005.

[HHW97a] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. “Online Aggre-
gation.” In SIGMOD, pp. 171–182, 1997.

[HHW97b] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. “Online Aggre-
gation.” In SIGMOD, pp. 171–182. ACM Press, 1997.

258

[hiv] “Apache Hive Project.” https://hive.apache.org/.

[HLL11] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. “Starfish: A Self-tuning
System for Big Data Analytics.” In CIDR, pp. 261–272, 2011.

[HMM11] Mohammad Farhan Husain, James P. McGlothlin, Mohammad M. Ma-
sud, Latifur R. Khan, and Bhavani M. Thuraisingham. “Heuristics-Based
Query Processing for Large RDF Graphs Using Cloud Computing.” IEEE
Trans. Knowl. Data Eng., 23(9):1312–1327, 2011.

[HS08] Huahai He and Ambuj K. Singh. “Graphs-at-a-time: query language and
access methods for graph databases.” In SIGMOD, 2008.

[HSS09] Ying Hu, Seema Sundara, and Jagannathan Srinivasan. “Estimating Ag-
gregates in Time-Constrained Approximate Queries in Oracle.” In EDBT,
pp. 1104–1107, 2009.

[HUH07] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker.
“YARS2: A Federated Repository for Querying Graph Structured Data
from the Web.” In ISWC/ASWC, pp. 211–224, 2007.

[JAP07] Christopher Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin
Dobra. “Scalable Approximate Query Processing with DBO Engine.” In
SIGMOD, pp. 1–54, 2007.

[jen] “Jena.” http://jena.sourceforge.net.

[JFB05] Vanja Josifovski, Marcus Fontoura, and Attila Barta. “Querying XML
streams.” VLDB Journal, 14(2), 2005.

[JJ09] Shantanu Joshi and Christopher Jermaine. “Sampling-Based Estimators
for Subset-Based Queries.” VLDB J., 18(1):181–202, 2009.

[JS08] C. S. Jensen and R. T. Snodgrass. “Temporal Query Languages.” In Tem-
poral Database Entries for the Springer Encyclpedia of Database Sys-
tems, volume TR-90, 2008.

[Kay08] Michael Kay. “Ten Reasons Why Saxon XQuery is Fast.” IEEE Data
Eng. Bull., 31(4), 2008.

[KJP77] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. “Fast Pattern
Matching in Strings.” SIAM J. Comput., 6(2), 1977.

[KMS08] Leila Kaghazian, Dennis McLeod, and Reza Sadri. “Scalable complex
pattern search in sequential data.” In CIKM, 2008.

259

[Koc09] Christoph Koch. “XML Stream Processing.” In Encyclopedia of
Database Systems. 2009.

[KTA13] Ariel Kleiner, Ammet Talwalkar, Sammeer Agarwal, Ion Stoica, and
Michael Jordan. “A General Bootstrap Performance Diagnostic.” In
KDD, pp. 419–427, 2013.

[KTS12] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jor-
dan. “The Big Data Bootstrap.” In ICML, 2012.

[KV98] Phokion G. Kolaitis and Moshe Y. Vardi. “Conjunctive-Query Contain-
ment and Constraint Satisfaction.” In PODS, pp. 205–213, 1998.

[La10] M. Liu and et al. “E-Cube: Multi-Dimensional Event Sequence Process-
ing Using Concept and Pattern Hierarchies.” In ICDE, 2010.

[LGH07] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan W. Berry. “Challenges in Parallel Graph Processing.” Paral-
lel Processing Letters, 17(1):5–20, 2007.

[LMD11] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and
Prashant J. Shenoy. “A platform for scalable one-pass analytics using
MapReduce.” In SIGMOD. ACM Press, 2011.

[Luc01] D. C. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2001.

[LYT05] Jing Lu, Yong Yu, Kewei Tu, Chenxi Lin, and Lei Zhang. “An Approach
to RDF(S) Query, Manipulation and Inference on Databases.” In WAIM,
pp. 172–183, 2005.

[LZ12] Nikolay Laptev and Carlo Zaniolo. “Optimization of Massive Pattern
Queries by Dynamic Configuration Morphing.” In ICDE, pp. 917–928,
2012.

[LZZ12] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. “Early Accurate Results
for Advanced Analytics on MapReduce.” PVLDB, 5(10):1028–1039,
2012.

[MAB10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system
for large-scale graph processing.” In SIGMOD, 2010.

[Mar05] Maarten Marx. “Conditional XPath.” TODS, 30(4), 2005.

260

[mon] “MonetDB.” http://www.monetdb.org/Home.

[MV09] P. Madhusudan and M. Viswanathan. “Query Automata for Nested
Words.” In MFCS, 2009.

[MZ10] Barzan Mozafari and Carlo Zaniolo. “Optimal Load Shedding with Ag-
gregates and Mining Queries.” In ICDE, pp. 76–88, 2010.

[MZZ10] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. “From Regular Expres-
sions to Nested Words: Unifying Languages and Query Execution for
Relational and XML Sequences.” PVLDB, 3(1), 2010.

[MZZ12] Barzan Mozafari, Kai Zeng, and Carlo Zaniolo. “High-performance com-
plex event processing over XML streams.” In SIGMOD Conference, pp.
253–264, 2012.

[NG04] M.E.J. Newman and M. Girvan. “Finding and evaluating community
structure in networks.” Physical review E, 69(2):026113, 2004.

[NW08] Thomas Neumann and Gerhard Weikum. “RDF-3X: a RISC-style engine
for RDF.” PVLDB, 1(1), 2008.

[NW09] Thomas Neumann and Gerhard Weikum. “Scalable Join Processing on
Very Large RDF Graphs.” In SIGMOD, 2009.

[NW10] Thomas Neumann and Gerhard Weikum. “The RDF-3X engine for scal-
able management of RDF data.” VLDB J., 19(1):91–113, 2010.

[OBE09] Christopher Olston, Edward Bortnikov, Khaled Elmeleegy, Flavio Jun-
queira, and Benjamin Reed. “Interactive Analysis of Web-Scale Data.”
In CIDR, 2009.

[OKB03] Dan Olteanu, Tobias Kiesling, and François Bry. “An Evaluation of Reg-
ular Path Expressions with Qualifiers against XML Streams.” In ICDE,
2003.

[OR90] Frank Olken and Doron Rotem. “Random Sampling from Database Files:
A Survey.” In SSDBM, pp. 92–111, 1990.

[ORS08] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. “Pig latin: a not-so-foreign language for data process-
ing.” In SIGMOD, pp. 1099–1110. ACM, 2008.

[PBJ11a] Niketan Pansare, Vinayak R. Borkar, Chris Jermaine, and Tyson Condie.
“Online Aggregation for Large MapReduce Jobs.” PVLDB, 4(11):1135–
1145, 2011.

261

[PBJ11b] Niketan Pansare, Vinayak R. Borkar, Chris Jermaine, and Tyson Condie.
“Online Aggregation for Large MapReduce Jobs.” PVLDB, 4(11):1135–
1145, 2011.

[PC03] Feng Peng and Sudarshan S. Chawathe. “XPath Queries on Streaming
Data.” In SIGMOD Conference, 2003.

[PDG05] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. “In-
terpreting the data: Parallel analysis with Sawzall.” Sci. Program.,
13(4):277–298, 2005.

[Pit05] Corin Pitcher. “Visibly pushdown expression effects for XML stream
processing.” In PLAN-X, 2005.

[PJ05a] Abhijit Pol and Chris Jermaine. “Relational Confidence Bounds Are Easy
With The Bootstrap.” In SIGMOD, pp. 587–598, 2005.

[PJ05b] Abhijit Pol and Christopher Jermaine. “Relational confidence bounds are
easy with the bootstrap.” In SIGMOD, pp. 587–598. ACM, 2005.

[Pot94] Andreas Potthoff. “Modulo-counting quantifiers over finite trees.” Theor.
Comput. Sci., 126(1), 1994.

[r] “The R Project.” http://www.r-project.org/.

[rel] “EARL Project.” http://yellowstone.cs.ucla.edu/wis/.

[RPJ13] Tilmann Rabl, Meikel Poess, Hans-Arno Jacobsen, Patrick O’Neil, and
Elizabeth O’Neil. “Variations of the Star Schema Benchmark to Test the
Effects of Data Skew on Query Performance.” In SPEC, pp. 361–372,
2013.

[RS09] Christopher Ré and Dan Suciu. “The Trichotomy of HAVING Queries on
a Probabilistic Database.” VLDBJ, 18(5):1091–1116, 2009.

[RS10] Kurt Rohloff and Richard E. Schantz. “High-performance, massively
scalable distributed systems using the MapReduce software framework:
the SHARD triple-store.” In PSI EtA, 2010.

[Sa01] Reza Sadri and et. al. “A Sequential Pattern Query Language for Support-
ing Instant Data Mining for e-Services.” In VLDB, 2001.

[Sa02] Albrecht Schmidt and et. al. “XMark: a benchmark for XML data man-
agement.” In VLDB, 2002.

262

[SB69] M. M. Siddiqui and Calvin Butler. “Asymptotic Joint Distribution of Lin-
ear Systematic Statistics from Multivariate Distributions.” Journal of the
American Statistical Association, 64(325):300–305, 1969.

[SDG10] Prithviraj Sen, Amol Deshpande, and Lise Getoor. “Read-Once Functions
and Query Evaluation in Probabilistic Databases.” PVLDB, 3(1):1068–
1079, 2010.

[SG07] Bianca Schroeder and Garth A. Gibson. “Disk failures in the real world:
what does an MTTF of 1,000,000 hours mean to you?” In USENIX FAST,
pp. 1–12. USENIX Association, 2007.

[sha] “Shark Project.” http://shark.cs.berkeley.edu/.

[Sno09] Richard T. Snodgrass. “TSQL2.” In Encyclopedia of Database Systems.
2009.

[SS09] Lena Strömbäck and Stefan Schmidt. “An Extension of XQuery for
Graph Analysis of Biological Pathways.” In DBKDA, 2009.

[SSB08] Markus Stocker, Andy Seaborne, Abraham Bernstein, Christoph Kiefer,
and Dave Reynolds. “SPARQL basic graph pattern optimization using
selectivity estimation.” In WWW, 2008.

[SWL13] Bin Shao, Haixun Wang, and Yatao Li. “Trinity: A Distributed Graph
Engine on a Memory Cloud.” In SIGMOD Conference, 2013.

[SWW12] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. “Efficient subgraph
matching on billion node graphs.” Proceedings of the VLDB Endowment,
5(9):788–799, 2012.

[SWX12] B. Shao, H. Wang, and Y. Xiao. “Managing and mining large graphs:
Systems and implementations.” In SIGMOD, 2012.

[SZZ01] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. “Optimiza-
tion of Sequence Queries in Database Systems.” In PODS, 2001.

[SZZ04] Reza Sadri, Carlo Zaniolo, Amir M. Zarkesh, and Jafar Adibi. “Ex-
pressing and optimizing sequence queries in database systems.” TODS,
29(2):282–318, 2004.

[Tan09] Nguyen Van Tang. “A Tighter Bound for the Determinization of Visibly
Pushdown Automata.” In INFINITY, 2009.

263

[TDS13] Thanh T. L. Tran, Yanlei Diao, Charles Sutton, and Anna Liu. “Support-
ing User-Defined Functions on Uncertain Data.” PVLDB, 6(6):469–480,
2013.

[ter] “Teradata Corp.” http://www.teradata.com/?LangType=1033.

[tpc] “TPC-H Benchmark.” http://www.tpc.org/tpch/.

[TPD12] Thanh T. L. Tran, Liping Peng, Yanlei Diao, Andrew McGregor, and
Anna Liu. “CLARO: Modeling and Processing Uncertain Data Streams.”
VLDBJ, 21(5):651–676, 2012.

[tri] “Trinity.” http://research.microsoft.com/en-us/projects/trinity/.

[TSJ09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. “Hive- A Warehousing Solution Over a Map-Reduce Frame-
work.” In VLDB, pp. 1626–1629, 2009.

[ver] “Vertica Inc.” http://www.vertica.com/.

[VMT07] Zografoula Vagena, Mirella Moura Moro, and V. J. Tsotras. “RoXSum:
Leveraging Data Aggregation and Batch Processing for XML Routing.”
In ICDE, 2007.

[VW00] Aad van der Vaart and Jon Wellner. Weak Convergence and Empirical
Processes. Springer, corrected edition, November 2000.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance complex
event processing over streams.” In SIGMOD, 2006.

[WHY06] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. “Dual
Labeling: Answering Graph Reachability Queries in Constant Time.” In
ICDE, p. 75, 2006.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. “Hexas-
tore: sextuple indexing for semantic web data management.” PVLDB,
1(1):1008–1019, 2008.

[WLW12] W. Wu, H. Li, H. Wang, and K.Q. Zhu. “Probase: A probabilistic taxon-
omy for text understanding.” In SIGMOD, 2012.

[WM10] Stefan Wilhelm and B. G. Manjunath. “tmvtnorm: A Package for the
Truncated Multivariate Normal Distribution.” The R Journal, 2(1):25–29,
June 2010.

264

[WMG08] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and
Joseph M. Hellerstein. “BayesStore: Managing Large, Uncertain Data
Repositories with Probabilistic Graphical Models.” PVLDB, 1(1):340–
351, 2008.

[WOT10] Sai Wu, Beng Chin Ooi, and Kian-Lee Tan. “Continuous Sampling for
Online Aggregation over Multiple Queries.” In SIGMOD, pp. 651–662,
2010.

[WSK03] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds.
“Efficient RDF Storage and Retrieval in Jena2.” In SWDB, pp. 131–150,
2003.

[WZZ08] Fusheng Wang, Carlo Zaniolo, and Xin Zhou. “ArchIS: an XML-based
approach to transaction-time temporal database systems.” VLDB J.,
17(6):1445–1463, 2008.

[YYZ12] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. “Towards effective
partition management for large graphs.” In SIGMOD Conference, pp.
517–528, 2012.

[Za06] Xin Zhou and et. al. “Unifying the Processing of XML Streams and Re-
lational Data Streams.” In ICDE, 2006.

[Zan09a] Carlo Zaniolo. “Event-Oriented Data Models and Query Languages in
Transaction-Time Databases.” In TIME, 2009.

[Zan09b] Carlo Zaniolo. “Event-Oriented Data Models and Temporal Queries in
Transaction-Time Databases.” In TIME, pp. 47–53, 2009.

[ZCO09] Lei Zou, Lei Chen, and M. Tamer Özsu. “DistanceJoin: Pattern Match
Query In a Large Graph Database.” PVLDB, 2(1):886–897, 2009.

[ZMH09] Weizhong Zhao, Huifang Ma, and Qing He. “Parallel K-Means Cluster-
ing Based on MapReduce.” Cloud Computing, 5931:674–679, 2009.

[ZQL11] Feida Zhu, Qiang Qu, David Lo, Xifeng Yan, Jiawei Han, and Philip S.
Yu. “Mining Top-K Large Structural Patterns in a Massive Network.”
PVLDB, 4(11):807–818, 2011.

[ZWC07] Fred Zemke, Andrew Witkowski, Mitch Cherniak, and Latha Colby. “Pat-
tern matching in sequences of rows.” 2007.

[ZYM13] Kai Zeng, Mohan Yang, Barzan Mozafari, and Carlo Zaniolo. “Complex
Pattern Matching in Complex Structures: the XSeq Approach.” In ICDE
Demo, 2013.

265

	Introduction
	Search Challenges
	Analytics Challenges
	Overview and Contributions
	K*SQL and XSeq: Expressive and Efficient CEP Languages
	Trinity.RDF: Web Scale Graph Engine
	EARL and ABM: Bootstrap-Based Approximation Techniques for Interactive Data Analytics

	I SEARCH OPTIMIZATION
	Background: Nested Words and Visibly Pushdown Automata
	Nested Words
	Visibly Pushdown Automata
	Difference between Nested Words and VPAs

	KSQL: Unifying Languages and Query Execution for Relational and XML Sequences
	K*SQL By Examples
	Nested Kstars
	Linear-Hierarchical Data

	Expressive Power
	K*SQL vs. XPath
	K*SQL vs. Other Sequence Languages
	Monadic Second Order Logic

	Optimization
	Compile-time Optimization
	Optimization for Nested Constructs

	Experiments
	XML queries in K*SQL
	Query Execution Time
	Number of Backtracks

	Related Work
	Summary of K*SQL
	K*SQL Syntax and Expressive Power
	K*SQL Syntax
	K*SQL for Other Domains
	Proof of Theorem 1 (Algorithm)
	XPath for Sequence Queries
	From VPE to K*SQL
	Aggregates and Complexity

	XSeq: High-Performance Complex Event Processing over Hierarchical Data
	XSeq Query Language
	Advanced Queries from Complex Event Processing
	Stock Analysis
	Social Networks
	Inventory Management
	Directory Search
	Genetics
	Protein, RNA and DNA Databases
	Temporal Queries
	Software Trace Analysis

	XSeq Optimization
	Efficient Query Plans via VPA
	Static VPA Optimization
	Run-time VPA Optimization

	Formal Semantics of XSeq
	Expressiveness and Complexity
	CXSeq
	Regularity of CXSeq and Complexity
	Query Evaluation Complexity

	Experiments
	Effectiveness of Different Optimizations
	Sequence Queries vs. XPath Engines
	Conventional Queries vs. XPath Engines
	Throughput for Different Types of Queries

	Previous Work
	Summary of XSeq
	Core XSeq Proof of Regularity
	Core XSeq with Variable Concatenation
	Core XSeq Basic

	Trinity.RDF: A Distributed Graph Engine for Web Scale Graphs
	Join vs. Graph Exploration
	RDF and SPARQL
	Using Join Operations
	Using Graph Explorations

	System Architecture
	Data Modeling
	Modeling Graphs
	Graph Partitioning
	Indexing Predicates
	Basic Graph Operators

	Query Processing
	Overview
	Single Triple Pattern Matching
	Multiple Pattern Matching by Exploration
	Final Join after Exploration
	Exploration Plan Optimization
	Cost Estimation

	Experiments
	Related Work
	Summary of Trinity.RDF

	II APPROXIMATION OPTIMIZATION
	EARL: Early Accurate Results for Advanced Analytics on MapReduce
	Architecture
	Extending MapReduce

	Estimating Accuracy
	Accuracy Estimation Stage
	Sample Size and Number of Bootstraps
	Sampling
	Fault Tolerance

	Optimizations
	Inter-Iteration Optimization
	Intra-Iteration Optimization

	Current Implementation
	Experiments
	A Strong Case for EARL
	Approximate Median Computation
	EARL and Advanced Mining Algorithms
	Sample Size and Number of Bootstraps
	Pre-map and Post-map Sampling
	Update Overhead

	Related Work
	Summary of EARL

	The Analytical Bootstrap: a New Method for Fast Error Estimation in Approximate Query Processing
	Problem Statement
	An Example of Bootstrap
	Scope of Our Approach

	Background
	Semirings and Relational Operators
	Semiring Random Variables

	Semantics & Query Evaluation
	Formal Semantics
	Intensional Query Evaluation

	Extensional Query Evaluation
	The Multinomial Representation
	Queries without Aggregates
	Queries with Aggregates
	Correctness and Complexity

	Efficient Approximation
	Extensions of ABM
	Experiments
	Experiment Setup
	Error Quantification Accuracy
	Error Quantification Performance
	Using Stratified Samples

	The ABS System
	Related Work
	Summary of ABM
	Correctness of Intensional & Extensional Evaluation
	Background
	Semantics & Query Evaluation
	Extensional Query Evaluation

	Constructing Distributions for General Queries without Aggregates

	Conclusion and Future Work
	References

