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ABSTRACT OF THE DISSERTATION

Essays in Bayesian Econometrics

By

Parush Arora

Doctor of Philosophy in Economics

University of California, Irvine, 2024

Associate Professor Ivan Jeliazkov, Chair

This dissertation is comprised of three chapters.

Chapter 1 is a reprint of my job market. The chapter considers the efficient estimation of

opinion pools in the Bayesian paradigm and extends their application to cases where the

number of competing models exceeds the number of observations. An appropriate Bayesian

formulation and estimation algorithm is proposed which 1) accommodates any proper scoring

rule and 2) allows the weights to shrink towards any possible combination. This flexibility

makes the Bayesian opinion pool relevant for applications related to model averaging and

model selection and improves stability compared to the ones estimated using scoring rules in

a small sample setting. Results from a simulation study reveal that the proposed Bayesian

opinion pool methodology improves prediction accuracy. An application involving the Survey

of Professional Forecasters demonstrates that the Bayesian opinion pool’s inflation forecast

competes well with the equal-weight aggregated inflation forecast published by the Federal

Bank of Philadelphia. The application showcases the usefulness of the Bayesian solution in

situations where traditional opinion pools fail.

Chapter two introduces a non-parametric vector autoregressive model with dynamic factor

(DF-NPVAR) through a hierarchical Bayesian approach. The chapter considers the specifi-

cation, identification and estimation of the DF-NPVAR model, allowing it to be efficiently
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fit via MCMC algorithms. The model aims at effectively capturing dynamic relationships

among variables and enabling the incorporation of extensive information sets. Issues related

to model comparison and extensions to settings with autocorrelated errors and qualitative

variables are also considered. In an application employing post-war US data, the DF-NPVAR

model successfully identifies non-linear associations between macroeconomic variables and

the dynamic factor captures the business cycle component, which aligns with officially de-

clared recession periods.

Chapter three discusses a Bayesian estimation for the FAVAR models using the precision-

based algorithm. The model is fully identified under the identification restrictions of Bai

et al. (2016). The approach increases the efficiency of the Gibbs sampler and avoids slow

convergence and poor mixing (Chan and Jeliazkov (2009)). This article then contrasts

the Bayesian approach with the one-step and two-step estimation techniques proposed in

Bernanke et al. (2005). The simulation study finds that the Bayesian approach recovers

the unobservable factor in a simple FAVAR framework compared to estimation techniques

proposed in Bernanke et al. (2005).
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Chapter 1

Combining Density Forecasts using

Bayesian Opinion Pools

1.1 Introduction and Motivation

A forecaster’s outlook towards any predictive exercise is reflected in how they formulate,

specify and estimate their model. The dynamics of the model depend on how the forecaster

perceives and incorporates uncertainty (Steel (2020)). As a result, several competing predic-

tive models emerge for a given random variable. For a researcher, an intuitive way to utilize

all this information is by aggregating all the predictive densities (See Hoeting et al. (1999) for

Bayesian Model averaging, Wang et al. (2009) for frequentist model averaging, Moral-Benito

(2015) for model averaging in economics, Gneiting and Ranjan (2013) for predictive model

aggregation and Clyde and George (2004) for model uncertainty). This paper focuses on

linear opinion pool (Stone (1961), Bacharach (1974)), a simple and widely used method for

model aggregation, and explores its utility for time series forecasting applications under the

Bayesian foundation.
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To set up the framework, let yt be a random variable and YT = {y1, y2, . . . , yT} be a sequence

of ordered random variables up to time T . LetMk be the model estimated by forecaster k and

p(yT+1|YT ,Mk) be the predictive density of yT+1 associated with Mk, where k = 1, 2, . . . , K.

The aggregated predictive density, p(yT+1|YT ), under the linear opinion pool framework is

obtained as

p(yT+1|YT ) =
K∑
k=1

wk,Tp(yT+1|YT ,Mk), (1.1)

where wk,T is the weight allotted to Mk with the time subscript implying the use of in-

formation up to T . It also means that the weights are updated recursively once yT+1

is realized. The weights are estimated with respect to the constraints
∑K

k=1wk = 1 and

wk ≥ 0 ∀ k = 1, 2, . . . , K, ensuring that Eq. 1.1 is an appropriate probability density.

Researchers have estimated Eq. 1.1 by optimising different objective functions (further re-

ferred to as traditional opinion pools or TOP). One issue with the approach is that estimating

unique weights is challenging if the number of predictive models exceeds the number of ob-

servations (micronumerosity). A non-negative degree of freedom is a necessary condition

for optimization-based problems (like least squares or optimization based on scoring rules).

Often, micronumerosity (or near micronumerosity) becomes a binding constraint, especially

in time series forecasting, where the frequency of observations limits the data length. Re-

searchers have used different types of regularization (like ridge or lasso) which allows the

estimation by shrinking some of the weights towards 0. This regularization provides one-

way shrinkage towards 0 and thus forces the researcher to consider fewer models in the

final analysis. Second, the simulation study found that the weights under TOP have a high

variance when the sample size is small. Since weights are estimated recursively given past

accuracy of forecasters, instability over time means that the data does not have sufficient

information regarding the consistency of predictive performance. In these cases, weights
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associated with the expert’s prediction react to their immediate past forecasting accuracy

which does not ensure the sustenance of accuracy in the future (the problem of overfitting).

This could be one of the reasons why equal weights perform competitively with optimized

weights (Hendry and Clements (2004) and Wallis (2005)), as equal weights provide insurance

against bad forecasts.

The paper proposes to estimate the opinion pools using the proper Bayesian formulation

and hence calls it the Bayesian Opinion Pool (BOP). This approach resolves the two issues

discussed. First, the Bayesian framework allows the opinion pool to be estimated when the

number of forecasting densities exceeds the number of observations. The introduction of prior

compensates for the lack of observations in the data. The proposed algorithm is effective

even when dealing with a high number of forecasters since the whole vector of weights is

sampled in a single block, leading to computational efficiency. Second, the BOP’s weights

are stable under the small sample setting. The BOP utilizes the Dirichlet prior which allows

the opinion pool’s weight to shrink towards any possible combination rather than restricting

to boundary cases like ridge or lasso. The researcher can choose to shrink the weights on the

spectrum with one extreme of allotting equal weights to all the models to another where all

the weights are allotted to the best model. This makes BOP useful for applications related to

model averaging and model selection. Due to the flexibility, the prior can introduce stability

in the weights under the small sample settings, by shrinking them towards equal weights

and allowing deviations only if enough evidence is available in the data. The stability in the

weights over time leads to improvement in prediction accuracy since the shrinkage avoids

overfitting. The simulation study (Section 1.4) found evidence that the BOP is stable under

a small sample setting and is highly competitive with the TOP (the five proper scoring rules

considered are log, quadratic, spherical, continuous ranked probability score (CRPS), and the

first two moments score (FTMS)). Finally, the paper uses BOP in an application involving

the survey of professional forecasters (SPF) where traditional optimization-based opinion

pools fail due to micronumerosity. The aggregated predictive density for the inflation rate

3



is estimated and compared with the equal weights strategy (simple opinion pools or SOP)

published by the Federal Bank of Philadelphia. The paper finds evidence for lower MSPE

associated with inflation estimated using the BOP.

Even though the current framework uses Bayesian formulation, that does not restrict the

experts to Bayesian models. In the Bayesian setting, the predictive density p(yT+1|YT ,Mk)

can be written as

p(yT+1|YT ,Mk) =

∫
p(yT+1|θk, YT ,Mk)p(θk|YT ,Mk)dθk, (1.2)

where θk be the set of parameters used to specify Mk, p(θk|YT ,Mk) is the posterior density

of θk and p(yT+1|θk, YT ,Mk) is the likelihood function associated with Mk evaluated at the

value yT+1. The parameter θk has been integrated out, so it does not appear in the Eq. 1.2.

In the likelihood-based perspective, the predictive density can take the form

p(yT+1|YT ,Mk) = p(yT+1|θMLE
k , YT ,Mk). (1.3)

The density is conditioned on θk = θMLE
k , the maximum likelihood estimator, on the right

side of Eq. 1.3, and thus, θk got absorbed into Mk on the left side of Eq. 1.3.

Extensive research has been done involving aggregation of the predictive densities. Mitchell

and Hall (2005) combined density forecasts using Kullback–Leibler information criterion.

Billio et al. (2013) used state space modelling to aggregate predictive densities and used

Bayesian formulation to estimate time-varying weights. Busetti (2017) discussed quantile

aggregation of predictive densities. Bassetti et al. (2018) used the Bayesian method to

estimate the beta transformation of the opinion pool. McAlinn and West (2019) develop a
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novel class of dynamic latent factor models for time series forecast synthesis called Bayesian

predictive synthesis which encompasses several existing forecast pooling methods.

For forecasting applications, an appropriate class of objective functions used to estimate

opinion pools are scoring rules. As the name suggests, a scoring rule is a function that assigns

a score to a probabilistic density based on how well it predicts the realized event. Scoring rules

can be judged based on ex-ante and ex-post properties (Winkler et al. (1996)). A scoring rule

is called proper (an ex-ante property) when it disincentivizes the forecaster from revealing the

probability density different from their true belief. Ex-post properties are concerned with how

the scoring rule evaluates the performance of a probabilistic density. Gneiting and Raftery

(2007) covered a thorough discussion on proper scoring rules and their theoretical properties.

Bates and Granger (1969) optimized weights in Eq. 1.1 by minimizing the variance. Degroot

and Mortera (1991) estimated optimal weights by minimizing the expected quadratic score

under the Bayesian framework. Geweke and Amisano (2011, 2012) optimized weights using

the log score and showed its usefulness via stock index data. Opschoor et al. (2017) compared

opinion pools optimized from censored likelihood score (CLS), CRPS, and log score on

stock market indices data and found that CLS performed the best, whereas the log score

performed the worst. Garratt et al. (2023) transform the linear opinion pool using the

empirical cumulative distribution function to improve the matching with the marginal density

of the target variable. The properties of opinion pools vary based on the scoring rule used

to estimate them.

This paper contributes to the renewed interest in survey-based measures of inflation forecasts.

The Federal Reserve Bank of Philadelphia collects inflation predictive densities from several

forecasters and publishes them on its website. They weigh all the predictive densities equally

to calculate the aggregate level density, thus obtaining the simple opinion pool (SOP). The

issue with the equal weights is that they do not utilize the past predictive accuracy of the

forecasters and thus, lead to an inefficient estimator of predictive density.
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This paper applies BOP to estimate weights for aggregated inflation density. The issue of

ignoring past predictive accuracy information could have been tackled through TOP, but

due to low data frequency, it is infeasible to use optimized-based methods for any length

of the training window. The inflation forecast obtained through the BOP at various levels

of shrinkage competes well with the Federal Reserve Bank of Philadelphia’s published SOP.

The average density allotted to realized inflation is higher, and the MSPE associated with

the estimated expected value is lower for the BOP than the SOP. The paper concludes by

providing future avenues of research.

Section 1.2 gives a brief overview of traditional opinion pools. Section 1.3 introduces the

Bayesian opinion pool. Section 1.4 presents the simulation study where the performance of

TOP and BOP are investigated in several settings. Section 1.5 covers the macroeconomic

application involving the SPF data. Section 1.6 concludes the paper.

1.2 Scoring Rules for Traditional Opinion Pools

This section summarizes the asymptotic properties of TOP and how it is used to estimate

opinion pools. Let θ0 be the true vector of parameters, M0 be the true model or DGP and

p(yt, θ) be the parametric probability distribution. Let any proper scoring rule be presented

as S(·). Gneiting and Raftery (2007) showed that asymptotically

arg max
θ

1

T

T∑
t=1

S(p(yt, θ)) −→ θ0 as T −→ ∞. (1.1)

If the constraints on weights in Eq. 1.1 are satisfied the opinion pool satisfies the conditions

of an appropriate probability distribution. Thus, they can be represented as a probability

distribution, p(yt, wT ), where wT = {w1T , w2T , . . . , wKT} be the parameter of interest. Then
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asymptotically,

arg max
wT

1

T

T∑
t=1

S(p(yt, wT )) −→ w0 as T −→ ∞. (1.2)

Bernardo and Smith (2000) considered three possible scenarios in the context of model

averaging. First is the M-closed case where M0 is identified and available in the model list.

In this case, opinion pools will converge to M0 asymptotically and w0 = {1, 0, . . . , 0}′ where

the weightage of 1 is allotted to M0 and 0 to other models. The second case is when M0

is available, but the researcher decides to intentionally leave it out of the model set (M-

complete case). The third one is the M-open case, the most applicable and is considered in

this paper, is when M0 is not part of the model list. In this case, wT will converge to some

weight vector w0 = w∗, which is related to the properties of the metric implied by the scoring

function. For example, the log score minimizes the Kullback–Leibler divergence from M0 to

the opinion pool (Gneiting and Raftery (2007)).

Elliott et al. (2016) argued that there is no natural choice for choosing the scoring rule under

the M-open case. Thus, the paper considers log (L), quadratic (Q), spherical (S), CRPS (C),

and FTMS (F) scoring rules for estimating weights in Section 1.4. For a given predictive

density p(yT+1|YT ,Mk) and realization of yT+1 = yrT+1, these scoring rules will allot a score

7



as

L(y∗) = log(p(yrT+1|YT ,Mk))

Q(y∗) = 2p(yrT+1|YT ,Mk)−
∫ ∞

−∞
p(yT+1|YT ,Mk)

2dyT+1

S(y∗) =
p(yrT+1|YT ,Mk)

(
∫∞
−∞ p(yT+1|YT ,Mk)2dyT+1)0.5

(1.3)

C(y∗) = −
∫ yrT+1

−∞
F (yT+1|YT ,Mk)

2dyT+1 −
∫ ∞

yrT+1

(F (yT+1|YT ,Mk)− 1)2dyT+1

F (y∗) = −
(yrT+1 − µk

σk

)2
+ log(σ2

k),

where µk is the mean, σk is the standard deviation and F (yT+1|YT ,Mk) is the cumulative

predictive density for Mk. The scoring rules are multiplied by minus one to have higher

scores implying improved forecast performance. An issue with the CRPS rule is that the

optimization becomes computationally heavier as the number of predictive densities increases

due to the presence of integration (Gneiting and Raftery (2007)). Dawid and Sebastiani

(1999) suggested four proper scoring rules based on the first two moments of the predictive

distribution, and F (y∗) is chosen to be the most popular one in this paper. Given YT is

realized, the weights for the opinion pools are estimated as

w∗
T = arg max

wT

T∑
t=1

S
( K∑

k=1

wk,T p(yt|Yt−1,Mk)
)
, (1.4)

where w∗
T = {w∗

1T , w
∗
2T , . . . , w

∗
KT}. The weight vector has a T subscript instead of t to

represent the information incorporation up to T and the estimation being recursive. The
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opinion pool for yT+1 will take the form

p(yT+1|YT ) =
K∑
k=1

w∗
k,T p(yT+1|YT ,Mk). (1.5)

1.3 Bayesian Opinion Pool

This section lays out the estimation procedure for opinion pools under the proper Bayesian

formulation. To obtain the posterior density of weights given data, the Bayes theorem is

utilized and is given as

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝
T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
) K∏

k=1

wαk−1
k,T . (1.1)

The weights are treated as a K-dimensional, simplex bound, random variable endowed with

a Dirichlet prior.

p(wt) ∼ Dir(α1, α2, . . . , αK), (1.2)

where the hyperparameter αk determines the relative weight given to Mk ∀ k = 1, 2, . . . , K,

thus allowing the incorporation of prior information for any forecaster. One of the important

properties of the Dirichlet Prior is its adaptability to applications related to model selection

and model averaging. If the value of αk is kept above 1 for all k, the prior penalizes allotting

9



Figure 1.1: Draws from 3-dimensional Dirichlet with different α

extreme weights to some models; thus, the posterior mean of weights tends to be closer to

equal weights. As αk tends towards infinity for all k, the posterior mean of weights tends

towards equality. If the value of αk is kept below 1 for all k, the prior incentivizes extreme

weights for some models. As αk tends towards 0, the posterior weights tend towards choosing

the best model among the set. This is useful in case the application requires model selection.

Keeping αk = 1 for all k makes the prior uniform which lets the data steer the posterior mean

of weights towards optimized values while imposing mild shrinkage since the prior’s mean is

equal weights. To illustrate, Figure 1.1 shows 4 different cases of draws from 3-dimensional

Dirichlet distribution for different values of α = {α1, α2, α3}. The top-left figure represents

the uniform prior with α = {1, 1, 1} where all possible combinations of weights are equally

likely. The top-right figure represents a stronger shrinkage of weights towards 1/3 since

α = {5, 5, 5} which can be useful for model averaging. The bottom-left figure represents the

shrinkage of weights towards boundary cases since α = {0.2, 0.2, 0.2} which can be useful for

model selection. The bottom right figure represents the case when non-sample information

is available about the experts and all experts are not preferred equally.

Given that the opinion pool itself is an appropriate probability distribution function, it makes
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sense to treat it as the joint conditional density (equivalent to the joint likelihood function)

given as

p(YT |wT ) =
T∏
t=1

p(yt|Yt−1)

=
T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
)
. (1.3)

The conditional density incorporates the past predictive performance of experts as it is

defined as a sequence of one-step-ahead conditional densities from time 1 to T . Since each

conditional density is a mixture generated by the weights which are not varying with respect

to time, the weights are tied with past conditional densities.

Given the prior and the conditional densities, the posterior density of the weights takes the

form

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝
T∏
t=1

( K∑
k=1

wk,T p(yt|Yt−1,Mk)
) K∏

k=1

wαk−1
k,T . (1.4)

It is easy to see that the log score rule (optimal prediction pools by Geweke and Amisano

(2011)) is a monotonic transformation of the conditional density.

log
( T∏

t=1

( K∑
k=1

wk,T p(πt|π1:t−1)
))

=
T∑
t=1

log
( K∑

k=1

wk,T p(πt|π1:t−1)
)
.

Therefore, the mean of the posterior density of weights will coincide with the weights under
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the optimal prediction pool asymptotically. Gneiting and Raftery (2007) showed that the log

score minimizes the Kullback–Leibler divergence from DGP to the prediction model. This

means the weights under the BOP minimize the Kullback–Leibler divergence from DGP to

the opinion pool since the prior disappears in a large sample (Proof in the Appendix). In

small sample settings, the estimates of BOP will differ from the optimal prediction pool

as the BOP weights will shrink towards the prior. Since it is not feasible to optimize the

function under micronumerosity, the BOP with a uniform prior can be seen as an extension

of the optimal prediction pool, broadening its applicability.

To illustrate how the prior density interacts with the conditional density, Figure 1.4 show-

cases how uniform prior (top figure), tight prior with α > 1 (middle figure) and boundary

prior with α < 1 (bottom figure) shrink weights. The uniform prior expands the set of

feasible vectors of weights and shifts the mean of conditional density towards equal weights.

Increasing the value of α increases the strength of shrinkage (as seen in the middle figure)

and thus is useful in applications requiring all models to participate in the final analysis

(model averaging). The boundary prior shrinks weights towards the best model which can

be useful for applications related to model selection.

A

Prior (αk = 1) + Conditional Density = Posterior Density

Prior (αk > 1) + Conditional Density = Posterior Density
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Prior (αk < 1) + Conditional Density = Posterior Density

Figure 1.4: Illustration of weight’s shrinkage under Bayesian opinion pool.

Since the final form of the posterior is non-standard, the paper uses the Metropolis-Hasting

(MH) algorithm to draw from the posterior density. For the proposal density, one potential

candidate is the Dirichlet distribution centred at the previous draw. Let w
(g)
T be wT drawn

in the gth iteration. The Markov Chain Monte Carlo (MCMC) estimation of the BOP for

the Dirichlet proposal is summarized in the following steps.

Step 1. Choose a value of wT = w
(0)
T .

Step 2. At the gth iteration, sample w
(g)
T ∼ Dir(α(g−1)) where α(g−1) is chosen to center

the distribution at w
(g−1)
T .

Step 3. Generate u ∼ U(0, 1).

Step 4. If u ≤ min
(

p(w
(g)
T |YT )Dir(w

(g−1)
T |w(g)

T )

p(w
(g−1)
T |YT )Dir(w

(g)
T |w(g−1)

T )
, 1
)
, return w

(g)
T , else return w

(g−1)
T . Go to

step 2 and continue until the desired number of iterations is obtained.

Since there is no obvious choice for α(g−1) in step 2, the researcher can choose α(g−1) = cw
(g−1)
T ,

where c is chosen based in the rejection rate. For the Dirichlet proposal, the acceptance rate

may be too low if the posterior density is narrow or the dimension is high. Alternatively,

the vector of weights can be transformed to be defined on an unbounded domain using a

multivariate logit transformation. Given θT = {θ1,T , . . . , θK−1,T}, the transformation will

13



look like

θk,T = ln(
wk,T

wK,T

) (1.5)

for all k = 1, . . . , K − 1. The draws are sampled from a tailored proposal normal density

as θT ∼ N(θ̄T , Ω̄T ). The mean of the Gaussian proposal, θ̄T is kept at an optimized value

calculated using a back-fitting MCMC algorithm (details can be found in the Appendix) since

the numerical optimization is infeasible under micronumerosity. The covariance matrix,

Ω̄T can be kept equal to either σIK−1 where σ is decided based on the rejection rate or

proportional to the inverse Hessian of the conditional density at θ̄T . Let θ
(g)
T be θT drawn

in the gth iteration. The MCMC estimation of the BOP for the transformed proposal is

summarized in the following steps.

Step 1. Choose a value of θT = θ
(0)
T

Step 2. At the gth iteration, sample θ
(g)
T ∼ N(θ̄T , Ω̄T ).

Step 3. Transform θ
(g)
T to obtain w

(g)
T .

Step 4. Generate u ∼ U(0, 1).

Step 5. If u ≤ min
(

p(w
(g)
T |YT )q(w

(g−1)
T )

p(w
(g−1)
T |YT )q(w

(g)
T )
, 1
)
, return w

(g)
T , else return w

(g−1)
T . Go to step 1

and continue until the desired number of iterations is obtained.

The density q(·) is the transformed density for wT obtained after incorporating the Jacobian

of the transformation. The mean of the Gaussian proposal, θ̄T , can also be kept as the

previous draw (just like in the case of the Dirichlet proposal).

The framework is not restrictive to one-step-ahead densities and can be extended for long

horizons. For a given predictive density p(yt+h|Yt,Mk) representing h step ahead forecast,
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the posterior density of the weights will look like

p(wh
T |YT ) ∝

T∏
t=1

( K∑
k=1

wh
kT p(yt+h|Yt,Mk)

) K∏
k=1

(wh
kT )

αk−1, (1.6)

where wh
T = {wh

1T , . . . , w
h
KT} represents weights optimized using information upto time T

and used for predictions in period T + h.

1.4 Simulation Study

This section explores the predictive performance of BOP and TOP on simulated data. The

DGP and individual models are considered under the linear setting to preserve useful insights

that might get lost in a complicated analysis. Let the variable of interest be zt. The data is

artificially generated as

DGP : zt = 0.5 + 0.5zt−1 + ϵt , where ϵt
iid∼ N(0, 5). (1.1)

Let zrt be the realized value of zt at time t. There are three experts who submit their

forecasts for zrt as N(zrt , vark) for k = 1, 2 and 3. Therefore, the mean of the expert’s

predictive densities are unbiased and only the variance differ as follows
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Case 1 Case 2

Expert 1 var1 = 4 var1 = AR(1)

Expert 2 var2 = 8 var2 = AR(1)

Expert 3 var3 = 16 var3 = AR(1)

Table 1.1: Variance for Expert’s Predictive Densities

Case 1 tests the situation where there exists a clear ranking in accuracy within the experts.

Expert 1 is the most accurate whereas expert 3 is the least. This scenario tests the ability

of BOP and TOP to identify the best model for different training samples. Case 2 models

the variance of the mean of the predictive density to follow an autoregressive process with

varying degrees of persistence. This scenario introduces persistence to the accuracy of an

expert’s prediction while allowing the ranking of experts to change over time. Thus, one

expert can predict accurately for some periods and inaccurately for others. This tests the

ability of BOP and TOP to estimate the weights which optimizes forecasting accuracy while

ensuring against bad predictions due to the over-reliance on any one of the experts.

The opinion pools are trained using the following sample sizes: T ∈ {5, 10, 20, 30, 50, 100}

for case 1 and T = {30, 100, 200} for case 2. Case 2 is tested with a larger T allowing for

rankings to change over time. The testing sample is kept at 30 observations and predictions

are made for short-term (one step ahead), medium-term (three steps ahead), and long-term

(six steps ahead) forecasting horizons (h). The persistence levels of 0.2, 0.5 and 0.8 are used

to test the sensitivity of results in case 2. The predictive exercise uses the rolling window

approach with the window length equivalent to T . The BOP is estimated using the Dirichlet

prior with varying values of αk. A total of 10 simulation runs are considered for each case.
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1.4.1 Volatility of Weights under Small Sample Setting

The paper considers case 1 to study the behaviour of weights since a clear ranking of models

is defined. This exercise finds that the weights under TOP have high volatility when T

is small (near micronumerosity). This can be seen in Figure 1.5 which shows the weight

evolution for TOP and BOP for T = 5, 10 and 30 for one of the simulation runs. Each row

represents different types of opinion pools whereas each column represents the sample size.

For T = 5 and 10, the weights for TOP have a high variance, especially for log, quadratic

and spherical opinion pools where the vacillations are as extreme as going from 0 and 1 in

one period. This indicates that TOP is relying on the immediate predictive accuracy of the

expert since there is a lack of data regarding their consistency. On the other hand, BOP

is much more stable, stays close to the prior and is able to identify the best model while

not overly relying on it for prediction. This is due to the Dirichlet prior with αk = 1 which

imposes sufficient shrinkage (since it is the case of near micronumerosity) on weights. As

T increases, the weights deviate from equal weights as enough evidence is present about

the accuracy of the concerned model. For T = 30, almost all the opinion pools are able to

identify the best model and allot weights according to the ranking of the models.

17



Figure 1.5: Weights evolution for opinion pools

Table 1.2 contains the summary of the standard deviation for weights for TOP and BOP.

The standard deviation is estimated by first calculating the standard deviations of the weight

corresponding to the individual models over the testing period and then taking the mean of
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those standard deviations (three models). The BOP has the lowest standard deviation for

small samples (T = 5 and 10) because the prior stabilizes the weights around equality. As

the sample size increases (T = 20 and 30), the weights for TOP become stable as well and

start to converge towards the best model. This is intuitive since the opinion pools are able

to identify the best model when T is high.

Sample Log Quad Sphere CRPS FTMS Bayes

5 0.241 0.306 0.412 0.125 0.075 0.040

10 0.179 0.170 0.331 0.093 0.059 0.045

20 0.088 0.069 0.172 0.038 0.024 0.038

30 0.054 0.048 0.086 0.027 0.018 0.029

Table 1.2: Standard deviation of weights

The Dirichlet prior stabilizes the evolution of weights over time; leading to BOP having the

lowest volatility under the small sample setting. The stability over time allows the opinion

pool to avoid overfitting, which is one of the crucial features of a good predictive model. This

positive spillover affects the predictive performance which is discussed in Subsection 1.4.3.

1.4.2 Shrinkage of Weights

Since the Dirichlet prior allows the researcher to choose the intensity of shrinkage, this

subsection explores how the weight’s behaviour changes as αk changes. The paper considers

case 1 since a clear ranking of models is defined. Figure 1.6 shows the evolution of weights

when αk = 1, 3 and 5 for T = 10, 30 and 50. It is observed that the weights converge towards

equality as αk is increased which is an expected result. The shrinkage is strong when T

is small as the prior dominates due to the insufficiency of information in the conditional

density. As T increases, the conditional density starts to dominate and the weights deviate
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Figure 1.6: Bayesian Opinion Pool with α > 1 for Model Averaging

from the equal weights. This property allows BOP to be used in applications related to model

averaging. As αk tends to infinity, BOP tends towards the simple opinion pool (opinion pool

with equal weights).

Figure 1.7 shows the evolution of weights when αk = 1, 0.6 and 0.3. for T = 10, 30 and 50.

In this case, the weights diverge away from equal weights and the best model is preferred

among the available ones. As αk tends to 0, BOP degenerates into the best model thus

preferred for applications related to model selection.
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Figure 1.7: Bayesian Opinion Pool with α < 1 for Model Selection
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1.4.3 Forecasting Performance

The paper uses MSPE to evaluate the predictive performance of various opinion pools. Since

decision-makers are generally interested in single-point estimates, the paper evaluates the

efficacy of the opinion pools using MSPE. Table 1.3 contains MSPE values for case 1 for

different sample sizes and forecasting horizons. The columns with the lowest MSPE are

highlighted boldly. BOP has the lowest MSPE for most of the scenarios. One can observe

that as the sample size increases, the optimal αk also increases. Since the conditional density

dominates the prior when T is high, a stronger prior leads to optimal shrinkage. Among

the TOP, CRPS and FTMS perform well and their MSPE is significantly lower than log,

quadratic and spherical. For FTMS, since the predictions of experts vary only through mean

and variance in the DGP (normal distribution is imposed), the first two moments incorporate

sufficient information for opinion pools. For CRPS, it captures the idea of proximity better

than other scoring rules and thus performs well in this simulation exercise.

Table 1.4 contains MSPE values for case 2 for different sample sizes, forecasting horizons

and persistence. The results are similar to that of Table 1.3 where BOP dominates for the

majority of cases. CRPS and FTMS perform significantly better than log, quadratic and

spherical scoring rules. This shows that BOP is able to capture the dynamic behaviour of

experts when the ranking based on predictive accuracy changes over time.

1.5 Application: Inflation Prediction using the Survey

of Professional Forecaster

The Survey of Professional Forecasters is a useful source of data for economists and poli-

cymakers. Croushore and Stark (2019) in ”The Fifty Years of the Survey of Professional

Forecasters” stated, ”In 2018, the survey generated more than 45,000 unique hits to the
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Sample Horizon Log Quad Sphere CRPS FTMS
αk = 1

Bayes
αk = 2 αk = 3

5 1 144 212 200 81.5 75.7 74 76.1 77.4
5 3 152 176 168 78.8 72.4 70.5 71.8 72.8
5 6 153 147 160 68.6 62.5 62.9 64.6 65.4
10 1 133 157 157 88.7 88.6 86.9 89.5 91.7
10 3 129 152 160 79.8 80.5 79.1 82.7 84.6
10 6 127 132 158 79.9 77.1 73.5 76.0 77.5
20 1 124 130 126 70.5 72.6 68.1 70.0 72.4
20 3 111 124 119 64.5 67.1 62.5 64.7 66.9
20 6 93.2 114 99.3 56.9 59.2 55.2 57.3 59.4
30 1 112 131 88.2 70.7 74.8 67.4 69.1 72.0
30 3 106 127 83.0 65.5 70 62.8 64.2 67.6
30 6 90.0 115.4 75.3 59.2 63.3 56.3 58.4 61.4
50 1 124 144.6 105 76.9 83.8 82.5 76.1 76.9
50 3 114 135 97.6 71.3 78.2 76.4 71.0 71.6
50 6 109 126 92.1 67.3 73.2 72.4 67.1 67.8
100 1 115 124 77.6 68.3 73.6 78.3 68.4 65.4
100 3 106 114 70.1 61 66.2 70.7 61.0 58.1
100 6 98.0 106 63.7 56.2 61.2 64.3 56.1 54.1

Table 1.3: Mean Square Prediction Error for Case 1
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Persistence Sample Horizon Log Quad Sphere CRPS FTMS Bayes
αk = 1

0.2 30 1 14.30 6.84 10.24 5.26 5.25 5.22
0.2 30 3 13.22 6.14 8.88 4.60 4.61 4.62
0.2 30 6 11.29 5.83 8.31 4.18 4.18 4.18
0.2 100 1 12.64 4.75 6.45 4.12 4.13 4.16
0.2 100 3 10.84 4.36 5.64 3.74 3.75 3.72
0.2 100 6 9.32 4.05 4.95 3.47 3.48 3.45
0.2 200 1 10.82 5.98 6.42 5.63 5.64 5.61
0.2 200 3 10.28 5.13 5.55 4.91 4.92 4.91
0.2 200 6 7.99 4.61 4.78 4.34 4.35 4.27
0.5 30 1 15.41 7.87 10.81 5.54 5.55 5.51
0.5 30 3 12.97 7.061 9.39 4.91 4.92 4.91
0.5 30 6 12.84 6.70 8.54 4.45 4.45 4.43
0.5 100 1 12.52 5.17 7.03 4.45 4.47 4.46
0.5 100 3 11.22 4.74 6.25 4.00 4.03 3.96
0.5 100 6 9.61 4.37 5.48 3.72 3.74 3.68
0.5 200 1 12.41 6.90 7.25 6.33 6.35 6.24
0.5 200 3 11.28 5.97 6.37 5.59 5.60 5.53
0.5 200 6 8.88 5.41 5.55 5.00 5.02 4.87
0.8 30 1 18.27 10.62 13.77 7.03 7.10 6.98
0.8 30 3 18.97 9.70 14.27 6.47 6.50 6.45
0.8 30 6 19.40 8.82 13.28 6.00 5.99 5.94
0.8 100 1 15.57 6.59 9.17 5.76 5.80 5.75
0.8 100 3 14.51 6.17 9.02 5.38 5.42 5.34
0.8 100 6 14.00 5.69 8.01 4.97 5.00 4.94
0.8 200 1 18.22 9.79 10.42 8.77 8.81 8.61
0.8 200 3 16.74 8.45 9.21 7.74 7.77 7.69
0.8 200 6 13.73 7.69 8.18 7.01 7.05 6.86

Table 1.4: Mean Square Prediction Error for Case 2
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Philadelphia Fed’s external webpages...The audience consists of academic researchers... pol-

icymakers...and business people” (P.3). Figure 1.8 shows the increase in citations and pub-

lications of papers per year which contain ”Survey of Professional Forecasters” in their title,

abstract or keywords1.

Figure 1.8: Citations and Publications per year for papers using SPF

The Federal Reserve Bank of Philadelphia publishes individual and aggregate density pro-

jections (and point estimates) for macroeconomic variables every quarter. They survey

individual professional forecasters immediately after the U.S. Bureau of Economic Analysis

(BEA) releases data. A unique ID is assigned to each forecaster, making tracking them pos-

sible. Anonymity is maintained to prevent strategic misreporting. The details of the data

set and its significance can be found in Croushore et al. (2019), Clements et al. (2023) or on

the Federal Reserve Bank of Philadelphia’s website. This paper focuses on inflation density

forecasts. Diebold et al. (1997) argued that point forecasts from SPF are extensively used

in macroeconomic literature, but density forecasts are relatively less explored.

The experts submit their forecast densities by allotting probabilities to bins (range of inflation

1Survey of Professional Forecasters before 1992 was known as the ASA-NBER Survey of Expectations
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rates) which are predetermined by the Fed so that the final densities are standardized and

take the form of a histogram. Engelberg et al. (2009) fit continuous densities to the individual

surveyed histograms to undo discretization. However, this interprets the survey replies as

some subjective continuous distribution that is present in the minds of individual forecasters

(Kenny et al. (2015)). Moreover, it imposes distributional assumptions which may pose

practical challenges given that individual histograms are often restricted to very few bins.

Thus, this paper uses linear interpolation and assumes uniform probability mass within the

bins which is implicit in the assumption of a histogram (Clements (2002)).

SPF is used practically for two purposes. First, it is used to estimate inflation expectations.

Inflation forecasts are integral to many macroeconomic models as they are used to estimate

inflation expectations. For example, the augmented Phillips curve under aggregate price

formation captures the relation where the expectations of future inflation partly drive the

current inflation (Phelps (1967), Friedman (1968)). Keane and Runkle (1990) argue that a

model with rational agents can be better represented using the predictive data from SPF.

Coibion et al. (2018) referred to SPF extensively and argued for improved models that rely on

variables with expectations. In business cycle analysis, the efficacy of a real shock depends

on how much future inflation is anticipated (Kydland and Prescott (1982), Long Jr and

Plosser (1983)). Under the rational expectations hypothesis, only unexpected changes in

inflation lead to a change in real macro variables (Muth (1961)). The new Keynesian theory

of price dynamics is based on inflation driven by its own expectations (Ball et al. (1988)).

Carroll (2003) evaluated the influence of SPF data on private-sector expectations.

Second, SPF is used to forecast inflation accurately or test forecasting models. This facili-

tates decisions requiring accurate inflation predictions (for example, setting wage contracts).

Smets et al. (2014) incorporated SPF data to measure the forecasting accuracy of New Key-

nesian DSGE models. Forecasts based on the neural networks and several linear econometric

models were compared to SPF data (Croushore (1993)). Swanson and White (1997) used
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model selection on multiple non-linear models and found that no one model was able to

consistently beat SPF forecasts. Croushore et al. (2019) mentioned in their paper that ”The

SPF has become the gold standard for evaluating forecasts or comparing forecasting models”

(P.5).

The Federal Bank of Philadelphia publishes aggregated inflation forecasts density calculated

by taking a simple average of density estimates submitted by individual experts. Equal

weights are a reasonable choice if the objective is to track inflation expectations. Since, the

aim is to capture how rational agents perceive future inflation, including everyone’s opinion

captures the idea of how the economy expects inflation to be. Also, numerical optimization

is infeasible as 160 forecasters participated during 120 quarters (Q1 1992 to Q4 2021), with

an average of 35 active forecasters per quarter. The number of forecasters is always higher

than the number of data points for any window length.

If the objective of SPF is inflation forecasting, then equal weights are a sub-optimal choice.

Aastveit et al. (2018) mentioned that ”Despite the long history of the SPF, little attention

has historically been paid to how the weights on the competing forecast densities in the

finite mixture should be determined” (P.10). The issue with the simple opinion pools (SOP)

approach is that it does not exploit the information about the past predictive performance

of the experts. Figure 1.9 presents the predictive performance of experts who are active

for at least 10 quarters in the period of Q1 1992 to Q4 2021. The vertical axis represents

the probability allotted by an expert to the bin which contained the realized value of the

inflation rate. Thus, higher the probability allotted by the expert, better the forecast. The

horizontal axis represents the unique ID of experts. The size of the points represents the

number of quarters, an expert was active in the past. The figure depicts that some experts

were consistently active and allotted much higher probability to the realized inflation rate

than the average and vice versa. Using equal weights ignores this information and thus there

is an opportunity to improve the predictive accuracy of aggregated inflation forecast density.
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Figure 1.9: Expert’s Performance in Inflation Prediction

This paper aggregates inflation density forecasts using the BOP with αk = 1, 1.5 and 3.

BOP not only accounts for important information related to the past accuracy of individ-

ual forecasters but also allows estimation under micronumerosity where optimization-based

methods fail. The decision to choose prior which shrinks weights towards equality is guided

by the non-sampling information. Since the Fed uses equal weights to aggregate densities,

it can be considered a good benchmark to start from. Also, researchers in the past have

frequently found combining point forecasts with equal weights to be very competitive with

the more complicated weighting techniques. Clemen (1989) shows in his review that equal

weights are difficult to beat. Similar results were concluded by Stock and Watson (1999) and

Fildes and Ord (2002). The prior shrinks the BOP towards SOP but still allows deviations

in case strong evidence for better relative predictive accuracy is present.

Frequent entry and exit of forecasters make optimization of the opinion pool more involved.

Capistrán and Timmermann (2009) elaborated on the problem of having an unbalanced panel
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and recommended filling in the missing values before aggregation. They also considered using

the unbalanced panel by keeping only the frequent forecasters. However, they had to resort

to the simple average when there were fewer remaining forecasters than parameters to be

estimated.

This paper does not fill in for the missing forecasting density and follows the following

method to deal with the unbalanced panel.

• Entry: Suppose a forecaster is unavailable in the training data (m quarters moving

window) but submits the prediction for the (m + 1)th quarter. Thus, there is no

information on the past predictive performance. In that case, their density is allotted

1/A weight (equal weight), where A is the number of active forecasters in the (m+1)th

quarter. Alternatively, the researcher can choose to include the expert only if they have

participated for a certain number of quarters (Conflitti et al. (2015) used 5 quarters of

data).

• Exit: Suppose a forecaster was available in the training data (m-quarter moving win-

dow) but not for the (m + 1)th quarter. In that case, their density will be allotted 0

weight, and they will not be considered in the optimization process.

• Partial Availability: Suppose a forecaster submits the prediction for (m+1)th quarter

but was available in s periods out of m training period where s < m. The weights

associated with the forecaster will enter the joint conditional density (Eq. 1.3) in the

periods where they were available (total of s times). Thus, the methodology rewards

consistency as the forecaster with active participation will have a greater influence on

the opinion pool density than an inactive one.

To explain it better, let us assume that 40 forecasters were active in the last 20 quarters (not

necessarily for every quarter), which is the training period for this case. Only 10 forecasters
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submitted their predictions for the 21st quarter, including 2 new ones. Then, the weights

allotted to these 2 new ones would be 1/10 each, and the weights for the remaining 8, whose

values were estimated based on the past data (excluding the twelve inactive forecasters),

would be normalized so that the total sum of the weights for 10 active experts is 1.

The application considers moving windows approach with varying lengths from 21 to 29

quarters of training data and the rest of the period until 2021 Q4 as testing data. The prior

with αk > 1 tends to bring weights closer 1
K

where K is the total number of active experts.

Figure 1.10: Simple and Bayesian opinion pool densities for Q1 2014

To visually aid the understanding of the information aggregation process under the BOP

(uniform prior) and SOP, Figure 1.10 demonstrates BOP and SOP final predictive densities

for inflation for Q1 2014. A total of 40 forecasters submitted their predictions. The final

densities look different representing the fact that BOP allotted different weights to each

expert than SOP. In this particular case, BOP allots a higher probability to the realized

inflation than SOP
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Figure 1.11: Weights allotted to experts under BOP and SOP for Q1 2014

Figure 1.11 shows estimated weights under BOP for different values of αk for Q1 2014.

The weights become concentrated around equal weights when αk increases, implying strong

shrinkage and convergence towards SOP.

The aggregated predictive densities, representing out-of-sample forecasts, are tested based

on the average density allotted to the realized inflation rate. Figure 1.12 shows the average

density difference between SOP and BOP evaluated at the realized inflation rate for different

rolling windows. The difference is normalized to 0 and thus the vertical red line at the origin

is represented by SOP. As the training window varies, the predictive accuracy of opinion

pools is tested on the corresponding remaining quarters of data until Q4 2021, and the

weights are updated each quarter (recursive). The average density allotted by the BOP is

always higher than the SOP. As αk increases, the MSPE difference between SOP and BOP

becomes smaller representing that BOP is tending towards SOP. The difference is significant

at 5% for the uniform prior for all training window lengths considered.
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Figure 1.12: Average Density Evaluated at the Realized Inflation Rate for Opinion Pools

Figure 1.13: MSPE associated with opinion pools for different training windows
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21 22 23 24 25 26 27 28 29

BOP 0.433 0.440 0.445 0.453 0.451 0.457 0.462 0.467 0.468

SOP 0.449 0.454 0.459 0.463 0.467 0.471 0.476 0.482 0.488

Diff -0.016*** -0.014** -0.014** -0.01* -0.016*** -0.014*** -0.014** -0.015*** -0.02***

Significance: 0.1 (*), 0.05 (**) and 0.01 (***)

Table 1.5: MSPE associated with opinion pools for different training windows

To test whether the improvement in the density forecast estimator spills over to the estimates

of point forecasts, opinion pools are compared using MSPE. Table 1.5 presents MSPE for

BOP with a uniform prior (αk = 1) and SOP. The MSPE for BOP is smaller than SOP

for every length of training window considered. The difference in MSPE between BOP and

SOP is significant. Figure 1.13 shows the MSPE difference (normalized to 0) between BOP

and SOP for different training windows. The figure also shows that the MSPE difference

for BOP with tight priors (αk = 1.5 and 3) is smaller. This validates that the complete

information incorporated in estimating the forecast density has a positive spillover effect on

the estimate of the point forecast. It also suggests that all forecasters are not equal in their

predicting abilities, and the BOP exploits this asymmetry to its advantage.

1.6 Conclusion

This paper considers two limitations associated with traditional opinion pools. First, opti-

mizing opinion pools using a scoring function is not feasible if the number of models exceeds

the data length, an issue faced in macroeconomics applications. Second, high volatility in

weight associated with TOP affects the predictive accuracy in small samples. Thus, a lot of

researchers resort to equal weights since the marginal gains from optimized weights do not

justify the cost of involving oneself in a complicated procedure.
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This paper proposes estimating opinion pools under the Bayesian framework to resolve these

issues. The Bayesian formulation allows the weights to be estimated under micronumerosity.

The MCMC algorithm enables sampling of the high dimensional weight vector from its joint

posterior density leading to efficiency gains. The use of a Dirichlet prior makes the weights

relatively more stable over time and allows the researcher to control the shrinkage level.

Apart from being feasible and flexible, the BOP is found to be highly competitive compared

to TOP, when micronumerosity is not the case.

In the application, the paper uses SPF data to obtain better estimates of inflation forecasts

using the BOP. The Federal Bank of Philadelphia estimates the aggregate inflation density by

allotting equal weights to all the individual densities. The BOP uses optimized weights based

on the past accuracy of the forecaster, thus utilizing richer information. The application

showed that the BOP (with various levels of shrinkage) outperforms the SOP published by

the Federal Bank of Philadelphia.

The applications of BOP extend to macroeconomics or finance, especially in settings which

deal with aggregating predictive densities. Gneiting and Ranjan (2013) combined predictive

cumulative distributions and tested the approach on forecasting S&P 500 returns. McAlinn

et al. (2020) used the Bayesian predictive synthesis for applications related to macroeco-

nomic forecasting. Del Negro et al. (2016) estimated time-varying weights in linear opinion

pools (Dynamic Pools) and used them to investigate the relative forecasting performance of

dynamic stochastic general equilibrium (DSGE) models with and without financial frictions

for output growth and inflation. Baştürk et al. (2019) combined density forecasts to improve

portfolio strategies.

Given that the BOP can be applied to settings involving micronumerosity, where TOP can

not be estimated, and its predictive accuracy is highly competitive with TOP when micron-

umerosity is not an issue, a stronger case can be made for its exploration and adoption in

future research. While the discussion in the paper focused on macroeconomic time series
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data, the usefulness of the techniques can be extended to other applications like gambling,

stock market, election polls etc. The utility of the BOP in other simulation settings, im-

provements in the MCMC algorithm and estimation of optimal shrinkage can be explored in

future research work.
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Chapter 2

Extending the Versatility of

Non-Parametric VAR Models:

Bayesian Specification, Estimation

and Dynamic Factor

2.1 Introduction

Vector Auto-Regressive (VAR) models have significantly contributed to empirical macroe-

conomics literature, following the seminal work of Sims et al. (1986). The linear form is

intuitive, capturing the dynamics and inter-dependency of multiple macroeconomic vari-

ables. Its popularity stems from its broad applicability, encompassing techniques such as

time series modelling and forecasting. Let yt = {y1t, y2t, . . . , yQt}′ be a Q dimensional vector

for all t = 1, . . . , T . For a given t, the basic VAR model associates each variable with their
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own and other variable’s lag values as

yt = c+
P∑

p=1

Bpyt−p + ϵt. (2.1)

where c is a Q × 1 dimensional vector of intercepts, Bp is Q × Q dimensional matrix of

parameters for yt−p and p = 1, . . . , P being the number of lags. It assumes E(ϵt) = 0 and

var(ϵt) = Ω with Ω being a Q×Q dimensional variance covariance matrix.

Beyond its basic form, the VAR model can capture complicated relations between the vari-

ables. For instance, following Hamilton (1989), a lot of research has been done on regime-

switching models (Hansen (1992), Chib (1996), Vigfusson (1997), Kim and Nelson (1998),

Kim et al. (2005), Sims and Zha (2006)). Tong (1978) explored structural instability in uni-

variate models and Balke (2000), Huang et al. (2005) and, Van Robays (2016) furthered it to

VAR models. The time-varying parameter VAR (TVP-VAR) models relaxed the assumption

of the static parameter value, allowing the coefficients to vary over time as {Bjt}pj=1 (Canova

(1993), Cogley and Sargent (2005), Primiceri (2005), Chan and Jeliazkov (2009) and many

others).

One theme common to many extensions, including those stated above, is the assumption

of linearity – allowing the model to be tractable in terms of estimation and interpretation.

However, the linear model is often unable to explain all the macroeconomic relations, espe-

cially when the non-linearity is prominent (Engle (1982), Robinson (1983) and Vieu (1995)).

To illustrate, the paper considers the following example to motivate the types of misspecifica-

tion that arise from assuming a linear form for a non-linear relation. Let the data generating

process (DGP) be yt = 50 + 10x − 0.1x2 + ϵt, ϵt ∼ N(0, 20), which is presented in panel

(A) of Figure 2.1. If linear regression is used for estimation (represented by the blue line in

panel (A) of Figure 2.1), the regression residuals will be perceived as heteroskedastic which
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(a) (b) (c)

Figure 2.1: Consequences of ignoring nonlinearity

was not the case in the DGP. In time series analysis, when the covariate could be a lag of

the outcome variable, the misspecification can lead to the error showing serial correlation.

Furthermore, even though the DGP have Gaussian errors, they will appear non-Gaussian in

a linear regression (panel (B) of Figure 2.1). Due to the linearity restriction, the error distri-

bution will be perceived as a mixture of normals and in this particular case, a bimodal. The

researcher will conclude that the Gaussian assumption is inadequate when the real culprit

is neglected nonlinearity.

Let’s assume that the researcher chooses to approximate the nonlinearity by restricting

attention to the class of piecewise linear polynomials. if a bilinear model is fit to the data

(panel (C) of the Figure 2.1) one can erroneously conclude that there is evidence of structural

instability. Variations away from linear models may appreciably improve the fit, although

one should bear in mind that these would be spurious findings of instability or structural

breaks since the underlying data-generating process is a stable, although nonlinear function.

Such spurious instability, unfortunately, is not the only pitfall that can be induced by this

type of misspecification.

In response to a growing need, several non-parametric/non-linear time series models were

introduced. These include but are not limited to the threshold autoregressive (TAR) model

by Tong and Lim (1980) and the exponential autoregressive model by Haggan and Ozaki

(1981). Following in the footsteps, the assumption of non-linearity was extended to the

VAR models by Härdle et al. (1998b), who estimated the non-parametric version using
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polynomial fitting. Hastie and Tibshirani (1990) introduced generalized additive models,

which gave structure to equations having multiple non-linear functions. Jeliazkov (2013) used

this generalized additive model and estimated the non-parametric VAR (NPVAR) model

under the Bayesian hierarchical framework. Kalli and Griffin (2018) estimated the non-

parametric VAR model by modelling the stationary and transition densities using Bayesian

non-parametric methods.

VAR models have been extensively used to characterize the joint dynamics of economic

variables. The residuals of these equations are combinations of the underlying structural

economic shocks, assumed to be orthogonal to each other. The structural representation

requires moving from the VAR innovations to the structural shocks is called structural VAR

(SVAR) analysis. It involves two steps, first being the derivation of the structural shocks from

the innovations, and second that there be some economic rationale justifying it. The first

step is equivalent to a no omitted variable bias: any relevant variable containing information

about a structural economic shock distinct from what is already included in the VAR should

be included in the analysis. Omitting that variable means that the VAR innovations will not

in general span the space of the structural shocks, so the structural shocks cannot in general

be deduced from the VAR innovations.

One limitation of the VAR model is its inability to incorporate many variables due to the

dynamic inter-dependency structure. Every extra variable introduced in a VAR model con-

sumes 2qp + 1 degrees of freedom. Thus, VAR methods fail when there are hundreds of

economic time series variables that potentially contain information about these underlying

shocks. To deal with it, Bernanke et al. (2005) introduced the FAVAR model, which com-

presses the information from a large number of variables into a few factors, thus not steeply

penalizing the degrees of freedom. The premise of the dynamic factor model (DFM) is that

there are a small number of unobserved common dynamic factors that produce the observed

comovements of economic time series. These common dynamic factors are driven by the
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common structural economic shocks, which are the relevant shocks that one must identify

for the purposes of conducting policy analysis. Even if the number of common shocks is

small, because the dynamic factors are unobserved this model implies that the innovations

from conventional VAR analysis with a small or moderate number of variables will fail to

span the space of the structural shocks to the dynamic factors. Instead, these shocks are

only revealed when one looks at a very large number of variables and distils from them the

small number of common sources of comovement.

Bai et al. (2016) extended the FAVAR literature by studying the identification restriction

and proposing a two-step sequential estimation technique. Amir-Ahmadi and Uhlig (2009)

estimated the FAVAR model using the MCMC methods under the Bayesian likelihood-based

approach. Another innovation explored multivariate time series models with dynamic factors

(Geweke (1977), Sargent et al. (1977). Stock and Watson (2011) summarizes the three major

categories of estimation approaches used in the literature for Dynamic factor models.

Though the extension of the VAR model allows for non-linearity and factors, no attempt has

been made to include both in the same model. One of the reasons could be that the model

estimation becomes more involved when multiple extensions are incorporated. This paper

proposes a Bayesian hierarchical framework through which the VAR model with dynamic

factor can be estimated under the non-parametric framework. In other words, the paper

makes the first attempt to estimate the non-parametric VAR model with dynamic factors

and thus calls it the DF-NPVAR model.

The remainder of the paper is structured as follows. Section 2.2 discusses the hierarchical

framework of the DF-NPVAR model. Section 2.3 discusses the identification restrictions re-

quired for estimating loadings, factors and unknown additive functions. Section 2.4 presents

the prior distributions used for each parameter in the model. Section 2.5 lays out the es-

timation procedure, which uses an efficient fitting algorithm based on MCMC simulation

techniques. Section 2.6 explains the model comparison procedure. Section 2.7 suggests some
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of the model extensions, including serially correlated error and the inclusion of qualitative

variables. Section 2.8 considers applying the DF-NPVAR model to the post-war US economic

data and making inferences from the results. Section 2.9 concludes this article.

2.2 Hierarchical Model Framework

The paper proposes a hierarchical structure for the dynamic system of Q regression equations

under the Gaussian state space framework. Let the qth equation is modelled through the

additive form as in Hastie and Tibshirani (1990). For all t = 1, 2, . . . , T , p = 1, 2, . . . , P and

q = 1, . . . , Q,

y1t =

Q∑
q=1

P∑
p=1

g1qp(yq,t−p) + a′1ft + ϵ1t

...
...

...
...

yQt =

Q∑
q=1

P∑
p=1

gQqp(yq,t−p) + a′Qft + ϵQt,

(2.2)

where yqt is the dependent variable indexed by q, representing the equation it belongs to at

time t and grqpt is a function in equation r evaluated at the qth variable at time t with lag p,

where r = 1, . . . , Q. The factor ft is a D×1 dimensional vector which enters the model only

as a covariate along with aq, which is a D × 1 vector of factor loadings. The paper imposes
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the Gaussian distribution on the error term where ϵt = (ϵ1t, ϵ2t, . . . , ϵQt)
′ ∼ N(0,Ω1) with

Ω1 =



ω11 ω12 · · · ω1Q

ω21 ω22 · · · ω2Q

...
...

. . .
...

ωQ1 ωQ2 · · · ωQQ


.

The factors follow an AR(1) process, which is described using the transition equation as

follows

ft = Fft−1 + vt. (2.3)

The error term vt follows a Gaussian distribution given as vt ∼ N(0,Ω2) where Ω2 =

diag{σ2
1, . . . , σ

2
D} is a D × D variance covariance matrix. The model parameter F =

diag{γ1, . . . , γD} is a D ×D matrix containing coefficients for the lag factor terms.

The paper rewrites the model using Jeliazkov (2013) notations to simplify further and facil-

itate estimation. Let j = qp be the new index for lagged variables on the right-hand side of

Eq. 2.2 where j = 1, . . . , J with J = QP . The functions g(.) are now evaluated at the new

notation sqjt representing yq,t−p. The qth equation for a given period t in Eq. 2.2 will look

like

yqt = gq1(sq1t) + · · ·+ gqJ(sqJt) + a
′

qft + ϵqt. (2.4)

Equation 2.4 is stacked over time and written in the matrix form to facilitate the joint
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sampling of functions and parameters from their posterior distributions. For each function

in Eq. 2.4, let the T observations in the covariate vectors sqj = {sqj1, . . . , sqjT}′ determine

the corresponding mj × 1 design point vector vqj = {vqj1, . . . , vqjmj
}′ with entries equal the

unique ordered values of sqj, that is vqj1 < . . . < vqjmj
. Let the corresponding function

evaluation vector be denoted by gqj = {gqj(vqj1), . . . , gqj(vqjmj
)}′. The matrix form for

equation q in Eq. 2.2 can be written as

yq = Qq1gq1 +Qq2gq2 + · · ·+QqJgqJ + Aqf + ϵq, (2.5)

where Aq = IT ⊗ a′q is a T × DT dimensional matrix, ⊗ denotes the Kronecker product,

f = {f1, . . . , fT}′ is a DT × 1 vector, yq = {yq1, yq2, . . . , yqT}′ and eq = {eq1, eq2, . . . , eqT}′.

The incidence matrix Qqj is T ×mj dimensional which establishes the relationship between

sqj and vqj with entries Qqj(t,m) = 1 if sqjt = vqjm and 0 otherwise for m = 1, . . . ,mj. As

there may be repeating values in sqj, mj is less than or equal to T .

The paper attempts to motivate the non-parametric functions to be perceived as realizations

from a stochastic process, which tries to capture the degree of local variation between neigh-

bouring points. A smoothness hyper-parameter is introduced in the prior of the non-linear

functions, which completes the hierarchical structure of the DF-NPVAR model. The vector

of function evaluations gqj conditional on the smoothness parameter, τ 2qj, follows a Gaussian

distribution as

gqj|τ 2qj ∼ N(gqj0, τ
2
qjK

−1
qj ), (2.6)

where Kqj is an mj×mj matrix, which will be discussed later. From a Bayesian perspective,

τ is interpreted as a smoothness parameter which introduces a penalty to local variation
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between successive elements of gqj and still allows for any possible value that the elements

of gqj can take. From a likelihood-based perspective, it can be interpreted as a roughness

penalty term in penalized likelihood estimation (Wahba (1978)).

To complete the DF-NPVAR framework, Eq. 2.3 is stacked over time, and the complete

model looks like

y1 = Q11g11 +Q12g12 · · ·+Q1Jg1J + A1f + ϵ1

...
...

...
...

yQ = QQ1gQ1 +QQ2gQ1 · · ·+QQJgQJ + AQf + ϵQ

Hff = v,

(2.7)

where

Hf =



ID 0 · · · 0

−F ID · · · 0

...
. . . . . .

...

0 · · · −F ID


and v =



v1

v2
...

vT


.

Following the Gaussian structure, the error term v ∼ N(0, S) where S = diag{ΩS,Ω2,

. . . ,Ω2}. The matrix ΩS is discussed in detail in the next section. Equation 2.7 will be used

to characterize the likelihood function, which will facilitate the calculation of the conditional

distribution of non-parametric functions and parameters.
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2.3 Identification Restrictions

Bayesian models with proper priors do not suffer from the problem of identification (Lindley

(1971); Poirier (1998)). However, due to the additive nature of non-parametric functions

and the interaction of factors with loadings, there are two identification issues. The first

one is associated with the intercept term as all rows of every incidence matrix sum to 1,

leading to the problem of perfect collinearity among gqj. In simple terms, the functions gqj

are correlated by construction since they enter the mean function additively which leads to

the emergence of free constants. To see the problem, for any two functions r and s from

Eq. 2.4, the additive form can be written as

gqr + gqs = (gqr + α) + (gqs − α)

= g∗qr + g∗qs,

(2.8)

where g∗qr = gqr + α and g∗qs = gqs − α. Since both forms are observably the same, it is

obvious that neither an intercept nor the level of the individual functions is identified. There

are multiple ways to anchor the functions, which will lead to their unique estimation. This

paper adopts the strategy from Jeliazkov (2013) where the additive functions in qth equation

of Eq. 2.7 are identified by centering the J − 1 functions as

yq = Qq1gq1 +M0Qq2gq2 + · · ·+M0QqJgqJ + Aqf + ϵq, (2.9)

where M0 is a T × T symmetric idempotent mean-differencing matrix defined as

M0 =
(
IT − lT l

′
T

T

)
.
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Centering allows the first function to capture the intercept of the regression equation.

The second identification problem is associated with the factors and loadings. Since both

are unknown, the issue is related to the scale and sign identification. For any D×D matrix

Mf , the problem can be stated as

a
′

qft = (a
′

qMf )(M
−1
f ft) = a∗

′

q f
∗
t , (2.10)

where a
′∗
q = a

′
qMf and f

∗
t =M−1

f ft. Since both forms are observably identical, it is impossible

to identify the scale or sign of the term uniquely. Before introducing the identification

restriction, let

Af =



a′1

a′2
...

a′Q


=



a11 a12 · · · a1D

a21 a22 · · · a2D
...

...
...

aQ1 aQ2 · · · aQD


.

There are D2 free terms in the Mf matrix. The model specifies Ω2 to be a diagonal matrix

(discussed earlier) which imposes D(D − 1)/2 restrictions on Eq. 2.3. The identification

problem is resolved by fixing the top D2 part of the matrix Af to be a lower triangular
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matrix with diagonal elements restricted to 1 as

Af =



1 0 · · · 0

a21 1 · · · 0

...
...

. . .
...

aD1 aD2 · · · 1

a(D+1)1 a(D+1)2 · · · a(D+1)D

...
...

...

aQ1 aQ2 · · · aQD



.

This further imposes D2 −
(
D(D − 1)/2

)
restrictions, which is necessary and sufficient for

estimating the model.

2.4 Prior Distribution

This section discusses the prior distributions and model representation used in the paper to

draw from the posterior distributions of non-parametric functions, factors and other param-

eters.

2.4.1 Prior for Non-Parametric Functions

The non-parametric functions gqj are modelled as the second-order Markov process priors.

The prior imposes a structure on the functions where deviations from linearity are penalized.
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The prior is given as

gqjm =
(
1 +

hqjm
hqj,m−1

)
gqj,m−1 −

( hqjm
hqj,m−1

)
gqj,m−2 + uqjm, (2.11)

where hqjm = vqjm − vqj,m−1 (m is the index for unique ordered value) and uqjm ∼ N(0,

τ 2qjhqjm). The prior shrinks the functions to take a linear form and deviations are allowed if

enough evidence is present in the data. This can be seen by rewriting the second order prior

as

gqjm = gqj,m−1 +
hqjm
hqj,m−1

(
gqj,m−1 − gqj,m−2

)
+ uqjm, (2.12)

The slope value of the function at (m− 1)th value is extended to the mth value. The mean

slope for the function is the same for the consecutive order values and deviations are allowed

via uqjm whose variance is linearly proportional to distance hqjm. As discussed, small values

of τ produce smoother functions. Distribution of the initial state of gqj is necessary for the

Markov prior to being proper. The initial state can be modelled as

gqj1
gqj2

 ∼ N


gqj10
gqj20

 , τ 2qjGqj0

 . (2.13)

The prior for g can be written as Hqjgqj = uqj where uqj ∼ N(µ̂qj,Σqj) being the error term
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in the Markov process with µ̂qj = (gqj10, gqj20, 0, . . . , 0)
′ and Hqj and Σqj defined as

Hqj =



1 0 · · · · · · 0

0 1 0 · · · 0

hqj3

hqj2
−
(
1 +

hqj3

hqj2

)
1

. . .
...

. . . . . . . . . 0

0 . . .
hqjmj

hqj(mj−1)
−
(
1 +

hqjmj

hqj(mj−1)

)
1


and

Σqj =



Gqj0 0 · · · 0

0 hqj3 · · · 0

...
. . .

...

0 · · · 0 hqjmj


.

A simple change in variable from uqj to gqj will give the conditional distribution as gqj|τ 2qj ∼

N(gqj0, τ
2
qjK

−1
qj ) where the penalty matrix Kqj = H ′

qjΣ
−1
qj Hqj and gqj0 = H−1

qj µ̂qj.

2.4.2 Prior for Factor

The representation in Eq. 2.7 is made even more compact by stacking the observation equa-

tions over each other to enable the drawing of f from its joint conditional distribution.

y = Q1g1 +M00Q2g2 + · · ·+M00QJgJ + Af + ϵ

Hff = v,

(2.14)
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where,

y =


y1
...

yQ

 , Qj =


Q1j · · · 0

...
. . .

...

0 · · · QQj

 , gj =

g1j
...

gQj

 , A =


A1

...

AQ

 , ϵ =

ϵ1
...

ϵQ

 ,

Ω∗
1 =



IT × ω11 IT × ω12 · · · IT × ω1Q

IT × ω21 IT × ω22 · · · IT × ω2Q

...
...

. . .
...

IT × ωQ1 IT × ωQ2 · · · IT × ωQQ


, M00 =



M0 0 · · · 0

0 M0 · · · 0

...
. . .

...

0 · · · 0 M0



and ϵ ∼ N(0,Ω∗
1). The VAR equation is considered as the likelihood function. A simple

change in variable from v to f in the dynamic factor equation will lead to f ∼ N(0, K−1
f )

where the precision matrix Kf = H ′
fS

−1Hf . Initial states for all the factors are defined as

fd1 ∼ N(0, σ2
d/(1− γ2d)). The initial conditions ensure that the prior distribution is proper.

Therefore, the matrix ΩS = diag{σ2
1/(1− γ21), . . . , σ

2
D/(1γ

2
D)}.
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2.4.3 Prior for other parameters

The priors for other coefficients and hyperparameters for q = 1, . . . , Q, j = 1, . . . , J and

d = 1, . . . , D are given as

τ 2qj ∼ IG(
νqj0
2
,
Vqj0
2

)

Ω−1
1 ∼ W (r0, R0)

a ∼ N(a0, A0)

γd ∼ TN(−1,1)(γd0, Gd0)

σ2
d ∼ IG(

σd0
2
,
Sd0

2
),

(2.15)

where a = {a′1, . . . , a′Q}′ is a QD × 1 dimensional vector. The new vector representation of

loadings will be useful for specifying its full conditional distribution.

2.5 Estimation

The paper first considers estimating a univariate Gaussian non-parametric model with one

dynamic factor and one lag to motivate the estimation. Let yt and ft be scalar quantities.

The model will take the following form

yt = gt(yt−1) + aft + ϵt

ft = γft−1 + vt.

(2.16)
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The stacked version of the univariate model can be written as

y = Qg + Af + ϵ , ϵ ∼ N(0, σ2
ϵ I)

Hff = v , v ∼ N(0, σ2
vI).

(2.17)

Let θ denote the set of all model parameters (the vector will change depending upon the

context in the following sections). The MCMC estimation for the univariate model involves

sequential sampling from the conditional distributions. However, sequential sampling of

factors and their loadings suffers from the problem of slow convergence and poor mixing. To

avoid this, the paper considers sampling factors and their loading jointly through the block

sampling scheme (Chib and Jeliazkov (2006), Chan and Jeliazkov (2009)). The following

steps state the estimation algorithm.

Algorithm 1: MCMC Implementation of the Univariate Gaussian Non-Parametric Dynamic

Factor Model

Step 1. Sample [g|y, θ{−g}] ∼ N(ĝ, Ĝ) where Ĝ = ( 1
τ2
K+ 1

σ2
ϵ
Q′Q)−1 and ĝ = Ĝ

(
1
τ2
Kg0+

1
σ2
ϵ
Q′(y −Af)

)
where g0 is the mean of the prior for g and K = Kqj as defined earlier.

Step 2. Sample [τ 2|g] ∼ IG
(
(ν0 + m)/2,

(
V0 + (g − g0)

′K(g − g0)
)
/2
)
where ν0 and

V0 are parameters for the inverse gamma prior for τ 2 and m is the count of unique

elements of y.

Step 3. Sample [σ2
ϵ |y, θ{−σ2

ϵ }] ∼ IG
(
(r0+T )/2,

(
R0+(y−Qg−Af)′(y−Qg−Af)

)
/2
)

where r0 and R0 are parameters for the inverse gamma prior for σ2
ϵ .

Step 4. Sample [a, f |y, θ−{a,f}] in one block as

1. Sample [a|y, θ−{a,f}] marginal of f using the Metropolis Hasting algorithm with
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tailored proposal a∗ ∼ q(ã,W ) and accept a∗ with probability

αMH(a, a
∗) = min

{
1,
π(a∗|θ−{a,f})q(a|ã,W )

π(a|θ−{a,f})q(a∗|ã,W )

}
.

2. Sample [f |y, θ−{f}] ∼ N(f̂ , F̂ ) where F̂ =
(
Kf + 1

σ2
v
A′A

)−1
and f̂ = F̂

(
Kf f̃ +

1
σ2
v
A′(y −Qg)

)
.

Step 5. Sample [γ|f, σ2
v ] by MH algorithm with proposal γ∗ ∼ N(γ̂, Ĝ) where Ĝ =

(G−1
0 + (f ′

1:T−1f1:T−1)/σ
2
v)

−1 and γ̂ = Ĝ(G−1
0 γ0 + (f ′

1:T−1f2:T )/σ
2
v). The proposal γ∗ is

accepted with the probability

αMH(γ, γ
∗) = min

{
1,
fN(f1|0, σ2

v/(1− γ∗2))

fN(f1|0, σ2
v/(1− γ2))

}
.

Step 6. Sample [σ2
v |f, γ] ∼ IG

(
σ0 + T/2,

(
S0 + (f ∗ − f̄)′(f ∗ − f̄)

)
/2
)

where f ∗ =

(f1
√
1− γ2, f2, . . . , fT ) and f̄ = (0, γf2, . . . , γfT ).

The tailored proposal density a∗ ∼ q(ã,W ) used in Step 4 is suggested to be a multivariate

Student’s t distribution with low degrees of freedom to ensure heavy tails with â and W

being the mode and inverse of the negative Hessian at the mode of [a|y, θ−f ] (Chib (1996)).

The conditional density of a marginal of f is obtained as

π(a|y, θ{−f,a}) =
π(a|y, θ{−f})π(f |y, θ{−f,a})

π(f |y, θ{−a})

π(a|y, θ{−f,a}) ∝
π(a|y, θ{−f})

π(f |y, θ{−a})
,

(2.18)

which is not difficult to obtain since full conditional densities for a and f are known in the

model and π(f |y, θ{−a}) is absorbed in the constant of proportionality. The sampling of g

in step 1 involves the inversion of an m ×m matrix. To avoid inverting using brute force,
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Remark 1 explains a trick which leads to computational efficiency.

Remark 1: Sampling of Non-Centered Functions. Since the matrices K and Q′Q are banded,

the inverse of the variance-covariance matrix, Ĝ−1, is banded as well. Computational effi-

ciency can be achieved by avoiding the inversion of (τ 2K + 1
σ2
ϵ
Q′Q). In order to obtain a

random draw from N(ĝ, Ĝ) efficiently, first sample u ∼ N(0, I), and then solve Pw = u for w

by back substitution where P is the Cholesky decomposition of Ĝ−1, also banded. It follows

that w ∼ N(0, Ĝ). Adding the mean ĝ to w, will be equivalent to drawing g ∼ N(ĝ, Ĝ). The

mean ĝ is found by solving Ĝ−1ĝ = 1
τ2
Kg0+

1
σ2
ϵ
Q′(y−Af), which is done in O(T ) operations

by back substitution.

Turning attention to the DF-NPVAR, given the identification restrictions in Sec. 2.3 and

the priors for the parameters in Sec. 2.4, the MCMC estimation can proceed through an

iterative sampling of the following steps.

Algorithm 2: MCMC Implementation of the DF-NPVAR Model

Step 1. Sample the first function (non-centered) in qth equation as [gq1|y, θ{−gq1}] ∼

N(ĝq1, Ĝq1) where

Ĝq1 =
( 1

τ 2q1
Kq1 +

1

ωq|{−q}
Q′

q1Qq1

)−1

ĝq1 = Ĝq1

( 1

τ 2q1
Kq1gq10 +

1

ωq|{−q}
Q′

q1

(
yq − µq|{−q} −

J∑
j=2

M0Qqjgqj − Aqf
))

with µq|{−q} = E(ϵq|ϵ−q) and ωq|{−q} = V ar(ϵq|ϵ−q). The centered functions are sampled

as [gqj|y, θ{−gqj}] ∼ N(ĝq1, Ĝq1) for j = 2, . . . , J where
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Ĝqj =
( 1

τ 2qj
Kqj +

1

ωq|{−q}
Q′

qjM0Qqj

)−1

ĝqj = Ĝqj

( 1

τ 2qj
Kqjgqj0 +

1

ωq|{−q}
Q′

qjM0

(
yq − µq|{−q} −

∑
r≥2,k ̸=j

M0Qqrgqr

−Qq1gq1 − Aqf
))
.

Step 2. Sample [τ 2qj|gqj] ∼ IG
(
(νqj0 +mj)/2,

(
Vqj0 + (gqj − gqj0)

′Kqj(gqj − gqj0)
)
/2
)
.

Step 3. Sample [Ω−1
1 |y, θ{−Ω1}] ∼ W

(
r0 + T,

(
R−1

0 +
∑T

t=1 ete
′
t

)−1
)
where et denotes Q

vector of residuals in time period t.

Step 4. Sample [a, f |y, θ−{a,f}] in one block as

1. Sample [a|y, θ−{a,f}] marginal of f using the Metropolis Hasting algorithm with

tailored proposal a∗ ∼ q(ã,W ) and accept a∗ with probability

αMH(a, a
∗) = min

{
1,
π(a∗|θ−{a,f})q(a|ã,W )

π(a|θ−{a,f})q(a∗|ã,W )

}
.

2. Sample [f |y, θ−{f}] ∼ N(f̂ , F̂ ) where

F̂ =
(
Kf + A′(Ω∗

1)
−1A

)−1

f̂ = F̂
(
Kf f̃ + A′(Ω∗

1)
−1
(
y −Q1g1 −

J∑
j=2

M00QJgJ
))
.

Step 5. Sample [γd|fd, σ2
d] by MH algorithm with proposal γ∗d ∼ N(γ̂d, Ĝd) where Ĝd =

(G−1
d0 + (f ′

{d,1:T−1}f{d,1:T−1})/σ
2
d)

−1 and γ̂d = Ĝd

(
G−1

d0 γd0+ (f ′
{d,1:T−1}f{d,2:T}/σ

2
d)
)
where

f{d,n:m} is the vector of dth factor from time n to m. The proposal γ∗d is accepted with
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the probability

αMH(γd, γ
∗
d) = min

{
1,
ϕ(f1|0,

σ2
d

1−γ∗2
d
)

ϕ(f1|0,
σ2
d

1−γ2
d
)

}
,

where ϕ(.) is the Gaussian density.

Step 6. Sample [σ2
d|fd, γd] ∼ IG

(
(σd0 + T )/2,

(
Sd0 + (f ∗

d − f̄d)
′(f ∗

d − f̄d)
)
/2
)
where f ∗

d

= (fk1
√
1− γ2d , fk2, . . . , fkT )

′ and f̄d = (0, γdfk2, . . . , γdfkT )
′.

A slight change in representation of Eq. 2.14 is required to obtain π(a|y, θ{−f}) which is

essential to obtain π(a|y, θ{−f,a}) in Eq. 2.18.

y = Q1g1 +M00Q2g2 + · · ·+M00QJgJ + Ffa+ ϵ, (2.19)

where Ff = diag{F̃ , . . . , F̃} is a TQ×TD dimensional vector with F̃ = {f ′
1, . . . , f

′
T}′. Thus,

the full conditional density of a will take the form [a|y, θ−{a}] ∼ N(â, Â) where

Â =
(
A−1

0 + F ′
f (Ω

∗
1)

−1Ff

)−1

â = Â
(
A−1

0 a0 + F ′
f (Ω

∗
1)

−1
(
y −Q1g1 −

J∑
j=2

M00QJgJ
))
.

The trick in Remark 1 will not work on centred functions in step 1 since Q′
qjM0Qqj is not

banded. As shown in Jeliazkov and Lee (2010), an application of Sherman-Morrison formulae

will ease the computational cost, which is explained in Remark 2.

Remark 2: Sampling of Centered Functions. To avoid inverting Ĝ−1
qj , one can use the defini-
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tion of residual maker matrix M0 inside Ĝqj which is given as

Ĝqj =
( 1

τ 2qj
Kqj +

1

ωq|{−q}
Q′

qjQqj −
1

ωq|{−q}T
c′qjcqj

)−1

,

where cqj = Q′
qjl. Let Aqj = 1

τ2qj
Kqj +

1
ωq|{−q}

Q′
qjQqj, uqj =

cqj√
ωq|{−q}T

and λqj = u′qjAqjuqj.

Using the Sherman-Morrison formulae, Ĝqj can be written as

Ĝqj = A−1
qj +

A−1
qj uqju

′
qjA

−1
qj

1− λqj
.

Efficiency gains are achieved as ĝqj can be obtained without inverting Aqj. Let Bqj = (Aqj +

uqju
′
qj

1−λqj
), and thus Ĝqj = A−1

qj BqjA
−1
qj . Following the below-mentioned steps, the sampling of

gqj from N(ĝqj, Ĝqj) can be done through O(T ) operations instead of O(T 3).

Step 1. Draw w1 ∼ N(0, Aqj) and w2 ∼ N(0, 1).

Step 2. Let w3 = w1 + w2uqj
√

1− λqj so that w3 ∼ N(0, Bqj).

Step 3. Let w4 = Aqjw3 so that w4 ∼ N(0, Ĝqj).

Step 4. Let gqj = ĝqj + w4 so that gqj ∼ N(ĝqj, Ĝqj).

2.6 Model Comparison

Since the researcher’s take on a specific problem is reflected in how a model is specified and

estimated, it is important to know which model accounts for uncertainty properly. Given

modelsMi andMk, Bayesian formulation provides a straightforward way to compare models
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using posterior odds, which involves the prior odds and ratio of marginal likelihoods (Bayes

factor). The posterior odds take the following form

p(Mi|y)
p(Mk|y)

=
p(Mi)m(y|Mi)

p(Mk)m(y|Mk)
.

The marginal likelihood m(y|Mi) is defined as

m(y|Mi) =

∫
p(y|θi,Mi)p(θi|Mi)dθi,

where p(y|Mi, θi) is the likelihood for Mi and p(θi|Mi) is the priors on the parameter vector

θi used in Mi. The additive function framework used in the DF-NPVAR model makes

θi high dimensional, making numerical integration highly costly. Using the application of

Bayes theorem, Chib (1995) suggested a more tractable formula to calculate the marginal

likelihood, which is given as

m(y|Mi) =
p(y|θ∗i ,Mi)p(θ

∗
i |Mi)

p(θ∗i |y,Mi)
,

where θ∗i is the posterior mean. In the case of the DF-NPVAR model, the marginal likelihood

will be calculated as

m(y) =
p(y|g∗, τ 2∗,Ω∗

1, a
∗, f ∗, γ∗, σ2∗)p(g∗, τ 2∗,Ω∗

1, a
∗, f ∗, γ∗, σ2∗)

p(g∗, τ 2∗,Ω∗
1, a

∗, f ∗, γ∗, σ2∗|y)
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given the Gaussian structure of the model, the marginal likelihood can be calculated as

m(y) =
p(y|τ 2∗,Ω∗

1, a
∗, f ∗, γ∗, σ2∗)p(τ 2∗,Ω∗

1, a
∗, f ∗, γ∗, σ2∗)

p(τ 2∗,Ω∗
1, a

∗, f ∗, γ∗, σ2∗|y)
, (2.20)

where densities are marginalized over g. This is possible since conditional on other param-

eters, the density p(y|τ 2∗,Ω∗
1, a

∗, f ∗, γ∗, σ2∗) is still normal (Koop and Poirier (2004)). This

helps avoid evaluating the densities at high dimensional g, saving computational costs. The

numerator in Eq. 2.20 is readily available as defined in this paper. To evaluate the posterior

density at the posterior mean value, the paper uses the law of probability as

p(τ 2∗,Ω∗
1, a

∗, f ∗, γ∗, σ2∗|y) = p(τ 2∗|y)p(Ω∗
1|τ 2∗, y)p(a∗|Ω∗

1, τ
2∗, y) . . .

p(σ2∗|τ 2∗,Ω∗
1, a

∗, f ∗, γ∗, y).

(2.21)

Chib (1995) provided a method of calculating marginal likelihood under Gibbs sampling.

Since the full conditionals of τ 2,Ω1, f, a and σ2 are known, the marginal densities in Eq. 2.21

can be estimated using Rao-Blackwellization (Tanner and Wong (1987); Gelfand and Smith

(1990)). For given parameters θi and θk, the conditional density of θi marginal of θk can be

calculated as

p(θi|y) =
1

B

B∑
b=1

p(θi|θ{b}k , y)

using B draws of θk from the MCMC run. For the estimation of the marginal density of γ,

one can refer to Chib and Jeliazkov (2001, 2005).

59



2.7 Model Extensions

The estimation framework for the DF-NPVAR model is flexible and readily applicable to

various situations. This is possible since the estimation of non-parametric functions and

factors can be done conditionally on the adjustments done in other parts of the model. This

section illustrates two such model extensions which further DF-NPVAR model applicability

in familiar settings and support the claim for the model’s modularity.

2.7.1 DF-NPVAR with Serially Correlated Errors

The model in Eq.2.7 is extended by considering the serially correlated error term that follows

a mean zero stationary AR(N) process.

ϵqt = ρ1ϵq,t−1 + · · ·+ ρNϵq,t−N + ηqt, (2.22)

where ηqt ∼ N(0, 1). Let ϵq = (ϵq1, . . . , ϵqT )
′ where ϵq ∼ N(0,Ωq). Given the AR(N)

structure of ϵqt, Ωq is a T ×T dimensional Toeplitz matrix. Generally, Ωq can be determined

in the following way. Let φn = E(ϵqtϵq,t−n) be the nth autocovariance term of Ωq. Due

to symmetry, φn = φ−n. It can be shown that the autocovariance itself follow an AR(N)

process as φn = ρ1φn−1 + · · ·+ ρNφn−N . The first N values (φ0, . . . , φN−1) are given by the

first N elements of the first column of the N2×N2 matrix [I−F ⊗F ]−1 where F , an N ×N
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matrix, is given as

F =


ρ

′

IN−1 0(N−1)×1

 .

Thus, Ωq can be obtained as Ωq[i, k] = φi−k. To illustrate, if the process considered is AR(1)

process, Ωq[i, k] = ρ|i−k|/(1− ρ2).

The prior density for ρ is defined as ρ ∼ N(ρ0, P0)ISρ where ρ = (ρ1, . . . , ρN)
′, ISρ is the

indicator function which takes the value 1 in case ρ belongs to the set of ρ vectors which

satisfy stationarity. Due to the new structure of the variance-covariance matrix, Remark 2

cannot be implemented, making computing its inverse a very time-consuming task. Following

Chib and Jeliazkov (2006), the error terms can be orthogonalized by breaking the variance-

covariance matrix into correlated and uncorrelated parts. Then, the correlated part is treated

as random effects, and the model is tweaked to take the homoskedastic form. To illustrate,

lets decompose Ωq = Σq−κI where Σq is a symmetric positive definite matrix and κ > 0. It is

assumed that κ is equal to the minimum of the set of eigenvalues of Ωq, which ensures that Ωq

can be decomposed. Furthermore, let C
′
qCq = Σq where Cq be the Cholesky decomposition

of Σq and Ωq = C
′
qCq − κI. The model in Eq.2.7 can be rewritten as

y1 = Q11g11 +Q12g12 + · · ·+Q1Jg1J + A1f + C ′
1u1 + ξ1

...
...

...
...

yQ = QQ1gQ1 +QQ2gQ1 + · · ·+QQJgQJ + AQf + C ′
QuQ + ξQ

Hff = v.

(2.23)
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where uq ∼ N(0, I) for all q. Stacking over q, the model can be compactly written as

y = Q1g1 +Q2g2 + · · ·+QJgJ + Af + C
′
u+ ξ , ξ ∼ N(0, κI)

Hff = v, v ∼ N(0, S),

(2.24)

where u = {u′
1, . . . , u

′
Q}

′
and

C =


C1

. . .

CQ

 .

Given C
′
u, which is computationally inexpensive to calculate, the variance is constant across

time since var(ξ) = κI. The MCMC algorithm to draw from the posterior distribution will

take the following form.

Algorithm 3: MCMC Implementation of the DF-NPVAR Model with Serially-Correlated

Errors

Step 1. For q = 1, . . . , Q

1. Sample [uq|yq, θ{−uq}] ∼ N(ûq, Ûq) where, Ûq = (I+CqC
′
q/κ)

−1 and ûq = ÛqCq(yq−

µq|{−q} −Qq1gq1 −
∑

r≥2M0Qqrgqr − Aqf)/κ.
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2. Sample the first function in equation q as [gq1|y, θ{−gq1}] ∼ N(ĝq1, Ĝq1) where

Ĝq1 =
( 1

τ 2q1
Kq1 +

1

κ
Q′

q1Qq1

)−1

ĝq1 = Ĝq1

( 1

τ 2q1
Kq1gq10 +

1

κ
Q′

q1

(
yq − µq|{−q} −

J∑
j=2

M0Qqjgqj − Aqf

−Cquq
))
.

3. The centered functions are sampled as [gqj|y, θ{−gqj}] ∼ N(ĝqj, Ĝqj) for j =

2, . . . , J where,

Ĝqj =
( 1

τ 2qj
Kqj +

1

κ
Q′

qjM0Qqj

)−1

ĝqj = Ĝqj

( 1

τ 2qj
Kqjgqj0 +

1

κ
Q′

q1M0

(
yq − µq|{−q} −

∑
r≥2,k ̸=j

M0Qqrgqr −

Qq1gq1 − Aqf − Cquq
))
.

.

Step 2. Sample [τ 2qj|gqj] as in Algorithm 2.

Step 3. Sample [a, f |y, θ−{a,f}] in one block as

1. Sample [a|y, θ−{a,f}] marginal of f using the Metropolis Hasting algorithm with

tailored proposal a∗ ∼ q(ã,W ) and accept a∗ with probability

αMH(a, a
∗) = min

{
1,
π(a∗|θ−{a,f})q(a|ã,W )

π(a|θ−{a,f})q(a∗|ã,W )

}
.

2. Sample [f |y, θ−{f}] ∼ N(f̂ , F̂ ) where

F̂ =
(
Kf +

A′A

κ

)−1

f̂ = F̂
(
Kf f̃ +

A′

κ

(
y −Q1g1 −

J∑
j=2

M00QJgJ − C
′
u
))
.

Step 4. Sample [γd|fk, σ2
k] as in Algorithm 2.
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Step 5. Sample [σ2
d|fk, γk] as in Algorithm 2.

Step 6. Sample [ρ|y, θ{−ρ}] ∝ ϕ(ρ)N(ρ̂, P )ISρ where ρ̂ = P (P−1
0 ρ0 + E ′e), P = (P−1

0 +

E
′
E)−1, and ϕ(ρ) = |Ωρ|−Q/2exp{−1

2

∑Q
q=1 e

′
q1Ω

−1
ρ eq1}. Using Metropolis-Hasting al-

gorithm, the proposal (say ρ∗) is drawn from N(ρ̂, P )ISρ (Chib and Greenberg (1994))

and accepted with the probability

αMH(ρ, ρ
∗) = min

{
1,
ϕ(ρ∗)

ϕ(ρ)

}

where, eqt = yqt−gq1(sq1t)−···−gqJ(sqJt)−a
′
qft, eq = (eq,N+1, . . . , eq,T )

′, e = (e
′
1, . . . , e

′
Q)

′
and

E denote the (T −N)Q×N matrix with rows containing N lags of eqt = (eq,t−1, . . . , eq,t−N)

and t ≥ N + 1. The initial N values of eqt corresponding to each equation is eq1 =

(eq1, . . . , eqN)
′. The matrix Ωρ is N ×N stationary covariance matrix constructed exactly as

Ωq.

2.7.2 DF-NPVAR with Binary Variable

Binary, or qualitative, variables have been extensively utilized in Vector Autoregression

(VAR) models. A prevalent example of such a variable is a dummy representing business

cycle recessions and expansions. Dueker (2005) pioneered the introduction of a Markov

Chain Monte Carlo (MCMC) technique for estimating qualitative variables within the VAR

framework as dependent variables rather than merely as controls. This paper extends the

versatility of the DF-NPVAR model by incorporating binary variables. Denote the binary

variable as dt and the latent variable as y∗t . Although this section focuses on a single binary

variable for simplicity, the methodology can be expanded to include multiple binary variables.
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The relationship between the binary and latent variables is modelled as follows:

dt = 1 if y∗t > 0

dt = 0 if y∗t ≤ 0.

(2.25)

Considering Eq. 2.2, the latent variable will enter the model as

y1t =

Q∑
q=1

P∑
p=1

g1qpt + a′1ft +
P∑

p=1

b1py
∗
t−p + ϵ1t

...
...

...
...

yQt =

Q∑
q=1

P∑
p=1

gQqpt + a′Qft +
P∑

p=1

bQpy
∗
t−p + ϵQt

y∗t =

Q∑
q=1

P∑
p=1

gQ+1,qpt + a′Q+1ft +
P∑

p=1

bQ+1,py
∗
t−p + ϵQ+1,t.

(2.26)

Stacking over variables, Eq. 2.26 can be written as

Yt =

Q∑
q=1

P∑
p=1

gqpt + a∗ft +
P∑

p=1

bpy
∗
t−p + ϵt, (2.27)

where,

Yt =



y1t
...

yQt

y∗t


, gqpt =


g1qpt
...

gQ+1,qpt

 , a∗ =

a′1
...

a′Q+1

 , and bp =


b1p
...

bQ+1,p

 .
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The full conditional distribution of y∗t can be obtained similarly to probit models. Since, the

variance of y∗ = (y∗1, . . . , y
∗
T ) is not identified, the lower right element of var(ϵt) is kept equal

to 1 as

Ω1 =



ω11 ω12 · · · ω1Q ω1,Q+1

ω21 ω22 · · · ω2Q ω2,Q+1

...
...

. . .
...

...

ωQ1 ωQ2 · · · ωQQ ωQ,Q+1

ωQ+1,1 ωQ+1,2 · · · ωQ+1,Q 1


.

The latent variable y∗t follows a truncated normal distribution.

dt = 1 then y∗t ∼ TN[0,∞]

dt = 0 then y∗t ∼ TN[−∞,0].

(2.28)

Let Y−t be the full vector time series except for time t. To derive the full conditional density

p(y∗t |Y−t, y1t, . . . , yQt, θ) = p(y∗t |θ∗), the density associated with the P lags will be exploited

to get a conjugate form. The error terms associated with these P densities are as follows

ϵt = Yt −
Q∑

q=1

P∑
p=1

gqpt − a∗ft −
P∑

p=1

bpy
∗
t−p

ϵt+1 = Yt+1 −
Q∑

q=1

P∑
p=1

gqp,t+1 − a∗ft+1 −
P∑

p=1

bpy
∗
(t+1)−p

...
...

...
...

ϵt+P = Yt+P −
Q∑

q=1

P∑
p=1

gqp,t+P − a∗ft+P −
P∑

p=1

bpy
∗
(t+P )−p.

(2.29)
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Let ψt be the known part of ϵt conditional on [Y−t, y1t, . . . , yQt, θ], then

ϵt = Yt − ψt

ϵt+1 = ψt+1 − b1y
∗
t

...

ϵt+P = ψt+P − bPy
∗
t .

(2.30)

The conditional density of y∗t is a function of (ϵt, . . . , ϵt+P ) and can be written as

p(y∗t |θ∗) = f
(
exp{−1

2
(ϵ′tΩ

−1
1 ϵt + ϵ′t+1Ω

−1
1 ϵt+1 + · · ·+ ϵ′t+PΩ

−1
1 ϵt+P )}

)
= f

(
exp{−1

2
((Yt − ψt)

′Ω−1
1 (Yt − ψt) + (ψt+1 − b1y

∗
t )

′Ω−1
1 (ψt+1 − b1y

∗
t )

+ · · ·+ (ψt+P − bpy
∗
t )

′Ω−1
1 (ψt+P − bpy

∗
t )}
)
.

Specifically, the density of ϵQ+1,t will be used in the conditional density instead of ϵt and

thus p(y∗t |θ∗) can be written as

p(y∗t |θ∗) = f
(
exp{−1

2
((y∗t − ψ∗

t )
′Ω−1

y∗ (y
∗
t − ψ∗

t ) + (ψt+1 − b1y
∗
t )

′Ω−1
1 (ψt+1 − b1y

∗
t )

+ · · ·+ (ψt+P − bpy
∗
t )

′Ω−1
1 (ψt+P − bpy

∗
t )}
)
,

where, Ω−1
y∗ = var(ϵQ+1,t|ϵ1,t, . . . , ϵQ,t) and ψ∗

t = E(ϵQ+1,t|ϵ1,t, . . . , ϵQ,t). Given the normal

distribution, obtaining a conditional distribution from joint distribution is straightforward.

After collecting all the cross terms, it can be shown that the conditional density for y∗t will
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take the following form

[y∗t |θ∗] ∼ N(C−1D,C−1), (2.31)

where, C = (Ω−1
y∗ + b′1Ω

−1
1 b1+ · · · b′PΩ−1

1 bP ) and D = −Ω−1
y∗ ψ

∗
t + b

′
1Ω

−1
1 ψt+1+ · · ·+ b′PΩ−1

1 ψt+P .

The latent variable y∗t is drawn from the truncated normal distribution using Eq. 2.31 de-

pending upon whether dt = 0 or 1.

The draw of the coefficient b from its conditional distribution can be done by considering

the representation in Eq. 2.7 as

y1 = Q11g11 + · · ·+Q1Jg1J + A1f + ỹ∗b1 + ϵ1

...
...

...
...

yQ = QQ1gQ1 · · ·+QQJgQJ + AQf + ỹ∗bQ + ϵQ

y∗ = QQ+1,1gQ+1,1 · · ·+QQ+1,JgQ+1,J + AQ+1f + ỹ∗bQ+1 + ϵQ+1,

(2.32)

where

ỹ∗ =


y∗0 · · · y∗−(P−1)

...
. . .

...

y∗T−1 · · · y∗T−P

 and bq =


b1q
...

bPq

 .

The conditional distribution for bq will take a similar form as any OLS coefficient. Given

the prior as p(bq) = N(b0q, B0q), the conditional density is given as [bq|y, θ−{bq}] ∼ N(b̂q, B̂q)
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where for q = 1, . . . , Q

B̂q =
(
B−1

0q +
1

ωq|{−q}
ỹ∗

′
ỹ∗
)−1

b̂q = B̂q

(
B−1

0q b0q +
1

ωq|{−q}
ỹ∗

′(
yq − µq|{−q} −

J∑
j=2

M0Qqjgqj −Qq1gq1 − Aqf
))

and for q = Q+ 1

B̂Q+1 =
(
B−1

0,Q+1 +
1

ωQ+1|{−(Q+1)}
ỹ∗

′
ỹ∗
)−1

b̂Q+1 = B̂Q+1

(
B−1

0,Q+1b0,Q+1 +
1

ωQ+1|{−(Q+1)}
ỹ∗

′(
y∗ − µQ+1|{−(Q+1)} −QQ+1,1gQ+1,1 −

J∑
j=2

M0QQ+1,jgQ+1,j − AQ+1f
))
.

2.8 Application to US Macroeconomic Data

The current application contains U.S. post-war quarterly macroeconomic data from 1954:Q1

to 2022:Q4. The set of variables includes output growth (yt) measured by the percentage

change of GDP between two consecutive quarters (seasonally adjusted), average quarterly

unemployment rate (ut), inflation rate (πt) measured by the percentage change in the Con-

sumer Price Index between consecutive quarters, and interest rates (it) measured by the

average quarterly market yield on U.S. treasury securities at 10-Year Constant maturity.

The data avoids using the secondary market yield on the 3-month Treasury bill as the inter-

est rate since they approached and stayed very close to their lower bound of zero after the

great recession. This could lead to findings of nonlinearity due to the effects of the lower
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bound, thereby favouring the methods of the paper over a linear model. The variables yt, ut

and it are seasonally adjusted. All four variables are summarized in Tab. 2.1.

Table 2.1: Summary Statistics
Variables Mean SD Min Max

yt 6.43 5.07 -29.2 39.7
ut 5.88 1.64 3.4 13.0
it 5.62 2.92 0.65 14.85
πt 0.80 0.58 -0.40 2.94

DF-NPVAR model is estimated using this data, which helps us examine the behaviour of

the dynamic system. The baseline DF-NPVAR(1) model is estimated to achieve parsimony

which is given as

yt = gyy1t(yt−1) + gyu1t(ut−1) + gyi1t(it−1) + gyπ1t(πt−1) + ayft + ϵyt

ut = guy1t(yt−1) + guu1t(ut−1) + gui1t(it−1) + guπ1t(πt−1) + auft + ϵut

it = giy1t(yt−1) + giu1t(ut−1) + gii1t(it−1) + giπ1t(πt−1) + aift + ϵit

πt = gπy1t(yt−1) + gπu1t(ut−1) + gπi1t(it−1) + gππ1t(πt−1) + aπft + ϵπt

ft = γft−1 + vt , ∀ t = 1, 2, . . . , T

The model has sixteen non-linear functions and one factor. For the identification strategy

on the loadings, the model restricts ay = 1. Since ay is associated with the output growth

equation, the factor itself can be interpreted as the business cycle component in the economy,

which affects all the macro variables.

Figure 2.2 presents the estimated functions for the DF-NPVAR(1) model. The Y-axis rep-

resents functions and X-axis represents equations. The bold red line is the mean of the

non-parametric functions, whereas the light yellow lines represent 95% credible intervals.

Many of the relations, especially the own lag effect can be modelled linearly. To a lesser ex-
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Figure 2.2: Non-parametric functions for the US post-war data

tent, some of the relations can be approximated as linear. For example, the relation between

lag interest rates on the output growth rate or lag unemployment on interest rates, as the

loss of information due to linearity restriction, is not significant. However, some relations like

the effects of lagged inflation on output or lagged unemployment on the interest rate appear

to be nonlinear. These results agree with the literature that has found non-linearity in be-

haviours of output growth (Dahl and Gonzalez-Rivera (03 2);Dahl and González-Rivera (03

1)) and financial markets variables like interest rates and inflation rate Härdle and Tsybakov

(1997); Härdle et al. (1998a)). One advantage of using the second-order Markov process

prior for gqj is that the linear relationship is preserved if the true relationship is linear. The

prior penalizes deviations from linearity, so the model will spit out non-linear relations only
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Figure 2.3: Factor representing business cycle for the US post-war data

if enough evidence is there to support it.

The credible intervals are shaped as hourglass since the identification restrictions make the

intervals narrower at the point where non-parametric functions are centred. Other identifi-

cation techniques will have a different effect on the shape of credible intervals. For example,

forcing all but one non-parametric function to start from 0 would have led to funnel-shaped

credible intervals.

The dynamic factor estimated in this application is shown in Fig 2.3. The factor is super-

imposed over the shaded periods, representing officially announced recessions by the Fed in

the US over the period considered. The factor is able to capture the business cycle element

of the economy as it coincides with the recessions. The factor can be used in future research

to represent the business cycle component in a macro model.
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2.9 Conclusion

This paper has presented the specification, identification, and estimation of non-parametric

VAR models with dynamic factors. The paper proposes an efficient MCMC sampling algo-

rithm to estimate the model efficiently. The paper expands on model comparison and ex-

tensions on the model. The model is able to accommodate the error terms following AR(1)

process, but the idea can be generalized to any form of heteroskedasticity or autocorrelation,

which can be taken up in future endeavours. The model’s extension with qualitative vari-

ables expands its applicability to datasets with binary variables. The application considered

U.S. post-war data on GDP growth, unemployment, interest rates, and inflation. The model

was able to recover non-linear relationships concerning the financial variables and the factor

was able to capture the business cycle component in the economy. Due to the modality of

the DF-NPVAR model, it can be extended to consider non-normal error terms and applied

to other economies.
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Chapter 3

Bayesian Estimation of the Factor

Augmented Vector Autoregressive

Models

3.1 Introduction

This article revisits the Bayesian estimation of several variants of the factor augmented vector

autoregressive (FAVAR) model proposed by Bernanke et al. (2005) (from here on referred

to as BBE). Their model represents a key contribution to the parsimonious analysis of high-

dimensional intertemporally related outcomes. They employ a factor structure to distil the

information content of a large number of economic or financial variables into a small set of

latent factors, which, together with key macroeconomic variables, enter a lower-dimensional

vector autoregression. The model has gained popularity in macroeconomics and finance

(Eickmeier et al. (2014), Caggiano et al. (2014), Boivin et al. (2009), Bianchi et al. (2009),

Forni and Gambetti (2010), Moench (2008), Ludvigson and Ng (2009) to name a few), and is
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also gaining popularity in other fields (Fan et al. (2011), Fan et al. (2013), and Tsai and Tsay

(2010)). Despite their considerable utility, applications and extensions of the FAVAR model

have been hindered by significant computational complexity, which has typically required

simplifications on either the modelling or estimation front, e.g., by not involving covariates

or through the use of sequential plug-in estimators. In particular, we focus on the following

baseline specification, where, for t = P, . . . , T , we have

Zt = X̃1tδ1 + Γmyt + Λmft + ε1tft
yt

 = X̃2tδ2 +
P−1∑
p=1

Bp

ft−p

yt−p

+ ε2t ,
(3.1)

where Zt = (Z1t, . . . , Znt)
′ is an n× 1 vector of observable variables, ft = (f1t, . . . , fr1t)

′ is an

r1×1 vector of unobservable factors, and yt = (y1t, . . . , yr2t)
′ is an r2×1 vector of observable

factors. The control matrices X̃1t and X̃2t are n×nr3 and (r1+ r2)× (r1+ r2)r4 dimensional

and are defined as

X1t = {X11t, . . . , X1r3t}′, X̃1t = X ′
1t ⊗ In

X2t = {X21t, . . . , X2r4t}′, X̃2t = X ′
2t ⊗ Ir1+r2
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where ⊗ is a Kronecker product. The vectors δ1 and δ2 are nr3 × 1 and (r1 + r2)r4 × 1

respectively, carrying coefficients for the control variables and are defined as

δ1 =



δ111
...

δ11r3
...

δ1n1
...

δ1nr3



, δ2 =

δf2
δy2

 , δf2 =



δf211
...

δf21r4
...

δf2r11
...

δf2r1r4



, δy2 =



δy211
...

δy21r4
...

δy2r21
...

δy2r2r4



The error term ε1t ∼ N(0,Σ) where Σ = diag(σ2
1, . . . , σ

2
n). Let ϵt and vt be innovations to ft

and yt, respectively such as ε2t = {et, vt}′. The error term ε2t ∼ N(0,Ω) where

Ω = E(ε2tε
′
2t) =

E(ete′t) E(etv
′
t)

E(vte
′
t) E(vtv

′
t)

 =

Ωee Ωev

Ωve Ωvv



where Ωee is r1 × r1, Ωev is r1 × r2, Ωve is r2 × r1 and Ωvv is r2 × r2 dimensional matrices.

The loading matrices Γm = (Γ1, . . . ,Γn)
′ is n × r2 and Λm = (Λ1, . . . ,Λn)

′ is n × r1 where

Γi = (Γi1, . . . ,Γir2) is 1× r2 and Λi = (Λi1, . . . ,Λir1) is 1× r1 for all i = 1, . . . , n. The matrix
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Bp is (r1 + r2)× (r1 + r2)) dimensional for all p = 1, . . . , P − 1 is defined as

Bp =

Bff
p Bfy

p

Byf
p Byy

p

 =



bffp11 · · · bffp1r1 bfyp11 · · · bfyp1r2
...

. . .
...

...
. . .

...

bffpr11 · · · bffpr1r1 bfypr11 · · · bfypr1r2

byfp11 · · · byfp1r1 byyp11 · · · byyp1r2
...

. . .
...

...
. . .

...

byfpr21 · · · byfpr2r1 byypr21 · · · byypr2r2



.

Let θ be the set of all model parameters. BBE introduced the FAVAR model and proposed

two ways of estimation. The first method is a two-step principal component approach where

the first step estimates ft using the principal component analysis (PCA) and the second

step estimates θ given the estimated ft. This approach estimates factors non-parametrically

making estimation computationally simple and easy to implement. However, the estimation

of ft does not depend on the model due to the sequential estimation procedure. The second

method is a Bayesian one-step likelihood approach where the ft and θ are estimated jointly

using a multi-step Gibbs sampler. This method estimates ft and θ simultaneously but can

be computationally costly.

The two-step PCA method gained much more popularity compared to the one-step Bayesian

method due to the ease of its implementation. BBE, in their paper, recommended this

approach and stated ”the advantages of using the computationally more burdensome Gibbs

sampling procedure instead of the two-step method appear to be modest in this application”.

However, the drawbacks associated with the estimation of ft independent of the model are

greatly undermined. Since the estimation is agnostic to the structure of the model, the

VAR portion is completely ignored which is vital for the evolution of ft. The approach,
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not abiding by the model, forces researchers to use auxiliary models to estimate standard

errors or conduct forecasting. Ideally, the principal components should be extracted from

the residuals of the regression of yt on Zt in every iteration as θ is updated.

One of the reasons for the unpopular sentiment against the Gibbs sampler is the burdensome

computation procedure and slow convergence in large models. On reevaluating the one-step

Bayesian likelihood estimation, it appears that their Gibbs sampler shows slow convergence

and poor mixing due to 1) the identification being imposed on the loadings of yt and ft and

2) ft and Λm being sampled in different steps. That could be one of the reasons why the joint

estimation gains were not significant in their paper compared to the sequential estimation.

This is confirmed in the simulation study where neither the two-step PCA nor the one-

step Bayesian approach recovers the unobserved factor produced through a simple FAVAR

model. Therefore, this paper revisits a full Bayesian estimation (from here on referred to as

BFAVAR) of the FAVAR model and proposes a precision-based algorithm which 1) uses the

identification restrictions as suggested in Bai et al. (2016) and 2) represents the FAVAR as a

dynamic factor model as in Chan and Jeliazkov (2009) for efficiency. BFAVAR draws factors

and their loadings jointly, thus reducing the inefficiency for the Gibbs sampler and avoiding

slow convergence and poor mixing. The simulation study shows that the BFAVAR can

recover the factor from a simple FAVAR framework whereas both the estimation algorithms

from BBE could not.

The remainder of the paper is structured as follows. Section 3.2 presents the representations

of the FAVAR model which will be used for full conditionals in the Gibbs sampler. Section 3.3

discusses identification restrictions. Section 3.4 lays out the estimation procedure, which

uses an efficient fitting algorithm based on MCMC simulation. Section 3.5 discusses the

estimation of the marginal likelihood. Section 3.6 presents the simulation study comparing

BFAVAR and BBE. Section 3.7 concludes this article.
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3.2 Representations for Full Conditionals

The paper describes three representations of the FAVAR model which will be used to specify

the full conditionals for unobservable factors and model parameters.

3.2.1 Representation 1

The first representation would be used to draw Γ, Λ, bp, δ1 and δ2 from their full conditional

distributions. By stacking Eq. 3.1 over time, we obtain the FAVAR model in the matrix

form.

Z = X̃1δ1 + ỹΓ + f̃Λ + ε1

fy = X̃2δ2 +
P−1∑
p=1

f̃ypbp + ε2

(3.2)

where bp = vec(B′
p),

f̃yp =


Ir1+r2 ⊗

(
f ′
P−p y′P−p

)
...

Ir1+r2 ⊗
(
f ′
T−p y′T−p

)
 , fy =



fP

yP
...

fT

yT


, ε2 =


ε2P
...

ε2,T

 ,
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Γ =


Γ′
1

...

Γ′
n

 , ε1 =


ε1P
...

ε1,T

 , Λ =


Λ′

1

...

Λ′
n

 , Z =


ZP

...

ZT

 ,

X̃1 =


X̃1P

...

X̃1T

 , X̃2 =


X̃2P

...

X̃2T

 , ỹ =


In ⊗ y′P

...

In ⊗ y′T

 , f̃ =


In ⊗ f ′

P

...

In ⊗ f ′
T



3.2.2 Representation 2

For the second representation, the paper specifies the FAVAR model as a dynamic factor

model (Chan and Jeliazkov (2009)) which will facilitate drawing factors from their full con-

ditionals

Wt = X̃3tδ3 + Γwyt + Λwft + ε3t

ft = X̃4tδ4 +
P−1∑
p=1

Bfy
p yt−p +

P−1∑
p=1

Bff
p ft−p + et

(3.3)
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where in Eq. 3.3, the terms for t = P, . . . , T − 1 are defined as,

Wt =

 Zt

yt+1

 , X̃3t =

X ′
1t ⊗ In 0

0 X ′
2t ⊗ Ir2

 , Γw =

 Γ 0 0

Byy
1 · · · Byy

P

 , δ3 =

δ1
δy2

 ,

Λw =

 Λ 0 0

Byf
1 · · · Byf

P

 and ε3t =

ε1t
vt

 ∼ N

(0

0

 ,

Σ 0

0 Ωvv

) = N(0,Σw)

and for t = T , the terms are defined as WT = ZT , X̃3t = X ′
1t ⊗ In, δ3 = δ1, ε3T = ε1T ,

X̃3T = In ⊗X ′
1T , δ3 = δ1, Σw = Σ,

Λw =

(
Λ 0 0

)
and Γw =

(
Γ 0 0

)
.

For the VAR portion of Eq. 3.3, X̃4t = X ′
2t ⊗ Ir1 , δ4 = δf2 for t = P, . . . , T . To facilitate

the drawing of the factors from their full joint conditional distribution, the measurement

equation of the FAVAR model in Eq. 3.3 is stacked over t and is represented as

W = X̃3δ3 + Γ̃wy + Λ̃wf + ε3, ε3 ∼ N(0, Σ̃w) (3.4)
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where Σ̃w = Σw ⊗ IT−P with Σw = Σ for (T − P )th diagonal block,

Γ̃w =



Γ

Byy
1 Byy

2 · · · Byy
P

Γ

Byy
1 Byy

2 · · · Byy
P

. . . . . .

Γ

Byy
1 Byy

2 · · · Byy
P

Γ



, X̃3 =


X̃3P

...

X̃3T



Λ̃w =



Λ

Byf
1 Byf

2 · · · Byf
P

Λ

Byf
1 Byf

2 · · · Byf
P

. . . . . .

Λ

Byf
1 Byf

2 · · · Byf
P

Λ



, ε3 =


ε3P
...

ε3T

 ,
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W =


WP

...

WT

 , y =


yP
...

yT

 and f =


fP
...

fT



Now stacking the VAR portion of Eq. 3.3 as well


fP
...

fT

 =


X̃4,P

...

X̃4T

 δ4 +
P∑

p=1

Bff
p ⊗ IT−P


fP−p

...

fT−p

+
P∑

p=1

Bfy
p ⊗ IT−P


yP−p

...

yT−p

+


eP
...

eT

 .

A finite prior distribution for the initial states of factor, {f1, . . . , fP−1}, is necessary to have

a proper distribution. We consider fp ∼ N(0,Ωee) for all p = 1, . . . , P − 1. A simple change

of variable will lead to a concise representation of the full conditional of f .

Ff = X̃4δ4 +
P−1∑
p=1

(Bfy
p ⊗ IT−P )y−p + e

f = F−1X̃4δ4 + F−1

P−1∑
p=1

(Bfy
p ⊗ IT−P )y−p + F−1e

f = µ̃f + F−1e

(3.5)
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where µ̃f = F−1X̃4δ4 + F−1
∑P−1

p=1 (B
ff
i ⊗ IT−P )y−p,

F =



Ir2
. . .

Ir2

−Bff
p · · · −Bff

1 Ir2
. . .

. . .
. . .

. . .

−Bff
p · · · −Bff

1 Ir2



, X̃4 =


X̃4P

...

X̃4T

 and y−p =


yP−p

...

yT−p



Thus, f |θ ∼ N
(
µ̃f , (F

′S−1F )−1
)
. Finally, the second representation of the FAVAR model looks

like

W = X̃3δ3 + Γ̃wy + Λ̃wf + ε3

f = µ̃f + F−1e

3.2.3 Representation 3

The third representation is similar to the first representation but the VAR equation is been sepa-

rated to facilitate specifying full conditional distributions for variance-covariance matrices.
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Z = X̃1δ1 + ỹΓ + f̃Λ + ε1

y = X̃2yδ2y +
P−1∑
p=1

f̃yypbyp + v

f = X̃2fδ2f +
P−1∑
p=1

f̃fypbfp + e

(3.6)

where byp = vec
((

Byf
p Byy

p

)′ )
, bfp = vec

((
Bff

p Bfy
p

)′ )

X̃2y =


Ir2 ⊗X ′

2P

...

Ir2 ⊗X ′
2T

 , X̃2f =


Ir1 ⊗X ′

2P

...

Ir1 ⊗X ′
2T



f̃yyp =


Ir2 ⊗

(
f ′
P−p y′P−p

)
...

Ir2 ⊗
(
f ′
T−p y′T−p

)
 and f̃fyp =


Ir1 ⊗

(
f ′
P−p y′P−p

)
...

Ir1 ⊗
(
f ′
T−p y′T−p

)


3.3 Identification

Equation 3.1 is not completely identifiable unless some restrictions are introduced. To be specific,

the transition equation needs some restrictions for the identification of factors and their loadings.
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For any r1 × r1 matrix M11 and r1 × r2 matrix M12, one can rewrite the transition equation as

Zt = X̃1tδ1 + Γmyt + Λmft + ε1t

= X̃1tδ1 + (Γm + ΛmM12)yt + (ΛmM11)(M
−1
11 ft −M−1

11 M12yt) + ε1t

= X̃1tδ1 + Γ∗
myt + Λ∗

mf∗
t + ε1t

where, Γ∗
m = (Γm + ΛmM12), Λ

∗
m = ΛmM11 and f∗

t = M−1
11 ft − M−1

11 M12yt. Equation 3.2 has

two observably equivalent models. To uniquely identify Eq. 3.2, r21 + r1r2 restrictions have to be

imposed since there are r21 + r1r2 free parameters in M11 and M12. Bai et al. (2016) proved that

r21+ r1r2 restrictions are necessary and sufficient to deal with the identification problem. They also

proposed three sets of identification restrictions. The three sets of restrictions are

1. Ωee = Ir1 , Ωev = 0 and 1
NΛmΩ−1

εε Λ
′
m = Q where Q is a diagonal matrix with diagonal

elements distinct and arranged in descending order and Ωεε = E(ε1tε
′
1t).

2. Ωee = Ir1 , Ωev = 0 and the upper r1 × r1 submatrix of Λm is lower triangular.

3. Ωev = 0 and the upper r1 × r1 submatrix of Λ is Ir1 .

Each of them impose r21 + r1r2 restrictions on the FAVAR model. All the set of restrictions

imposes constraints on the structure of the variance of ε2t. The first restriction also requires

1
NΛmE(ε1tε

′
1t)Λm to be diagonal which is generally used in the likelihood estimation (see Lawley

and Maxwell (1971) and Bai et al. (2016)). The second set compels the upper r1 × r1 submatrix

of Λm to be a lower triangular matrix. Under this constraint, only the first unobservable factor

affects the first variable, the first two unobservable factors affect the second variable, and so on.

The third set restricts the upper r1 × r1 matrix of Λm to be an identity matrix. In this case, the

first unobservable factor affects only the first variable, the second unobservable factor affects only

the second variable, and so on. Since more restrictions are imposed as compared to the second set

of restrictions, no structure is required to be imposed on Ωee.
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BBE in their seminal paper imposed different sets of restrictions than what was proposed in Bai

et al. (2016). They restricted the upper r1 × r1 submatrix of Λ to be Ir1 and the upper r2 × r2

submatrix of Γ to be 0. They justified the constraints by assuming restrictions to the channels by

which the yt ’s contemporaneously affect the Zt. The estimation strategy proposed in this paper is

generalizable to any identification strategy the researcher chooses.

3.4 Estimation

The paper considers the following priors for the estimation: Γ ∼ N(Γ0,ΩΓ0), Λ ∼ N(Λ0,ΩΛ0), bp ∼

TN{Bp∈D}(bp0,Ωbp0), δ1 ∼ N(δ10, S10), δ2 ∼ N(δ20, S20), Σ
−1 ∼ W (σ0,Σ0), Ω

−1
ee ∼ W (ωee0,Ωee0)

and Ω−1
vv ∼ W (ωvv0,Ωvv0). The issue with using the full conditional for unobserved factor loadings

(Λ) for sampling is that the mixing takes a lot of time since factors and loadings are both unobserved.

Chan and Jeliazkov (2009) suggested more efficient mixing schemes where factors and loadings are

drawn in the same block using densities p(f |θ,W ) and p(Λ|θ−{f},W ). The density p(Λ|θ−{f},W )

can be obtained as

p(Λ|θ−{f},W ) =
p(Λ|θ,W )p(f |θ−{Λc},W )

p(f |θ,W )

p(Λ|θ−{f},W ) ∝ p(Λ|θ,W )

p(f |θ,W )

where the full conditional densities p(Λ|θ,W ) and p(f |θ,W ) are known. Since p(Λ|θ−{f},W ) does

not have a standard form, we will use the MH algorithm for drawing. MCMC estimation can

proceed through iterative sampling of the following steps.

FAVAR Model: MCMC Implementation

Step 1. Sample f,Λ|W, θ in a single block to achieve efficiency.
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(a) Sample f |W, θ ∼ N(f̃ , F̃ ) where,

F̃ =
(
F ′S−1F + Λ̃′

wΣ̃
−1
w Λ̃w

)−1

f̃ = F̃
(
F ′S−1µ̃f + Λ̃′

wΣ̃
−1
w (W − X̃3δ3 − Γ̃wy)

)
(b) Sample Λ|W, θ{−f} by MH algorithm with tailored proposal density Λ ∼ q(Λ̂,ΩΛ), a

multivariate Student’s t density with low degrees of freedom to ensure heavy tails where

Λ̃ and L̃ are mode and inverse of the negative hessian at the mode of p(Λ|θ−{f}). Accept

the proposed draw Λ∗ with probability

αMH(Λ,Λ∗) = min

{
1,

p(Λ∗|θ−{f},W )q(Λ|Λ̂,ΩΛ)

p(Λ|θ−{f},W )q(Λ∗|Λ̂,ΩΛ)

}

Step 2. Sample Γ|W, θ ∼ N(Γ̂,ΩΓ) where

ΩΓ = (Ω−1
Γ0 + ỹ′(IT−P ⊗ Σ)−1ỹ)−1

Γ̂ = ΩΓ(Ω
−1
Γ0Γ0 + ỹ′(IT−P ⊗ Σ)−1(Z − X̃1δ1 − f̃Λ))

Step 3. Sample bp|W, θ ∼ N(b̂p,Ωbp) where

Ωbp = (Ω−1
bp0

+ f̃y
′
p(IT−P ⊗ Ω−1)f̃yp)

−1

b̂p = Ωbp(Ω
−1
bp0

bp0 + f̃y
′
p(IT−P ⊗ Ω−1)(fy − X̃2δ2 −

∑
j ̸=p

f̃yjbj))

Step 4. Sample δ1|θ{−δ1} ∼ N(δ̂1, Ŝ1) where

Ŝ1 =
(
S−1
10 + X̃ ′

1(IT−P ⊗ Σ)X̃1

)−1

δ̂1 = Ŝ1

(
S−1
10 δ10 + X̃ ′

1(IT−P ⊗ Σ)(Z − ỹΓ− f̃Λ)
)
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Step 5. Sample δ2|θ{−δ2} ∼ N(δ̂2, Ŝ2) where

Ŝ2 =
(
S−1
20 + X̃ ′

2(IT−P ⊗ Ω)X̃2

)−1

δ̂2 = Ŝ2

(
S−1
20 δ20 + X̃ ′

2(IT−P ⊗ Ω)(fy −
P∑

p=1

f̃ypbp)
)

Step 6. Sample Σ−1|W, θ ∼ W (σ0 + T − P, (Σ−1
0 +

∑T
t=P ε1tε

′
1t)

−1).

Step 7. Sample Ω−1
ee |W, θ ∼ W (ωee0 + T − P, (Ω−1

ee0 +
∑T

t=P vtv
′
t)
−1).

Step 8. Sample Ω−1
vv |W, θ ∼ W (ωvv0 + T − P, (Ω−1

vv0 +
∑T

t=P ete
′
t)
−1).

3.5 Marginal Likelihood

The integrated likelihood for the FAVAR model takes the form

p(W |θ) =
p(W |f, θ)p(f |θ)

π(f |W, θ)

where,

p(W |f, θ) = N(X̃3δ3 + Γ̃wy + Λ̃wf, Σ̃w)

p(f |θ) = N(µ̃f , (F
′S−1F )−1)

p(f |W, θ) = N(f̃ , F̃ )
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Using Chib (1995), the marginal likelihood for the FAVAR model can be estimated as

p(W ) =
p(W |θ∗)π(θ∗)

π(θ∗|W )

where θ∗ is the parameter values evaluated as the mode of the posterior distribution. Substituting

integrated likelihood value in marginal likelihood gives the following form

p(W ) =
p(W |f, θ∗)p(f |θ∗)π(θ∗)
π(f |W, θ∗)π(θ∗|W )

where π(θ) is the priors distribution and π(θ|W ) is the posterior distribution marginalized for

factors which can be estimated as

π(θ|W ) =
1

G

G∑
g=1

π(θ|W, f{g})

where π(θ|W, f) is the posterior distribution of the model parameters and {f{g}} represent gth draw

from the main MCMC run.

3.6 Simulation Study

This section compares the estimation performance of BFAVAR introduced in this paper with the

one-step Bayesian and two-step PCA estimation techniques from BBE. The data is artificially

generated using a simple FAVAR model with one factor, one lag, no covariates and no intercept.

The observed factor yt is 3× 1 dimensional whereas Zt is 20× 1 dimensional where t = 1, . . . , 100.

The data is simulated from the following FAVAR model.

90



Zt = Γmyt + Λmft + ε1tyt

ft

 = B1

yt−1

ft−1

+ ε2t,

where Σ = I20 ∗ 0.1,

Λm =



−0.58 0.86 −0.86

0.28 0.34 −0.43

−0.33 0.40 −0.17

0.90 0.69 0.88

0.63 0.41 0.95

0.48 0.71 −0.91

−0.55 −0.18 0.17

−0.90 0.35 −0.93

−0.26 −0.74 0.13

0.48 0.47 −0.80



, Γm =



1.00

0.63

−0.30

−0.72

−0.83

−0.30

0.98

0.065

−0.32

−0.37



B1 =



0.3 −0.2 0.1 0.2

0.3 0.4 0.3 −0.3

−0.3 0.3 0.2 0.1

0.2 −0.2 0.2 0.3


, Ω =



1.0 0.0 0.6 0.0

0.0 1.0 0.3 0.0

0.6 0.3 1.0 0.0

0.0 0.0 0.0 1.0


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Figure 3.1: Estimated Factors from different Bayesian Estimation Approaches
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The study adopts a variation of restriction (2) which means Ωee = σ2Ir1 , Ωev = 0 and the upper

r1×r1 submatrix of Λm to be lower triangular with diagonal elements equal to 1. The FAVARmodel,

generated via the DGP, is estimated using BFAVAR and BBE estimation techniques. Figure 3.1

has three subfigures, each presenting the estimated factor via the concerned estimation technique

superimposed over the true factor. The Bayesian FAVAR successfully recovers the unobserved

factor, whereas the one-step and two-step BBE techniques fails to do so. This simulation study

confirms the concerns raised in Sec. 3.1 regarding BBE estimation techniques and proposes further

enquiry to identify the source of bias.

3.7 Conclusion

This paper examines the Bayesian estimation of the FAVAR model and proposes a precision-based

Bayesian algorithm. Efficient MCMC sampling is discussed in the context of estimating factors

where the prior distribution is derived from the VAR portion of the model Implementation of

BFAVAR in other simulation settings and real life applications is an interesting area for future

research.
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Appendix A

Chapter 1

A.1 Back-fitting MCMC Algorithm

This subsection presents the MCMC algorithm used in the estimation of BOP. Let wo be the weight

vector drawn in the previous iteration and wn be the weight vector drawn in the current iteration.

The steps are as follows.

Step 1. Draw wn from a proposal density, be it Dirichlet, Normal distribution with logistic

transformation (discussed in Section 1.3) or truncated normal (defined on the interval [0, 1]),

where the proposal is centred at wo. Normalize wn so that the sum is 1 in case needed, and

choose the variance so that the whole space can be explored.

Step 2. Generate u2 ∼ uniform(0, 1)

Step 3. If u2 ≤ min
(
p(YT |wn)
p(YT |wo)

, 1
)
, return wn, else return wo and store the value of conditional

density evaluated at wo. Since uniform Dirichlet distribution is considered as prior, it disap-

pears from the formula.

Step 4. Repeat the above three steps M times (call it iteration cycle 1) and name the weights

as w∗
0 with the highest conditional density value.
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Step 5. Repeat the above 4 steps N times (call it iteration cycle 2) with w0 = w∗
0 in each

iteration. Stop once the value of conditional density has converged and use w∗
0 stored in the

N th iteration as w̄T .

The value N in iteration cycle 2 can be decided based on how much the maximum conditional

density value changes after everyM iteration in iteration cycle 1. Similarly, the number of iterations

M in iteration cycle 1 is decided based on the trade-off between exploring the solution space and

computational time. There is a possibility that w̄T is not a global maximum. The paper suggests

using the algorithm multiple times from different initial conditions to verify.

A.2 Asymptotic Properties

Under the M-closed case, when the true model (let’s say D) is part of the set of available models, the

opinion pool degenerates to the true model since all the weight is allotted to it (Geweke and Amisano

(2011)). This situation rarely arrives in real life, and D is generally unknown to the forecaster and

the decision maker. The weights become relevant under the M-Open case when D is not part of

the set of available models. In that case, the true weights (let’s say w0 = {w0
1, w

0
2, . . . , w

0
K}) can

be interpreted as the ones which give the minimum Kullback-Leibler divergence from D to the

opinion pool. Gneiting and Raftery (2007) showed that the opinion pool optimized based on log

predictive score minimizes the Kullback–Leibler directed distance from the data generating process

to the prediction model. For K prediction models, the log prediction score for an opinion pool for

wT = {w1,T , w2,T , . . . , wK,T } where wk,T ≥ 0 ∀ k = 1, 2, . . . ,K and
∑K

k=1wk,T = 1 for a given

period t will look like

l(wT |YT ) =
T∑
t=1

log
( K∑

k=1

wk,T p(yt|Yt−1,Mk)
)

=

T∑
t=1

l(wT |Yt) (B.1)
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One of the advantages of the log prediction score is that it is closely related to the likelihood

function, which can be seen in the relation l(wT |YT ) = log(p(YT |wT )). Geweke and Amisano

(2011) showed that the weights obtained from optimizing l(wT |YT ) asymptotically minimizes the

Kullback-Leibler distance from the true model D.

w∗
T = arg maxw l(wT |YT )

a.s.→ arg maxw l(w|Y ) = w0 (B.2)

where, 1
T

∑T
t=1 l(wT |Yt) = l̄(wT |YT )

a.s.→ l(w|Y ). Using this result, the posterior density of weights

can be rewritten as

p(wT |YT ) ∝ p(YT |wT )p(wT )

∝ exp{log(p(YT |wT ))}p(wT )

∝ exp{
T∑
t=1

l(wT |Yt)}p(wT )

∝ exp{T l̄(wT |YT )}p(wT ) (B.3)

As T increases, the exponential term dominates, and the effect of the prior, which does not depend

on T , becomes relatively smaller. To analyse the posterior density further, let’s take a second-order

Taylor series approximation of l(wT |YT ) around w∗
T

l(wT |YT ) ≈ l(w∗
T |YT )−

T

2
(wT − w∗

T )
2(−l̄′′(w∗

T |YT ))

≈ l(w∗
T |YT )−

T

2v
(wT − w∗

T )
2 (B.4)
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where l̄′′(w∗
T |YT ) =

1
T

∑T
t=1 l

′′(w∗
T |Yt) and v = [l̄′′(w∗

T |YT )]−1. The term with first-order derivative

disappears as l(wT |YT ) is maximized at wT = w∗
T . The posterior density can be approximated as

p(wT |YT ) ∝ exp{− T

2v
(wT − w∗

T )
2}p(wT ) (B.5)

The first term is in the form of a normal distribution with mean w∗
T and variance v

T . In summary,

the role of the prior density becomes relatively small in determining the posterior density when T

is large. The posterior density converges to a degenerate density at w0 as T −→ ∞ then v
T −→ 0

and w∗
T −→ w0, and the posterior density is approximately normally distributed with mean w∗

T .
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