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THE INFIMUM OF THE DUAL VOLUME OF CONVEX CO-COMPACT
HYPERBOLIC 3-MANIFOLDS

FILIPPO MAZZOLI

ABSTRACT. We show that the infimum of the dual volume of the convex core of a con-
vex co-compact hyperbolic 3-manifold with incompressible boundary coincides with the
infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-
isometric deformations. We deduce a linear lower bound of the volume of the convex core
of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination,
with optimal multiplicative constant.

INTRODUCTION

Let M be a complete hyperbolic 3-manifold, and let CM be its convex core, namely the
smallest non-empty convex subset of M. Then M is said to be convex co-compact if CM
is a compact subset. The notion of dual volume of the convex core V ∗

C (M) arises from
the polarity correspondence between the hyperbolic and the de Sitter spaces (see [Sch02,
Section 1], [Maz20]). If M is a convex co-compact hyperbolic 3-manifold, then V ∗

C (M)

coincides with VC(M)− 1
2ℓm(µ), where VC(M) stands for the usual Riemannian volume of

the convex core, and ℓm(µ) denotes the length of the bending measured lamination µ with
respect to the hyperbolic metric m of the boundary of the convex core of M. The aim of
this paper is to study the infimum of V ∗

C , considered as a function over the space QD(M)
of quasi-isometric deformations of a given convex co-compact hyperbolic 3-manifold M
with incompressible boundary. In particular, we will prove

Theorem A. For every convex co-compact hyperbolic 3-manifold M with incompressible
boundary we have

inf
M′∈QD(M)

V ∗
C (M

′) = inf
M′∈QD(M′)

VC(M′).

Moreover, V ∗
C (M

′) =VC(M′) if and only if the boundary of the convex core of M′ is totally
geodesic.

When M is a quasi-Fuchsian manifold, Theorem A can be equivalently stated as

(1) VC(M′)≥ 1
2
ℓm′(µ ′)

for every M′ ∈ QD(M), where ℓm′(µ ′) is the length of the bending measure of ∂CM′.
As a consequence of the variation formulae of VC [Bon98a] and of V ∗

C [Maz21] (see also
[KS09]), we will see in Corollary 4.1 that the multiplicative constant 1/2 appearing here
is optimal, and it is realized near the Fuchsian locus.

Theorem A is to the dual volume as the following result of Bridgeman, Brock, and
Bromberg is to the renormalized volume:

Theorem ([BBB19, Theorem 3.10]). For every convex co-compact hyperbolic 3-manifold
M with incompressible boundary we have

inf
M′∈QD(M)

VR(M′) = inf
M′∈QD(M)

VC(M′).
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2 FILIPPO MAZZOLI

Moreover, VR(M′) = VC(M′) if and only if the boundary of the convex core of M is totally
geodesic.

By the work of Thurston, if the compact 3-manfiold with boundary N := M ∪ ∂∞M is
acylindrical, then there exists a unique convex co-compact structure M0 ∈ QD(M) whose
convex core has totally geodesic boundary. In [Sto07] (see also [Sto02]) Storm proved that
the infimum of the volume of the convex core function VC : QD(M)→ R is equal to half
the simplicial volume of the doubled manifold D(N). Moreover, the infimum is realized
exactly when N is acylindrical, and it is achieved at M0. Theorem A and [BBB19, Theorem
3.10] then imply that the same characterization holds true for the infimum of the dual
volume and the renormalized volume, respectively. In the case of the renormalized volume
VR, such description of infVR was first established by Pallete [Pal16], without making use
of Storm’s result. Bridgeman, Brock, and Bromberg [BBB21] recently introduced a notion
of surgered gradient flow of the renormalized volume in the relatively acylindrical case,
which allowed them to obtain new comparisons between the renormalized volume and
the Weil-Petersson geometry of the deformation spaces of convex cocompact 3-manifolds,
generalizing in particular the works of Brock [Bro03] and Schlenker [Sch13]. In the same
work, a new proof of Storm’s result in the acylindrical case is obtained by the authors as a
biproduct of their analysis (see in particular [BBB21, Corollary 6.5]).

Dual volume, renormalized volume and Riemannian volume of the convex core are
related by the following chain of inequalities:

V ∗
C (M) :=VC(M)− 1

2
ℓm(µ)≤VR(M)≤VC(M)− 1

4
ℓm(µ)≤VC(M).

Here the second inequality is due to Schlenker [Sch13], and the lower bound of VR is
proved in [BBB19, Theorem 3.7]. Observe in particular that Theorem A implies the afore-
mentioned result [BBB19, Theorem 3.10] concerning the infimum of the renormalized
volume. The request on M to have incompressible boundary is necessary, indeed it has
been shown by Pallete [Pal19] that there exist Schottky groups with negative renormalized
volume.

The proof of Theorem A we present here broadly follows the same strategy of the work
of Bridgeman, Brock, and Bromberg [BBB19], with some necessary differences: the au-
thors of [BBB19] interpret the renormalized volume as a function VR over the Teichmüller
space T (∂∞M) of the conformal boundary at infinity of M (by the works of Bers [Ber70],
Maskit [Mas71], and Kra [Kra72]), and they estimate the difference |VR −VC| as one fol-
lows the (opposite of the) Weil-Petersson gradient flow of VR on T (∂∞M). In order to
study the dual volume function, the analogy between the variation formula of the renor-
malized volume (see Krasnov and Schlenker [KS08, Lemma 5.8], or Section 1.6) and the
dual Bonahon-Schläfli formula [Maz21] would tempt us to consider V ∗

C as a function of
the Teichmüller space T (∂CM), seen as deformation space of hyperbolic structures on the
boundary of the convex core of M. However, the hyperbolic structure on ∂CM is only con-
jecturally thought to provide a parametrization of the quasi-isometric deformation space
of M. To avoid this difficulty, we rather focus our attention of a family of functions V ∗

k
approximating V ∗

C , for which a similar procedure is possible.
Given k a real number in the interval (−1,0), we say that an embedded surface Σk ⊂ M

is a k-surface if its first fundamental form (namely the restriction of the metric of M on the
tangent space to Σk) is a Riemannian metric with constant Gaussian curvature equal to k.
Then, by the work of Labourie [Lab91], the complementary region of the convex core of
M is foliated by k-surfaces, which converge to ∂CM as k goes to −1, and tend towards the
conformal boundary at infinity ∂∞M as k goes to 0. The function V ∗

k (M) is then defined
to be the dual volume of the region Mk of M enclosed by its k-surfaces, one per each ge-
ometrically finite end of M. By the works of Labourie [Lab92a] and Schlenker [Sch06],
the hyperbolic structures of the k-surfaces do provide a parametrization of QD(M), fact
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that allows us to study V ∗
k as a function over the Teichmüller space of ∂Mk. At this point,

studying the Weil-Petersson gradient of V ∗
k on T (∂Mk), we prove that the difference be-

tween the dual volume and the standard volume of the regions Mk is well-behaved as one
follows backwards the lines of the flow, and finally we deduce the statement of Theorem A
by taking a limit for k that goes to −1. While the methods of [BBB19] for the study of the
renormalized volume heavily rely on the relations between the geometry of the boundary
of the convex core and the properties of the Schwarzian at infinity of ∂∞M, here we use a
more analytical approach to determine the necessary bounds on the geometric quantities of
the k-surfaces ∂kM of M, which will guarantee us the existence and the good behavior of
the flow of the Weil-Petersson gradient vector fields of V ∗

k .

Outline of the paper. After the first section of background, we suggest the reader to
initially move backwards (as for the flow of the gradient of the functions V ∗

k ) while going
through this exposition: in Section 4 the proof of Theorem A is described. Here the analogy
with the work of Bridgeman, Brock, and Bromberg [BBB19] is manifest, the required
technical ingredients (Lemma 3.4, Corollary 3.6 and Lemma 3.7) are formally very similar
to the ones developed for the renormalized volume.

Section 3 focuses on the study of the Weil-Petersson gradient gradWP V ∗
k of the dual

volume functions V ∗
k and the proofs of the ingredients mentioned above: in Lemma 3.4

we determine a lower bound of the norm of gradWP V ∗
k in terms of the integral of the mean

curvature of ∂Mk (which replaces the role of the length ℓm(µ) in the definition of the dual
volume of the regions Mk). In Corollary 3.6 we show that the flow of the vector field
gradWP V ∗

k is defined for all times, and in Lemma 3.7 we prove the existence of a global
lower bound of the dual volumes V ∗

k over QD(M). All the proofs of this section rely on
differential-geometric methods and are consequences of an explicit description of the Weil-
Petersson gradient of V ∗

k developed in Proposition 3.2. This presentation of the vector
field gradWP V ∗

k is inspired by an orthogonal decomposition of the space of symmetric
tensors due to Fischer and Marsden [FM75], and it involves the solution uk of a simple
PDE (equation (4)) over the k-surface ∂Mk. In particular, the proof of Corollary 3.6 will
require us to have a uniform control of the C 2-norm of the function uk. Section 2 (and in
particular Lemma 2.3) provides us this last ingredient, and it is essentially based on the
classical regularity theory for linear elliptic differential operators (see e. g. [Eva98]), and
on the following property of k-surfaces:

Proposition (see Proposition 2.1). For any k ∈ (0,1) and n ∈ N, there exists a positive
constant Nk,n such that for every convex co-compact hyperbolic 3-manifold M and for every
incompressible k-surface Σk in M, the C n-norm of the mean curvature of Σk is bounded
above by Nn,k.

The existence of such universal upper bound was proved (with weaker assumptions than
the ones appearing above) by Bonsante, Danciger, Maloni, and Schlenker in [Bon+21,
Proposition 3.8] for n = 0 (and the same strategy actually shows that the statement holds
for any n), and its proof heavily relies on a compactness criterion for isometric immersions
of surfaces established by Labourie [Lab91] (see also [Bon+21, Proposition 3.6]). As it
will be manifest in the proof of Proposition 2.1, the constants Nn,k that we will produce are
unfortunately not explicit.
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embourg. I am grateful also to Martin Bridgeman, Jeffrey Brock, and Kenneth Bromberg,
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1. PRELIMINARIES

1.1. Hyperbolic 3-manifolds. Let M be an orientable complete hyperbolic 3-manifold,
namely a complete Riemannian 3-manifold with constant sectional curvature equal to −1,
and let Γ be a discrete and torsion-free group of orientation-preserving isometries of the
hyperbolic 3-space H3, such that M is isometric to H3/Γ. We define the limit set of Γ to be

ΛΓ := Γ · x0 ∩∂∞H3,

where Γ · x0 denotes the closure of the Γ-orbit of x0 in H3 :=H3∪∂∞H3. It is simple to see
that the definition of ΛΓ does not depend on the choice of the basepoint x0 ∈ H3. If Γ is
non-elementary (i. e. it does not have any finite orbit in H3), then ΛΓ can be characterized
as the smallest closed Γ-invariant subset of ∂∞H3 (see e. g. [Rat06, Chapter 12]). The
complementary region ΩΓ of the limit set in ∂∞H3 is called the domain of discontinuity of
Γ.

1.2. The convex core. If π : H3 → H3/Γ ∼= M denotes the universal cover of M, then a
subset C of M is convex if and only if π−1(C) is convex in H3. If Γ is non-elementary, then
every non-empty Γ-invariant convex subset of H3 contains the convex hull CΓ of Γ, which
consists of the intersection of all half-spaces H of H3 satisfying H ⊇ ΛΓ (H stands for the
closure of H in H3). The image CM := π(CΓ) describes a convex subset of M, called the
convex core of M, which is minimal among the family of non-empty convex subsets of M.

Let now M be a convex co-compact hyperbolic 3-manifold, namely a non-compact com-
plete hyperbolic 3-manifold whose convex core is compact. The boundary of the convex
core ∂CM of M is the union of a finite collection of connected surfaces, each of which is
totally geodesic outside a subset of Hausdorff dimension 1. As described in [CEM06], the
hyperbolic metrics on the totally geodesic pieces "merge" together, defining a complete
hyperbolic metric m on ∂CM. The locus where the boundary of the convex core is not flat
is a geodesic lamination λ , i. e. a closed subset that is union of disjoint simple geodesics.
The surface ∂CM is bent along λ , and the amount of bending can be described by a mea-
sured lamination µ , called the bending measure of ∂CM. The µ-measure along an arc k
transverse to λ consists of an integral sum of the exterior dihedral angles along the leaves
that k meets. By locally integrating the lengths of the leaves of the lamination in dµ , we
obtain the notion of length of the bending measure with respect to the hyperbolic structure
m, which will be denoted by ℓm(µ). For a more detailed description we refer to [CEM06,
Section II.1.11], or [Bon88].

1.3. Incompressible boundary. When M is convex co-compact and Γ is a discrete and
torsion-free subgroup of isometries of H3 such that M ∼= H3/Γ, Γ acts freely and prop-
erly discontinuous on the domain of discontinuity ΩΓ, and the quotient of H3 ∪ ΩΓ bt
Γ determines a natural compactification of M, which will be denoted by M = M ∪ ∂∞M.
Then M is said to have incompressible boundary if the inclusion S → M of each connected
component S of ∂∞M induces an injection at the level of the fundamental groups. This
implies in particular that any lift of the inclusion S → M to the universal covers S̃ → M̃ is
a homeomorphism onto its image.

1.4. Constant Gaussian curvature surfaces.

Definition 1.1. Let S be an immersed surface inside a Riemannian 3-manifold N. The first
fundamental form I of S is the Riemannian metric of S given by the restriction of the metric
of N to the tangent spaces of S. If S admits a unitary normal vector field ν : S → T 1N, we
define its shape operator B to be the endomorphism of T S given by BU :=−DU ν , for every
tangent vector field U of S (here D denotes the Levi-Civita connection of N). The trace of
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the shape operator will be called the mean curvature of S, and the tensor II := I(B·, ·) the
second fundamental form of S.

Let Σ be a surface immersed in a hyperbolic 3-manifold M, with first and second funda-
mental forms I and II, and shape operator B. We denote by Ke its extrinsic curvature, i. e.
Ke = detB, and by Ki its intrinsic curvature, i. e. the Gaussian curvature of the Riemannian
metric I. Then the Gauss-Codazzi equations of (Σ, I, II) can be expressed as follows:

Ki = Ke −1,

(∇U B)V = (∇V B)U ∀U,V,

where U and V are tangent vector fields to Σ, and ∇ is the Levi-Civita connection of the
metric I.

Definition 1.2. Let Σ be an immersed surface inside a hyperbolic 3-manifold, and let
k ∈ (−1,0). Σ is a k-surface if its intrinsic curvature is constantly equal to k.

If Σ is a k-surface, then its extrinsic curvature Ke = k+1 is positive, since k ∈ (−1,0).
In particular, Σ is a (locally) strictly convex surface.

In every convex co-compact 3-manifold M, the subset M \CM is the disjoint union of a
finite number of geometrically finite hyperbolic ends (Ei)i, each of which is homeomorphic
to Σi × (0,∞), for some compact orientable surface Σi of genus larger than or equal to 2.
By the work of Labourie [Lab91], the sets Ei are foliated by embedded k-surfaces (Σi,k)k,
with k that varies in (−1,0). The surfaces Σi,k approach the components of the pleated
boundary ∂CM of the convex core of M as k goes to −1, and the components of conformal
boundary at infinity ∂∞M as k goes to 0.

We will denote by Mk the compact region of M whose boundary ∂Mk consists of the
union of the surfaces

⋃
i Σi,k, and we will endow ∂Mk with the second fundamental form IIk

defined by the normal vector field pointing towards ∂Mk, so that IIk is positive definite, and
Hk is a positive function (observe that the eigenvalues of the shape operator have the same
sign since Ke = detB > 0).

1.5. Deformation spaces. Let Σ be a compact orientable surface of genus larger than or
equal to 2. The Teichmüller space of Σ, denoted by T (Σ), is the space of isotopy classes
of hyperbolic metrics on Σ. Equivalently, in light of the Uniformization Theorem, T (Σ)
can be described as the space of isotopy classes of conformal structures over Σ (compatible
with the choice of a fixed orientation on Σ).

Since convex co-compact hyperbolic 3-manifolds are not closed, several different no-
tions of deformation spaces can be introduced. In this exposition we will consider the
quasi-isometric (or quasi-conformal) deformation space.

Definition 1.3. Given M, M′ hyperbolic manifolds, a diffeomorphism M → M′ is a quasi-
isometric deformation of M if it globally bi-Lipschitz. We denote by QD(M) the space
of quasi-isometric deformations of M, where we identify two deformations M → M′ and
M → M′′ if their pullback metrics are isotopic to each other.

Remark 1.4. By a Theorem of Thurston [Thu79, Proposition 8.3.4], two hyperbolic n-
manifolds M and M′ are quasi-isometric if and only if their fundamental groups Γ, Γ′ (as
subgroups of the isometry group of Hn) are quasi-conformally conjugated, i. e. there exists
a quasi-conformal self-homeomorphism ϕ of ∂∞Hn such that ϕΓϕ−1 = Γ′.

We denote by mk(M) ∈ T (∂Mk) = ∏iT (Σi) the isotopy class of the hyperbolic metric
(−k) Ik, where Ik is the first fundamental form of the k-surface ∂kM of M. Then for every
k ∈ (−1,0) we have maps

Tk : QD(M) −→ T (∂Mk)
M 7−→ mk(M).
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The convenience in considering foliations by k-surfaces relies in the following result, based
on the works of Labourie [Lab92a] and Schlenker [Sch06]:

Theorem 1.5. If M has incompressible boundary the map Tk is a C 1-diffeomorphism for
every k ∈ (−1,0).

In the non-incompressible case a similar statement can be recovered, replacing the role
of the Teichmüller space T (∂Mk) with its quotient by the action of a suitable subgroup of
the mapping class group of ∂Mk (see e. g. [Mar07, Theorem 5.1.3] for the corresponding
statement concerning the conformal structure of the boundary at infinity).

As mentioned in the introduction, it is an open question, asked by W. P. Thurston,
whether the same statement is true for the hyperbolic structures on the boundary of the
convex core, which could be considered as the case k=−1 in Theorem 1.5. More precisely,
the map T−1 is known to be continuously differentiable by [Bon98b], surjective by the work
of Sullivan (described in [CEM06]), but there are no results concerning its injectivity.

1.6. Dual volume. Let M be a convex co-compact hyperbolic 3-manifold. If N is a com-
pact convex subset of M with smooth boundary, we define the dual volume of N to be

V ∗(N) :=V (N)− 1
2

∫
∂N

H da ,

where H stands for the mean curvature of ∂N defined using the inner normal vector field,
and V (N) is the Riemannian volume of N. We refer to [Maz20] for a description of the
relation between the notion of dual volume and the polarity correspondence between the
hyperbolic and de Sitter spaces.

For every k ∈ (−1,0), we set V ∗
k : T (∂Mk)→ R to denote the function that associates,

with a hyperbolic structure mk ∈ T (∂Mk), the dual volume of the region ∂M′
k enclosed

by the k-surfaces of the unique convex co-compact hyperbolic 3-manifold M′ = T−1
k (mk)

whose k-surfaces have hyperbolic structure mk.

If (Nh)h is a sequence of convex compact subsets approaching CM, then the integral of
the mean curvature over ∂Nh approaches ℓm(µ), the length of the bending measure µ with
respect to the hyperbolic structure of ∂CM. This suggests us to set the dual volume of the
convex core of M as

V ∗
C (M) :=V (CM)− 1

2
ℓm(µ).

In [Maz21] a first order variation formula for the function V ∗
C over QD(M) is studied,

called the dual Bonahon-Schläfli formula:

dV ∗
C (Ṁ) =−1

2
dLµ (ṁ),

where ṁ denotes the first order variation of the hyperbolic metric on ∂CM along Ṁ, and
Lµ : T (∂CM) → R is the function that associates with every hyperbolic structure m the
length of the m-geodesic realization of µ .

A strong similarity between dual and renormalized volumes is displayed by their varia-
tions formulae. The renormalized volume satisfies

dVR (Ṁ) =−1
2

dextF∞
(ċ∞),

where ċ∞ denotes the first order variation of the conformal structure on ∂∞M along Ṁ, and
extF∞

: T (∂∞M)→ R is the function that associates with every conformal structure c the
extremal length of the horizontal measured foliation of the Schwarzian at infinity of M
with respect to c (see Schlenker [Sch17] for a proof of this relation).
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1.7. Norms on TT (Σ). First we introduce the necessary notation for the “Riemannian
geometric tools” that will be used in the rest of the paper. Let (N,g) be a Riemannian
manifold, and consider (ei)i a local g-orthonormal frame. Given T a symmetric 2-tensor
on N, we define its g-divergence as the 1-form

(divg T )(X) := ∑
i
(g

∇eiT )(ei,X),

for every tangent vector field X . Similarly, the g-divergence of a vector field X is the
function

divg X = ∑
i

g(g
∇eiX ,ei).

The Laplace-Beltrami operator can be expressed as ∆g f = divg gradg f . Given two sym-
metric tensors T , T ′, their scalar product is defined as

(T,T ′)g := gi j ghk Tih T ′
jk = tr

(
g−1T g−1T ′).

In particular, we set trg T := (g,T )g = tr
(
g−1T

)
. In the next sections it will also be useful

to keep in mind the way that these operators change if with replace g with λg, for some
positive constant λ :

divλg T = λ
−1 divg T, ∆λg f = λ

−1
∆g f , daλg = λ

n/2 dag ,(2)

(T,T ′)λg = λ
−2(T,T ′)g, trλg T = λ

−1 trg T,(3)

if dimN = n.

Let now M be the set of Riemannian metrics on Σ, and let H be the subset of the hyper-
bolic ones. The first order variations ġ of elements of M identify with smooth symmetric
2-tensors on Σ. The choice of a metric g ∈M determines a scalar product on TgM, which
can be expressed as

(σ ,τ)FT,g :=
∫

Σ

(σ ,τ)g dag ,

where FT stands for Fischer-Tromba. We define Stt
2 (Σ,g) to be the space of those symmet-

ric tensors σ that are traceless with respect to g (i. e. (σ ,g)g = 0) and g-divergence-free
(i. e. divg σ = 0, as defined above). Such tensors are also called transverse traceless. A
simple way to characterize the space Stt

2 (Σ,g) is through holomorphic quadratic differen-
tials. A holomorphic quadratic differential φ on (Σ,g) is a C-valued symmetric tensor that
can be locally written as φ = f dz2, where z is a local coordinate conformal to the metric g
(and compatible with a given orientation), and f = f (z) is a holomorphic function. Trans-
verse traceless tensors are exactly those 2-tensors that can be written as Reφ , for some φ

holomorphic quadratic differential on (Σ,h).
It is shown in [Tro92] that, for every hyperbolic metric h, Stt

2 (Σ,h) coincides with

ThH∩ (Th(Diff0(Σ) ·h))⊥,

where Th(Diff0(Σ) · h) is the tangent space to the orbit of h by the action of the group of
diffeomorphisms of Σ isotopic to the identity, and (·)⊥ is taken with respect to the scalar
product (·, ·)FT,h on ThM. Therefore, if m = [h] denotes the isotopy class of a hyperbolic
metric on Σ, we can identify Stt

2 (Σ,h) with TmT (Σ), the tangent space at m to Teichmüller
space T (Σ) =H/Diff0(Σ), seen as the space of isotopy classes of hyperbolic metrics on Σ.
Moreover, the restriction of the scalar product (·, ·)FT,h to Stt

2 (Σ,h) coincides with (a mul-
tiple of) the Weil-Petersson metric ⟨·, ·⟩WP (see Lemma 1.6 for the explicit multiplicative
constant).

The Teichmüller space can also be endowed with another Finsler norm that arises from
its conformal (or quasi-conformal) interpretation, namely the Teichmüller norm. The Te-
ichmüller norm ∥·∥T of a tangent vector ṁ ∈ TmT (Σ) is the infimum of the L∞-norms of
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the Beltrami differentials representing ṁ. It is not difficult to see that the Beltrami differ-
ential associated to the tangent direction 2Reφ coincides with νφ , the harmonic Beltrami
differential associated to φ (see e. g. [GL00] for a detailed description of these notions,
and [Maz22, Lemma 1.2] for a direct computation of this relation). Moreover, the L∞-norm
of νφ can be computed as follows∥∥νφ

∥∥
∞
=

1√
2

sup
Σ

∥Reφ∥h.

We summarize what we observed in the following Lemma:

Lemma 1.6. For every hyperbolic metric h representing the isotopy class m ∈ T (Σ), the
tangent space TmT (Σ) identifies with Stt

2 (Σ,h). For every ṁ ∈ TmT (Σ) we have

∥ṁ∥WP =
1√
2
∥Reφ∥FT,h,

∥ṁ∥T ≤ 1√
2

sup
Σ

∥Reφ∥h,

where φ is a holomorphic quadratic differential such that 2Reφ represents ṁ inside Stt
2 (Σ,h).

2. SOME USEFUL ESTIMATES

In this section we determine estimates for the solution uk of a certain linear PDE, defined
over a k-surface lying inside an end of a convex co-compact hyperbolic 3-manifold with
incompressible boundary. The function uk will be later used to describe the Weil-Petersson
gradient of the dual volume functions V ∗

k , and the bounds produced in this section will play
an important role in the study of its flow.

Given (N,g) a Riemannian manifold with Levi-Civita connection g∇ and area form
dag, we denote by Hn(N,dag) the Sobolev space of real-valued functions f on N with
L2(N,dag)-integrable weak derivatives (g∇)i f for all i ≤ n. The space Hn(N,dag) is
Hilbert if endowed with the scalar product

( f , f ′) :=
n

∑
i=0

∫
N
((g

∇)i f ,(g
∇)i f ′)g dag , f , f ′ ∈ Hn(N,dag),

where (·, ·)g denotes the scalar product induced by g on the space of i-tensors over N.
Given f : N → R a C n-function, we define its C n(N,g)-norm as

∥ f∥C n(N,g) :=
n

∑
i=0

sup
p∈N

∥∥∥ (g
∇)i f

∣∣
p

∥∥∥
g
,

where ∥T∥g =
√

(T,T )g.
Let now hk denote the hyperbolic metric (−k)Ik on the k-surface ∂Mk, with Levi-Civita

connection k∇ and Laplace-Beltrami operator ∆k (here we consider ∆ku to be the trace of
the Hessian of u). We define the linear differential operator Lk to be

Lku := (∆k −21)u = ∆ku−2u.

Let A be the symmetric bilinear form on H1(∂Mk,dak) with quadratic form

A(u,u) :=−(Lku,u) =
∫

Σ

(∥du∥2
k +2u2)dak ,

where ∥·∥k and dak denote the norm and the area form of hk, respectively. By the Lax-Mil-
gram’s theorem (see e. g. [Bre11, Corollary 5.8]) applied to the Sobolev space H1(∂Mk,dak)
and to the coercive symmetric bilinear form A we have that, for every f ∈ L2(∂Mk,dak),
there exists a unique weak solution u ∈ H1(∂Mk,dak) of the equation Lku = f . We will in
particular denote by uk the function satisfying

(4) Lkuk =−k−1Hk ⇔ ∆Ik uk +2kuk = Hk,
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where Hk denotes the mean curvature of the k-surface ∂Mk. By the classical regularity
theory for linear elliptic PDE’s (see e. g. [Eva98, Section 6.3]), the smoothness of the
mean curvature Hk and the compactness of ∂Mk imply that the function uk is smooth and
it is a strong solution of equation (4).

By the work of Rosenberg and Spruck [RS94, Theorem 4], for every Jordan curve c in
∂∞H3 there exist exactly two k-surfaces Σ̃

±
k (c) asymptotic to c. A fundamental property of

k-surfaces, which will crucial in Lemma 2.3, is described by the following Proposition.

Proposition 2.1 ([Bon+21, Proposition 3.8]). Let k ∈ (−1,0) and n ∈N. Then there exists
a constant Nk,n > 0 such that, for every Jordan curve c in ∂∞H3, the mean curvature Hc,k

of the k-surface Σ̃k(c) = Σ̃
+
k (c)⊔ Σ̃

−
k (c) asymptotic to c satisfies∥∥Hc,k

∥∥
C n(Σ̃k(c))

≤ Nn,k.

Proof. We briefly recall here the proof of this statement (which was stated in [Bon+21] for
n = 0). k-surfaces satisfy the following compactness criterion:

Proposition 2.2 ([Bon+21, Proposition 3.6]). Let k ∈ (−1,0), and consider fn : H2
k →

H3 a sequence of proper isometric embeddings of the hyperbolic plane H2
k with constant

Gaussian curvature k. If there exists a point p ∈H2 such that ( fn(p))n is precompact, then
there exists a subsequence of ( fn)n that converges C ∞-uniformly on compact sets to an
isometric immersion f : H2

k →H3.

Fixed k ∈ (−1,0) and n ∈ N, assume by contradiction that there exists a sequence of
Jordan curves (cm)m such that the mean curvatures Hm = Hcm,k of the k-surfaces Σ̃k(cm)
satisfy ∥Hm∥C n(Σ̃k(cm))

> m. Up to extracting a subsequence, there exists an i ≤ n such that
for every m ∈ N

sup
Σ̃k(cm)

∥∥∥(k
∇)iHm

∥∥∥> m
n+1

=Cn m.

Now choose qm ∈ Σ̃k(cm) for which the norm of (k∇)iHm at qm is ≥ Cn m. Since each
component of Σ̃k(cm) is embedded and isometric to the hyperbolic plane H2

k (which is
homogeneous), we can find a sequence of proper isometric embeddings fm : H2

k → H3,
parametrizing a component of Σ̃k(cm), such that fm(p̄) = qm for some fixed basepoint p̄ ∈
H2

k . Up to post-composing fm by an isometry of H3, we can also assume that fm(p̄) = q̄ is
fixed. In this way, we have found a sequence of proper isometric embeddings fm : H2

k →H3

satisfying

• fm(p̄) = q̄ ∈H3 is independent of m ∈ N;
• the mean curvature of the surfaces fm(H2

k) at q̄ has some i-th order derivative that
is unbounded as m goes to ∞.

This clearly contradicts the compactness criterion mentioned above. □

From this result we can now obtain a uniform control on uk:

Lemma 2.3. Let M be a convex co-compact hyperbolic 3-manifold. Then the function
uk : ∂Mk → R, solution of (4), satisfies

max∂Mk
Hk

2k
≤ uk ≤

min∂Mk
Hk

2k
=

√
k+1
k

< 0.

Moreover, if M has incompressible boundary, then there exists a constant Ck > 0 depending
only on the intrinsic curvature k∈ (−1,0), and in particular not on the hyperbolic structure
of M, such that

max
∂Mk

∥∥∥k
∇

2uk

∥∥∥
k
≤Ck.
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Proof. The first assertion is an immediate consequence of the maximum principle applied
to uk as a solution of the PDE (4). Moreover, since the product of the principal curvatures
(i. e. the eigenvalues of the shape operator) of a k-surface is everywhere equal to k+ 1,
the trace of the shape operator is bounded from below by 2

√
k+1 (see Remark 2.5 for an

explanation of the equality min∂Mk
Hk = 2

√
k+1).

The proof of the second part of the assertion requires more care. Let Σk be a connected
component of the k-surface ∂Mk, and let M̃ ∼= H3 denote the universal cover of M. Since
M is a convex co-compact hyperbolic 3-manifold with incompressible boundary, every
component Σ̃k of the preimage of Σk in M̃ is stabilized by a subgroup Γ ∼= π1(Σk) of the
fundamental group of M, acting by isometries on M̃. Each of these subgroups Γ is quasi-
Fuchsian (see e. g. [Kap09, Corollary 4.112 and Theorem 8.17] for a proof of this asser-
tion), and the surface Σ̃k is a k-surface asymptotic to some Jordan curve in ∂∞M̃ ∼= ∂∞H3. In
particular, by Proposition 2.1, we can find a universal constant Nk = N2,k > 0 that satisfies

(5) ∥H̃k∥C 2(Σ̃k)
≤ Nk.

Here we stress that the constant Nk does not depend on the hyperbolic structure of M, or
Σk, but only on the value of k ∈ (−1,0).

Our goal is now to make use of this control to obtain a uniform bound of the norm of
the Hessian of uk. For this purpose, we will need the following classical result of regularity
for linear elliptic differential equations:

Theorem 2.4 ([Eva98, Theorem 2, page 314]). Let m,n ∈ N and U ⊂ Rn a bounded open
set. We consider a differential operator L of the form:

L f =−
n

∑
i, j=1

ai j(x)∂
2
xi,x j

f +
n

∑
i=0

bi(x)∂xi f + c(x) f ,

where ai j = a ji,bi,c ∈ C m+1(U,R). Assume that L is uniformly elliptic, i. e. there exists
a constant ε > 0 such that ∑i, j ai j(x)viv j ≥ ε∥v∥2 for all v ∈ Rn and x ∈U. If f ∈ H1(U)
is a weak solution of the equation L f = λ , for some λ ∈ Hm(U), then for every bounded
open set V with closure contained in U, there exists a constant C, depending only on m, U,
V and the functions ai j,bi,c, such that

∥ f∥Hm+2(V ) ≤C(∥λ∥Hm(U)+∥ f∥L2(U)),

where the Sobolev spaces Hm+2(V ), Hm(U), and L2(U) are defined with respect to the
Euclidean metric of U ⊂ Rn.

The surface Σ̃k endowed with the lift of the hyperbolic metric hk of Σk is isometric to
the hyperbolic plane H2. In the rest of the proof, we will identify Σ̃k with the Poincaré disk
model H2 := (B1,g), where B1 is the Euclidean ball of radius 1 and center 0 in C, and g is
the Riemannian metric

g =

(
2

1−|z|2

)2

|dz|2.

Now we choose U and V to be the g-geodesic balls of center 0 ∈ B1 and hyperbolic radius
equal to 2 and 1, respectively. The lift of the operator −Lk over U is clearly uniformly
elliptic, because of the compactness of U and its expression in coordinates:

−Lk f =−gi j(∂ 2
i j f −Γ

h
i j(g)∂h f )+2 f ,

where Γh
i j(g) denote the Christoffel symbols of g. Again by the compactness of U and

V , the norms of the Sobolev spaces ∥·∥H j(U) and ∥·∥H j(V ), computed with respect to the
flat connection of B1 ⊂ R2 and the Euclidean volume form, are equivalent to the norms
of the corresponding Sobolev spaces defined using the Levi-Civita connection of g and
the g-volume form. Moreover, the bi-Lipschitz constants involved in the equivalence only
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depend on a bound of the C j+1-norm of g over U , therefore they can be chosen to depend
only on j ∈ N. From now on, we will always consider the norms on the spaces H j(U) and
H j(V ) to be defined using the metric g and its connection.

Now we apply Theorem 2.4 to m = n = 2, the operator −Lk and the functions f = ũk,
λ = −k−1H̃k, where F̃ denotes the lift of the function F over Σ̃k: we can find a universal
constant C > 0 (depending only on the open sets U , V , that we chose once for all, and on
the metric g|U ) such that:

∥ũk∥H4(V ) ≤C(−k−1∥H̃k∥H2(U)+∥ũk∥L2(U)).

By the first part of Lemma 2.3, ∥ũk∥C 0(U) ≤−(2k)−1∥H̃k∥C 0(H2). In addition, we have

∥ũk∥L2(U) ≤ Area(U,g)1/2∥ũk∥C 0(U) ≤−(2k)−1 Area(U,g)1/2∥H̃k∥C 0(H2),

and
∥H̃k∥H2(U) ≤ Area(U,g)1/2∥H̃k∥C 2(H2).

In conclusion, we deduce that

∥ũk∥H4(V ) ≤−2k−1C Area(U,g)1/2∥H̃k∥C 2(H2).

By the Sobolev embedding theorem (see e. g. [Bre11, Corollary 9.13, page 283]), given
W an open set satisfying 0 ∈ W ⊂ W ⊂ V , the C 2(W )-norm of ũk (again, computed with
respect to the Levi-Civita connection of g) is controlled by a multiple of its H4-norm over
V , and the multiplicative factor depends only on W and V . Therefore, if we choose for
instance W = BH2(0,1/2) we get:

∥k
∇

2ũk∥C 0(W ) ≤C′(k)∥H̃k∥C 2(H2).

Now the desired statement easily follows. From relation (5) and the last inequality, we
obtain a uniform bound of the Hessian of ũk over W ∋ 0. Let now q be any other point
of H2, and choose a g-isometry ϕq : B1 → B1 such that ϕq(0) = q. If we replace ũk and
H̃k with ũk ◦ϕq and H̃k ◦ϕq, respectively, the exact same argument above applies, since the
operator Lk and the norms ∥·∥H j , ∥·∥C l are invariant under the action of the isometry group
of H2 (and since ∥H̃k∥C 2(H2) = ∥H̃k ◦ϕq∥C 2(H2) ). In particular, this gives us a control of
the norm of k∇2ũk over ϕq(W ) for any point q ∈ H2, and the last part of our assertion
follows. □

Remark 2.5. The minimum of the mean curvature 2
√

k+1 is always realized. As described
by Labourie in [Lab92b], whenever we have a k-surface Σk with first and second funda-
mental forms Ik and IIk, respectively, the identity map id : (Σk, IIk)→ (Σk, Ik) is harmonic,
with Hopf differential ψk satisfying

2Reψk = Ik −
Hk

2(k+1)
IIk.

Its squared norm with respect to IIk can be expressed as follows

∥2Reψk∥2
IIk =

H2
k −4(k+1)
(k+1)2 .

In particular, at each zero of ψk (which necessarily exist because χ(Σk) < 0) we have
Hk = 2

√
k+1.

We stress that, even if the maximum of the mean curvature Hk will clearly depend on
the hyperbolic structure of M, Proposition 2.1 guarantees that maxHk is controlled by a
function of k independent on the geometry of M, as long as ∂M is incompressible.

We will make use of the upper bound uk ≤
√

k+1
k in Lemma 3.4, where we will determine

a lower bound of the Weil-Petersson norm of the differential of V ∗
k in terms of the integral

of the mean curvature.
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3. THE GRADIENT OF THE DUAL VOLUME

The aim of this section is to describe the gradient of the dual volume function V ∗
k with

respect to the Weil-Petersson metric on the Teichmüller space of ∂Mk in terms of the func-
tion uk studied in the previous section.

The first order variation of the dual volume of Mk as we vary the convex co-compact
hyperbolic structure of M can be computed applying the differential Schläfli formula due
to Rivin and Schlenker [RS00]. In particular, we have:

Proposition 3.1.

d(V ∗
k ◦Tk)(Ṁ) =

1
4

∫
∂Mk

(İk, IIk −Hk Ik)Ik daIk

=
1
4

∫
∂Mk

(ḣk, IIk + k−1Hk hk)hk dahk ,

where İk =−k−1ḣk is the first order variation of the first fundamental form on ∂Mk along
the variation Ṁ, and Tk : QD(M)→T (∂Mk) is the diffeomorphism introduced in Section
1.5.

A proof of this relation based on the result of Rivin and Schlenker can be found in
[Maz21, Proposition 2.5]. From its variation formula, we can give an explicit description
of the Weil-Petersson gradient of the dual volume function V ∗

k , which will turn out to be
useful for the study of its flow.

Proposition 3.2. The vector field gradWP V ∗
k is represented by the symmetric 2-tensor

2Reφk, where φk is the (unique) holomorphic quadratic differential satisfying

Reφk = IIk − k
∇

2uk +uk hk,

where uk denotes the solution of equation (4).

Proof. Let ṁk denote a tangent vector to the Teichmüller space of ∂Mk at mk. As described
in Section 1.5, given any hyperbolic metric hk representing the isotopy class mk ∈ T (∂Mk),
we can find a unique transverse traceless tensor ḣk ∈ Stt

2 (Σ,hk) representing ṁk. Assume
for a moment that we can find a decomposition of the symmetric tensor IIk + k−1Hk hk of
the following form:

IIk + k−1Hkhk = Stt +LX hk +λ hk,

where Stt is a transverse traceless tensor with respect to hk, LX hk is the Lie derivative of hk
with respect to a vector field X , and λ is a smooth function on ∂Mk. Then, by Proposition
3.1, we could express the variation of the dual volume V ∗

k along a transverse traceless
variation ḣk as follows:

dV ∗
k (ḣk) =

1
4

∫
∂Mk

(ḣk,Stt +LX hk +λ hk)hk dahk .

Since ḣk is traceless, the scalar product (ḣk,hk)hk = trhk(ḣk) vanishes identically. Moreover,
the L2-scalar product between ḣk and LX hk vanishes too, because LX hk is tangent to the
orbit of hk by the action of Diff0(Σ) (see Section 1.7). In particular, we must have

dV ∗
k (ḣk) =

1
4

∫
∂Mk

(ḣk,Stt)hk dahk =
1
8
(ḣk,2Stt)FT,hk .

In light of Lemma 1.6, by varying the tangent vector ṁk ∈ TmkT (∂Mk), we deduce that the
tensor 2Stt is the element of Stt

2 (Σ,hk) that represents gradWP V ∗
k .

In conclusion, this argument shows us that, in order to prove our assertion, we need to
determine a decomposition of the tensor IIk + k−1Hk hk of the form we described above,
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with Stt = IIk − k∇2uk +uk hk. For this purpose, we consider the following expression:

IIk + k−1Hk hk = (IIk − k
∇

2uk +uk hk)+
k
∇

2uk +(k−1Hk −uk)hk

= (IIk − k
∇

2uk +uk hk)+
1
2
Lgradhk

uk hk +(k−1Hk −uk)hk,

where we used the relation Lgradhk
uk hk = 2 k∇2uk. In this expression, the second term of

the sum is of the type LX hk, while the third term has the form λ hk. Therefore, by the
argument above, it is enough to show that the first term is hk-traceless and hk-divergence-
free. The trace of IIk − k∇2uk +uk hk satisfies

trhk(IIk − k
∇

2uk +uk hk) =−k−1Hk −∆kuk +2uk.

This expression vanishes because uk is a solution of equation (4). In order to compute the
divergence of our tensor, we will need the following relations:

divhk IIk =−k−1 dHk , divg(
g
∇

2 f ) = d(∆g f )+Ricg(gradg f , ·).

The first equality follows from the Codazzi equation (k∇X Bk)Y = (k∇Y Bk)X satisfied by
the shape operator Bk of ∂Mk (the Levi-Civita connections of hk and the first fundamental
form Ik are the same, since they differ by a multiplicative constant). The second relation is
true for any Riemannian metric g, and we will apply it in the case g = hk and f = uk. Since
hk is a hyperbolic metric on a 2-manifold, we have Richk =−hk. Therefore

divhk(IIk −∇
2
kuk +uk hk) =−k−1 dHk −d(∆kuk)+duk +duk

= d
(
−k−1Hk −∆kuk +2uk

)
,

where we used the relation divg( f g) = d f . Again, the expression above vanishes because
uk solves equation (4). Then we have shown that IIk− k∇2uk+uk hk is a transverse traceless
tensor, as desired. □

Remark 3.3. In fact, the decomposition we presented for the tensor IIk + k−1Hk hk is re-
lated to the orthogonal decomposition of the space of symmetric tensors due to Fischer
and Marsden [FM75]. Given g a hyperbolic metric, every symmetric tensor S admits an
orthogonal decomposition of the following form:

S = Stt +LX g+((−∆g f + f )g+ g
∇

2 f ),

where:

• Stt is transverse traceless with respect to g;
• Stt +LX g is tangent to the space of Riemannian metrics with constant Gaussian

curvature equal to −1. In other words, if g′ 7→ K(g′) denotes the operator that
associates to the Riemannian metric g′ its Gaussian curvature, then Stt +LX g ∈
kerdKg;

• (−∆g f + f )g+ g∇2 f lies in the L2-orthogonal of kerdKg.

Then, the expression

IIk + k−1Hkhk = (IIk − k
∇

2uk +uk hk)+0+((k−1Hk −uk)hk +
k
∇

2uk)

= (IIk − k
∇

2uk +uk hk)+0+((−∆kuk +uk)hk +
k
∇

2uk)

is the Fischer-Marsden decomposition of IIk + k−1Hk hk, where f = uk, X = 0 and Stt =
(IIk − k∇2uk +uk hk).

Using this explicit description of the Weil-Petersson gradient of the dual volume func-
tion V ∗

k , we can determine a lower bound of its norm in terms of the integral of the mean
curvature:
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Lemma 3.4. For every k ∈ (−1,0) we have

∥dV ∗
k ∥

2
WP ≥−

√
k+1
2k

∫
∂Mk

Hk daIk −
2π(k+1)

k2 |χ(∂M)|.

Proof. In what follows, we will prove the following expression:

(6)
∥∥IIk −∇

2
kuk +uk hk

∥∥2
Ik
= kukHk −2(k+1)+divIk W,

for some tangent vector field W on ∂Mk. Assuming for the moment this relation, we deduce
that

∥dV ∗
k ∥

2
WP =

1
2

∫
∂Mk

∥Reφk∥2
hk

dahk(Prop. 3.2 and Lemma 1.6)

=
1
2

∫
∂Mk

(−k)−2 ∥Reφk∥2
Ik (−k)daIk

=− 1
2k

∫
∂Mk

(kukHk −2(k+1))daIk ,(relation (6))

where we used that hk = (−k)Ik and relations (2), (3), and that the integral of the term
divIk W vanishes by the divergence theorem. By Lemma 2.3, we have uk ≤

√
k+1
k , therefore

we obtain

∥dV ∗
k ∥

2
WP ≥−

√
k+1
2k

∫
∂Mk

Hk daIk −
2π(k+1)

k2 |χ(∂M)|,

where we applied the Gauss-Bonnet theorem to say that the area of ∂Mk with respect to Ik
is equal to −2πk−1|χ(∂M)|.

The only ingredient left to prove is relation (6). For this computation, we will use the
Bochner’s formula (see e. g. [Lee18, page 223]):

(7)
1
2

∆g∥d f∥2
g =

∥∥g
∇

2 f
∥∥2

g +g(gradg f ,gradg ∆g f )+Ricg(gradg f ,gradg f ),

and the following expressions:

divg( f X) = g(gradg f ,X)+ f divg X ,(8)
1
2
(LX g,T )g =−(divg T )(X)+divg Y,(9)

where X is a tangent vector field, f is a smooth function, T is a symmetric 2-tensor, and
Y = T (X , ·)♯ is the vector field defined by requiring that g(Y,Z) = T (X ,Z) for all vector
fields Z. From now on, we will omit everywhere the dependence of the connections, norms,
gradients, and the Laplace-Beltrami operator on the Riemannian metric g, and everything
has to be interpreted as associated to g = Ik. Observe also that the Levi-Civita connection
of Ik and hk are equal, since these metrics differ by the multiplication by a constant and, in
particular, the hk- and Ik-Hessians coincide. Then we have:∥∥IIk −∇

2uk +uk hk
∥∥2

=
∥∥IIk −∇

2uk − k uk Ik
∥∥2

= ∥IIk∥2 +
∥∥∇

2uk
∥∥2

+ k2 u2
k ∥Ik∥2 −2(IIk,∇

2uk)+

−2k uk(IIk, Ik)+2k uk(∇
2uk, Ik).

(10)

First we focus our attention on the terms
∥∥∇2uk

∥∥2 and (IIk,∇
2uk). In order to simplify the

notation, we say that two functions a and b on ∂Mk are equal "modulo divergence", and
we write a ≡div b, if their difference coincides with the divergence of some smooth vector
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field. Then we have: ∥∥∇
2uk
∥∥2

=
1
2

∆∥duk∥2 −⟨graduk,grad∆uk⟩− k∥duk∥2(relation (7))

≡div −⟨graduk,grad∆uk⟩− k∥duk∥2(∆g f = divg gradg f )

=−div(∆uk graduk)+(∆uk)
2 − k∥duk∥2(relation (8))

≡div (∆uk)
2 − k div(uk graduk)+ kuk∆uk(relation (8))

≡div ∆uk(∆uk + kuk),

(IIk,∇
2uk) =

1
2
(IIk,Lgraduk Ik)(Lgradg f g = 2 g∇2 f )

≡div −(div IIk)(graduk)(relation (9))

=−⟨gradHk,graduk⟩(div IIk = dHk)

=−div(Hk graduk)+Hk∆uk(relation (8))
≡div Hk∆uk.

The other terms in equation (10) are simpler to handle. In particular we have:

∥IIk∥2 = H2
k −2(k+1),

∥Ik∥2 = 2,

(IIk, Ik) = Hk,

(∇2uk, Ik) = ∆uk.

Replacing all the relations we found in equation (10), we obtain:∥∥IIk −∇
2uk +ukhk

∥∥2 ≡div H2
k −2(k+1)+∆uk(∆uk + kuk)+2k2u2

k+

−2Hk∆uk −2kukHk +2kuk∆uk

= H2
k −2(k+1)+2k2u2

k −2kukHk+

+∆uk(∆uk +3kuk −2Hk)

Finally, by replacing the expression of ∆uk = ∆Ik uk from equation (4) in the equality above,
we find that: ∥∥IIk −∇

2uk +ukhk
∥∥2 ≡div kukHk −2(k+1),

which is equivalent to relation (6). □

Since the Weil-Petersson metric of the Teichmüller space is non-complete, a control
from above of the quantity

∥∥dV ∗
k

∥∥
WP would not suffice to guarantee the existence of the

flow for every time. For this purpose, we rather study the L∞-norm of the Beltrami dif-
ferentials equivalent to gradWP V ∗

k , which gives a control with respect to the Teichmüller
metric (that is complete). At this point, the estimates determined in Lemma 2.3 will play
an essential role.

Proposition 3.5. There exists a constant Dk > 0 depending only on the intrinsic curvature
k ∈ (−1,0) such that

∥gradWP V ∗
k ∥T ≤ Dk,

where ∥·∥T denotes the Teichmüller norm on TT (∂Mk).

Proof. Let mk be a point of the Teichmüller space T (∂Mk) and let hk be a hyperbolic metric
in the isotopy class mk. In Proposition 3.2, we showed that the vector field gradWP V ∗

k at a
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point mk ∈ T (∂Mk) is represented by the transverse traceless tensor 2Reφk ∈ Stt
2 (∂Mk,hk).

Therefore by Lemma 1.6 we have

∥gradWP V ∗
k ∥T ≤ 1√

2
sup
∂Mk

∥Reφk∥hk
.

Therefore it is enough to show that the norm
∥∥IIk − k∇2uk +uk hk

∥∥
hk

is uniformly bounded

by a constant depending only on k. The norm of IIk is equal to −k−1
√

H2
k −2(k+1), and

∥uk hk∥hk
=
√

2 |uk|. Therefore we have

∥∥∥IIk − k
∇

2uk +uk hk

∥∥∥
hk
≤−k−1

√
∥Hk∥2

C 0 −2(k+1)+
∥∥∥k

∇
2uk

∥∥∥
hk
+
√

2∥uk∥C 0 .

Our assertion is now an immediate consequence of Proposition 2.1 and of Lemma 2.3. □

Corollary 3.6. The flow Θt of the vector field −gradWP V ∗
k over T (∂Mk) is defined for all

times t ∈ R.

Proof. The assertion follows from the fact that the Teichmüller distance is complete, and
on the bound shown in Proposition 3.5. □

The last ingredient that we will need for the proof of Theorem A is the existence of some
lower bound for the dual volume function V ∗

k . To do so, we will make use of the properties
of the dual volume proved in [Maz21], and of an upper bound for the length of the bending
measure of the boundary of the convex core of a convex co-compact manifold with incom-
pressible boundary, whose existence has been first proved by Bridgeman [Bri98], and it has
been improved in later works (see [BC05]). We will make use of the best result currently
known in this direction for convex co-compact manifolds with incompressible boundary,
which is due to Bridgeman, Brock, and Bromberg [BBB19].

Lemma 3.7. For every k ∈ (−1,0) and for every convex co-compact hyperbolic 3-manifold
M with incompressible boundary we have:

V ∗
k (M)≥ F(k,χ(∂M)),

where F is an explicit function of the curvature k ∈ (−1,0) and the Euler characteristic of
∂M.

Proof. Since the k-surfaces foliate the complementary of the convex core CM, a simple
application of the geometric maximum principle (see for instance [Lab00, Lemme 2.5.1])
shows that the k-surface ∂Mk is contained in NεkCM, the εk-neighborhood of the convex
core CM, for εk = arctanh

√
k+1. The dual volume of a convex set is a decreasing function

with respect to the inclusion (see [Maz21, Proposition 2.6] for a proof of this assertion),
therefore the quantity V ∗

k (M) is bounded from below by the dual volume of the εk-neigh-
borhood of the convex core. It is not difficult to show that for every ε > 0 we have

V ∗(NεCM) =V (CM)− ℓm(µ)

4
(cosh2ε +1)− π

2
|χ(∂CM)|(sinh2ε −2ε),

where ℓm(µ) denotes the length of the bending measured lamination on the boundary of
the convex core of M (see e. g. [Maz21, Proposition 2.4]). By [BBB19, Theorem 2.16],
the term ℓm(µ) is less or equal to 6π|χ(∂M)|. Combining these observations, we deduce
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that

V ∗
k (M)≥V ∗(NεkCM)

=V (CM)− ℓm(µ)

4
(cosh2εk +1)− π

2
|χ(∂CM)|(sinh2εk −2εk)

≥−ℓm(µ)

4
(cosh2εk +1)− π

2
|χ(∂CM)|(sinh2εk −2εk)

≥−π

2
|χ(∂M)|(3coshεk +3+ sinh2εk −2εk),

which proves the desired inequality. □

4. THE PROOF OF THEOREM A

This section is dedicated to the proof of the main theorem of our exposition, and to the
proof of the optimality of the multiplicative constant appearing in (1).

Proof of Theorem A. Let M be a convex co-compact hyperbolic 3-manifold with incom-
pressible boundary. We denote by Mt := Θt(M) the hyperbolic 3-manifold obtained by
following the flow of the vector field −gradWP V ∗

k , which is defined for every t ∈R in light
of Corollary 3.6. In order to simplify the notation, we will continue to denote by V ∗

k the
k-dual volume as a function over the space of quasi-isometric deformations of M. This
abuse is justified by the fact that, for every k ∈ (−1,0), a convex co-compact manifold is
uniquely determined by the hyperbolic structures on its k-surfaces (see Theorem 1.5). We
have

V ∗
k (M)−V ∗

k (Mt) =
∫ t

0
∥dV ∗

k ∥
2
Ms

ds .

By Lemma 3.7, the left hand side of the relation is bounded from above with respect to
t. In particular, the integral on the right side has to converge as t goes to +∞. Therefore
we can find an unbounded increasing sequence (tn)n for which the Weil-Petersson norm∥∥dV ∗

k

∥∥2 evaluated at Mtn goes to 0 as n goes to ∞. Then, by Lemma 3.4, we have

limsup
n→∞

∫
∂Mtn ,k

Hk daIk ≤−4πk−1√k+1|χ(∂M)|,

where Mtn,k stands for (Mtn)k, the region of Mtn enclosed by its k-surfaces. Therefore we
deduce:

V ∗
k (M)≥ lim

n→∞
V ∗

k (Mtn) = lim
n→∞

(
Vk(Mtn)−

1
2

∫
∂Mtn .k

Hk daIk

)
≥ inf

M′∈QD(M)
Vk(M′)− 1

2
limsup

n→∞

∫
∂Mtn ,k

Hk daIk

≥ inf
M′∈QD(M)

Vk(M′)+2πk−1√k+1|χ(∂M)|,

where Vk(M′) denotes the Riemannian volume of the region M′
k of M′ enclosed by its k-

surface. Observe that the term 2πk−1√k+1|χ(∂M)| is equal to − 1
2
∫

∂M′
k
Hk daIk when the

boundary of the convex core of M′ is totally geodesic.
Finally, by taking the limit as k goes to (−1)+, we obtain that V ∗

C (M) ≥ infM′ VC(M′)
for every convex co-compact structure M. This proves that

inf
QD(M)

V ∗
C ≥ inf

QD(M)
VC.

On the other hand, the dual volume V ∗
C (M) :=VC(M)− 1

2ℓm(µ) is always smaller or equal
to VC(M), so the other inequality between the infima is clearly satisfied.

If V ∗
C (M) =VC(M), then the length of the bending measured lamination µ of the convex

core of M has to vanish, therefore µ = 0 or, in other words, ∂CM is totally geodesic. □
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Corollary 4.1. For every quasi-Fuchsian manifold M we have VC(M) ≥ 1
2ℓm(µ), where

m = m(M) and µ = µ(M) denote the hyperbolic metric and the bending measure of the
boundary of the convex core of M, respectively. Moreover, for every positive ε and for
every neighborhood U of a Fuchsian manifold M0 inside QD(M0) =QD(M), there exists
a quasi-Fuchsian manifold Mε in U that satisfies VC(Mε) < ( 1

2 + ε)ℓmε
(µε), where mε =

m(Mε) and µε = µ(Mε).

Proof. If M is quasi-Fuchsian, the infimum of the volume of the convex core over the space
of quasi-isometric deformations QD(M) is equal to 0, and it is realized on the Fuchsian
locus.

For the second part of the statement, consider M0 a Fuchsian manifold whose convex
core is a totally geodesic surface homeomorphic to Σ with hyperbolic metric m0. Let
α : [0,1] → QD(M) be a path starting at α(0) = M0 and for which the right derivative
of the bending measure µ̇

+
0 exists and it is equal to a non-zero measured lamination on

Σ⊔Σ. A fairly explicit way to produce such a path is to choose a measured lamination
λ ∈ ML(Σ) and to consider the deformation of M0 given by the holonomies of pleated
surfaces with bending Hölder cocycle equal to tλ and hyperbolic metric m0, as t varies in
[0,1] (compare with [Bon96]). Then, for every ε > 0 we define

fε(t) :=VC(α(t))−
(

1
2
+ ε

)
ℓmt (µt) =V ∗

C (α(t))− ε ℓmt (µt), t ∈ [0,1],

where mt = m(Mt) and µt = µ(Mt) denote the hyperbolic metric and the bending measure
of the boundary of the convex core of Mt = α(t). As shown in [KS09, equation (4)], we
have

d
dt
ℓmt (µt)

∣∣∣∣
t=0+

= d(Lµ0)(ṁ0)+ ℓm0(µ̇
+
0 ) = ℓm0(µ̇

+
0 ),

where we are using that µ0 = 0 (here Lµ0 : T (∂CM) → R is the function that associates
with every hyperbolic structure m the length of the m-geodesic realization of µ0). Then

fε(t) = fε(0)+ f ′ε(0) t +o(t;ε)

= 0+(d(VC
∗)M0 (v)− ε ℓm0(µ̇

+
0 ))t +o(t;ε)

=−ε ℓm0(µ̇
+
0 ) t +o(t;ε).(V ∗

C ∈ C 1 and M0 minimum)

This proves that fε(t) < 0 for t sufficiently small (depending on ε), and therefore the
existence of a quasi-Fuchsian manifold Mε satisfying the desired properties. □
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